
Chapter 9
Geometry of General Serial Robots

9.1 Introduction

Current serial robots, encountered not only in research laboratories but also in
production or construction environments, include features that deserve a chapter
apart. We will call here general serial robots all non-redundant serial robots that do
not fall in the category of those studied in Chap. 4. Thus, the chapter is devoted to
manipulators of the serial type that do not allow a decoupling of the positioning and
the orientation problems. The focus of the chapter is, thus, the inverse displacement
problem (IDP) of general six-revolute robots. While redundant manipulators of the
serial type fall within this category as well, we will leave these aside, for their
redundancy resolution calls for a more specialized background than what we have
either assumed or given here.

A special feature of serial manipulators of the kind studied here is that they can
admit up to sixteen inverse displacement solutions. Such manipulators are now
in operation in industry, an example of which is the TELBOT System, shown
in Fig. 9.1, which features all its six motors on its base, the motion and force
transmission taking place via concentric tubes and bevel gears. This special feature
allows TELBOT to have unlimited angular displacements at its joints, no cables
traveling through its structure and no deadload on its links by virtue of the motors
(Wälischmiller and Li 1996).

9.2 The IDP of General Six-Revolute Manipulators

As shown in Chap. 4, the IDP of six-revolute manipulators of the most general type
leads to a system of six independent equations in six unknowns. This is a highly
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Fig. 9.1 The TELBOT
System (courtesy of
Wälischmiller GmbH,
Meersburg, Germany)

nonlinear algebraic system whose solution posed a challenge to kinematicians for
about two decades and that was not considered essentially solved until the late
eighties. Below we give a short historical account of this problem.

Pieper (1968) reported what is probably the earliest attempt to formulate
the inverse displacement problem of six-axis serial manipulators in a univariate
polynomial form. He showed that decoupled manipulators, studied in Sect. 4.4, and
a few others, allow a closed-form solution of the inverse displacement problem
associated with them. However, apart from the simple architectures identified by
Pieper, and others that have been identified more recently (Mavroidis and Roth
1992), a six-axis manipulator does not admit a closed-form solution. Attempts to
derive the minimal characteristic polynomial for this manipulator were reported by
Duffy and Derby (1979), Duffy and Crane (1980), Albala (1982), and Alizade et al.
(1983), who derived a 32nd-degree polynomial, but suspected that this polynomial
was not minimal, in the sense that the manipulator at hand might not be able
to admit up to 32 postures for a given end-effector (EE) pose. Tsai and Morgan
(1985) used a technique known as polynomial continuation (Morgan 1987) to solve
numerically the nonlinear displacement equations, cast in the form of a system of
quadratic equations. These researchers found that no more than 16 solutions were to
be expected. Briefly stated, polynomial continuation consists basically of two stages,
namely, reducing first the given problem to a system of polynomial equations; in
the second stage, a continuous path, also known as a homotopy in mathematics, is
defined with a real parameter t that can be regarded as time. The continuous path
takes the system of equations from a given initial state to a final one. The initial state
is so chosen that all solutions to the nonlinear system in this state are either apparent
or much easier to find numerically than those of the originally proposed system. The
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final state of the system is the actual system to be solved. The initial system is thus
deformed continuously into the final state upon varying its set of parameters, as t
varies from 0 to 1. At each continuation step, a set of initial guesses for each of
the solutions already exists, for it is simply the solution to the previous continuation
step. Moreover, finding the solutions at the current continuation step is done using a
standard Newton method (Dahlquist and Björck 1974).

Primrose (1986) proved conclusively that the problem under discussion admits at
most 16 solutions, while Lee and Liang (1988) showed that the same problem leads
to a 16th-degree univariate polynomial. Using different elimination procedures, as
described in Sect. 9.3, Li1 (1990) and Raghavan and Roth (1990, 1993) devised
different procedures for the computation of the coefficients of the univariate
polynomial. While the inverse displacement problem can be considered basically
solved, research on finding all its solutions safely and quickly still continued into
the nineties (Angeles et al. 1993). Below we describe two approaches to solving
this problem: (a) the methods of Raghavan and Roth (1990, 1993) and of Li (1990),
aimed at reducing the displacement relations to a single univariate polynomial; and
(b) the bivariate-equation approach, introduced in (Angeles and Etemadi Zanganeh
1992).

It will become apparent, however, that a streamlined algorithm guaranteeing the
reduction of the system of 14 fundamental equations, as derived in Sect. 9.2.2, to a
lower number of equations in only one or two unknowns, is still lacking. A step in
this direction is a method based on the concept of kinematic mapping, as reported
by Husty et al. (2007). Within their method, the authors split the six-revolute
kinematic chain into two three-revolute subchains, which allows the computation
of the 16 inverse-displacement solutions using advanced geometric concepts. Once
these solutions are available, the 16 possible values of a joint angle are known,
the balance five joint angles are then computed by linear-equation solving, as in the
case of the algorithms described here.

9.2.1 Preliminaries

We start by recalling a few definitions that were introduced in Chap. 4. In Sect. 4.2
we defined the matrices Qi and the vectors ai associated with the coordinate
transformations from frame FiC1 to frame Fi or, equivalently, the displacement of
the latter to the former. The 4�4 homogeneous matrix—see Sect. 2.5—transforming
coordinates in FiC1 to coordinates in Fi is given by

Ai D
�

Qi ai
0T 1

�
(9.1)

1N.B. Lee and Li of the references in this chapter are one and the same person, namely,
Dr.-Ing. Hongyou Lee (a.k.a. Dr.-Ing. Hongyou Li).
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where 0 is the three-dimensional zero vector, while the 3� 3 rotation matrix Qi and
the three-dimensional vector ai were defined in Chap. 4 as

Qi �
2
4ci ��isi �i si
si �i ci ��ici
0 �i �i

3
5 ; ai �

2
4aiciai si
bi

3
5 (9.2)

In the above definitions we used the Denavit–Hartenberg notation, whereby ai is the
distance—and hence, ai � 0—between the Zi - and the ZiC1-axes, while bi is the
offset—�1 < bi < C1—between the Xi - and XiC1-axes, as measured along
the positive direction of the Zi -axis. Moreover,

ci � cos �i ; si � sin �i ; �i � cos˛i ; �i � sin˛i

where �i is the i th joint angle, measured fromXi toXiC1 in the positive direction of
Zi , and ˛i denotes the twist angle fromZi toZiC1 in the positive direction ofXiC1,
for i D 1; : : : ; 6. Furthermore, the factoring of matrix Qi , introduced in Eq. (4.2a),
is reproduced below for quick reference:

Qi D ZiXi (9.3)

with Xi and Zi denoting two pure reflections, namely,

Xi �
2
41 0 0

0 ��i �i
0 �i �i

3
5 ; Zi �

2
4ci si 0

si �ci 0
0 0 1

3
5 (9.4a)

XT
i D Xi D X�1

i ZTi D Zi D Z�1
i (9.4b)

the foregoing reflections thus being both symmetric and self-inverse—see Sect. 2.4.
As a consequence,

QT
i D XiZi

We will also use the partitionings of Qi displayed in Eq. (4.12), namely,

Qi �
�
pi qi ui

� D
2
4mT

i

nTi
oTi

3
5 (9.5)

A quick comparison between Eqs. (9.2) and (9.5) leads to the relations below:

mi D
2
4 ci
��isi
�i si

3
5 ; ni D

2
4 si
�i ci
��ici

3
5 ; oi D

2
4 0�i
�i

3
5 (9.6)
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Further, let us recall the definition introduced in Eq. (4.13), e � �
0 0 1

�T
, along

with that in Eq. (4.3d), ai D Qibi , which readily leads to bi D QT
i ai . Hence,

ui � Qie D
2
4 �isi
��ici
�i

3
5 and bi �

2
4 ai
bi�i
bi�i

3
5 (9.7)

where we have reproduced Eq. (4.3e) for quick reference. Moreover, since ei D
Œei �i D ŒeiC1�iC1, the above expression for ui leads to

ui D Qi ŒeiC1�iC1 D ŒeiC1�i (9.8a)

which means that ui represents eiC1 in Fi . Likewise,

oi D QT
i Œei �i D Œei �iC1 (9.8b)

Now, using Eqs. (9.4a) and the second of Eq. (9.7), we introduce the definitions

� i � Ziai D Xibi D
�
ai 0 bi

�T
(9.9)

whence

bi D Xi� i (9.10)

Furthermore, vector xi of Eq. (4.11) is reproduced below for quick reference as well:

xi �
�

cos �i
sin �i

�
(9.11)

A useful concept in this context is that of bilinear form: An algebraic expression
of the form Auv, where u and v are two given scalar variables and A is independent
of u and v, is said to be bilinear in u and v. Likewise, an expression of the form
Au2v2 is said to be biquadratic in u and v, with similar definitions for bicubic,
trilinear, and multilinear forms. Moreover, the same definitions apply to vector and
matrix expressions, as pertaining to their components and, correspondingly, their
scalar entries.

In light of the definition of xi , additionally, we shall refer to an expression of
the form

E1 � A cos �i C B sin �i C C (9.12)

in which coefficients A, B and C are independent of �i , as being linear in xi .
Likewise, an expression of the form

E2 � A cos �i cos �jCB cos �i sin �jCC sin �i cos �jCD sin �i sin �jCF (9.13)
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with coefficients A, B , : : :, F independent of both �i and �j , will be termed bilinear
in xi and xj . In fact, such an expression may also involve terms linear in xi and
xj alone. More generally, an expression involving terms with products such as
cos2 �i cos2 �j and other terms with similar products of the same or lower degree
will be termed biquadratic in xi and xj . Now we have

Lemma 9.2.1. Let matrix A be skew-symmetric and B be defined as the similarity
transformation of A given below:

B � QiAQT
i (9.14)

where Qi was recalled in Eq. (9.2) and A is assumed to be independent of �i . Then,
B is linear in xi .

Proof. This result follows from relation (2.139). Indeed, as the reader can readily
verify, B is skew-symmetric, and the product Bv, for any three-dimensional vector
v, can be expressed in terms of b, defined as vect.B/—see Sect. 2.3.3. That is,

Bv D b � v

If a denotes vect.A/, then a and b, by virtue of Eq. (9.14) and the results of Sect. 2.6,
obey the relation

b D Qia

Hence,

Bv D .Qia/ � v

thereby showing that the resulting product is linear in xi , q.e.d.

Moreover, let

�i � tan

�
�i

2

�
(9.15a)

which allows us to write the identities below, as suggested by Li (1990):

si � �i ci � �i ; �i si C ci � 1 (9.15b)

We now define p as the vector directed from the origin of F1 to the operation point
(OP) P of Fig. 9.2. Moreover, we let l � Œ lx; ly; lz �

T , m � Œ mx; my; mz �
T , and

n � Œ nx; ny; nz �
T represent the three mutually perpendicular unit vectors parallel

to theX7, Y7 andZ7 axes, respectively, of F7, which has its origin at P—a layout of
these axes is depicted in Fig. 4.3 for a decoupled manipulator. Hence, the pose of the
EE is described in the base frame F1 by means of the homogeneous transformation
A given as

A D
�

Q p
0T 1

�
; Q � �l m n

� D
2
4lx mx nx
ly my ny
lz mz nz

3
5



9.2 The IDP of General Six-Revolute Manipulators 381

Fig. 9.2 Partitioning of the manipulator loop into two subloops

In the next step, we derive a set of scalar equations in five unknowns, upon
eliminating one of these, that is fundamental in computing the solution of the
problem at hand.

9.2.2 Derivation of the Fundamental Closure Equations

Given the geometric parameters of the manipulator and the pose of the EE with
respect to the base frame, we derive the manipulator displacement equations, a.k.a.
the loop-closure equations, from which all unknown angles are to be computed.
We start by recalling the (matrix) rotation and (vector) translation equations of
the general six-axis manipulator, as displayed in Eqs. (4.9a and b), and reproduced
below for quick reference:

Q1Q2Q3Q4Q5Q6 D Q (9.16a)

a1 CQ1a2 CQ1Q2a3 C : : :CQ1Q2Q3Q4Q5a6 D p (9.16b)

The use of 4 � 4 homogeneous transformations in the ensuing preparatory work
will ease the suitable recasting of the foregoing equations. Thus, by using the
matrices Ai of Eq. (9.1) in the above rotation and translation equations, we end
up with a 4 � 4 matrix equation, namely,

A1A2A3A4A5A6 D A (9.17)
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The unknown variables in the above equations are the joint angles f�ig61; the
IDP thus consists in solving the closure equations (9.16a and b) or, equivalently,
Eq. (9.17), for these unknowns. The said equations comprise 12 scalar equations
and four identities; however, among these equations, only six are independent, for
the columns (or the rows) of a rotation matrix must form an orthonormal—mutually
orthogonal and of unit magnitude—set of vectors. The orthonormality property of
the columns or rows of a rotation matrix, thus, brings about six scalar constraints.

The basic approach to solving the IDP resorts to disassembling the kinematic
chain of the manipulator at two joints, e.g., joints 3 and 6, to obtain two subchains or
subloops (Li et al. 1991). The first subchain, as suggested in the foregoing reference,
and depicted in Fig. 9.2, goes from joint 3 to joint 6 via joints 4 and 5, while
the second subchain goes from joint 6 to joint 3 via the EE and joints 1 and 2.
Algebraically, this is equivalent to rewriting Eq. (9.17) in the form

A3A4A5 D A�1
2 A�1

1 AA�1
6 (9.18a)

Note that each side of Eq. (9.18a) bears a specific structure. Indeed, if we denote by
Ls and Rs the left- and right-hand sides of Eq. (9.18a), we have

Ls �

2
664
l11.�3; �4; �5/ l12.�3; �4; �5/ l13.�3; �4; �5/ l14.�3; �4; �5/

l21.�3; �4; �5/ l22.�3; �4; �5/ l23.�3; �4; �5/ l24.�3; �4; �5/

l31.�4; �5/ l32.�4; �5/ l33.�4; �5/ l34.�4; �5/

0 0 0 1

3
775 (9.18b)

Rs �

2
664
r11.�1; �2; �6/ r12.�1; �2; �6/ r13.�1; �2/ r14.�1; �2/

r21.�1; �2; �6/ r22.�1; �2; �6/ r23.�1; �2/ r24.�1; �2/

r31.�1; �2; �6/ r32.�1; �2; �6/ r33.�1; �2/ r34.�1; �2/

0 0 0 1

3
775 (9.18c)

where lij and rij denote nontrivial components of the left- and the right-hand
sides, respectively, of Eq. (9.18a). Note that, because of the forms of matrices Qi ,
whose third rows are independent of �i , the third row of Ls , as made apparent in
Eq. (9.18b), is free of �3. Likewise, the third and fourth columns of Rs , as made
apparent in Eq. (9.18c), are free of �6.

It should be apparent that other pairs of joints can be used to disassemble
the kinematic chain of the manipulator into two subchains; what matters is that
none of the two subchains contains more than three joints; else, the entries of the
homogeneous matrices become unnecessarily complex on one side of the matrix
equation, while the entries of the other side become unnecessarily simple.

Now we extract one rotation and one translation equation from the 4 � 4 matrix
equation (9.18a), namely,

Q3Q4Q5 D QT
2 QT

1 QQT
6 (9.19a)

Q3.b3 CQ4b4 CQ4Q5b5/ D QT
2 QT

1 .p �Qb6/ � .b2 CQT
2 b1/ (9.19b)
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which are kinematically equivalent to Eqs. (9.16a and b), but algebraically much
simpler. Note that, in Eq. (9.19b), we used the second Eq. (9.7) to substitute ai by
Qibi . In the sequel, we will need the two products below:

Q5e � Q5Œe6�6 D Œe6�5 (9.20a)

QT
6 e � QT

6 Œe6�6 D o6 D Œe6�7 (9.20b)

where we have recalled relations (9.8a and b); whence,

QQT
6 e � QŒe6�7 D Œe6�1 � � 6 (9.20c)

Further, we equate the product of each of the two sides of Eq. (9.19a) by e from the
right, to obtain, in light of Eqs. (9.20a and c),

Q3Q4Œe6�5 D QT
2 QT

1 Œe6�1 (9.21a)

Both sides of Eq. (9.21a) thus represent the unit vector e6 in frame F3; the difference
between the two sides should be apparent: while the left-hand side is obtained by
transforming Œe6�5 into Œe6�3, the right-hand side by transforming Œe6�1 likewise. On
the other hand, Eq. (9.19b) can be cast in the form

Q3.b3 CQ4b4 CQ4Q5b5/ D QT
2 QT

1 � � .b2 CQT
2 b1/ (9.21b)

where � � p � Qb6 D Œp � a6�1. Hence, the left- and the right-hand sides of
Eq. (9.21b) represent vector a3 C a4 C a5 in frame F3, the difference being that the
left-hand side is obtained by carrying the F4-representation of the vector into F3,
while the right-hand side does so from the F1-representation of the same vector.

Further, let the left- and the right-hand sides of Eq. (9.21a) be denoted by h and
i, respectively, while the counterparts of Eq. (9.21b) by f and g, i.e.,

h � h.�3; �4; �5/ D Q3Q4u5 (9.22a)

i � i.�1; �2/ D QT
2 QT

1 � 6 (9.22b)

f � f.�3; �4; �5/ D Q3.b3 CQ4b4 CQ4Q5b5/ (9.22c)

g � g.�1; �2/ D QT
2 QT

1 � � .b2 CQT
2 b1/ D QT

2 .Q
T
1 � � b1/ � b2 (9.22d)

Further, notice that arrays f and g represent, in fact, the first three entries of the
fourth columns of the matrices of Eqs. (9.18b) and (9.18c), respectively. Likewise,
arrays h and i represent the third columns of the same matrices. Vectors g and i are
thus free of �6.
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Now, the six scalar equations (9.21b) and (9.21a) reduce, correspondingly, to

f D g or

2
4fx.�3; �4; �5/fy.�3; �4; �5/

fz.�4; �5/

3
5 D

2
4gx.�1; �2/gy.�1; �2/

gz.�1; �2/

3
5 (9.23a)

h D i or

2
4hx.�3; �4; �5/hy.�3; �4; �5/

hz.�4; �5/

3
5 D

2
4ix.�1; �2/iy.�1; �2/

iz.�1; �2/

3
5 (9.23b)

It should be noted that h and i are both unit vectors. Thus, each side of Eq. (9.23b)
is subjected to a quadratic constraint, i.e.,

h � h D 1; i � i D 1

and hence, out of the above six scalar equations, only five are independent. However,
the number of unknowns in these six equations is also five. Therefore, Eqs. (9.23a)
and (9.23b) suffice to determine the five unknown joint angles contained therein.

Although we already have one redundant equation to compute the six unknown
angles, it will prove convenient to derive eight additional equations with the same
power products2 as f, g, h and i, namely,

f � f D g � g (9.23c)

f � h D g � i (9.23d)

f � h D g � i (9.23e)

.f � f/h � 2.f � h/f D .g � g/i � 2.g � i/g (9.23f)

It is noteworthy that Eq. (9.23f) is derived by first equating the reflection3 of vector
h onto a plane normal to f with its counterpart, the reflection of vector i onto a plane
normal to g. The final form of Eq. (9.23f) is obtained upon clearing denominators in
the foregoing reflection equation.

Equations (9.23a–9.23f) amount to 14 scalar equations in five unknown joint
variables f�ig51. These are the fundamental closure equations sought. Some facts
pertaining to the degree of the two sides of Eqs. (9.23c-f) are proven below:

Fact 9.2.1. The inner products f �f and f �h are both free of x3 and bilinear in f xi g54,
while their counterparts g � g and g � i are bilinear in x1 and x2.

2By power product we mean terms with their coefficients deleted; for example, the power products
of the polynomial 5x2y C 3xz C 9y2 C 4z D 0 are the terms x2y, xz, y2 and z.
3Neither Li nor Raghavan and Roth disclosed the geometric interpretation of this fourth equation,
first proposed by Lee and Liang (1988).
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Proof.

f � f � kQ3.b3 CQ4b4 CQ4Q5b5/k2
� kb3 CQ4b4 CQ4Q5b5k2

�
5X
3

kbik2 C 2bT3 Q4.b4 CQ5b5/C 2bT4 Q5b5

whose rightmost-hand side is clearly free of x3 and is bilinear in f xi g54. Similarly,

f � h � .b3 CQ4b4 CQ4Q5b5/TQT
3 Q3Q4u5

� bT3 Q4u5 C bT4 u5 C bT5 QT
5 u5

whose rightmost-hand side is apparently bilinear in x4 and x5, except for the last
term, which contains two factors that are linear in x5, and hence, can be suspected
to be quadratic. However, Q5b5 is, in fact, a5, while u5 is the last column of Q5, the
suspicious term thus reducing to a constant, namely, b5 cos˛5. Similar proofs for
g � g and g � i will be given presently. Moreover, ut
Fact 9.2.2. Vector f�h is trilinear in f xi g53, while its counterpart, g� i, is bilinear
in f xi g21.
Proof. If we want the cross product of two vectors in frame A but have these vectors
in frame B, then we can proceed in two ways: either (a) transform each of the two
vectors into A-coordinates and perform the cross product of the two transformed
vectors; or (b) perform the product of the two vectors in B-coordinates and then
transform the product vector into A-coordinates. Obviously, the two products will
be the same, which allows us to write

f � h � Q3 Œb3 � .Q4u5/C .Q4b4/ � .Q4u5/C .Q4Q5b5/ � .Q4u5/�

� Q3fb3 � .Q4u5/CQ4.b4 � u5/CQ4 Œ.Q5b5/ � u5/�g
whose rightmost-hand side is apparently trilinear in f xi g53, except for the term in
brackets, which looks quadratic in x5. A quick calculation, however, reveals that this
term is, in fact, linear in x5 as well. Indeed, from the definitions given in Eqs. (4.3c
and d) and (9.5) we have

.Q5b5/ � u5 � a5 � u5 �
2
4 a5�5s5 C b5�5c5
�a5�5c5 C b5�5s5

�a5�5

3
5

which is obviously linear in x5. The proof for the counterpart product, g�i, parallels
the foregoing proof, and will be given below. ut
Fact 9.2.3. Vector .f � f/h� 2.f � h/f is trilinear in f xi g53, its counterpart, .g � g/i�
2.g � i/g, being bilinear in f xi g21.
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Proof. First, we write the (elongated or contracted) reflection of vector h in the form

.f � f/h � 2.f � h/f � Q3v

where

v �
 

5X
3

kbik2
!

Q4u5 � 2Œ.uT5 Q4b3/b3 C .uT5 b4/b3 C .uT5 b4/Q4b4

C .uT5 Q5b5/b3 C .uT5 Q5b5/Q4b4 C .uT5 Q5b5/Q4Q5b5�C 2w

D
 

5X
3

kbik2
!

Q4u5 � 2ŒuT5 b4.b3 C b3 CQ4b4/

CuT5 Q5b5.b3 CQ4b4 CQ4Q5b5/C 2w

with all terms on the right-hand side, except for w, which will be defined presently,
clearly bilinear in x4 and x5. Vector w is defined as

w � Œ �1 C Œ �2 C Œ �3

each of the foregoing brackets being expanded below:

Œ �1 �
�
.bT3 Q4b4/Q4u5 � .uT5 QT

4 b3/Q4b4
�

� Q4.u5bT4 QT
4 � b4uT5 QT

4 /b3

� Q4.u5bT4 � b4uT5 /Q
T
4 b3

which thus reduces to a product including a factor of the form QiAQT
i , with A

being the term in parentheses in the rightmost-hand side of the last equation. This is
obviously a skew-symmetric matrix, and Lemma 9.2.1 applies, i.e., the rightmost-
hand side of the last equation is linear in x4. This term is, hence, bilinear in x4
and x5. Furthermore,

Œ �2 �
�
.bT4 Q5b5/Q4u5 � .uT5 b4/Q4Q5b5

�
� Q4

�
.bT5 QT

5 b4/u5 � .uT5 b4/Q5b5
�

� Q4.u5bT5 QT
5 �Q5b5uT5 /b4

which is apparently linear in x4, but it is not obvious that it is also linear in x5.
To show that the second linearity also holds, we can proceed in two ways. First,
note that the term in parentheses is the skew-symmetric matrix u5aT5 � a5uT5 ,
whose vector, a5 � u5, was already proven to be linear in x5. Since the vector
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of a skew-symmetric matrix fully defines that matrix—see Sect. 2.3—the linearity
of the foregoing term in x5 follows immediately. Alternatively, we can expand the
aforementioned difference, thereby deriving

u5aT5 � a5uT5 D
2
4 0 a5�5 �a5�5c5 C b5�5s5

�a5�5 0 �a5�5s5 � b5�5c5
a5�5c5 � b5�5s5 a5�5s5 C b5�5c5 0

3
5

which is clearly linear in x5. Moreover, its vector can be readily identified as a5�u5,
as calculated above. Finally,

Œ �3 �
�
.bT3 Q4Q5b5/Q4u5 � .uT5 QT

4 b3/Q4Q5b5
�

� Q4.u5bT5 QT
5 �Q5b5uT5 /Q

T
4 b3

� Q4.u5aT5 � a5uT5 /Q
T
4 b3

this bracket thus reducing to a product including the factor QiAQT
i , with A

skew-symmetric. Hence, the foregoing expression is linear in x4, according to
Lemma 9.2.1. Moreover, the matrix in parentheses was already proven to be linear
in x5, thereby completing the proof for vector .f � f/h�2.f �h/f. The proof for vector
.g � g/i � 2.g � i/g parallels the foregoing proof and will be given presently. ut

Finally, we have one more useful result:

Fact 9.2.4. If a scalar, vector, or matrix equation is linear in xi , then upon
substitution of ci and si by their equivalent forms in terms of �i � tan.�i=2/, the
foregoing equation becomes quadratic in �i after clearing denominators.

Proof. We shall show that this result holds for a scalar equation, with the extension
to vector and matrix equations following directly. The scalar equation under
discussion takes the general form

Aci C Bsi C C D 0

where the coefficients A, B , and C do not contain �i . Upon substituting ci and si in
terms of �i � tan.�i=2/, and multiplying both sides of that equation by 1C �2i , we
obtain

A.1 � �2i /C 2B�i C C.1C �2i / D 0

which is clearly quadratic in �i , q.e.d.

Moreover, if a scalar, vector, or matrix equation is of degree k in xi , upon
introducing the same trigonometric substitution, the said equation becomes of
degree 2k in �i .
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Expressions for the right-hand sides of Eqs. (9.23c–d) are given below:

g � g D
2X
1

kbik2 C k�k2 � 2�TQ1.Q2b2 C b1/C 2bT1 Q2b2 (9.24a)

g � i D � T6 .� �Q1Q2b2 �Q1b1/ (9.24b)

g � i D QT
2 QT

1 .� � � 6/ � b2 �QT
2 QT

1 � 6 �QT
2 .b1 �QT

1 � 6/ (9.24c)

and

.g � g/i � 2.g � i/g D
 

2X
1

kbik2 C k�k2
!

QT
2 QT

1 � 6

�2Œ.� T6 �/.QT
2 QT

1 � � b2 �QT
2 b1/C .� T6 Q1Q2b2/b2

C.� T6 Q1b1/b2 C .� T6 Q1b1/QT
2 b2�C 2w0 (9.24d)

In deriving and simplifying the above relations, we use the invariance relations—see
Sect. 2.7—of the dot and cross products, i.e., for any arbitrary vectors u and v, we
have

.Qiu/T .Qiv/ D uT v

.Qiu/ � .Qiv/ D Qi .u � v/

All the terms on the right-hand sides of Eqs. (9.24a–d), except for w0, are apparently
bilinear in x1 and x2. This bilinearity also holds for the last term in Eq. (9.24d), i.e.,
w0, which can be expressed in the form

w0 � Œ �01 C Œ �02 C Œ �03 (9.25)

Each of the above brackets is given as

Œ �01 � Œ.� T6 Q1Q2b2/QT
2 QT

1 � � .�TQ1Q2b2/QT
2 QT

1 � 6�

D .QT
2 QT

1 /.�� T6 � � 6�
T /.Q2Q1/b2 (9.26a)

Œ �02 � Œ.bT1 Q2b2/QT
2 QT

1 � 6 � .� T6 Q1Q2b2/QT
2 b1�

D QT
2 Œ.Q

T
1 � 6/b1 � b1.QT

1 � 6/
T �Q2b2 (9.26b)

Œ �03 � Œ.� T6 Q1b1/QT
2 QT

1 � � .�TQ1b1/QT
2 QT

1 � 6�

D QT
2 ŒQ

T
1 .�� T6 � � 6�

T /Q1�b1 (9.26c)

According to Lemma 9.2.1, the terms in the right-hand sides of relations (9.26a–c)
are all bilinear in x1 and x2.
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It is noteworthy that the third components of vectors f� h and .f � f/h� 2.f � h/f,
as well as f � f and f � h, are all free of �3. Hence, among the 14 scalar equations, i.e.,
Eqs. (9.23a–f), six are free of �3. Casting all 14 equations in vector form results in
the fundamental closure equations:

Px45 D Rx12 (9.27)

where P and R are 14�9 and 14�8matrices, respectively. Moreover, the entries of
P are linear in x3, while those of R are independent of the joint angles. In addition,
the nine- and eight-dimensional vectors x45 and x12 are defined as

x45 �
�
s4s5 s4c5 c4s5 c4c5 s4 c4 s5 c5 1

�T
(9.28a)

x12 �
�
s1s2 s1c2 c1s2 c1c2 s1 c1 s2 c2

�T
(9.28b)

Various approaches have been reported to solve the fundamental closure equa-
tions for the unknown joint angles, but all methods fall into two categories: (a)
purely numerical approaches, whereby no attempt is made to reduce the number
of unknowns (Angeles 1985), or the reduction is rather limited, from six to four
unknowns (Tsai and Morgan 1985); and (b) elimination approaches, whereby
unknowns are eliminated algebraically, as opposed to numerically, until a reduced
number of equations in a reduced number of unknowns is derived.

We focus here only on the second category. Of these, we have essentially
two classes: (a) the univariate-polynomial approach and (b) the bivariate-equation
approach. As the names indicate, the former aims at reducing the fundamental
equations to one single equation in one unknown. Moreover, that single equation,
being polynomial in form, is termed the characteristic polynomial of the problem at
hand. The polynomial is derived upon substituting the cosine and sine functions of
the unknown angle, say �x , by .1�T 2/=.1CT 2/ and 2T=.1CT 2/, respectively, with
T � tan.�x=2/. This transformation is well known as the tan-half trigonometric
identities. The second approach, in turn, aims at reducing all fundamental closure
equations to a smaller system of trigonometric, as opposed to polynomial, equations
in only two unknowns.

The transformation of the original problem given in terms of trigonometric
functions of the unknown angles into a polynomial equation in T is essential from a
conceptual viewpoint, for this transformation makes apparent that the problem under
study admits a finite number of solutions, namely, the degree of the characteristic
polynomial. On the other hand, the same transformation is not trouble-free. Indeed,
the mapping from �x into T apparently includes a singularity at �x D � , whereby
T ! 1. The outcome is that, if one of the solutions is �x D � , then the
characteristic polynomial admits at least one solution at infinity, which is reflected
in a deflation of the polynomial. This phenomenon, called polynomial deflation, was
made apparent in Example 4.4.3, where a quartic characteristic polynomial appeared
as cubic because of one solution at infinity. The beginner may thus be misled to
believing that, in the presence of a solution at infinity, the system at hand admits a
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smaller number of solutions than it actually does. Furthermore, in the neighborhood
of �x D � , one of the solutions is extremely large in absolute value, which thus
gives rise to numerical inaccuracies, generically referred to as ill-conditioning. As a
matter of fact, the problem of polynomial-root finding has been identified as ill-
conditioned by numerical analysts for some time (Forsythe 1970).

In order to cope with the foregoing shortcomings of the tan-half identities, the
author and his team devised an alternative means, the bivariate-equation approach,
to solving the problem at hand and other similar ones in computational kinematics
(Angeles and Etemadi Zanganeh 1992a,b). In this approach, the 14 equations are
reduced to a system of bivariate trigonometric equations in the sines and cosines of
two of the unknown angles. These equations are then plotted in the plane of the two
unknowns, thus obtaining four contours, whose intersections yield the real values
of the two unknowns. As a matter of fact, only two such equations would suffice;
however, it turns out that the underlying reduction cannot be accomplished without
the introduction of either extra equations or spurious roots, which must be detected
in order to discard them. Notice that, for an intersection point to qualify as a solution,
all contours must meet at that point. As illustrated with one example, even the use
of extra contours does not guarantee a legitimate solution. Spurious solutions fail to
allow for the computation of the remaining four joint angles.

9.3 The Univariate-Polynomial Approach

We describe here two procedures leading to one single univariate 16th-degree
polynomial equation, which is the characteristic polynomial of the system at hand.
The two procedures bear many similarities, but they also involve remarkable
differences that warrant separate discussions.

9.3.1 The Raghavan–Roth Procedure

A sophisticated elimination procedure was proposed by Raghavan and Roth (1990,
1993). Their procedure is based on Eqs. (9.23a–f), but their 14 closure equations are
different, as explained below.

At the outset, Raghavan and Roth define four vectors that will play a key role in
the ensuing derivations, namely,

Qf � Qf.�4; �5/ D
2
4f1f2
f3

3
5 D Z3f D X3.b3 CQ4b4 CQ4Q5b5/ (9.29a)

Qh � Qh.�1/ D
2
4h1h2
h3

3
5 D Q2gC a2 D QT

1 � � b1 (9.29b)
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Table 9.1 Expressions for the components of vectors Qf, Qh, Qr, and Qn
Item Expression Item Expression

f1 c4�1 C s4�2 C a3 r1 c4m1 C s4m2

f2 ��3.s4�1 � c4�2/ r2 ��3.s4m1 � c4m2/

C�3�3 C�3m3

f3 �3.s4�1 � c4�2/ r3 �3.s4m1 � c4m2/

C�3�3 C b3 C�3m3

�1 c5a5 C a4 m1 s5�5
�2 �s5�4a5 C �4b5 m2 c5�4�5 C �4�5
�3 s5�4a5 C �4b5 C b4 m3 �c5�4�5 C �4�5
h1 c1p C s1q � a1 n1 c1u C s1v

h2 ��1.s1p � c1q/ n2 ��1.s1u � c1v/

C�1.r � b1/ C�1w
h3 �1.s1p � c1q/ n3 �1.s1u � c1v/

C�1.r � b1/ C�1w
p �lxa6 � .mx�6 C nx�6/b6 u mx�6 C nx�6

Cpx
q �lya6 � .my�6 C qny�6/b6 v my�6 C ny�6

Cpy
r �lza6 � .mz�6 C nz�6/b6 w mz�6 C nz�6

Cpz

Qr � Qr.�4; �5/ D
2
4r1r2
r3

3
5 D Z3h D X3Q4u5 (9.29c)

Qn � Qn.�1/ D
2
4n1n2
n3

3
5 D Q2i D QT

1 � 6 (9.29d)

Expressions for the components of the above four vectors are given in Table 9.1,
where �i .i D 1; 2; 3/; p; q; r; u; v; and w are auxiliary variables. Using
Eqs. (9.29a–d), (9.3), (9.4b), (9.10), and (9.9), we can rewrite Eqs. (9.21a and b)
in terms of the foregoing vectors, namely,

Z3 Qr.�4; �5/ D X2Z2 Qn.�1/ (9.30a)

Z3Qf.�4; �5/ D X2ŒZ2 Qh.�1/ � �2� (9.30b)

where we have recalled definitions (9.9) for i D 2. These six scalar equations play a
key role in deriving the Raghavan–Roth equations in five unknowns that are needed
to solve the problem at hand.

Next, both sides of Eqs. (9.30a and b) are multiplied from the left by X�1
2 �

XT
2 � X2; then, the two equations thus resulting are rearranged in the forms

X2Z3QfC �2 D Z2 Qh (9.31)

X2Z3 Qr D Z2 Qn (9.32)
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Now, four new vectors, the counterparts of those introduced in Eq. (9.22a–d), are
defined as

f � X2Z3QfC �2 D X2.Z3QfC b2/ (9.33a)

g � Z2 Qh (9.33b)

h � X2Z3 Qr (9.33c)

ı � Z2 Qn (9.33d)

Note that f and h are trilinear4 in x3, x4, and x5, while the first two components
of g and ı are bilinear in x1 and x2, their third components being linear in x1 and
free of �2. Similar to Eqs. (9.23a and b), six scalar equations are obtained:

f D g (9.34a)

h D ı (9.34b)

Moreover, eight more scalar equations are obtained in the forms

f � f D g � g (9.34c)

f � h D g � ı (9.34d)

f � h D g � ı (9.34e)

.f � f/h � 2.f � h/f D .g � g/ı � 2.g � ı/g (9.34f)

The fourteen scalar equations (9.34a–f) are henceforth termed the Raghavan–Roth
(RR) equations.

The third components of the two vectors on the right-hand sides of Eqs. (9.34e
and f), and the terms on the right-hand sides of Eqs. (9.34c and d) are free of �2
and linear in x1. As proven by Raghavan and Roth in the above references, the eight
foregoing equations have the same power products as f, h, g, and ı. Now, the 14 RR
equations (9.34a–f) are cast in the form

Px45 D Rx12 (9.35)

where P and R are 14 � 9 and 14 � 8 matrices, respectively. Moreover, the entries
of P are linear in x3, while those of R are independent of the joint angles; moreover,
R has the structure:

4while the last row of Z3 is free of �3, the last row of X2Z3 is Œ�2s3; ��2c3; �2�.
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R �

2
6666666666666666666666664

� � � � 0 0 � �
� � � � 0 0 � �
0 0 0 0 � � 0 0
� � � � 0 0 � 0
� � � � 0 0 0 �
0 0 0 0 � � 0 0
0 0 0 0 � � 0 0
0 0 0 0 � � 0 0
� � � � 0 0 � 0
� � � � 0 0 0 �
0 0 0 0 � � 0 0
� � � � 0 0 � �
� � � � 0 0 � �
0 0 0 0 � � 0 0

3
7777777777777777777777775

(9.36)

In the above display, all nonzero entries are denoted by � and rows are written
according to the order of appearance in Eqs. (9.34a–f). This special structure of
matrix R is then exploited to eliminate the joint angles �1 and �2 in an efficient way.

Based on the structure of R, two groups of six and eight equations are defined:

Pux45 D Cx1 (9.37a)

Plx45 D AQx12 (9.37b)

where C is a 6 � 2 constant matrix that is formed by the nonzero entries in rows
3, 6, 7, 8, 11, and 14 of matrix R. A is, in turn, an 8 � 6 matrix whose entries are
all functions of the data, while x1 and x45 were defined in Eqs. (9.11) and (9.28a),
respectively; Qx12 is, in turn, the six-dimensional vector defined as

Qx12 �
�
s1s2 s1c2 c1s2 c1c2 s2 c2

�T
(9.38)

Furthermore, Pu comprises the third, sixth, seventh, eighth, 11th and 14th rows of P,
Pl comprising the remaining eight rows. Notice that Pu and Pl are both linear in x3.

Any two of the six scalar equations in Eq. (9.37a) can now be used to solve for
x1, the resulting expression then being substituted into the remaining four equations
of the same group. This is done by first partitioning the six scalar equations as

Cux1 D du (9.39a)

Clx1 D dl (9.39b)

where Cu and Cl are 2 � 2 and 4 � 2 submatrices of C, respectively, with du and dl
being the corresponding two- and four-dimensional vectors that result from Pux45;



394 9 Geometry of General Serial Robots

these two vectors are trilinear in x3; x4 and x5. If Eq. (9.39a) is solved for x1 and
the result is substituted into Eq. (9.39b), we obtain four equations free of �1 and �2,
namely,

�4x45 � ClC�1
u du � dl D 04 ; �4 � ClC�1

u .Pu/2 � .Pu/4 (9.40a)

in which �4 is a 4 � 9 matrix whose entries are linear in x3, while .Pu/2 and .Pu/4
are 2�9 and 4�9 submatrices of matrix Pu, respectively. The above set of equations
is now cast in the form

D1y3 D 04 (9.40b)

with D1 defined as a 4 � 3 matrix whose entries are bilinear in x4 and x5, while 04
is the four-dimensional zero vector, and y3 is defined as

y3 �
�
c3 s3 1

�T
(9.41)

If Cu is chosen with nonzero entries in the third and sixth rows of matrix R, then
we have

Cu D
�
�1p ��1q
�1u ��1v

�
(9.42a)

with p; q; u, and v listed in Table 9.1. If Cu is nonsingular, C�1
u is readily

obtained as

C�1
u D

1

�1.uq � pv/
��v q
�u p

�
(9.42b)

However, if Cu turns out to be singular, then a different pair of Eqs. (9.37a), of the
set associated with rows 3, 6, 7, 8, 11 and 14, should be selected.

Additional equations free of �1 and �2 can be derived from any six of the
eight equations in Eq. (9.37b). Indeed, these six equations is all that is needed to
solve for Qx12 in terms of �3, �4 and �5; the expressions thus resulting would then
be substituted into the remaining two equations of the same set, to obtain two
additional equations free of �1 and �2. However, this elimination process is not
suitable for symbolic computations. Instead, Raghavan and Roth (1990) derived the
two additional equations in a terser form. This is done by finding two independent
linear combinations of the eight equations (9.37b) that render identically zero all
terms in �1 and �2. The left-hand sides of these equations are given as

	1.�3; �4; �5/ � �21
2a1

Œ.f � f/hx � 2.f � h/f x� �
�21
2a1

ı1hx C �21
a1
ı2f x

��1�1.f � h/x C �1wf y � �1.r � b1/hy (9.43a)
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	2.�3; �4; �5/ � �21
2a1

Œ.f � f/hy � 2.f � h/f y� � �1�1.f � h/y

��1wf x C �1.r � b1/hx C
�21
a1
ı2f y �

�21
2a1

ı1hy (9.43b)

while the right-hand sides are

 1 � �21
2a1

Œ.g � g/{x � 2.g � ı/gx� �
�21
2a1

ı1{x C �21
a1
ı2gx

��1�1.g � ı/x C �1wgy � �1.r � b1/{y (9.43c)

 2 � �21
2a1

Œ.g � g/{y � 2.g � ı/gy� � �1�1.g � ı/y

��1wgx C �1.r � b1/{x C
�21
a1
ı2gy �

�21
2a1

ı1{y (9.43d)

On the other hand, hx , {x , f x and gx represent the first components of vectors h,
ı, f, and g, respectively, the other components being defined likewise. Furthermore,
ı1 and ı2 are defined as

ı1 � p2 C q2 C .r � b1/2 � a21
ı2 � puC qv C .r � b1/w

Upon substitution of g and ı, as given by Eqs. (9.33b and d), respectively, into
Eqs. (9.43c and d), and introduction of the definitions given in Table 9.1, it turns
out that both  1 and  2 vanish identically, i.e.,

 1 D 0 and  2 D 0

Also note that, in deriving expressions (9.43a and b) and (9.43c and d), we
assume that a1 ¤ 0. However, a1 vanishes in many industrial robots, those having
their first two axes intersecting—usually at right angles—the foregoing procedure
thus becoming inapplicable. One way of coping with this case is to go one step
behind Raghavan and Roth’s procedure and redefine, for k D 1; 2,

	k.�3; �4; �5/ � a1	k.�3; �4; �5/I

and

 k  � a1 k
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i.e.,

	1.�3; �4; �5/ � �21
2
Œ.f � f/hx � 2.f � h/f x� �

�21
2
ı1hx C �21ı2f x

�a1�1�1.f � h/x C a1�1wf y � a1�1.r � b1/hy (9.44a)

	2.�3; �4; �5/ � �21
2
Œ.f � f/hy � 2.f � h/f y� � a1�1�1.f � h/y � a1�1wf x

C a1�1.r � b1/hx C �21ı2f y �
�21
2
ı1hy (9.44b)

 1 � �21
2
Œ.g � g/{x � 2.g � ı/gx� �

�21
2
ı1{x C �21ı2gx

�a1�1�1.g � ı/x C a1�1wgy � a1�1.r � b1/{y (9.45a)

 2 � �21
2
Œ.g � g/{y � 2.g � ı/gy� � a1�1�1.g � ı/y

�a1�1wgx C a1�1.r � b1/{x C �21ı2gy �
�21
2
ı1{y (9.45b)

Under their new definitions, apparently,  1 and  2 also vanish. Once 	1 and 	2 are
equated to zero, two equations are obtained that can be cast in the form

�2x45 D 02 (9.46)

or equivalently,

D2y3 D 02 (9.47)

where 02 is the two-dimensional zero vector, �2 is a 2 � 9 matrix whose entries are
linear in x3, D2 is a 2 � 3 matrix whose entries are bilinear in x4 and x5, and y3 was
introduced in Eq. (9.41).

The two Eqs. (9.40a) and (9.46) thus involve a total of six scalar equations free
of �1 and �2, and can be combined to yield a system of six equations trilinear in x3,
x4, and x5, namely,

†x45 D 06 (9.48a)

where † is a 6 � 9 matrix whose entries are linear in x3, and 06 is the six-
dimensional zero vector. Now, the tan-half trigonometric identities relating si and ci
with �i � tan.�i=2/, for i D 4; 5, are substituted into Eq. (9.48a). Upon multiplying
the two sides of the equation thus resulting by .1C �24 /.1C �25 /, Raghavan and Roth
obtained

†0x0
45 D 06 (9.48b)
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where †0 is a 6 � 9 matrix that is linear in x3, while x0
45 is defined as

x0
45 �

�
�24 �

2
5 �

2
4 �5 �

2
4 �4�

2
5 �4�5 �4 �

2
5 �5 1

�T

If the same trigonometric identities, for i D 3, are now substituted into
Eq. (9.48b), and then the first four scalar equations of this set are multiplied by
.1C �23 / to clear denominators, the equation thus resulting takes the form

†00x0
45 D 06 (9.48c)

In the above equations, †00 is a 6 � 9 matrix whose first four rows are quadratic
in �3, while its last two rows are apparently rational functions of �3. However,
as reported by Raghavan and Roth, the determinant of any 6 � 6 submatrix of
†00 is, in fact, an 8th-degree polynomial in �3 and not a rational function of the
same. Moreover, in order to eliminate �4 and �5, they resort to dialytic elimination
(Salmon 1964), introduced in this book in Sect. 5.4.1 and in Exercise 5.11. Dialytic
elimination is further discussed in Sect. 9.3, in connection with the Li, Woernle, and
Hiller method, and in Sect. 10.2 in connection with parallel manipulators.

In applying dialytic elimination, the two sides of the system of equations
appearing in Eq. (9.48c) are first multiplied by �4; then, the system of equations
thus obtained is adjoined to the original system, thereby deriving a system of 12
linear homogeneous equations in Qx45, namely,

SQx45 D 012 (9.48d)

where 012 is the 12-dimensional zero vector, while the 12-dimensional vector Qx45 is
defined as

Qx45 � Œ �34 �25 �34 �5 �34 �24 �
2
5 �

2
4 �5 �

2
4

�4�
2
5 �4�5 �4 �25 �5 1 �

T

(9.48e)

Furthermore, the 12 � 12 matrix S is defined as

S �
�

G
K

�

its 6 � 12 blocks G and K taking on the forms

G � �†00 O63

�
; K � �O63 †00�

with O63 defined as the 6 � 3 zero matrix.
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Now, in order for Eq. (9.48d) to admit a nontrivial solution, the determinant of
its coefficient matrix must vanish, i.e.,

det.S/ D 0 (9.49)

which is the characteristic equation sought. The foregoing determinant turns out to
be a 16th-degree polynomial in �3. Moreover, the roots of this polynomial give the
values of �3 corresponding to the 16 solutions of the IDP. It should be noted that,
using the same procedure, one can also derive this polynomial in terms of either
�4 or �5 if the associated vector in Eq. (9.48d) is written as x35 or x34, respectively.
Consequently, the entries of matrix † would be linear in either x4 or x5.

9.3.2 The Li–Woernle–Hiller Procedure

At the outset, the factoring of Qi given in Eq. (4.1c) and the identities first used by
Li (1990), namely, Eqs. (9.15b), are recalled. Additionally, Li defines a matrix Ti as

Ti �
2
4��i 1 01 �i 0

0 0 1

3
5

Hence,

TiCi � Ui D
2
4�i 1 0

1 ��i 0
0 0 1

3
5

with Ci defined in Eq. (4.1b). Furthermore, we note that the left-hand sides of the
four vector equations (9.23a, b, e and f) are of the form Q3v, where v is a three-
dimensional vector independent of �3. Upon multiplication of the above-mentioned
equations from the left by matrix T3, Li and co-authors obtained a new set of
equations, namely,

U3
Of D T3g (9.50a)

U3 Or D T3i (9.50b)

U3.Of � Or/ D T3.g � i/ (9.50c)

U3

h
.f � f/Or � 2.f � h/Of

i
D T3 Œ.g � g/i � 2.g � i/g� (9.50d)
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where Of and Or are defined as

Of � ƒ3.b3 CQ4b4 CQ4Q5b5/ (9.51)

Or � ƒ3.Q4u5/ (9.52)

with ƒi defined, in turn, in Eq. (4.1c).
Because of the form of matrices T3 and U3, the third of each of the four vector

equations (9.50a–d) is identical to its counterpart appearing in Eqs. (9.34a, b, e
and f). That is, if we denote by either vi or .v/i the i th component of any three-
dimensional vector v, the unchanged equations are

Of3 D g3 (9.53a)

Or3 D i3 (9.53b)

.Of � Or/3 D .g � i/3 (9.53c)

.f � f/ Or3 � 2.f � h/ Of3 D .g � g/i3 � 2.g � i/g3 (9.53d)

all of which are free of �3. Furthermore, six additional equations linear in �3 will be
derived by multiplying both sides of Eqs. (9.53a–d) and of (9.23c and d) by �3, i.e.,

�3 Of3 D �3g3 (9.54a)

�3 Or3 D �3i3 (9.54b)

�3.Of � Or/3 D �3.g � i/3 (9.54c)

�3Œ.f � f/ Or3 � 2.f � h/ Of3�3 D �3Œ.g � g/i3 � 2.g � i/g3�3 (9.54d)

�3.f � f/ D �3.g � g/ (9.54e)

�3.f � h/ D �3.g � i/ (9.54f)

We now have 20 scalar equations that are linear in �3, namely, the 12
Eqs. (9.50a–d) plus the six equations (9.54a–f) and the two scalar equations (9.23c
and d). Moreover, the left-hand sides of the foregoing 20 equations are trilinear in
�3, x4, and x5, while their right-hand sides are trilinear in �3, x1, and x2. These 20
equations can thus be written in the form

Ax D ˇ (9.55a)

where the 20� 16 matrix A is a function of the data only, while the 20-dimensional
vector ˇ is trilinear in �3, x1, and x2, the 16-dimensional vector x being defined, in
turn, as

x � Œ�3c4c5 �3c4s5 �3s4c5 �3s4s5 �3c4 �3s4 �3c5 �3s5

c4c5 c4s5 s4c5 s4s5 c4 s4 c5 s5�
T (9.55b)
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Next, matrix A and vector ˇ are partitioned as

A �
�

AU

AL

�
; ˇ �

�
ˇU
ˇL

�
(9.56)

where AU is a nonsingular 16 � 16 matrix, AL is a 4 � 16 matrix, vector ˇU
is 16-dimensional, and vector ˇL is 4-dimensional. Moreover, the two foregoing
matrices are functions of the data only. Thus, we can solve for x from the first 16
equations of Eq. (9.55a) in the form

x D A�1
U ˇU

Upon substituting the foregoing value of x into the four remaining equations of
Eq. (9.55a), we derive four equations free of x, namely,

ALA�1
U ˇU D ˇL (9.57)

In Eq. (9.57) the two matrices involved are functions of the data only, while the
two vectors are trilinear in �3, x1, and x2. These equations are now cast in the form

.Aic2 C Bis2 C Ci/�3 CDic2 CEis2 C Fi D 0; i D 1; 2; 3; 4 (9.58a)

where all coefficients Ai ; : : : ; Fi are linear in x1. Next, Li and co-authors substitute
c2 and s2 in the foregoing equations by their equivalents in terms of �2 � tan.�2=2/,
thereby obtaining, for i D 1; 2; 3; 4,

Cii �
2
2 �3 C 2Bi�2�3 C Aii �3 C Fii �22 C 2Ei�2 CDii D 0 (9.58b)

with the definitions

Aii � Ai C Ci (9.58c)

Cii � Ci � Ai (9.58d)

Dii � Di C Fi (9.58e)

Fii � Fi �Di (9.58f)

Further, �2 and �3 are both eliminated dialytically from the four equations (9.58a).
To this end, both sides of all four equations (9.58b) are multiplied by �2, which
yields

Cii �
3
2 �3 C 2Bi�22 �3 C Aii �2�3 C Fii �32 C 2Ei�22 CDii�2 D 0 (9.58g)

We have now eight equations that are linear homogeneous in the eight-
dimensional nonzero vector z defined as

z � ��32 �3 �22 �3 �32 �2�3 �22 �3 �2 1�T (9.58h)
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and hence, the foregoing eight-dimensional system of equations takes the form

Mz D 0 (9.59)

where the 8 � 8 matrix M is simply

M �

2
666666666664

0 C11 0 2B1 F11 A11 2E1 D11

0 C22 0 2B2 F22 A22 2E2 D22

0 C33 0 2B3 F33 A33 2E3 D33

0 C44 0 2B4 F44 A44 2E4 D44

C11 2B1 F11 A11 2E1 0 D11 0

C22 2B2 F22 A22 2E2 0 D22 0

C33 2B3 F33 A33 2E3 0 D33 0

C44 2B4 F44 A44 2E4 0 D44 0

3
777777777775

Now, since z is necessarily nonzero, Eq. (9.59) should admit nontrivial solutions,
and hence, matrix M should be singular, which leads to the condition below:

det.M/ D 0 (9.60)

Thus, considering that all entries of M are linear in x1, det.M/ is octic in x1, and
hence, Eq. (9.60) is equally octic in x1. By virtue of Fact 9.2.2, then, Eq. (9.60) is of
16th degree in �1; this equation takes the form

16X
0

ak�
k
1 D 0 (9.61)

which is the characteristic equation sought, its roots providing up to 16 real values
of �1 for the IDP at hand.

9.4 The Bivariate-Equation Approach

The difference between this approach and those leading to the univariate polyno-
mial, as outlined in Sect. 9.3, lies in three aspects: (a) only four, out of the six
original unknowns, are eliminated; (b) the tan-half identities are avoided, in order to
avoid polynomial deflation at or around values of � , and to allow for finding all real
roots; and (c) direct polynomial-root finding is avoided, rough estimates of all roots
being found, first, by inspection, then refined by means of a Newton procedure.

Now, to derive the bivariate equations, we have to eliminate three of the five
unknowns from the 14 fundamental closure equations. To this end, we resort
to Eqs. (9.40b), which are trilinear in fxig53. Furthermore, from definition (9.41),
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y3 ¤ 0, and hence, the 4 � 3 matrix D1 of Eq. (9.40b) must be rank-deficient,
which means that every one of its four—the number of combinations of four objects
taking three at a time—3 � 3 determinants, obtained by deleting one of its four
rows, should vanish. We need, in principle, only two of these determinants to obtain
two independent equations in �4 and �5. To be on the safe side regarding spurious
roots and formulation singularities,5 we impose the vanishing of all four possible
determinants, which yields, correspondingly, four contours in the �4–�5 plane; the
intersections of all contours then yield the real .�4; �5/ pairs of values which render
D1 rank-deficient. Each of the four equations thus derived describes a contour Ci ,
for i D 1; 2; 3; 4, in the �4–�5 plane:

Ci W Fi.�4; �5/ D 0; i D 1; 2; 3; 4: (9.62)

Note that, by plotting the four contours in a square of the �4–�5 plane, of side 2� ,
we ensure that no real solutions will be missed.

The intersection points can be detected visually by the user or, automatically,
by a suitable graphical user interface (GUI).6 Regardless of the detection method,
numerical code can be employed to refine each pair .�4; �5/ of intersection
coordinates to the desired accuracy. The well-known Newton–Raphson method
for nonlinear-equation solving, outlined in Sect. B.3, can be used here. However,
this method works for solving systems of as many equations as unknowns. In our
case, we end up with four nonlinear equations in only two unknowns. While, in
principle, any two of those four equations can be used to solve for the two unknowns,
numerical roundoff error and the numerical conditioning of the problem at hand,
to be discussed in Sect. 9.4.1, will invariably lead to different numerical solutions
for different choices of those two equations. The question then is which of the
four distinct solutions to pick up. In order to avoid this quandary, we suggest here
to regard all four equations as independent, entailing possible contradictions—
roundoff errors may render the four equations independent, which they aren’t.
With this approach, then, rather than one solution to the four equations, what
we seek is their least-square approximation, which can be done using a method
known as Newton–Gauss (Dahlquist and Björck 1974), as outlined in Sect. B.4.
Alternatively, Matlab’s function lsqnonlin can be used to find the same least-
square approximation. In any event, the problem is solved iteratively. Within the
Newton–Gauss method, a linear overdetermined system of equations is solved at
each iteration, using one of the methods of Sect. B.1.

5Formulation singularities occur when, in the absence of a kinematic singularity—characterized
by the vanishing of det.J/, for J defined as in Eq. (5.10b)—two or three contours Ci are tangent at
an intersection. When this is the case, and a pair of functions (9.62) is chosen to find their roots,
whose contours are tangent, the numerical computation of the coordinates of the intersection point
becomes impossible.
6The intersection points appearing in Figs. 9.3 and 9.4 were obtained using the Matlab GUI
developed by Dr. Stephane Caro, a postdoctoral fellow at McGill University’s Robotic Mechanical
Systems Laboratory. The GUI is available in the CD accompanying this edition
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In this way, two of the unknown joint angles, �4 and �5, are computed accurately,
the remaining four unknowns being determined uniquely, as described in Sect. 9.6.
Notice, however, that spurious solutions to the IDP are likely to occur. These
are intersections of the four contours which, although verifying the four equa-
tions (9.62), fail to produce a full set of solutions f �i g61. The computation of all
remaining joint variables, �1, �2, �3 and �6, once �4 and �5 are available, is the
subject of Sect. 9.6.3.

9.4.1 Numerical Conditioning of the Solutions

We recall here the concept of condition number of a square matrix (Golub and Van
Loan 1989), as introduced in Sect. 5.8. In this subsection we stress the relevance
of the concept in connection with the accuracy of the computed solutions of the
general IDP.

The concept of condition number of a square matrix is of the utmost importance
because it measures the roundoff-error amplification upon solving a system of linear
equations having that matrix as coefficient. The condition number of a matrix,
discussed in Sect. 5.8, can be computed in many possible ways. For the purpose
at hand, it will prove convenient to work with the condition number defined in terms
of the Frobenius norm, as given in Eqs. (5.80a and b).

In the context of the bivariate-equation approach, we can intuitively argue that
the accuracy in the computation of a solution is dictated by the angle at which two
contours giving a solution intersect. Thus, the solutions computed most accurately
are those determined by contours intersecting at right angles. On the contrary, the
solutions computed least accurately are those obtained by tangent contours. We shall
formalize this observation in the discussion below.

We distinguish between the condition number of a matrix and the conditioning of
a solution of a nonlinear system of equations. We define the latter as the condition
number of the Jacobian matrix of the system, evaluated at that particular solution.
More concretely, let

f1.x1; x2/ D 0
f2.x1; x2/ D 0

be a system of two nonlinear equations in the two unknowns x1 and x2. Moreover,
the Jacobian matrix of this system is defined as

F �
�
.rf1/T
.rf2/T

�
(9.63)

where rfk denotes the gradient of function fk.x1; x2/, defined in turn as

rfk �
�
@fk=@x1
@fk=@x2

�
(9.64)
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It is to be noted that multiplying each of the two given equations by a scalar
other than zero does not affect its solutions, each Jacobian row being, then,
correspondingly multiplied by the same scaling factor. To ease matters, we will
assume henceforth that each of the above equations has been properly scaled so
as to render its gradient a unit vector in the plane of the two unknowns. In order
to calculate the condition number of F, which determines the conditioning of the
solutions, we calculate first FFT and its inverse, namely,

FFT D
�

1 rf1 � rf2
rf1 � rf2 1

�
�
�
1 cos 


cos 
 1

�

and

�
FFT

	�1 D 1

sin2 


�
1 � cos 


� cos 
 1

�

where 
 is the angle at which the contours intersect. The condition number �F of F,
based on the Frobenius norm, can then be computed as

�F D 1

j sin 
 j � � � 
 � � (9.65)

which means that for the best possible solutions from the numerical conditioning
viewpoint, the two contours cross each other at right angles, whereas at singular
configurations, the contours are tangent to each other. The reader may have
experienced that, when solving a system of two linear equations in two unknowns
with the aid of drafting instruments,7 the solution becomes fuzzier as the two lines
representing those equations become closer to parallel.

9.5 Implementation of the Solution Method

Whatever method is chosen to solve the IDP, the solution procedure will eventually
require numerical computations. Indeed, both the univariate-polynomial and the
bivariate-equation approaches ultimately resort to a numerical procedure to find
either the roots of a polynomial equation that can be of up to 16th degree
or, correspondingly, the solutions of a system of trigonometric equations. Now,
formulas for the roots of polynomial equations are available only for the quadratic,
the cubic and the quartic polynomials8; those for the cubic and quartic equations are

7Graphical methods of mechanism analysis rely on this form of linear-equation solving.
8The Italian mathematicians Niccolò Tartaglia—meaning the “stammerer,” his real name believed
to have been Fontana—(1535) and Girolamo Cardano (1545), independently, or so each claimed,
found the formula for the three roots of the cubic equation, now known as Cardan’s formula.
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so cumbersome that in practice they are seldom applied. The Italian mathematician
Ruffini gave a sketch of a proof in 1799 showing that formulas for the roots of
polynomials of fifth or higher degree are not possible in general (Wells 1986). Then,
the Norwegian mathematician Abel, in 1826, provided a more rigorous proof of
the same result. It was the genius of the French Evariste Galois (1811–1832) that,
aided by Galois’ own theory of groups (Livio 2005), led to an elegant theory on the
solvability of polynomial equations that closed an important chapter in the history
of mathematics.

Now, when numerically solving the equations involved, whether polynomial or
trigonometric, intermediate computations can yield coefficients with absolute values
of disparate orders of magnitude, which is prone to numerical instabilities—ill-
conditioning. These occur naturally in the neighborhood of singularities, and cannot
be avoided. Another source of ill-conditioning lies in the data themselves. When
working with two different sets of equations, one representing point displacements,
the other angular displacements, we end up with a mixture of equations with
physical units of length and equations that are dimensionless. Such a mixture is
a source of ill-conditioning, which can be avoided without too much effort: we
recommend to start by rendering the point-displacement equations dimensionless,
which can be done by dividing the DH parameters f ai ; bi g61 introduced in Sect. 4.2
and the position vector p of the EE operation point by the characteristic length L
introduced in Sect. 5.8. This stage, which can be termed normalization, is done in
the numerical examples included in Sect. 9.7.

Furthermore, when refining the rough estimates of the contour intersections,
as occurring in the implementation of the bivariate-equation approach, we are
confronted with computing the least-square approximation to an overdetermined
system of nonlinear equations. This is a well-researched problem in the realm of
numerical analysis (Dahlquist and Björck 1974). While effective methods exist that
solve the problem without resorting to gradients, we have used in the solutions
an in-house developed package of C routines and Matlab functions, ODA, for a
broad class of problems occurring in mathematical programming.9 In this library, we
have a routine, LSSNLS, that implements the Newton–Gauss algorithm described
in Sect. B.4. LSSNLS requires an initial guess x0 for the unknown vector x as well
as information on the dimensions n of x, the number of unknowns, and of f.x/, the
number of equations, m > n. Then, LSSNLS returns an optimum value x� that best
approximates the overdetermined system of equations f.x/ D 0 in the least-square
sense, and that is dependent on x0. In the absence of ill-conditioning, x� is the local
optimum of the problem closest to the initial guess x0. However, the Matlab GUI that
was developed by Dr. Caro—see footnote 6—to automate the refining of the visual

Ferrari’s formula—so named after the Italian mathematician Ludovico Ferrari, a disciple of
Cardano’s—provides the four roots of a quartic polynomial.
9The ODA library is available on www.mcgill.ca/~/rmsl/Angeles_html/courses/MECH577/.

www.mcgill.ca/~/rmsl/Angeles_html/courses/MECH577/
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estimates relies on Matlab’s lsqnonlin function. The method implemented in this
function is direct, in that it is based solely on function evaluations, thus obviating
gradient computations.

9.6 Computation of the Remaining Joint Angles

So far we have reduced the system of displacement equations to either one single
univariate polynomial in the tangent of half one of the joint angles—the univariate-
polynomial approach—or a system of bivariate trigonometric equations in the sines
and cosines of two joint angles—the bivariate-equation approach. In either case, we
still need a procedure to compute the remaining joint angles, which is the subject of
the balance of this section.

9.6.1 The Raghavan–Roth Procedure

The most straightforward means of computing �4 and �5 in this procedure is
Eq. (9.48d), which can be interpreted as an eigenvalue problem associated with
the 12 � 12 matrix S, and has one known eigenvalue, namely, 0, for its sole
variable, �3, was computed so as to render S singular. Now, every scientific package
offers eigenvalue calculations, whereby the eigenvectors are usually produced in
a normalized form, i.e., with all eigenvectors computed as unit vectors. Let, for
example, � be the 12-dimensional eigenvector of S corresponding to the zero
eigenvalue. In this case, k�k D 1, but Qx45, the solution sought, is obviously of
magnitude greater than unity, for its 12th component, �12, is exactly 1, according
to its definition, Eq. (9.48e). In order to produce Qx45 from � , then, all we need
is a suitable scaling of this vector that will yield .Qx45/12 D 1. We thus have that
�12 ¤ 0—otherwise, Eqs. (9.48d) would be inconsistent—and hence,

Qx45 D 1

�12
�

The outcome will be a set of unique values of �4 and �5 for each of the 16 possible
values of �3.

Next, �1 and �2 are computed from Eq. (9.35), which is rewritten below in a more
suitable form:

Rx12 D x345 (9.66a)

with the 14-dimensional vector x345 defined as

x345 � Px45 (9.66b)
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Since R is a 14 � 8 matrix, Eq. (9.66a) comprises 14 linear equations in the
eight unknown components of x12. Although any eight of the 14 equations (9.66a)
suffice, in principle, to determine x12, we should not forget that these computations
will most likely be performed with finite precision, and hence, roundoff-error
amplification is bound to occur. In order to keep roundoff errors as low as possible,
we recommend to use all the foregoing 14 equations and calculate x12 as the least-
square approximation of the overdetermined system (9.66a). This approximation
will be, in fact, the solution of the given system because all 14 equations are
compatible. The least-square solution of this system yields, symbolically,

x12 D .RT
R/�1RT

x345 (9.66c)

In practice, the foregoing least-square approximation is computed using an orthog-
onalization procedure (Golub and Van Loan 1989), the explicit or the numerical
inversion of the product HTH being advised against because of its frequent
ill-conditioning. Appendix B outlines the robust numerical computation of the
least-square approximation of an overdetermined system of equations using orthog-
onalization procedures. The only remaining unknown is �6, which is computed
below: This unknown is readily computed from Eq. (4.9a). Indeed, the first of the
three vector equations represented by this matrix equation yields

Q1Q2Q3Q4Q5p6 D q (9.67a)

where q denotes the first column of Q, while, according to Eq. (9.5), p6 denotes the
first column of matrix Q6, i.e.,

p6 �
2
4cos �6

sin �6
0

3
5 ; q �

2
4q11q21
q31

3
5 (9.67b)

Thus, Eq. (9.67a) can be readily solved for p6, i.e.,

p6 D QT
5 QT

4 QT
3 QT

2 QT
1 q (9.68)

thereby obtaining a unique value for �6 for every set of values of f �k g51. This
completes the solution of the IDP under study.

9.6.2 The Li–Woernle–Hiller Procedure

Once �1 is available, the remaining angles are computed from linear equations:
Equations (9.59) are first rearranged in nonhomogeneous form, namely,

Nz0 D n (9.69)
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with the 8 � 7 matrix N and the seven- and eight-dimensional vectors z0 and n
defined as

N �

2
666666666664

0 C11 0 2B1 F11 A11 2E1
0 C22 0 2B2 F22 A22 2E2
0 C33 0 2B3 F33 A33 2E3
0 C44 0 2B4 F44 A44 2E4
C11 2B1 F11 A11 2E1 0 D11

C22 2B2 F22 A22 2E2 0 D22

C33 2B3 F33 A33 2E3 0 D33

C44 2B4 F44 A44 2E4 0 D44

3
777777777775

and

z0 � �

2
6666666664

�32 �3
�22 �3
�32
�2�3
�22
�3
�2

3
7777777775
; n �

2
666666666664

D11

D22

D33

D44

0

0

0

0

3
777777777775

Now, Eq. (9.69) represents an overdetermined linear algebraic system of eight
equations, but only seven unknowns. Again, we recommend here a least-square
approach to cope with ill-conditioning. In this way, the solution of Eq. (9.69) can
be expressed symbolically in the form

z0 D .NTN/�1NT n

With z0 known, both �2 and �3, and hence, �2 and �3, are known uniquely. Further,
with �1, �2, and �3 known, the right-hand side of Eq. (9.55a), ˇ, is known. Since the
coefficient matrix A of that equation is independent of the joint angles, A is known,
and that equation can be solved for vector x uniquely. Once x is known, the two
angles �4 and �5 are uniquely determined, with �6 the sole remaining unknown;
this can be readily determined, also uniquely, as discussed in connection with the
Raghavan–Roth method.

9.6.3 The Bivariate-Equation Approach

After all common intersections of the four foregoing contours have been determined,
we have already two of the unknowns, �4 and �5, the remaining four unknowns being



9.6 Computation of the Remaining Joint Angles 409

calculated uniquely as described presently. First, we calculate one of the remaining
joint variables, �3, using Eq. (9.40b). For this purpose, we evaluate matrix D1 for all
intersection points. Then, we rewrite the same equation in the form

Hx3 D � (9.70a)

the 4 � 2 matrix H being obtained from D1 by excluding its last column, which
is denoted by ��. Moreover, matrix H and the four-dimensional vector � are both
bilinear in x4 and x5 and hence, known. Again, we use all four equations (9.70a)
at our disposal to compute the two-dimensional vector x3 using a least-square
approach. If H is of full rank—its two columns are linearly independent—then the
solution can be expressed symbolically in the form

x3 D .HTH/�1HT � (9.70b)

However, if H is rank-deficient, i.e., if its two columns are linearly dependent, then
the inverse appearing in Eq. (9.70b) cannot be computed, the solution .�4; �5/ being
spurious. In fact, even if H is of full rank, the computed x3 may fail to be a unit
vector, as required by its definition. The outcome here is that

cos2 �3 C sin2 �3 ¤ 1
which means that the value of x3 computed from Eq. (9.70a) will yield a complex
value of �3. In this case, the intersection .�4; �5/ at stake is spurious as well.

When H is of full rank and the computed x3 is of unit Euclidean norm, Eq. (9.70b)
determines �3 uniquely for the given values of �4 and �5.

With �3, �4 and �5 known, we can now calculate �1 and �2 simultaneously from
Eq. (9.27), which we reproduce below in a more suitable form

Rx12 D x345 (9.71)

where R is a 14�8matrix depending only on the problem data, while x345, defined as

x345 � Px45 (9.72)

is a 14-dimensional vector trilinear in x3, x4, and x5, and is hence, known. Moreover,
matrices P and R as well as vectors x12 and x45 were defined in Eqs. (9.27)
and (9.28a and b). Again, we have an overdetermined system, of 14 equations,
in eight unknowns this time, which can best be solved for x12 using a least-
square approach with an orthogonalization procedure. The unique solution of the
overdetermined system at hand can thus be expressed as

x12 D .RTR/�1RT x345 (9.73)

Note that the solution thus obtained determines x1 and x2 uniquely, the only
remaining unknown being �6, which is computed as in Eq. (9.68).
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9.7 Examples

We solve the examples below using the bivariate-equation approach with the
purpose of both helping the reader visualize the real solutions and avoiding the
formulation singularities brought about by the tan-half identities.10

Example 9.7.1. Find all inverse-displacement solutions of the Fanuc Arc Mate S
series manipulator of 1990 for the end-effector pose given below:

Q D
2
40 1 00 0 1

1 0 0

3
5 ; p D

2
4 130850
1540

3
5

in which p is given in mm, the DH parameters of the robot being given in Table 5.2.

Solution: For starters, we divide the DH parameters fai ; big61 and vector p by
L D 351:23mm, the characteristic length of this manipulator found in Sect. 5.8.
In following the bivariate-equation approach, we plot the four contours in the �4–�5
plane guaranteeing that matrix D1 of Eq. (9.40b) is rank-deficient. The four contours
are superimposed in Fig. 9.3, where, apparently, we can detect eight intersections.
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Fig. 9.3 Contours C1, C2, C3, and C4 for the Fanuc Arc Mate S series manipulator of 1990

10The accompanying CD includes a GUI allowing the user to automate the computation of accurate
values of the joint variables by clicking at the visual estimates of the intersections of all four
contours.
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Table 9.2 Rough estimates of the coordinates of the intersection points of the Fanuc
Arc Mate S series manipulator of 1990

Sol’n no.

1 2 3 4 5 6 7 8

�4 (rad) 2.38 1.57 0.34 �1:57 �3:06 �2:39 �1:57 1.57
�5(rad) �2:97 �1:57 �1:79 �1:57 1.75 2.97 1.57 1.57

Table 9.3 Refined estimates
of the coordinates of the eight
intersection points of Fig. 9.3

Inters’n no. �4 (rad) �5 (rad)

1 2:381637539 �2:973100582
2 1:570796327 �1:570796327
3 0:344592933 �1:797513978
4 �1:570796327 �1:570796327
5 �3:060229795 1:755742649

6 �2:397512950 2:972311705

7 �1:570796327 1:570796327

8 1:570796327 1:570796327

Table 9.4 Legitimate solutions of the inverse displacement of the
Fanuc Arc Mate S series manipulator of 1990 at the given pose

Sol’n no. 1 3 5 6

�4 136:457ı 19:743ı �175:338ı �137:367ı

�5 �170:346ı �102:989ı 100:596ı 170:300ı

The coordinates .�4; �5/ of each intersection point are first estimated by inspection,
as listed in Table 9.2. Further, we submit each of these eight values as an initial guess
to the Newton–Gauss procedure—or Matlab’s function lsqnonlin—to find the
least-square approximation of the overdetermined system of four equations in two
unknowns of Eq. (9.62). The eight solutions thus found are then used to compute x3
of Eq. (9.70a). As it turned out, solutions 2, 4, 7 and 8 led to a rank-deficient H, and
were, thus, discarded as spurious. For the record, we include all eight least-square
solutions found in radians, in Table 9.3.

The legitimate solutions are displayed in Table 9.4, in degrees for easier
visualization. The robot thus admits four real inverse displacement solutions at the
given pose.

The values of the remaining angles are recorded in Table 9.5.

Example 9.7.2. Here we include an example of a manipulator admitting 16 real
inverse displacement solutions. This manipulator was proposed by Li (1990), its
Denavit–Hartenberg parameters appearing in Table 9.6.

Solution: The foregoing procedure was applied to this manipulator for an end-
effector pose given as
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Table 9.5 Remaining angles
corresponding to the
solutions of Table 9.4

Sol’n no. �1 �2 �3 �6

1 83:366ı 90:974ı �8:004ı 43:134ı

3 70:781ı 15:151ı 151:077ı 175:387ı

5 85:417ı 16:156ı 153:212ı �0:859ı

6 83:447ı 87:898ı 9:268ı �42:221ı

Table 9.6 DH parameters of
Li’s manipulator

i ai (m) bi (m) ˛i �i

1 0:12 0 �57ı �1
2 1:76 0:89 35ı �2
3 0:07 0:25 95ı �3
4 0:88 �0:43 79ı �4
5 0:39 0:50 �75ı �5
6 0:93 �1:34 �90ı �6
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Fig. 9.4 Contours C1, C2, C3,
and C4 for the Li manipulator

Q D
2
4�0:357279 �0:850000 0:3871060:915644 �0:237000 0:324694
�0:184246 0:470458 0:862973

3
5 ; p D

2
4 0:798811

�0:000331
1:200658

3
5

where p is given in meters. Again, we start by dividing fai ; big61 and vector p by the
characteristic length L, that was found to be L D 890:1mm.

The four contours obtained with the bivariate-equation approach are superim-
posed in Fig. 9.4, where, apparently, we can detect 18 intersections. This means that
at least two are spurious, for the number of inverse-displacement solutions can be, at
most, 16. In this figure, intersections 12 and 13 appear as one single point. A zoom-
in revealed two neighboring solutions in a region around the said single point.
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Table 9.7 Rough estimates of the coordinates of the intersection points of Li’s manipulator

Sol’n no. 1 2 3 4 5 6 7 8 9

�4 (rad) �0:56 �1:88 �2:09 �2:59 �3:07 �1:62 �0:72 2:09 2:75

�5 (rad) �3:01 �2:71 �2:54 �2:25 0:21 1:75 2:86 3:08 2:5

Sol’n no. 10 11 12 13 14 15 16 17 18

�4 (rad) 2:54 2:36 0:08 0:11 �1:22 �2:16 �0:36 1:17 0:44

�5 (rad) 2:37 �0:89 �2:23 �2:25 �2:51 �0:50 �0:70 �0:18 �0:12

Table 9.8 Refined estimates, to 14 digits, of the coordinates of the 18
intersection points of Fig. 9.4

Inters’n no. �4 (rad) �5 (rad)

1 �0:5656865073441 �3:0127341939867
2 �1:8817916819320 �2:7181441928227
3 �2:0982054358488 �2:5458222487325
4 �2:5943879129109 �2:2563308501840
5 �3:0760703821644 0:2173802902678

6 �1:6227073591253 1:7564609766664

7 �0:7268312801527 2:8637219341062

8 2:0991093946626 3:0822214487834

9 2:7591234998160 2:5875200635823

10 2:5458806726888 2:3797734576690

11 2:3681644908739 �0:8961886662259
12 0:0834264321499 �2:2306893314165
13 0:1144843294210 �2:2536422392721
14 �1:2262527241259 �2:5145351139614
15 �2:1620940322382 �0:5098897084087
16 �0:3665297041826 �0:7057880105554
17 1:1793192137176 �0:1889758121252
18 0:4440232934648 �0:1282084013846

The coordinates .�4; �5/ of each intersection point are first estimated by inspection,
as listed in Table 9.7. Further, we submit each of these 18 values as the initial guess
for the Newton–Gauss procedure—or Matlab’s function lsqnonlin—to find the
least-square approximation of the overdetermined system of four equations in two
unknowns of Eqs. (9.62). We used ODA to compute the least-square approximation
sought, and verified the result with lsqnonlin. For the record, we include all
18 solutions found, with 14 digits, in radians, in Table 9.8. The 18 solutions thus
found were then used to compute x3 of Eq. (9.70a). As it turned out, solutions 6
and 14 led to values of Eucledian norm of vector x3 greater than unity, and were,
thus, discarded as spurious. The robot thus admits 16 real inverse displacement
solutions at the given pose. The legitimate solutions are displayed in Table 9.9, the
values of the remaining angles being displayed in Table 9.10, in degrees for easier
visualization.
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Table 9.9 Legitimate solutions of the inverse displacement of Li’s manipulator at the given pose

Sol’n no. �4 �5 Sol’n no. �4 �5

1 �107:81ı �155:73ı 9 �21:00ı �40:43ı

2 120:25ı 176:59ı 10 6:55ı �129:12ı

3 4:77ı �127:80ı 11 135:68ı 135:68ı

4 158:09ı 148:26ı 12 25:44ı �7:34ı

5 �4:16ı 164:07ı 13 �176:07ı 11:57ı

6 �120:21ı �145:86ı 14 67:57ı �10:82ı

7 �32:41ı �172:61ı 15 �123:87ı �29:21ı

8 145:86ı 136:35ı 16 �148:64ı �148:64ı

Table 9.10 Remaining angles corresponding to the solutions of Table 9.9

Sol’n no. �1 �2 �3 �6

1 174:083ı �163:302ı �164:791ı 141:281ı

2 �159:859ı �159:324ı �111:347ı 21:654ı

3 164:800ı �154:290ı �85:341ı �101:359ı

4 �148:749ı �179:740ı �78:505ı 55:719ı

5 �16:480ı �10:747ı �58:894ı 5:677ı

6 �46:014ı �19:256ı �46:988ı �114:768ı

7 �22:260ı �22:431ı �32:024ı �17:155ı

8 �53:176ı 26:165ı 9:103ı 127:978ı

9 �173:928ı 150:697ı 47:811ı �92:284ı

10 �41:684ı �29:130ı 52:360ı 25:091ı

11 �137:195ı �156:920ı 68:306ı 147:446ı

12 �139:059ı 128:112ı 96:052ı �119:837ı

13 �22:696ı 29:214ı 98:631ı 170:303ı

14 �83:094ı 57:022ı 130:976ı �110:981ı

15 1:227ı �7:353ı 142:697ı 149:208ı

16 177:538ı �148:178ı 159:429ı 110:984ı

Example 9.7.3. In this example, we discuss the IDP of DIESTRO, the isotropic
six-axis orthogonal manipulator shown in Fig. 5.15 (Williams et al. 1993). For a
meaning of kinematic isotropy, we refer the reader to Sect. 5.8. This manipulator
has the DH parameters given in Table 5.1. The pose of the end-effector leading to
an isotropic posture, i.e., one whose Jacobian matrix is isotropic, is defined by the
orthogonal matrix Q and the position vector p displayed below:

Q D
2
40 �1 0

0 0 �1
1 0 0

3
5 ; p D

2
4 0

�50
50

3
5

with p given in mm. Compute all real inverse displacement solutions at the given
pose.
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Solution: The characteristic length of DIESTRO was found in Sect. 5.8 to be equal
to the common value ai D bi D 50mm, for i D 1; : : : ; 6. This manipulator, at the
given pose of the EE, exhibits a self-motion, proper of redundant manipulators, but
not expected in a six-revolute robot. A self-motion occurs when a manipulator has
the ability to move all its joints while keeping its EE fixed at one given pose. This
feature makes the procedure of Sect. 9.4 difficult to apply.11 We resort, hence, to
an alternative approach: We go back to Eq. (9.27) and partition it into two sets of
equations:

Pux45 D Rux12 (9.74a)

Plx45 D Rlx12 (9.74b)

where Pu and Pl are 6 � 9 and 8 � 9 submatrices of P. Likewise, Ru and Rl are
the corresponding 6 � 8 and 8 � 8 submatrices of R. In the above partitioning, the
equations must be grouped such that Rl be nonsingular. Using Eqs. (9.74a and b),
six scalar equations free of �1 and �2 can be derived, namely,

�x45 D 06 ; � � Pu � Ru.R�1
l Pl / (9.75)

where 06 is the six-dimensional zero vector. Since the entries of the 6 � 9 matrix �

are all linear in x3, the entry in the i th row and j th column of the foregoing matrix,

ij , can be expressed in the form


ij D aij c3 C bij s3 C cij I i D 1; : : : ; 6 I j D 1; : : : ; 9 (9.76)

In the above expression, coefficients aij , bij , and cij are independent of the joint
variables. Using Eq. (9.76), we can expand Eq. (9.75) and then rearrange the terms
in the i th equation, thus obtaining

Aic3 C Bis3 C Ci D 0 I i D 1; : : : ; 6 (9.77a)

where, for i D 1; : : : ; 6, we have

Ai � ai1s4s5 C ai2s4c5 C ai3c4s5 C ai4c4c5 C ai5s4 C ai6c4
Cai7s5 C ai8c5 C ai9 (9.77b)

Bi � bi1s4s5 C bi2s4c5 C bi3c4s5 C bi4c4c5 C bi5s4 C bi6c4
Cbi7s5 C bi8c5 C bi9 (9.77c)

Ci � ci1s4s5 C ci2s4c5 C ci3c4s5 C ci4c4c5 C ci5s4 C ci6c4
Cci7s5 C ci8c5 C ci9 (9.77d)

11The self-motion is not readily detected by contour-intersection using this procedure.
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Now the six scalar equations (9.77a) are cast in vector form as

Dy3 D 06 (9.78)

In the above equation, D is a 6 � 3 matrix whose entries are bilinear in x4 and x5,
while y3 was defined in Eq. (9.41). Now, to eliminate �3, we realize that, from its
definition, y3 ¤ 0, and hence, D must be rank-deficient. This means that every one
of its 20 3 � 3 determinants, obtained by picking up three of its six rows at a time,
should vanish—the number of combinations of six objects taking three at a time is
20. We need, in principle, only two of these determinants to obtain two independent
equations in �4 and �5. Actually, to be on the safe side, we should impose the
vanishing of all 20 possible determinants, which would yield, correspondingly,
20 contours in the �4–�5 plane; the intersections of all contours would then yield
the real .�4; �5/ pairs of values which render D rank-deficient. Nevertheless, the
visualization of the intersections of all 20 contours would be physically impossible,
and so, we have to compromise with a smaller number. As we have experienced,
only two of the above determinants are prone to yield spurious solutions, for which
reason we pick up a reduced number of determinants and derive three equations in
�4 and �5.

We produce the three desired equations by first partitioning the 6� 3matrix D of
Eq. (9.78) into two 3� 3 blocks, Du being the upper, Dl the lower block, which thus
yields

1 D det.Du/; 2 D det.Dl /

Now, since the determinant is not additive, i.e., det.DuCDl / ¤ det.Du/C det.Dl /,
we choose 3 as

3 � det.Du C Dl /

which is apparently independent of 1 and 2, thereby obtaining three determi-
nants,12 which, when equated to zero, yield three independent equations in �4 and
�5. Each of these equations describes a contour Ci , for i D 1; 2; 3, in the �4–�5
plane, i.e.,

Ci W Fi.�4; �5/ D 0; i D 1; 2; 3 (9.79)

Note that, by plotting the three contours in the �� � �i � � region, for i D 4; 5,
we ensure that no real solutions will be missed.

12This idea was proposed by Dr. Kourosh Etemadi Zanganeh, CANMET (Nepean, Ontario,
Canada).
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Fig. 9.5 Contours C1, C2, and
C3 for the DIESTRO
manipulator at given pose

Table 9.11 Inverse displacement solutions of the DIESTRO manipulator

Solution no. �1 �2 �3 �4 �5 �6

1 0ı 90ı �90ı 90ı �90ı 180ı

2 180ı �90ı 90ı �90ı 90ı 0ı

The three contours thus obtained are plotted in Fig. 9.5a. As this figure shows,
the three contours intersect at two isolated points, those labeled 1 and 2. The
contours also intersect along a curve labeled SS in the same figure, which thus
represents a manifold of singular solutions; this means that DIESTRO admits a
set of self-motions. These motions can be explained by noticing that when the
end-effector is located at the given pose and the manipulator is postured at joint-
variable values determined by any point on the SS curve, the six links form a
Bricard mechanism (Bricard 1927). The degree of freedom of a Bricard mechanism
cannot be determined from the well-known Chebyshev–Grübler-Kutzbach formula
(Angeles 2005), which yields a dof D 0. Here, the single-dof motion of the
mechanism occurs because the six revolute axes are laid out in such a way that
if they are grouped in two alternating triads, then these triads intersect.

Furthermore, contours C1 and C2 intersect at right angles at solution 1, which
corresponds to the isotropic posture of the robot. The numerical values of the joint
variables for the isolated solutions are given in Table 9.11.

This example shows interesting features of the manipulator IDP which are not
present in manipulators with simpler architectures, such as those with intersecting
or parallel consecutive axes.

Moreover, the point of coordinates �4 D �5 D �=2 of Fig. 9.5 appears to be
an intersection of the three contours, and hence, a solution of the IDP at hand.
A close-up of this point, as displayed in Fig. 9.6a, shows that this point is indeed an
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Fig. 9.6 A close-up of: (a) the apparent contour intersection at the point of coordinates �4 D �5 D
�=2 .90ı/; and (b) the apparent contour intersection southwest of solution 2

intersection of all three contours, but this point is, in fact, a double point, i.e., a point
at which each contour crosses itself; this gives the point a special character: When
verifying whether this point is a solution of the problem under study, we tried to
solve for x3 from eq. (9.70a), but then found that matrix H of that equation vanishes,
and hence, does not allow for the calculation of x3. An alternative approach to testing
the foregoing values of �4 and �5 is described in Exercise 9.5. In following this
approach, it was found that these values do not yield a solution, and hence, the
intersection point is discarded.

One more point that appears as an intersection of the three contours is that
southwest of solution 2. A close-up of this point, as shown in Fig. 9.6b, reveals that
the three contours do not intersect in that region. In summary, then, the manipulator
at hand admits two isolated inverse-displacement solutions at the given pose and an
infinity of solutions along the curve SS.

9.8 Exercises

9.1 Show that the left-hand side of Eq. (9.23f) represents a pure reflection of vector
h about a plane of unit normal f=kfk, if multiplied by kfk2. Also show that the
right-hand side of the same equation represents a pure reflection of vector i
about a plane of unit normal g=kgk, if multiplied by kgk2.

9.2 Show that  1 and  2, as defined in Eqs. (9.43c and d) both vanish.
9.3 In this exercise, we will try to gain insight into the consequence of the double

point at �4 D �5 D �=2 of Fig. 9.5 of Example 9.7.3. To this end, show
that, for this combination of values, matrix H of Eq. (9.70a) becomes zero,
and hence, x3 cannot be computed from this equation. As a result, none of the
remaining angles can be computed recursively.
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9.4 As an alternative approach to the 14 fundamental equations derived in
Sect. 9.2, we recall Eqs. (9.16a and b), if written in a more convenient form, so
as to have a minimum number of matrix multiplications, namely,

Q3Q4Q5 D QT
2 QT

1 QQT
6

QT
2 QT

1 .a1 � p/CQT
2 a2 C a3 CQ3a4

CQ3Q4a5 CQ3Q4Q5a6 D 0

Now equate the four linear invariants of the two sides of the first of the
two foregoing equations. The result is a set of four scalar equations. When
the translational equations are expanded, and appended to the first four
equations, a system of seven trigonometric equations in the six unknown
angles is derived. Obtain that system of seven equations and comment on their
suitability to solve the IDP.

9.5 In Sect. 9.6 we realized that, upon applying the Raghavan–Roth elimination
method, and once �3 is computed, �4 and �5 can be computed at once by
finding the eigenvector of S associated with its zero eigenvalue. While this
calculation can be performed with the eigenvalue-computation module of any
scientific package, computing the eigenvalues of a 12 � 12 matrix like S
requires an iterative procedure, which can be time-consuming, especially if
this computation is only a part of a more complex procedure.

In order to find Qx45, and hence, �4 and �5, from Eq. (9.48d), we need
not resort to a full eigenvalue problem. Instead, a vector v can be computed
directly, as opposed to iteratively, that spans the null space of S, for a given
computed value of �3, if a change of variables is introduced that will yield S
in upper-triangular form. In fact, since S is a fortiori singular, its last row is
bound to have zero entries in that form. Devise an algorithm that will render S
in upper-triangular form and hence, compute vector Qx45 under the conditions
that this vector (a) lie in the null space of S and (b) its 12th entry be unity.
Hint: Apply an orthogonalization procedure, as described in Appendix B.

9.6 With reference to Example 9.7.3, keep the EE of DIESTRO fixed to the
manipulator base at the given pose, thereby forming a 6R closed kinematic
chain. Find the singularity locus SS of Fig. 9.5 by means of a kinematic input–
output analysis of the closed chain, which turns out to be a Bricard mechanism.

9.7 Using the rough estimates displayed in Table 9.2, Example 9.7.1, compute
refined estimates of the coordinates of intersection point 4 upon solving the
four equations (9.62) pairwise by means of the Newton–Raphson method.
Compute the condition number of each solution based on the Frobenius norm
of the 2 � 2 Jacobian F of Eq. (9.63). Comment on your result.

9.8 Write a procedure to compute matrix S of the Raghavan–Roth method. Then,
evaluate this matrix at solutions 7 and 8 of Example 9.7.1.

9.9 Derive expressions for vectors f, g, h and ı of Eqs. (9.33a–d).
9.10 Derive an expression for �4, and hence, one for �4x45 of Eq. (9.40a).
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