
Chapter 11
Trajectory Planning: Continuous-Path
Operations

11.1 Introduction

As a follow-up to Chap. 6, where we studied trajectory planning for pick-and-place
operations (PPO), we study in this chapter continuous-path operations. In PPO,
the pose, twist, and twist-rate of the EE are specified only at the two ends of
the trajectory, the purpose of trajectory planning then being to blend the two end
poses with a smooth motion. When this blending is done in the joint-variable space,
the problem is straightforward, as demonstrated in Chap. 6. There are instances in
which the blending must be made in Cartesian space, in which advanced notions
of interpolation in what is known as the image space of spatial displacements, as
introduced by Ravani and Roth (1984), are needed. The image space of spatial
displacements is a projective space with three dual dimensions, which means that a
point of this space is specified by four coordinates—similar to the homogeneous
coordinates introduced in Sect. 2.5—of the form xi C ��i , for i D 1; 2; 3; 4,
where � is the dual unity, which has the property that �2 D 0. The foregoing
coordinates are thus dual numbers, their purpose being to represent both rotation
and translation in one single quantity. In following Ravani and Roth’s work, Ge and
Kang (1995) proposed an interpolation scheme that produces curves in the image
space with second-order geometric continuity, which are referred to as G2 curves.
These interpolation techniques lie beyond the scope of the book and will be left
aside. The interested reader will find a comprehensive and up-to-date review of these
techniques in (Srinivasan and Ge 1997).

The purpose of this chapter is to develop motion interpolation techniques in
Cartesian space that produce smooth motions in both Cartesian and joint spaces.
Motion interpolation in joint space was discussed in Chap. 6, the present chapter
being devoted to motion interpolation in Cartesian space. To this end, we resort to
basic notions of differential geometry.
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466 11 Trajectory Planning: Continuous-Path Operations

11.2 Curve Geometry

Continuous-path robotics applications appear in operations such as arc-welding,
flame-cutting, deburring, and routing. In these operations, a tool is rigidly attached
to the end-effector of a robotic manipulator, the tool being meant to trace a
continuous and smooth trajectory in a six-dimensional configuration space. Three
dimensions of this space describe the spatial path followed by the operation point
of the EE, while the remaining three describe the orientation of the EE. Some
applications require that this task take place along a warped curve, such as those
encountered at the intersections of warped surfaces, e.g., in aircraft fuselages,
while the path is to be traversed as a prescribed function of time. This function,
moreover, is task-dependent; e.g., in arc-welding, the electrode must traverse the
path at a constant speed, if no compensation for gravity is taken into account.
If gravity compensation is warranted, then the speed varies with the orientation of
the path with respect to the vertical. Below we will define this orientation as that of
the Frenet–Serret frame associated with every point of the path where the path is
smooth.

Moreover, for functional reasons, the orientation of the EE is given as a rotation
matrix that is, in turn, a prescribed smooth function of time. In arc-welding, for
example, the orientation of the electrode with respect to the curve must be constant.
The trajectory planning of the configuration subspace associated with the warped
path is more or less straightforward, but the planning of the trajectory associated
with the orientation subspace is less so.

While most methods of trajectory planning at the Cartesian-coordinate level
focus on the path followed by the operation point, the underlying inverse kinematics
of a six-axis robotic manipulator requires the specification of the orientation of the
EE as well. In the presence of simple manipulators with a spherical wrist, as those
studied in Sect. 4.4.2, the positioning and the orientation tasks are readily separable,
and hence, the planning of the two tasks can be done one at a time. In other instances,
e.g., in most arc-welding robots, such a separation is not possible, and both tasks
must be planned concurrently, which is the focus of our discussion below. Here, we
follow the technique presented in Angeles et al. (1988).

Crucial to our discussion is the concept of path orientation. Let � be a warped
curve in three-dimensional space that is smooth in a certain interval of interest
for our discussion. Under these conditions, we can associate with every point of
this interval an orthonormal triad of vectors, i.e., a set of unit vectors that are
mutually orthogonal, namely, the tangent, the normal, and the binormal vectors
of � . Therefore, when this set of vectors is properly arranged in a 3 � 3 array,
a rotation matrix is obtained. This matrix thus represents the orientation of � .
In order to parameterize these vectors, let s be the arc length measured along �

from a certain reference point on this curve. Below we review the basic differential-
geometric concepts pertaining to our discussion.

The tangent, normal, and binormal unit vectors, et , en, and eb , respectively,
associated with every point of � where this curve is smooth, are generically termed
here the Frenet–Serret vectors. These vectors are defined as
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et � r0 (11.1a)

eb � r0 � r00

kr0 � r00k (11.1b)

en � eb � et (11.1c)

where r0 stands for dr=ds and r00 for d 2r=ds2. Now the Frenet–Serret relations
among the three foregoing unit vectors and the curvature � and torsion � of � are
recalled (Brand 1965):

det

ds
D �en (11.2a)

den

ds
D ��et C �eb (11.2b)

deb

ds
D ��en (11.2c)

Moreover, the curvature and torsion can be calculated with the aid of the formulas

� D kr0 � r00k (11.3a)

� D r0 � r00 � r000

�2
(11.3b)

where r000 stands for d 3r=ds3. Furthermore, differentiation of � and � , as given
above, with respect to s, yields

�0.s/ D .r0 � r00/ � .r0 � r000/
�

(11.4a)

� 0.s/ D r0 � r00 � r.iv/ � 2�.r0 � r00/ � .r0 � r000/
�2

(11.4b)

where r.iv/ stands for d 4r=ds4. The geometric interpretation of the curvature is the
rate of change of orientation of the tangent vector with respect to the arc length; that
of the torsion is the rate at which the curve quits the plane of the tangent and normal
vectors. Thus, at points where the curvature vanishes, the curve approximates a line
to a second order, i.e., up to second-order derivatives, whereas at points where the
torsion vanishes, the curve approximates a planar curve to a third order—Notice that
the torsion involves third-order derivatives. Now, from the Frenet–Serret formulas
and the chain rule, we can derive the time-rate of change of the Frenet–Serret
vectors, namely,

Pet � det

ds
Ps D Ps�en (11.5a)

Pen � den

ds
Ps D �Ps�et C Ps�eb (11.5b)

Peb � deb

ds
Ps D �Ps�en (11.5c)
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Furthermore, let ! be the angular velocity of the Frenet–Serret frame. Then, clearly,

Pet � ! � et (11.6a)

Pen � ! � en (11.6b)

Peb � ! � eb (11.6c)

Upon equating pairwise the right-hand sides of Eqs. (11.5a–c) and Eqs. (11.6a–c),
we obtain three vector equations determining !, namely,

� Et! D Ps�en (11.7a)

�En! D �Ps�et C Ps�eb (11.7b)

�Eb! D �Ps�en (11.7c)

where we have introduced the cross-product matrices Et , En, and Eb of vectors et ,
en, and eb , respectively, thereby obtaining a system of nine scalar equations in the
three unknown components of !, i.e.,

A! D b (11.8a)

with A defined as the 9 � 3 matrix and b as the nine-dimensional vector displayed
below:

A � �
2
4

Et

En

Eb

3
5 ; b �

2
4

Ps�en

Ps.��et C �eb/

�Ps�en

3
5 (11.8b)

Although the foregoing system is overdetermined, it is consistent, and hence it
comprises exactly three linearly independent equations, the remaining six being
dependent on the former. One way to reduce system (11.8a) to only three equations
consists in multiplying both sides of this equation by AT . Now, the product AT A
greatly simplifies because matrix A turns out to be isotropic, as per the discussion
of Sect. 5.8, i.e., its three columns are mutually orthogonal and all have the same
magnitude. This fact can become apparent if we realize that the three 3 � 3 blocks
of A are cross-product matrices of three orthonormal vectors. Thus,

AT A D ET
t Et C ET

n En C ET
b Eb

If we now recall Theorem 2.3.4, the foregoing products take on quite simple forms,
namely,

ET
t Et D �E2

t D �.�1 C et eT
t /

ET
n En D �E2

n D �.�1 C eneT
n /

ET
b Eb D �E2

b D �.�1 C ebeT
b /
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Moreover, for any three-dimensional vector v, we have

.et eT
t C eneT

n C ebeT
b /v � v

and hence, the above sum in parentheses reduces to the identity matrix, i.e.,

et eT
t C eneT

n C ebeT
b � 1

the product AT A thus reducing to

AT A D .2/1

Therefore, ! takes on the form

! D 1

2

�
Et En Eb

�
2
4

Ps�en

Ps.��et C �eb/

�Ps�en

3
5

or upon expansion,

! D Ps
2

Œ�et � en C en � .�eb � �et / � �eb � en� (11.10)

However, since the Frenet–Serret triad is orthonormal, we have

et � en D eb; en � eb D et ; eb � et D en (11.11)

Upon substitution of expressions (11.11) into the expression for ! given in
Eq. (11.10), we obtain

! D Psı (11.12)

where ı is the Darboux vector, defined as

ı D �et C �eb (11.13)

Expressions for the curvature and torsion in terms of the time-derivatives of the
position vector are readily derived using the chain rule, which leads to

� D kPr � Rrk
kPrk3

(11.14a)

� D Pr � Rr� :::
r

kPr � Rrk2
(11.14b)
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Upon differentiation of both sides of Eq. (11.12), the angular acceleration P! is
derived as

P! D Rsı C Ps Pı (11.15)

where the time-derivative of the Darboux vector is given, in turn, as

Pı D P�et C P�eb (11.16)

in which Eqs. (11.5a–c) have contributed to the simplification of the above
expression. The time-derivatives of the curvature and torsion are readily derived
by application of the chain rule, thereby obtaining

P� � Ps�0.s/ D Ps
�

.r0 � r000/ � .r0 � r00/ (11.17a)

P� � Ps� 0.s/ D Ps
�2

Œr0 � r00 � r.iv/ � 2�.r0 � r000/ � .r0 � r00/� (11.17b)

The time-derivative of the Darboux vector thus reduces to

Pı D Ps.Aet C Beb/ (11.18a)

where scalars A and B are computed as

A � r0 � r00 � r.iv/ � 2�.r0 � r000/ � .r0 � r00/
�2

(11.18b)

B � .r0 � r000/ � .r0 � r00/
�

(11.18c)

and hence, the angular acceleration reduces to

P! D Rsı C Ps2.Aet C Beb/ (11.19)

From the relations derived above, it is apparent that the angular velocity is a
bilinear function of the Darboux vector and Ps, while the angular acceleration is
linear in Rs and quadratic in Ps. The computational costs involved in the calculation
of the angular velocity and its time-derivative amount to 31 multiplications and
13 additions for the former, and 28 multiplications with 14 additions for the latter
(Angeles et al. 1988). Notice that the angular velocity requires, additionally, one
square root.

In the above discussion, it is assumed that explicit formulas for the two time-
derivatives of the arc length s are available. This is often not the case, as we show
with the examples below, whereby an intermediate parameter, which is easier to
handle, is introduced. What we will need are, in fact, alternative expressions for the
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quantities involved, in terms of kinematic variables; i.e., we need time-derivatives
of the position vector r rather than derivatives of this vector with respect to the arc
length s. Below we derive these expressions.

First, note that et can be obtained by simply normalizing the velocity vector Pr,
namely, as

et D Pr
kPrk (11.20)

where it is not difficult to realize that

Ps D kPrk (11.21)

Moreover, the binormal vector eb can be derived by application of the chain rule to
vector r0, namely,

r00 D dr0

ds
� dr0=dt

ds=dt
� 1

Ps
d

dt
.r0/ (11.22a)

But

r0.s/ � dr
ds

� Pr
Ps (11.22b)

and hence,

r00 D 1

Ps
�

d

dt

� Pr
Ps
��

D Ps Rr � Rs Pr
Ps3

(11.22c)

Now, upon substitution of expressions (11.22b and c) into Eq. (11.1b), an alternative
expression for eb is derived, in terms of time-derivatives of the position vector,
namely,

eb D Pr � Rr
kPr � Rrk (11.23)

Finally, en can be readily computed as the cross product of the first two vectors of
the Frenet–Serret triad, namely,

en � eb � et D .Pr � Rr/ � Pr
kPr � RrkkPrk (11.24)

The time-derivatives of the Frenet–Serret vectors can be computed by direct
differentiation of the expressions given above, namely, Eqs. (11.20), (11.23), and
(11.24).
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11.3 Parametric Path Representation

Only seldom is an explicit representation of the position vector r of a geometric
curve possible in terms of the arc length. In most practical cases, alternative
representations should be used. The representation of the position vector in terms
of a parameter � , whatever its geometric interpretation may be, whether length or
angle, will henceforth be termed a parametric representation of the curve at hand.
The choice of � is problem-dependent, as we illustrate with examples.

Below we derive expressions for (a) the Frenet–Serret triad; (b) the curvature
and torsion; and (c) the derivatives of the latter with respect to the arc length. All
these expressions, moreover, will be given in terms of derivatives with respect to the
working parameter � . The key relation that we will use is based on the chain rule,
already recalled several times earlier. Thus, for any vector v.�/,

dv
ds

D dv
d�

d�

ds

However, the foregoing relation is not very useful because we do not have an explicit
representation of parameter � in terms of the arc length. Nevertheless, we will
assume that these two variables, s and � , obey a monotonic relation. What this
means is that

d�

ds
> 0 (11.25)

which is normally the case. Under this assumption, moreover, we can write the
derivative of v as

dv
ds

D dv=d�

ds=d�

where, apparently,

ds

d�
D

����
dr
d�

���� D kr0.�/k

Therefore, the derivative sought takes the form

dv
ds

D v0.�/

kr0.�/k (11.26a)

It goes without saying that the same relation holds for scalars, i.e.,

dv

ds
D v0.�/

kr0.�/k (11.26b)
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Expressions for the Frenet–Serret triad now follow immediately, i.e.,

et D r0.�/

kr0.�/k (11.27a)

eb D r0.�/ � r00.�/

kr0.�/ � r00.�/k (11.27b)

en D eb � et D Œr0.�/ � r00.�/� � r0.�/

kr0.�/ � r00.�/kkr0.�/k (11.27c)

Now, paraphrasing relations (11.14a and b), we have

� D kr0.�/ � r00.�/k
kr0.�/k3

(11.28a)

� D r0.�/ � r00.�/ � r000

kr0.�/ � r00.�/k2
(11.28b)

the partial derivatives of the curvature and torsion with respect to the arc length
being computed in terms of the corresponding partial derivatives with respect to the
parameter � , which is done with the aid of the chain rule, i.e.,

�0.s/ D �0.�/

kr0.�/k ; � 0.s/ D � 0.�/

kr0.�/k (11.29)

Expressions for �0.�/ and � 0.�/, in turn, are derived by a straightforward differ-
entiation of the expressions for � and � in terms of � , as given in Eqs. (11.28a
and b). To this end, we first recall a useful expression for the derivative of a rational
expression q.x/ whose numerator and denominator are denoted by N.x/ and D.x/,
respectively. This expression is

q0.x/ D 1

D.x/
ŒN 0.x/ � q.x/D0.x/� (11.30a)

Note that nothing prevents the numerator of the foregoing rational expression from
being a vector, and hence, a similar formula can be applied to vector ratios as well.
Consider the vector rational function q.x/ D n.x/=D.x/. Hence,

q0.x/ D 1

D.x/
Œn0.x/ � q.x/D0.x/� (11.30b)

As a matter of fact, the above relation can be extended to matrix numerators. Not
only is this possible, but the argument can likewise be a vector or a matrix variable,
and similar formulas would apply correspondingly.
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We thus have, for the derivative of the curvature,

�0.�/ D 1

kr0.�/k3

�
d

d�
kr0.�/ � r00.�/k � �

d

d�
kr0.�/k3

�
(11.31)

Now we find the first term inside the brackets of the foregoing expression from the
relation

d

d�
kr0.�/ � r00.�/k2 D 2kr0 � r00k d

d�
kr0 � r00k

which yields

d

d�
kr0 � r00k D 1

2kr0 � r00k
d

d�
kr0.�/ � r00.�/k2

But

d

d�
kr0.�/ � r00.�/k2 D d

d�
fŒr0.�/ � r00.�/� � Œr0.�/ � r00.�/�g

D 2Œr0.�/ � r00.�/� � d

d�
Œr0.�/ � r00.�/� (11.32)

the derivative of the above term in brackets reducing to

d

d�
Œr0.�/ � r00.�/� D r0.�/ � r000.�/

and hence,

d

d�
kr0 � r00k D Œr0.�/ � r00.�/� � Œr0.�/ � r000.�/�

kr0 � r00k (11.33a)

Furthermore,

d

d�
kr0.�/k3 D 3kr0.�/k2 d

d�
kr0.�/k

the last derivative again being found from an intermediate relation, namely,

d

d�
kr0.�/k2 D 2kr0.�/k d

d�
kr0.�/k

whence,

d

d�
kr0.�/k D 1

2kr0.�/k
d

d�
kr0.�/k2
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with

d

d�
kr0.�/k2 D d

d�
Œr0.�/ � r0.�/� D 2r0.�/ � r00.�/

and so,

d

d�
kr0.�/k D r0.�/ � r00.�/

kr0.�/k
d

d�
kr0.�/k2

Therefore,

d

d�
kr0.�/k3 D 3kr0.�/kr0.�/ � r00.�/ (11.33b)

Substitution of Eqs. (11.33a and b) into Eq. (11.31) yields the desired expression,
namely,

�0.�/ D Œr0.�/ � r00.�/� � Œr0.�/ � r000.�/�

kr0.�/k3kr0 � r00k � 3�
r0.�/ � r00.�/

kr0.�/k2
(11.34)

Likewise,

� 0.�/ D N

D
(11.35a)

with N and D defined as

N � d

d�
Œr0.�/ � r00.�/ � r000.�/� � �

d

d�
kr0.�/ � r00.�/k2 (11.35b)

D � kr0.�/ � r00.�/k2 (11.35c)

The first term of the numerator N of the foregoing expression can be readily
calculated as

d

d�
Œr0.�/ � r00.�/ � r000.�/� D r0.�/ � r00.�/ � r.iv/.�/ (11.35d)

while the derivative appearing in the second term of the same numerator was
obtained previously, as displayed in Eq. (11.32). Upon substitution of the expres-
sions appearing in Eqs. (11.32) and (11.35d) into Eq. (11.35a), we obtain the desired
expression:

� 0.�/ D r0.�/ � r00.�/ � Œr.iv/.�/ � 2�r0.�/ � r000.�/�

kr0.�/ � r00.�/k2
(11.35e)

thereby completing the desired relations.
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Table 11.1 DH parameters
of a Fanuc S-300 Robot Link ai (m) bi (m) ˛i (ı)

1 0.0 0.9 90
2 0.9 0.0 0
3 0.95 0.0 90
4 0.0 1.3 �90

5 0.0 0.0 90
6 0.0 0.44 �90

Example 11.3.1 (Planning of a Gluing Operation). A robot used for a gluing
operation is required to guide the glue nozzle fixed to its end-effector through a
helicoidal path so that the tip of the nozzle traverses the helix at a constant speed
v0 D 0:8 m/s and the end-effector maintains a fixed orientation with respect to
the curve, i.e., with respect to the Frenet–Serret triad of the helix. Determine the
orientation matrix Q of the end-effector with respect to a frame fx; y; zg fixed
to the robot base, as well as the angular velocity and angular acceleration of the
end-effector. The operation is to be performed with a Fanuc S-300 robot, whose
Denavit–Hartenberg (DH) parameters are given in Table 11.1, while the axis of
the helix is chosen to be parallel to the first axis of the robot and beginning at
point P0 .2; �2; 1:2/ in meters. Find the joint trajectories of the robot as well as
the associated joint rates and joint accelerations from Cartesian position, velocity,
and acceleration data. Verify that the joint-rate and joint-acceleration profiles are
compatible with those of the joint variables. It is known that the radius of the helix
is a D 1:6 m and that its pitch is b D 2:5 m/turn. Finally, the gluing operation takes
place in 10 s.

Solution: We will use a Cartesian frame fixed to the base of the robot such that its
z axis coincides with the axis of the first revolute. The helix can then be given in the
parametric representation shown below:

x D 2 C a cos '

y D �2 C a sin '

z D 1:2 C b'

2	

where the parameter ' is the angle made by the projection, onto the X–Y plane, of
the position vector of a point P of the helix with the x axis.

In the process, we will need first and second time-derivatives of the foregoing
Cartesian coordinates. These are given below for quick reference:

Px D �a P' sin '

Py D a P' cos '

Pz D b

2	
P'



11.3 Parametric Path Representation 477

and

Rx D �a P'2 cos ' � a R' sin '

Ry D �a P'2 sin ' C a R' cos '

Rz D b

2	
R'

We now impose the constant-speed condition, which leads to

Px2 C Py2 C Pz2 � a2 P'2 C b2

4	2
P'2 D v2

0

and hence,

P' D c

where the constant c is defined as

c � v0

s
4	2

4	2a2 C b2

Thus, P' is constant, and hence,

' D ct

Moreover, in terms of constant c, the Cartesian coordinates of a point of the helix
take on the forms

x D 2 C a cos ct

y D �2 C a sin ct

z D 1:2 C bc

2	
t

the first time-derivatives of these coordinates becoming

Px D �ac sin ct

Py D ac cos ct

Pz D bc

2	

and the corresponding second time-derivatives

Rx D �ac2 cos ct

Ry D �ac2 sin ct

Rz D 0
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Now the Frenet–Serret triad is readily calculated as

et � dr
ds

� Pr
Ps D c

v0

2
4

�a sin ct

a cos ct

b=2	

3
5

Furthermore,

det

ds
� Pet

Ps D ac2

v2
0

2
4

� cos ct

� sin ct

0

3
5 � �en

from which it is apparent that

� D a
c2

v2
0

� 4	2a

4	2a2 C b2
; en D �

2
4

cos ct

sin ct

0

3
5

Thus, the binormal vector eb is calculated simply as the cross product of the first
two vectors of the Frenet–Serret triad, namely,

eb � et � en D � c

v0

2
4

�.b=2	/ sin ct

.b=2	/ cos ct

�a

3
5

and hence, the orientation matrix Q of the gluing nozzle, or of the end-effector for
that matter, is given by

Q � �
et en eb

�

Hence,

Q D c

v0

2
4

�a sin ct �.v0=c/ cos ct .b=2	/ sin ct

a cos ct �.v0=c/ sin ct �.b=2	/ cos ct

.b=2	/ 0 a

3
5

Now, the angular velocity is determined from Eq. (11.12), which requires the
calculation of the Darboux vector, as given in Eq. (11.13). Upon calculation of the
Darboux vector and substitution of the expression thus resulting into Eq. (11.12),
we obtain

! D c3

v2
0

2
4

0

0

.4	2a2 C b2/=4	2

3
5 D c

2
4

0

0

1

3
5

which is thus constant, and hence,

P! D 0
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Now, the coordinates of the center of the wrist, C , are determined with the aid
of relation (4.18c), where the operation point is a point on the helix, i.e., p D xi C
yj C zk, parameters b6, 
6, and �6 being obtained from Table 11.1, namely,

b6 D 0:440 m; 
6 D cos ˛6 D 0; �6 D sin ˛6 D �1

Furthermore, the numerical value of c is obtained from the helix geometry, namely,

c D 0:8

s
4	2

4	2 � 1:62 C 2:52
D 0:48522 s�1

Upon substitution in Eq. (4.18c) of the entries found above for Q, along with
the numerical values, we obtain the Cartesian coordinates of the center C of the
spherical wrist of the robot as

2
4

xC

yC

zC

3
5 D

2
4

2 C 1:16 cos.0:48522t/

�2 C 1:16 sin.0:48522t/

1:2 C 0:19306t

3
5

in meters. Apparently, point C describes a helicoidal path as well, although of a
smaller radius, that is coaxial with the given helix.

Now the time-histories of the joint angles are computed from inverse kinematics.
Note that the robot at hand being of the decoupled type, it allows for a simple
inverse kinematics solution. The details of the solution were discussed extensively
in Sect. 4.4 and are left as an exercise to the reader.

Of the four inverse kinematics solutions of the arm, three were found to lead
to link interferences, when these trajectories were tested with the aid of RVS, the
package for robot visualization developed at McGill University (Darcovich et al.
1999). Hence, only one such solution is physically possible. This solution, along
with one of the two wrist solutions, is plotted in Fig. 11.1, with Figs. 11.2 and 11.3
showing, respectively, the corresponding joint rates and joint accelerations.

Note that the maxima and minima of the joint-variables occur at instants where
the corresponding joint rates vanish. Likewise, the maxima and minima of joint rates
occur at instants where the associated joint accelerations vanish, thereby verifying
that the computed results are compatible. A more detailed verification can be done
by numerical differentiation of the joint-variable time-histories.

Example 11.3.2 (Planning of an Arc-Welding Operation). A spherical reservoir of
radius R is to be arc-welded to a cylindrical pipe of radius r , with the axis of the
cylinder located a distance d from the center of the sphere, all elements of the
cylinder piercing the sphere, i.e., d C r � R, as shown in Fig. 11.4. Note that two
intersection curves are geometrically possible, but the welding will take place only
along the upper curve. Moreover, the welding electrode is to traverse the intersection
curve, while the tool carrying the electrode is to keep a constant orientation with
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Fig. 11.1 Joint trajectories for a Fanuc S-300

respect to that curve. In the coordinate frame shown in Fig. 11.4, find an expression
for the rotation matrix defining the orientation of the end-effector, to which the
electrode is rigidly attached.

Solution: Note that the X axis of the coordinate frame indicated in Fig. 11.4
intersects the A axis of the cylinder, this axis being parallel to the Z axis. Moreover,
we define ' as the angle shown in Fig 11.4b. Now, the x and y coordinates of an
arbitrary point of the intersection curve are given by

x D d C r cos ' (11.36a)

y D r sin ' (11.36b)
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Fig. 11.2 Joint velocities for a Fanuc S-300

Further, in order to find the remaining z coordinate, we use the equation of the
sphere, S , namely,

SW x2 C y2 C z2 D R2

If we substitute the x and y coordinates of the intersection curve in the above
equation and then solve for the z coordinate in terms of ', we obtain

z D ˙
p

R2 � r2 � d 2 � 2dr cos ' (11.36c)

In the above relation, the plus and minus signs correspond to the upper and lower
portions of the intersection curve, respectively. Since we are interested in only the
upper intersection, we will take only the positive sign in that relation. Furthermore,
we define
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Fig. 11.3 Joint accelerations for a Fanuc S-300

d � 
r; R � �r

where 
 and � are nondimensional constants. Moreover, let

�2 � �2 � 
2 � 1 > 0

O' � 1p
�2 � 2
 cos '

the inequality following from the geometry of Fig.11.4b. Then, the position vector
r of any point on the intersection curve can be expressed in the form

r D r

2
4


 C cos '

sin '

1= O'

3
5 (11.37)
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a b

Fig. 11.4 Intersection curve between a spherical reservoir and a cylindrical pipes

Now, upon differentiation of r with respect to ', we obtain

r0.'/ D r

2
4

� sin '

cos '


 O' sin '

3
5 (11.38a)

r00.'/ D r

2
4

� cos '

� sin '


 O' cos ' � .
2 sin2 '/ O'3

3
5 (11.38b)

where we have used the relation

O'0.'/ D �.
 sin '/ O'3

In addition, using Eqs. (11.38a and b), we derive the items needed to compute the
Frenet–Serret triad, from which we will derive the required orientation matrix, i.e.,

r0.'/ � r00.'/ D r2

2
4


 O' � 
2 O'3 cos ' sin2 '

�
2 O'3 sin3 '

1

3
5 (11.39a)

kr0.'/k D rG.'/ (11.39b)

kr0.'/ � r00.'/k D r2 O'3
p

D.'/ (11.39c)

with functions D.'/ and G.'/ defined as

D � �4
2 C 
4 C �6 � 6�2
.
2 C �2/ cos ' C 6
2.
2 C 2�2/ cos2 '

C 2
3.�2 � 4/ cos3 ' � 3
4 cos4 ' (11.39d)

G �
q

1 C 
2 O'2 sin2 ' (11.39e)
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Now et , eb , and en are obtained as

et � r0.'/

kr0.'/k D 1

G

2
4

� sin '

cos '


 O' sin '

3
5 � nt

G
(11.40a)

eb � r0.'/ � r00.'/

kr0.'/ � r00.'/k D 1

O'3
p

D

2
4


 O' � 
2 O'3 cos ' sin2 '

�
2 O'3 sin3 '

1

3
5 � nb

O'3
p

D
(11.40b)

en � 1

O'3
p

D G

2
4

�
3 O'4 sin4 ' � cos '


3 O'4 cos ' sin3 ' � 
2 O'2 sin ' � sin '


 O' cos ' � 
2 O'3 sin2 '

3
5 � nn

O'3
p

DG
(11.40c)

where en has been calculated as en D eb � et .
The orthogonal matrix defining the orientation of the end-effector can now be

readily computed as

Q � �
et en eb

�

for we have all the necessary expressions. Note, however, that these expressions
allow us to find Q for any value of ', but we do not have, as yet, an expression of
the form '.t/ that would allow us to obtain Q.t/. Such an expression is derived in
Example 11.5.1.

Example 11.3.3 (Calculation of Torsion, Curvature, and Darboux Vector). We refer
here to the intersection curve of Example 11.3.2, for which we want to find
expressions for its curvature, torsion, and Darboux vector.

Solution: We can use directly the expressions derived above, Eqs. (11.28a and b),
to obtain the curvature and torsion in terms of derivatives with respect to parameter
'. With these expressions and those for the Frenet–Serret triad, the Darboux vector
would follow. However, we can take shortcuts, for we already have expressions for
the Frenet–Serret triad, if we express the curvature and torsion in terms of this triad
and its derivatives with respect to ', as we explain below. Indeed, from the Frenet–
Serret relations, Eqs. (11.2b), we can express the curvature and torsion in the forms

� D e0t .s/ � en (11.41a)

� D �e0b.s/ � en (11.41b)

and hence, all we need now are the derivatives of the tangent and normal vectors
with respect to s. These are readily derived using relation (11.26a), i.e.,
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e0t .s/ D e0t .'/

kr0.'/k (11.42a)

e0b.s/ D e0b.'/

kr0.'/k (11.42b)

Now, in order to differentiate the Frenet–Serret triad with respect to ', we first
note, from Eqs. (11.40a–c), that these three expressions are vector rational functions,
and hence, their derivatives with respect to ' are derived by applying Eq. (11.30b),
thereby obtaining

e0t .'/ D 1

G
Œn0t .'/ � et G

0.'/� (11.43)

e0b.'/ D 1

O'3
p

D

	
n0b.'/ � eb

�
3 O'2 O'0.'/

p
D C O'3 D 0.'/

2
p

D

�

(11.44)

where nt and nb are the numerators of the vector rational expressions of et and
eb , respectively, given in Eq. (11.40a and b). Below we calculate the foregoing
derivatives with respect to ':

n0t .'/ D
2
4

� cos '

� sin '


 O'.cos ' � 
 O'2 sin2 '/

3
5

n0b.'/ D 


2
4

O'0 � 
 O'2 sin 'Œ3 O'0 cos ' sin ' C O'.3 cos2 ' � 1/�

�3
 O'2 sin2 'Œ O'0 sin ' C O' cos '�

0

3
5

O'0 � O'0.'/ D �
 sin '

.�2 � 2
 cos '/3=2

D 0.'/ D 6�2
.
2 C �2/ sin ' � 12
2.
2 C 2�2/ cos ' sin '

� 6
3.�2 � 4/ cos2 ' sin ' C 12
4 cos3 ' sin '

G 0.'/ D 
2 sin '

2G
.2 O' cos ' C O'0 sin '/

and kr0.'/k was already calculated in Example 11.3.2.
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If we now substitute all the foregoing expressions into Eqs. (11.42a and b), we
obtain, after intensive simplifications,

� D
p

D O'3

G3r
(11.45a)

� D �3

2 O'E sin '

rDG2
(11.45b)

with function E.'/ defined, in turn, as

E.'/ � 1

O'4
Œ�
3 O'4 sin4 ' C 
 O'2 sin2 '.
 cos ' � 1/ C cos '� (11.46)

With the foregoing expressions for et , eb , � , and �, computing the Darboux vector of
the intersection curve reduces to a routine substitution of the foregoing expressions
into Eq. (11.13).

11.4 Parametric Splines in Trajectory Planning

Sometimes the path to be followed by the tip of the end-effector is given only as a
discrete set of sampled points fPi gN

1 . This is the case, for example, if the path is the
intersection of two warped surfaces, as in the arc-welding of two plates of the hull
of a vessel or the spot-welding of two sheets of the fuselage of an airplane. In these
instances, the coordinates of the sampled points are either calculated numerically
via nonlinear-equation solving or estimated using a vision system. In either case, it
is clear that only point coordinates are available, while trajectory planning calls
for information on derivatives of the position vector of points along the path
with respect to the arc length. These derivatives can be estimated via a suitable
interpolation of the given coordinates. Various interpolation schemes are available
(Foley and Van Dam 1982; Hoschek and Lasser 1992), the most widely accepted
ones being based on spline functions, which were introduced in Sect. 6.6. The
splines introduced therein are applicable whenever a function, not a geometric curve,
is to be interpolated. However, in trajectory planning, geometric curves in three-
dimensional space come into play, and hence, those splines, termed nonparametric,
are no longer applicable. What we need here are parametric splines, as described
below.

Although parametric splines, in turn, can be of various types (Dierckx 1993), we
will focus here on cubic parametric splines because of their simplicity.

Let Pi .xi ; yi ; zi /, for i D 1; : : : ; N , be the set of sampled points on the path
to be traced by the tip of the end-effector, fpi gN

1 being the set of corresponding
position vectors. Our purpose in this section is to produce a smooth curve � that
passes through fPi gN

1 and that has a continuous Frenet–Serret triad. To this end, we
will resort to the expressions derived in Sect. 11.3, in terms of a parameter � , which
we will define presently.
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We first introduce a few definitions: Let the kth derivative of the position vector
p of an arbitrary point P of � with respect to � , evaluated at Pi , be denoted by
p.k/

i , its components being denoted correspondingly by x
.k/
i , y

.k/
i , and z.k/

i . Next, the
coordinates of P are expressed as piecewise cubic polynomials of � , namely,

x.�/ D Axi .� � �i /
3 C Bxi .� � �i /

2 C Cxi .� � �i / C Dxi (11.47a)

y.�/ D Ayi .� � �i /
3 C Byi .� � �i /

2 C Cyi .� � �i / C Dyi (11.47b)

z.�/ D Azi .� � �i /
3 C Bzi .� � �i /

2 C Czi .� � �i / C Dzi (11.47c)

for a real parameter � , such that �i � � � �iC1; and i D 1; : : : ; N � 1, with �i

defined as

�1 D 0; �iC1 � �i C 
�i ; 
�i �
q


x2
i C 
y2

i C 
z2
i (11.47d)


xi � xiC1 � xi ; 
yi � yiC1 � yi ; 
zi � ziC1 � zi (11.47e)

and hence, 
�i represents the length of the chord subtended by the arc of path
between Pi and PiC1. Likewise, � denotes a path length measured along the spatial
polygonal joining the N points f Pi gN

1 . Thus, the closer the aforementioned points,
the closer the approximation of 
�i to the arc length between these two points, and
hence, the better the approximations of the curve properties.

The foregoing spline coefficients Axi ; Ayi ; : : : ; Dzi , for i D 1; : : : ; N � 1, are
determined as explained below. Let us define the N -dimensional vectors

x � Œx1; : : : ; xN �T ; x00 � Œx001 ; : : : ; x00N �T (11.48a)

y � Œy1; : : : ; yN �T ; y00 � Œy001 ; : : : ; y00N �T (11.48b)

z � Œz1; : : : ; zN �T ; z00 � Œz001 ; : : : ; z00N �T (11.48c)

The relationships between x, y, and z and their counterparts x00, y00, and z00 are the
same as those found for nonparametric splines in Eq. (6.58a), namely,

Ax00 D 6Cx (11.49a)

Ay00 D 6Cy (11.49b)

Az00 D 6Cz (11.49c)

which are expressions similar to those of Eq. (6.58a), except that the A and C
matrices appearing in Eq. (11.49b) are now themselves functions of the coordinates
of the supporting points (SP) of the spline. In fact, the .N � 2/ � N matrices A and
C are defined exactly as in Eqs. (6.58b and c), repeated below for quick reference:
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A D

2
666664

˛1 2˛1;2 ˛2 0 � � � 0 0

0 ˛2 2˛2;3 ˛3 � � � 0 0
:::

:::
: : :

: : :
: : :

:::
:::

0 0 : : : ˛N 000 2˛N 0;00N 00 ˛N 00 0

0 0 0 � � � ˛N 00 2˛N;00N 0 ˛N 0

3
777775

(11.49d)

and

C D

2
666664

ˇ1 �ˇ1;2 ˇ2 0 � � � 0 0

0 ˇ2 �ˇ2;3 ˇ3 � � � 0 0
:::

:::
: : :

: : :
: : :

:::
:::

0 0 � � � ˇN 000 �ˇN 0;00N 00 ˇN 00 0

0 0 0 � � � ˇN 00 �ˇN;00N 0 ˇN 0

3
777775

(11.49e)

where ˛k and ˇk are now defined correspondingly, i.e., for i; j; k D 1; : : : ; N 0,

˛k D 
�k; ˛i;j D ˛i C ˛j ; ˇk D 1=˛k; ˇi;j D ˇi C ˇj (11.50)

while N 0, N 00, and N 000 are defined as in Eq. (6.58f), i.e., as

N 0 � N � 1; N 00 � N � 2; N 000 � N � 3 (11.51)

Note that the spline p.�/ is fully determined once its coefficients are known.
These are computed exactly as their counterparts for nonparametric splines, namely,
as in Eqs. (6.55a–e). Obviously, different from the aforementioned formulas, the
coefficients of the parametric spline pertain to three coordinates, and hence, three
sets of such coefficients need be computed in this case. In order to simplify matters,
we introduce the vectors below:

ak �
2
4

Axk

Ayk

Azk

3
5 ; bk �

2
4

Bxk

Byk

Bzk

3
5 ; ck �

2
4

Cxk

Cyk

Czk

3
5 ; dk �

2
4

Dxk

Dyk

Dzk

3
5 (11.52)

and thus, the position vector of an arbitrary point P on the parametric spline takes
on the form

p.�/ D ak.� ��k/3Cbk.� ��k/2Cck.� ��k/Cdk; k D 1; : : : ; N �1 (11.53a)
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in the interval �k � � � �kC1. The counterpart set of Eqs. (6.55a–e) is then

ak D 1

6 
�k

.p00kC1 � p00k/ (11.53b)

bk D 1

2
p00k (11.53c)

ck D 
pk


�k

� 1

6

�k .p00kC1 C 2p00k/ (11.53d)

dk D pk (11.53e)


pk � pkC1 � pk (11.53f)

where vectors pk and p00k are defined as

pk �
2
4

xk

yk

zk

3
5 ; p00k �

2
4

x00k
y00k
z00k

3
5 (11.54)

Note that since p is piecewise cubic in � , p0 is piecewise quadratic, whereas p00
is piecewise linear in the same argument, p000 being piecewise constant; higher-
order derivatives vanish. Properly speaking, however, the piecewise constancy of p000
causes the fourth-order derivative to be discontinuous at the SP, and consequently,
all higher-order derivatives are equally discontinuous at those points. In practice,
these discontinuities are smoothed out by the inertia of the links and the motors, if
the SP are chosen close enough. Obviously, higher-order continuity can be achieved
if higher-order splines, e.g., quintic splines, are used instead. For the sake of
conciseness, these splines are not discussed here, the interested reader being directed
to the specialized literature (Dierckx 1993).

Further, the N � 3 matrices P and P00 are defined as

P �

2
6664

pT
1

pT
2
:::

pT
N

3
7775 ; P00 �

2
6664

.p001 /T

.p002 /T

:::

.p00N /T

3
7775 (11.55)

which allows us to rewrite Eqs. (11.49b) in matrix form as

AP00 D 6CP (11.56)

It is now apparent that the spline coefficients ak; : : : ; dk can be calculated once vec-
tors p00k are available. These vectors can be computed via matrix P00 as the solution
to Eq. (11.56). However, finding this solution requires inverting the .N � 2/ � N

matrix A, which is rectangular and hence cannot be inverted, properly speaking.
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We thus have an underdetermined system of linear equations, and further conditions
are needed in order to render it determined. Such conditions are those defining the
type of spline at hand. For example, closed paths call naturally for periodic splines,
while open paths call for other types such as natural splines. The conditions imposed
on periodic parametric splines are listed below:

pN D p1; p0N D p01; p00N D p001 (11.57a)

On the other hand, natural parametric splines are obtained under the conditions

p001 D p00N D 0 (11.57b)

Thus, if a periodic parametric spline is required, then vectors pN and p00N can be
deleted from matrices P and P00, respectively, these then becoming .N � 1/ � 3

matrices, namely,

P �

2
6664

pT
1

pT
2
:::

pT
N�1

3
7775 ; P00 �

2
6664

.p001 /T

.p002 /T

:::

.p00N�1
T

/

3
7775 (11.58)

Moreover, the first-derivative condition of Eq. (11.57a) is added to the N � 2

continuity conditions of Eq. (6.56), thereby obtaining N � 1 equations of this form.
Consequently, A becomes an .N � 1/ � .N � 1/ matrix. Correspondingly, C also
becomes an .N � 1/ � .N � 1/ matrix, i.e.,

A �

2
666666664

2˛1;N 0 ˛1 0 0 � � � ˛N 0

˛1 2˛1;2 ˛2 0 � � � 0

0 ˛2 2˛2;3 ˛3 � � � 0
:::

:::
: : :

: : :
: : :

:::

0 0 : : : ˛N 000 2˛N 000;N 00 ˛N 00

˛N 0 0 0 � � � ˛N 00 2˛N 00;N 0

3
777777775

(11.59a)

and

C �

2
666666664

�ˇ1;N 0 ˇ1 0 0 � � � ˇN 0

ˇ1 �ˇ1;2 ˇ2 0 � � � 0

0 ˇ2 �ˇ2;3 ˇ3 � � � 0
:::

:::
: : :

: : :
: : :

:::

0 0 � � � ˇN 000 �ˇN 000;N 00 ˇN 00

ˇN 0 0 0 � � � ˇN 00 �ˇN 00;N 0

3
777777775

(11.59b)
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Table 11.2 The Cartesian coordinates of the supporting points

' 0ı 30ı 60ı 90ı 120ı 150ı

x 0.45 0.429904 0.375 0.3 0.225 0.170096
y 0 0.075 0.129904 0.15 0.129904 0.075
z 0.396863 0.411774 0.45 0.497494 0.540833 0.570475

' 180ı 210ı 240ı 270ı 300ı 330ı

x 0.15 0.170096 0.225 0.3 0.375 0.429904
y 0 �0:075 �0:129904 �0:15 �0:129904 �0:075

z 0.580948 0.570475 0.540833 0.497494 0.45 0.411774

Since A is nonsingular, Eq. (11.56) can be solved for P00, namely,

P00 D 6A�1CP (11.60)

thereby computing all vectors fp00kgN�1
1 , from which p00N can be readily obtained.

Hence, the spline coefficients follow.
Likewise, if natural parametric splines are used, then P00 becomes an .N � 2/ � 3

matrix, while A, consequently, becomes an .N � 2/ � .N � 2/ matrix, as given in
Eq. (6.59).

Example 11.4.1 (Spline-Approximation of a Warped Path). For the numerical val-
ues R D 0:6 m, r D 0:15 m, and d D 0:3 m, determine the periodic parametric
cubic spline approximating the intersection of the sphere and the cylinder of
Fig. 11.4, with 12 equally spaced supporting points along the cylindrical coordinate
', i.e., with supporting points distributed along the intersection curve at intervals

' D 30ı. Using the spline, find values of the tangent, normal, and binormal
vectors of the curve, as well as the rotation matrix Q. In order to quantify the error
in this approximation, compare (a) the components of the two position vectors, the
exact and the spline-generated ones, while normalizing their differences using the
radius of the cylinder r ; and (b) the Euler–Rodrigues parameters of the exact and
the spline-approximated rotation matrices. Plot these errors vs. '.

Solution: We use Eq. (11.37) to find the Cartesian coordinates of the supporting
points. The numerical results are given in terms of the components of r �
Œ x; y; z �T in Table 11.2. Note that this table does not include the Cartesian-
coordinate values at 360ı because these are identical with those at 0ı.

The four Euler–Rodrigues parameters fri g3
iD0 of the rotation matrix are most

suitably calculated in terms of the linear invariants, i.e., as appearing in Eq. (2.79).
If we let Qp and Qr denote the estimates of p and r, respectively, then the orientation
error is evaluated via the four differences 
ri D ri � Qri , for i D 0; : : : ; 3. The
positioning error is computed, in turn, as the normalized difference � D .p� Qp/=r to
yield a dimensionless number, its components being denoted by �x , �y , and �z. The
components of the two errors are plotted vs. ' in Figs. 11.5 and 11.6. Note that the
orientation errors are, roughly, one order of magnitude greater than the positioning
errors.
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Fig. 11.5 Plots of the positioning errors

11.5 Continuous-Path Tracking

When a continuous trajectory is to be tracked with a robot, the joint angles have
to be calculated along a continuous set of poses of the end-effector. In practice, the
continuous trajectory is sampled at a discrete set of close-enough poses f sk gN

1 along
the continuous trajectory. Then in principle, an IKP must be solved at each sampled
pose. If the manipulator is of the decoupled type, these calculations are feasible in
a fraction of a millisecond, for the solution reduces, in the majority of the cases,
to a cascading of quadratic equations. In the worst case, the inverse kinematics of
a decoupled manipulator requires finding all the roots of a quartic equation at each
sampled pose, but this is still feasible in the same time frame, for the four roots
of interest can be calculated from formulas. However, if the manipulator has an
architecture not lending itself to a simple solution and requires solving polynomials
of a degree higher than four, then finding all solutions at each sample pose may
require a few milliseconds, which may be too slow in fast operations. Hence, an
alternative approach is needed.

The alternative is to solve the IKP iteratively. That is, if we have the value of
the vector of joint variables �.tk/ and want to find its value at tkC1, then we use
Algorithm 11.5.1.
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Fig. 11.6 Plots of the orientation errors

Algorithm 11.5.1

� �.tk/

1 find correction 
�

if k
� k � �, then stop;

else

� � C
�

go to 1

Various procedures are available to find the correction 
� of Algorithm 11.5.
The one we have found very convenient is based on the Newton–Gauss method
(Dahlquist and Björck 1974). In the realm of Newton methods—there are several
of these, the Newton–Gauss and the Newton–Raphson methods being two of this
class—the closure equations (4.9a and b) are written in the form

f.�/ D sd (11.61)
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where sd is the seven-dimensional prescribed-pose array. We recall here the
definition of the pose array introduced in Sect. 3.2 to represent sd , namely,

sd �
2
4

q
q0

p

3
5

d

(11.62)

with q and q0 defined, in turn, as a three-dimensional vector invariant of the
rotation Q and its corresponding scalar, respectively. Moreover, p is the position
vector of the operation point. Therefore, the seven-dimensional vector f is defined,
correspondingly, as

f.�/ �
2
4

fv.�/

f0.�/

fp.�/

3
5 �

2
4

q
q0

p

3
5 (11.63)

where fv.�/ denotes the counterpart of q above, as pertaining to the product
Q1 � � � Q6 of Eq. (4.9a); f0.�/ is the counterpart of q0, as pertaining to the same
product; and fp.�/ is the sum a1 C � � � C Q1 � � � Q5a6. In principle, any of
the three types of rotation invariants introduced in Sect. 3.2 can be used in the
above formulation.

Now, Eq. (11.61) represents a nonlinear system of seven equations in six
unknowns. The system is thus overdetermined, but since the four rotational equa-
tions are consistent, this system should admit an exact solution, even if this solution
is complex. For example, if p is specified in sd above as lying outside of the
manipulator reach, then no real solution is possible, and the solution reported by
any iterative procedure capable of handling complex solutions will be complex.

Upon application of the Newton–Gauss method to find a solution of Eq. (11.61),
we assume that we have an initial guess �0, and based on this value, we generate a
sequence �1, : : :, � i , � iC1, : : :, until either a convergence or an abortion criterion is
met. This sequence is generated in the form

� iC1 D � i C 
� i (11.64)

with 
� i calculated from

ˆ.� i /
� i D �f.� i / C sd (11.65)

and ˆ defined as the Jacobian matrix of f.�/ with respect to � . Note that by virtue of
its definition, ˆ is a 7�6 matrix. A common misconception in the robotics literature
is to confuse this Jacobian matrix with the Jacobian defined by Whitney (1972) and
introduced in Eq. (5.10a), which maps joint rates into the EE twist. The difference
between the two Jacobians being essential, it is made clear in the discussion below.
First and foremost, ˆ is an actual Jacobian matrix, while Whitney’s Jacobian,
properly speaking, is not. In fact, ˆ is defined as

ˆ � @f
@�

(11.66)
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In order to find ˆ in Eq. (11.65), we note that by application of the chain rule,

Pf D @f
@�

P� � ˆ P� (11.67)

However, from the definition of f, we have that Pf is the time-derivative of the pose
array of the EE, i.e., Ps. Moreover, by virtue of Eq. (3.78), this time-derivative can be
expressed as a linear transformation of the twist t of the EE, i.e.,

Pf D Tt (11.68a)

with T defined in Sect. 3.2 as

T �
�

F O43

O33 133

�
(11.68b)

where O33 and O43 denote the 3 � 3 and the 4 � 3 zero matrices, 133 being the 3 � 3

identity matrix. Further, matrix F takes on various forms, depending on the type of
rotation representation adopted, as discussed in Sect. 3.2.

We write next the left-hand side of Eq. (11.68a) as shown in Eq. (11.67), and the
twist t of the right-hand side of Eq. (11.68a) in terms of P� , as expressed in Eq. (5.9),
thereby obtaining

ˆ P� � TJ P� (11.69)

which is a relation valid for any value of P� . As a consequence, then,

ˆ D TJ (11.70)

whence the relation between the two Jacobians is apparent. Note that Eq. (11.68a)
allows us to write

Pf D TJ P� (11.71)

Upon equating the right-hand sides of Eqs. (11.71) and (11.68a), we obtain

TJ P� D Tt � Psd (11.72)

If linear invariants are used to represent the rotation, then T becomes rank-
deficient if and only if the angle of the rotation becomes 	 (Tandirci et al. 1994);
otherwise, T is always of full rank, and Eq. (11.72) leads to

J P� D t (11.73)
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which is exactly the same as Eq. (5.9). Now we multiply both sides of the foregoing
equation by 
t , thereby obtaining

J
� D t
t (11.74)

All we need now is, apparently, the product in the right-hand side of the above
equation, namely,

t
t D
�
!
t

Pp
t

�
�

�
!
t


p

�
(11.75)

The product !
t is found below, in terms of the orientation data available: First
and foremost, it is common practice in the realm of Newton methods to assume
that a good enough approximation to the root sought is available, and hence, 
�

is “small.” That is, we assume that k
�k is small, where k � k denotes any vector
norm. Moreover, we use the end-effector pose at t D tk as a reference to describe
the desired pose at t D tkC1, the rotation sought—that takes the EE to its desired
attitude—being denoted by 
Q, and defined as .
Q/Qk D Qd , when all rotations
are expressed in the same frame and Qk represents the orientation of the EE at
t D tk . Thus,


Q D QdQkT (11.76)

Now we relate !
t with 
Q. To this end, notice that

!
t D vect.�
t/ (11.77a)

with � denoting the cross-product matrix of !. On the other hand, 
Q is bound to
be a rotation about an axis parallel to a unit vector e, through a small angle 
�, and
hence, from Eq. (2.49),


Q � 1 C .
�/E (11.77b)

where E is the cross-product matrix of e. It is then possible to assume that �
t ,
as appearing in Eq. (11.77a), is the skew-symmetric component of 
Q, as given by
Eq. (11.77b), i.e.,


Q D 1 C �
t

whence

�
t D Qd QT
k � 1

which readily leads to

!
t D vect.Qd QT
k / (11.78)

thereby obtaining the relation sought.
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Algorithm 11.5.2

1 
Q  QdQkT


p  pd � pk


t  
�

vect.
Q/


p

�


�  J�1
t

if k
� k � �, then stop;

else

�  � C
�

Qk  .
Q/Qk

pk  p.�/

go to 1

In summary, then, the correction 
� is computed from

J
� D 
t (11.79)

with 
t defined as


t �
�

vect.QdQkT /


p

�
(11.80)

and 
p defined, in turn, as the difference between the prescribed value pd of the
position vector of the operation point and its value pk at the current iteration. Thus,
the numerical path-tracking scheme consists essentially of Eqs. (11.79) and (11.80),
as first proposed by Pieper (1968). We thus have Algorithm 11.5.2.

When implementing the foregoing procedure, we want to save processing time;
hence, we aim at fast computations. The computation of the correction 
� involves
only linear-equation solving, which was discussed at length in Chap. 4 and need
not be discussed further here. The only item that still needs some discussion is the
calculation of the vector norm k
�k. Since any norm can be used here, we can
choose the norm that is fastest to compute, namely, the maximum norm, also known
as the Chebyshev norm, represented as k
�k1, and defined as

k
�k1 � max
i

f j�i j g (11.81)

Note that this norm only requires comparisons and no floating-point operations. The
Euclidean norm of an n-dimensional vector, however, requires n multiplications,
n � 1 additions, and one square root.
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Example 11.5.1 (Path-Tracking for Arc-Welding). With reference to the
arc-welding exercise of Example 11.3.2, we want to use the Fanuc Arc Mate,
whose Denavit–Hartenberg parameters are listed in Table 5.2. Furthermore, the
welding seam to be tracked is placed well within the workspace of the manipulator.
A location found quite suitable for this task was obtained with the aid of RVS, our
Robot Visualization System. This location requires that the coordinate frame FC of
Fig. 11.4 have its axes parallel pairwise to those of the robot base, F1. The latter is
defined according to the Denavit–Hartenberg notation, and so Z1 coincides with the
axis of the first revolute; it is, moreover, directed upwards. The position found for
the origin OC of FC , of position vector o, is given in F1 as

Œ o �1 �
2
4

x

y

z

3
5 D

2
4

�1:0

�0:1

0:5

3
5 m

Find the time-histories of all the joint variables that will perform the desired
operation with the tip of the electrode traversing the intersection curve at the
constant speed of v0 D 0:1 m/s. Furthermore, plot the variation of the condition
number of the Jacobian matrix along the path.

Solution: The robot at hand was studied in Sect. 9.7, where it was found not to
be of the decoupled type. In fact, this robot does not admit a closed-form inverse
displacement solution, and hence, the foregoing iterative procedure is to be used.

At the outset, we calculate all inverse displacement solutions at the pose
corresponding to ' D 0 using the bivariate-equation approach of Sect. 9.4. This
pose is defined by the orthogonal matrix Q and the position vector p given below:

Œ Q �1 � �
eb et en

� D
2
4

0:6030 0 �0:7977

0 1 0

0:7977 0 0:6030

3
5 ; Œ p �1 D

2
4

�0:5500

�0:100

0:8969

3
5 m

with both Q and p given in robot-base coordinates. The contours for the above
pose, which were obtained using the procedure of Sect. 9.4, are shown in Fig. 11.7,
the eight solutions obtained being summarized in Table 11.3, which includes the
condition number of the Jacobian, �.J/, of each solution. Note that the calculation
of �.J/ required computing the characteristic length of the robot, as explained in
Sect. 5.8. This length, as calculated in that section, turned out to be L D 0:3573 m.

Now, we have eight solutions at our disposal, from which we must choose one
for path-tracking. In the absence of any criterion to single out one specific solution,
we can pick up the solution with the lowest condition number. If we do this, we end
up with solution 1 in Table 11.3. However, when we attempted to track the given
path with this solution, it turned out that this solution encountered a singularity and
was hence discarded. Of the seven remaining solutions, solution 5 has the lowest
condition number; this solution led to a singularity-free trajectory.
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Fig. 11.7 Contour solutions
of the Fanuc Arc Mate robot
at the given EE pose

Table 11.3 Inverse kinematics solutions of the Fanuc Arc Mate robot for the given EE pose

i �.J/ �1 �2 �3 �4 �5 �6

1 4.74 19:9039ı 124:909ı �176:484ı 16:1379ı �102:29ı �15:8409ı

2 4.85 �3:6664ı 124:723ı �173:071ı 177:019ı 101:19ı �177:208ı

3 11.12 �154:951ı �67:5689ı �135:549ı 141:716ı 146:966ı 17:754ı

4 6.31 �176:328ı �63:4487ı �129:817ı �4:5893ı �140:319ı �178:681ı

5 4.79 �176:341ı 75:1632ı �76:6692ı 3:7343ı 51:4104ı �179:877ı

6 5.20 �153:567ı 73:4546ı �72:5407ı �153:868ı �53:7328ı �0:5046ı

7 8.68 �3:6362ı �129:644ı �32:9672ı �175:011ı �144:428ı 178:133ı

8 9.94 18:9031ı �131:096ı �26:8084ı �28:6793ı 147:417ı 13:0786ı

Once the appropriate solution is chosen, the trajectory can be tracked with the aid
of Algorithm 11.5.2. Here, we need a discrete set of poses at equal time-intervals.
Note that we can produce such a set at equal intervals of angle ' because we have
expressions for the pose variables in terms of this angle. In order to obtain this set
at equal time-intervals, then, we need angle ' as a function of time, i.e., '.t/. In the
sequel, we will also need the time T required to complete the task. Now, since the
speed of the electrode tip is constant and equal to v0, the time T is readily obtained
by dividing the total length l of the curve by v0. The length of the curve, in turn, can
be computed as s.2	/, where function s.'/ denotes the arc length as a function of
angle ', i.e.,

s.'/ D
Z '

0

kr0.'/kd' (11.82)
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We thus obtain, by numerical quadrature,

l � s.2	/ D 1:0257 m

Hence, the total time is

T � l

v0

D 10:257 s

Now, in order to obtain '.t/, we first calculate Ps as

Ps � ds

dt
D ds

d'

d'

dt
D P' ds

d'
(11.83a)

Furthermore, we note that ds=d' D kr0.'/k, which allows us to write Ps as

Ps � P'kr0.'/k
Moreover, kr0.'/k was found in Eq. (11.39b) to be

kr0.'/k D rG.'/

Ps thus becoming

Ps D rG P' (11.83b)

Furthermore, we recall the expression derived for G.'/ in Eq. (11.39e). This
expression, along with the constancy condition on Ps, i.e., Ps D v0, leads to

r P'
p

1 C .
 O' sin '/2 D v0

where r is the radius of the cylinder. Upon solving for P' from the above equation,
we obtain

P' D v0

r

s
�2 � 2
 cos '

�2 � 2
 cos ' C 
2 sin2 '

which is a nonlinear first-order differential equation for '.t/. Its initial value can
be assigned as '.0/ D 0, thereby formulating a nonlinear first-order initial-value
problem. The numerical solution of the foregoing problem is nowadays routine
work, which can be handled with suitable software, e.g., Matlab (Hanselman and
Littlefield 2001). Upon solving this equation, a data file is produced that contains the
time-history of '. The plot of ' vs. nondimensional time is displayed in Fig. 11.8a.
Since the variations of '.t/ are relatively small, this plot provides little information
on the time-history of interest. A more informative plot, that of P'.t/, is included in
Fig. 11.8b for this reason. Apparently, ' turns out to be the sum of a linear and a
periodic term.
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Fig. 11.8 Plot of P' vs. nondimensional time

With '.t/ known as a function of time, we can now specify the pose of the end-
effector, i.e., p and Q, as functions of time.

The whole trajectory was tracked with the robot at hand using the algorithm
outlined in this section. With the aid of this algorithm, we produced the plots
of Fig. 11.9. Also, the time-history of the condition number of the manipulator
Jacobian was computed and plotted in Fig. 11.10. Apparently, the condition number
of the Jacobian remains within the same order of magnitude throughout the whole
operation, below 10, thereby showing that the manipulator remains far enough from
singularities during this task—the condition number becomes very large when a
singularity is approached, becoming unbounded at singularities. A rendering of the
welding seam with the Frenet–Serret triad at a sample of points is displayed in
Fig. 11.11. It is noteworthy that the torsion of the path is manifested in this figure by
virtue of the inclination of the Z axis, which changes from point to point. In a planar
curve, this axis would remain at a fixed orientation while traversing the curve.

11.6 Exercises

11.1 A PUMA 560 robot, with the DH parameters of Table 11.4, is used to perform
a gluing operation as indicated below: A nozzle dispensing the glue is rigidly
attached to the gripper of the robot. The tip of the nozzle, point P , is to trace
a helicoidal path at a constant rate of 50 mm/s. Furthermore, the center of the
wrist is located at a point C , fixed to a Frenet–Serret coordinate frame. In this



502 11 Trajectory Planning: Continuous-Path Operations

0 0.5 1
160

180

200

220

0 0.5 1
60

70

80

90

0 0.5 1
250

300

350

0 0.5 1
0

200

400

0 0.5 1
40

60

80

100

0 0.5 1
160

180

200

Fig. 11.9 Time-histories of the joint variables (in degrees) of the Fanuc Arc Mate robot used to
track a warped curve for arc-welding vs. nondimensional time
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frame, the coordinates of C are . 0; �50; 86:7 / mm. Moreover, the path to
be traced by point P is given as

x D a cos #; y D a sin #; z D b#; 0 � # � 	=2

with the values a D 300 mm, b D 800=	 mm.

(a) Decide where to locate the robot base with respect to the path so that the latter
will lie well within the workspace of the robot. Then, produce plots of �i vs.
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Fig. 11.11 Welding seam
with Frenet–Serret frames

Table 11.4 DH parameters
of a PUMA 560 robot Joint i ˛i (ı) ai (m) bi (m)

1 90 0 0:660

2 0 0.432 0

3 90 0.020 0:149

4 90 0 0:432

5 90 0 0

6 0 0 0:056

t , for 0 � t � T , where T is the time it takes to traverse the whole trajectory,
for i D 1; 2; : : : ; 6.

(b) Produce plots of P�i vs. t in the same time interval for all six joints.
(c) Produce plots of R�i vs. t in the same time interval for all six joints.

11.2 A bracket for spot-welding, shown in Fig. 11.12, is rigidly attached to the
end-effector of a robotic manipulator. It is desired that point P of the bracket
follow a helicoidal path � , while keeping the orientation of the bracket with
respect to � as indicated below: Let B � fi0; j0; k0g and F7 � fi7; j7; k7g
be triads of unit orthogonal vectors fixed to the base of the robot and to the
bracket, respectively. Moreover, let F � fet ; en; ebg be the Frenet–Serret triad
of � , given as
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Fig. 11.12 A bracket for spot-welding

et D �0:6 sin 'i0 C 0:6 cos 'j0 C 0:8k0

en D � cos 'i0 � sin 'j0

eb D 0:8 sin 'i0 � 0:8 cos 'j0 C 0:6k0

where ' is a given function of time, '.t/.
Furthermore, the orientation of the bracket with respect to � is to be kept

constant and given in terms of the Frenet–Serret triad as

i7 D 0:933et C 0:067en � 0:354eb

j7 D 0:067et C 0:933en C 0:354eb

k7 D 0:354et � 0:354en C 0:866eb

Additionally, R and S.t/ denote the rotation matrices defining the orienta-
tion of F7 with respect to F and of F with respect to B, respectively.

(a) Find the matrix representation of S.t/ in B.
(b) Find the matrix representation of R in F .
(c) Let Q.t/ denote the orientation of F7 with respect to B. Find its matrix

representation in B.
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(d) Find the Darboux vector ı of the path, along with its time-derivative, Pı, in
base-fixed coordinates. Note: You can do this in several ways, as discussed
in Sect. 11.2. Choose the one that will allow you to use previously computed
results, thereby simplifying the computations.

11.3 The parametric equations of a curve are given as

x D 2t; y D t 2; z D t 3=3

where t is time. A robotic manipulator is to follow this trajectory so that its
gripper keeps a constant orientation with respect to the Frenet–Serret frame
of the curve.

(a) Determine the unit vector parallel to the axis of rotation and the angle of
rotation of the gripper as functions of time.

(b) Find the angular velocity and angular acceleration of the gripper as functions
of time.

11.4 Derive Eqs. (11.45a and b).
11.5 Find the spline approximation of the helix of Example 11.3.1. Then, plot the

approximation errors of the Cartesian coordinates of points of the helix, for
N D 5, 11, and 21 equally spaced supporting points. In order to assess the
orientation error, compute the Darboux vectors of the spline, ıs , and of the
helix, ıh. The approximation error of the orientation is now defined as

eo � max
'

fkıs.'/ � ıh.'/kg

with ' defined as in Example 11.3.1.
11.6 Find the spline approximation of the curvature, torsion, and Darboux vector

of the curve introduced in Example 11.3.2. Find expressions for the exact
values of these variables and plot the approximation errors, for 5, 10, and 20
equally spaced supporting points vs. '. In the error definitions given below,
subscript e indicates exact value, subscript s spline value:

e� � �s.'/ � �e.'/

e� � �s.'/ � �e.'/

eı � kıs.'/ � ıe.'/k

11.7 From the plots of the time-histories of the joint angles calculated in Exam-
ple 11.5.1, it is apparent that, with the exception of �4, which has a linear
component, these histories are periodic. Repeat Example 11.5.1, but now
using a spline approximation of the welding seam, with N D 5; 10, and
20 supporting points. With this spline approximation, calculate the pose, the
twist, and the twist-rate at each supporting point. Now, calculate values of � ,
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P� , and R� at each of these supporting points by means of inverse kinematics.
Compare the values thus obtained of R� with those derived from the linear
relation between the function values and the values of its second derivative at
the supporting points when using a cubic spline.

11.8 The decoupled robot of Fig. 4.23 is to perform an arc-welding operation along
a welding seam that requires its wrist center C to travel at a constant speed
of 1 m=s along a line joining points A and B , not shown in that figure, while
keeping the EE holding the electrode at a constant orientation with respect
to the base frame. Moreover, the seam is to be traversed according to the
following schedule: With point C located at a point A0 on the extension of
AB , a distance of 250 mm from A, point C approaches A with a cycloidal
motion at the specified speed; upon reaching B , point C decelerates with a
cycloidal motion as well, until it reaches a point B 0 in the other extension of
AB , 250 mm from B , with zero speed. The position vectors of points A and
B , denoted by a and b, respectively, are given, in base coordinates, as

a D
2
4

500

�500

500

3
5 ; b D

2
4

1; 200

0

1; 200

3
5

in mm. For the above-given data, find the time-histories of all joint variables.

11.9 Derive expressions (11.45a and b).
11.10 If linear invariants are used to represent the desired pose sd , then q D 0 and

q0 D 1 when the angle of rotation becomes 	 . Under these conditions, matrix
T of Eq. (11.72) becomes rank-deficient, this equation thus not necessarily
leading to Eq. (11.73). One way of coping with this algorithmic singularity
consists in redefining axis X1 of the DH notation by rotating the current X1

axis by an angle 
�1 about Z1, which does not affect the remaining variables
and parameters of the said notation.

Find the optimum value of 
�1 that will take T “farthest” from its current
rank-deficiency.
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