
Chapter 5
Applying the Cardinality–Constrained
Approach in Health Care Systems: The Home
Care Example

Ettore Lanzarone and Giuliana Carello

Abstract Many approaches are applied to deal with uncertainty in health care
optimization problems. However, a recently proposed technique, namely, the
cardinality–constrained approach, is only marginally applied in health care. This
approach accounts for a given degree of uncertainty with a reasonable computational
effort, providing a trade-off between computational time and robustness. In this
paper, we apply such approach to the nurse-to-patient assignment problem under
continuity of care arising in home care services. A linear programming model is
developed for solving the problem, and the robustness is included in the formulation
according to the cardinality–constrained approach. The overall robust model is
applied to a Home Care provider operating in Italy, in order to evaluate its capability
of reducing the costs related to nurses’ overtimes, and to compare the results both
with the real practice of the analyzed provider and with previously developed
approaches. Relevant benefits are achieved by applying the proposed model in
the practice, and results suggest that such benefits could be also achieved in other
optimization problems within the health care domain.

5.1 Introduction

Uncertainty is a key feature of many health care optimization problems, which
cannot be neglected and may have a significant impact on the problem solu-
tion. In locating emergency vehicles, uncertainty is associated to the availability
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of ambulances [1], while in planning and scheduling operating room theaters
uncertainty is mainly related to the duration of surgery [2]. Uncertainty also occurs
in managing home care (HC) services, where sudden variations in the amount of
service required by patients, which is in general highly variable, are the most critical
and frequent random events.

Different approaches are usually applied to deal with uncertainty in optimization
problems, such as probabilistic models, stochastic optimization approaches, and,
more recently, the cardinality–constrained approach proposed in [3]. This accounts
for a certain degree of uncertainty (which can be tuned) with a reasonable
computational effort, providing a trade-off between needed computational time and
robustness.

Although the approach seems to match many health care optimization problems,
to the best of our knowledge it has not been often applied in this field so far (only
four papers with keyword health care that cite [3] were found in March 2013
through a search on ISI web of knowledge and Scopus).

In this paper, we present an application of the cardinality–constrained approach
to the nurse-to-patient assignment problem under continuity of care in HC. The
approach can be easily applied to the problem and proved to produce good quality
solutions with a reasonable computational effort. Therefore, it is also worthy of
being tested on other health care optimization problems.

5.1.1 Home Care Service

HC consists of delivering medical, paramedical and social services to patients at
their domicile rather than in hospital. This leads to a significant improvement in the
quality of life for patients, as they continue to live at their home, and to considerable
cost savings for the entire health care system, as hospitalization costs are avoided.
Moreover, HC is a relevant and growing sector in western countries, due to the
population aging, to the increasing of chronic pathologies, to the introduction of
innovative technologies, and to the pressure of governments to contain health care
costs.

Many resources are involved in delivering HC services, including nurses, other
operators, support staff and material resources. In addition, the presence of peculiar
constraints, such as the continuity of care and the operator risk of incurring burnout,
makes the HC resource planning different from the planning problems arising in
other health care systems.

Continuity of care means that a HC provider assigns only one nurse to each
patient, called reference nurse, and the assignments are kept for a long period.
This is an important quality indicator since patients are always cared for by the
same nurse, instead of continuously developing new relationships, and potential
loss of information among operators is avoided. However, continuity of care limits
the flexibility of the service, and some providers do not adopt it to increase the
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operational efficiency. In general, for a good balance between quality and flexibility,
the continuity of care should be preserved at least for critical patients (e.g., palliative
patients) or patients with particular needs.

5.1.2 Literature Review

The literature about HC management can be mainly divided into two groups:
the first one deals with daily schedule of visits and routing of nurses, and the
second one deals with staff planning and management from a mid-term and
long-term perspective. The nurse-to-patient assignment is related to the mid-term
management. Different features may be considered, such as the continuity of care
and the uncertainty in patients’ demands.

Nurse-to-patient assignment has been rarely studied as a stand alone problem
(i.e., not considering the scheduling [4]) and, to the best of our knowledge, the
assignment problem taking into account the continuity of care is only marginally
addressed in the literature [5–7]. Besides, continuity of care is often considered
as an objective rather than a strict requirement [8]. If continuity of care is not
considered, the assignment problem turns out to be an assignment of operators to
visits rather than to patients, in which the aim is to jointly optimize the operator-
to-visit assignment and the scheduling and routing problem [9, 10]. In districts
with a limited territorial extension (e.g., in Europe), the impact of travel times on
scheduling and routing is not very significant; hence, assignment and scheduling
problems are separately solved since the joint optimization requires a significant
computational effort and, consequently, reduces the length of the considered time
horizon.

As mentioned, uncertainty inherently arises in HC due to unpredictable changes
in patients’ needs. In [11] it is managed by representing the whole system as a
Markov chain and developing admittance policies for patients.

The nurse-to-patients assignment problem, in which both continuity of care and
demand uncertainty are considered, has been rarely addressed in the literature.
The problem was tackled with stochastic programming [6] and with analytical
policies [7]. However, both these approaches proved limited even if they improve
the quality of the assignment with respect to those actually applied by the HC
structures. The stochastic programming approach is based on scenario generation
and, due to the high number of patients and the associated demand variability,
requires to include a very high number of scenarios. Only a limited number of
them can be consequently considered for a computationally acceptable solution.
Therefore, a high expected value of perfect information (EVPI) and a low value of
the stochastic solution (VSS) are obtained [6]. The analytical policies are related
to strict assumptions regarding, e.g., the shape of workload probability density
functions, the number of assignable patients, and the number of periods in the
planning horizon [7].
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With the cardinality–constrained approach, we aim at exploiting the potentialities
of a linear programming model rather than an analytical approach, without the
necessity of generating scenarios.

5.2 Robust Assignment Model

We consider the problem of assigning a set of patients P to a set of nurses I over a
time horizon T divided into a set of time slots. Three continuity of care requirements
are considered:

• Hard continuity of care: patients must be assigned to only one reference nurse for
the entire time horizon. These patients are partitioned into two subsets Pa

c and Pn
c .

Patients in Pa
c are already under treatment and assigned at the beginning of the

time horizon, and they keep their assignment. Patients in Pn
c start their treatment

at the beginning of the time horizon, and they are not yet assigned.
• Partial continuity of care: the reference nurse can be changed from time slot to

time slot. However, each reassignment is penalized by a cost γ to keep the number
of reassignments limited. As for the previous case, these patients are partitioned
into two subsets Pa

pc and Pn
pc. Patients in Pa

pc are already under treatment at the
beginning of the time horizon, while patients in Pn

pc start their treatment at the
beginning of the time horizon.

• No continuity of care: patients can be assigned to more than one nurse even in the
same time slot and the assignments can be changed from a time slot to another
without penalties (set Pnc).

The division in districts is taken into account: a parameter mi j is given for each
nurse i ∈ I and patient j ∈ P, which is equal to 1 if nurse i operates in the district of
j, and 0 otherwise.

The amount of working time required by patient j ∈ P in time slot t ∈ T is an
uncertain parameter r jt , with expected value r̄ jt and maximum value r̄ jt + r̂ jt . Each
nurse i ∈ I has an amount of available working time per time slot vi, and overtime
must be paid if vi is exceeded. The overtime cost depends on its amount. A set of
overtime levels Li are defined for each nurse i ∈ I, and two parameters are given for
each level l ∈ Li: a threshold Δ l

i and a cost per time unit cl for each overtime unit
above vi +∑l−1

k=1 Δ k
i and below vi +∑l

k=1 Δ k
i .

The problem consists of assigning all of the patients to the nurses, according to
the required continuity of care, with the aim of minimizing the overtime costs and
the number of reassignments for patients with partial continuity of care.

The problem is modeled as follows. A binary variable x ji is defined for each
patient j ∈ Pa

c ∪Pn
c and nurse i ∈ I (x ji = 1 if j is assigned to i during the whole time

horizon, and 0 otherwise). Similarly, a binary variable ξ t
ji is defined for each patient

j ∈Pa
pc∪Pn

pc, nurse i ∈ I and time slot t ∈ T (ξ t
ji = 1 if nurse i is in charge of patient j

during time slot t, and 0 otherwise). The assignments of patients to reference nurses
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before the considered time horizon are described with parameters x̃ ji (x̃ ji = 1 if j ∈P
is initially assigned to i ∈ I, and 0 otherwise). Furthermore, a binary variable yt

j is
introduced for each patient j ∈ Pa

pc ∪Pn
pc (yt

j = 1 if the assignment of patient j is
changed from time slot t − 1 to time slot t, and 0 otherwise). Finally, the fraction
of time needed by j ∈ Pnc in time slot t ∈ T provided by nurse i ∈ I is represented
by a continuous variable χ t

ji ∈ [0,1]. The overtime assigned to each nurse i ∈ I in

time slot t ∈ T is described by a continuous variable wl
it for each level l ∈ Li, which

represents the extra workload related to cl .
The objective function aims at minimizing the overtime costs and the number of

reassignments: these two parts are both relevant, as the first one reduces the burnout
risk, while the second one guarantees a suitable quality of provided service.

min

⎧
⎨

⎩∑
i∈I

∑
t∈T

∑
l∈Li

(
clw

l
it

)
+ γ ∑

j∈Pa
pc∪Pn

pc

∑
t∈T

yt
j

⎫
⎬

⎭
(5.1)

subject to:

∑
i∈I

mi jx ji = 1, ∀ j ∈ Pa
c ∪Pn

c (5.2)

∑
i∈I

mi jξ t
ji = 1, ∀ j ∈ Pa

pc ∪Pn
pc, t ∈ T (5.3)

∑
i∈I

mi jχ t
ji = 1, ∀ j ∈ Pnc, t ∈ T (5.4)

∑
j∈Pa

c ∪Pn
c

r jt x ji + ∑
j∈Pa

pc∪Pn
pc

r jtξ t
ji + ∑

j∈Pnc

r jt χ t
ji ≤ vi + ∑

l∈Li

wl
it , ∀i ∈ I, t ∈ T (5.5)

0 ≤ wl
it ≤ Δ l

i , ∀i ∈ I, t ∈ T, l ∈ Li (5.6)

x ji ≥ x̃ ji, ∀i ∈ I, j ∈ Pa
c (5.7)

yt
j ≥ ξ t

ji − ξ t−1
ji , ∀t ∈ T \ {t1}, j ∈ Pa

pc ∪Pn
pc, i ∈ I (5.8)

yt1
j ≥ ξ t1

ji − x̃ ji, ∀ j ∈ Pa
pc, i ∈ I (5.9)

Constraints (5.2)–(5.4) guarantee that each patient is assigned to a suitable nurse;
constraints (5.5) compute nurse workloads and overtimes for each level; constraints
(5.6) set the thresholds for the overtime workload; constraints (5.7) guarantee that
patients in Pa

c do not change their assignment at the beginning of the time horizon;
constraints (5.8) and (5.9) compute the number of reassignments.

To deal with uncertainty in constraints (5.5) we apply the cardinality–constrained
robust model proposed in [3]. The basic idea of the approach is that only a subset of
the uncertain parameters are likely to assume their maximum value simultaneously.
The approach provides solutions which are feasible even if at most Γ uncertain
parameters assume their worst possible value (i.e., the maximum value) rather than
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their expected value. As the solution must be feasible for any choice of Γ parameters
for each constraint, the subset which represents the worst possible case is selected.
The impact is then computed exploiting duality properties, yielding to a linear
formulation.

We apply the cardinality–constrained approach to the proposed formulation by
including, for each nurse and time slot, three subsets Sit

c , Sit
pc and Sit

nc of patients
assigned to i (with Sit

c ⊆ Pa
c ∪Pn

c , Sit
pc ⊆ Pa

pc ∪Pn
pc, and Sit

nc ⊆ Pnc), whose demand
charged to nurse i in time slot t is equal to the maximum treatment time r̄ jt + r̂ jt .
Cardinality is constrained as at most Γ i

c , Γ i
pc and Γ i

nc patients (with Γ i
c , Γ i

pc and Γ i
nc

integer) are assumed to belong to these subsets, respectively. The charged demand
of all other patients is the expected value r̄ jt .

The robustness is taken into account considering the worst possible charge for
each nurse i at each time slot t in constraints (5.5). As example, for patients requiring
hard continuity of care, the term ∑ j∈Pa

c ∪Pn
c

r jt x ji is replaced with:

∑
j∈Pa

c ∪Pn
c

r̄ jt x ji + max
Sit

c |Sit
c ⊆Pa

c ∪Pn
c ,

|Sit
c |=Γ i

c

⎧
⎨

⎩ ∑
j∈Sit

c

r̂ jt x ji

⎫
⎬

⎭

Let us denote the maximum related to a given solution {x∗} with β it
c (x

∗,Γ i
c , t):

β it
c (x

∗,Γ i
c , t) = max

Sit
c |Sit

c ⊆Pa
c ∪Pn

c ,

|Sit
c |=Γ i

c

⎧
⎨

⎩ ∑
j∈Sit

c

r̂ jt x
∗
ji

⎫
⎬

⎭

This is computed for each nurse i and time slot t by solving the following linear
programming problem:

(Pβ it
c ) = max ∑

j∈Pa
c ∪Pn

c

r̂ jt x
∗
jiz

t
ji (5.10)

∑
j∈Pa

c ∪Pn
c

zt
ji ≤ Γ i

c (5.11)

0 ≤ zt
ji ≤ 1, ∀ j ∈ Pa

c ∪Pn
c (5.12)

where zt
ji ∈ [0,1] are continuous variables which represent the choice of the elements

in subset Sit
c . The associated dual problem is:

(Dβ it
c ) = min ∑

j∈Pa
c ∪Pn

c

πc
jit +Γ i

c ζ c
it (5.13)

ζ c
it +πc

jit ≥ r̂ jt x
∗
ji, ∀ j ∈ Pa

c ∪Pn
c (5.14)

πc
jit ≥ 0, ∀ j ∈ Pa

c ∪Pn
c (5.15)

ζ c
it ≥ 0 (5.16)
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where ζ c
it are the dual variables associated with (5.11), and πc

jit the dual variables
associated with zt

ji ≤ 1 (5.12).

Optimal values (Pβ it
c ) and (Dβ it

c ) coincide and, therefore, the maximum can be
replaced by ∑ j∈Pa

c ∪Pn
c

πc
jit +Γ i

c ζ c
it adding the following variables and constraints to

the model:

ζ c
it +πc

jit ≥ r̂ jt x ji, ∀i ∈ I, j ∈ Pa
c ∪Pn

c , t ∈ T

ζ c
it ≥ 0, ∀i ∈ I, t ∈ T

πc
jit ≥ 0, ∀i ∈ I, j ∈ Pa

c ∪Pn
c , t ∈ T

The same idea is applied to ∑ j∈Pa
pc∪Pn

pc
r jtξ t

ji and ∑ j∈Pnc r jt χ t
ji, thus obtaining the

robust cardinality–constrained version of the model.
In this way, each feasible solution remains feasible if any subset of at most Γ i

c ,
Γ i

pc and Γ i
nc patients, respectively, require the highest number of visits.

5.3 Real Case Analysis

Computational tests are run in order to evaluate the applicability of the proposed
approach to a real HC provider. The quality of the solutions and their impact when
applied to realistic scenarios are taken into account.

The analysis is conducted on the same HC provider already studied in other
papers dealing with assignment techniques under continuity of care [6, 7], so as to
compare the outcomes of the proposed model with other approaches. Furthermore,
a patient stochastic model to estimate the future patients’ demands is available
for this provider [12]. The considered HC provider operates in the north of Italy,
covering a region of about 800 km2, with about 1,000 patients assisted at the same
time by about 50 nurses. The provider includes three independent divisions, and
the analysis is carried out for the nurses of the largest one. The division consists
of six districts and the analysis is carried out in four of them where more than one
nurse is present (Table 5.1). The assignments are planned considering the districts as
independent.

Table 5.1 Analyzed districts

Name of the district Code of territory Skill of the nurses Number of nurses

NPA A Non-palliative 8
PA A Palliative 3
NPB B Non-palliative 4
NPC C Non-palliative 5
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Table 5.2 Analyzed instances

Type of continuity for palliative Γ values Robust solution Non-robust solution

C 1 Conf. A Conf. E
2 Conf. B Conf. E

random 80% C 1 Conf. C Conf. F
and 20 % PC 2 Conf. D Conf. F

5.3.1 Experimental Setup

We consider data related to 26 weeks from April to September 2008 [6, 7]. The
model is applied according to a rolling approach, and each time slot t is 1 week. An
initial assignment of nurses is computed at the initial week (named week 0) con-
sidering all patients as newly admitted ones, while the successive assignments are
provided on a rolling basis: at the beginning of each week, newly admitted patients
are included in the mix and discharged patients are excluded. For each rolling week,
the planning horizon includes the considered week and the next seven ones (T = 8).
The assignments computed for the first horizon week are then kept, and the model
is solved again for the next rolling week taking into account the information about
patients assigned in the previous rolling weeks. This is consistent with the policy
of the analyzed HC service provider, where assignments are mainly decided at the
beginning of each week on a weekly basis. The initialization at week 0 is obtained
neglecting the robustness (i.e., all patients require the expected demand r̄ jt ).

The reassignment penalty γ is assumed equal to 2.5, and 10 overtime levels are
considered (l = 1, . . . ,10), with cl = l ∀l and Δ l

i = 0.1vi ∀i, l.
The number of patients in charge at each week and their features are taken from

the historical data of the provider (considering real arrivals of new patients and
real discharges), while patients’ demands are estimated with the stochastic model
proposed in [12]. The expected demand r̄ jt and the maximum demand r̄ jt + r̂ jt of
each patient are taken from an empirical probability density function given by such
stochastic model (maximum value r̄ jt + r̂ jt is taken neglecting the right tail of the
distribution with probability 0.1).

The continuity of care requirement for each patient is determined based on
his/her characteristics. Patients belong to 15 different care profiles (CPs) [12] and
the type of continuity of care required by each patient is once decided according to
the CP when the patient is first considered. For non-palliative patients, low intensity
CPs require no continuity of care, middle intensity CPs partial continuity of care,
and high intensity CPs hard continuity of care. Two different configurations are
taken into account for palliative patients: either they all require hard continuity of
care, or they require hard or partial continuity according to a random choice: each
palliative patient is randomly considered requiring hard continuity of care (with
probability 0.8) or partial continuity (with probability 0.2).

Two levels of robustness are considered, either Γ i
c = Γ i

pc = Γ i
nc = 1,∀i or Γ i

c =

Γ i
pc = Γ i

nc = 2,∀i. Moreover, also the case in which the robustness is neglected is
studied (Table 5.2).



5 Cardinality–Constrained Approach for Home Care 69

5.4 Results

The model has been implemented with OPL 5.1 and solved with CPLEX; computa-
tional tests have been run on a PC equipped with CPU Intel Core i7 1.73 GHz and
6 GB of RAM. A stopping condition on the gap is set so as to limit the computational
time (1 % for configurations A and C; 4 % for configurations B and D). No stopping
condition is set for the non-robust configurations E and F.

Table 5.3 shows the computational time, the objective function and the number
of reassignments for patients with partial continuity of care. Results are expressed
in terms of minimum, maximum and average values among the weeks from 1 to 25;
week 0 is excluded as it refers to the non-robust initialization.

Results show that, with the adopted gaps, computational times are reasonable
for any configuration. The objective function increases with the values of Γ i

c , Γ i
pc

and Γ i
nc due to both the overtime costs and the number of reassignments, as the

demand of the worst scenario increases and more robust solutions are selected. The
overtime cost is significantly affected by the degree of robustness of the solution, as
the maximum demands of patients belonging to Sit

c , Sit
pc and Sit

nc have an impact on
the overall workload.

Then, the question arises on how a robust solution behaves if no patients require
the maximum amount of care. For evaluating the behavior of the solutions with
respect to the expected demands, the assignments are applied assuming that each
patient is requiring the expected demand r̄ jt . The obtained overtime costs are
reported in Table 5.4 in terms of minimum, maximum and average values among
the weeks from 1 to 25.

It can be seen that robustness determines an increase of overtime costs. How-
ever, it is worth noting that, when considering the expected demands, the robust
assignment is not significantly penalized with respect to the optimal non-robust
counterpart. Indeed, overtime expected costs are always lower than the double of
the non-robust case.

Table 5.3 Computational time in seconds, objective function and number of reassignments

Computation time Objective function Num. of reassignments

Configuration Min Max Average Min Max Average Min Max Average

A 5 115 31 59.3 157.1 98.4 0 4 0.8
B 4 7,339 505 177.7 484.5 299.6 0 8 1.2
C 5 987 83 101.6 265.6 168.2 0 4 0.8
D 4 7,580 644 181.7 579.9 349.0 0 6 1.2
E 1 3 2 3.9 27.8 13.6 0 1 0.1
F 1 2 2 3.9 27.8 13.4 0 1 0.0
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Table 5.4 Overtime cost from the objective function and overtime cost recomputed with the
expected demands

Overtime cost Overtime expected cost

Configuration Min Max Average Min Max Average

A 59.3 149.6 96.4 7.9 35.6 16.5
B 175.2 482.0 296.6 6.3 43.4 20.5
C 99.1 265.6 166.2 7.5 42.1 20.3
D 179.2 564.9 346.0 8.3 41.6 20.9
E 3.9 27.8 13.4 3.9 27.8 13.4
F 3.9 27.8 13.3 3.9 27.8 13.3

Table 5.5 Executed mean overtime cost per nurse: minimum, maximum and average values
among the weeks from 1 to 25

Sample paths Real execution

Configuration Min Max Average Min Max Average

A 0.00 9.90 1.85 0.25 16.27 4.55
B 0.00 9.24 1.80 0.07 13.29 4.55
C 0.00 10.98 1.51 0.10 13.59 3.72
D 0.00 9.46 1.55 0.41 11.53 3.95
E 0.00 13.35 2.17 0.64 16.12 5.81
F 0.01 11.79 2.30 0.92 19.16 5.94

5.4.1 Execution of the Assignments

Each obtained solution is applied to 10 sample paths (generated with the same
procedure of [6, 7]) and to the real historical patients’ demands.

The quality of the solutions is analyzed in terms of the mean overtime cost per
nurse. This is obtained at each week as the ratio between the total cost of the district
(computed with the same levels cl = l and thresholds Δ l

i = 0.1vi) and the number
of nurses in the district. This indicator is directly taken for the execution with the
historical demands, while for the sample paths the analyzed indicator is the average
at each week among the paths. Hence, for each configuration and district, the result
is the list of average costs over the weeks in two cases: executed with the historical
demands or averaged among the sample paths (Table 5.5). We remark that planned
costs, reported in Table 5.4, refer to the entire planning horizon (8 weeks), while
for the execution only the first week of the planning horizon is extracted from each
rolling week.

Results show that robust solutions perform better than their non-robust counter-
parts, both for sample paths and real data; thus, robustness provides the desired cost
savings. To give an idea of the obtained cost savings, we can assume that one unit of
cost corresponds to about 15 euros. Considering that the 4 districts include 20 nurses
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(see Table 5.1) and that the observed period refers to 25 weeks, each cost reduction
of 1 unit corresponds to a global saving of 7,500 euros in the period. As example,
comparing solution C with the corresponding non robust solution F, a global cost
saving of 16,650 euros is observed for the real execution, and of 5,925 euros for the
average among the paths.

Considering the detail of each district, the main benefits are obtained in districts
NPA and PA both in terms of average and maximum values. A low benefit is
observed in district NPC and hardly any benefit in district NPB. Then, it seems that
larger benefits are obtained in the presence of critical patients with higher demands
(i.e., palliative patients) or many nurses.

It must be stressed that non robust models are always solved to optimality, while
an optimality gap is accepted for the robust counterparts. A robust, even if sub-
optimal, solution computed in reasonable time is able to improve the solution upon
its optimal non-robust counterpart on the considered case study.

Finally, if compared to other methodologies applied to this instance [6, 7], the
cardinality–constrained approach is able to solve problem in a lower computational
time (while including the stochasticity with the scenario generation of the stochastic
programming approach requires huge computational times) with few assumptions
on the demands (while the analytical approach based on stochastic ordering requires
to introduce many assumptions on the shape of the density functions).

5.5 Discussions and Conclusions

In this paper, we apply the robust cardinality–constrained approach proposed in
[3] in the health care area and, in particular, to the nurse-to-patient assignment
in HC services under continuity of care. HC is chosen because of its novelty
within the health care domain and the high randomness related to the workload
amount, which is strongly higher than in other services. Thanks to this approach,
the deterministic assignment model is easily modified to take into account the
uncertainty in patients’ demands, without the necessity of assuming probability
density functions or deriving a relevant number of stochastic scenarios.

The proposed model has been tested on a set of generated instances and on
historical data, and it provides good quality solutions in terms of overtime costs.
The application of the cardinality–constrained approach to HC is then promising.
Moreover, due to the general characteristics of HC within the health care domain,
the obtained benefits could extend to other health care problems.

The main limit of the proposed approach is that patients are not allowed to have
a demand for visits lower than the expected value r̄ jt , while in the real practice some
patients have a demand lower than the expected value. Such limit could be overcome
by introducing different levels of demand for each patient rather than the two ones
considered in this work; this will be the aim of our future work.
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