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Preface

The human hand and its dexterity in grasping and manipulating objects are some
of the hallmarks of the human species. For years, anatomic and biomechanical
studies have deepened the understanding of the human hands’ functioning and, in
parallel, the robotics community has been working on the design of robotic hands
capable of manipulating objects with a performance similar to that of the human
hand. However, although many researchers have partially studied various aspects,
to date there has been no comprehensive characterization of the human hands
function for grasping and manipulation of everyday life objects.

Our hypothesis is that the confluence of both scientific fields, the biomechanical
study of the human hand and the analysis of robotic manipulation of objects,
greatly benefits and advances both disciplines. Additionally, we believe that the
use of a simulation framework in which we could model and validate each of the
processes involved in dexterous grasping is crucially important. Therefore, in this
book, the current knowledge of robotics and biomechanics guides the design and
implementation of a simulation framework focused on manipulation interactions
that allows the study of the grasp through simulation.

In the first part of this book, we detail OpenGRASP, a simulation engine
focused on robot manipulation interactions embedded in a real grasping cognitive
system. Tactile sensor simulation is studied in detail, resulting in a new tactile
sensor model. Several applications of the simulator in robot grasping are pre-
sented, demonstrating how grasp simulation is a key tool for constructing a world
model and understanding the robots environment. Additionally, we demonstrate
how to achieve a complete dynamic simulation of a humanoid robot.

In the second part, we use the knowledge acquired from robot simulation to
create OpenHand, a simulation engine that provides a more comprehensive model
of the human hand focused on object grasping and manipulation. It provides a
realistic biomechanical hand model of the skeleton, muscles and tendons,
including the simulation of the skin and the neuromuscular control. Additionally, it
includes tools for grasp analysis such as mechanical contact modelling and control
algorithms for closing the hand. We show an application of how the simulation can
be used to solve the indeterminate problem of finding the muscular forces that
ensures the equilibrium of the grasped object, by minimising different objective
functions. Moreover, we propose different quality measures to evaluate various
aspects of the human grasps by adapting existing robotic metrics and proposing
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new measures that consider its biomechanical characteristics, such as muscular
fatigue. Finally, the knowledge acquired from the evaluation of grasping in
humans is compared with grasping performed by a prosthetic hand demonstrating
how the gap between robot and human grasp manipulation could be reduced.

As a result, a valuable framework for the study of the grasp, with relevant
applications in several fields such as robotics, biomechanics, ergonomics, reha-
bilitation and medicine, has been made available to these communities.

Castellón de la Plana Beatriz León
July 2013 Antonio Morales

Joaquín Sancho-Bru
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Chapter 1
Introduction

The human hand and its dexterity in grasping and manipulating objects are some of
the hallmarks of the human species. Most of human mechanical interactions with the
surrounding world are performed by the hands. We use our hands to perform very
different tasks; from exerting high forces (e.g. using a hammer or helping each other
carry heavy things) to executing very precise movements (e.g. cutting with a surgical
tool or playing an instrument). We also use them to express our feelings, utilising
them as a dominant part of our body language. This versatility is possible because
of a very complex constitution: a great number of bones connected through different
joints, a complicated musculature and a dense nervous system. This complexity is
already evident from the kinematics point of view, with more than 23 degrees of
freedom [1] controlled by muscles, tendons and ligaments.

For years, anatomic and biomechanical studies have deepened the understanding
of their structure, functioning and limitations. There has been an extensive scientific
contribution describing and modelling individual components of the human hand:
its mechanical structure, the muscular function, the nerve network, mechanical and
sensory properties of skin, cognitive functions of manipulation, and many other
aspects. However, although many researchers have partially studied various aspects
of the human hand from the neuro-physiological and biomechanical viewpoints, to
date there has been no comprehensive characterization of the human hand function
for grasping and manipulating of everyday life objects, mainly because of the lack
of a sufficiently detailed and accurate tool for its simulation.

In parallel, in the field of robotics, the increasing demand for robotic applications
in dynamic and unstructured environments and novel situations is motivating the need
for dexterous robot hands and grasping abilities, which can cope with the wide variety
of tasks and objects encountered in such environments. The scientific community has
been working extensively on the design and construction of robotic hands and in all
aspects of their control. The explicit goal of these studies is to endow robots with
hands capable of manipulating objects with a performance similar to that of the
human hand. Although the state of the art in robotics is still far from achieving this
purpose, an important body of theoretical and practical knowledge on manipulation
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2 1 Introduction

has been created. Of particular relevance are the advances in the mechanical and
mathematical modelling of the interactions between objects, which is a fundamental
aspect in the analysis of robotic manipulation.

Our hypothesis is that the confluence of both scientific fields, the biomechanical
study of the human hand and the analysis of robotic manipulation of objects, can be
a breakthrough in the development of both disciplines. On one hand, the biomechan-
ical study of the human hand is enriched with mathematical analysis techniques to
manipulate objects, and on the other the design of robotic hands would benefit from
a better understanding of the functioning of the human hand.

1.1 The Grasping Process

Grasping is a core cognitive capability and has been considered as one of the key fac-
tors of the evolution of the human brain [2]. In the grasping and manipulation process
we can distinguish three main phases: approaching, grasping and manipulating the
object. During the approaching phase, the arm moves towards the object and the
fingers perform an initial opening to accommodate the object. Subsequently, during
the grasping phase, the fingers close to make contact with the object and press it and
then the arm and wrist perform the corresponding movements to overcome external
forces or torques during the grasp, producing small adjustments in the position of
the fingers. Finally, during the manipulation phase, if the task requires changes in the
contact points for manipulating the object, coordinated changes are performed in the
finger’s pressure or position in order to perform such a task without losing the stabil-
ity of the object. The use of the senses of sight and touch—coordinated by the central
nervous system—in the entire process, is critical to the grasp success and efficiency.

Recent works in the grasping literature have different approaches depending on
the objectives of the particular study or the researchers’ background. Thus, there
are papers that focus on analyzing the gripping process from the neurophysiological
point of view [3–6], others from the point of view of biomechanics [7–10], while
others seek to transfer ideas for robotic manipulators’ grip [11–13], some explore
the use of other tools [14] and others from the clinical point of view [15, 16].

1.1.1 Grasping in Biomechanics

Mathematical representations, known as biomechanical models of the hand, are used
in order to perform qualitative or quantitative analyses on this complex reality. In
biomechanics, their use allows studying problems that cannot be analysed directly
on humans or that have an experimental cost that is too high; e.g., the study of new
alternatives for restoring hand pathologies. Biomechanical models are a description
of the hand as a mechanical device: the different elements of the hand are defined
in terms of rigid bodies, joints and actuators, and the mechanical laws are applied.
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As they are simplified mathematical models of the reality, their use and validity
depends on the simplifications considered.

The first biomechanical models of the hand were developed to explain and clarify
the functionality of different anatomical elements. In this regard, we can find many
works that studied the function of the intrinsic muscles [17–22], others that tried to
give an insight into the movement coordination of the interphalangeal joints [23, 24]
or studying the causes and effects of different pathologies of the hand [20, 21, 25].
All these models were, however, very limited two-dimensional models allowing only
the study of flexion-extension movements, they modelled only one finger, and they
included important simplifications. By the year 2000, few three-dimensional models
had been developed [26, 27], and none of them modelled the complete hand.

Since 2000, many three-dimensional biomechanical models can be found in lit-
erature, having been developed for very different purposes [28–43]: to understand
the role of the different anatomical elements, to understand the causes and effects
of pathologies, to simulate neuromuscular abnormalities, to plan rehabilitation, to
simulate tendon transfer and joint replacement surgeries, to analyse the energetics
of human movement and athletic performance, to design prosthetics and biomedical
implants, to design functional electric stimulation controllers, to name a few.

All the effort in biomechanics has been focused on appropriately modelling the
different hand components (kinematics, muscles, tendons, etc.). Little effort has been
spent on the formulation of the grasping problem when using a biomechanical model.
In this sense, many limitations persist. Current models do not allow the estimation
of the contact information required to use biomechanical models for simulating the
grasping of objects. Forces and zones of contact still need to be measured experi-
mentally and input to the model.

In contrast, much research has been carried out on animation techniques over the
past years, mainly for use in developing computer games. Lately, these advances have
been cleverly used by some ergonomics researchers to develop improved graphical
and kinematics hand models for evaluating the use of products [44–47], with good
results.

1.1.2 Grasping in Robotics

The phases of human grasping have their counterparts in robotics, although differ-
ences in the manipulators dexterity and the available sensory information (visual
or tactile) give robotic grasping its own particularities. Grasp planning for robotic
multi-finger hands, as well as their dexterous manipulation, are challenging areas of
research because of the difficulty posed by the high dimensionality of the configura-
tion space of these manipulators. Besides the hand’s internal degrees of freedom, the
six degrees of freedom of the arm should also be considered. These describe the posi-
tion and relative orientation between the object and the robot hand. In fact, despite
the effort made over the past decades, there are no robotic hands that can fully emu-
late the kinematics of the human hand. One of the reasons is the ‘hardware’: human
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hands have five soft fingers with high dexterity and compliance compared to less
dexterous robot hands featuring very simple contact surfaces. Apart from the hands,
compared to humans, robotic arms also have less dexterity and flexibility. For these
reasons and also because of the difficulty involved in grasp planning, researchers
use robotic hands with few degrees of freedom and employing few predefined grasp
preshapes [48].

Miller et al. [49] have predefined grasp preshapes for the Barrett hand with four
degrees of freedom and have used primitives to generate the starting positions and
directions of the robot hand in planning the grasps. Also, grasp quality measures
have also been established [50] to objectively select the best among a predetermined
set of grasps. Other researchers [51] have measured the quality of the orientation for
the manipulation task to qualify the precomputed grasp.

Another important area of grasp research is focused on finding the location of
contact points on the surface of the objects to maximize a certain grasp metric
[52, 53]; however, it is difficult to adjust these contact points to feasible manip-
ulator’s configurations that are reachable by the robot and avoiding collisions with
the environment.

Regarding grasp planning, traditional approaches for controlling robotic hands
are typically discarded because they consider each finger as a separate kinematic
chain. In these techniques, knowing the object to be grasped and the hand’s initial
position, the controller synthesizes the desired trajectory of each phalanx in order to
complete the grip. Despite the difficulty of this type of control approach, this method
was used to control the hand Utah-MIT [54] that is one of the most complex robotic
hands that has been produced, with 16 degrees of freedom (4 fingers with 4 finger
joints, with tendons emulated by wires) and a separate control for each phalanx.

There are different studies that have tried to plan robotic grasps through imitation
or learning by demonstration [55–57]. It is difficult to apply algorithms to learn
and imitate the movements of the human hand and translate them to the robotic
grasp mainly because robot manipulators have very different kinematics and sensing
capabilities with respect to the human hand. In general, motion planning for grasping
is performed by simplifying the descriptions of the hand, the object and the task.
When using neural networks and knowledge-based systems, a precise representation
of the fingers’ kinematics is not required [58].

In summary, the planning of robotic grasp for multi-finger hands has been focused
on the study of the physical properties of a given grasp or the computation of grasps
that meet certain desirable properties. These algorithms use different metrics to deter-
mine the quality of the grasps, unlike what happens in the field of the grasping in
biomechanics. However, these approaches have failed to deliver practical implemen-
tations for a number of reasons, the most crucial being that the methods mostly rely
on assumptions that are not satisfied in complex environments with a high degree of
uncertainty. Additionally, the grasps studied in robotics are dependent on the charac-
teristics of the robotic hands, and very limited compared with the human hand. Some
studies use the learning from demonstration to track the human hand movements,
and in the case of using human hand models, they suffer from realism in so far as
they greatly simplify its degrees of freedom.
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(a) (b) (c) (d)

Fig. 1.1 Anthropomorphic robot hands: a Barrett Hand (courtesy of the UJI Robotics Intelligent
Lab); b ARMAR III Hand (courtesy of the Institute for Anthropomatics at KIT); c Shadow Hand
C5 (courtesy of Shadow Robot Company); d Anthropomorphic DLR Hand Arm System (courtesy
of DLR Robotics and Mechatronics Centre)

In light of the proliferation of robotic hands (Fig. 1.1) that are becoming increas-
ingly complex and similar to the human hand [59], the field of robotic planning
will increasingly be associated with the study of human handling, especially in the
area of service robotics where the robot should move in a human environment and
manipulate common objects of daily living.

1.2 Simulation: A Tool Towards Understanding
the Grasping Process

As we have seen, even with the recent advances in biomechanics and robotics, we have
not been able to fully understand or, and to an even lesser degree, able to replicate the
process carried out by humans that combines in a natural way: perception, action and
predictive capabilities of achieving, mentally planning and then executing a grasp.

There are several questions that still need to be answered, for example: How is the
human cognitive system able to plan and control complex manipulation tasks? How
does it choose an specific grasp between an infinite set to perform a specific task for
a given object? How does the central nervous system select and control the necessary
strength required in each muscle to perform the chosen grasp and to counteract the
external forces? How are we, from infancy, able to use our experience to learn and
refine our capacity for grasping and manipulation?

The difficulty lies in the fact that there are several complex processes and systems
involved which interact when humans perform dexterous grasping. First, there is
the complex human cognitive system that processes sensory information and con-
trols muscle activity. Second, we have a manipulator as complex as the human hand
and arm, which has a highly sensitive sense of touch through the skin, deformable
and compliant fingers able to produce soft contacts, more than 20 degrees of free-
dom, and a complex system of muscles, tendons and ligaments able to move them.
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Finally, an environment governed by complex physical laws that characterize the
behaviour of all objects within it.

In order to bring us closer to a comprehensive understanding of the human grasp,
we believe that the use of a simulation framework in which we could model and
validate each of these processes is crucially important.

Therefore, in this book we aim to lay the foundations for such a framework that
allows the study of the grasp through simulation. This framework should allow, on the
one hand, studying the human grasp and transferring this knowledge to several fields
including robotics, medicine and rehabilitation. Furthermore, it should also enable us
to study and improve robotic grasping with a system that would be capable, not only
of replacing the real hardware, but, more importantly, of being part of the robot’s
cognitive system, acting as a prediction engine able to emulate the retrieval of self
knowledge.

1.3 From Robot to Human Grasping Simulation

In this book, the current knowledge of robotics and biomechanics is used to draw out
the rules for developing a simulation framework focused on manipulation interactions
that provides the scientific community with a modular, flexible, and accurate tool.
The validation and usefulness of the developed framework are shown through a wide
set of practical applications.

The objective is two-fold: create a simulation framework that enables us (i) to
predict the consequences of a robot grasp and to measure the performance after the
execution and (ii) to evaluate the human grasp to achieve a better understanding of
the human hand which will help us to transfer this knowledge to the robot’s field.
Framework for Grasping Simulation consists of two parts:

1. OpenGRASP: A Framework for Robot Grasping Simulation. A simulation
engine focused on robot manipulation interactions embedded in a real grasping
cognitive system. This simulation engine enables the system to store and manip-
ulate abstract and specific representations of the perceived objects; to consider
possible actions; to predict the results and to plan sequences of actions that com-
plete a desired goal accordingly; to make hypotheses about the real properties of
the world; and, finally, to react when an unexpected behaviour occurs. It provides
the possibility to develop a grasp reasoning engine including an introspection
framework, making its role central in the understanding of human activities and
planning new manipulation actions.

2. OpenHand: A Framework for Human Grasping Simulation. A simulation
engine aiming to obtain a more comprehensive model of the human hand focused
on object grasping and manipulation, integrating knowledge and developments
from the fields of biomechanics, ergonomics, robotics, and computer animation.
It provides a realistic biomechanical hand model of the skeleton, muscles and
tendons, including the simulation of the skin and the neuromuscular control.
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Additionally, it includes tools for grasp analysis such as mechanical contact mod-
elling, control algorithms for closing the hand and development and application
of grasp quality metrics.

The research presented in this book aims to advance the understanding of robot
and human grasp, producing a broad set of potential applications of its results. From
the society’s point of view, it can enhance the capabilities of surgeons for surgical
planning in hand operations and open ways to obtaining better bionic limbs that
can improve the lives of amputees and the disabled. From the economic point of
view, these lines of work could have important medium to long-term implications
by opening more possibilities in the field of service robotics to improve grasping
capabilities thanks to a better understanding of the hand’s functioning, which could
result in the development of companies in this sector. From the industrial point of
view improving multiple-finger manipulators can enable automation of industrial
processes assembly currently being performed manually.

The work proposed herein should be considered as the initial stage in the develop-
ment of a comprehensive framework for grasping simulation that in the future would
consolidate the results obtained in different areas of multidisciplinary knowledge.
Therefore a dormant target, but no less important, will be to identify gaps that still
exist in the scientific literature for building more challenging future proposals.

1.4 Outline

The book is divided in two main parts. The first one, composed of Chaps. 2 to 4,
is devoted to explaining the contributions of robot grasping simulation, while the
second, Chaps. 5 to 7, details the evaluation of human grasping using simulation.
More precisely, the book is structured as follows.

1.4.1 Part I: Robot Grasping Simulation

Chapter 2: Robot Grasping Foundations Introduces the foundation of this book,
presenting the basic concepts and definitions involved in the study of object grasping
and manipulation tackled in the following chapters.

Chapter 3: Robot Grasping Simulation The chapter introduces OpenGRASP, the
developed simulation toolkit for grasping and dexterous manipulation, presenting its
different components. Tactile sensor simulation is studied in detail, proposing a new
tactile sensor model which utilizes collision detection and response methods using
soft contacts as well as a full friction description.

Chapter 4: Applications of Robot Grasping Simulation In this chapter, the appli-
cations of the developed simulator in robot grasping are presented. It is demonstrated
how grasp simulation is a key tool for constructing a world model and understanding

http://dx.doi.org/10.1007/978-3-319-01833-1_2
http://dx.doi.org/10.1007/978-3-319-01833-1_4
http://dx.doi.org/10.1007/978-3-319-01833-1_5
http://dx.doi.org/10.1007/978-3-319-01833-1_7
http://dx.doi.org/10.1007/978-3-319-01833-1_2_2
http://dx.doi.org/10.1007/978-3-319-01833-1_3_3
http://dx.doi.org/10.1007/978-3-319-01833-1_4
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the robot’s environment. Additionally, we demonstrate how to achieve a complete
dynamic simulation of a humanoid robot using the developed toolkit.

1.4.2 Part II: Human Grasping Simulation

Chapter 5: Human Hand Model This chapter presents a review of the literature
regarding biomechanical and ergonomics hand models. The current knowledge on
hand models is used to draw out the rules for developing a realistic and self-contained
biomechanical model of the hand with special emphasis on grasp and object manip-
ulation. The proposed model consists of a scalable biomechanical model of the
human hand composed of bones, tendons, muscles and skin. On this basis, we added
closure algorithms to grasp virtual objects, contact models, which allow estimat-
ing the transmission of forces in the contacts, and quality indices to provide grasp
evaluation tools.

Chapter 6: Human Grasp Evaluation This chapter presents a review of the grasp
quality measures that have been proposed and then the adaptation of the most com-
mon robotic grasp quality measures to the human hand grasp evaluation. Addition-
ally, it presents the proposal of complementary quality indices that may consider
biomechanical aspects not taken into account by the robotic indices.

Chapter 7: Human Grasping Simulation This chapter presents a study of the
adapted grasp quality measures presented in the previous chapter to find the mini-
mum set of indices that enable the evaluation of the different aspects of the human
grasp on simulation. Moreover, we present a proposal to calculate a global grasp
quality index combining the independent grasp aspects. Finally, the framework for
grasp evaluation is used to compare the grasp capabilities of a prosthetic hand with
the ones obtained with our human hand model.
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Part I
Robot Grasping Simulation



Chapter 2
Robot Grasping Foundations

2.1 Introduction

In this book, we focus on the grasping problem, consisting of determining the grasp
required to carry out certain manipulation tasks on an object.

Definition 2.1 A grasp is commonly defined as a set of contacts on the surface of
the object, which purpose is to constrain the potential movements of the object in
the event of external disturbances [1–4].

For a specific robotic hand, different grasp types are planned and analysed in order
to decide which one to execute. A contact model should be defined to determine the
forces or torques that the robot manipulator must exert on the contact areas. Most of
the work in robotics assume point contacts, and larger areas of contact are usually
discretized to follow this assumption [2]. Two main problems can be distinguished
in robotic grasping: analysis and synthesis [5].

Definition 2.2 Grasp analysis consists on finding whether the grasp is stable using
common closure properties, given an object and a set of contacts. Then, quality
measures can be evaluated in order to enable the robot to select the best grasp to
execute.

Definition 2.3 Grasp synthesis is the problem of finding a suitable set of contacts
given an object and some constraints on the allowable contacts.

In the following sections, a detailed description of the contact models and the most
common approaches for grasp analysis and synthesis are presented. The definitions
of the terminology and notation are mainly taken from [3, 6] where the reader is
referred to find a complete overview of the modelling of contact interfaces and an
introduction of the fundamental models of grasp analysis.

B. León et al., From Robot to Human Grasping Simulation, 15
Cognitive Systems Monographs 19, DOI: 10.1007/978-3-319-01833-1_2,
© Springer International Publishing Switzerland 2014
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Table 2.1 Notations

{W } Word coordinate frame
{O} Object coordinate frame
nc Number of contact points
ci Contact point i relative to {W }
{C}i Contact point i coordinate frame with axis {n̂i , t̂i , ôi }
n̂i Unit normal to the contact tangent plane directed toward the object
p Position of the object relative to {W }
v Linear velocity of point p
ω Angular velocity of the object relative to {W }
wi Generalized force acting on the object for a unit force along n̂i

fi Force applied to the object at the point ci

τi Resulting moment at point p
wo Total set of wrenches that can be transmitted to the object through the nc

wext Disturbing external wrenches
μ Friction coefficient of the contacting materials
β Half-angle of the friction cone
m Number of faces of discretized friction cone
B Selection matrix
l Total number of twist components transmitted
G Grasp matrix
G̃i Partial grasp matrix
G̃ Complete grasp matrix
J Hand Jacobian matrix
J̃i Partial hand Jacobian matrix
J̃ Complete hand Jacobian matrix
G J Grasp Jacobian matrix

2.2 Contact Modelling

2.2.1 Contact Kinematics

Consider a manipulator contacting a rigid body whose position and orientation is
specified by the location of the origin of a coordinate frame {O} fixed to the object
and the orientation of this coordinate frame relative to an inertial frame {W } fixed in
the world (see Fig. 2.1). Let p ∈ R

3 be the position of the object and ci ∈ R
3 the

location of a contact point i relative to {W }. At this contact point, we define a frame
{C}i with axis {n̂i , t̂i , ôi } where n̂i is the unit normal to the contact tangent plane and
is directed toward the object. The other two unit vectors are orthogonal and lie in the
tangent plane of the contact. For readers’ convenience, a list of notations is given in
Table 2.1.

Definition 2.4 A twist is the representation of the spacial velocity of the object and
can be written as t ∈ R

6:
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t =
(

υ

ω

)
(2.1)

where υ ∈ R
3 is the linear velocity of point p and ω ∈ R

3 is the angular velocity of
the object in the world frame {W }.
Definition 2.5 A contact can be defined as a joint between the finger and the object.
The shape of the contacting surfaces and the stiffness and frictional characteristics
of the contacting bodies define the nature of this joint [5].

A point contact acting on the object provides a unilateral constraint which prevents
the object from locally moving against the contact normal [6].

Definition 2.6 The force applied by a finger at the contact point generates a wrench
on the object with force and torque components, represented by vector wi ∈ R

6:

wi =
(

fi

τi

)
=

(
n̂i

(ci − p) × n̂i

)
(2.2)

where fi ∈ R
3 is the force applied to the object at the point ci and τi ∈ R

3 the
resulting moment at point p.

As forces and torques are dimensionally different, a parameter ρ is introduced:

wi =
(

fi

τi/ρ

)
(2.3)

Fig. 2.1 Notation for an
object in contact with
a manipulator
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Selecting ρ to have length units, allows all the components of w to have units of
force. Two approaches to define ρ have been presented in [7]. One approach considers
ρ as the largest distance from the object’s centre of mass to any point of the object.
This restricts the maximum torque to the maximum applied force, which is typically
considered unitary. The other approach considers ρ as the radius of gyration of the
object. It has a physical meaning in terms of energy but is less used and more complex
to calculate.

If there are multiple contacts acting on an object, the total set of wrenches wo that
can be transmitted to the object through the nc contacts is the linear combination of
all individual wrenches:

wo =
nc∑

i=1

wi (2.4)

To prevent a grasp from slipping, the forces in the contacts (and their correspond-
ing wrenches wi ) and any disturbing force or wrench wext have to be in equilibrium:

wo + wext = 0 (2.5)

This equation is valid always that the contact forces satisfy the contact constrains
described in the next section.

2.2.2 Contact Models

A contact model maps the forces that can be transmitted through the contact to
the resultant wrenches wi relative to the object. This map is determined by the
geometry of the contacting surfaces and the material properties of the objects, which
dictate friction and possible contact deformation [6]. The object’s centre of mass is
commonly used as the reference point p in the object.

Salisbury [8] proposed a taxonomy of eight contact models. Among these, the
most common contact models used in robotic grasping (see Fig. 2.2) are the point
contact model with and without friction and the soft-finger contact model [9]. Point
contact models, also named rigid-body contact models, assume rigid-body models
for the hand and the grasped object while the soft-finger contact models, also called
compliant or regularised models, assume that the hand is a deformable element grasp-
ing a rigid body [6]. The former models assume the collision to be an instantaneous
and discontinuous phenomenon (discrete event) and the equations of motion are de-
rived by balancing the system’s momenta before and after the impact. In contrast,
compliant models describe the normal and tangential compliance relations over time.

Point contact without friction

A point contact without friction can only transmit forces along the normal to the
object surface at the contact point. No deformations are allowed at the points of
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Fig. 2.2 Contact models commonly used in robotics: a Contact without friction, b Contact with
friction and c Soft-finger contact

contact between the two bodies and, instead, contact forces arise from the constraint
of incompressibility and impenetrability between the rigid bodies. This model is
used when the contact patch is very small and the surfaces of the hand and object are
slippery [3]. It does not represent the real contact situations that appear in robotic
manufacturing operations [10, 11] and, when used, the machine accuracy is nega-
tively affected. Moreover, they are not capable of predicting the individual contact
forces of a multiple-contact fixture [12, 13].

Point contact with friction

A point contact with friction is used when there is significant contact friction, but the
contact patch is small so that no appreciable friction moment exists [3]. Therefore,
it can transmit forces in the normal and tangential directions to the surface at the
contact point but non of the moment components are transmitted.

A number of models have been developed which attempt to capture the essence
of the complicated friction phenomena [14]. The classical model, called Coulomb
friction, is based on the idea that friction opposes motion and that its magnitude is
independent of the velocity and contact area. It is an empirical model that asserts that
the allowed tangential force is proportional to the applied normal force by ft ≤ μ fn ,
where μ is called the friction coefficient of the contacting materials. The friction
forces can be represented geometrically as a friction cone where the set of all forces
that can be applied is constrained to be inside a cone centred about the surface normal
(see Fig. 2.3) with half-angle β = tan−1(μ). In the spacial case, the friction cone is
a circular cone, defined by

√
f 2
ti + f 2

oi
≤ μ fni , fni ≥ 0. (2.6)

For computational purposes, the friction cone can be approximated by an inscribed
regular polyhedral cone with m faces, as shown in Fig. 2.3b. The largest the m the
better the approximation, but also the larger the computational cost. The wrenches
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generated by forces along the edge of the discretized friction cone are referred to as
primitive wrenches.

Many other friction models have been developed as aggregate models of complex
microscopic behaviour with different functional dependencies on factors such as the
speed of sliding and the duration of the static contact before sliding. For example,
the LuGre friction model [15] later used in Sect. 3.4 to model the behaviour of tactile
sensors, accounts for both static and sliding phenomena based on a bristle deflection
interpretation.

In this contact model, contact forces arise from two sources: the rigid-body model
assumption for both the hand and the object, and the frictional forces. The use of
this contact model in the manipulation planning problem has led to some interesting
conclusions. There may be multiple solutions to a particular problem (ambiguity)
or there may be no solutions (inconsistency) [16]. This kind of contact models have
been used for analysing the tip-over problem of a planar object that is being pushed
by a finger from a quasistatic point of view, i.e. neglecting the dynamic properties of
the robot and the object [17–19].

Soft-finger contact

Finally, the soft contact model is used when the surface friction and the contact patch
are large enough to generate significant friction forces and a friction moment about
the contact normal. It is used to model the contact between a soft finger and a rigid
object allowing the finger to apply an additional torsional moment with respect to
the normal at the contact point [20–25].

In order to model the pressure distribution in the contact area different models
have been developed that fall into three main categories: analytical elasticity-based
models, elastic foundation models (EFM) and finite element models (FEM) [26]. An-
alytical models are based on theoretical formulations of elasticity calculating contact
areas and stresses on both the surface and the sub-surface of the contacting bodies,

n̂i

ˆit

iôci

f
n

µfn

β = tan   µ-1

Finger

Object surface

n̂i

ˆit

iô

fn

Finger

Object surface

i
i

i

(a) (b)

Fig. 2.3 Friction cone: a Spacial representation and b approximation as an inscribed polyhedral
cone
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but are restricted to simple geometries. The classical Hertz contact model [27, 28]
and others derived from it are part of this category. However, robotic fingertips are
made of nonlinear elastic materials. For that reason, the Hertzian contact model does
not accurately represent this type of contact. EFMs were developed in order to allow
a simple discrete contact calculation in more general surface geometries modelling
the deformable part of the contact as a layer over a rigid base, and a series of dis-
crete and independent springs in the contact normal direction. An application of this
category of models is presented in Sect. 3.4 where it is used to create a simulation
of a general tactile sensor and validated in robot grasping applications. FEMs have
been increasingly used over recent years given that they supply information about the
sub-surface stresses and strain in volumetric finite elements. However, they are ex-
cessively time consuming for fast simulation in dynamic grasping and manipulation
models. Therefore, simplified numerical models are interesting alternatives.

These soft contact models have been used in robotic applications. Xydas et al.
[29, 30] presented a power-law theory for modelling nonlinear elastic contacts
present in robotic fingers. More realistic and complicated models have been de-
veloped in the last few years that better represent the contact mechanics for soft
fingers [20, 21, 31]. A soft contact model based on that of Ciocarlie et al. (2005)
was used in this work to model the contact between objects and the human hand
(Sect. 5.5.4).

Despite being the soft contact model the more accurate, it is the hard finger contact
with friction the one that is used more often in robotics given the complexity and
time-consuming restrictions to simulate real activities.

2.2.3 Selection Matrices

Each one of the previous contact models selects components of the contact twists to
transmit between the hand and the object. This is done by equating a subset of the
components of the hand and object twist at each contact [3].

Definition 2.7 A particular contact model is defined through the selection matrix
Bi ∈ R

li ×6, which works like a filter selecting li components of the relative contact
twist and sets them to zero.

Bi (ti,hand − ti,obj ) = 0 (2.7)

Bi and li can be defined for each contact model as:
Point contact without friction

li = 1, Bi = [
1 0 0 0 0 0

]
(2.8)

Point contact with friction

http://dx.doi.org/10.1007/978-3-319-01833-1_3
http://dx.doi.org/10.1007/978-3-319-01833-1_5
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li = 3, Bi =
⎡
⎣ 1 0 0 0 0 0

0 1 0 0 0 0
0 0 1 0 0 0

⎤
⎦ (2.9)

Soft-Finger contact

li = 4, Bi =

⎡
⎢⎢⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

⎤
⎥⎥⎦ . (2.10)

After choosing a particular contact model for each contact, the selection matrix
B for all nc contacts can be calculated as:

B = Blockdiag(B1, . . . , Bnc ) ∈ R
l×6nc (2.11)

where the total number of twist components l transmitted through the nc contacts is
given by:

l =
nc∑

i=1

li (2.12)

2.3 Grasp Analysis

Once the contact model has been established, it can be used to study tasks involving
multiple contacts. The set of contacts defining each grasp can be analysed in order
to test the grasp’s ability to resist disturbances and its dexterity properties. As it is
presented afterwards, the grasps that can be maintained for every possible disturbing
load are known as closure grasps. However, there is usually more than one grasp that
fulfils this condition. That is why many metrics and approaches have been proposed
to evaluate the dexterity of the selected grasps and determine which one is the best
to be executed.

2.3.1 Grasp Matrix and Hand Jacobian

There are two matrices used in grasp analysis: the grasp matrix G and the hand
Jacobian J . They define the relevant velocity kinematics and force transmission
properties of the contacts. They are introduced here, but a complete explanation can
be found in [3].

Partial Grasp Matrix The transpose of the partial grasp matrix G̃i ∈ R
6×6 maps

the object twist from {W } to the contact frame:
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ti,obj = G̃T
i t (2.13)

where t and ti,obj denote the object twist related to {W } and to {C}i , respectively.
G̃i can be calculated as:

G̃i =
(

Ri 0
S(ci − p)Ri Ri

)
(2.14)

where Ri ∈ R
3×3 represents the rotation matrix of the {C}i contact frame with

respect to {W }, ci the position of the contact point, p the position of the object and
S(ci − p) is the cross-product matrix, that given a three-vector r = [rx , ry, rz]T ,
S(r) is defined as:

S(r) =
⎛
⎝ 0 −rz ry

rz 0 −rx

−ry rx 0

⎞
⎠ (2.15)

Complete Grasp Matrix The complete grasp matrix G̃ ∈ R
6×6nc is the combina-

tion of the partial grasp matrices for each of the nc contact points.

G̃T =
⎛
⎜⎝

G̃T
1

...

G̃T
nc

⎞
⎟⎠ (2.16)

It maps the object twist from {W} to {C}:

tc,obj = G̃T t (2.17)

where tc,obj ∈ R
6nc is a vector containing all the twist of the object in the contact

frames:

tc,obj = (t T
1,obj . . . t T

nc,obj )
T (2.18)

Partial Hand Jacobian The partial hand Jacobian J̃i ∈ R
6×nq maps the manip-

ulator joint velocities q̇ to the contact twists on the hand ti,hand , expressed in the
contact frame {C}i :

ti,hand = J̃i q̇ (2.19)

where q = [q1 . . . qnq ]T represents the vector of joint displacements and nq the
number of hand joints.

J̃i can be calculated as:
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J̃i = Ri

(
di,1 . . . di,nq

li,1 . . . li,nq

)
(2.20)

where:

di, j =
{

03×1 if contact i does not affect the joint j
S(ci − ζ j )

T ẑ j if joint j is revolute
(2.21)

li, j =
{

03×1 if contact i does not affect the joint j
ẑ j if joint j is revolute

(2.22)

being ζ j the origin of the coordinate frame associated with the j-th joint and ẑ j the
unit vector in the direction of the rotational axis for the revolute joint, expressed in
{W }.

Complete Hand Jacobian J̃ The complete hand Jacobian J̃ ∈ R
6nc×nq is the

combination for each of the nc contact points:

J̃ =
⎛
⎜⎝

J̃1
...

J̃nc

⎞
⎟⎠ (2.23)

It maps the joint velocities to the twists of the hand expressed in the contact
frames:

tc,hand = J̃ q̇ (2.24)

where tc,hand ∈ R
6nc is a vector containing all the twist of the hand in the contact

frames:

tc,hand = (t T
1,hand . . . t T

nc,hand)T (2.25)

Grasp Matrix G and Hand Jacobian J After choosing a transmission model for
each contact, as explained in Sect. 2.2.2, the contact constraint equations (Eq. 2.7)
for all nc contacts can be written in compact form as:

B(tc,hand − tc,obj ) = 0 (2.26)

By substituting into this equation tc,hand (Eq. 2.24) and tc,obj (Eq. 2.17) one
obtains:

B( J̃ q̇ − G̃T t) = 0 (2.27)

Defining the grasp matrix G and hand Jacobian J as:
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Fig. 2.4 Diagram of relationships between velocities for a multi-fingered grasp

GT = BG̃T (2.28)

J = B J̃ , (2.29)

the contact constraint equations for all nc contacts can be written as:

(J − GT )

(
q̇
t

)
= 0 (2.30)

or:

J q̇ = tcc,hnd = tcc,obj = GT t (2.31)

where tcc,hnd and tcc,obj contain only the components of the twist that are transmitted
by the contacts.

Grasp Jacobian The grasp Jacobian G J is the transformation from the joint ve-
locities to the velocity of the object being grasped [32]:

t = G J q̇ (2.32)

It takes into account the transformations for each finger from joint velocities to
fingertip Cartesian velocity (J ), the contact relationships and the transformations
from the contact frames of reference to the object frame of reference (G). Thus, it is
a function of the hand posture and the lengths of the finger segments.

G J = (G+)T J (2.33)

with G+ being the generalized inverse of G. Figure 2.4 summarizes the relationships
between velocities in a multi-fingered grasp.
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2.3.2 Disturbance Resistance

The first test for evaluating a grasp consists of determining its ability to constrain
the motions of the manipulated object and to apply arbitrary contact forces on the
object without violating friction constraints at the contacts [33]. Two commonly used
properties have been proposed to ensure this condition: force and form closure.

Definition 2.8 A grasp is in force-closure if the fingers can apply, through the set
of contacts, arbitrary wrenches on the object, which means that any motion of the
object is resisted by the contact forces [34].

Definition 2.9 A grasp is in form-closure if the location of the contact points on the
object ensures its immobility [33].

Form closure is a stronger condition than force closure and it is mostly used when
executing power grasps [3]. Force closure is possible with fewer contacts, making it
suitable for executing precision grasps, but it requires the ability to control internal
forces.

The analysis of form closure is intrinsically geometric. [35] stated that a necessary
and sufficient condition for form-closure is that the contact wrenches of the grasp
positively span the whole wrench space.

Definition 2.10 A grasp wrench space (GWS) is the space of wrenches that can be
applied to the object at each contact point.

The boundary of the wrench space can be calculated as a convex hull. Form-closure
then can be equivalently determined verifying if the origin of the wrench space lies
inside this convex hull [36]. Based on the above necessary and sufficient conditions,
many tests that have been proposed by [34, 37, 38]. Ferrari and Canny [39] is the
most widely-used. They proposed to calculate the radius of the largest ball inscribed
in the convex hull centred in the origin and verify that it is larger than zero. Zhu
and Wang [40] developed a numerical test which measures the scaling factor for the
maximum compact set inscribed in the GWS with centre in the origin.

Assessing the force-closure property of a robotic grasp is much more difficult
because of the nonlinear nature of the Coulomb friction cone [40]. [41] formulated the
force-closure test as 12 nonlinear programming problems. Trinkle [42] formalized
the force closure condition as a linear programming problem. [33] observed that
the force-closure problem is equivalent to the stability of an ordinary differential
equation. [43] reformulated the force closure condition as a ray-shooting problem by
linearizing the friction cones and proposed a clean-cut test for force closure grasps.
[44] proposed a force-closure test representing the nonlinear friction cone constraints
as linear matrix inequalities, for which efficient algorithms are now available. With
the linearization of the friction cone, most of the existing form-closure tests can
be generalized to force-closure analysis. [45] proposed a numerical criterion for
3-D grasps with frictional point contacts or soft contacts, formulated as a convex
constrained optimization problem without linearization of the friction cone. More
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recently, [46] proposed an algorithm for computing the distance between a point and
a convex cone in n-dimensional space that can be applied to force-closure test and
improve their efficiency.

2.3.3 Optimal Contact Forces Computation

The actual finger forces for a given grasp will be obtained by considering that they
have to satisfy the dynamic equilibrium of the grasped object. Since the number of
contacts is usually more than necessary, there is not a unique set of forces that ensures
the equilibrium. Therefore the problem, referred to as grasping force optimization
problem, needs to be solved computing the optimal finger forces that satisfy some
optimization criterion, such as minimizing the magnitudes or inclination angles of
contact forces [47].

It is a constrained optimization problem, for which a variety of general optimiza-
tion methods are applicable. There have been a number of algorithms proposed in
the last two decades aiming to solve it [43, 44, 48–53]. Recently Zheng et al. have
proposed new algorithms to improve the computation efficiency since it is desirable
to obtain the contact force distribution in real-time [47, 54].

2.4 Grasp Synthesis

Given an object, grasp synthesis algorithms should provide a suitable set of con-
tacts on the object surface and determine an appropriate hand configuration. Usually
these algorithms take the geometry of the object as an input to select optimal force-
closure contact locations or whole regions that yield force closure. These contacts
are the starting point for grasp analysis and dexterous manipulation methods. Some
approaches give only information about the finger contact locations on the object
without considering the hand constraints. They can result in stable grasps that are
not reachable in practice by the robot hand. Moreover, even if they are reachable, it
is difficult to position the fingers precisely on the contact points because there will
be always unavoidable errors locating the end-effector [55].

A number of force-closure test have been proposed based on specific geomet-
ric conditions for a given number of fingers. [34] proposed a geometric method
for computing maximal independent two-finger grasps on polygons. [56] proposed
an approach for synthesizing a three-fingered grasp on polygonal objects, and later
extended to a four-fingered grasp on polyhedral objects [57], based on the con-
cept of independent contact regions. [58] developed an algorithm for calculating all
force-closure grasp configurations on polygons using the computational geometry
technique. However these approaches are not suitable for the generic problem of
planning an optimal force-closure grasps on general three-dimensional objects with
any number of contact points.
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Fig. 2.5 Testing the set of hand preshapes for several robot hands using OpenRAVE

Alternative approaches, called knowledge-based approaches, have considered the
configuration of the hand by generating the grasp with a predefined set of hand
postures. The idea of hand preshapes started with studies of the human prehension
capabilities [59] that introduced the distinction between power and precision grasps.
Following this work, [10] created a taxonomy in which details of the task and the
object geometry are taken into account. Since then, several papers have adopted this
approach for grasping [61, 55, 60]. [62] used the GraspIt! simulator [63] to test the
set of hand preshapes on a 3D model of the object. Using a simulator has many
advantages, including the ability to plan grasps in complex environments involv-
ing obstacles and also to check the reachability constraints of the robot arm. More
recently OpenRAVE, a planning architecture that has a more flexible design, has
been proposed to automate this process [64]. Examples of the generation of grasps
hypotheses for several robot hands can be seen in Fig. 2.5.

Grasp synthesis is presented and used in detail in Chaps. 3 and 4 for different
robotic grasp applications.
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Chapter 3
Robot Grasping Simulation

3.1 Introduction

Robot simulators have accompanied robotics for a long time and have been an
essential tool for the design and programming of industrial robots. Almost all
industrial manipulator manufacturers offer simulation packages accompanying their
robotic products. These tools allow the users to program and test their applications
without using the real hardware or even building it since such tools allow the analysis
of behaviours and performance beforehand.

In this work, simulation is understood as a tool which will enable us to study and
improve robotic grasping. The simulator would be capable, not only of replacing the
real hardware, but, more importantly, of being part of the robot’s cognitive system,
acting as a prediction engine able to emulate the retrieval of self knowledge.

The role of simulation as a prediction engine has been studied in psychology in
the field of grounded cognition. There, simulation is devised as “the re-enactment
of the perceptual, motor, and introspective states acquired during experience with
the world, body, and mind” [1]. Studies in this area suggest that simulation provides
a core form of computation in the human brain with a diverse collection of simu-
lation mechanisms that supports the brain cognitive activities, including high-level
perception, implicit memory, working memory, long-term memory, and conceptual
knowledge.

Based on these approaches, the simulator is used as a memory and reasoning agent
in the robot applications of this work. It will rests upon the Predict-Act-Perceive
paradigm in which two loops run in parallel (not necessarily synchronously): One in
the real world and one in simulation (see Fig. 3.1).

The current state of the world is first observed with different real sensors and used
to build the world model in the simulator. The simulator then becomes the internal
world of the robot in which we can have two different modes of prediction:

• Predict the values of different sensors, given an exploratory action and potential
assumptions.

B. León et al., From Robot to Human Grasping Simulation, 33
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Fig. 3.1 Predict-Act-Perceive paradigm

• Predict the outcome of a specific action applied to the world. When interacting with
objects, simulation can provide the estimation of the next state, given measure-
ments of tactile sensors after a grasp has been applied to an object and predict the
outcome of a lifting action. When interacting with objects, simulation can provide
the estimation of the next state that can ease, for example, tracking of objects.

Once the prediction has been made by the simulator, the selected action can be
applied in reality and the real sensor values can be compared with the predicted
ones. A mismatch can be treated as a surprise that may, for example, trigger an
exploratory action.

Thus, the paradigm encompasses on the one hand the evaluation of a currently
executed action based on its predicted outcome in simulation, while on the other hand
the simulation state is grounded and refined based on the experience in the real world,
which consequently leads to an improvement in the prediction and parameterization
of future actions.

3.1.1 Requirements for a Grasp Simulator

In order to be able to act as a grasp reasoning engine, the simulator needs to fulfil
multiple requirements from the robotic community. From a scientific point of view, a
novel simulator for robot grasping should provide primarily a realistic simulation of
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dynamic properties of, at least, rigid objects and advanced contact models including
soft contacts and deformable surfaces. From a practical and user point of view, it
should include the models of the most popular robot hands, and provide the possibility
of easily creating and adding new ones. Furthermore, it should provide realistic
simulations of real actuators and sensors, which would enable the use of the same
API as in their real counterparts. Regarding sensors, a grasping simulator has to
provide simulations of specific grasping sensors, such as force/torque, contact and
tactile. Finally, it should provide a rich and detailed visualization of simulations.

With respect to software engineering, a novel robot grasping simulator must be
implemented in a modular way that enables on the one hand, an easy extension by
both developers and users and on the other hand, the integration with commonly-used
robotics software frameworks. In order to increase its opportunities of being adopted
and used in the scientific community, the simulator should be open source and make
use of open standards for file formats and other representations. In addition, the
simulator should have appropriate tools to import/export robot and object models
to/from standard representations.

The problems involved in the general requirements allow the definition of the
following particular requirements:

• Modularity and extendibility: A modular architecture that clearly separates the
different functionalities of the system. All these modules should be coordinated
through a common representation of the parts in the environment, also allowing
inclusion of new modules or plug-ins. It should allow the replacement of actual
hardware components by software emulations.

• Robot hand modelling: Simulations of popular mechanical devices and environ-
ment parts should be adapted for the simulator. This include the most popular
dexterous hands and a model of the human hand.

• Sensor modelling: An important part of the algorithms for dexterous manipulation
considers the use of sensors. The simulator should include the design of virtual
sensors that emulate the information provided by the real sensors. Types of sensors
that are important for grasping include arrays of pressure cells and 6D force/torque
sensors.

• Contact and friction models: A key feature of a manipulation simulator is the
modelling of the interactions between the objects. This interaction is expressed in
terms of the forces and torques transmitted through these contacts. The simulator
should consider different types of contacts (punctual, edge, and surface), and dif-
ferent models of friction (frictionless, coulomb). In a second stage soft compliant
contact models should be considered.

• Static and dynamic modelling: The static model of an interaction considers the
contacts, forces and moments in a set of objects (robots included) and produces
a snapshot of the state. In the dynamic model, the velocities, and accelerations
produced by the applied forces are also considered; masses and inertias are needed
too. The simulator should include modular engines that compute the static and
dynamic properties of the simulated systems.
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• Import/export of models from/to standard representations: The ability to easily
import and export models from and to other software tools.

• Open source development: A development procedure based on a publicly avail-
able code that help to the involvement of other groups. This collaboration should
consist in the software testing, bug reporting, solution proposal, and even patch
development, leading to a product that best fits the necessities of users.

• Visualise current knowledge about the world: It should be able to stand as
a stand-alone program for simulations of possible actions of the current robot
hardware and their interaction with the world objects.

• Make predictions: It should apply its a priori knowledge about the kinematics
embedded in its physics engine to the world representation (foreground/ back-
ground) in order to generate a realistic simulation of operation in a given environ-
ment. An extension of this role should be the use of the engine for task planning.

3.1.2 Related Work

In order to develop a tool that meets the previous requirements, a basic practical
principle was adopted: Do not reinvent the wheel. This means, first to review the
existing software paying special attention to those that already meet part of the
requirements and, second to make use of existing open and widely-available software
packages and standards.

Often, simulation tools used to support research are specifically developed for par-
ticular experiments. However, there have been some successful attempts to develop
general robot simulators specifically for mobile robotics.

Stage and Gazebo are respectively 2D and 3D simulator back-ends for Player [2],
which is a widely used free software robot interface. Gazebo [3] in particular, imple-
ments a 3D multi-robot simulator which includes dynamics for outdoor environ-
ments. It implements several robot models, actuators and sensors. USARSim [4] has
a similar functionality. It is a free mobile robot simulator based on a gaming engine.
Microsoft provides its Robotics Studio [5], a framework for robot programming that
includes a visual simulation environment. OpenHRP [6] is an open software plat-
form with various modules for humanoid robot systems such as a dynamics simulator,
a view simulator, motion controllers and motion planners. OpenHRP is integrated
with CORBA, with each module, including the dynamics simulator implemented as
a CORBA server. Commercial options include Webots [7], a product which has been
widely successful in educational settings.

The variety of simulation tools for robotic grasping is rather limited. The most
renowned and prominent one is GraspIt!, a grasping simulation environment [8].
GraspIt! includes a general framework to model robot hands and arms, especially
joint modelling, a collision solver, a friction hard contact modelling, an engine to
emulate rigid objects dynamics, and a trajectory controller. However it fails to pro-
vide soft contact models, and the emulation of the most common kinds of sensors
such as pressure and force/torque. Its monolithic architecture makes its extension,
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improvement and integration with other tools very difficult. In addition, it does not
provide a convenient Application Programming Interface (API), which allows script
programming.

Recently, [9] have developed a MATLAB toolbox for the analysis of grasping
objects both for robotic and human hands. It focuses on using synergies to model
the coupling between joints induced by underactuated hand control. However, it is a
new toolbox and it is still under development.

Another existing and publicly available software framework is OpenRAVE, the
Open Robotics and Animation Virtual Environment [10]. It has been designed as an
open architecture targeting a simple integration of simulation, visualization, plan-
ning, scripting and control of robot systems. It has a modular design, which allows
its extension and further development by other users. Regarding robot grasping sim-
ulation, it provides similar functionality to GraspIt! and various path planning com-
ponents. It provides the models of several robot arms and hands and allows the
integration of new ones. It also enables the development of virtual controllers for
such models.

The quality of a simulation is largely dependent on the physics engine which
calculates the dynamics of the simulation, and the rendering engine which is used
to visualize it. The results of the physics simulation are highly dependent on the
accuracy of the models which are provided by the user. There are many physics
engines available with varying quality and cost. These packages usually include col-
lision checkers, friction and contact models and a varied type of motion constraints
to enable the simulation of articulated bodies. Their flexibility makes them a suitable
tool to simulate the dynamics behaviour of a robot, without the need to reformulate
and implement the underlying physics models. ODE (Open Dynamics Engine) is the
most popular rigid body dynamics implementation for robotics simulation applica-
tions being used in most of the previously mentioned simulators. Other free open
source engines are Bullet, Newton Game Dynamic and dvc3D [11]. However, they
have several limitations which limit their ability to accurately reproduce dynamics
simulation [12].

Similarly, a wide variety of 3D rendering engines also exist. The game industry
has helped to advance the quality of these engines to its current limits; to the point
where open-source engines that provide this exceptionally high-quality visualization
are now available.

To our knowledge, none of the existing simulation tools and software packages
fulfil all of the above-mentioned requirements. In order to achieve them, we have
developed a software toolkit specifically designed for grasping simulation, called
OpenGRASP. However, we adopted the tools that already meet part of the require-
ments and, that were open and widely-available software packages and standards.
After the review of existing simulators, we concluded that OpenRAVE is the tool that
most closely meets the requirements. Therefore the efforts were focused on improv-
ing and extending OpenRAVE capabilities and features towards the realization of
an advanced grasping simulator. In the following sections, a brief introduction to
OpenRAVE is presented.
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3.2 OpenRAVE

The core of the toolkit is OpenRAVE1 [10], a planning architecture designed for
autonomous robot applications. It consists of three layers: a core, a plugins layer for
interfacing to other libraries, and scripting interfaces for easier access to functions
(Fig. 3.2).

3.2.1 The Core Layer

The main API is coded in C++ using the Boost C++ libraries2 as a solid basis of
low-level management and storage structures. The Boost flavours of shared pointers
allow object pointers to be safely reference counted in a heavily multi-threaded
environment.

3.2.2 The Scripting Layer

It enables network scripting environments like Octave, Matlab and Python to com-
municate with the core layer in order to control the robot and the environment. It is
possible to send commands to change any aspect of the environment, read any of
its information, move real robots, or change physics/collision libraries. The scripts
also enable the control of multiple OpenRAVE instances across the network, thus
allowing different users to independently see and interact with the environment.

Fig. 3.2 OpenRAVE architecture reproduced from [10]

1 http://www.openrave.org/docs/latest_stable/
2 http://www.boost.org/

http://www.openrave.org/docs/latest_stable/
http://www.boost.org/
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3.2.3 The Plugins Layer

OpenRAVE is designed as a plugin-based architecture, which allows the creation of
new components to continuously improve its original specifications. Each plugin is
an implementation of a standard interface that can be loaded dynamically without the
need to recompile the core. Following this design, different plugins can be created
for components such as sensors, planners, controllers or physics engines. The core
layer communicates with the hardware through the plugins using more appropriate
robotics packages such as Player and the Robot Operating System (ROS).3

A GUI can be optionally attached to provide a 3D visualization of the environment.
It periodically queries the core to update the world’s view and allows the user to
change the position of the objects in the scene. As viewers are provided through
plugins, a single OpenRAVE instance can allow multiple viewers to communicate
with multiple copies of the environment.

3.2.4 Object Manipulation in OpenRAVE

Although OpenRAVE can be used for different robot applications, its main focus is
to provide an architecture for manipulation planning purposes. As this is also the
focus of this book, an introduction of how OpenRAVE deal with manipulation tasks
is presented which also lays down the basic terminology for the following sections.

A manipulation task is defined in OpenRAVE as moving a single object to achieve
a set of goals. It can be either to place an object in a designated location or to act on
the an object by moving it a relative distance from its initial configuration.

In order to perform such tasks, several information about the environment, the
manipulable objects and the robot should be specified. Figure 3.3 presents the parts
of a scene that OpenRAVE needs to define a manipulation task. A brief description
of the required information the user should specify to the system for each task is
presented in Table 3.1.

3.3 OpenGRASP: Simulation Toolkit

In this section, the different components of OpenGRASP are presented. The core of
the toolkit is an improved version of OpenRAVE with different plugins developed
to add new functionality. It has also been enhanced with a Robot Editor and the
adoption of the COLLADA file format. In the last part of the chapter, tactile sensor
simulation is studied in detail, as a new tactile sensor model—of crucial importance
for grasping—was developed which utilizes collision detection and response methods
using soft contacts as well as a full friction description.

3 http://www.ros.org

http://www.ros.org


40 3 Robot Grasping Simulation

Environment

Target

Up 
direction

Goal

Robot

Arm

GripperJoint

Robot Base

Palm 
direction

Camera 
Sensor

Tactile 
Sensor

Closing 
direction

Fig. 3.3 Parts of an OpenRAVE scene

Table 3.1 OpenRAVE specification parameters

Parameter Definition

Environment Geometry, the up direction, and the regions of
possible robot movement

Goals Goal positions to move the target/robot to
Target Geometry A set of rigid links (using convex decompositions)

connected by joints
Constraints A function defining the valid configurations of the

target
Robot Geometry A set of rigid links defining the robot shape

Kinematics Joints connecting links that define the configuration
space and its limits

Dynamics The dynamic properties of all the links and joints,
parameter limits

Arms A chain of joints defining the arm and the type of
invese kinematics to use

Grippers A set of joints controlling the fingers, joint directions
for closing fingers

Manipulators Each manipulator consist of an arm and a gripper
Sensors Type of sensor, robot link and location attached to
Robot Base How robot base moves across the environment.

Moves all manipulators and sensors
Control Expected positioning errors on physical movement

from inputs, and hardware limits
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A diagram of the OpenGRASP architecture is presented in Fig. 3.4, highlighting
in blue the contributions made to existing software. These extensions are described
in more detail in the following sections.

3.3.1 Developed Plugins

Although many plugins were already implemented in OpenRAVE to provide basic
functionality, the grasp simulation functionality had several shortcomings. In order
to make OpenRAVE suitable for grasping simulation, it was required:

• Implementation of plugins for specific sensors used to improve the grasping capa-
bilities of the robot.

• Implementation of more physics engines and collision checkers that help to com-
pare and improve simulation performance.

• Implementation of a standard plugin interface for a basic actuator and implemen-
tations of different motors. This would allow us to accurately simulate the robot’s
arm and hand articulations.

OpenRAVE

Core

Interface Definitions

Robot/Objects

Environment

Components (plugins)

Physics

Collision engines

Sensors

Planning Algorithms

Manipulation

Scripting Environment

Python

Matlab/Octave
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Blender plugin
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Viewers

Scripts: MatlabScripts: PythonROS

Force Sensor
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Gripper Sensor

Gripper Actuator

Robot Editor

Physics Engines

BULLETODE ...

OSG ViewerCOLLADA Support

Robot Model 
Database

Fig. 3.4 System architecture: components part of the OpenGRASP toolkit (blue) and their interface
with other available software packages (gray)
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These considerations were taken into account in the toolkit design. Two new
sensor plugins were developed to be used mainly for anthropomorphic robot hands.
One is a tactile sensor, commonly used in finger tips such as in the Barrett hand,
which detects and calculates the forces on the predefined sensory area and returns
them as an array (see Sect. 3.4). The other is a force sensor, placed for example
in the wrist, to measure the forces applied while grasping. The physics engine was
queried for the force calculated on the sensor’s body. Additionally, as models for
actuators were not included in OpenRAVE, a new sensor type called ST_Actuator
was developed.

In order to simulate robot grippers, a Gripper Sensor plugin was developed which
returns the distance between fingers, their current and velocity. Additionally, a model
of the Gripper Actuator was also included which can control the velocity of the fingers
and the maximum current applied.

In order to use different physics engines, new plugins were implemented which
make use of the physics abstraction layer PAL [13] and FISICAS, which are addressed
in more detail in the following section.

Visualisation is an important part of the simulation. OpenRAVE uses by default
Coin3D/Qt4 to render the environment, which has several disadvantages. It has
recently changed its license to GPL which poses a lot of limitations on its distri-
bution and it doesn’t support multi-thread viewers. Therefore, a new viewer plugin
was developed using OpenSceneGraph (OSG).5 OpenSceneGraph [14] is an open
source high performance 3D graphics toolkit, written in C++ and OpenGL which
can be used in the most common platforms such as Windows, OSX and GNU/Linux.
It enables the use of several file formats, specially COLLADA, VRML and IV files.
Moreover, it enables the use of multiple threads to visualize different environments
simulating concurrent processes in OpenRAVE, like the planning of different trajec-
tories. This plugin has been already included in the official release of OpenRAVE.
A snapshot of the new OSG viewer can be seen in Fig. 3.5.

3.3.2 Physics Simulation

Nowadays, there exist many available physics engines, both commercial and open-
source. Some of them are high-precision engines that require higher computational
power while others sacrifice this accuracy to work in real time. The methods they
use to simulate physics are also different. Some of them use penalty methods, some
rely on physical laws using constraint equations, and others use methods based on
impulses.

None of these engines are useful in all situations, they all have advantages and
disadvantages which makes it very difficult to decide which one to use for a simulator.

4 http://www.coin3d.org/
5 http://www.openscenegraph.org/

http://www.coin3d.org/
http://www.openscenegraph.org/
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Fig. 3.5 Screenshot of OpenRAVE using the new osgviewer plugin

It basically depends on what we want to simulate in addition to what the application
of the simulator will be.

In order to simplify this decision, a physics abstraction layer appears as a solution.
It provides an interface to a number of different physics engines allowing us to
dynamically switch between them. This functionality adds flexibility to the simulator
offering the possibility to, depending on the specific environment and use, decide
which engine would provide the best performance. It is also possible to test and
compare the behaviour of different engines.

The OpenRAVE Physics Engine interface allows the simulator to run using differ-
ent engines. It also has an interface to implement different collision checkers. Each
one of them has to be created as a plugin, extending either the PhysicsEngineBase
or the CollisionCheckerBase class.

The Physics Abstraction Layer (PAL)6 [13] is a software package created by
Adrian Boeing that saves us from having to decide at the start what physics engine to
use. A plugin to use PAL within OpenRAVE was created, called palrave. This plugin
is able to initialize PAL with the specific engine we want to use, without the need of
creating different plugins for each one of them.

6 http://pal.sourceforge.net/

http://pal.sourceforge.net/
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However PAL has several disadvantages. Its design is chaotic, which makes the
improvement and maintenance of code very difficult. Additionally, it did not provide
a testing system for new additions which leads to an unreliable and unstable code.

After realising these problems, we decided to develop a physic abstraction layer
which we called FISICAS. This layer was developed with the aim of solving the
current PAL shortcomings, simplifying its design and making easy to adapt it to
our needs. A plugin for OpenRAVE called FISICASrave was created to initialize
FISICAS with the desired physic engine, supporting currently ODE and Bullet.

3.3.3 File Format for Robot Models

For the storage of models of robot manipulators and hands, it was important to find an
open, extensible and already widely accepted file format that supports the definition
of at least kinematics and dynamics. This is necessary in order to enable the exchange
of robot models between supporting applications, leading to greater flexibility in the
selection of appropriate tools. Another important aspect was the ability to convert to
and from other formats. Among the large variety of file formats for 3D models, there
are only a few that are both public domain and not limited to storing only geometric
information. Typically, a simulator environment does not only rely on geometric
structures but also, for instance, on information about dynamics, kinematics, sensors
and actuators of the robot.

COLLADA,7 a format widely distributed and accepted as an industry standard (3D
Studio, Blender, OSG, OGRE, Sony, etc.) was chosen as the preferred file format
for the simulator. It has a clear and extensible design, and there are open source
frameworks available that facilitate its integration into new applications.

Since version 1.5, the standard contains many useful constructs dedicated to
describing kinematic chains and dynamics that can be used directly for the descrip-
tion of robot models. COLLADA is an XML-based file format that enables and
encourages developers to extend the specification to their needs without having to
violate the underlying schema definition.

In order to support specific robot features like sensors and actuators, we have
used this mechanism to extend COLLADA partially using the original OpenRAVE
file definition. These additions are specific to the simulator and are hidden to all
other applications so that compatibility remains guaranteed. Support for COLLADA
import and export has been included in the official release of OpenRAVE.

7 https://collada.org/

https://collada.org/
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3.3.4 Robot Editor

With the creation of a simulator for grasping the need also arises for a large data base
of geometrical, kinematic and dynamic models of robot arms and manipulators. To
fill this gap, a modelling tool called the Robot Editor was developed by Stefan Ulbrich
as part of OpenGRASP. Its main goal is to facilitate modelling and integration of
many popular robots. The development is driven by the following key aspects:

• Geometric modelling: The creation of new robots models requires a tool that
excels in modeling of the geometric components (i.e., meshes).

• Semantic modelling: Even more important is the ability to allow the description of
semantic properties, such as definitions of kinematic chains, sensors and actuators,
or even specify algorithms.

• Dynamics modelling: Another necessary aspect is the ability to define physical
attributes of the robot’s elements. At the moment, the focus lies on the dynamics
of rigid bodies.

• Conversion: Robot models usually come in a variety of different file formats. The
modelling tool needs to be capable of processing these formats and converting
them into the COLLADA standard. GraspIt! files in particular, being an already
widely-used standard with many conform models available, should be readily
usable by the simulator.

The conceptual design of the Robot Editor relies on two techniques: on the one hand
the open data format COLLADA and on the other hand on the open source project
Blender. Blender is a very versatile, powerful and extensible 3D editor that has been
chosen because of its convenient 3D modelling capabilities and the built-in support
for many CAD file formats and rigid body kinematics. Furthermore, it can be easily
extended via a Python scripting interface and offers high-quality ray tracing.

Blender itself, however, lacks the functionality and the appropriate interface for
the convenient definition of robot components. In addition, conversions between
certain file formats need to be improved or implemented, namely the import of the
COLLADA format and GraspIt! robot models.

The scripting mechanism allows the creation of user-interface that is highly spe-
cialized for use in robotics (see Fig. 3.6a). COLLADA support in Blender was lim-
ited to documents in the older specification 1.4 which excludes the newly introduced
kinematics and dynamics. The additional data required by the simulator also needs
to be included in the resulting document. This led to the further development of
COLLADA compatibility which now enables the Robot Editor to create valid docu-
ments suitable for simulation. Figure 3.6a shows a functional model of the Karlsruhe
anthropomorphic hand [15] modified using the Robot Editor and Fig. 3.6b the result-
ing COLLADA file loaded into the simulator.
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Fig. 3.6 Modeling the Karlsruhe anthropomorphic robot hand. a The user interface of the Robot
Editor and b Screenshot of the complete model in the simulator
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3.3.5 Robot Models

As stated in the simulator requirements, it is of great importance to have models of
the most popular robot hands included in the toolkit. The modeling capabilities of the
Robot Editor already enable quick and easy creation of new models. Therefore the
models of the most popular robotic hands were created to be available for OpenRAVE
as part of the OpenGRASP toolkit. Additionally, several complete robot platforms
available at different European labs were also modelled.

3.3.5.1 Models of Popular Robot Hands

So far, a selection of robot hands has been transformed into COLLADA 1.5 for use
within the simulator (see Fig. 3.7). In addition to these new models, there are various
models available in the older XML file format which is still supported.

3.3.5.2 Models of Complete Robot Platforms

Additionally, we simulated the models of the robot platforms available within the
laboratories of the partner members of the GRASP project. These platforms are used
in the applications described in the following chapters of this book.

Schunk PG70 Gripper

We have also modeled the platform at the Lappeenranta University of Technology
(LUT) which has a Schunk PG70 parallel jaw gripper. This gripper was simulated
using the Gripper Sensor and Gripper Actuator plugins (see Fig. 3.8). Each finger of
the gripper has a Weiss Robotics sensor (DSA 9205) attached, which were modeled
with the Tactile Sensor plugin explain in the following section.

Tombatossals Robot

The most completed platform that has been modelled is the humanoid torso Tombat-
ossals (see Fig. 3.9) at the Robotics Intelligence Lab at Universitat Jaume I. It is
the only platform that has been modelled completely using dynamics (see Sect. 4.6).

(a) (b) (c) (d) (e)

Fig. 3.7 Different robot models generated with the Robot Editor (ray-traced images). a the Barrett
hand b the Schunk hand SDH c the Schunk hand SAH d the Shadow hand, e A myoelectric upper
extremity prostheses of Otto Bock

http://dx.doi.org/10.1007/978-3-319-01833-1_4


48 3 Robot Grasping Simulation

(a) (b)

Fig. 3.8 Schunk PG70 gripper at LUT. a Real b Simulated

(a) (b)

Fig. 3.9 The humanoid robot Tombatossals. a Real b Simulated

It has 25 DOF and is composed of two 7 DOF Mitsubishi PA10 arms. The right arm
has a 4 DOF Barrett Hand and the left arm has a 7 DOF Schunk Dexterous Hand
2.0 (SDH).8 Both hands are endowed with a Weiss Tactile Sensor system on the
fingertips. Each arm has a JR3 Force-Torque sensor attached on the wrist between
the arm and the hand. The visual system is composed of a TO40 4 DOF pan-tilt-verge
head with two Imaging Source DFK 31BF03-Z2 cameras. Attached to the centre of
the pan-tilt unit there is a K inectT M sensor from Microsof tCor p.

The torso and the head CAD models were created according to the measurements
of the real robot. The models of the Mitsubishi PA10 arms were taken from the

8 http://www.schunk.com

http://www.schunk.com
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OpenRAVE robot model database and modified to fit the exact manipulator model
(PA10 7CE). The model for the Barrett hand was also obtained from OpenRAVE.
The Schunk SDH hand CAD model was provided by the manufacturer but the masses
of each part were not established, so they were estimated for each piece from the
geometry and the weight of the whole hand. This hand has three fingers each with two
joints. An additional degree of freedom executes a coupled rotation of two fingers
around their roll axis. Each finger is padded with two tactile sensor arrays: one on the
distal phalanges with 6×13−10 cells and one on the proximal phalanges with 6×14
cells. The tactile sensors were simulated using a tactile sensor plugin developed by
the authors described in Sect. 3.4. The force sensor was also simulated as the plugin
for OpenRAVE. The cameras were modelled using the camera sensors provided in
OpenRAVE with the same parameters and position as the real cameras.

The angular motors, available in the robot arm and hand joints, have been simu-
lated with the ODE controller provided by OpenRAVE. Each simulated servo-motor
was parametrized by the maximum speed, the maximum acceleration and the maxi-
mum torque that the motor can apply.

The humanoid robot ARMAR

Another platform that has been modeled is the humanoid robot ARMAR-IIIa9 [16]
consisting of seven subsystems: head, left arm, right arm, left hand, right hand, torso,
and a mobile platform (see Fig. 3.10). The head has seven DOF and is equipped with
two eyes, which have a common tilt and an independent pan. For the visual perception
of the environment, the humanoid’s active head features two stereo camera systems,
one with a wide-angle lenses for peripheral vision and one with a narrow-angle lenses
for foveal vision. For grasping and manipulation, the robot provides a 3 DOF torso
and two arms with 7 DOF each. The arms follow an anthropomorphic design: 3
DOF for each shoulder, 2 DOF in each elbow and 2 DOF in each wrist. Each arm

(a) (b)

Fig. 3.10 The humanoid robot ARMAR-IIIa. a Real b Simulated

9 http://his.anthropomatik.kit.edu/english/241.php

http://his.anthropomatik.kit.edu/english/241.php
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(a) (b)

Fig. 3.11 Schunk hand SDH and the Kuka KR5 sixx R850 arm. a Real b Simulated

is equipped with a pneumatic-actuated five-fingered hand. The robot moves on a
wheeled holonomic platform. The geometry and kinematics of this robot platform
were modelled using the Robot Editor.

KTH platform

The platform used at the Royal Institute of Technology (KTH) (see Fig. 3.11) consists
of the Karlsruhe active head [17] equipped with two stereo cameras, a peripheral
(wide-field) and a foveal (narrow-field) one. The robotic head has 7 DoF. Five of
these are used for controlling the viewing direction while the remaining two mainly
vary the vergence angle between the left and right camera systems, thereby enabling
fixation on objects. As a manipulator, we use a 6 DoF Kuka KR5 sixx R850 arm10

that is equipped with a three-fingered Schunk SDH.

3.4 Simulated Tactile Sensor

This section presents the development of the simulated tactile sensor created as part
as the OpenGRASP toolkit [18, 19] with some of the same physical properties as
a real tactile sensor has, such as compressibility and friction. In order to create the
sensor model three different areas were addressed: tactile sensor model construction,
modelling soft contacts and friction modelling. The tactile sensor is created based on a
geometry patch enabling the creation of various shape tactile sensors. A contact force
model was created that enables the calculation of surface forces as well as the holding
torque around the contact surface and the stick-slip phenomenon. The model does
not include the load spreading to adjacent texels generated by the material thickness.
Also manufacturing and mechanical imperfections are ignored at this point.

10 http://www.kuka-robotics.com

http://www.kuka-robotics.com
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In order to test the proposed model, different experiments were conducted. First,
the physical properties of the simulated tactile sensor were validated using static
and dynamic tests. Also an experiment on simulated robot grasping vs. real robot
grasping was carried out by a robot hand grasping an object and by the corresponding
model on the simulator performing the same actions. The use of the sensor to create
a complete dynamic simulation of a humanoid robot is presented in the next chapter.
Finally, the sensor model potential was explored by applying it to modelling human
touch.

3.4.1 Related Work

Touch, combined with vision, are the main senses that allow humans to perform
dexterous manipulation. For this reason, sensors that can retrieve tactile information
have been developed in order to equip robot hands with such a sense.

Tactile sensors are defined as devices that can measure different properties of
an object through physical contact between the sensor and the object [20]. They
can measure mechanical properties including pressure, normal and shear forces,
torques, slip and vibrations, or other properties like temperature or moisture. In
robotic manipulation, only the mechanical properties of the contact are studied,
typically sensing normal forces and contact positions. Different methods exist for
constructing tactile sensors (for a review see [21, 22]). There are tactile sensors based
on various principles such as resistive, capacitive, optical, ultrasonic, magnetic or
piezo-eletric sensors.

The performance of the real tactile sensors developed until now is far from human
sensing capabilities. Nevertheless, they have been used in robot manipulation in the
last few years for different purposes including reactive robot control [23–25], col-
lision detection [26, 27] and object recognition [28]. These different applications
of tactile sensors show the importance of their use in robot manipulation. Hav-
ing a tactile sensor model that enables tactile sensing simulation and, more gener-
ally, complete simulation of robot grasping, will be of great benefit to the robotics
community.

In general, robot grasping simulations have traditionally been using kinematics
instead of dynamics. This is due to the fact that robot dynamic simulation is a very
challenging problem. The most common simulation method for robot grasping has
been the impulse method (GraspIt!, ODE, Bullet, etc.). The impulse method is a
very effective method in terms of calculation speed for simulating structures that
form open kinematic chains which robotic manipulators usually are. The drawback
of using impulse methods for solving the constraints between the bodies is that the
accuracy of the constraints is dependent on the mass ratio of the two objects. This
means that if the robotic manipulator has very light grippers attached to a heavy
wrist the joints connecting the bodies can suffer from instability. The same applies
to impulse based collisions. Using a penalty method this mass dependency can be
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avoided in the collisions but the solution becomes sensitive to variables, such as the
time-step, due to the stiffness of the system.

Simulation of tactile sensors for robot grasping is a fairly new field of research.
Using the available simulation environments and physics engines, there are some
existing models of tactile sensors. [29] presented a model using GraspIt! which
provide contact and force feedback. However the problems mentioned by using the
impulse methods to model dynamics limited the simulation. Also the use of rigid
contact cannot model the deformation of a compliant fingertip or holding torque
around the contact. There has been some attempts to use penalty methods for rigid
body simulations as [30–32], but they used only Coulomb friction which leads to
errors at near zero sliding velocities. [33] used a point spread function to model
the response of the tactile sensors and characterize them via robotic experiments.
However the effect of friction is ignored as well as the actual sensor values.

In the following section, a tactile sensor model is presented which overcome most
of the weakness of the previous tactile sensor simulations.

3.4.2 Tactile Sensor Model

The purpose of this work was to make a simulation model of a tactile sensor, not just
by emulating the function but by modelling the actual physical properties starting
from the formation of an actual contact patch to including a full friction description.

Different tactile sensors are available with a variety of shapes. Rigid sensors range
from the simple planar sensors to ones shaped to curve around a robot fingertip. Also
some flexible sensor types are available which can be for example wrapped around a
humanoid robot arm. The idea was to create a tactile sensor that could be adapted to
model any shape. For this reason, the tactile sensor is created based on a geometry
defined by a triangularized mesh, which can be obtained from a CAD model.

The tactile sensor model is designed to measure the object mechanical proper-
ties, such as contact forces and contact positions. Acquiring the force enacting on
the tactile sensor from an existing simulation environment can be troublesome. For
example, if the simulation environment uses a non-penetrating collision method the
conversion from a collision force to tactile data leads to extensive assumptions. A
non-penetrating collision method will not give reliable results on force build up as
the objects are not allowed to interpenetrate. Even if the objects are allowed to inter-
penetrate, the collision will change the object velocity in a single time-step making
the tactile data unreliable.

The solution proposed is to calculate the contact forces within the tactile sensor by
using a soft contact method and then apply them to the bodies. This means disabling
all other collisions between the two bodies making the tactile force the only force
acting between the two bodies. That way the pressure detected by the sensor and the
pressure applied to the body are identical. Also this will ensure that the tactile sensor
can acquire all the related data for producing tactile information as it is all calculated
within it.
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The chosen method consists of using a contact patch with several texels in order to
form the tactile sensor. Single texels are used in order to determine collisions against
other objects and to calculate the resulting collision forces. This provides an accurate
and fast solution for solving the collision equations. Currently the number of contact
points is equal to the number of texels in the tactile sensor but in the future a single
texel can be modified to include several contact points in order to further increase
the resolution of the sensor.

The contact forces are calculated on each contact point and are used by the sim-
ulator to grasp the object and for the tactile sensor feedback.

3.4.2.1 Geometry-Based Tactile Sensor

The simulated tactile sensor can be formed based on a triangularized geometry. This
was done so that differently shaped sensors could be easily defined. In Fig. 3.12
different variations of a tactile sensor geometries are presented: a simple grid, a
spherical surface and a geometry modelling a human fingertip. The arrows represent
the normal directions of the different triangles.

The texels of the simulated tactile sensor are constructed using the vertices from
the sensor geometry. For example, in the case of a planar tactile sensor consisting
of an array with 8 rows and 6 columns, one would draw a 7 × 5 grid having 8 × 6
vertices to represent the centers of the tactile cells (see Fig. 3.13).

For each vertex, the normalized sum of all normals of the triangles connected
to it is calculated and used as a normal direction to the sensor element. The sensor
element’s maximum penetration needs to be defined in the sensor parameters. It
is used to place the beginning of a vector pointing in the normal direction to the
vertex (see Fig. 3.14). This vector in turn is used to calculate the intersection against
all possible triangularized target geometries. The forces calculated at this point are
explained in the following section.

(a) (b) (c)

Fig. 3.12 Example of tactile sensor geometries: a a simple grid b a spherical surface and c a human
fingertip
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(a) (b) (c)

Fig. 3.13 Example of a simulated tactile sensor construction: a real tactile sensor, b geometry of
the sensor and c simulated tactile sensor elements

(a) (b) (c) (d)

Fig. 3.14 Determining collision vector for each vertex: a Triangle normals, b Normalized sum of
triangles connected for each vertex c vertex vectors placed at the maximum penetration (h) and d
overview of the sensor in touching an object and the contact area

3.4.3 Contact Force Model

When a collision between the sensor and an object occurs, the contact information
(position, relative velocity, penetration, etc.) is used to calculate the force in a single
texel. Contact forces are described using the soft contact approach which allows small
penetration between contacting bodies taking into account local deformations. The
amount of this penetration is calculated accordingly with the maximum penetration
defined for each sensor. A brief description is presented here but the complete set of
equations used can be found in [18].

On each contact point, the contact force (FC ) can be written as:

FC = Fn + Ft (3.1)

where Fn is the normal force produced by the soft contact and Ft is the tangential
force represented by friction. The contact force Fn in the normal direction of the plane
can be calculated as a linear spring-damper element. The tangential friction force Ft

can be evaluated using the LuGre friction model [34] which accounts for both static
and sliding phenomena based on a bristle deflection interpretation. It captures the
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dynamic behavior of the contact surface using the first order differential equation for
bristle deflections.

The forces and torques can be calculated on each contact point. These forces are
applied to the body where the tactile sensor is attached as well as to the body that
the tactile sensor is colliding with. They are also used to retrieve sensor feedback
information.

A summary of the steps needed to construct the simulated tactile sensor and to
calculate the contact forces are outlined in Algorithm 1.

Algorithm 1: How to construct a simulated tactile sensor and obtain the sensor
data

Initialization:
Using a mesh representing the real sensor geometry, create the simulated sensor texels;
Parametrize the sensor elements with the maximum penetration and the values needed to
calculate the normal force (k, cn) and friction (μs , μd , σ0, σ1, ct );
Result: Tactile Sensor Readings
begin

for each vertex of the simulated sensor element do
Place a vector pointing to it, with a magnitude equal to the maximum penetration and
with a direction equal to the sum of normals of the triangles connected to it;

for each time-step do
for each vertex do

Calculate the intersection of the vector with the target objects;
if they are in collision then

Create a contact point on the intersection;

for each contact point do
Calculate the contact force in the normal direction; Calculate the tangential
friction; Add these two components to get the total contact force;

for the sensor’s body and each target body do
Calculate and apply the forces and torques;

Convert the forces to tactile values;

3.4.4 Tactile Sensor Plugin

The simulated tactile sensor plugin has been developed and is available in Open-
GRASP. The development of the tactile sensor plugin included the definition of the
tactile sensor geometry, the tactile sensor data and the implementation of the sensor
interface specified by OpenRAVE.

The tactile sensor requires a set of parameters to be specified for each sensor. The
model presented on this study allows the creation of sensors based on any geometry
which is specified by the mesh of the body to which the sensor is attached. For each
sensor, the parameters necessary to calculate the contact forces and its thickness need
to be defined.
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The tactile sensor data is the structure returned by the tactile sensor when it is
requested. It contains the size of the tactile array, a vector with the tactile values
calculated in each cell and the sum of all the tactile values. This structure is the same
as the one used by the real tactile sensor, which makes the real and simulated sensors
feedback appear identical to the controllers.

The plugin is an implementation of the sensor interface. OpenRAVE creates a
new tactile sensor when specified on a robot definition. Each time step, when the
sensor is updated, it gets the positions and velocities of the sensor and objects and
checks if they are colliding. On each contact point, it calculates the contact forces and
torques are calculated and they are applied to the sensor and objects. Finally, given
that a real tactile sensor produce tactile intensities instead of forces, these intensities
can be calculated using a linear conversion and the tactile data structure is updated.
Controllers can query and use this tactile sensor feedback as required.

3.4.5 Experiments on Robot Grasping

In order to determine the simulated tactile sensor performance, different experiments
were carried out. They can be divided into two groups: tests for validating the physical
properties and features of the tactile sensor and tests for applying the model to
situations where the real sensor is commonly used. In the following sections these
experiments are described in detail.

All the experiments were carried out with a simulated model of the Schunk PG70
parallel jaw gripper or by using a single finger model of the Schunk gripper. Each
finger of the gripper had a tactile sensor attached to it. This is a resistive tactile sensor,
with an array of cells of 14 rows by 6 columns.

3.4.5.1 Validation of the Physical Properties of the Simulated Tactile Sensor

The basic physical properties of the tactile sensor element were tested by two different
static methods. First, the capability of the sensor to return correct force feedback is
validated. Second, the capability of the sensor to bear loads in static situations was
tested. This is important as the sensor needs to be able to hold the objects for an
extended period of time. This shows that the proposed method does not suffer from
the same problem as some other models with near zero velocity.

Force sensor feedback

The load sensing capability of the sensor was tested by loading the sensor with a
varying weight object and the total force from the tactile elements was then compared
to the total force required to keep the object static (see Fig. 3.15a). The weight test
range was from 0.1 to 10 kg. The parameters used in this simulation were a spring
constant (k) of 1,000 N/m and a damping coefficient (cn) of 10 Ns/m, with a time-step
size of 0.0001 s. Similar results can be acquired with smaller and greater masses by
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(a) (b)

Fig. 3.15 Simulated Robot finger conducting static tests

Table 3.2 Tactile weight sensing capability

Object weight (kg) Required force [N] Tactile force feedback [N]

0.1 0.9800 0.9800
1 9.8000 9.7999
10 98.0000 97.9899

changing the k and cn values of the sensor in order to keep the cube horizontal and
stable.

A summary of the tests for 3 different weights is presented in Table 3.2. The table
shows the object weight, the theoretically required force to hold the object static and
the sum of the forces obtained by each texel from the tactile sensor. Given that in
this case all the forces are pointing to the same direction, we can calculate the total
force as the algebraic sum of the force values. The sum of the forces does not exactly
match the required force due to the slight tilting of the object. Therefore a fraction
of the load is carried by the friction force which is not included in the normal force
returned. Based on the results, the tactile sensor give out correct force readings.

Static friction bearing capability

One of the main problems for collision models is the static holding friction. Most of
the collision response methods will gradually let the object slip away from the grasp
as near zero sliding velocity is handled poorly by the friction model [35]. The static
friction bearing capability was tested by tilting the finger by 10 degrees and setting
the 1 kg cube on top of it as shown in Fig. 3.15a and seeing if the friction will hold
the object static.

In Fig. 3.16 the results of the test are shown. The creep value is the position dif-
ference to the initial position. The cube moves slightly from the starting position and
then settles in position due to friction. The cube settles to the same position within 10
decimal accuracy within 10 s. The simulation was continued for 20 min confirming
that the cube does not move from that position.
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Fig. 3.16 Creep value as position difference to initial position [m] of the cube when placed on a
slanted tactile

This proves that the tactile sensor is capable of holding loads at a static position
and the importance to include a proper friction model to a grasping simulation.

3.4.5.2 Testing the Model on Robot Grasping Applications

Grasping various shape objects

Tactile sensors are normally used to grasp various shape objects. Therefore it is
important to verify that the tactile sensor model can also handle grasping variously
shaped objects. Four different objects were chosen representing typical graspable
objects such as: a sphere, a box, a cylinder and a more complex form like a spray
bottle. The objects were placed between two robot fingers and the tactile image and
contact forces were observed during a simulation run. In Fig. 3.17 the object, the
corresponding mesh, a grasping position the corresponding tactile images and the
normal contact forces are shown. It can be seen that the tactile sensor is able to detect
as well as hold on to all of the shapes. The tactile resolution can be changed in the
simulation model by increasing the density of the mesh used to create the sensor.

It can also be seen in Fig. 3.17 that the simulated tactile sensor gives out highly
accurate impression imprints of the grasped objects. This tactile impressions can be
used in a variety of application such as object recognition using tactile exploration
and grasp stability evaluation [27].

Comparing tactile readings with the real sensors

A task of grasping and picking up a cube was selected as the test scenario. The idea
was to perform the same task using this robot and compare the results with the ones
obtained by executing the same actions in the simulator. In order to accomplish this,
a high level controller was implemented using an abstraction architecture presented
in [36], which allows to switch between real and simulated hardware transparent
from the controller point of view.
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Fig. 3.17 Testing results of grasping four different objects. a Real object picture and simulated
object b Snapshots of robot fingers and objects at the grasping position c Tactile images taken at
the grasping position (white = 0, black = max) for the left and right tactile sensor d Normal force
readings in Newtons at each texel position measured in the grasp position for the right tactile sensor

The tactile sensor feedback was used to control the grasping force and to determine
the stability of the grasp. The experiment was defined as an abstract action consisting
of five primitive actions: approach, grasp, lift, move down and release. The controller
turns this abstract information into the gripper specific primitives and transitions. It
then drives the Schunk actuator using velocity control until the first contact with
the tactile sensors is detected. After the initial touch the controller switches to force
control by setting the maximum current of the Schunk gripper based on the tactile
sensor feedback. The tactile value sums are used as the reference for the force control.
This particular case shows the function of the tactile sensor in combination with
the robot controller. Given the abstraction architecture’s ability to be embodiment
independent, the same controller was used to control the real robot as well as the
simulated case.
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An image sequence of the real robot performing the work cycle with the tactile
images produced by each sensor, can be seen in Fig. 3.18. The experiment was
performed with the tactile sensor covering 30 percent of its area when touching the
cube.

The actions were executed as expected but closer investigation of the tactile values
revealed some problems. When grasping the cube, even pressure was applied to each
tactile sensor that should return, as a result, very similar tactile images. However,
significant differences between the individual tactile elements can be seen in the
bottom row of Fig. 3.18 where one sensor tactile image is substantially lighter than
the other in most cases, when touching the cube. Therefore the sum of the tactile
values on opposite sides are not the same even when they should be.

The simulated robot performed the same work cycle as the real one. Images of the
robot on each work cycle phase are shown in Fig. 3.19 with the corresponding tactile
images at the bottom. Closer inspection of the tactile values reveals that the sensors
perform exactly as expected. Under even pressure, the individual tactile element
values are the same in the area touching the cube. The individual texels in the sensor
are not visible in the figure since the values are identical and therefore no color
difference is visible. Opposite sensors also return similar tactile values.

The simulation model shows consistent results whereas the real tactile sensor
results vary on each work cycle. This is due to the fact that in simulation there are no
manufacturing flaws or problems from wearing. The system consistently performs
the same way under the same conditions. In addition, the detection tolerances from
individual elements do not pose a problem.

When using the tactile imprints to evaluate the stability of a grasp, the simulated
tactile could be used to teach a controller what a stable grasp looks like. The sensors
currently available, will fail to detect a stable grasp based on the simulated images
due to difference between the simulated and the real sensor feedback given the
imperfections between the real individual sensors. The simulated tactile could be
used to teach the controller what an ideal stable imprint would look like, but the real

Fig. 3.18 Real robot performing the chosen work cycle. On the top row, pictures of the robot
performing the task on each stage. On the bottom, the tactile images generated by left and right
sensors (black = 0, white = max)



3.4 Simulated Tactile Sensor 61

Fig. 3.19 Simulated robot performing the chosen work cycle. On the top row, pictures of the
simulated robot performing the task on each stage. On the bottom, the tactile images generated by
left and right sensors. (individual texels not visible due to close to identical values)

sensor would not display an identical image. An algorithm for allowing deviations
from the ideal imprint would have to be developed.

There are some features such as resolution, noise, hysteresis, creep and aging
that characterize a tactile sensor [37] and that should be considered in simulation in
order to get a more similar response to the real sensors readings. The resolution in
simulation can be changed freely, so it can match the spatial and temporal resolution
of the real tactile sensor which are hardware dependent. From the real sensor’s results
it can also be seen that the tactile values suffer from noise in the results whereas, at
the moment, the simulated sensor reports the changes in the force directly without
any interferences. The hysteresis in the real tactile can also be significant due to the
material covering the tactile elements. Finally, the real sensor material also causes
some creep in the results as the foam cover resistance changes over time even under
constant pressure. This change settles after some time but there is always some creep
even after an extended period. The cover material also causes aging to be a problem
when using the real tactile.

All these features of the real tactile sensor can be added to the tactile sensor model.
The difficulty is that the variance from sensor to sensor can be quite considerable as
shown in Fig. 3.18 as well as in [33].

3.4.5.3 Mimicking the Human Finger with a Tactile Sensor

An experiment with the human hand was conducted to test the versatility of the
tactile model as well as to show the direction of the future work. The tactile sensor
were created using geometries of human fingers (human hand model courtesy of
the Biomechanics and Ergonomics Group, Universitat Jaume I) and then a cylinder
shaped object was placed in between the index finger and the thumb (see Fig. 3.20).
In the image it can be seen that the finger senses the object in a correct manner. The
purpose of the experiment is to show that any shape can be used to form the tactile
sensor. This is not an extensive test as such, but gives ideas for various uses of the
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Fig. 3.20 Human finger tactile holding a cylinder shaped object. It can be seeing from left to right:
the human hand geometry, the tactile geometries for the index and thumb, the hand grasping the
cylinder and the tactile images for each finger

simulated tactile sensor for the future. The freedom of form of the tactile sensor
element can be extremely useful in modelling different tactile applications.

Real tactile sensors are not accurate enough to model the human touch just yet.
This sensor model can give researchers a head start on researching human touch
given that the simulated sensors do not suffer from the same restrictions as the actual
real tactile sensors do.

3.4.6 Discussion

The experimental results of the tactile sensor model showed good performance in
being able to produce tactile feedback. Problems arised when trying to calibrate the
tactile model to correspond exactly to a certain real tactile sensor. This is due to the
variations in the real tactile values which makes the process extremely difficult.

However, the use of this tactile sensor model may enable researchers to do exper-
iments that should be theoretically possible but, due to the current limitations in the
existing hardware, are still difficult.

The collision detection method for solving the contact points is currently a brute
force method. Improvements on this area can greatly improve the overall computation
times of the tactile sensor model. The collision response method is computationally
effective. The calculations are straight forward and the dimensions of the equations
of motion matrices will not be increased given that the penalty forces are applied to
the dynamic model as external forces. Future work includes improving the collision
detection times and improving computational efficiency.

3.5 Conclusion

In this chapter we have presented a fully operational simulation toolkit for robot
grasping and manipulation. Its main design principles are extensibility, interoper-
ability and public availability. In its development we have used existing and widely-
available components to ensure its standardization and easy adoption. We have also
emphasised providing additional tools and features that provide users with a quick
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start to enhance utility through features such as the robot editor based on Blender,
COLLADA file format, two Physics Abstraction Layers (PAL and FISICAS), and
models of existing robot hands.

Additionally, a simulation model of a tactile sensor was presented. The simulation
model is based on soft contact modelling with a full friction description. The sensor
was tested using the most commonly use cases of tactile sensors in robotic grasping.
The simulated tactile sensor performed all the tests including stable grasping without
any errors and can be used as a tactile sensor model. The model can be updated to
behave in the same manner as a specified type of tactile sensor such as one from Weiss
Robotics. This would entail modifying the stiffness as well as adding delay and load
spreading that are due to the covering material and other electrical properties such
as noise.
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Chapter 4
Applications of Robot Grasping Simulation

4.1 Introduction

In robotics research, simulators have an important role in the development and
demonstration of algorithms and techniques in areas such as path planning, grasp
planning, mobile robot navigation, and others. There are several reasons for using
robot simulations. First, they allow exhaustive testing and tuning of mechanisms and
algorithms under varying environmental conditions. Second, they avoid the use, or
misuse, and wearing of complex and expensive robot systems. Also, the environment
and its attributes can be completely controlled. Additionally, simulation software is
cheaper than real hardware so that a large number of experiments can be efficiently
performed.

Specifically in robot grasping, the simulator is used to perform different grasps
before the real robot makes an attempt. In theory, there are an infinite number of
candidates grasps applicable to an object. Grasp synthesis algorithms select a set of
relevant grasp hypothesis among all the candidate grasps. These algorithms can be
generally divided into analytical and empirical approaches [1]. Analytical approaches
determine the contact locations on the object and the hand configuration that satisfy
task requirements through kinematic and dynamic formulations. They are usually
formulated as a constrained optimization problem over different criteria that measure
dexterity, equilibrium, stability or dynamic behaviour. Empirical approaches, on the
other hand, rely on sampling many grasp candidates for an object, generate these in
simulation, an then evaluate their quality according to a specific metric.

In this chapter, the use of the simulation for selecting relevant grasp hypothesis
using empirical grasp synthesis algorithms is demonstrated. These approaches differ
in the amount of prior information the robot is assumed to have about the object and
in how the inferred grasps are executed. The approaches can be divided into grasping
known, unknown or familiar objects according with the taxonomy proposed by [2]:
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(a) (b) (c) (d)

Fig. 4.1 Grasping approaches in simulation. a Real object. b Simulated known object. c Simulated
familiar object. d Simulated unknown object

• Known objects: When known objects are used, the robot has an accurate geometri-
cal model of the object. They can be created off-line using different technologies,
like laser scans. Then, the grasping problem consists on object recognition and
pose estimation, and object-specific grasps can be retrieved from a database.

• Unknown objects In the case of unknown objects, the object is new and previously
unseen by the robot, therefore an approximate model has to be created on-line
usually using heuristics (commonly object shape features in relation to the robot
hand) to generate and rank grasp.

• Familiar objects Grasping familiar objects deal with the problem of transferring
grasp experience from previously encountered objects to a similar new object.
The underlying assumption is that new objects, similar to the old ones, can be
grasped in a similar way. Objects can be similar in terms of shape, color or texture.
Also, the similarity can be based in terms of more high-level features, such as the
functionality that they afford or the possession of similar parts or categories.

All these approaches are developed and evaluated in simulation. An example of
the object model for each approach is shown in Fig. 4.1. Using the simulator to
replicate the kinematics of the real platform, we show how it can be used to select an
appropriate grasp and plan its trajectory in order to successfully grasp objects that
are known, unknown or familiar to the robot.

Grasping known objects using a simulator is a well established technique. There-
fore, in the first section, we present the existing approach used by OpenRAVE—
the chosen simulation framework—when the knowledge of the grasping objects is
assumed to be known.

However, this is an assumption that is not realistic if the goal is to achieve
autonomous robot grasping. First, the robot should be able to grasp any object present
in the environment, therefore it will be impossible to construct an object database with
the model of all possible objects that it may encounter. Additionally, the models of the
objects are normally represented as triangle meshes obtained using high-precision
scanners techniques which are normally not available on mobile platforms. As the
goal is to robustly identify the models and their configurations (position, orientation)
in the environment of a robot in order to apply the grasp knowledge from the models
on the real objects, there are several factors such as noise, uncertainty, occlusions,
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Table 4.1 Prior information the robot is assumed to have for each application

Objects Approach Prior information
Exact object Object Grasp Task
model database database

Known Using uncertainty Yes Yes Yes/No No
metric MOOM

Unknown Using symmetry No No No No
assumptions

Familiar Using task No Yes Yes Yes
constraints

exact model of the given grasping object, an existing object database, an existing precomputed
database of stable grasps and the manipulation task to be performed after grasping

missing parts due to lack of texture and restricted viewpoint that make this a very
difficult task.

Therefore, we have proposed three different independent approaches varying the
amount of prior information the robot is assumed to have, in order to infer grasps
under more complex environments. The prior information for each application is
shown in Table 4.1.

In the fist application, we present an approach to grasp known objects improving
the existing ones by incorporating the depth-sensor information into the grasp plan-
ing, which enables to select better grasp hypotheses and also to constraint approach
directions and the path planning space, thus reducing the amount of time needed
to find a successful grasp hypotheses. In order to do that we propose MOOM: an
overlap metric between the recognized model and the actual part of the object that
is seen from the camera.

The second application shows a technique proposed to grasp unknown objects
predicting their full shape by making use of the observation that many, especially
man-made objects, possess one or more symmetries. The aim is to show that even if
the object model is not an exact representation of reality, it is close enough to enable
the simulator to try different grasp alternatives and select an appropriate one.

In the third application, we start with the assumption that the object is a familiar
object, meaning that it is geometrically similar to a known model. The objective
of this approach is to achieve autonomous grasping of objects according to their
category and a given task. We show how to incorporate the object category and the
task to transfer task-specific grasp experience between objects of the same category.
The effectiveness of the approach is demonstrated on two humanoid robot platforms.

Finally, we present the last application with a different focus. In the previous
ones, we have used kinematics instead of dynamics given that taking into account
masses, forces, inertias, static and dynamic frictions, and even elasticities and defor-
mations, is a very challenging problem, specially when it comes to considering the
interactions between contacting bodies. A large number of parameters, which are
difficult to determine, affect the dynamics behaviour of the involved parts. In this
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last application, we want to demonstrate how we can achieve a complete dynamic
simulation of a humanoid robot using the developed framework.

The applications shown in this chapter are the result of my collaboration with
several researches and resulted in the following publications: [3–5]. In the following
sections the complete approaches are presented but my role in them and focus was
the development of the prediction block using OpenGRASP and its interfaces to
integrate it with the rest of the grasping pipeline modules.

4.2 Grasping Known Objects: Existing Approaches

There are many challenging problems addressed by the robotics community currently
studied in simulation in which the knowledge of the complete world model or of
specific objects is assumed to be known. Simulators focusing in solving manipulation
problems such as GraspIt! or OpenRAVE can be used to solve these problems. Given
that OpenRAVE was chosen as the simulation framework for this work (see Sect. 3.3),
its approach to grasping known objects [6] is presented in this section and later
compared with the new approaches developed in this book in each application.

The simulator requires the following parameters to describe a manipulation task:
an object to be grasped considered as the target object, the goal positions to move
the target/robot to, any target or robot motion constraints and regions that should
be avoided. Once a robot has found the target object, using knowledge of physics
and the object geometry, the simulator can automatically build models of how to
stably grasp the object and manipulate it. Combining the grasping models and robot
kinematics with the task constraints defined by the problem specification, the space
of all possible robot goals and movements that will satisfy the task can be computed.

A grasp is parametrized by (Fig. 4.2):

• 6D end-effector pose: transformation of the robot hand in the target’s coordinate
system

• Grasp preshape: starting finger configuration (joint angles)
• Approach direction: direction vector describing the direction in which the robot

hand approaches the target, in the target’s coordinate system
• Stand-off : distance along negative direction of the approach direction to get out

of collision
• Roll: wrist rotation angle around the approach direction axis.

The information required to perform a manipulation task can be divided into
information independent of the current state of the environment and information
obtained at run-time like obstacles and target positions that the robot has no way of
pre-computing beforehand. Therefore, OpenRAVE offers several off-line algorithms
that can pre-compute the first type of information into a form that makes on-line
retrieval as quick as possible. This information is stored into several databases:

• Inverse Kinematic database: Analytic inverse kinematics equations for each arm
required for exact computation of the arm reachability space that is used for many

http://dx.doi.org/10.1007/978-3-319-01833-1_3
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Fig. 4.2 Parameters defining a grasp

planning heuristics. It uses the ikfast algorithm for finding the most robust closed-
form solutions.

• Grasp Hypothesis database: From the target object perspective, OpenRAVE gen-
erates all the grasps that may handle the object according to the task specification.

• Convex decomposition database: provides much simpler geometries to work with.

These databases are optimized for fast usage times during on-line planning. How-
ever, computational time when generating them is not a key factor given that these
databases can be computed off-line and they can be generated faster with a cluster
of computers. They are stored using unique hashes for the robot and target bodies so
that the data is indexed more consistently.

4.2.1 Grasp Hypothesis Database

The Grasp hypothesis database is presented here in more detail, given that it is
the most involved in grasp simulation and has been used for different applications
described later in this chapter.

A representation is needed in order to save the space of valid grasps. There have
been different grasping models proposed to provide such a representation, including
grasp sets or parametrized models like Support Vector Machines or explicit goal
regions. Diankov [6] claims that valid grasps spaces should be expressed as sets,
given that although it might be more compact to explicitly parametrize the space of
good grasp, such methods can be susceptible to modeling errors.

In order to create the grasp database, the grasp set is generated with the combi-
nation of the different parameters specified that define a grasp:

• A set of gripper pre-shapes, stand-offs and rolls that want to be used to grasp the
object can be specified.

• Approach directions can also be individually specified or generated automatically
using the following procedure: the surface of the object is sampled by casting
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rays from a bounding box to the target object. Then for each hit point, the surface
normal of the object is computed. Using this normal, it is possible to sample all
directions that are within a fixed angle between each normal.

The process of generating the grasp hypothesis database is depicted on Fig. 4.3.
It starts parameterizing each grasp with a combination of the input parameters.

One ray is defined on the hand’s coordinate system along the direction of the
palm and another ray is defined on the target object towards the approach direction
specified. The robot hand pose is computed by aligning these two rays together and
make the directions point towards each other. Then, a common grasping strategy is
used approaching the gripper to the object using this direction and close the fingers
until they cannot move anymore [7]. Tactile or force sensors are not considered given
that if the fingers can constantly provide torque, the point contact analysis can be
enough for simulating the grasping of rigid objects with a rigid hand. The contact
points with the object are extracted and the performance of that contact needs to
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be evaluated to determine if the grasp is stable. This performance can be measured
using different strategies. The one most used is to measure grasp stability using
force closure (see Definition 2.8) to check if any force acting on the object can be
compensated by the forces generated on the contact points. However other measures
can be used, which have been reviewed in Chap. 6. The grasps that are stable are
saved on the database. When all the combinations are tested, the set of stable grasps
are ordered by priority.

4.2.2 OpenRAVE Grasping Pipeline

An overview of the grasp cycle for grasping known objects is shown in Fig. 4.4. It
is subdivided into three major building blocks. Given visual input from cameras, the
perception block is responsible for detecting an object, recognizing it and estimating
its pose. The prediction block takes in the object pose and model and selects an
appropriate grasp from the Grasp Hypothesis Database that has to be reachable in
the current robot configuration. The selected grasp is then executed on the robotic
platform.

This pipeline is taken as the base grasp cycle and, in each of the applications shown
later in this chapter, we present the alterations made. We will focus on the prediction

http://dx.doi.org/10.1007/978-3-319-01833-1_2
http://dx.doi.org/10.1007/978-3-319-01833-1_6
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block—highlighted in blue—as it represents the main role of the simulator, and we
will also describe its integration with other modules.

After receiving the current state of the environment with the target object model
and its estimated pose, the simulator needs to select an stable grasp and validate
it in the current environment. The grasp first needs to be collision-free from other
obstacles, it also needs to be tested that the hand can successful grasp the object, and
the hand needs to have small room to maneuver along its direction of approach. In
order to do this, OpenRAVE has a GraspValidator which sets the robot hand to the
preshape and checks environment collisions as it moves along its negative direction
of approach. Then the hand is set to the final transformation and the grasp is executed
in simulation. Because the grasp guarantees stability only if the gripper’s contact are
from the target object, all collisions with the final hand configurations are checked
that are only with the target. The set of transformations returned by GraspValidator
are all checked for inverse kinematics solutions and that the entire robot is in the
free space. If there is a grasp transformation that does not have a solution, then
the robot will not be able to complete the task and the grasp is skipped. Otherwise,
the transformation is taken as the goal to feed the RRT planner. If destination goals of
the target are considered during the grasp selection process, every target destination
is checked for possible collisions with the target object, gripper and arm.

This grasp cycle is used each time that a robot needs to select a valid grasp to be
successfully executed by the robot platform. This approach using OpenRAVE has
been extensively used and validated [8–15]. In the following sections, we present
how we take this approach and apply it to more complex grasping tasks in order to
grasp unknown and familiar objects.

4.3 Grasping Known Objects: Using Uncertainty
Metric MOOM

This application is based on the known object approach, also known as Model-driven
grasping approach, which assume that a model of the objects exist. The models of the
objects are normally represented as triangle meshes obtained using high-precision
scanner techniques which are normally not available on mobile platforms. The goal
is to robustly identify the models and their configurations (position, orientation) in
the environment of a robot in order to apply the grasp knowledge from the models on
the real objects. Noise, uncertainty, occlusions, missing parts due to lack of texture
and restricted viewpoint make this a very difficult task.

We propose the Model-Object Overlap Metric (MOOM) between the recognized
model and the actual part of the object that is seen from the camera. The MOOM
constrains the grasp hypotheses computed on the full model by giving a lower weight
to those hypotheses that use unseen parts of the object. We show as well how the
MOOM can be used not only to select better grasp hypotheses but also to constrain
approach directions and the path planning space, thus reducing the amount of time



4.3 Grasping Known Objects: Using Uncertainty Metric MOOM 75

needed to find a successful grasp hypotheses without time consuming involving
reachability checks and collision free paths.

With the advent of the Microsoft Kinect providing dense 3D information, some
promising methods have been lately presented dealing with the problem of recog-
nizing objects in the world using 3D synthetic meshes as input for a training stage
[16, 17]. The recognition results can be used to guide a grasp planner to perform
operations on real objects using the precomputed grasp knowledge.

Still, the grasp planner assumes that the recognized model matches the reality
although we have no real evidence of that due to occlusions (hidden parts by the object
itself or by other elements in the environment) and moreover, the recognition results
could be wrong or undetermined. In order to better deal with these uncertainties, we
propose to effectively use the evidence of data to constrain the grasp hypotheses and
avoid those with less probability of being correct.

The work presented in this section is the result of a collaboration with Aitor
Aldoma,1 Walter Wohlkinger and Javier Felip.2 The advantages of the presented
method are three-fold:

1. It allows to deal with uncertainties of non-observed data but still makes use of the
assumptions taken by object recognition, which is less restrictive than symmetry
[3] or similar assumptions.

2. For on-line grasp planners, the MOOM can be used to speed up the computation
of successful hypotheses by pruning approaching directions to the object that
intersect parts of the model with lower MOOM.

3. Finally, it provides a metric to rank those grasp hypotheses with force-closure
according to online observations. Because grasp hypotheses are labeled as suc-
cessful or unsuccessful depending on force-closure, there is no real criteria to
decide which successful hypotheses should be actually executed, apart from
reachability and collision checks.

In the remaining of this section, we review similar model-driven grasping methods
and an object recognition technique to provide the pose of the 3D models in the
actual scene. We present how the MOOM is computed and how it is integrated in
the grasping pipeline. Finally, we present an experimental evaluation to demonstrate
how the metric can be used to improve speed and grasp accuracy on an online grasp
planner provided by OpenRAVE.

4.3.1 Related Work

Model-driven grasping is a well studied problem in the literature. There have been
several approaches relying on object recognition or similarity between objects to

1 Vision4Robotics Group, Automation and Control Institute, Vienna University of Technology,
Vienna, Austria.
2 Robotic Intelligence Lab, Universitat Jaume I, Castellon, Spain.
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transfer grasps between objects represented as 3D meshes [18] or from 3D mesh
models to real objects [19, 20].

More recently, there have been some interest in combining different strategies for
grasping. In [13], the authors use a probabilistic model to decide which is the best
object representation that can be used to grasp a real object: fitting primitives to the
partial point cloud obtained with the depth sensor, recognizing the object against a
database of objects and by estimating their pose applying known grasps or directly
computing grasp hypotheses in the mesh reconstructed from the partial view.

Brook et al. [21] present a similar approach to [13]. Instead of deciding which is
the best model representation to grasp the actual object, the method tries to reach a
consensus between all different model representations and the best grasp is selected.
The first object representation is a recognition-based representation obtained using
a matching algorithm based on a 2-dimensional matcher that iteratively aligns each
model in the database to the segmented cluster of the depth sensor. Because of the
simple recognition technique used, only objects rotationally symmetrical or stand-
ing in a known orientation can be recognized. The second object representation is
based solely on the segmented clusters obtained from the depth sensor and the grasp
hypotheses are computed using a set of heuristics.

There are several limitations in both [13] and [21]: (1) the set of heuristics used by
the grasp planner are not easy to port to more dexterous hands than the PR2 gripper
and (2) the recognition method is only able to recognize objects with very specific
constraints and does not scale with the number of objects. It is as well not trivial to
decide which representation should be ultimately used when no consensus is reached
between the different representations.

Therefore, we propose to strongly rely on the model representation obtained using
more advanced recognition methods but transfer the absence or presence of real
observations to the model representation so that the grasp planner can implicitly
use it.

4.3.2 MOOM: Model-Object Overlap Metric

In previous approaches, after recognition and pose estimation, the grasping pipeline
assumes that the recognized model matches the reality although we have no real
evidence of that, apart from the metrics obtained from the recognition module.

Why should the grasping pipeline throw away the valuable information from the
depth sensor after recognition? The main idea behind the computation is to encode
the real evidence of data in the mesh representation together with the recognized
object and pose so that all available information is provided to the grasping pipeline
to use it wisely.

The computation of the overlap metric is straightforward. Given a mesh M aligned
to a point cloud P representing the object—both in camera coordinates—the overlap
metric is computed by building an octree from P and finding the closest neighbour
for each vertex vi of M in the octree representation. Given pi ∈ P is the closest
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(a) (b)

Fig. 4.5 A closer look to a recognized mug. The colors of the mesh represent the overlap between
the segmented cluster (red dots) and the mesh. The color representation of the overlap increasing
from red (worse overlap) to blue (best overlap). a Colored object mesh (Omesh). b Colored convex
hull (Ohull )

neighbour of vi ∈ M, the overlap metric at vi is computed as follows:

O(vi , pi ) = 1

1 + ||vi −pi ||
Md

(4.1)

where Md represents the maximum distance considered for a point vi to overlap. We
use a value of 2 mm for Md in all experiments. The overlap metric inside the mesh
triangles is obtained by linear interpolation between the 3 vertices of the triangle
although it is not stored and always computed on the fly when needed.

We have used this overlap information at two different levels: (1) to sort the
approach directions so that those intersecting at points of the model with high MOOM
are preferred and (2) to check the quality of the force-closure grasps by computing
the overall MOOM of the contact points between the manipulator and the object.

Two meshes are used for this purpose: the complete object mesh and its convex
hull. Let M be the mesh aligned with the point cloud P and CM the convex hull
of M. For both, M and CM the overlap metric with P is computed obtaining two
colored meshes, Omesh and Ohull respectively. Ohull is used to filter and sort the
approach vectors and Omesh to check the quality of the grasp. An example of the
overlap metric for a recognized mug and its convex hull are shown in Fig. 4.5.

4.3.2.1 Overlap Metric for Approach Vectors MOOM(Ohull, p)

The overlap metric MOOM is used to find directions to approach the manipulator
to the object in areas with less uncertainty. Let p represent the contact point between
the object and the approach vector. The MOOM(Ohull , p) is computed to sort the
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(a)

(b)

(c)

Fig. 4.6 White bottle lying on the table. Without MOOM there is no implicit criteria to decide
which approach vectors should be tried first. a First 30 approach vectors retrieved by OpneRAVE
without MOOM. b First 30 approach vectors sorted using MOOM. c First force-closure grasp
hypothesis found with a MOOM(Omesh , P) higher than 0.5

approach directions so that those intersecting at points of the model with high MOOM
are preferred.

To sort the approach directions, Ohull is used to ensure that the algorithm will not
discard those approach vectors coming from the top in non-convex objects like mugs
or bowls. Additionally, to account for the table plane obstacle, each vertex vi ∈ Ohull

is reweighted according to its distance to the table plane by a factor fi computed as
follows:

fi =
{

1 d(vi , tp) ≥ mind
d(vi ,tp)

mind
otherwise

(4.2)

where tp represents the table plane, d(vi , tp) the point-to-plane distance from point vi

to the plane tp and mind the minimal distance to the table needed by the embodiment
to approach an object parallel to the table. In our case, we use a value of 10 cm for
objects higher than 10 cm, otherwise the maximum height of the object. Modifying
the overlap metric in this way, we enforce the planner algorithm to first test those
approach vectors that are more likely to provide a collision free path when trying to
reach the object (see Fig. 4.6).

4.3.2.2 Overlap Metric for Grasp Hypotheses MOOM(Omesh, P)

Once the grasp is simulated, the algorithm computes the overall overlap metric
MOOM of the contact points, which assign better rates to grasps whose contact
points are located on object areas with high overlap. Let P represent all contact
points between the object and the manipulator. The MOOM(Omesh, P) is computed
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Fig. 4.7 Grasp pipeline for grasping known objects using MOOM. Alterations of the referenced
pipeline (Fig. 4.4) are shown in red

by averaging the Omesh(pi ) where pi ∈ P resulting in a metric to rank the overall
quality of the grasp in relation to the observed data (see bottom of Fig. 4.6).

4.3.3 Grasping Pipeline

An overview of the grasp cycle is shown in Fig. 4.7. Given visual input from cameras,
the perception block is responsible for detecting an object, matching it to a known
model and estimating its pose. The prediction block takes in the object pose and
model and selects an appropriate grasp with high MOOM, reachable in the current
robot configuration. The selected grasp is then executed on the robotic platform.

4.3.3.1 Perception

Model-driven grasp approaches rely on object recognition and pose estimation to
apply grasps learned on a mesh to a real object. Grasp planners usually work with
triangle mesh representations of the objects to compute force closure grasp hypothe-
ses and therefore, we seek an object recognition method that can be trained on triangle
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Fig. 4.8 RGB-D image from the Kinect and recognition results overlayed. The mesh is overlayed
on the point cloud and colored according to the overlap between the segmented cluster and the mesh

meshes and yet recognize the objects obtained with a depth sensor like the Kinect.
This eases training as there is no need for several representations of the objects:
both perception and prediction pipelines can use the same models. Figure 4.8 show
an image of a example scene together with the reconstructed point cloud and the
recognition results overlayed.

We decide to use the Clustered Viewpoint Feature Histogram (CVFH) descriptor
and the recognition pipeline presented in [16] which has been shown to perform well
in similar scenarios. CVFH is a semi-global, view based descriptor composed by
several histograms based on angular normal distributions of the object surface. Even
though, we decided for this specific recognition pipeline, the rest of the approach
applies to any recognition pipeline able to match mesh representations to the real
world.

The mesh representation of the objects used for the experiments have been
obtained from different sources: simple objects like boxes or cylinders have been
manually modeled, other objects were obtained from the KIT Object Database [22]
and others were automatically classified using the Shape Distribution on Voxel Sur-
faces descriptor (SDVS [17]) and its scale was obtained using the pose alignment
method presented in [23]. Models obtained using the automatic method do not match
the real object completely, making the recognition and grasping task even more chal-
lenging. The decision of using models that do not match real objects completely is
motivated by: (1) it eases training as there is no need to the real objects to build a mesh
representation of it that can be used by the grasp planner and (2) it allows to show
how the overlap metric can be used to enhance grasping even in these challenging
scenarios where the 6DOF pose estimation will never be accurate due to differences
between model and real object.
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4.3.3.2 Prediction

We present two alternatives of how the overlap metric can be used depending if a
grasp hypothesis database is available or not.

Overlap metric without a grasp database. We use the grasping pipeline from
OpenRAVE. It includes a planner algorithm called fastGrasping which purpose is to
find the first feasible grasp for an object as fast as possible without generating a grasp
database. The approach vectors are generated taking the bounding box of the object
and sample its surface uniformly. The first intersection of the object and a ray origi-
nating from each point going inwards is taken and the normal of the object’s surface
at the intersection points is taken as the approaching direction of the manipulator.
These approach vectors are used to generate a set of grasps, using a combination of
predefined preshapes, stand-offs and wrist rolls. Each one of these grasps is tested
first for force-closure and second to be reachable by the robot manipulator in a trajec-
tory free of collisions with the environment. The first grasp to fulfill these conditions
is sent for execution to the robot.

We have modified this algorithm to include the overlap information to sort the
approach directions so that those intersecting at points of the model with high MOOM
are preferred and to check the quality of the force-closure grasps by computing the
overall MOOM of the contact points between the manipulator and the object (see
Algorithm 1).

Algorithm 1: OpenRAVE’s fast grasping with MOOM
input : Ohull , Omesh , robot
output: An executable grasp
begin

AV: = get approach vectors for Ohull ;
for each av in AV do

compute MOOM(Ohull , p) (see Sect. 4.3.2);

sort (AV); //in decreasing order;
for each approach vector do

test grasping object in the approach vector direction;
if grasp is “force closure” then

if grasp is reachable and collision free then
compute MOOM(Omesh , P) for grasp contact points;
if MOOM(Omesh , P) ≥ threshold then

send grasp for execution;
break;

Overlap metric with a grasp database. Algorithm 2 presents a variation of the first
algorithm when an off-line generated grasp database is available. It can be seen that
this kind of model-driven approaches can also take advantage of MOOM to increase
efficiency and robustness.
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Algorithm 2: Grasping with MOOM using a grasp database
input : Ohull , Omesh , robot, DB:= Database of force closure grasp for the given object and

robot
output: An executable grasp
begin

for each grasp in DB do
compute MOOM(Ohull , p) for approach vectors (see Sect.4.3.2);
compute MOOM(Omesh , P) for grasp contact points;

DB f iltered := filter(DB) for which MOOM(Ohull , p) ≥ threshold;
sort (DB f iltered ) by MOOM(Omesh , P); //in decreasing order;
for each grasp in DB f iltered do

if grasp is reachable and collision free then
send grasp for execution;
break;

4.3.4 Experimental Setup and Evaluation

In order to test and validate the method presented, we have compared the fast grasping
grasp planner from OpenRAVE with Algorithm 1. The plans have been executed
on a real robotic platform to validate whether the planned grasps were successful.
The selected platform in this case is the anthropomorphic torso Tombatossals (see
Sect. 3.3.5).

In the environment where the experiments are performed there is a table in front
of the robot that acts as a surface where the objects stand. The object set is composed
of several household objects of different shapes: boxes, cups, mugs, bowls, bottles,
duct tapes and fruits (Fig. 4.9). Although the grasp pipeline allows more than one
object at a time, to perform the grasping experiments, one single object is put on the
table in front of the robot in any position and orientation. The object position has to
be close enough to allow the robotic arm to reach and grasp the object. The presence
of a dominant plane in the scene is assumed to segment the object of interest.

The following metrics are captured for the different grasp planners for the evalua-
tion in order to measure improvement in both accuracy and computational efficiency:

• Grasp hypotheses tested: Percentage of grasp hypotheses checked on the simulator
until the first valid grasp is sent for execution to the real platform from all possible
grasp hypothesis generated by the planner. The total number of grasp hypotheses
is a combination of approach vectors, stand-offs, wrist rolls and preshapes.

• Time: Elapsed time by the grasp planner until a grasp hypothesis is sent to the
robot.

• Grasp success: Whether the final grasp execution was successful or not on the real
robot. This input is given by the operator: a grasp is considered successful if the
robot is able to lift the object, failure otherwise.

http://dx.doi.org/10.1007/978-3-319-01833-1_3
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Fig. 4.9 Object set used for the experiments. The objects are identified with their position in
the grid from top to bottom and left to right. This identifier is used on the experiment graphs
(starting at 0)

Fig. 4.10 Percentages of grasp hypotheses tested until the first feasible grasp can be sent for
execution

Figure 4.10 presents the percentage of grasp hypotheses tested from all generated
grasp hypotheses until a feasible one is found that can be sent for execution. It is
clear from the figure that the goodness of the grasp hypotheses using MOOM is much
higher than those from the standard planner which are randomly selected. Because
grasp hypotheses are generated from the set of approach vectors, the approach vectors
sorted using MOOM are found on collision free areas (see Fig. 4.6) and their overlap
tends to be high enough to be executed once the a force-closure grasp is found.

Figure 4.11 presents the time elapsed on the grasp planning until a feasible one is
found that can be sent for execution. Results confirm those from Fig. 4.10 although
it can be seen that for some objects (with ids 7 and 9), the MOOM planner needs
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Fig. 4.11 Average planning time for each object until the first feasible grasp can be sent for
execution for both (grasp plans taking more than 100 s are cut)

Table 4.2 Grasp success percentage for each planner. One trial per object

Planner Objects grasped successfully Success

MOOM 66.6 %

Default 46.7 %

more time to process less approach vectors. This is due to the fact that very bad grasp
hypotheses can be filtered much faster than those with a higher goodness.

Finally, Table 4.2 presents grasp success rates for both planners regarding exe-
cution on the real platform. From the figure it can be seen that the planner using
MOOM performs better than the standard planner—42.5 % of improvement—and
in average needs about 10 times less time to find the first feasible grasp. To obtain a
more representative evaluation, the objects are grasped again twice using the grasp
planner with MOOM. Figure 4.12 presents the results of this evaluation and it can
be seen the overall success rate is similar (2 % less). It is worth mentioning that
even though success rates are rather low in comparison to state-of-the-art grasping
techniques, we argue that there is a lot of room for improvement in our pipeline as:
(1) the model of the objects do not match completely the real objects and there are
no constraints on the objects or their configuration, (2) the first grasp found by the
planner is sent for execution and (3) our starting point is a standard planner with very
low success rates as seen in Table 4.2.
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Fig. 4.12 Grasp success rate for MOOM grasp planner using 3 trials per object

4.3.5 Discussion

We have presented the Model-Object Overlap Metric (MOOM) to incorporate infor-
mation obtained from the depth-sensor into the grasp planning process. We have
shown how MOOM can be incorporated at different stages and in different fashions
to conventional grasping pipelines to increase efficiency and robustness to errors
from recognition.

To better account for mismatches between simulation and reality, reactive grasp
controllers [24] could be activated to boost the grasp success rate. This and the imple-
mentation of MOOM in more advanced grasp planners are considered as possible
future works.

4.4 Grasping Unknown Objects: Using Symmetry Assumptions

In this section, the scenario of picking up unknown objects from a table top is
considered. To accomplish grasp and motion planning based on this information, the
idea of filling in the gaps in the scene representation is followed through predicting
the full shape of each object. We make use of the observation that many, especially
man-made objects, possess one or more symmetries. Given this, the simulator can
use an estimated complete world model under which it can plan actions or predict
sensor measurements.
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The work presented in this section is the result of a collaboration with Jeannette
Bohg,3 Javier Felip,4 Matthew Johnson-Roberson,5 and Xavi Gratal. A description
of the use of the simulator is presented here but a detailed description of the complete
approach can be found in [3].

4.4.1 Predicting Object Shape Through Symmetry

Psychological studies suggest that humans are able to predict the portions of a scene
that are not visible to them through controlled scene continuation [25]. A very strong
prior that exists in especially man-made objects is symmetry.

[26] showed that this symmetry can be detected in partial point clouds and then
exploited for shape completion. Planar reflection symmetry is defined as the case in
which each surface point P can be uniquely associated with a second surface point Q
by reflection on the opposite side of a symmetry plane. Furthermore, in a household
environment, objects are commonly placed such that one of their symmetry planes
is perpendicular to the supporting plane. Exceptions exist such as grocery bags,
dishwashers or drawers.

Given these observations, for our scenario we can make the assumption that objects
commonly possess one or several planar symmetries of which one is usually posi-
tioned perpendicular to the table from which we are grasping. By making these
simplifications, we can reduce the search space for the pose of this symmetry plane
significantly.

We follow a generate-and-test scheme in which we create a number of hypotheses
for the plane parameters and determine the plausibility of the resulting mirrored
point cloud based on visibility constraints. We bootstrap the parameter search by
initializing it with the major or minor eigenvector ea or eb of the projected point
cloud, which usually yields a good first approximation. Further symmetry plane
hypotheses are generated from this starting point by varying the orientation and
position of the eigenvectors as outlined in Fig. 4.13.

Given these symmetry plane parameters, the mirrored point cloud is determined
as follows and its visibility score is computed. We search for the global minimum in
the space of all scores that corresponds to a reflected point cloud with the smallest
amount of points that contradict the symmetry hypothesis. After the prediction of
the backside of an object point cloud, we create a surface mesh approximation to
support grasp planning and collision detection. In order to achieve that, the Poisson
reconstruction proposed by [27] is used.

3 Autonomous Motion Lab, MPI for Intelligent Systems, Germany.
4 Robotic Intelligence Lab, Universitat Jaume I, Castellon, Spain.
5 Computer Vision and Active Perception lab, KTH, Sweden.
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Fig. 4.13 A set of hypotheses
for the position and orientation
of the symmetry plane. ea and
eb denote the eigenvectors of
the projected point cloud. c is
its center of mass. αi denotes
one of the variations of line
orientation along which the
best pose of the symmetry
plane is searched. The (green)
lines at positions d j to d j+2
are three further candidates
with orientation αi
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Fig. 4.14 Grasp pipeline for grasping unknown objects using simetry assumptions. Alterations of
the referenced pipeline (Fig. 4.4) are shown in red

4.4.2 Grasping Pipeline

To emphasize the generality of the proposed approach, it was evaluated and demon-
strate it on two robotic platforms being either used at the Royal Institute of Technol-
ogy (see Sect. 3.3.5) or at the Universitat Jaume I (see Sect. 3.3.5). For the scenario of
grasping unknown objects from a table top, an overview of the grasp cycle is shown
in Fig. 4.14.

http://dx.doi.org/10.1007/978-3-319-01833-1_3
http://dx.doi.org/10.1007/978-3-319-01833-1_3
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Fig. 4.15 Example of convex hull decomposition of the generated triangular mesh

As a step prior to the shape analysis of an object and its grasping, the robot needs
to explore the scene and segregate potential objects from the background, returning a
segmented point cloud. For collision detection that is necessary for motion planning,
the simulator needs complete object models. In the case of unknown objects, an
approximate model has to be created on-line. Given the segmented point cloud which
only represents the visible part of an object, its backside can be predicted with the
method described in the previous section.

4.4.2.1 Convex Decomposition

The obtained object mesh has thousands of vertices which makes the collision detec-
tion process computationally expensive. To ameliorate this problem, we pre-process
the mesh using a library that was originally created by [28] and that is implemented
in OpenRAVE. It approximates a triangular mesh as a collection of convex compo-
nents as can be seen in the example shown in Fig. 4.15. This process takes only a
few seconds and drastically speeds up the grasp and motion planning.

4.4.2.2 Generation of Grasp Hypothesis

With the complete object shape as an input, a set of grasp candidates to be tested is
generated and evaluated in simulation. Using the default algorithm of OpenRAVE
to generate grasp candidates, the time to simulate all the corresponding grasps can
vary from few minutes to more than an hour. These execution times are acceptable
for objects that are known beforehand because the set of grasp candidates can be
generated off-line. When the objects are unknown, this process has to be executed
on-line and long waiting times are not desirable.

For this reason, we use two methods to reduce the number of approach vectors.
The first one, applied on the KTH platform, computes two grasp points as in [29].
To grasp the object at these points, there are an infinite number of approach vectors
on a circle with the vector between the two grasping points as its normal. We sample a
given number, typically between 5 and 10 of these between 0◦ and 180◦. Figure 4.16c
shows an example of the detected grasping points along with the generated approach
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(a) (b) (c)

Fig. 4.16 Example of the approach vectors generated for a spray bottle by (a) the OpenRAVE
grasper plugin, (b) the UJI proposed algorithm using the object’s centroid and (c) the KTH proposed
algorithm using the grasp points in blue

vectors. The second method, used at UJI, calculates the approach vectors in a similar
way only that the center of the circle is aligned with the object’s centroid and its
major eigenvector ea . Another circle, perpendicular to the first one, is added in order
to compensate the possible loss of vector quality due to the lack of grasp points.
Figure 4.16b shows an example.

Having the list of approach vectors reduced, the other parameters were also
adjusted for our purposes. As a hand pre-shape, we defined a pinch grasp for each
hand. The approach distance is varied between 0 and 20 cm. Finally, the roll is chosen
dependent on the two grasping points (such that the fingers are aligned with them)
or on the orientation of the circle on which the selected approach vector is defined.
Using these parameters, we were able to reduce the amount of time taken to generate
and save the set of grasp candidates to less than a minute.

4.4.2.3 Grasp Selection

The next step consists of selecting a stable grasp from the set of grasp candidates that
can be executed with the current robot configuration without colliding with obstacles.
This process is the same as for known objects described in Sect. 4.2.2.

After a suitable grasp and arm trajectory has been selected through simulation, it
is executed by the robot in an open loop procedure. If the robot successfully grabs
the object and moves it to the destination, the stable grasp is returned for execution
with the real robot. Otherwise, the next stable grasp from the set is tried.
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4.4.3 Experiments

The database we used for evaluating the point cloud mirroring method is shown in
Fig. 4.17. For each of the objects in this database, with the exception of the toy tiger
and rubber duck, we have laser scan ground truth.6 The test data was captured with
the KTH vision system and contains 12 different household or toy objects.

From all point clouds, we reconstructed the complete meshes based on the method
previously described. We used the two different values of 5 and 7 as the octree
depth parameter of the Poisson surface reconstruction. By limiting this parameter,
we enable mesh reconstruction in near real-time. With a tree depth of 5, the meshes
are more coarse and blob-like but less sensitive to noise in the point cloud and normal
estimation. With a depth of 7, the reconstructed surface is closer to the original point
set. However, outliers strongly affect the mesh shape and it is more sensitive to noise.

To obtain the ground truth pose for each item in the database, we applied the
technique proposed in [30]. It allows to register the laser scan object meshes to the
incomplete point clouds.

As a baseline, we reconstructed a mesh without mirroring. To do this, we applied a
Delaunay triangulation7 to the projection of a uniformly sampled subset of 500 points
from the original point cloud. Spurious edges were filtered based on their length in
2D and 3D. Furthermore, we extracted the outer contour edges of this triangulation
and spanned triangles between them which produced a watertight mesh. Figure 4.18
shows the result of this Delaunay based mesh reconstruction for the toy tiger.

To assess the deviation of the Delaunay meshes and the mirrored meshes from the
ground truth we used MeshDev [31]. As a metric we evaluated geometric deviation,
i.e., the distance between each point on the reference mesh to the nearest neighbor
on the other mesh. We applied the uniform sampling of the surface of the reference
mesh as proposed in [31] to calculate this deviation.

Figure 4.19 shows the mean and variance of the mesh deviation between the
ground truth mesh and the reconstructed meshes for all object orientations over all
objects. We can state that the mirrored point clouds are on average always deviating
less from the ground truth than the Delaunay based meshes. The average deviation
for the mirrored meshes over all orientations amounts to 7 mm.

We demonstrated the approach proposed in this paper on two robotic platforms.8

Figure 4.20 shows snapshots of the grasp execution in simulation on the predicted
objects and with the real robots on the real objects.

At KTH, several objects were placed on the table emphasizing the benefit of object
shape prediction for motion planning. Furthermore, it showed that the prediction
mechanism can deal with some occlusions. This is due to the enforced visibility
constraints. One of the main differences between the runs at UJI and KTH was the
resolution of the point clouds that is due to the use of camera systems with different

6 The ground truth object models were obtained from http://i61p109.ira.uka.de/
ObjectModelsWebUI/.
7 http://opencv.willowgarage.com
8 A video of the experiment can be found at http://youtu.be/jskDy2IfQr4.

http://i61p109.ira.uka.de/ObjectModelsWebUI/
http://i61p109.ira.uka.de/ObjectModelsWebUI/
http://opencv.willowgarage.com
http://youtu.be/jskDy2IfQr4
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Amicelli Burti Duck Green cup

Mango (l) Mango (s) Brandt Salt Box (l)

Salt Box (s) Salt Cyl. (l) Salt Cyl. (s) Spray

Toy Tiger Soup Can (s) Soup Can (l) White Cup

Fig. 4.17 The 12 Objects in the Database in varying poses yielding 16 data sets. Objects are shown
in their 0◦ position, i.e, with their longest dimension parallel to the image plane. Ground truth
meshes are existing for all objects except the toy tiger and the rubber duck

Fig. 4.18 Delaunay based Meshes of toy tiger in the following orientations: 0◦, 45◦, 135◦, 225◦

focal lengths. While the KTH point clouds usually consist of 40,000 points, UJI
point clouds contained around 3,000 points. However, a suitable mesh could still be
generated with the advantage of a lower runtime. When running the whole generate
and test procedure (with n = 6 and m = 5 yielding 35 hypotheses) on a single
core of an I7 CPU with 2.8 GHz, we achieved the following run-times: 16.46 s for
a point cloud with 39,416 points and 0.31 s for a point cloud with 2,100 points.
Please note that we have not exploited the possibility to parallelize this process yet.
These runtimes also show that downsampling the point clouds before mirroring can
speed up the shape completion without a big loss of precision. To investigate these
optimizations is considered as future work.
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Fig. 4.19 Evaluation of the
deviation between the Ground
Truth Mesh and (1) Mesh
based on 3D Point Cloud
only (Del), (2) Mesh based
on mirroring and Poisson
Surface Reconstruction with
Tree Depth 5 (Mir5) or (3)
with Tree Depth 7 (Mir7)
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4.4.4 Discussion

The technique proposed in this section is a first step towards bridging the gap between
simulation and the real world. The experimental results show that even if the object
model is not an exact representation of reality, it is close enough to enable the
simulator to try different grasp alternatives and select an appropriate one.

However, in the presence of strong occlusions the proposed method will most
likely fail to estimate the correct object surface. Among others, this is due to using
the eigenvectors of the point cloud projection as an initialization for the underlying
symmetry plane. This choice has been shown on the dataset to yield reasonable
estimates for the orientation of the symmetry plane. However, if the point cloud
represents only a minor part of the real object, then the eigenvector of this part
will not be close to the optimal symmetry plane of the real object. Also wrong
segmentations can lead to erroneous results. The dataset on which we quantitatively
evaluated the proposed method contains only single objects.

Another possibility is to keep the predicted object shape but explicitly take the
uncertainty about the reconstructed surface into account for grasp and motion plan-
ning. This could be done by for example avoiding placements of the hand in which
fingertip positions coincide with points of low plausibility. This approach is shown
in the following section.
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(a)

(b)

Fig. 4.20 Examples of the grasp performed by the simulated robot and the real one. a KTH platform.
b UJI platform

4.5 Grasping Familiar Objects: Using Task Constraints

In the previous approach, the object was considered to be unknown to the robot and it
was reconstructed based on symmetry assumptions. In this section, we start with the
assumption that the object is a familiar object, which means that it is geometrically
similar to a known model. The objective of this approach is to achieve autonomous
grasping of objects according to their category and a given task.

Recent advances in the field of object segmentation and categorization as well as
task-based grasp inference have been leveraged by integrating them into one pipeline.
This allows us to transfer task-specific grasp experience between objects of the same
category.

Robot grasping needs to be goal-directed. An autonomous robot needs to plan
and execute a grasp that affords next step of manipulation. For example, a robot shall
not grasp from the top of a mug when the task is to pour out the water, and shall
not grasp the handle of a knife if the task is to hand-over it. These semantic task
requirements constrains, in a complex manner, the planning and execution of each
grasp. The robot has to consider not only the hand pose, finger configuration, but
also the pose of the object, and its physical properties that determine if the object
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affords this task. Also, to firmly grasp an object for further manipulation, important
control parameters such as the grasping force have to be considered.

To parametrize such semantic task constraints in a deterministic manner is hard.
First, the task constraints can vary a lot with the task itself. For example, the constraint
of a hand-over task is to leave enough free-space on the object so that it allows re-
grasp. It is clearly described by a set of object and action variables that are different
from those that define the pouring task. In addition, this task description may also be
hand-specific. For example, human can apply power grasps to hand-over an apple,
but a robot may fail with the same grasp type simply because it has a larger hand. In a
nutshell, the grasping task space is a domain that involve many variables with high-
dimensionality and the good grasps depend heavily on the sensorimotor embodiment
of every individual robot platform.

Some recent work in the area [32, 33] proposed a fully probabilistic framework
for embodiment-specific representation of robot grasping tasks. It exploited strengths
of the graphical model, Bayesian networks (BNs) to encode the semantic task con-
straints on a multitude of task relevant variables including object, action and con-
straint features. Such a system encode the sensorimotor capability for each robotic
platform. The high-level symbolic variables such as task goals are naturally linked
to the low-level sensorimotor parameters such as hand configuration through condi-
tional probabilistic distributions. Once trained the model can be combined with the
probabilistic decision making where grasp plan and control can be performed through
inference even with noisy and partial observations. The framework has been shown
to successfully make goal-directed grasp planning in simulation environments.

Very few grasping systems have approached the problem of transferring grasp
experience between objects of the same category. Marton et al. [34] present and
demonstrate an approach similar to ours in that an object categorization system is used
in a robotic grasping framework. Furthermore, it combines 2D and 3D descriptors.
However, the category of an object is not used to infer a suitable grasp. Instead, a 3D
descriptor helps to narrow down the choice of categories to those of similar shape,
and then a 2D descriptor is applied to look up a specific object instance. One of the
grasp hypothesis associated to that object instance is then executed.

In this section, we demonstrate how integration of 2D and 3D cues for object
categorization can facilitate robot grasping. Specifically, we do not require exact
models of the object to be grasped. A model of the same category annotated with
grasp hypotheses is sufficient. Furthermore, we show how the detected category helps
to infer a grasp that is task-specific. The effectiveness of the approach is demonstrated
on the humanoid robot ARMAR-IIIa (Sect. 3.3.5) and on the Tombatossals robot
(Sect. 3.3.5).

This work is the result of my collaboration with several researchers: Dan Song,9

Jeannette Bohg, Marianna Madry, Javier Felip,10 Kai Welke,11 Martin Do, Markus

9 Computer Vision and Active Perception lab, KTH, SE.
10 Robotic Intelligence Laboratory, UJI, ES.
11 Humanoids and Intelligence Systems Lab, Institute for Anthropomatics, KIT, DE.

http://dx.doi.org/10.1007/978-3-319-01833-1_3
http://dx.doi.org/10.1007/978-3-319-01833-1_3


4.5 Grasping Familiar Objects: Using Task Constraints 95

Visual 
Scene 

Exploration

Object 
Segmentation

3D

Cue 
Integration

2D

Category

Segmented 
Image

Segmented
Point Cloud

Ranked 
Categories

Ranked 
Categories

Seed 
Point

Perception Categorization System

Task to be executed, 
Object to be grasped

User

Start

Grasp Execution

Graspable objects 
(model, pose)

Prediction

Selected grasp to Execute

Action

Grasp Selection Reachability 
testingGrasp Hypothesis

Grasp Hypothesis 
Database ranked 

with Task

Pose 
Aligment

Fig. 4.21 Grasping pipeline for graping familiar objects using task constraints. Alterations of the
referenced pipeline (Fig. 4.4) are shown in red

Przybylski, Walter Wohlkinger12 and Aitor Aldóma. A description focusing on the
use of the simulator is presented here but a detailed description of the complete
approach can be found in [4].

4.5.1 Grasping Pipeline

An overview of the proposed grasping pipeline is shown in Fig. 4.21. It is subdi-
vided into three major building blocks. Given visual input from stereo cameras, the
perception block is responsible for detecting an object and estimating its category
and pose. The prediction block takes in the object pose and category and infers a
ranked list of grasps according to a specific task. The best grasp is then executed on
the robotic platform.

4.5.1.1 Perception

Attention. The success of visual processing such as classification rate and reliability
of pose alignment strongly depends on the quality of the visual sensor data provided

12 Automation and Control Institute, TUW, AT.
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as input. Consequently, providing as detailed views of the objects as possible is ben-
eficial for all processing steps. The fixation of the objects involves mechanisms of
attention allowing to determine points of interest in the scene and mechanisms for the
execution of gaze shifts. Attention points are computed based on geometric informa-
tion. It is assumed that most objects are placed on flat surfaces thereby simplifying
the detection of interest points. We process the resulting 3D data using plane fitting
similar to [12]. After removing the detected support surface, the remaining 3D points
are clustered in an unsupervised manner using the growing neural gas method [35].
Each cluster center serves as a point of interest.

Segmentation. Once the previously detected points of interest are visible, we
can refine the preliminary 3D clusters. The object segmentation delivers both, a
segmented RGB image and a segmented 3D point cloud. Each kind of data encodes
different characteristics of the object that are complementary (see Figs. 4.22a, b).

Categorization System. We propose to fuse these different cues to achieve a more
robust object categorization. Specifically, we run two distinct object categorization
systems (OCS) in parallel of which one is processing 2D cues and the other 3D cues
only. To obtain a final category, the evidence provided by each system is merged
(see Fig. 4.22c). As complementary cues for an object category, we have defined
appearance (SIFT [36]), color (opponentSIFT [37]) and 3D shape [17].

Pose Alignment. Whether a grasp is suitable for an object of a specific category
and task, is highly dependent on the relative alignment between hand and object.
Therefore, we need to estimate the exact pose of the object in the scene. From the
previous categorization step, we are given a set of object prototype models of a
specific category that are most similar to the current object of interest. To determine
the best matching model from this set, we need to align each of them with the
segmented point cloud and compare the values of a similarity metric.

4.5.1.2 Prediction

At this point in the processing pipeline, we have the following information available
about an object in the scene: (1) its category, (2) the most similar object model from
a database and its estimated pose and (3) a specific task. Given this, our goal is to
infer a ranked list of grasps.

We approach this problem, by off-line generating a set of task-ranked grasp
hypotheses. This involves (1) the generation the grasp hypotheses and (2) their rank-
ing according to the task and the object’s category. In the on-line process, the most
similar object model and the given task serve as a look-up in this database to retrieve
the highest-ranked grasp. This is visualized in Fig. 4.21 in the Prediction block.
These building blocks are described in more detail.

Grasp Hypothesis Generation. This process is performed off-line using the grasp
planning method proposed by Przybylski et al. [38] with OpenRAVE and is based
on the medial axis transform (MAT) [39]. The MAT can represent arbitrary three-
dimensional shapes. It is constructed by inscribing spheres of maximum diameter
into an object’s shape, where each of theses spheres have to touch the object’s surface
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(a) (b) (c)

Fig. 4.22 Intermediate results of the categorization pipeline. The more saturated the green, the
more confident is the categorization. a Segmented object and seed point (red). b Reconstructed
point clouds. c Categorization results

at two or more different points. The object is then described as a set of spheres, where
each sphere has a position, radius and an angle between its centroid and the closest
object boundary point as parameters [40]. For the actual grasp planning process,
we sort the inscribed spheres into a grid structure with respect to their Cartesian
coordinates. Candidate grasps for a sphere in this grid are generated by estimating
the symmetry properties of the sphere centers in the query sphere’s vicinity. These
symmetry properties are then used to choose approach point, approach direction and
hand orientation such that the fingers can wrap around the object. Each candidate is
tested for stability using the common ε-measure for force-closure [41].

Task Constraint Model and Task Ranking. We model the conceptual task require-
ments for a given hand through conditional dependencies between the task T and
a set of variables including object features O , grasp action parameters A and con-
straint features C . This is captured in a Bayesian Network (BN). As described in
more detail in [32, 33], both the parameters and the structure of this BN are learned.
The necessary training data for this process is generated from a synthetic database
of objects on which grasps have been generated. Each of these object-grasp pairs
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Groups Name Dim Description

T task - Task Identifier
O obcl - Object Category

size 3 Object Size
A dir 4 Hand Orientation
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C coc 3 Center of Contacts

fvol 1 Free Volume

Fig. 4.23 The structure of the Bayesian network task constraint model for the ARMAR hand

is visualized to a human expert who labels it with one or more tasks that this grasp
would be suitable for.

After training, the BN encodes the joint distribution of all the variables.
Figure 4.23 shows the learned task constraint model. One of the object features,
object category obcl, is directly influenced by the task variable. This indicates the
importance of the object category information in determining its functional affor-
dance of grasping tasks, hence reinforces the importance of the object categorization
in the “perception” block.

Given this BN, we can then infer the conditional distribution of one variable
given observations of all or a subset of other variables. For example, we can infer
P(obcl|task) to decide on which object category the given task can be best per-
formed. We can also infer P(A|task, obcl) to provide grasp ranking given a task
and the category of the current object of interest.

Grasp Selection based on Object Category and Task. The result of the off-line
process provides the robot with databases of grasp hypotheses for each object anno-
tated with a task-probability. Given this, we can select the best grasp to be executed
on-line.

The perception part of the pipeline outputs the perceived objects in the scene with
their calculated poses in the environment and they are loaded into OpenRAVE. A task
is then specified by the user. The grasp hypotheses stored for that object are ordered
by their probability for the specific task. The best ranked hypotheses are then tested
to ensure that they are reachable under the current robot configuration and that the
robot trajectory is collision free. Once the best rated, reachable grasp hypothesis has
been determined, it is executed by the humanoid platform. Figure 4.24 shows an
example scene on which we illustrate the different steps of the proposed pipeline.
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(a)

(b)

(e)

(h) (i)

(f) (g)

(c) (d)

Fig. 4.24 Example of graping pipeline for a mug when the task selected is pouring, using the
humanoid Tomabatossals. a Example scene. b Visual exploration. c Object segmentation. d Object
recognition and alignment. e Categorized objects loaded in the simulator. f Grasp selection. g
Reachability test for the selected grasp. h Executing grasping. i Executing pouring task

4.5.2 Experiments

Our experimental setup features a scene which contains several object instances
of different categories placed on a sideboard. We consider objects of four different
categories: cars, bottles, mugs and hammers. The 2D OCS system was trained on two
object instances per category. For each object, RGB images were collected from eight
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(a)

(c) (d)

(b)

Fig. 4.25 Example grasp executions of grasps given different tasks using Tombatossals. a Hand-
over vesus playing. b Hand-over versus pouring. c Pouring versus hand-over. d Hand-over versus
tool-use

equidistant views around the object. For training the 3D OCS, seven car, eight bottle,
ten mug and five hammer models each in two scales were used. Eighty views per
model were generated. In [17, 42], each OCS is demonstrated for a much broader
class of categories. The restriction to only four classes in this work is due to the
extensive task-labeling process as well as to restrictions on the size and weight of
the objects to be grasped.

We are considering five different tasks: hand-over, pouring, dish-washing, playing
and tool-use labeled on 1956 stable grasp hypotheses for the 60 object models.
Since some hypotheses are good for multiple tasks, we have 2,166 training examples
in total.

We directly compared the execution of grasps on the same object in the scene given
different tasks using the two robot platforms: Tombatossals’ examples are shown in
Fig. 4.25 and ARMAR-IIIa in Fig. 4.26.

It can be observed that grasps for the task hand-over are usually top grasps that
leave a major part of the object uncovered. The grasps for playing, pouring, dish-
washing and tool-use are as expected oriented towards the functionality of the object
itself in relation to the task. Using ARMAR-IIIa for the dish-washing task, the best
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(a) (b) (c)

Fig. 4.26 Example grasp executions of grasps given different tasks using ARMAR-IIIa. a Hand-
over versus pouring. b Hand-over versus playing. c Pouring versus hand-over

ranked grasp on the mug is visualized in Fig. 4.27 (right). This grasp was however
not reachable in this scene and therefore the next best grasp for this combination
of object and task has been selected. It is very similar to pouring from this mug as
visualized in Fig. 4.27 (left).

4.5.3 Discussion

In this section, we presented a grasping pipeline that allows autonomous robot
grasping according to an object’s category and a given task. Several state-of-the-
art modules performing scene exploration through gaze shifts, segmentation, object
categorization and task-based grasp selection were integrated. We showed how this
allows the robot to transfer task-specific grasp experience between objects of the
same category. The effectiveness of the pipeline was demonstrated on two humanoid
robots.
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Fig. 4.27 Comparison of best ranked grasp for a mug according to the task pouring (left) or
dish-washing (right)

To increase the robustness of grasp execution, we have designed and implemented
an overcomplete pipeline where the task of different modules overlap. This holds for
attention, segmentation, categorization and pose estimation.

However, information in this pipeline only flows into one direction (from left to
right) without any intermediate failure detection. If this was the case, repeated exe-
cution of perceptual processes could be requested to improve the input to a module.
Furthermore, this repetition could be based on more information that was already
obtained in a later stage of the pipeline.

Another potential improvement of the robustness of the pipeline could be achieved
by not only executing the reaching motion in a closed loop manner but also the grasp
itself. From the perception block of the pipeline, we know the geometry of the object
quite well. This would allow us to adopt an approach similar to [43] for on-line
comparison of actual and expected tactile sensor readings and adaptation of the
grasp if necessary.

4.6 Dynamic Grasping Simulation

In this section, the challenge of developing the full dynamics simulation of a complete
robot is addressed, including the dynamics of the bodies, the actuation of the motors
and the simulation of the sensor readings.

In the context of grasping and dexterous grasping, simulation has been mostly
limited to replicating the kinematics and not the dynamics of the robot manipula-
tors. Dynamics simulation, which takes into account masses, forces, inertias, static
and dynamic frictions, and even elasticities and deformations, is a very challenging
problem, specially when it comes to considering the interactions between contacting
bodies. A large number of parameters, which are difficult to determine, affect the
dynamics behaviour of the involved parts.
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A complete dynamic simulation of a robot can be of great benefit for robotics
research. First, the simulation could replace the real hardware to the extent that
it reproduces the actual physical behaviour, which is of special importance in the
context of robot manipulation. Second, it can be used as an accurate prediction
engine that can help us to understand the effects of actions and be the base for
developmental learning. Additionally, if simulation accurately reproduces the real
sensor and actuator feedback, robots could automatically learn from low-level sensor
inputs without the erosion of real hardware.

There have been some attempts to create a simulation of robot dynamics [44]
described a method to optimize a set of simulation parameters using evolutionary
algorithms in the context of mobile robotics [45] studied how accurately the pushing
of flat objects across a table can be predicted by a physics engine adapting some of its
parameters to enhance the simulation [46] simulated planar grasping actions using
experiments to calibrate the system and then evaluating the results using a hand with
one degree of freedom. However, these simulations have been performed using very
simple and controlled experiments in order to reduce the complexity of dynamics
simulation.

The purpose of this work was to develop a complete framework using existing
tools to assess the suitability of simulation to serve as a surrogate for real robotic
grasping system in order to provide full dynamic simulation of manipulation tasks
in virtual scenarios.

Most importantly, three of the most representative manipulation tasks are selected
and implemented to compare the real behaviour with the simulated one. There has
been little work published about dynamics simulation of grasping, and what has
been done, performed experiments with very tight constraints. For this reason, the
proposed experiments are mainly focused on evaluating the simulation behaviour of
performing realistic robot manipulation tasks. These tasks are: object grasping and
lifting, in-hand manipulation and object pushing/sliding over a surface. The sensor
and actuator’s feedback has been recorded for both real and simulated systems,
comparing and analysing the results. Finally, we report the degree of success in each
of these experiments and the accuracy of the results obtained. This work has been
the result of my collaboration with Javier Felip13 and Higinio Martí.

4.6.1 Implementation

The real robotic platform used to validate the dynamics simulation is the UJI
humanoid torso Tombatossals (presented in Sect. 3.3.5).

13 Robotic Intelligence Lab, Universitat Jaume I, Castellon, Spain.

http://dx.doi.org/10.1007/978-3-319-01833-1_3
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Fig. 4.28 Control architecture used to test the dynamics simulation

4.6.1.1 System Architecture

The architecture that controls the system is separated in low and high level (Fig. 4.28).
The low level receives joint velocities, sends them to the motors and provides the
sensor data to the high level. It has been implemented in C++ and makes use of the
Robot Operating System (ROS) for inter-module communications. The simulated
robot implements its own low level system using exactly the same inputs and outputs
as the real robot low level system. Thus the upper layers can transparently run any
controller without knowing if the robot they are controlling is real or not. To validate
the simulation, several tasks were defined and exactly the same controllers were
executed on both the real and simulated systems.

4.6.1.2 Simulation

The simulated representation of Tombatossals was created to work with Open-
RAVE. The plugins and sensors created for the dynamics simulation are available
inside the robot manipulation toolkit OpenGRASP [47]. The physics engine used
is ODE through the plugin available in OpenRAVE. However, the collision forces
between the tactile sensors and the objects were calculated using the tactile sensor
plugin from OpenGRASP. This calculated forces were then applied to the colliding
bodies using ODE.

The geometrical representation of the robot was obtained from different sources
and modified to adjust it to the values of the real robot. The torso and the head CAD
models were created according to the measurements of the real robot. The models
of the Mitsubishi PA10 arms and the Barrett hand were taken from the OpenRAVE
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robot model database and modified to fit the exact model. Finally, the Schunk hand
CAD model was provided by the manufacturer.

Sensors

The tactile sensors were simulated using the developed tactile sensor plugin (Sect. 3.4)
for OpenRAVE available in OpenGRASP. The model of the tactile sensors consid-
ers soft contacts and a full friction description including stick-slip phenomena. The
sensor model consists of a surface contact patch described by the mesh of the contact
elements. Therefore, meshes with the appropriate geometry for each of the robot
tactile sensors were created. The parameters needed to adjust the model of the tactile
sensors were the static and dynamics friction, and the stiffness K . The cameras were
modelled using the camera sensors provided in OpenRAVE with the same intrinsic
parameters and position as the real cameras.

Actuators

The angular motors, available in the robot arm and hand joints, have been simulated
with the ODE controller provided by OpenRAVE. Each simulated servo-motor is
parameterized by the maximum speed, the maximum acceleration and the maximum
torque that the motor can apply. To control each motor, an interface to the ODE
velocity controller plugin has been developed to enable the simulated robot to receive
joint velocity commands from the controller through ROS, allowing the same control
messages to be used by both robots.

4.6.2 Experimental Setup

Three different manipulation tasks were used to evaluate the similarity between the
simulator and the real world. These tasks were selected to have different types of
interaction between the robotic hand and the manipulated object: grasping, in-hand
manipulation and sliding. For each manipulation task, a different object is used.
The experimental environment consists of the Tombatossals robot in front of a table
and next to a wall on its left. For these experiments only the left arm of the robot
(Fig. 4.29) was used.

The evaluation of the simulator is performed continuously alongside the execution
of each task. Data from each task is gathered at a constant rate. Each sample from
the real execution is compared with its corresponding from the simulated one. The
grasp task is executed five times while the sliding and the in-hand manipulation are
executed once.

http://dx.doi.org/10.1007/978-3-319-01833-1_3
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Fig. 4.29 Arm (A) and hand
(H) joints of the Tombatossals
right arm
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4.6.2.1 Manipulation Tasks

Grasp

This task consists of grasping a box (116×103×218 mm, 143 g), lifting it 10 cm and
placing it down again. The movement and transport primitives are basically devoted
to move the arm to the desired position. Meanwhile the grasp controller closes the
hand until a certain force is felt with the tactile sensors. The grasp is executed from
five different positions starting from a top grasp and rotating the hand around the
object towards a lateral grasp (see Fig. 4.30a).

Slide

This task consists of sliding an empty pizza box (320 × 370 × 55 mm, 263 g) from
the initial position to the target position 35 cm away as shown in Fig. 4.30b. The
slide controller looks for a first contact with the tactile sensors. While the contact
is detected the arm moves towards the target position. If there is too much force
detected the arm moves up and if the detected contacts disappear the arm moves
downwards until they are detected again. This behaviour continues until the hand
reaches the target position.

In-hand Manipulation

This task consists of swinging a wooden stick (60 × 530 × 16 mm, 370 g) that is
grasped by the robot. The starting setup is the robot holding the stick as shown in
Fig. 4.30c.
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(a) (b)

(c)

Fig. 4.30 Manipulation tasks: starting position. a Grasping. b Object sliding. c In-hand
manipulation

4.6.2.2 Metric Definitions

A set of metrics to evaluate the similarity between the simulator and reality has
been defined for each component of the simulated robot. The compared values are:
arm joint values, hand joint values, manipulated object position and tactile sensor
readings.

Joint Values

The joint values of the arm and the hand are logged to validate that the simulated actu-
ators behave like the real ones. Although the similarity may not be 100 % accurate,
a similar behaviour during all the manipulation tasks would be enough to conclude
that the simulator can be used to replace the reality in at least such conditions.

Tactile Sensor Readings

Comparing tactile sensor readings would not only provide the precision of the simu-
lated sensors but the difference between the instants of detection of contacts and the
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Fig. 4.31 Tactile sensor data with centroids during the grasping task. Left: Real. Right: Simulated

difference between the detected values. Figure 4.31 shows an example of the tactile
readings during the grasping task, the figure also depicts the centroid as red dots
on each tactile patch. As the variations in intensity are shown to be high, noisy and
do not give contact location information, we have used the centroids of the output
images from the tactile arrays to compare them.

Object Position

To verify that dynamics simulation of manipulation tasks is achievable, the interaction
between the robot and the simulated environment must be evaluated. Towards this
end, we have used the manipulated object position as a metric.

From the simulator, the object position is easily obtained given that the physics
engine provides its center of mass each time step. However, in order to get the object
position from the real execution, an object tracker is needed. The objects used in the
experiments have been modelled to use the model-based object tracker from VISP
[48]. This method is able to perform on-line object 6D tracking with enough accuracy
to validate the simulator results. The object position is placed in one of its corners
as shown in Fig. 4.30c. As the reference systems for the real and simulated object
are not the same, the variation relative to the object starting position is used as the
comparison metric.

4.6.3 Results

The analysis was performed from three different points of view: the execution results,
the concrete quantitative results for each task and the global quantitative results that
summarize how close the simulation was to reality.
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4.6.3.1 Execution Results

The experiments were successfully carried out for the different manipulation tasks
and pictures of the simulator and real executions can be seen in the Fig. 4.32. The
task executions for both platforms were recorded and they can be seen in the video
available at http://youtu.be/yCW3PDmIeOQ. Although the video is not showing
perfect synchronization with real execution, it shows that the results of the tasks are
very similar.

The executions in the real world lasted between 37 and 93 s. As the time step spec-
ified in the simulation needs to be small to get accurate results for the tactile sensors
(0.0001 s), the time taken to execute the simulation experiments was significantly
larger. They lasted between 10 and 30 min.

4.6.3.2 Quantitative Results

The results obtained for the real and simulated environment were compared using
the metrics explained in Sect. 4.6.2.2. As the duration for both environments is very
different, the times were recalculated as a percentage of the total duration time for
each experiment.

Grasp

The five grasp experiments were executed successfully. As an example, detailed
graphs for each metric are shown in Fig. 4.33 for the first grasp position. The arm and
hand joints show very similar behaviour as the controller for the real and simulated
environment is the same. In the tactile sensor graphs, it can be seen that the sensors
of the robot start to get feedback before the simulated ones. However, when both are
obtaining readings, the difference in texels is always less than 4 which allows the
controller the use of simulated and real sensor feedback in a similar way. The position
of the object recorded by the tracker has significantly more noise than the acquired
with the simulator. However, the results are very similar in all axes, especially in z
which was the direction of the object’s movement. The rotation of the object in this
experiments did not play a significant role which can be seen in the small variation
of the plots.

Slide

The graphs showing the results obtained while sliding the pizza box can be seen in
Fig. 4.34. The arm and hand joints gave similar results for both robots, as in the
previous experiments, therefore their graphs were omitted. The tactile sensors in the
case of the real robot, only show readings for the first sensor given that the hand was

http://youtu.be/yCW3PDmIeOQ
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(a)

(b)

Fig. 4.32 Pictures of the real and simulated robot executing the manipulation tasks. a Grasping.
b Sliding. c In-hand manipulation

slightly tilted towards that finger, then the pressure on the other tactile sensor was
not enough to produce feedback.

However, in the simulated case both sensors gave similar readings. In addition,
the real object is not rigid so it deformed when the fingers were in contact with the
box surface, a behaviour that is not modelled with rigid objects in the simulator.

The object position shows a slight variation. The difference is explained by a
lag which results from the simulated and real movements not occurring at the same
time. This lag can be explained with the results from the tactile sensors, where it can
be seen that the simulated sensor detected the contact before the real sensor which
produced the sliding movement to start earlier in the simulation.
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Fig. 4.33 Results for the first grasping experiment over time in percentage over the experiment
duration. Blue lines indicate the readings from the robot and red ones from the simulator

With respect to the object rotation, although the box slides, the movement of the
object is different. In the simulation, it rotates around 20◦ around its z axis, while
there is no rotation in the real execution.



112 4 Applications of Robot Grasping Simulation

Fig. 4.34 Results for the sliding experiment over time in percentage over the experiment duration.
Blue lines indicate the readings from the robot and red ones from the simulator

In-hand Manipulation

The results obtained by the in-hand manipulation of the wooden stick are shown in
Fig. 4.35. The arm joints remained static during the experiment and hand joints
showed similar behaviour as in the previous experiments, therefore both were
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omitted. The tactile readings show different results for the real and simulated case.
The thumb finger tactile hardly shows any reading for both environments, while the
other two sensors show higher readings in the simulated sensor than in the real one.
This can be explained by the difference in the sensitivity of the sensors. Neverthe-
less, for this experiment the tactile readings were not used by the controller and the
behavior was not influenced.

The object position and, specially the rotation in x , were the key measurements
used to determine how close the simulation was to reality. The object position shows
very different values. In the case of the simulation, it is near zero but for the real
object it moves several centimeters. This can be explained by the difference in the
object’s reference system. While in the simulator, the center of the object remains
more or less stable, in the real object the corner is the one that oscillates up and down
with the hand movement.

However, the simulated object rotation in x , which was the most relevant in this
experiment, shows a very similar behaviour to that of the real object. In the case of
the simulation, the object was undergoing a rotation in y which was not the same as
in reality, however the overall movement of the object remained very similar to the
real one.

The errors and standard deviations were calculated for each of the metrics over
all the experiments. The results can be seen in Fig. 4.36a. The arm joints presented
the greatest error in the slide experiment. This can be due to the lag between the real
and simulated executions that can be seen in Fig. 4.34.

The errors for the hand joints in Fig. 4.36b are in general higher than for the
arm joints but inside an acceptable range of 0.1 radians. The hand-closing controller
relies on tactile sensing, thus the detection of contacts is critical for the results to be
equal. The different timing that the contacts have shown (see Figs. 4.33 and 4.34)
may be the main cause for the hand joint error. An special case showed up in the
Grasp experiment #2 where the distal joint of finger 1 did not detect contact with the
object and continued moving while it was detected in the simulator execution.

The error in the object position (see dark blue column in Fig. 4.36c) is in general
below 2.5 cm. Regarding the rotation error, it is below 0.05 radians which is very
low. The special issues that rise up error, for the slide and in-hand manipulation task,
are explained in Sects. 4.6.3.2 and 4.6.3.2.

Finally the differences in the tactile sensor readings are depicted in Fig. 4.36d.
The mean error shows that although the tasks were completed successfully there
were significant differences in the tactile sensor readings.

4.6.4 Discussion

In this section, we have presented a complete dynamics simulation of a humanoid
torso robot. Moreover we have evaluated the extent to which the simulation resembles
the real behavior of manipulation tasks by using the same controller on the real and
the simulated platforms and analyzing the differences. The results have shown that
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Fig. 4.35 Results for the in-hand manipulation experiment over time in percentage over the exper-
iment duration. Blue lines indicate the readings from the robot and red ones from the simulator

it is possible to simulate manipulation tasks with the current state of the art of
simulation tools. Although the precision is not perfect, the framework is able to
perform manipulation tasks using the same controller as that used in the real world
with very similar results. Therefore, an important result is that with this framework,
it is possible to use simulated tactile data in manipulation task controllers that use
tactile feedback.

The main drawback is the duration that the simulator requires to perform the same
task as the real robot does, limiting its possible use as a prediction engine. However,
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Fig. 4.36 Aggregated error for all the experiments performed. Each group of columns represents
one experiment. a Arm joint errors (rad). Each column of a group represents the mean and stdev for
each joint of the arm during the experiment execution. b Hand joint errors (rad). Each column of a
group represents the mean and stdev for each joint of the hand during the experiment execution. c
Object position errors for all the experiments. Each first column of a group represents the translation
error in meters. The other three columns are rotation error in x, y, and z (rad). d Tactile sensor centroid
position errors (texels). Each column of a group represents the position error of the detected centroid
in texels for each finger

recent advances in parallelizing processes to improve the speed of simulations can
be a feasible solution to this issue. The parallel quickstep package available in ROS
provides an implementation in CUDA, OpenCL and OpenMP, which accelerates
the process of calculating each time step. Another challenging problem was the
parameter setting for the simulator, for which learning algorithms to find the right
parameters could be used.
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4.7 Conclusion

In this chapter, we presented several applications of the simulator towards achieving
autonomous robot grasping. We used several tools described in the previous chapter
which are included in the OpenGRASP framework. It is demonstrated how grasp
simulation is a key tool for constructing a world model, understanding the robot
environment and predicting robot actions.

Using the simulator to replicate the kinematics of the real platform, we show
how it can be used to select an appropriate grasp and plan its trajectory in order to
successfully grasp objects that are unknown or familiar to the robot. We presented
the Model-Object Overlap Metric (MOOM) to incorporate information obtained
from the depth-sensor into the grasp planning process and shown how it can be
incorporated at different stages and in different fashions to conventional grasping
pipelines to increase efficiency and robustness to errors from recognition.

For unknown objects, we reduced the search space for the optimal symmetry
parameters through a good initialization, and we demonstrated the applicability of
the predicted object meshes in a service robotic scenario by supporting execution in
the real-world with grasp and motion planning in simulation.

Also, we presented a grasping pipeline that allows grasping according to an
object’s category and a given task. Several state-of-the-art modules performing scene
exploration, segmentation, object categorization and task-based grasp selection were
integrated. We showed how this allows the robot to transfer task-specific grasp expe-
rience between objects of the same category. The effectiveness of the pipeline was
demonstrated on two humanoid robots.

Additionally, we demonstrated how to achieve a complete dynamic simulation of
a humanoid robot using the developed toolkit. We have evaluated the extent to which
the simulation resembles the real behavior of manipulation tasks by using the same
controller on the real and the simulated platforms and analyzing the differences.

Although robots are still far away from being capable of human-level manipula-
tion skills interacting in uncertain real-world environments, using the simulator as a
prediction engine as demonstrated in this chapter, can help to achieve autonomous
robot grasping.
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Part II
Human Grasping Simulation



Chapter 5
The Model of the Human Hand

5.1 Introduction

Most of human mechanical interactions with the surrounding world are performed
by the hands. They allow us to perform very different tasks; from exerting high
forces (e.g. using a hammer) to executing very precise movements (e.g. cutting with
a surgical tool). This versatility is possible because of a very complex constitution: a
great number of bones connected through different joints, a complicated musculature
and a dense nervous system. This complexity is already evident from the kinematics
point of view, with more than 20◦ of freedom (DOF) controlled by muscles, tendons
and ligaments.

Mathematical representations are used in order to perform qualitative or quanti-
tative analyses on this complex reality. These representations are known as biome-
chanical models of the hand. In biomechanics, their use allows studying problems
that cannot be analysed directly on humans or that have an experimental cost that is
too high; e.g. the study of new alternatives for restoring hand pathologies. Biome-
chanical models are a description of the hand as a mechanical device: the different
elements of the hand are defined in terms of rigid bodies, joints and actuators, and
the mechanical laws are applied. As they are simplified mathematical models of the
physical entity, their use and validity depend on the simplifications considered.

While one of the main features of the human hand is its grasping capability, the
current models have a very limited ability for its simulation. All the effort in biome-
chanics has been focused on appropriately modelling the different hand components
(kinematics, muscles, tendons, etc.). Little effort has been spent on the formulation
of the grasping problem when using a biomechanical model. In this sense, many
limitations persist. Current models do not allow the estimation of the contact infor-
mation required to use biomechanical models for simulating the grasping of objects.
Forces and zones of contact still need to be measured experimentally and input to
the model.

Robot hand grasps have been extensively studied for years. Although until 2000
little attention was paid to human hand grasping, this too has become a hot topic in
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robotics. In this sense, although the human hand is obviously more complex than
robot hands, the methods used in robotics might be adopted to study the human grasp
by considering the hand as the human end-effector.

Furthermore, much research has been carried out on animation techniques over
the past years, mainly for use in developing computer games. Lately, these advances
have been cleverly used by some ergonomics researchers to develop improved graph-
ical and kinematics hand models for evaluating the use of products [1–4], with good
results.

A promising research area lies ahead with scientist, aiming to obtain a more
comprehensive model of the hand, integrating knowledge and developments from
the fields of biomechanics, ergonomics, robotics, and computer animation.

5.2 Literature Review

5.2.1 Biomechanical Models of the Hand

Over the years, biomechanical models of the hand have been developed for differ-
ent purposes. Some of them tried to study the functionality of different anatomical
elements with the aim of gaining a deeper understanding of the causes and effects of
many hand pathologies. These are usually very simplified (mostly two-dimensional)
kinematic models (sometimes dynamic) that are used to perform qualitative analyses
[5, 6]. Others were developed to help in medical planning and surgery for patients;
they are usually dynamic models and are used to perform quantitative analyses, such
as the study of the tendon excursions in the medical planning of tendon transfers [7]
or to study the nerve stimulation required to restore the grasping ability in muscu-
lar dysfunction patients [8]. Yet others studied the hand while performing specific
tasks with different aims, so as to have approximate values for the articular forces
for testing prosthetic designs [9]. These too are quantitative analyses performed on
dynamic models.

Recent models do not differ much from the ones developed before 2000 [10–26].
All models present a similar configuration. The kinematics are modelled without
considering the restraining structure, just the resultant physiological articular move-
ment. The concept of the instantaneous centre of rotation has been used to define an
axis of rotation in joints with a single predominant DOF. Much effort has also been
spent on finding the rotation axes of joints with two DOF [27], through the consid-
eration of a virtual link connecting the axes [28]. Thus, all works use fixed axes of
rotation; depending on the joint, one or two axes of rotation are considered. This
approximation has been found to be good enough for most of the cases, particularly
if there is no interest in analysing the role of the articular soft tissue or the articular
stresses [29].

All works in the literature consider the ideal case of a non-friction belt around
a pulley to model the tendons crossing the joints. Therefore, the tensional force
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on a tendon is the same along its pathway if no split or connection to other ten-
dons exists. The most-used approach to model tendon action on the joints considers
the tendon freely running when crossing the joint between two points attached one to
the proximal segment of the joint and the other to the distal segment. This approach is
the basis of the first serious attempt to develop a 3D normative model of the hand [30],
in which the position of the tendons with respect the bone segments were obtained
from the measurement of 10 fresh cadaveric specimens.

Most of the works in the literature use Hill’s model to account for the muscles’
mathematical modelling. This simple model allows the consideration of the three
main parameters, i.e. muscle activation level and variation of the maximum deliver-
able muscle force with muscle length and muscle contraction velocity.

Finally, the dynamic equilibrium equations lead to an indeterminate system of
equations, with more unknowns (muscle forces) than available equations. Inequality
constraints taking into account the maximal forces that may be delivered by each
muscle and that tendons cannot support compressive forces have to be considered
as well. The problem is usually solved by minimising some cost function. Different
functions have been investigated, most of them without any physiological basis.
The most often used criterion is the minimisation of the sum of the squared muscle
stresses, which has been related to the maximisation of fatigue resistance [31].

5.2.2 Hand Models in Ergonomics

Ergonomics, according to the International Ergonomics Association, is “the scien-
tific discipline concerned with the understanding of interactions among humans and
other elements of a system, and the profession that applies theory, principles, data
and methods to design in order to optimise human well-being and overall system
performance”. Hand models in ergonomics are used to simulate postures adopted
while grasping objects with different purposes. One of the main goals of physical
ergonomics is the study of the size and shape of objects according to the anthropom-
etry of the different people that have to interact with them. Thus, the main feature
of a model for ergonomics is that it has to allow representing different populations
and percentiles. People having hands of different sizes and proportions will adopt
different postures in grasping the same object for the same functions. For example,
pressing a button on a phone with the thumb while holding it with the same hand can
be easily achieved for a specific hand size while maintaining the grasp. However,
other people with different a size of hand will need to change the grasping posture
to press the button. This is a typical problem of reach that needs to be solved in
ergonomic assessment.

In recent years, virtual humans have been incorporated into the design process
for ergonomic assessment of different types of products, mainly in the aerospace
and automotive industry but also in others like product design, task simulation,
personnel training or simulation of other worker environments [32, 33]. Several
commercial software programs such as Jack, RAMSIS, HumanCAD, Safework and



126 5 The Model of the Human Hand

SantosHuman are available and other studies have been conducted on digital human
models such as SAMMIE [34] or the Boeing Human Modeling System for the same
purposes. A virtual human in these packages is defined as a kinematic chain com-
posed of a number of rigid links connected by joints. These joints have the DOF and
allowable motion limits corresponding to the anatomical joint of the human being.
Direct and inverse kinematics is incorporated into the models so they can replicate
human body movements and also evaluate forces acting on joints. Moreover, differ-
ent populations and percentiles may be selected for the size of the model, usually
from known anthropometric databases. With these capabilities the problems of reach
and clearance typical in ergonomics may be solved easily. Other useful capabilities
of these models are the simulation of the sense of sight with virtual cameras located
in the eyes or the possibility to change any particular parameters of the model, like
dimensions of limbs or motion limits of some joints, in order to simulate a particular
person or disability. However, the majority of these models focus on the whole body
and do not pay attention to the accuracy of the hand model. Most of them just incor-
porate a list of hand postures (grasping or others) to be chosen, i.e. direct kinematics,
but do not allow for example inverse kinematics for the joints of the hand, even
when it is incorporated for the other joints of the body. In recent developments some
attempts to improve the hand model incorporated into some programs have been made
[35, 33].

Another important aspect of hand models for ergonomics is associated with the
study of musculoskeletal disorders. Early epidemiological studies [36] showed that
the use of hand tools with an improper design for the worker or the task could lead
to a high risk of developing cumulative hand trauma disorders (CHTD). The fac-
tors influencing the development of CHTD have been reported in different works
[37–41] and different methods have been used in these studies: epidemiological
studies, physiological measurements (electromyography activity, pressure in tissues,
posture of hand and wrist, tactile sensitivity), biomechanical models of hand and
wrist structures and psychophysical assessments. These studies report that CHTD
are associated with repetitive tasks, high forces, extreme or awkward postures of
hand and wrist, velocity and acceleration of wrist motions and exposure time,
among others. Different theories of injury development have been proposed [42].
All of them assume that CHTD and other musculoskeletal disorders are of bio-
mechanical nature. Therefore, biomechanical hand models able to predict move-
ments, postures and internal forces of hand and wrist structures can be used to assess
the risk of developing CHTD. Tendon excursions or maximum gripping strength
have been used as indices in different works to assess gripping posture for health
[20, 43].

None of the reported biomechanical models of the hand for ergonomics accounts
for all requirements, although some attempts have been made. [43] have developed
a scalable kinematic model of the hand with simple geometry (cones and cylinders).
The model includes a posture prediction algorithm for fingers that reproduces in a
high percentage the angles of the observed postures and is able to compute tendon
excursions and wrist movements. The model is used to assess how much space is
required for hands in an assembly task and to calculate the risk of CHTD from tendon
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forces and hand strength. Another group of researchers [1, 2, 4] have developed a
scalable digital hand model with an accurate shape of the hand that includes a semi-
automatic grasp planning function with robotics indeces of quality. The model incor-
porates a “comfort database” obtained from experimental measurements to assess
comfort of postures and is used in the assessment of physical interaction with elec-
tronic appliances.

5.2.3 Grasping in Robotics

For many years the robotics community has been studying the autonomous handling
of objects by robots, which is the main focus of the first part of this book. As presented
in Chap. 2, a grasp is commonly defined as a set of contacts on the surface of the
object. A contact model should be defined to determine the forces or torques that the
robot manipulator must exert on the contact areas. The force applied by a finger at
a contact point generates a wrench on the object with force and torque components.
The contact model maps the wrench at some reference point of the object, usually the
centre of mass. The most common contact models used in robotic grasping are the
point contacts with and without friction and the soft-finger contacts (see Sect. 2.2.2).

After establishing the contact model, it can be used to study tasks involving
multiple contacts. The set of contacts defining each grasp can be analysed in order to
test its ability to resist disturbances and its dexterity properties. The grasps that can be
maintained for every possible disturbing load are known as closure grasps. However,
there is usually more than one grasp that fulfils this condition. Many grasp quality
metrics and approaches have been proposed to evaluate the dexterity of the selected
grasps and determine which one is the best to be executed. They are reviewed in the
following chapter.

Two main problems can be distinguished in robotic grasping: analysis and syn-
thesis. Grasp analysis (Sect. 2.3) consists of determined whether the grasp is stable
using common closure properties, given an object and a set of contacts. Then, a
quality measure can be evaluated in order to enable the robot to select the best grasp
to execute. On the other hand, given an object, grasp synthesis algorithms should
provide a suitable set of contacts on the object surface and determine an appropriate
hand configuration (Sect. 2.4). Usually they take the geometry of the object as an
input to select optimal force-closure contact locations or whole regions that yield
force closure. These contacts are the starting point for grasp analysis and dexterous
manipulation methods.

Despite many years of research and all the advances we have reviewed, the robotics
community is still not able to build a manipulator with similar capabilities to the
human hand. The robot hands constructed until now are only simplifications, given
the complexities not only at the sensor and actuator level, but also at the control
level.

http://dx.doi.org/10.1007/978-3-319-01833-1_2
http://dx.doi.org/10.1007/978-3-319-01833-1_2
http://dx.doi.org/10.1007/978-3-319-01833-1_2
http://dx.doi.org/10.1007/978-3-319-01833-1_2
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5.3 Hand Model Proposed for the Study of Grasp

Based on the literature review, current hand biomechanical models allow estimating
the muscular patterns required to perform a movement while counteracting a system
of external forces. But their use for studying object grasping is limited. On the one
hand, biomechanical models lack realism for assessing the use of handheld products
from an ergonomics point of view. Hand models in ergonomics have reached a
high level of realism but do not allow for mechanical analyses. On the other hand,
biomechanical models are not self-contained, as they need contact information to
be input to the model. Current models do not allow predicting grasping postures
nor evaluating contact forces and zones, much less predicting the movements while
grasp planning. Quality grasp measures in robotics allow comparing different robotic
grasping postures and could be adapted to human grasping.

A detailed description of our approach used to model the different components
of the hand is provided in the following sections: joints-kinematics, muscles, liga-
ments and passive tissues, skin, contact with objects and neuromuscular control. The
features that we require in order to create a model are:

• The model has to simulate the complete hand in order to allow the study of any
grasp.

• The model has to be scalable to allow the simulation of different population groups.
• The model has to simulate and show the grasping of an object in a realistic way.
• The model has to estimate the muscular patterns required to perform a movement

while counteracting the system of external forces that define the object manip-
ulation. Furthermore, the model has to estimate the articular forces at the hand
joints.

• The model has to be dynamic in order to allow the study of any grasping task (slow
or fast) during the object manipulation process.

• The model has to predict feasible grasping postures for a given object and provide
the contact information required for evaluating the grasp.

• The model has to incorporate quality grasping measures for evaluating the grasp.

5.4 Anatomy of the Hand: Terminology

In this section, a brief description of the anatomy of the hand is presented in order
to lay down the basic terminology for the following sections describing the biome-
chanical model.

The human hand has 27 bones divided into three groups: 8 carpal bones in the
wrist, 5 metacarpal bones, and 14 phalanges in the fingers [44]. There are three
phalanges for each digit and two for the thumb, which are labeled proximal, middle
and distal phalanges (with the middle one missing in the case of the thumb), accord-
ing to their positions and become progressively smaller. There are four jointsin each
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Fig. 5.1 Bones and joints of the right hand (palmar view)

finger, in sequence from the proximal to distal: carpophalangeal (CMC), metacar-
pophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal
(DIP) joints (see Fig. 5.1).

The muscles producing movement of the fingers are divided into extrinsic and
intrinsic based on the origin of the muscles. The extrinsic muscles originate primarily
in the forearm, while the intrinsic muscles originate primarily in the hand. The
extrinsic muscles are divided into flexors found primarily on the anterior forearm
and extensors found primarily on the posterior forearm. Both set of muscles insert
on the carpal bones, metacarpal or phalanges. The intrinsic muscles are divided into
three groups: the thenar, the hypothenar and the midpalmar muscle groups. Details
of all these muscles of the hand can be found in [44].

The standard terminology to identify the relative position of the hand elements,
according with the three spacial directions, is shown in Fig. 5.2. Additionally, the
nomenclature used to describe the different movements that the hand can perform
are graphically described in Fig. 5.3.

5.5 Biomechanical Model

A previously-validated 3D, scalable, biomechanical model of the complete hand
[18–21] has been adapted. The existing biomechanical model was developed in a
scalable way, choosing two well-known anthropometric parameters of the hand: the
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Fig. 5.4 Parameters used to scale the model: HL (hand length) and HB (hand breadth)

of the hand size. The parameters are shown in Fig. 5.4. It enable us to define the
kinematics of the hand according with the hand parameters (Sect. 5.5.1) and to
estimate the muscular patterns required to perform movements while counteracting
external forces (Sects. 5.5.2 and 5.5.3). But in this work, we have adapted this model
to use it for studying object grasping. We added a contact model (Sect. 5.5.4) to obtain
the contact information needed as input to the evaluation of contact and muscle forces
required for grasping an object. We have also implemented several grasp quality
measures, which also use this contact information to compare different grasping
postures. This is a major part of our work, therefore it is described in detail in the
following chapters (see Chaps. 6 and 7). Additionally, we have also added a realistic
geometry of the skin (Sect. 5.5.5) in order to more accurately provide the required
contact information for evaluating grasp.

The model was implemented on the platform used for robotic grasp simulation
described in the first part of this book. The model uses the robotics platform capa-
bilities to perform the analysis of grasping (see Sect. 5.6).

5.5.1 Kinematics

The coordinate systems used to define the model were chosen following the ISB
recommendations [45] for the shoulder, elbow, wrist and hand (see Fig. 5.5). The
hand model considers 23◦ of freedom (DOF) selected to realistically simulate the
hand movements. The hand has been considered as five skeletal open chains of
rigid bodies connected to the carpus through different joints which characterise the
kinematic behaviour of the chains.

Distal and proximal interphalangeal (DIP and PIP) joints of the fingers as well
as the interphalangeal (IP) joint of the thumb are trochlear joints, capable only of
flexion/extension movements [27]. These joints are modelled as one DOF joints by
means of defining a rotation axis connecting the adjacent phalanges (hinge joint).

http://dx.doi.org/10.1007/978-3-319-01833-1_6
http://dx.doi.org/10.1007/978-3-319-01833-1_7
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Thumb and finger metacarpophalangeal (MCP) joints are condylar joints, capa-
ble of flexion/extension and abduction/adduction movements [27]. The thumb car-
pometacarpal (CMC) joint is a saddle joint, capable also of flexion/extension and
abduction/adduction movements [27]. All these joints are modelled as two DOF
joints by defining two axes of rotation connecting the adjacent segments. In reality,
the axes are neither intersecting nor orthogonal [27], so that a virtual link can be
used to connect both axes [28]. However, these joints have been modelled as univer-
sal joints with orthogonal and intersecting axes for simplicity. This is an important
aspect to improve in future work.

Finally, the hand model allows the arching of the palm by modelling the CMC
joints of the little and ring fingers. These joints are arthrodial joints, with a very
limited range of movement [46]. They have been modelled as one DOF joints by
means of defining a flexion/extension axis of rotation connecting the carpus to each
metacarpal. Due to the important role that the shape of the palm plays in grasping,
this model is considered more suitable for grasping simulation than others in the
literature.

The data for the location and orientation of the rotation axes comes from
[30, 47, 48]. Axes data and link lengths are fully scaled with respect to the hand
length and hand breadth [49]. Upper and lower limits for the joints have been obtained
from [50, 51] and are shown in Table 5.1.
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Table 5.1 Angles defining the upper and lower limits for each joint (◦)

Fingers CMC CMC MCP MCP PIP DIP
Flex. Abd. Flex. Abd. Flex. Flex.
− + − + − + − + − + − +

Thumb −25 35 −30 60 −10 80 −30 60 −15 80 – –
Index – – – – 0 90 −15 42 0 100 −10 90
Middle – – – – 0 90 −8 35 0 100 −10 90
Ring 0 15 – – 0 90 −20 14 0 100 −20 90
Small 0 30 – – 0 90 −40 19 0 100 −30 90

Fig. 5.6 Relaxed human hand
posture

In order to study the forward and inverse kinematics of the hand, the Denavit–
Hartenberg method from the robotics field [52] was adapted to define the position of
any segment point.

5.5.1.1 Relaxed Human Posture

The position in which all muscles of the hand do not work is known as the hand
relaxed posture. This posture is useful to measure the comfort of a given grasp (see
Sect. 6.3.4). [53] experimentally determined different relaxed hand postures varying
the pronation and flexion degrees in the shoulder joint. We used the results of the
hand posture when the shoulder is at 0◦ in pronation and flexion which is the most
similar to the grasp postures used later in this work. The angles in degrees used to
define this posture (see Fig. 5.6) are shown in Table 5.2.

5.5.2 Musculo-tendon Action

Muscles and tendons control the movement of the skeletal chains. Muscles have
been considered using a simple Hill three-component model (Hill 1938) that takes

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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Table 5.2 Angles for the relaxed hand posture (◦)

Fingers CMC CMC MCP MCP PIP DIP
Flex. Abd. Flex. Abd. Flex. Flex.

Thumb 0.0 0.0 46.1 0.0 8.5 –
Index – – 28.4 0.0 25.5 13.1
Middle – – 32.8 0.0 30.1 12.7
Ring 2.0 – 24.7 0.0 34.5 11.7
Small 5.0 – 16.6 0.0 32.1 15.6

Fig. 5.7 Hill’s three-
component model for the
muscles

CE

α

SEE

PEE

into account the muscle activation level (α) and the force-length and force-velocity
relationships, as well as the different index of architecture of muscles. The model
considers a contractile element (CE), which is the basic component that generates
force, a parallel elastic element (PEE), which is responsible for the passive force
generated by the muscle when it is stretched, and a series elastic element (SEE), the
muscle tendon unit, which has been considered to be inextensible (Fig. 5.7).

The force a muscle can exert depends on the actual muscle length and contraction
velocity. It is widely accepted [54] that the maximum force a muscle can exert in
optimal conditions is proportional to its physiological cross-sectional area (PCSA):

Fmax = PCSA · Smax (5.1)

where Smax is the maximum stress the muscle can bear, which has been considered
the same for each muscle [54].

The strain of tendons is insignificant for the magnitude of forces developed by
the muscles [55]. Under this consideration, the SEE has been considered to be inex-
tensible, so that the force the muscle exerts (F) can be written as:
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F = Fmax (FCE + FPEE) (5.2)

where FCE and FPEE are the normalised forces delivered by the CE and PEE, respec-
tively.

The force exerted by the muscle can be decomposed into an active and a passive
force corresponding to the forces delivered by the CE and PEE, respectively. The
force delivered by the CE is related to the muscle architecture and is a function of
the muscle length lC E , the contraction velocity vC E , and the muscle activation level
α (from 0 to 1), which is controlled by the central nervous system [56]:

FC E = α · Fl(lC E ) · Fv(vC E ) (5.3)

where Fl and Fv are the non-dimensional force-length and force-velocity relation-
ships.

A characteristic bell-shaped curve exists between force and length of the muscle.
To model this dependence, the expression proposed by [56] has been used:

Fl(ε, ia) = e
−

[
(ε+1)

0.96343·(1− 1
ia

)−1.0
0.35327·(1−ia )

]2

for ia < 1 (5.4)

Fl(ε, ia) = e−[2.727277·ln(ε+1)]2
for ia = 1 (5.5)

where ia is the muscle architecture index, defined as the ratio between the muscle fibre
length and the muscle belly length, and ε is the muscle strain due to its lengthening
from lo, the muscle length for the optimal conditions.

The force a muscle can exert decreases when the contraction velocity of the muscle
fibres increases. To model this dependence the expression proposed by [57] has been
used

Fv(η̇) = 0.1433

0.1074 + e−1.409·sinh(3.2·η̇+1.6)
(5.6)

where η̇ is the normalised contractile element velocity, given by the ratio between
the lengthening velocity of the muscle (ε̇), and its maximal value (ε̇max ).

The force generated by the PEE is a function only of its length. An exponen-
tial relationship has been considered in this case [13, 56], with b1 and b2 muscle
dependent constants:

FP E E = b1 · eb2·ε − b1 (5.7)

The scalability of the muscular action is achieved by scaling the PCSA of the
muscles with respect to the product of hand length and hand breadth parameters [21]
from their values for H L = 18.22 cm and H B = 8.00 cm.

PC S A(H L , H B)

PC S A(H L, H B)
= 1 + 0.01333 · (H B · H L − H B · H L) (5.8)
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Table 5.3 Muscles modelled on each skeletal chain

Index Medial Ring Little Thumb

1st FP 2nd FP 3rd FP 4th FP APB
1st FS 2nd FS 3rd FS 4th FS FBB
1st EDC+EI 2nd EDC 3rd EDC EDQ OPP
1st LU 2nd LU 3rd LU 4th LU ADD
1st DI 2nd DI 4th DI 3rd VI 1st DI
1st VI 3rd DI 2nd VI FDQ APL

ADQ EPB
FPL
EPL

acronyms in the nomenclature section

(a) (b)

Fig. 5.8 Models for the tendons crossing the joints: (a) Straight lines, (b) Landsmeer’s model I

The muscles considered on each skeletal chain are listed in Table 5.3. PC S A data
for index finger muscles have been taken from [58]. Data for the remaining muscles
have been obtained from [27]. The muscle stress limit (Smax ) has been obtained from
[59]. Fibre and muscle lengths and the constants b1, b2 for index finger muscles have
been taken from [13]; data for the remaining extrinsic muscles have been obtained
from [60] and for the remaining intrinsic muscles from [61]. The muscle maximal
lengthening velocity (ε̇max ) has been taken to be 2.5 s−1 [56].

Most of the muscles do not act directly on the bones, but transmit the force to the
tendons, which finally insert into the bones. To model the tendon action crossing the
joints, straight lines connecting 2 points have been considered, one fixed with respect
to the proximal bone and the other one with respect to the distal bone (Fig. 5.8a). This
approximation has been found to be close enough to the behaviour of all tendons with
the exception of extensors [30], for which Landsmeer’s model I has been considered
(Fig. 5.8b). The data for the points defining the tendon actions have been obtained
from [30].

The extensor hood mechanisms of the fingers are modelled as a tendon net. The
net allows for the connection and division of the tendon paths. The insertions and
connection points considered for the tendon nets on each skeletal chain are shown in
Fig. 5.9. Appropriate force balances have been considered in the connecting points
of this deformable tendon net. Second DI, fourth DI and ADQ tendons do present
a double insertion into the proximal phalanges and into the extensor aponeuroses.
A force distribution proportional to the amount of fibres of each branch [62] has been
considered.



5.5 Biomechanical Model 137

ProximalDistal

3rd UI

4th LU

ADQ

EDQ

MCPPIPDIP

2nd UI

3rd LU

3rd EDC

4th DI

MCPPIPDIP

2nd DI

2nd LU

2nd EDC

3rd DI

MCPPIPDIP

1st EDC+EI

1st LU

1st UI

MCPPIPDIP

ADD

EPL

APB
MCPIP

(a)

(b)

(c)

(d)

(e)

Fig. 5.9 Sketch of the extensor mechanisms of the fingers and thumb (dorsal view) showing the
insertions into the bones (�) and the connections and splittings considered (◦): (a) little finger,
(b) ring finger, (c) medial finger, (d) index finger, (e) thumb
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The muscle force-length and force-velocity relationships presented above require
the calculation of the lengthening of the muscles from lo as a function of time.
Having considered the tendons inextensible, the muscle lengthening coincides with
the tendon excursion. To calculate the length of the tendon path crossing each joint
(li ), straight lines connecting the points have been considered, except for the extensor
tendons, for which a circular path has been considered.

The data for the location of the points defining the tendon paths comes from
[30, 47], and are also scaled with respect to the hand length and hand breadth [49].

5.5.3 Ligaments

The importance of modelling the effect of ligaments for studying free finger move-
ments was proved in a previous work [18]. In the case of grasping, their consideration
is not so relevant. Their effect can be neglected for studying power grasps, but they
can play an important role in the case of some precision grasps, particularly those
involving fast movements.

In the case of DIP and PIP joints of fingers and thumb, the insertion of the collateral
ligaments on the proximal segment of the joint corresponds to the flexion-extension
axis [63]. Therefore, they do not develop any flexion-extension moment over the
joint and they do not need to be modelled. In the case of MCP joints, the proximal
insertion of the lateral ligament on the metacarpal head remains dorsal to the center of
the articular curvature (Fig. 5.10), so that collateral ligaments are lax in extension, but
they become taut in flexion, decreasing significantly the range of lateral movement
[46, 63, 64]. Tension on the radial and ulnar ligaments increases with adduction
and abduction of the MCP joint, respectively. Furthermore, the line of action of the
ligaments remains dorsal to the flexion-extension axis of the joint [64], developing
an extension moment over the joint, in addition to the abduction-adduction moment.

Both ulnar and radial ligaments over MCP joints have been modelled. A unique
fibre for each ligament has been considered, joining two points representing the
insertions into the bones. One point is fixed with respect to the metacarpal, and the
other one with respect to the proximal phalanx. No interaction between bone and
ligament has been considered; therefore the ligament path is a straight line between
the insertion points. Its non-linear behaviour has been taken into account considering

Fig. 5.10 Collateral ligament
over MCP joints becomes taut
with flexion
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Fig. 5.11 Soft-finger contact
model

a quadratic relationship between the force developed by the ligament (Flig) and its
elongation [65]:

Flig = K · (Llig − Llig,o)
2 (5.9)

where K is the characteristic constant of the ligament, Llig the length of the fibre
representing the ligament, and Llig,o the unstrained length of the ligament.

The data for the ligament insertion points have been obtained from the geomet-
ric model presented in [29], and the stiffness constant has been estimated to be
750 N/cm2 from [66].

5.5.4 Soft Contact Model

The contact forces between the object and the hand have to be considered when
dealing with the estimation of the muscle forces required for grasping an object.
Unlike what happens with robots, real human fingers conform to the grasped object’s
shape. As the contact finger surface is deformable, the contact does not occur at just
one point but over some finite area that increases as the normal forces increase. Due
to this effect, in addition to the normal force and tangential force due to friction,
human finger contact may support frictional torsional moments with respect to the
normal at the contact point (see Fig. 5.11). This clearly shows that the consideration
of rigid contacts, commonly used in robotics, is not appropriate for its use in studying
the human grasp, and a soft contact model has to be used. Most objects manipulated
by human hands are much stiffer than human hands and, therefore, it is reasonable
for those cases to consider the grasped objects as rigid bodies and the hand as a
deformable body.

Different approaches have been developed over the years to model soft contacts
that fall into three categories: analytical elasticity-based models, elastic foundation
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models (EFM) and finite element models (FEM). A description of them can be found
in Sect. 2.2.2.

They all have advantages and disadvantages, and have to be chosen depending
on the application. Analytical models are the easiest to calculate but are restricted
to simple geometries. FEMs have been increasingly used over recent years given
that they supply information about the sub-surface stresses and strain in volumetric
finite elements. However, they are excessively time consuming for fast simulation in
dynamic grasping and manipulation models. EFMs were developed in order to allow
a simple discrete contact calculation in more general surface geometries modelling
the deformable part of the contact as a layer over a rigid base, and a series of discrete
and independent spring in the contact normal direction. Therefore, we have chosen
EFMs to model human contacts which allow us to use complex geometries but are
not so time consuming. Several studies have used this type of model to study finger
contacts [67–72].

In this work a soft contact model based on that of [67] was used. The friction con-
straints are derived based on general expressions for non-planar contacts of elastic
bodies, taking into account the local geometry and structure of the objects in con-
tact. The following approximation can be used to express the constraint relating the
magnitudes of frictional force ( ft ) and moment (τn):

f 2
t + τ 2

n

e2
n

≤ μ2 · P2 (5.10)

where P is the total load applied in the direction of the contact normal, μ is the
friction coefficient and en is called the eccentricity parameter [height of the ellipsoid
described by Eq. (5.10)]. Considering a Winkler elastic foundation [73] of depth h
and elastic modulus K , the eccentricity parameter is given by:

en = 8

15

√
a · b (5.11)

where a and b can be calculated from the relative radii of curvature R′ and R′′ of the
objects in contact and the compression δ of the elastic layer:

a = √
2 · δ · R′; b = √

2 · δ · R′′; δ =
√

P · h

K · π · (R′ · R′′)1/2 (5.12)

The value of the human skin friction coefficient μ is difficult to measure consis-
tently, because it is affected by many factors that not only depend on the skin itself
(such as its texture, smoothness or hydration), but also on its interaction with exter-
nal surfaces and the environment. In the literature, different methods of skin friction
measurements have been proposed (see [74] for a review). In this work, we have
used the value of μ = 0.8 obtained from [75] as a first approximation. Additionally,

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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the value for the stiffness of human fingertip K was assumed to be K = 1, 500 N/m
obtained from [76].

5.5.5 Skin Model

The model has to incorporate a realistic geometry of the skin in order to provide
the required contact information for evaluating grasps and to use it for different
applications such as assessing the use of handheld products from an ergonomics point
of view. The advances in computer animation have made possible the development
of a number of convincing surface skin models.

Early models of the hand [77] were actually kinematic models that simulated
roughly the external geometry of the hand and its movements. The geometry of the
hand has been modelled mainly by jointed cylinders and cones [19, 20, 43]. This
was the first approximation used in our model (see Fig. 5.12).

In order to conduct the collision detection in an efficient way, we have modified
the geometry of the hand surface and the grasped object modelling them using the
spherical extension of polytopes (s-topes). This graphical representation was success-
fully used previously in robotics [78], allowing a fast and efficient collision detection
between the grasping hand and the grasped object while showing a sufficient level
of realism (see Fig. 5.13). Collision detection was carried out by calculating the
minimum distance between s-topes, based on the Gilbert-Johnson-Keerthi algorithm
[79]. The algorithm was also used to calculate the minimum distance points that
define the normal direction to the contact surface.

However, if the geometry of the hand model is not very accurate, the algorithms
for inverse kinematics are not precise enough. Recently, some efforts have been
made in accurately modelling the surface of real hands to be incorporated into 3D
hand models. [80] presented an automated method to make a specific human hand
model from an image of the palm of the hand. Different algorithms were used in
the process: principal creases are extracted, joint locations are estimated from them
and the skin geometry of a generic hand model deformed based on hand contours.
[81] made a scalable 3-D geometric model of the hand based on 66 landmarks of

Fig. 5.12 Different views of the geometric model using cylinders to simulate two grasps of different
bottles
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Fig. 5.13 External geometrical representation of the hand with s-topes

Fig. 5.14 Acquired 3D polygonal mesh for the surface of the hands and arms

the palm surface from 100 subjects in four functional postures. The purpose was to
analyse the deformation of the palm surface during the grasp of an object. Recent
models incorporate the surface of the hand as a mesh object with more or less realism,
obtained from the location of a number of landmarks of the hand or from digital 3D-
scanning of the hand [1, 35, 82]. The mesh is linked to a skeleton whose movement
controls the deformation of the mesh with different types of algorithms.

Therefore, in order to create a more realistic model of the hand surface, we propose
to use a surface skin model similar to that of [1] or [3]. We have acquired a surface
skin model consisting of a 3-dimensional polygonal mesh for the surface of the
two human hands and arms (see Fig. 5.14). In order to make the model scalable,
we have adjusted each of the segments accordingly with the standard ergonomic
measurements (HB = 87 mm, HL = 189 mm) corresponding to the 50th percentile.

The geometry of the skin model is defined at only one opened posture. It gets
scaled when the kinematic model is scaled to the anthropometry of the specific
subjects or population group under study, according to the length of the segments
defined by the scalable biomechanical model [20, 49]. Figure 5.15 shows the model
scaled to different percentiles of population by gender.

The model is currently composed of rigid parts which are not deformed with
the movement of joints. This is enough for the current applications where only the



5.5 Biomechanical Model 143

Male Female
5% 50% 95% 5% 50% 95%

HB 79 87 95 69 76 83
HL 173 189 205 159 174 189

Fig. 5.15 Scaled skin model to different subjects anthropometry according with standard per-
centiles of population by gender

fingertips contact the object. For more complex grasps, where the contact zones
correspond to the joint between segments, a skin deformation algorithm should be
implemented. This skin algorithm will also improve the visualization of the grasp
giving a more realistic hand posture. It should define the deformed geometry of
the surface skin model when the posture of the kinematic model is changed. The
algorithm assigns each bone a capsule-shaped envelope. Vertices of the modified
skin within these envelopes move with the bones. Where envelopes overlap, vertex
motion is a blend between the envelopes. The influence of each bone for vertices
within the intersection of two bones’ envelopes is controlled by assigning weight
values. The ratio of a vertex’s weight values, which always total 1.0, determine the
relative extent to which each bone’s motion affects the vertex.

5.5.6 Closure Algorithm

As stated before, the model has to simulate and show the grasping of an object in a
realistic way. To satisfy this requirement, it is not enough to have a visually realistic
model of the surface skin. The model must also be able to predict feasible grasping
postures.

The grasping posture algorithm is based on the calculation of appropriate rotation
rates for the joint angles from the use of two characteristic hand postures: the most
open posture (MOP) and the tentative grasping posture (TGP) shown in Fig. 5.16.
For the experiments performed for this book, these postures have been experimen-
tally measured by means of data gloves or motion capture systems. However, the
experiments are tedious and time-consuming as they have to be carried out for every
subject, task, and object. For that reason, there are no hand models valid for the
study of general grasping. As future work, in order to overcome this drawback and
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(a) (b) (c)

Fig. 5.16 Characteristic hand postures: (a) Most open posture (MOP), (b) Tentative grasping
posture (TGP) and (c) Final grasping posture (FGP)

to automatically generate the characteristic postures MOP and TGP, artificial neural
networks could be used as proposed by [83].

When trying to simulate the grasping of an object with the biomechanical model
of the hand, we can’t directly use the grasping postures measured experimentally, as
they do not exactly match the simulated grasped object, becoming a non-conforming
grasp, so that contact information (contact points and normals) cannot be obtained).
To avoid this, we propose to use a closure algorithm based on that of [84]. This
algorithm uses a function to automatically generate a natural grasping path of the
hand model from a fully opened state to a clenched one. The goal is to find contacts
between the surface hand skin and the object surface while rotating the joint angles
of the fingers. It is very important to choose appropriate rotation rates for the finger
joints, as they affect the final posture prediction [43]. We have solved this situation
by using rotation rates that try to match those experimentally observed. The rotation
rates are defined by the difference between the angles of the most open posture
(MOP) observed when approaching the hand to grasp the object, and the clenched
one once the grasp is performed, which will be used as a tentative grasping posture
(TGP).

A geometric model of the hand, together with a contact model are required to
generate the grasp because, at each rotation step, contact has to be checked between
the surface skin model and the surface of the object model. In real grasping, the
surface of a hand deforms in a non-linear way when making contact with the object.
To avoid long execution times, we considered a geometric collision-detection algo-
rithm. The hand segments are considered as rigid bodies, and their deformation is
simulated allowing the penetration of the surface skin model and the object model.
This penetration is limited by a tolerance that relates to the hand stiffness at each
contact region. A maximum penetration of 3 mm has been considered for all hand
segments as a first approximation.

The distances between the points on the skin surface and the object are calculated
while each joint rotates according to the specific joint rotation algorithm. When this
distance reaches the given maximum penetration tolerance for a given segment, the
contact of that segment is achieved and the joint rotation ends, together with the
rotation of all proximal joints. When the distal segments of all four fingers make
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contact with the object, the grasping simulation terminates. A summary of the steps
taken to simulate the closure of the hand is outlined in Algorithm 1.

Algorithm 1: Hand closure algorithm
input : most open posture (MOP) and tentative grasping posture (TGP)
output: final grasping posture (FGP) and contact information

begin
set maximum penetration = 3 mm;
foreach joint of the hand do

calculate rotation rate to reach from the MOP to the TGP
foreach finger do set flag to zero;
while all finger flags �= 1 do

foreach joint do increase joint angle according to the calculated rate;
if angle exceeds the joint limits then angle = limit;
foreach phalange do

penetration = 0;
get collision information;
if collision is true and penetration > maximum penetration then

get contact point and normal direction;
return finger flag = 1;

return final grasp posture and contact information for each finger;

5.5.7 Neuromuscular Control

The actual grasping forces for a given posture will be obtained by considering that
they have to satisfy the dynamic equilibrium of the hand and the grasped object.
The movement of the skeletal chains, together with the contact forces and the cor-
responding application points are input to the model. The problem to be solved is
the derivation of the muscle activation levels required to produce the given motion
under the external loads. It is, therefore, an inverse dynamics problem.

The dynamics equations of the open chain of rigid bodies have been derived
using the Lagrange method [85]. For a system with m generalised coordinates qk ,
this equation is expressed as:

d

dt

∂L

∂q̇k
− ∂L

∂qk
= Qnc

k k = 1, . . . , m (5.13)

where L is the Lagrangian function and Qnc
k are the generalised non-conservative

forces. The generalised coordinates have been considered coincident with the system
DOF (m = 23).
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Equation (5.13) together with the force balances of the tendon nets makes up
the equilibrium equations of the grasping hand (49 equations). The equilibrium of
the grasped object is defined by six more equations. A total of 55 equations with
99 unknowns (muscle and tendon forces and contact forces and moments) form the
final grasping mathematical problem, along with the inequalities given by the muscle
model (lower and upper bounds of muscle forces and lower bounds of tendon forces)
and the soft contact model (one inequality by contact point). There is not a unique
combination of muscular efforts that satisfy the equilibrium constraints.

To solve the problem, a criterion chosen by the central nervous system CNS to
determine the muscle action control must be introduced. The most commonly used
criterion in the literature is the maximisation of the endurance [31], through the
minimisation of the non-linear objective function

OBJ =
l∑

i=1

(
Fi

PCSAi

)n

(5.14)

with n between 2.0 and 4.0 (2.0 being the most used), and where l is the number of
muscles (34 in our model), Fi represents the force exerted by muscle i , and PC S Ai

its physiological cross-sectional area. This function is minimised when subjected to
Eq. (5.12) together with the force balances of the tendon nets. Additional constraints
are that tendon forces must be non-negative, and the limits of muscle forces obtained
from Eqs. (5.2) and (5.3) varying the muscle activation level from 0 to 1

FPEE · Fmax ≤ F ≤ (Fl · Fv + FPEE) · Fmax (5.15)

The validity of using the maximisation of fatigue resistance (5.17) to solve the
indeterminate problem for grasping simulation has not been proven, therefore in
Sect. 5.7 experiments performed to test the accuracy of this function and the proposal
of others are detailed.

5.6 Simulation Framework for Human Hand Grasping

There are many elements of the musculoskeletal system that interact to enable coor-
dinated movement and object grasping, as was shown in the previous section. The
challenge is to develop synthesizing detailed description of these elements to create
an integrated understanding of human grasping and to establish a scientific basis for
improving manipulation skills of artificial hands or correcting abnormal movement.

In order to accomplish this, a framework, in combination with experiments, is
needed. It must reveal the cause-effect relationships between neuromuscular exci-
tation patterns, muscle forces, contact information and quality of grasp. Dynamic
simulation of movement can provide such a framework, integrating models describ-
ing the anatomy and physiology of the elements of the neuromusculoskeletal system
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and the mechanics of multi-joint movement. Muscle-driven dynamic simulations
complement experimental approaches by providing estimates of important variables
which are difficult to measure experimentally and enables cause-effect relationships
to be identified.

The inability to reproduce results is a major limitation to advancing the science
of biomechanical simulation. Many laboratories develop their own software and do
not make it free or open-source. Researchers typically must spend a great deal of
time implementing each new simulation and creating tools to analyse it.

In this work, the biomechanical model described in the previous section has been
implemented using different software tools that have been chosen for their versatility,
flexibility and open access. The following sections give an overview of the system
and details of each part are presented.

5.6.1 Related Work

Different software frameworks have been proposed in the literature to model the
human hand [86] presented a skeletal musculo-tendon model for the human hand
and forearm, called “HelpingHand” (see Fig. 5.17b). It enables the simulation of
forward dynamics predicting finger position given a set a muscle activation. They also
proposed a solution for the inverse problem of determining a set of muscle activations
to achieve a given pose. This work is based on the model proposed by [87] which,
besides using the conventional modeling of muscles to control the movement of the
hand, it converts these contraction values into deformation of the skin (see Fig. 5.17a).
Although these models are anatomically realistic, their implementation have been
done using Maya, a commercial 3D animation platform, and the authors have not
made it available, so it will be necessary to re-implement the parts deemed useful.

A very popular musculoskeletal modeling environment, called SIMM (Software
for Interactive Musculoskeletal Modeling),1 was introduced in the early 1990s by
[88, 89]. Using SIMM, anatomically realistic musculoskeletal models of the lower
and upper extremities can be created for different applications such as examining the
biomechanical consequences of surgical procedures. Figure 5.18 present models of
different body parts developed by [90–92] using SIMM. Especially relevant is the
3D kinematic model of the upper-extremity (from the shoulder to fingertip) devel-
oped by [92] in SIMM, with dynamic simulations performed using SIMM/Dynamics
Pipeline/SDFast. Although it has been widely used, SIMM is not freely available,
doesn’t provide assistance with the computation of muscle excitations and has lim-
ited tools for analyzing the results of dynamic simulation. Additionally, it doesn’t
provide a way to model the skin and its contacts with objects which are indispensable
for grasp simulation.

Over the past decade, new software engineering methods have emerged that
enable the development of software systems that are more extensible [93] created an

1 http://www.musculographics.com/

http://www.musculographics.com/
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(a) (b)

Fig. 5.17 Existing musculoskeletal human hand models. (a) Skin and bones by [87]. (b) Helping-
Hand by [86]

open-source software system called OpenSim2 which lets users develop models of
musculoskeletal structures and create dynamic simulations of a variety of move-
ments. It has been widely used specially for studying the movement of lower extrem-
ities, although some attempts have also been made to study the upper extremity
movements. Previously developed kinematic models of the upper-extremity using
SIMM [90, 92] were ported to OpenSim and are now available Fig. 5.19.

OpenSim is being used by several laboratories over the world as a software frame-
work for biomechanics simulation given that it is freely available. The user can extend
it by developing customized controllers, analyses, contact models, and muscle mod-
els. However, as with the previously mentioned software frameworks, it focuses on
modeling the musculo-skeletal system of the hand, but it lacks some features to simu-
late object manipulation. For example, it allows one to incorporate meshes to analyse
contacts but it is not simple to scale them to model the different hand sizes, include
algorithms to close the hand or add virtual objects and extract contact information
when interacting with them. As future work, it could be interesting to study how
our biomechanical model can be implemented using OpenSim and to develop the
functions that OpenSim currently lacks.

GraspIt!3 is a robot simulator developed for robot grasping by [94] that includes
a model of the human hand (see Fig. 5.20). Given that it has been designed for grasp

2 https://simtk.org/home/opensim
3 http://www.cs.columbia.edu/~cmatei/graspit/

https://simtk.org/home/opensim
http://www.cs.columbia.edu/~cmatei/graspit/
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(a)

(c)

(b)

Fig. 5.18 Musculoskeletal models using SIMM (Figures taken from the SIMM Gallery). (a) Shoul-
der [91]. (b) Wrist [90]. (c) Upper extremity model [92]

Fig. 5.19 Musculoskeletal
models of the human hand
using OpenSim

analysis, many of the same capabilities used for robots can be adapted to study the
human grasp. Unlike the previous frameworks, it comes with a model of the human
hand skin that can be used to detect contacts with the virtual objects when grasping
them. Additionally, it has grasp quality measures implemented to evaluate a given set
of grasps. The skin is implemented as a set of rigid bodies that does not deform when
bending the hand joints. However, as mentioned in the first part of this manuscript,



150 5 The Model of the Human Hand

Fig. 5.20 Human hand model
available in GraspIt!

Fig. 5.21 Human hand model
available in OpenRAVE

the software framework itself has a rather monolithic and less modular architecture
that makes it difficult to improve, add functionality and integrate with other tools and
frameworks. In addition, it does not provide a convenient Application Programming
Interface (API), which allows script programming.

OpenRAVE4 is another open-source robotic simulation environment developed
by [95] that has also been widely used by the robotics community and which has
also been used for our robot grasping simulations in the first part of this work. As
mentioned above, it has been designed as an open architecture targeting a simple inte-
gration of simulation, visualization, planning, scripting and control of robot systems.
It has been written in C++ and has a modular design, which allows its extension
and further development by other users. It comes with a model of a human which
has a simple model of the hand shown in Fig. 5.21 but which had to be adapted to
the kinematics and scalable capabilities of our model.

Given that none of the available software frameworks meet all our requirements,
we decided to implement our biomechanical hand model using OpenRAVE given our
previous experience with it for robot grasp simulation. OpenRAVE has the capability
to communicate with MATLAB, which enabled us to reuse the existing code made
by [49] for the neuromuscular control and create separate modules in MATLAB,

4 http://www.openrave.org/docs/latest_stable/

http://www.openrave.org/docs/latest_stable/
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C++ and python to model the remaining parts. In the following section an overview
of the complete system is presented.

5.6.2 System Overview

We have developed a framework for modelling, simulating and analysing the grasp
performed by human hands. It includes low-level computational tools that are invoked
using different applications. The architecture of the system is shown in Fig. 5.22.

At the lower level we have chosen OpenRAVE for kinematic definition and visual-
ization. OpenRAVE is designed as a plugin-based architecture where a plugin offers
implementations of base interface classes that are loaded dynamically into the envi-
ronment. For our system, several plugins available in OpenRAVE are used, specially
the collision engine developed to interface with ODE (Open Dynamics Engine) which
plays a major roll giving contact information when performing grasping simulation.
Another plugin that can be optionally used is a viewer that provides 3D visualization
of the environment. At the moment, Coin 3D/Qt is used for this purpose.

A new plugin for OpenRAVE called OpenHand has been developed as part of
this work. It is a plugin extending the OpenRAVE module interface to provide the
simulation of the hand biomechanical model presented in the previous section. It has

OpenRAVE

Core

Interface Definitions

Robot/Objects

Environment

Components (plugins)

Physics

Collision engines

Sensors

Planning Algorithms

Manipulation

Scripting Environment

Python

Matlab/Octave

Robot Database

Geometry

Kinematics

OpenHand Grasping Quality 
Measures: Matlab

Robotic
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User Interface GUI: Python
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plugins: C++

OpenHand 
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Neuromuscular 
Control: Matlab

Minimization 
objective 
function

Grasping: Matlab

Hand parameterization
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Hand/object parameters

Hand/Arm posture

Experiment setup

Hand/object parameters

Hand/Arm posture

Scripts: Python

Experiment setup

Hand/object parameters
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Scripts: Matlab

Viewers

Fig. 5.22 Architecture of the system: (green) new modules interfacing with (grey) existing software



152 5 The Model of the Human Hand

Fig. 5.23 Arm and hand models created by the OpenHand plugin showing its joint kinematic axes

the definition of the kinematic model enabling users to scale it with the hand breadth
and the hand length anthropometric parameters (see Fig. 5.23). In order to control the
kinematic model, different functions are provided to specify a given posture using
the angles of the 23 DOF of the hand and 7 DOF of the arm.

Each grasping experiment is defined through a Grasping module using MAT-
LAB. The OpenRAVE environment is initialized, the most open posture and ten-
tative grasping posture are defined, then the simulator interfaces with the collision
engine to obtain contact information for the hand closing algorithm. After the grasp
is performed, the contact information is used to calculate several implemented grasp-
ing quality measures and by the Neuromuscular Control module. This last module
was previously developed using MATLAB and its optimization toolbox (version
R2008b) [49].

OpenRAVE provides scripting environments that allow real-time modifications
to any aspect of the environment without requiring shutdown, making it ideal for
testing new algorithms. It provide interfaces for Python and Octave/MATLAB. These
two scripting environments are used to allow users to interface with the simulation
model to define hand and object parameters, setup the grasp posture and run several
experiments.

In order to move each joint of the hand and visualise its posture, a graphical user
interface (GUI) has been developed using python/Qt and it is shown in Fig. 5.24. It
starts OpenRAVE and connects it with OpenHand. The hand model can be scaled
with the hand breadth and the hand length.

An overview of the system dataflow is shown in Fig. 5.25. The hand parameters
are specified as input to the OpenHand module which scales the hand kinematic
model and visualizes it in OpenRAVE. The object parameters and position are used
for the grasping module to set up the environment in OpenRAVE. The most open
and tentative grasp postures of the hand are inputs to the Closure algorithm module
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Fig. 5.24 Interface for apply forward kinematics on the hand model

and are currently obtained experimentally. These postures are used to determine the
rates to move each hand joint until the fingers are in contact with the grasped object
(see Sect. 5.5.6).

The contact points and normals as well as the final grasping posture are used by
the Neuromuscular Control module to predict both the muscle forces and the contact
forces and torques. The contact information is also used to calculate all implemented
measures to assess the grasp quality.

We have used two sensor systems to capture the posture of the hand experimen-
tally: an instrumented glove and a motion tracking system. Instrumented gloves have
been widely used, with the Cyberglove® system being the most popular one (see
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Fig. 5.26a). Using this glove, we instrumented different subjects’ hands to register
hand posture data. The system was appropriately calibrated using the protocol created
by [96]. This glove provides the main joint angles of the hand with an acquisition rate
of 15 Hz. It has been proven to be valid for the measurement of hand postures during
grasping tasks, with its sensors’ repeatability errors ranging from 1.2◦ to 5◦. When
it was required to register finger force data, we have additionally instrumented the
subjects’ hand with the Finger TPS’ system at the fingertips shown in Fig. 5.26b. It
utilizes highly sensitive capacitive-based pressure sensors to reliably quantify forces
applied by the human hand.

However, it is preferable to measure the movement by using techniques that do not
interfere with the normal development of activities to be performed by the hand. In
this regard, techniques of motion capture from video images that use passive markers
(or videogrammetry) are good alternatives. Such visual techniques are based on the
reconstruction of the coordinates of markers from images, placed on the tracked
object. This is the technique used to obtain the majority of grasping postures used
for the experiments of this work. The technique involves: placement of markers on
the skin, registration of reference positions, record the movements, obtaining 3D
coordinates of the markers, obtaining the 3D orientation of the different segments,
and calculation of physiological rotation angles. A motion tracking system from
Vicon consisting of 8 Vicon cameras Bonita Giganet was used (see Fig. 5.26c).
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(a)

(b)

(c)

Fig. 5.26 Hand instrumented for posture data registration: (a) Cyberglove. (b) Finger TPS and (c)
Vicon system

Fig. 5.27 Hand model showing different tentative grasp postures estimated with the Vicon system
(position of marker reflectors showing as black points)

The hand postures have been obtained based on the technique recently developed
by [97] which reconstructs the 3D coordinates of markers reflectors placed on the
back of the hand recorded by videogrammetry. The coordinates of these markers are
obtained in the reference postures and in the postures to be measured and are used to
define a coordinate system on each segment in which the rotation angles of the joints
are calculated. Examples of various tentative grasp postures of the hand grasping
different cylinders estimated with the Vicon system are shown in Fig. 5.27.
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An example of an initial environment showing different objects with the human
arm and hand is shown in Fig. 5.28. Final grasp postures are estimated using the
presented grasping framework.

5.7 Application to Human Hand Grasping Simulation

In this section, we present the use of the biomechanical model for simulating the
human grasp by taking into account the equilibrium not only of the grasping hand
but also of the grasped object, through the consideration of a soft contact model.
In particular, the objective function required to solve the indeterminate problem of
finding the muscle forces is investigated. The normal finger forces estimated by
the model were compared to those experimentally measured. The popular objective
function sum of the squared muscle stresses was shown not suitable for the grasping
simulation, requiring at least being complemented by task-dependent grasp quality
measures.

5.7.1 Material and Methods

The Neuromuscular control of the biomechanical model requires the posture of the
hand, the contact points and the contact forces as input data (see Sect. 5.5.7). With
these data, the model allows the estimation of the muscle forces required to counteract
the given external forces on the hand while performing the given movements. For
such a goal, the model considers the popular criterion of maximising the endurance in
order to solve the indeterminate problem of finding the muscle forces. The validity
of the model will be checked by reproducing a grasping experiment described in
the following section. In particular, the validity of the criterion of maximising the
endurance to solve the indeterminate problem is investigated.

5.7.2 Problem Solving and Neuromuscular Control

The problem to be solved is to find the muscle forces required to grasp the object.
That entails to account for the equilibrium of the grasping hand and the grasped
object. It is an inverse dynamics problem.

The equilibrium equations of the grasping hand (49 equations) is defined using
Eq. (5.13) together with the force balances of the tendon nets. The equilibrium of
the grasped object is defined by six more equations. A total of 55 equations with
99 unknowns (muscle and tendon forces and contact forces and moments) form the
final grasping mathematical problem, along with the inequalities given by the muscle
model (lower and upper bounds of muscle forces and lower bounds of tendon forces)
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(a)

(b)

Fig. 5.28 Hand model showing different final grasp postures estimated with the grasping frame-
work. (a) Initial environment. (b) Examples of final grasp postures (red cones represent the contact
points)
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and the soft contact model (one inequality by contact point). There is not a unique
combination of muscular efforts that may satisfy the equilibrium constraints. To solve
the problem, a criterion chosen by the CNS to determine the muscle action control
must be introduced.

The most commonly used criterion in the literature is the maximisation of the
endurance [31], through the minimisation of the nonlinear objective function

OBJ =
l∑

i=1

(
Fi

PC S Ai

)n

(5.16)

with n being between 2.0 and 4.0 (2.0 being the most used), and l being the number of
muscles (34 in our model). The validity of this criterion for the grasping simulation
is checked in this study.

5.7.2.1 Validation Experiment

The validity of the model was analysed through the simulation of grasping cylindrical
objects. An experiment was designed in which a female subject (age 32, height
1.61 m, weight 68 kg, HB 71 mm, HL 163 mm), appropriately instrumented, was
asked to grasp alternatively two cylinders of different size and weight and hold them
with their axes in vertical orientation (gravity direction).

The subject was seated by a table, the height of which was adjusted so that the
subject’s elbow coincided with the table height. The subject’s arm was lying on the
table in a relaxed posture, with the hand placed about 15 cm away from the cylinder to
be grasped. The subject was asked to grasp each cylinder with her fingertips and hold
it at a fixed height while keeping it in vertical orientation, for 2–3 s approximately,
and then to return it to its initial location.

First, the subject’s hand was instrumented with the Cyberglove system to register
hand posture data. The system was appropriately calibrated [96]. The subject repeated
the action three times for training without data registration, and five more times with
posture data registration (Fig. 5.29a). Second, the subject’s hand was instrumented
with the Finger TPS system (Pressure Profile Systems, Inc.) at her fingertips to
register finger force data. After the calibration of the system was carried out, the
subject repeated the action three times for training without data registration, and five
more times with force data registration (Fig. 5.29b). This procedure was carried out
twice: first for a cylinder of 0.401 kg weight and of 64 mm diameter (cylinder 1) and
second for a cylinder of 0.04 kg weight and of 82 mm diameter (cylinder 2).

The model was used to simulate the grasping of both cylinders. The simulation
only considered the static case of holding the cylinders at a fixed height. To carry
out the simulation, the subject’s hand data (HL and HB) and the object data (weight
and diameter) were input to the model, along with the most open posture (MOP) of
the hand and the tentative grasping posture (TGP) registered with the Cyberglove.
So far, the registered postures are required to generate the rotation angle rates that
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(a) (b)

Fig. 5.29 The subject is holding the lighter cylinder (cylinder 1) of the experiment. (a) Hand
instrumented for posture data registration. (b) Hand instrumented for finger force data registration

are used by the grasping posture generation algorithm to obtain the predicted final
grasping posture, the contact points and contact normal directions. This information
is used by the optimisation algorithm to obtain the contact forces and the muscle
forces required for the equilibrium of the grasped cylinder and the grasping hand. In
the future, this will be replaced by a neural network able to automatically obtain both
postures and avoid the use of registered data as shown by [83]. The data reported by
[75] were used to select the appropriate friction coefficient (0.8) between the hand
and the cylinder material being grasped.

The results of the simulation of grasping both cylinders were the grasping postures,
the contact points, the contact normal directions, the contact finger forces and torques,
and the muscle force distribution. The normal finger forces estimated by the model
were compared with those registered with the Finger TPS system. To investigate how
the model could be improved to achieve better results, the simulation of grasping both
cylinders was carried out under four different modifications of the model, described
in the following section.

5.7.3 Results and Discussion

The hand movement pattern during the experiment can be observed in Fig. 5.30.
This figure shows the joint angles registered by the Cyberglove system in one of the
repetitions for cylinders 1 and 2. The hand starts from a relaxed posture. Just before
grasping the cylinder, the hand gets open, which is seen mainly as an extension and
abduction of MCP joints. The grasping is then achieved basically by means of the
flexion of the different joints. Once the object is grasped, the joint angles registered
during the static hold of the cylinders remain quite constant.
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Fig. 5.30 Joint angles (in degrees) registered during one of the repetitions for grasping both cylin-
ders 1 and 2

For each cylinder, the model needs the hand in the most fully open posture and in
the hand grasping posture (as tentative) to calculate the joint rotation rates. The most
fully open postures (Table 5.4) were obtained as the mean of the MOPs identified at
each of the repetitions, being the standard deviation (SD) of the joint angles lower
than 8.5.

For each repetition, the mean postures during the static hold of the cylinder were
also obtained. The mean of these values for each cylinder was used to define the
tentative grasping posture required to calculate the joint rotation rates (Table 5.5).
Again, the SD of the joint angles among repetitions was lower than 8.5, which
indicates that the experiment was repeatable. This makes it possible to interrelate the
posture data and the force data registered in different repetitions.

Table 5.6 presents the joint angles calculated by the model (from the use of
the collision-detection algorithm) for the grasping postures of cylinders 1 and 2,
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Table 5.4 Mean (SD) joint angles defining the MOPs for grasping both cylinders 1 and 2

MCC MCP PIP DIP
Flexion (◦) Abduction (◦) Flexion (◦) Abduction (◦) Flexion (◦) Flexion (◦)

Cylinder 1
Thumb −8.0 (2.3) 49.0 (5.1) 25.1 (0.6) 0.0 (0.1) 19.1 (8.5) –
Index – – 10.2 (3.5) 8.9 (3.2) 37.6 (7.9) 18.8 (3.9)
Medial – – 10.2 (3.5) 0.0 (0.0) 37.6 (7.9) 18.8 (3.9)
Ring 0.0 (0.5) – 6.2 (1.8) 9.8 (2.6) 22.8 (6.6) 11.4 (3.3)
Little 0.0 (1.0) – 2.1 (0.7) 17.7 (4.5) 9.4 (3.8) 4.7 (1.9)
Cylinder 2
Thumb −10.0(3.1) 50.0 (4.6) 23.9 (0.3) 0.0 (0.1) 17.6 (3.3) –
Index – – 2.4 (2.5) 10.0 (1.6) 38.1 (8.0) 19.0 (4.0)
Medial – – 2.4 (2.5) 0.0 (0.0) 38.1 (8.0) 19.0 (3.9)
Ring 0.0 (1.2) – 1.6 (1.6) 11.6 (0.8) 24.2 (3.9) 12.1 (2.0)
Little 0.0 (0.7) – 0.9 (0.8) 19.5 (2.1) 11.7 (2.2) 5.8 (2.9)

Table 5.5 Mean (SD) joint angles defining the grasping postures for both cylinders 1 and 2.

MCC MCP PIP DIP
Flexion (◦) Abduction (◦) Flexion (◦) Abduction (◦) Flexion (◦) Flexion (◦)

Cylinder 1
Thumb 1.0 (0.5) 47.5 (2.7) 20.9 (0.2) 0.0 (0.3) 49.7 (6.9) –
Index – – 26.2 (4.6) −2.1(2.4) 48.3 (5.4) 24.1 (2.7)
Medial – – 26.2 (4.6) 0.0 (0.0) 48.3 (5.4) 24.1 (2.6)
Ring 4.0 (1.2) – 19.5 (2.1) 7.1 (4.9) 35.6 (4.4) 17.8 (2.2)
Little 8.0 (0.9) – 12.8 (1.4) 13.6 (8.4) 31.4 (5.7) 15.7 (2.9)
Cylinder 2
Thumb 0.0 (0.7) 50.8 (2.6) 20.9 (0.3) 0.0 (0.8) 35.5 (8.4) –
Index – – 9.4 (1.7) 9.7 (3.2) 46.7 (6.1) 23.4 (3.1)
Medial – – 9.4 (1.7) 0.0 (0.0) 46.7 (6.1) 23.4 (3.0)
Ring 4.0 (1.3) – 7.6 (1.6) 9.1 (0.7) 33.6 (6.0) 16.8 (3.0)
Little 8.0 (0.8) – 5.8 (1.7) 19.2 (1.4) 28.0 (5.6) 14.0 (2.8)

respectively. They are similar to the those measured, but not identical. Figure 5.31
shows the realistic appearance of the estimated grasping posture for cylinder 1.

The finger force patterns registered during the experiment can be observed in
Fig. 5.32. This figure shows the forces registered by the Finger TPS system in one of
the repetitions for cylinders 1 and 2. Due to the greater weight of cylinder 1, a peak
is observed in the finger forces during the cylinder elevation phase corresponding to
inertial effects, which is not observed for the case of cylinder 2. Finger forces regis-
tered during the static hold of the cylinders remain quite constant. For each repetition,
the mean of the finger force registered during the static hold was considered. The
mean of the finger forces among repetitions for both cylinders is shown in Table 5.7,
along with the contact forces estimated by the model and three different modifications
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Table 5.6 Grasping postures estimated by the model for both cylinders 1 and 2

MCC MCP PIP DIP
Flexion (◦) Abduction (◦) Flexion (◦) Abduction (◦) Flexion (◦) Flexion (◦)

Cylinder 1
Thumb 0.3 47.7 21.2 0.0 47.3 –
Index – – 20.4 1.9 44.4 18.8
Medial – – 23.0 0.0 46.1 27.4
Ring 4.2 – 20.0 7.0 36.2 43.9
Little 8.5 – 13.5 13.4 32.8 7.8

Cylinder 2
Thumb −3.0 50.5 21.8 0.0 30.2 –
Index – – 9.7 9.7 47.1 23.5
Medial – – 12.9 0.0 51.1 25.5
Ring 6.7 – 11.6 7.4 40.0 20.0
Little 7.8 – 5.7 19.2 27.6 13.8

Fig. 5.31 Grasping posture
estimated by the model for
cylinder 1

are described later. It has to be noted that the forces registered for the thumb and
the index finger varied greatly among repetitions. This confirms that there is not
a unique combination of forces for grasping the cylinder, but that different safety
margins can be applied for avoiding slipperiness of the object. Experimental mean
contributions of the thumb and fingers to the grasp force are presented in Table 5.8,
along with those estimated obtained from the model and its modifications. These
contributions were calculated with respect to the sum of the contact grasping forces.
The experimental contributions allow identifying the thumb as the major contributor
to the grasping force.

Tables 5.7 and 5.8 compare the experimental finger forces registered during the
static hold of the cylinders to the contact forces and torques estimated by the model
and three different modifications. The original model (Estimated 1) considered the
minimisation of the sum of the squared muscle stresses (maximisation of endurance)
to solve the indeterminate problem, and a friction coefficient of 0.8, obtained from
[75]. A disagreement between the experimentally measured normal forces and the
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Fig. 5.32 Finger forces (N) registered during one of the repetitions for both cylinders 1 and 2

estimated forces is evident. On the one hand, the estimated values are lower than
the experimental ones, being the total grasping force underestimated by 73 % in the
case of holding cylinder 1, and by 97 % in the case of holding cylinder 2 (the lightest
one). On the other hand, the estimated grasping force distributions among fingers do
not match the force distributions measured experimentally. In particular, the model
predicts that index and little fingers do not contribute at all to the grasp, which does
not match the real behaviour of the human hand.

First modification to the model (Estimated 2) tries to investigate whether an
improper friction coefficient between the hand and the cylinder could be respon-
sible for the low level of the forces estimated by the model, given that a smaller
friction coefficient will demand greater normal forces to assure the grasp stability.
Taking into account the data reported by [75], the effect of changing this coefficient
to a very low value of 0.3 was checked (Tables 5.7 and 5.8). Although the model
estimates greater normal forces, the total grasping force estimated by the model for
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Table 5.7 Mean (SD) finger forces registered for the grasping of both cylinders and contact forces
estimated by the model and its modifications

Thumb Index Medial Ring Little Total

Cylinder 1
Experimental
Normal (N) 10.7 (4.5) 3.4 (2.4) 4.6 (0.8) 5.8 (0.6) 4.1 (1.1) 28.7 (3.2)
Estimated 1
Normal (N) 4.05 0.01 1.97 0.96 0.60 7.59
Tangential (N) 3.23 0.01 1.57 0.76 0.48
Torque (N· mm) −4.70 0.00 −1.40 −0.60 −0.30
Estimated 2
Normal (N) 10.59 2.96 1.98 2.54 3.12 21.19
Tangential (N) 3.18 0.89 0.59 0.76 0.94
Torque (N· mm) 0.00 0.10 −0.30 −0.50 −0.70
Estimated 3
Normal (N) 3.81 0.91 0.92 0.92 0.92 7.48
Tangential (N) 3.02 0.73 0.72 0.71 0.73
Torque (N· mm) −5.80 0.10 −1.10 −1.70 0.00
Estimated 4
Normal (N) 6.62 2.12 1.64 1.47 2.12 13.97
Tangential (N) 3.15 1.68 1.27 0.95 1.69
Torque (N· mm) −25.20 3.00 −3.80 −7.60 1.20
Cylinder 2
Experimental
Normal (N) 11.0 (5.8) 9.3 (4.5) 3.0 (0.8) 2.9 (0.6) 1.7 (0.5) 27.9
Estimated 1
Normal (N) 0.41 0.00 0.24 0.11 0.01 0.77
Tangential (N) 0.30 0.01 0.19 0.09 0.01
Torque (N· mm) 1.00 0.00 −0.10 0.00 0.00
Estimated 2
Normal (N) 0.98 0.18 0.53 0.00 0.26 1.95
Tangential (N) 0.29 0.05 0.16 0.00 0.08
Torque (N· mm) −0.10 0.00 0.00 0.00 0.00
Estimated 3
Normal (N) 0.45 0.12 0.11 0.11 0.11 0.9
Tangential (N) 0.35 0.09 0.09 0.07 0.09
Torque (N· mm) −0.60 0.00 0.10 0.30 0.00
Estimated 4
Normal (N) 4.98 1.79 1.32 0.48 1.56 10.13
Tangential (N) 0.36 0.20 0.30 0.38 0.70
Torque (N· mm) −36.50 16.20 −10.90 0.90 −8.70

grasping the lighter cylinder is still far from the registered force. Furthermore, a dis-
agreement in the force contributions of the fingers remains, especially for the lighter
cylinder. This seems to indicate that the underestimated results given by the original
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Table 5.8 Mean finger force contribution (%) registered for the grasping of both cylinders and
estimated by the model and its modifications

Thumb Index Medial Ring Little
(%) (%) (%) (%) (%)

Cylinder 1
Experimental 37 12 16 20 14
Estimated 1 53 0 26 13 8
Estimated 2 50 14 9 12 15
Estimated 3 51 12 12 12 12
Estimated 4 47 15 12 11 15
Cylinder 2
Experimental 39 33 11 10 6
Estimated 1 53 0 31 14 1
Estimated 2 50 9 27 0 13
Estimated 3 50 13 12 12 12
Estimated 4 49 18 13 5 15

model are not due to inaccuracies in the friction coefficient between the object and
the hand.

The results from the simulations carried out with the original model (Estimated 1)
seem to indicate that it is mathematically feasible to grasp the cylinders without the
contribution of some fingers. And even that this fact could be more efficient in some
aspects (maximising the endurance). However, the experimental results indicate that
the CNS chooses a more even distribution of the forces between fingers. Trying to
account for this coordination mechanism, we have proposed the second modification
of the model (Estimated 3). We have repeated the simulations by adding to the
objective function to be minimised a term accounting for the differences between
the finger forces:

OBJ =
l∑

i=1

(
Fi

PC S Ai

)2

+ 1002
4∑

r,s=1

(
Fnr − Fns

)2

∣∣∣∣∣∣
r �=s

(5.17)

where Fnr is the normal component of the contact force developed by finger r and
PC S A is measured in centimetres. The factor 1002 was introduced to make both
combined functions comparable: we want to make the muscles stresses (approxi-
mately in the range of 10 N/cm2) to differences of forces of 0.1 N. The results from
these comparable simulations are also presented in Tables 5.7 and 5.8. The use of this
function allows achieving more balanced estimations of forces, but the magnitudes
of the estimated forces are still lower than those of the experimental forces. The use
of this objective function and the reduction in the friction coefficient to 0.3 (results
not shown for brevity) provided a quite close estimation of forces for the heaviest



166 5 The Model of the Human Hand

cylinder, but the magnitudes of the estimated forces for the lightest cylinder were
still too small compared with those of the experimental results.

All these results seem to point out that the criterion that the CNS uses to select
the grasping force distribution among fingers is not only related to some energetic
minimisation, as the experimental forces registered are much larger than those the-
oretically required to perform the grasp. The key must lie in some other factor. It is
well known that humans exert grip forces taking a force safety margin into consid-
eration to improve the grasp stability [98]. In this sense, in robotics, the selection
of the grasp to be executed by a robotic hand is done by calculating different kinds
of grasp quality measures. Many different quality measure definitions can be found
in the robotics literature. Most of them are related to the capability of handling the
object once grasped or the ability of the grasp to resist external disturbances (sta-
bility). This knowledge might be used also for studying the human grasp. For the
experiment simulated in this study, it might make sense that the CNS would try to
ensure certain level of stability of the cylinder being grasped, given that the subject
was asked to hold it still for few seconds. The third modification of the original model
(Estimated 4) was carried out to simulate this criterion.

Most of the robotic quality measures that evaluate the stability of the grasps are
geometrical measures that only take into account the contact points and the directions
of the normal contact forces. These measures do not account for the magnitudes of
the forces and would not be useful for defining the objective function in the case
under study. Obviously, the sum of the components of the applied forces that are
normal to the object boundary is indicative of the force efficiency in the grasp. Then,
a quality measure can be defined as the inverse of the sum of the magnitudes of the
normal components of the applied forces required to balance an expected demanding
wrench [99]. The index must be minimised to get an optimum grasp.

The results of minimising that function (Estimated 4), that looks for a more stable
grasp, are also shown in Tables 5.7 and 5.8. The magnitudes of the forces estimated
by the model with this assumption are much closer to the experimental forces than
with any other of the previous objective functions, even for the lighter cylinder.
These results confirm that, for the experiment being simulated, the CNS is trying to
ensure the stability of the grasped cylinder. Although the results do not match exactly
the experimental measurements, they adjust better than any other of the previously
considered scenarios.

The differences between the estimated thumb and finger force values and the
experimental ones can be also attributed to a deficiency in the kinematic model con-
sidered. [100] speculated that modelling the thumb CMC joint with two intersecting
and orthogonal rotation axes could prevent to effectively replicate the contact forces
produced by human subjects during maximum voluntary effort. This has been val-
idated in a recent study by [101]. Therefore, a more exact kinematic model taking
into account these studies should to be considered in future works to improve the
model’s estimations.

Anyway, the criterion selected by the CNS in each case should probably be a
function of the task to be performed. The objective function that has provided good
results in these simulations may not provide so good results under other requirements.
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For example, if the subject were asked to grasp a cylindrical bottle to pour water.
In that case, the grasp should allow certain level of manipulability that will be in
conflict with the stability. More research is needed in this area. In any case, what
seems clear is that the popular objective function sum of the squared muscle stresses
is not suitable for grasping simulation using biomechanical models of the hand, or
that it should be at least complemented by task-dependent grasp quality measures
(manipulability or stability).

5.8 Conclusion

A realistic and self-contained biomechanical model of the hand has been developed
by merging the current knowledge of biomechanics, ergonomics and robotics. The
model simulates the complete hand and can be easily scaled to study different per-
centiles of populations. It has a realistic representation that allows the ergonomic
evaluation of products. The model is dynamic and can be used to study the muscular
patterns associated with a specific grasp. It allows predicting feasible grasping pos-
tures and provides the contact information required for evaluating the grasp. Finally,
the model incorporates different quality grasping measures that are explained in the
following chapters. All the abovementioned features are performed in a virtual envi-
ronment developed using different software tools that have been chosen for their
versatility, flexibility and open access.

There are several parts of the model that are open for improvement. Specifically,
the skin is modeled as rigid bodies and a deformation algorithm for the finger joints
could more realistically show the hand postures. Also, development of closure algo-
rithms that do not need the most open and tentative grasp posture to be measured
experimentally. Additionally, the user interface could also be improved to provide
more options to the user.

The application shows how the simulation of the human hand biomechanics can
be used to solve the indeterminate problem of finding the muscular forces adding the
equilibrium of the grasped object, by minimising different objective functions. The
model underestimated the normal contact forces when the criterion of minimising
the sum of the squared muscle stresses was used. Furthermore, according to the
model predictions, it is mathematically feasible to grasp the cylinders without the
contribution of some fingers, and this is more efficient in some aspects. But it is not
the real behaviour of the human hand that was experimentally observed.

For the simulated experiment, best results were obtained when the indeterminate
problem was solved using a robotic grasp quality measure as objective function
that tried to ensure the stability of the grasped cylinder. Although this function has
provided good results in these simulations, it may fail for others entailing certain level
of manipulability, as the criterion selected by the CNS in each case will probably
be a function of the task to be performed. Further research on the application of
other robotic grasp quality measures for different tasks involving different levels of
stability and manipulability is needed.
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Therefore, the main contribution of this application is in showing that the wide-
spread Crowninshield minimisation function does not work well when trying to
simulate the grasping of an object with an already validated 3D model of the hand.
And that the consideration of stability criteria improves the estimations. This result
is significant in the context of human grasp modelling and has not been reported pre-
viously in the literature, contributing to a better understanding of the human grasp.

Finally, the model presented in this study has been used to study only grasps of
cylinders with the fingertips. More complex grasps, involving more contact zones
and more complex object geometries should be investigated in the future.

References

1. Endo, Y., Kanai, S., Kishinami, T., Miyata, N., Kouchi, M., Mochimaru, M.: A computer-aided
ergonomic assessment and product design system using digital hands. In: Proceedings of the
1st international conference on Digital human modeling. pp. 833–842. Springer, Germany
(2007)

2. Endo, Y., Kanai, S., Miyata, N., Kouchi, M., Mochimaru, M., Konno, J., Ogasawara, M.,
Shimokawa, M.: Optimization-based grasp posture generation method of digital hand for
virtual ergonomics assessment. SAE Int. J. Passeng. Cars-Electron. Electr. Syst. 1(1), 590–
598 (2008)

3. Goussous, F.A.: Grasp planning for digital humans. Ph.D. thesis, Iowa University, US (2007)
4. Kawaguchi, K.: Database-driven grasp synthesis and ergonomic assessment for handheld

product design. Lecture Notes in Computer Science 5620, 642–652 (2009)
5. Leijnse, J., Bonte, J.E., Landsmeer, J., Kalker, J.J., Vandermeulen, J.C., Snijders, C.: Biome-

chanics of the finger with anatomical restrictions - the significance for the exercising hand of
the musician. J. Biomech. 25(11), 1253–1264 (1992)

6. Storace, A., Wolf, B.: Functional-analysis of the role of the finger tendons. Journal of Bio-
mechanics 12(8), 575–578 (1979)

7. Guirintano, D.J., Hollister, A.M.: Force analysis of the thumb for a five-link system. In: ASME
Biomechanics. Symposium. 120, 213–217 (1991)

8. Esteki, A., Mansour, J.M.: A dynamic model of the hand with application in functional
neuromuscular stimulation. Ann. Biomed. Eng. 25(3), 440–451 (1997)

9. Weightman, B., Amis, A.A.: Finger joint force predictions related to design of joint replace-
ments. Journal of Biomedical Engineering 4(3), 197–205 (1982)

10. Fok, K.S., Chou, S.M.: Development of a finger biomechanical model and its considerations.
J. Biomech. 43(4), 701–713 (2010)

11. Kamper, D., Fischer, H., Cruz, E.: Impact of finger posture on mapping from muscle activation
to joint torque. Clin. Biomech. 21(4), 361–369 (2006)

12. Kurita, Y., Onoue, T., Ikeda, A.: Ogasawara. T, Biomechanical analysis of subjective pinching
effort based on tendon-skeletal model (2009)

13. Lee, J.W., Rim, K.: Maximum finger force prediction using a planar simulation of the middle
finger. Proc. Instn. Mech. Engnrs. Part H. J. Eng. Med. 204, 169–178 (1990)

14. Lee, S.W., Chen, H., Towles, J.D., Kamper, D.G.: Effect of finger posture on the tendon force
distribution within the finger extensor mechanism. J. Biomech. Eng. Trans. Asme 130(5),
051014 (2008)

15. Lee, S.W., Chen, H., Towles, J.D., Kamper, D.G.: Estimation of the effective static moment
arms of the tendons in the index finger extensor mechanism. J. Biomech. 41(7), 1567–1573
(2008)

16. Qiu, D., Fischer, H.C.: Kamper. muscle activation patterns during force generation of the
index finger, D.G. (2009)



References 169

17. Roloff, I., Schoffl, V., Vigouroux, L., Quaine, F.: Biomechanical model for the determination
of the forces acting on the finger pulley system. J. Biomech. 39(5), 915–923 (2006)

18. Sancho-Bru, J.L., Perez-Gonzalez, A., Vergara-Monedero, M., Giurintano, D.: A 3-d dynamic
model of human finger for studying free movements. J. Biomech. 34(11), 1491–1500 (Nov
2001)

19. Sancho-Bru, J.L., Giurintano, D.J., Pérez-González, A., Vergara, M.: Optimum tool handle
diameter for a cylinder grip. J. Hand Ther.: Official J. Am. Soc. Hand Ther. 16(4), 337–342
(2003)

20. Sancho-Bru, J.L., Perez-Gonzalez, A., Vergara, M., Giurintano, D.J.: A 3d biomechanical
model of the hand for power grip. J. Biomech. Eng. 125(1), 78–83 (2003)

21. Sancho-Bru, J., Vergara, M., Rodríguez-Cervantes, P.J., Giurintano, D., Pérez-González, A.:
Scalability of the muscular action in a parametric 3d model of the index finger. Ann. Biomed.
Eng. 36, 102–107 (2008)

22. Valero-Cuevas, F.J.: Predictive modulation of muscle coordination pattern magnitude scales
fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)

23. Valero-Cuevas, F.J.: An integrative approach to the biomechanical function and neuromuscular
control of the fingers. J. Biomech. 38(4), 673–684 (2005)

24. Vigouroux, L., Quaine, F., Labarre-Vila, A., Moutet, F.: Estimation of finger muscle tendon
tensions and pulley forces during specific sport-climbing grip techniques. J. Biomech. 39(14),
2583–2592 (2006)

25. Vigouroux, L., Ferry, M., Colloud, F., Paclet, F., Cahouet, V., Quaine, F.: Is the principle
of minimization of secondary moments validated during various fingertip force production
conditions? Hum. Mov. Sci. 27(3), 396–407 (2008)

26. Wu, J.Z., An, K.N., Cutlip, R.G., Dong, R.G.: A practical biomechanical model of the index
finger simulating the kinematics of the muscle/tendon excursions. Biomed. Mater. Eng. 20(2),
89–97 (2010)

27. Brand, P., Hollister, A.: Clinical mechanics of the hand. Elsevier Science Health Science div
(1992)

28. Giurintano, D.J., Hollister, A.M., Buford, W.L., Thompson, D.E., Myers, L.M.: A virtual
five-link model of the thumb. Med. Eng. Phys. 17(4), 297–303 (1995)

29. Youm, Y., Gillespie, T., Flatt, A., Sprague, B.: Kinematic investigation of normal mcp
joint. J. Biomech. 11(3), 109–118 (1978). http://www.sciencedirect.com/science/article/pii/
0021929078900039

30. An, K.N., Chao, E.Y., Cooney, W.P., Lincheid, R.L.: Normative model of human hand for
biomechanical analysis. J. Biomech. 12(10), 775–788 (1979)

31. Crowninshield, R.D., Brand, R.A.: A physiologically based criterion of muscle force predic-
tion in locomotion. J. Biomech. 14(11), 793–801 (1981)

32. Colombo, G., Cugini, U.: Virtual humans and prototypes to evaluate ergonomics and
safety. J. Eng. Des. 16(2), 195–203 (2005). http://www.tandfonline.com/doi/abs/10.1080/
09544820500031542

33. Yang, J., Kim, J.H., Abdel-Malek, K., Marler, T., Beck, S., Kopp, G.R.: A new digital human
environment and assessment of vehicle interior design. Comput. Aided Des. 39(7), 548–
558 (2007). http://www.sciencedirect.com/science/article/pii/S0010448506002120, human
Modeling and Applications

34. Case, K., Porter, J., Bonney, M.: SAMMIE: a man and workplace modeling system. Comput.
Aided Ergono., 31–56 (1990)

35. Peña Pitarch, E.: Virtual human hand: Grasping strategy and simulation. Ph.D. thesis, Uni-
versitat Politècnica de Catalunya (2007)

36. Mital, A., Kilbom, A.: Design, selection and use of hand tools to alleviate trauma of the
upper extremities: Part ii-the scientific basis (knowledge base) for the guide. In: Anil Mital,
A.K., Kumar, S. (eds.) Ergonomics Guidelines and Problem Solving, Elsevier Ergonomics
Book Series, vol. 1, pp. 217–231. Elsevier, Amsterdam (2000). http://www.sciencedirect.
com/science/article/pii/S1572347X00800178

http://www.sciencedirect.com/science/article/pii/0021929078900039
http://www.sciencedirect.com/science/article/pii/0021929078900039
http://www.tandfonline.com/doi/abs/10.1080/09544820500031542
http://www.tandfonline.com/doi/abs/10.1080/09544820500031542
http://www.sciencedirect.com/science/article/pii/S0010448506002120,
http://www.sciencedirect.com/science/article/pii/S1572347X00800178
http://www.sciencedirect.com/science/article/pii/S1572347X00800178


170 5 The Model of the Human Hand

37. Keyserling, W.M.: Workplace risk factors and occupational musculoskeletal disorders, part 2:
A review of biomechanical and psychophysical research on risk factors associated with upper
extremity disorders. AIHAJ 61(2), 231–243 (2000). http://www.ncbi.nlm.nih.gov/pubmed/
10782195

38. Kong, Y., Jang, H., Freivalds, A.: Wrist and tendon dynamics as contributory risk factors in
work-related musculoskeletal disorders: Research articles. Hum. Factor. Ergon. Manuf. 16(1),
83–105 (2006). http://dx.doi.org/10.1002/hfm.v16:1

39. Muggleton, J.M., Allen, R., Chappell, P.H.: Hand and arm injuries associated with repet-
itive manual work in industry: a review of disorders, risk factors and preventive mea-
sures. Ergonomics 42(5), 714–739 (1999). http://www.tandfonline.com/doi/abs/10.1080/
001401399185405

40. Schoenmarklin, R.W., Marras, W.S., Leurgans, S.E.: Industrial wrist motions and incidence of
hand/wrist cumulative trauma disorders. Ergonomics 37(9), 1449–1459 (1994). http://www.
ncbi.nlm.nih.gov/pubmed/7957023

41. Spielholz, P., Silverstein, B., Morgan, M., Checkoway, H., Kaufman, J.: Comparison of self-
report, video observation and direct measurement methods for upper extremity musculoskele-
tal disorder physical risk factors. Ergonomics 44(6), 588–613 (2001). http://www.ncbi.nlm.
nih.gov/pubmed/11373023

42. Kumar, S.: Theories of musculoskeletal injury causation. Ergonomics 44(1), 17–47 (2001).
http://www.ncbi.nlm.nih.gov/pubmed/11214897

43. Armstrong, T.J., Best, C., Bae, S., Choi, J., Grieshaber, D.C., Park, D., Woolley, C., Zhou,
W.: Development of a kinematic hand model for study and design of hose installation. Lect.
Notes Comput. Sci. 5620, 85–94 (2009)

44. Freivalds, A.: Biomechanics of the upper limbs: Mechanics, modeling, and musculoskeletal
Injuries (2004)

45. Wu, G., van der Helm, F.C., Veeger, H.D., Makhsous, M., Roy, P.V., Anglin, C., Nagels, J.,
Karduna, A.R., McQuade, K., Wang, X., Werner, F.W., Buchholz, B.: Isb recommendation
on definitions of joint coordinate systems of various joints for the reporting of human joint
motion-part ii: shoulder, elbow, wrist and hand. J. Biomech. 38(5), 981–992 (2005). http://
www.sciencedirect.com/science/article/pii/S002192900400301X

46. Kapandji, A.I.: Fisiologie articulaire. Membre Supérieur. Editions Maloine, Paris (1998)
47. Buchholz, B., Armstrong, T.J.: A kinematic model of the human hand to evaluate its prehensile

capabilities. J. Biomech. 25(2), 149–162 (1992)
48. Hollister, A., Giurintano, D.J., Buford, W.L., Myers, L.M., Novick, A.: The axes of rotation

of the thumb interphalangeal and metacarpophalangeal joints. Clin. Orthop. Relat. Res. 320,
188–193 (1995)

49. Sancho-Bru, J.: Model biomecànic de la mà orientat al disseny d’eines manuals. Ph. d. thesis,
Universitat Jaume I (2000)

50. Tubiana, R.: The hand, vol. 1. Sanders Company, Philadelphia (1981)
51. Tubiana, R., T.J., Mackin, E.: Examination of the hand and wrist. Martin Dunitz (1996)
52. Denavit, J.: A kinematic notation for lower-pair mechanisms based on matrices. Trans. ASME.

J. Appl. Mech. 22, 215–221 (1955). http://ci.nii.ac.jp/naid/10008019314/en/
53. Lee, K.S., Mo, S.M., Hwang, J.J., Wang, H., Jung, M.C.: Relaxed hand postures. Japanese J.

Ergon. 44(Supplement), 436–439 (2008)
54. An, K.N., Chao, E.Y.S., Kaufman, K.R.: Analysis of muscle and joint loads, pp. 1–50. Basic

Orthopaedics Biomechanics, Raven Press. Ltd., New York (1991).
55. Goldstein, S.A., Armstrong, T.J., Chaffin, D.B., Matthews, L.S.: Analysis of cumulative strain

in tendons and tendon sheaths. J. Biomech. 20(1), 1–6 (1987)
56. Kaufman, K.R., An, K.N., Litchy, W.J., Chao, E.Y.S.: Physiological prediction of muscle

forces.1. theoretical formulation. Neuroscience 40(3), 781–792 (1991)
57. Hatze, H.: Myocibernetic control models of skeletal muscle (1981)
58. Valero-Cuevas, F.J., Zajac, F.E., Burgar, C.G.: Large index-fingertip forces are produced by

subject-independent patterns of muscle excitation. J. Biomech. 31(8), 693–703 (1998)

http://www.ncbi.nlm.nih.gov/pubmed/10782195
http://www.ncbi.nlm.nih.gov/pubmed/10782195
http://dx.doi.org/10.1002/hfm.v16:1
http://www.tandfonline.com/doi/abs/10.1080/001401399185405
http://www.tandfonline.com/doi/abs/10.1080/001401399185405
http://www.ncbi.nlm.nih.gov/pubmed/7957023
http://www.ncbi.nlm.nih.gov/pubmed/7957023
http://www.ncbi.nlm.nih.gov/pubmed/11373023
http://www.ncbi.nlm.nih.gov/pubmed/11373023
http://www.ncbi.nlm.nih.gov/pubmed/11214897
http://www.sciencedirect.com/science/article/pii/S002192900400301X
http://www.sciencedirect.com/science/article/pii/S002192900400301X
http://ci.nii.ac.jp/naid/10008019314/en/


References 171

59. Zajac, F.E.: Muscle and tendon - properties, models, scaling, and application to biomechanics
and motor control. Crit. Rev. Biomed. Eng. 17(4), 359–411 (1989)

60. Lemay, M.A., Crago, P.E.: A dynamic model for simulating movements of the elbow, forearm,
and wrist. J. Biomech 29(10), 1319–1330 (1996)

61. Jacobson, M.D., Raab, R., Fazeli, B.M., Abrams, R.A., Botte, M.J., Lieber, R.L.: Architectural
design of the human intrinsic hand muscles. J. Hand Surg. Am. 17A(5), 804–809 (1992)

62. Eyler, D.L., Markee, J.E.: The anatomy and function of the intrinsic musculature of the fingers.
J. Bone Joint Surg. 36(1), 1–18 (1954)

63. Dubousset, J.: The digital joints, pp. 191–201. Saunders Company, Philadelphia (1981)
64. Craig, S.M.: Anatomy of the joints of the fingers. Hand Clin. 8(4), 693–700 (1992). http://

www.ncbi.nlm.nih.gov/pubmed/1460067
65. Mommersteeg, T., Blankevoort, L., Huiskes, R., Kooloos, J., Kauer, J.: Characteriza-

tion of the mechanical behavior of human knee ligaments: A numerical-experimental
approach. J. Biomech. 29(2), 151–160 (1996). http://www.sciencedirect.com/science/article/
pii/0021929095000402

66. Minami, A., An, K.N., Cooney, W.P., Linscheid, R.L., Chao, E.Y.: Ligament stability of the
metacarpophalangeal joint: a biomechanical study. J. Hand Surg. Am. 10(2), 255–260 (1985).
http://www.ncbi.nlm.nih.gov/pubmed/3980940

67. Ciocarlie, M., Miller, A., Allen, P.: Grasp analysis using deformable fingers. IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, In (2005). (IROS 2005). pp. 4122–
4128 (2005)

68. Ciocarlie, M., Lackner, C., Allen, P.: Soft finger model with adaptive contact geometry for
grasping and manipulation tasks. Second Joint EuroHaptics Conference and Symposium on
Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 219–224 (2007)

69. Howe, R., Kao, I., Cutkosky, M.: The sliding of robot fingers under combined torsion and shear
loading. In: Proceedings of IEEE International Conference on Robotics and Automation, vol.
1. pp. 103–105 (1988)

70. Kao, I., Cutkosky, M.R.: Quasistatic manipulation with compliance and sliding. Int. J. Robot.
Res. 11(1), 20–40 (1992)

71. Howe, R.D., Cutkosky, M.R.: Practical force-motion models for sliding manipulation. I. J.
Robot. Res. 15(6), 557–572 (1996). http://dblp.uni-trier.de/db/journals/ijrr/ijrr15.html

72. Kao, I., Yang, F.: Stiffness and contact mechanics for soft fingers in grasping and manipulation.
IEEE Trans. Robot. Autom. 20(1), 132–135 (2004)

73. Johnson, K.L.: Contact mechanics. Cambridge University Press, Cambridge (1995)
74. Derler, S., Gerhardt, L.C.: Tribology of skin: Review and analysis of experimental results

for the friction coefficient of human skin. Tribol. Lett. 45, 1–27 (2012). http://dx.doi.org/10.
1007/s11249-011-9854-y

75. Savescu, A.V., Latash, M.L., Zatsiorsky, V.M.: A technique to detershrane friction at the
fingertips. J. Appl. Biomech. 24(1), 43–50 (2008)

76. Han, H.Y., Kawamura, S.: Analysis of stiffness of human fingertip and comparison with
artificial fingers. In: Systems, Man, and Cybernetics, 1999. IEEE SMC ’99 Conference Pro-
ceedings. 1999 IEEE International Conference on. vol. 2, pp. 800–805 (1999)

77. Davidoff, N.A., Freivalds, A.: A graphic model of the human hand using CATIA. Int. J. Ind.
Ergon. 12(4), 255–264 (1993). http://dx.doi.org/10.1016/0169-8141(93)90095-U

78. Bernabeu, E., Tornero, J.: Hough transform for distance computation and collision avoidance.
IEEE Trans. Robot. Autom. 18(3), 393–398 (2002)

79. Gilbert, E.G., Johnson, D.W., Keerthi, S.S.: A fast procedure for computing the distance
between complex objects in 3-dimensional space. IEEE J. Robot. Autom. 4(2), 193–203
(1988)

80. Rhee, T., Neumann, U., Lewis, J.P.: Human hand modeling from surface anatomy. In: Pro-
ceedings of the 2006 symposium on Interactive 3D graphics and games. pp. 27–34. I3D ’06,
ACM, New York, NY, USA (2006). http://doi.acm.org/10.1145/1111411.1111417

81. Rogers, M.S., Barr, A.B., Kasemsontitum, B., Rempel, D.M.: A three-dimensional anthropo-
metric solid model of the hand based on landmark measurements. Ergonomics 51(4), 511–526
(2008). http://www.tandfonline.com/doi/abs/10.1080/00140130701710994

http://www.ncbi.nlm.nih.gov/pubmed/1460067
http://www.ncbi.nlm.nih.gov/pubmed/1460067
http://www.sciencedirect.com/science/article/pii/0021929095000402
http://www.sciencedirect.com/science/article/pii/0021929095000402
http://www.ncbi.nlm.nih.gov/pubmed/3980940
http://dblp.uni-trier.de/db/journals/ijrr/ijrr15.html
http://dx.doi.org/10.1007/s11249-011-9854-y
http://dx.doi.org/10.1007/s11249-011-9854-y
http://dx.doi.org/10.1016/0169-8141(93)90095-U
http://doi.acm.org/10.1145/1111411.1111417
http://www.tandfonline.com/doi/abs/10.1080/00140130701710994


172 5 The Model of the Human Hand

82. van Nierop, O.A., van der Helm, A., Overbeeke, K.J., Djajadiningrat, T.J.P.: A natural
human hand model. Vis. Comput. 24(1), 31–44 (2007). http://dx.doi.org/10.1007/s00371-
007-0176-x

83. Mora, M., Sancho-Bru, J.L., Pérez-González, A.: Hand posture prediction using neural net-
works within a biomechanical model. Int. J. Adv. Robot, Syst (2012)

84. Choi, J.: Developing a three-dimensional kinematic model of the hand for ergonomic analyses
of hand posture, hand space envelope, and tendon excursion. Ph.D. thesis, University of
Michigan (2008).

85. de Jalón, J.G., Bayo, E.: Kinematic and dynamic simulation of multibody systems. Springer,
New York (1994)

86. Tsang, W., Singh, K., Fiume, E.: Helping hand: an anatomically accurate inverse dynam-
ics solution for unconstrained hand motion. In: Proceedings of the 2005 ACM SIG-
GRAPH/Eurographics symposium on Computer animation. pp. 319–328. SCA ’05, ACM,
USA (2005). http://doi.acm.org/10.1145/1073368.1073414

87. Albrecht, I., Haber, J., Seidel, H.P.: Construction and animation of anatomically based human
hand models. In: Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on
Computer animation. pp. 98–109. SCA ’03, Eurographics Association, Aire-la-Ville, Switzer-
land (2003). http://dl.acm.org/citation.cfm?id=846276.846290

88. Delp, S.L., Loan, J.: A graphics-based software system to develop and analyze models of mus-
culoskeletal structures. Comput. Biol. Med. 25(1), 21–34 (1995). http://www.sciencedirect.
com/science/article/pii/001048259598882E

89. Delp, S., Loan, J.: A computational framework for simulating and analyzing human
and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000). http://ieeexplore.ieee.
org/xpl/articleDetails.jsp?reload=true&arnumber=877394&contentType=Journals+%
26+Magazines

90. Gonzalez, R.V., Buchanan, T.S., Delp, S.L.: How muscle architecture and moment arms
affect wrist flexion-extension moments. J. Biomech. 30(7), 705–712 (1997). http://www.
sciencedirect.com/science/article/pii/S0021929097000158

91. Van Der Helm, F.C.: A three-dimensional model of the shoulder and elbow. In: Proceedings
of the First Conference of the International Shoulder Group. pp. 65–70 (1997).

92. Holzbaur, K.R.S., Murray, W.M., Delp, S.L.: A model of the upper extremity for simulating
musculoskeletal surgery and analyzing neuromuscular control. Ann. Biomed. Eng. 33(6),
829–840 (2005). http://dx.doi.org/10.1007/s10439-005-3320-7

93. Delp, S.L., Anderson, F.C., Arnold, A.S., Loan, P., Habib, A., John, C.T., Guendelman, E.,
Thelen, D.G.: Opensim: Open-source software to create and analyze dynamic simulations of
movement. IEEE Trans. Biomed. Eng. 54(11), 1940–1950 (2007). http://dblp.uni-trier.de/db/
journals/tbe/tbe54.html

94. Miller, A., Allen, P.: Graspit! a versatile simulator for robotic grasping. IEEE Robot. Autom.
Mag. 11(4), 110–122 (2004)

95. Diankov, R.: Automated Construction of Robotic Manipulation Programs. Ph.D. thesis,
Carnegie Mellon University, Robotics Institute (2010)

96. Mora, M., Sancho-Bru, J.L., Iserte, J.L., Pérez-González, A.: Protocolo de calibración para
guante instrumentado en la caracterización cinemática del agarre humano. X Congreso
Iberoamericano de Ingeniería Mecánica, In (2011)

97. Sancho-Bru, J., Vergara, M., J.B.N.J., Mora Aguilar, M., Pérez-González, A.: Medición del
movimiento de todos los segmentos de la mano mediante videogrametría. In: XIX Congreso
Nacional de Ingeniería Mecánica (CNIM 2012). Castellon, Spain (2012).

98. Jenmalm, P., Goodwin, A.W., Johansson, R.S.: Control of grasp stability when humans lift
objects with different surface curvatures. J. Neurophysiol. 79(4), 1643–1652 (1998). http://
www.ncbi.nlm.nih.gov/pubmed/9535935

99. Liu, G., Li, Z.: Real-time grasping-force optimization for multifingered manipulation: theory
and experiments. IEEE/ASME Trans. Mechatron. 9(1), 65–77 (2004)

100. Valero-Cuevas, F.J., Johanson, M.E., Towles, J.D.: Towards a realistic biomechanical model of
the thumb: The choice of kinematic description may be more critical than the solution method

http://dx.doi.org/10.1007/s00371-007-0176-x
http://dx.doi.org/10.1007/s00371-007-0176-x
http://doi.acm.org/10.1145/1073368.1073414
http://dl.acm.org/citation.cfm?id=846276.846290
http://www.sciencedirect.com/science/article/pii/001048259598882E
http://www.sciencedirect.com/science/article/pii/001048259598882E
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=877394&contentType=Journals+%26+Magazines
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=877394&contentType=Journals+%26+Magazines
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?reload=true&arnumber=877394&contentType=Journals+%26+Magazines
http://www.sciencedirect.com/science/article/pii/S0021929097000158
http://www.sciencedirect.com/science/article/pii/S0021929097000158
http://dx.doi.org/10.1007/s10439-005-3320-7
http://dblp.uni-trier.de/db/journals/tbe/tbe54.html
http://dblp.uni-trier.de/db/journals/tbe/tbe54.html
http://www.ncbi.nlm.nih.gov/pubmed/9535935
http://www.ncbi.nlm.nih.gov/pubmed/9535935


References 173

or the variability/uncertainty of musculoskeletal parameters. J. Biomech. 36(7), 1019–1030
(2003)

101. Wohlman, S.J., Murray, W.M.: Bridging the gap between cadaveric and in vivo experiments:
A biomechanical model evaluating thumb-tip endpoint forces. J. Biomech. 46(5), 1014–1020
(2013). http://www.sciencedirect.com/science/article/pii/S0021929012006513

http://www.sciencedirect.com/science/article/pii/S0021929012006513


Chapter 6
Human Grasp Evaluation

6.1 Introduction

As it was presented in the previous chapter, many biomechanical human hand models
have been developed so far, with the aim of providing a tool for studying problems
that cannot be directly analysed on humans or that have a too high cost. One of the
main features of the human hand is its grasping capability. However, the current
models have a limited ability to predict feasible grasping postures and do not allow
the evaluation of the quality of grasps.

Evaluating the quality of a human grasp could have several applications. First of
all, inside biomechanical human hand models, it could be used as a tool for assisting
in the prediction of grasping postures or as a criterion to solve the indeterminate
problem of finding the contact forces to grasp an object in a given posture as shown
in Sect. 5.7 [1]. Second, it can be applied in the design of hand-held products [2, 3].
Additionally, the design of hand prosthesis could also be improved if the quality of
the grasp performed by a given mechanical hand could be measured and compared
to the grasp performed by the physiological hand. Therefore, having a model that
incorporates grasp quality measures might significantly increase their use by the
biomechanics, medical and ergonomics communities.

For many years the robotics community has been studying the autonomous han-
dling of objects by robots. In order to help the selection of the proper robotic grasp
for handling an object, many grasp quality measures have been developed that allow
comparing different aspects of the robotic grasp [4]. Although the human hand is
obviously more complex than robot hands, the methods used in robotics might be
adopted to study the human grasp. There are few studies evaluating the quality of a
human grasp [2, 3]. Both works used the robotic measure of stability proposed by [5].
To the best of our knowledge, there has not been any study adapting other robotic
quality measures to the human hand or proposing a global human grasp quality index.
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6.2 Grasp Quality Measures: Literature Review

Many approaches have been proposed to measure the quality of a grasp. Some of
the measures focus on evaluating the ability to resist external disturbances, others
on evaluating the dexterity. In order to find the optimal grasp for a given task, the
geometry of the object and the structure of the hand should be taken into account.
Therefore, object, hand and task constraints should be considered when searching
for the optimal grasp points (see Fig. 6.1).

Different measures have been proposed in robotics which takes one or more of
these constraints into account. Object and hand constraints have been considered
using the contact points to evaluate the quality of a grasp, using either the Grasp
Matrix G, the location of the contact points or the contact forces that should be
applied to resist external disturbances. Additionally, hand constraints have also been
considered measuring the comfort of the grasp or the ability to manipulate the object
in a given hand configuration. Finally, task constraints have also been added favoring
the grasps that are able to generate wrenches on the object that are relevant to the task.

On the other hand, having the design of the object into account, some ergonomic
quality measures have been proposed which evaluate the ease of grasping it or the
level of risk factors associated with specific manipulation tasks.

A literature review of the proposed robotic and ergonomic grasp quality measures
is presented in the following sections.

Object 
Constraints

Hand 
Constraints

Task 
Constraints

Feasible Grasp 
Space

Optimal 
Grasp

Fig. 6.1 Optimal grasp of multi-fingered hand adapted from [6]
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6.2.1 Robotic Measures of Grasp Performance

The robotic quality measures can be classified into six groups depending on whether
they consider the algebraic properties of G; the distribution of the contact points on
the object; the magnitude of the forces applied on this contacts; the configuration of
the manipulator; the task to be performed after the grasp; or a combination of them.

6.2.1.1 Algebraic Properties of G

These are stability indicators that consider the algebraic properties of the grasp matrix
G to measure the grasp capability of withstanding external wrenches; they use the
contact points and normal directions. They do not consider any limitation on the
finger forces, so that in some cases the fingers have to apply very large forces to
resist small perturbations.

The grasp matrix G (defined in Sect. 2.3.1) is the linear transformation between
the contact force vector and the net wrench on the object. Geometrically, G maps
the unitary sphere in the force domain of the contact points into an ellipsoid in the
wrench space [7]. The lengths of the principal axes of the ellipsoid are the singular
values of G, which are the n nonnegative square roots σi of the eigenvalues of GGT .
The following quality measures use these singular values to define the quality of the
grasp.

Smallest singular value of G [8]

Objective: Maximize to obtain an optimum grasp
Description: This quality measure indicates how far the grasp configuration is from

falling into a singular configuration, losing the capability of withstand-
ing external wrenches [8]. When a grasp is in a singular configuration,
at least one of the singular values of G is zero. The quality measure is
defined as:

Q = σmin(G) (6.1)

where σmin(G) is the smallest singular value of the matrix G
Units: None

Lower limit: 0
Upper limit: Not determined
Advantages: Its computational simplicity
Limitations: It is invariant under body coordinate transformation but not invariant

under a change of the toque origin. Also, since it gives only a worst
case analysis it does not reflect the entire grasp

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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Volume of G in the wrenchspace [8]

Objective: Maximize to obtain an optimum grasp
Description: The global contribution of all the contact forces can be considered

calculating the volume of the ellipsoid in the wrench space [7]
The volume of a matrix can be obtained as the product of its singular values [9],
therefore this quality measure can be defined as:

Q = v(G) =
r∏

i=1

σi (6.2)

where r is the rank of G, and σ1 ≥ σ2 ≥ · · · ≥ σr denote the nonzero singular values
of G

Units: None
Lower limit: 0
Upper limit: Not determined
Advantages: It is invariant under both a body coordinate transformation and a change

of the origin
Limitations: It does not reflect stability of a grasp. There could be a case where an

unstable grasp might yield a larger volume measure than a stable grasp
[8]. Consequently, to compare the qualities of two grasps, first their
stability should be checked and then use this measure to evaluate their
quality

Grasp Isotropy Index [6]

Objective: Maximize to obtain an optimum grasp
Description: The precise position or force control may not be guaranteed in part if

any finger lies near a singular position. This quality measure tries to
obtain an isotropic grasp where the magnitude of internal forces are
similar [6], and is calculated as:

Q = σmin(G)

σmax(G)
(6.3)

where σmin and σmax denote the minimum and maximum singular val-
ues of G. This measure approaches to one at a desirable configuration
(isotropic) and is equal to zero at the singular configuration

Units: None
Lower limit: 0
Upper limit: 1
Advantages: It is normalized between 0 and 1. Also, its computational simplicity
Limitations: None
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6.2.1.2 Distribution of the Contact Points

These are stability indicators that use the location of the contact points. Better stability
of the grasps is assumed when contact points are distributed in a uniform way on the
object surface. This can be calculated by measuring either the angles or the area of
the polygon whose vertices are the contact points. Another measure considers the
distance between the centroid of the contact points polygon and the object center of
mass aiming to minimize the effect of gravitational and inertial forces.

Distance between the centroid of the contact polygon and the object’s center of mass
[10, 11]

Objective: Minimize to obtain an optimum grasp
Description: This index aims to minimize the effect of gravitational and inertial

forces during the motion of the robot, measuring the distance between
the center of mass p of the grasped object and the centroid of the contact
points pc [10]. The centroid of the contact points is calculated as:

pc = 1

nc

nc∑
i=1

ci (6.4)

where nc is the number of contact points and ci is the location of each
contact point. Then the measure is calculated as:

Q = distance(p, pc) (6.5)

where p can be calculated as the centroid of the object when it can be
assumed that the object has a uniform mass distribution. The smaller
this distance the better the grasp can resist the effect of external forces

Units: [length]
Lower limit: 0
Upper limit: Maximum distance between the object’s centroid and any point on the

object surface
Advantages: It can be used for more than one contact, including more than three

non-coplanar contacts
Limitations: None

Area of the grasp polygon[12]

Objective: Maximize to obtain an optimum grasp
Description: This measure is defined as the area of the polygon formed by the contact

points. The optimum grasp is the one that best resists forces and torques
about the grip plane, which has the largest polygon area [13]. It has been
used in robotics for three finger hands, where all finger points lie in a
plane [14]
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Q = Area(Polygon(c1, . . . , ci, . . . , cn)) (6.6)

Units: [length]2

Lower limit: 0
Upper limit: Not determined
Advantages: The area of the polygon should be more important to measure for heavy

objects, where stability against gravitational and inertial torques is a
critical issue [15]

Limitations: Only for contact points that lay one the same plane, therefore in robotics
it has only been tested for two and three-finger planar grasps

Shape of the grasp polygon [6]

Objective: Minimize to obtain an optimum grasp
Description: This measure compares how far the internal angles of the grasp poly-

gon are from those of the corresponding regular polygon [6]. Accord-
ing to [16], the quality of a grasp is improved in terms of stability,
sliding avoidance and force equilibrium, when the contact points are
distributed in a uniform way on the object surface, generating a regular
polygon. This index is calculated as:

Q = 1

θmax

nf∑
i=1

|θi − θ̄ | (6.7)

where nf denotes the number of fingers, θi is the inner angle at the ith
vertex of the polygon, θ̄ denotes the average angle of all inner angles
of the grasp polygon, given by:

θ̄ = 180(nf − 2)

nf
(6.8)

and θmax is the sum of the differences between the internal angles when
the polygon has the most ill-conditioned shape (such as a line) and those
of a regular polygon:

θmax =
nf∑

i=1

|θi − θ̄ |ill conditioned = (nf − 2)(180 − θ̄ ) + 2θ̄ (6.9)

Note that in such a condition, the polygon would have two of the angles
close to zero and the others close to 180◦. The division of Q by θmax

aims to normalize the measure between zero and one
Units: None

Lower limit: 0
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Upper limit: 1
Advantages: Its computational simplicity
Limitations: As the previous measure, defined only for contact points that lay on the

same plane. Also, there could be many polygons with the same quality,
therefore another grasp index is necessary to classify more stable grasp
points.

Minimum length of Independent Contact Regions (ICR) [17]

Objective: Maximize to obtain an optimum grasp
Description: This measures take into account the uncertainty in the position of

the fingers minimizing the sensitivity of a grasp to positioning errors
because of the uncertainty in the robotic systems. Therefore, instead of
contact points it calculates independent contact regions (ICR) in which
force closure grasps are assured. The quality of the grasp is measured
by the size of these regions, aiming to maximize the minimum of their
lengths

Q = minr∈ICRLr (6.10)

where Lr is the length in 2D space of the region
Units: [length]

Lower limit: 0
Upper limit: Not determined
Advantages: Considers the sensitivity of a grasp to positioning errors
Limitations: It has been applied only to 2D objects and two and three-finger grasps

Uncertainty grasp index[6]

Objective: Minimize to obtain an optimum grasp
Description: This index aims to estimate the position sensitivity of the grasp points,

which is minimized if all fingers grasp the object at the center of the
independent contact regions. It is calculated as the sum of the distances
between each contact point ci = (xi, yi, zi) and the center of the corre-
sponding independent contact region (xio, yio, zio)

Q = 1

nc

nc∑
i=1

√
(xi − xio)2 + (yi − yio)2 + (zi − zio)2 (6.11)

Units: [length]
Lower limit: 0
Upper limit: Not determined
Advantages: Considers the sensitivity of a grasp to positioning errors
Limitations: Applicable only to planar grasps. The independent contact regions need

to be calculated
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6.2.1.3 Magnitude of Forces

These are stability indicators that take into account the magnitude of forces applied
at the contact points. The previous indicators do not consider any limitation on the
finger forces, so that in some cases the fingers have to apply very large forces to resist
small perturbations.

Smallest maximum wrench to be resisted [5, 18]

Objective: Maximize to obtain an optimum grasp
Description: This measure defines the quality of a grasp as the length of the smallest

wrench (in any direction) that breaks the grasp, when in every contact
a force with unit strength is applied [19]

Better grasp configurations are assumed if any external force can be balanced with
small finger forces, with small deformation of the object and fingers. Therefore, the
quality of a grasp can be measured considering the ratio between the magnitude of
the maximum wrench to be resisted (over all possible directions) and the magnitude
of the applied finger forces. The magnitude of a wrench is defined as:

‖w‖ =
√

‖f ‖2 + ρ‖τ‖2 (6.12)

where f and τ are the force and torque vectors and ρ is a parameter used to scale the
torque to the force magnitude (see Sect. 2.2.1)
The local quality measure (LQ) is defined as:

LQw = max
g∈wA

‖w‖
‖g‖ (6.13)

where wA is the set of generalized forces that can resist the wrench w and g is the
finger applied force for a given wrench direction. Without loss of generality, ‖w‖
can be chosen so that ‖g‖ = 1 (we are considering the ratio and both scale linearly
with each other). Therefore, we can rewrite LQ as:

LQŵ = max
w∈wB

‖w‖ (6.14)

where wB is the set of generalized forces that can resist the wrench w such that
‖g‖ = 1
The grasp quality measure Q can be defined, for a set of contacts on the object, as:

Q = min
ŵ

LQŵ = min
ŵ

max
w∈wB

‖w‖ (6.15)

The minimum is taken because there is usually no control over the wrench that the
gripper must resist, then taken the minimum is a way to ensure a level of performance
over all possible wrenches

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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The Grasp Wrench Space (GWS) is the set of all wrenches that can be applied to the
object through the grasp contacts. A way to approximate the GWS is to calculate the
convex hull over a discretized frictions cones. Let the convex hull of the primitive
wrenches (CW ) be the boundary of the set of wrenches that can be resisted by the
applied forces. Then Q can be written as:

Q = min
w∈CW

‖w‖ (6.16)

This can be geometrically interpreted as the distance of the nearest point to the origin
of the wrench-space, from the origin itself (the closest facet to the origin). In other
words, Q is the radius of the largest sphere (centered at the origin) which is contained
in CW
The convex hull (CW ) can be calculated using different quality criteria, depending
on the definition of ‖g‖ = 1:

• Minimizing the maximum finger force: The applied forces are indi-
vidually and independently upper-bounded (equal to 1)

CW = ConvexHull(
n⊕

i=1

{wi,1, . . . , wi,m}) (6.17)

where
⊕

is the Minkowski sum of the primitive wrenches wn,m

• Minimizing the total finger force: The sum of the magnitude of the
forces at the contact points is upper-bounded (equal to 1)

CW = ConvexHull(
nc⋃

i=1

{wi,1, . . . , wi,m}) (6.18)

A comparison between both criteria can be found in [20]
Finding the closest facet to the origin means finding the most difficult wrench to
the grasp to apply. Also, the wrench in the opposite direction is the most difficult
external wrench for the grasp to resist. The measure indicates how efficient the grasp
is at handling this worst case [21]

Units: Depends on the units of w. If ρ with units of [length] is used in Eq.
(6.12), then this measure would have [force] units

Lower limit: 0
Upper limit: Non determined
Advantages: This is a geometric representation of the smallest perturbation wrench

that breaks the grasp, independently of its direction. The force-closure
condition can be verified, when this measure is greater than zero. The
closer it is to 1, the more efficient the grasp is. It has been widely used
by the robotics community [7, 19, 21]

Limitations: This measure depends on the choice of the origin of the reference
system used to compute torques. It has no physical or mechanical
interpretation
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Volume of the convex hull [21]

Objective: Maximize to obtain an optimum grasp
Description: This measure calculates the volume of the boundary of the set of all

possible wrenches acting on the object:

Q = Volume(CW) (6.19)

where CW is defined by Eq. (6.17) or (6.18)
Units: Depends on the units of w. If ρ with units of [length] is used in Eq.

(6.12), then this measure would have [force]6 units
Lower limit: 0
Upper limit: Not determined
Advantages: It remains constant independently of the used torque reference system

[21]. It can be calculated using the Qhull1 algorithm
Limitations: None

Smallest maximum wrench to be resisted based on decoupled wrenches [12]

Objective: Maximize to obtain an optimum grasp
Description: This measure was created to avoid the problem of non-comparability

of forces and moments in the wrench definition
It is defined as an optimality criterion based on decoupling wrenches into two subsets
consisting of pure forces wf or pure moments wτ . Let Q1 and Q2 measure the grasp’s
ability to resist unit forces and unit torques respectively:

Q1 = min
wf ∈CW

‖wf ‖ (6.20)

Q2 = min
wτ ∈CW

‖wτ‖ (6.21)

Then, the optimum grasp is the one which maximizes Q2 among all grasps which
maximize Q1. Physically, this means seeking grasps which best resist forces in the
grip plane and among these, considering the one which best resist moments perpen-
dicular to the grip plane to be the optimum

Units: [force · length]
Lower limit: 0
Upper limit: Not determined
Advantages: Avoid the problem of non-comparability between forces and moments
Limitations: Difficult to calculate

1 http://www.qhull.org/

http://www.qhull.org/
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Normal Grasping Force [22]

Objective: Minimize to obtain an optimum grasp
Description: This measure takes into account the magnitudes of the applied forces

as indicative of the force efficiency in the grasp. It indicates how much
passive forces the grasp can produce on the object to resist external
disturbances. The normal grasping force is defined by:

fn =
k∑

i=1

fnormali (6.22)

where k is the number of fingers and fnormali is the normal component
of the finger force. Then, for a given grasp and applied finger forces
that resist a given external wrench wext , the quality of the grasp is given
by:

Q = 1

fn
(6.23)

This measure should be minimized to obtain an optimum grasp
Units: [1/force]

Lower limit: 0
Upper limit: ∞
Advantages: The magnitude of the forces needs to be calculated
Limitations: It is the only measure found that takes the actual magnitude of the

forces applied into account

6.2.1.4 Configuration of the Manipulator

The manipulability of a robot describes its ability to move freely in all directions
in the workspace. Manipulability can measure either the ability to reach a certain
position or the ability to change the position or orientation at a given configuration
[23].

A singular configuration of a robot manipulator is a configuration at which the
manipulator Jacobian (defined in Sect. 2.3.1) drops rank i.e. two or more of the
columns of J become linearly dependent (see [23] for a thorough explanation). A sin-
gular configuration corresponds to a configuration in which the manipulator is not
able to achieve instantaneous motion in certain directions (six degree of freedom
manipulator) or the number of degrees of freedom of the end-effector drops (fewer
than six degrees of freedom). Near singular configurations, the size of the joint veloc-
ities required to maintain a desired end-effector velocity in certain directions can be
extremely large. Singularities also affect the size of the end-effector forces that the
manipulator can apply. In order to avoid these difficulties, singular configurations
should usually be avoided, if possible.

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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In addition to singularities of the Jacobian, a robot can also lose degrees of freedom
when the joint variables are constrained to lie in a closed interval. In this case, a loss
of freedom of motion can occur when one or more of the joints is at the limit of
its travel. At such a configuration, motion past the joint limit is not allowed and the
motion of the end-effector is restricted.

In order to study the local manipulability, there have been several measures pro-
posed in the literature. Many of these measures rely on the singular values of the
Jacobian J of the manipulator. Other penalize the hand joints that are at their maxi-
mum limits. They most relevant are explained here in detail.

Posture of hand finger joints [24]

Objective: Minimize to obtain an optimum grasp
Description: This index assesses the manipulation ability of the robot hand at the

grasp position, measuring how far each joint is from its maximum
limits. It is calculated as:

Q = 1/nq

nq∑
i=1

(
yi − ai

ai − yiM

)2

(6.24)

where nq is the number of joints and ai is the middle-range position
calculated as:

ai = (yiM − yim)/2 (6.25)

where yiM and yim are the maximum and minimum angle limits of the
joint i. The grasp is optimal when all hand joints are at the middle-range
position, having a quality measure of zero, and it goes to one when all
its joints are at their maximum angle limits

Units: None
Lower limit: 0
Upper limit: 1
Advantages: It is easy to calculate and it is normalized between 0 and 1
Limitations: None

Minimum singular value of J [25]

Objective: Maximize to obtain an optimum grasp
Description: The minimum singular values of the Jacobian corresponds to the min-

imum workspace velocity that can be produced by a unit joint velocity
vector [23]. The corresponding eigenvector gives the twist in which the
motion of the end-effector is most limited

Q = σmin(J) (6.26)

Units: [length]
Lower limit: 0
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Upper limit: Not determined
Advantages: It represents the minimum velocity transmission ratio, the maximum

force transmission ratio and the best accuracy
Limitations: It only gives a worst case analysis

Determinant of J [25, 26]

Objective: Maximize to obtain an optimum grasp
Description: The determinant of the Jacobian measures the volume of the velocity

ellipsoid generated by unit joint velocity vectors [23]. The determinant
of the Jacobian is the product of the singular values of J:

Q =
√

det(JJT ) = √
λ1λ2 . . . λm = σ1σ2 . . . σm (6.27)

where λ1 ≥ λ2 ≥ · · · ≥ λm are the eigenvalues of JJT and σ1 ≥ σ2 ≥
· · · ≥ σm are the singular values of the manipulator Jacobian

Geometrically, this manipulability is proportional to the volume of the manipulability
ellipsoid whose principal axes have the same magnitudes as singular values of the
Jacobian matrix [26]. It represents an average mobility over all direction at the end-
effector and has an analytical expression as a function of the joint angles, but it
depends on the scale of the manipulator. This measure favours a grasp that, given
certain velocities in the finger joints, produces the largest velocities on the grasped
object

Units: [length]m, where m = 2 or 3 for planar or spatial manipulators respec-
tively

Lower limit: 0 (when the Jacobian is singular)
Upper limit: Not determined
Advantages: Geometrical interpretation
Limitations: It is not normalized and has both scale and order dependency. The

scale dependency prevents a fair comparison between a longer manip-
ulator and a shorter manipulator, and the order dependency (m) makes
it impossible to derive the physical meaning of the manipulability. In
order to solve these problems, [26] proposed to modify this measure
for the following:

Q = m
√

det(JJT )/fM (6.28)

where m = 2 or 3 and fM is a function of dimensions [length]2 such as
the total length of the manipulator squared. This measure has no units:
[length]2/[length]2

Inverse of the condition number of J [27, 26]

Objective: Maximize to obtain an optimum grasp
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Description: The condition number of a matrix is defined as the ratio of its maxi-
mum singular value to its minimum singular value. For the Jacobian, the
inverse condition number gives a measure of the sensitivity of the mag-
nitude of the end-effector velocity to the direction of the joint velocity
vector [23]. It provides a normalized measure of the previous one:

Q = σmin

σmax
(6.29)

where σmin and σmax are the smallest and largest singular values of the
manipulator Jacobian

It is a dexterity measure that considers the capability of the hand to move an object
in any direction with the same gain, which implies a good manipulation ability [4].
When the contribution of each joint velocity is the same in all components of the
object velocity, the transformation between the velocity domain in the finger joints
and the velocity domain of the object is uniform. When the condition number is
equal to one, the columns of H are vectors orthogonal to each other and with the
same module, indicating a uniform transformation and a grasp with the maximum
quality. It has been used as a measure of proximity to singularity and as a measure
of kinematic accuracy [26]

Units: None
Lower limit: 0
Upper limit: 1
Advantages: This measure is non-dimensional and thus independent of the scale of

the manipulator. Also its optimal value is known to be one, therefore it
is normalized

Limitations: It cannot be expressed analytically as a function of joints angles [26]

6.2.1.5 Group E: Task Oriented Measures

The measures defined previously are all unrelated to the tasks to be performed,
therefore they are only useful in a limited set of applications like pick-and-place
operations. For more complicated applications is not assure that using these quality
measure will result in the optimal grasp. In such cases, the task requirements and
knowledge of the environment need to be incorporated in the quality measure, which
should favors grasps capable of generate wrenches in the object that are relevant to
the task. The set of all wrenches that are expected to be applied on the object defines
the task wrench space (TWS). The following measure takes the task information into
account.

Task-oriented ellipsoid [8]

Objective: Maximize to obtain an optimum grasp
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Description: In this measure, the task is considered to be modeled by ellipsoids in the
wrench space of the object, called task ellipsoids. The quality measure
is the radius of the largest task ellipsoid that can be embedded in CW
(defined in Sect. 6.2.1.3). As in the measure Smallest maximum wrench
to be resisted, in order to guarantee a stable grasp, the origin must be
contained in the interior; giving values greater than zero. Other alter-
natives of this measure describe the task as convex polytopes instead
of ellipsoids [28, 29]

Units: Depends on the units of w
Lower limit: 0
Upper limit: Not determined
Advantages: Considers the task information
Limitations: The process of modelling a task by a task ellipsoid is complicated

6.2.1.6 Combined Measures

In order to give an overall assessment of a grasp, different quality measures should
be combined. However, the different physical meaning of the grasp indices available,
each one having different units and ranges, makes the merging a challenging process.
There have been some attempts in robotics to combine some of these measures to
create a global quality index [4].

The most simple method is to calculate the algebraic sum of the quality measures
in a single global index, considering that all of them have to be either maximized
or minimized. Boivin et al. [30] combined two criteria for 2D models: a criterion
measuring the finger extension of their three-finger robotic hand and a force line
criterion which takes into consideration the different friction coefficients for object
surfaces. They are normalized dividing them with their maximum values and the
quality measure is calculated summing them. Although this method is the most
intuitive, it assumes that all measures have equal importance over the global quality
of a grasp.

Chinellato et al. [14] presented a variation of this approach normalizing the out-
come of ten measures, such that each have their ideal theoretical best value equal to
0. They were then summed to obtain the merged criteria. This work was extended
by Chinellato et al. [15], where each measure was defined taking into account three
parameters: the friction coefficient, the error in the position of fingers and an index
to consider the object weight. The indices were grouped into three categories: shared
features (S), features related with grasp configuration (G) and features related with
hand configuration (C); proposing two global quality indices with the sum of mea-
sures:
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QG =
4∑

i=1

QSi +
2∑

i=1

QGi (6.30)

QC =
4∑

i=1

QSi +
6∑

i=1

QCi (6.31)

These two global indices were used to rank several grasps, considering only planar
objects. [6] used five normalized quality measures to create a global quality index.
Each index was normalized such that a measure equal to one would represent the
best grasp. The global index was calculated multiplying each index by a weight and
then choosing their minimum:

QG = 5
min
i=1

{Qi · weighti} (6.32)

More recently, [31] proposed a similar approach to calculate a global grasp qual-
ity index weighting three measures. The difference is that the index is evaluated
integrating them over the time of performing the task for a series of n cooperative
manipulators.

QG = 1

tf − to

∫ tf

to

{
W1 · CN + W2

n

n∑
i=1

(
Di

Di,max

)

+W3

n

n∑
i=1

(
1 − Pi

Pi,max

)}
dt (6.33)

where to and tf are the initial and final time, CN takes into account the position of
the contact points (Grasp Isotropy Index described by Eq. (6.3)), Di kinetic char-
acteristics of manipulators and the grasped object (Determinant of J described by
Eq. (6.27)) and Pi evaluates the consumed power of the actuators considering the
kinematic characteristics of the cooperative manipulators. Different weights W1, W2
and W3 are included, whose sum is equal to one, to put different emphasis on each
term.

Despite these attempts to create a global index, there are still a lot of open research
problems in this area, such as which quality measures are needed to evaluate the
different aspects of a grasp and how to combine them given their different units and
ranges into an overall index assigning proper importance to each of its aspects.

6.2.2 Ergonomic Grasp Quality Measures

Ergonomics is concerned with the understanding of interactions among humans and
other elements of a system. Grasp quality measures in ergonomics aim to measure
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the simulated postures adopted while grasping objects with different purposes. For
example, study how the size and shape of objects affect the grasp according to the
anthropometry of the different people that have to interact with them.

Usually, qualitative measures are used to assess the design of products which can
be grasped with postures that are as close as possible to the relaxed posture of the
human hand. However, this measure is equivalent to one of the previously presented
robotic indicators (Sect. 6.2.1.4). In this section, we present two quantitative measures
found in the literature that take into consideration ergonomic aspects such as the
structure of the human hand/arm or the comfort when performing different grasps.

Easy of Grasping [3]

Objective: Maximize to obtain an optimum grasp
Description: This measure evaluates how the finger joint angles of the hand affect

the subject feeling of ease of grasping an object
The method consists of the following steps:

1. Pre-process: Construct an “Ease of Grasping Evaluation Map”
(EOG)

It is created measuring the finger joint angles of a number of subjects with a
dataglove when they were required to hold a set of objects including primitive
shapes and real daily products. The subjects are asked to give a two level evaluation
of the posture: “easy” or “not easy” to grasp. The recorded set of joints angles
are processed using a Principal Component Analysis (PCA) and the results are
plotted as points on the EOG evaluation map (an example is shown in Fig. 6.2)
The large variance in human hand sizes was taken into account classifying the
subjects into 5 different groups with respect of their hand dimensions and gener-
ating a EOG evaluation map for each group. After the map is created, it is possible
to estimate the ease of grasping which is generated from a product model and a
digital hand by plotting the principal component score for this posture on the map

2. An initial estimated grasp posture with the digital hand is generated for a product
model to be grasped, and the principals component scores are calculated and
plotted on the corresponding EOG evaluation map

3. The ease of grasping for the optimized grasp posture is obtained by the category
assigned to the voxel that includes the evaluated posture on the map

Units: None
Lower limit: “not easy” to grasp
Upper limit: “easy” to grasp
Advantages: It is able to give an automatic ergonomic assessment of the easiness of

grasping different objects
Limitations: Significant number of experiments need to be performed to create a

EOG evaluation map. A single measure is perhaps not enough to eval-
uate the ergonomic quality of a grasp
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Fig. 6.2 Example of an “ease of grasping” evaluation map [32]

RULA: Rapid Upper Limb Assessment [33]

Objective: Minimize to obtain an optimum grasp
Description: This measure was developed to investigate the exposure of individual

workers to risk factors associated with work-related upper limb disor-
ders

The aim is to identify the muscular effort which is associated with a working posture,
exerting force and performing static or repetitive work, and which may contribute to
muscle fatigue
It has developed through the evaluation of the postures adopted; the number of
movements and forces required; and muscle actions of operators working in a variety
of manufacturing tasks. The body was divided into two groups: (A) the arm and wrist,
and (B) the neck trunk an legs

RULA score = (Score A + Muscle Use A + Force A)

+ (Score B + Muscle Use B + Force B) (6.34)

Scores A and B are assigned based on a series of figures created for each segment
and its range of movement, where 1 is given to postures where the risk factors are
minimal and higher numbers indicate an increasing presence of risk factors
The procedure start by observing the operator during several work cycles in order
to select the tasks and postures for assessment. Then using the figures the observer
records the posture scores for both groups in an Employee Assessment Worksheet
shown in Fig. 6.3
This measure has been used in robotics by [34] to enable a humanoid robot to produce
human-like arm configurations which look more natural

Units: None
Lower limit: Score 1
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Upper limit: Score 7
Advantages: It provides a rapid assessment of the loads on the musculoskeletal

system of operators due to posture, muscle function and the forces they
exert. It does not need any special equipment

Limitations: A person needs to be trained to use it in order to evaluate human pos-
tures, however it can be automatically calculated in a simulator. Since
the human body is a complex and adaptative system, simple methods
like RULA will not lead to unequivocal actions to eliminate any risk in
the operators, then it can only be used as a guide

6.3 Adapted Robotic Grasp Quality Measures

We have selected eleven grasp quality measures and adapted them to evaluate the
human grasp. From the indicators proposed in robotics, the ones that consider the
algebraic properties of the matrix G are selected. Also, all the indicators that consider
the distribution of the contact points excluding the ones that consider the Independent
Contact Regions given that they are difficulty to calculate. From the measures that
consider the magnitude of forces, we excluded the one that decouples the wrenches
given that the smallest maximum wrench to be resisted and the volume of the convex
hull are more commonly used and easier to calculate. Finally, two measures were
selected that take into account the configuration of the manipulator: the posture of
hand finger joints and the inverse of the condition number, which uses the Jacobian
as the other measures reviewed in this group. Task measures are excluded at this
point, considering that we have limited the experiments in this work to analyse static
grasp holding the object for transport tasks. More complex task and measures that
consider them are left for future work. Combined indexes are not used as they do not
consider a general set of grasp measures and were not designed for the human hand,
therefore we propose a combined index in the next chapter which is better-adapted
to human grasp.

None of the measures from the ergonomics group were chosen. The Easy of
grasping is difficult to obtain given that a significant number of experiments with
subjective evaluations are needed to create the EOG evaluation map. The RULA was
designed to assess the risk of the upper limb and it is not focus on the hand, therefore
it will need to be adapted for the assessment of human grasp. Additionally, it needs
specific information about the task such as the load, duration or repeatability which
is not currently available, thus it should be considered also in future work.

We have divided the selected measures into four groups according to the infor-
mation they use to evaluate the grasp: grasp matrix, distribution of contact points,
magnitude of forces or manipulator configuration. In order to make them compara-
ble, we propose how to normalize each measure (denoted with the subscript N) so
that they have the best value of 1 and the worst value of 0.
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Fig. 6.3 RULA Employee assessment worksheet [33]

6.3.1 Group A: Algebraic Properties of G

They consider the algebraic properties of the grasp matrix G, and are defined to
measure the grasp capability of withstanding external wrenches. The measures of
this group can be directly applied to evaluate the human grasp.

6.3.1.1 QA1: Smallest Singular Value of G

It measures how far the grasp configuration is from falling into a singular config-
uration, losing the capability of withstanding external wrenches [8]. When a grasp
is in a singular configuration, at least one of the singular values of G is zero. It is
calculated as:

QA1 = σmin(G) (6.35)

where σmin(G) is the smallest singular value of the matrix G. It has to be maximized
and has no units. The lower limit is zero and the upper limit is not determined.
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6.3.1.2 QA2: Volume of G in the Wrench Space

It gives an idea of the global contribution of all the contact forces [8], and can be
calculated as:

QA2 = v(G) =
r∏

i=1

σi (6.36)

where r is the rank of G, and σ1 ≥ σ2 ≥ · · · ≥ σr denote the nonzero singular values
of G. This measure should be maximized and has no units. The lower limit is zero
and the upper limit is not determined.

6.3.1.3 QA3 : Grasp Isotropy Index

It looks for a uniform contribution of the contact forces to the total wrench exerted on
the object, i.e. tries to obtain an isotropic grasp where the magnitudes of the internal
forces are similar [6]. It is calculated as:

QA3 = σmin(G)

σmax(G)
(6.37)

This measure has to be maximized and has no units. It approaches to one at a desirable
configuration (isotropic) and is equal to zero at the singular configuration. There-
fore, it is already normalized into the range 0 to 1. The normalized measure can be
expressed as:

QA3N = QA3 (6.38)

6.3.2 Group B: Distribution of Contact Points

These are indicators that use the distribution of the contact points. Better stability is
assumed when contact points are distributed in a uniform way on the object surface
and around the object centre of mass aiming to minimize the effect of gravitational
and inertia forces.

6.3.2.1 QB1: Distance between the Centroid of the Contact Polygon
and the Object’s Center of Mass

It aims to minimize the effect of gravitational and inertia forces during the motion of
the robot, measuring the distance between the centre of mass p of the grasped object
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and the centroid of the contact points pc [10]. The centroid of the contact points is
calculated as:

pc = 1

nc

nc∑
i=1

ci (6.39)

where nc is the number of contact points and ci is the location of each contact point.
Then the measure is calculated as:

QB1 = distance(p, pc) (6.40)

This measure has to be minimized and has units of length. We propose its nor-
malization taking into account that its lower limit is zero and the upper limit can be
calculated as the maximum distance from the centre of mass of the object to any point
in the object’s contour (distancemax), which can be obtained as the maximum dis-
tance from the center to any of the corners of the object bounding box. Additionally,
the measure has been adapted to have 1 as its best value:

QB1N = 1 − QB1/distancemax (6.41)

6.3.2.2 QB2: Area of the Grasp Polygon

This measure is defined as the area of the polygon formed by the contact points. It
has been used in robotics for three finger hands, where all finger points lie in a plane.
In three-finger grasps, a larger triangle formed by the contact points on the object
is argued to give a more robust grasp, i.e. with the same finger force, the grasp can
resist larger external torques [13]. For the five fingers of the human hand, the indicator
is extended using the method proposed by [35]. The contact plane is generated by
selecting three fingers (thumb, index and middle fingers given their leading role in
grasping). The remaining contacts are perpendicularly projected onto that plane (see
Fig. 6.4). The index is calculated as:

QB2 = Area(Polygon(p1, p2, p3, p4P, p5P)) (6.42)

where p1, p2, p3 are the contact points for the thumb, index and middle fingers, and
p4P, p5P are the projected points of the ring and little fingers onto the plane.

This measure has to be maximized and has units of [area]. We propose to nor-
malize this measure taking into account that its lower limit is zero and the upper
limit (Areamax) can be calculated as the area of the polygon when the hand is open
in a plane with the joints at their maximum abduction limits (Fig. 6.5). Then, the
normalized measure can be calculated as: QB2N = QB2/Areamax .
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Fig. 6.4 Grasp polygon
(blue lines) formed with the
thumb, index and middle
finger contact points and the
projection (black lines) onto
that plane of the ring and little
finger contact points

Fig. 6.5 Hand open posture
to calculate the maximum
contact polygon area

6.3.2.3 QB3: Shape of the Grasp Polygon

This measure is defined for planar grasp polygons and compares how far the internal
angles of the grasp polygon are from those of the corresponding regular polygon [6].
For the five fingers of the human hand, a planar grasp polygon is obtained in the
same way as for QB2. This index is calculated as:

QB3 = 1

θmax

nf∑
i=1

|θi − θ̄ | (6.43)

where nf denotes the number of fingers, θi is the inner angle at the ith vertex of
the polygon, θ̄ denotes the average angle of all inner angles of the grasp polygon
and θmax is the sum of the differences between the internal angles when the polygon
has the most ill-conditioned shape (degenerates into a line) and those of the regular
polygon (Eq. 6.9). This measure has to be minimized and has no units. The lower
limit is zero and upper limit is 1. We propose to adapt this measure to have 1 as its
best value:

QB3N = 1 − QB3. (6.44)
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6.3.3 Group C: Magnitude of Forces

These are stability indicators that take into account the magnitude of forces applied
at the contact points.

6.3.3.1 QC1: Smallest Maximum Wrench to be Resisted

The grasp quality is defined as the largest perturbation wrench that the grasp can resist
with independence of its direction [5]. Only the directions of forces are used and their
magnitudes are upper-bounded to 1. Defining GWS (see Sect. 2.3.2 Definition 2.10)
as the set of all possible wrenches w acting on the object, the maximum of w ∈ GWS
lies on the boundary approximated as the convex hull over the discretized frictions
cones (CW ). Then the quality metric is the radius of the largest sphere centred at the
origin, which is contained in GWS:

QC1 = min
w∈CW

‖w‖ (6.45)

This measure has to be maximized and it has [force] units if the torque in w is
divided by a parameter ρ with units of [length]. The index depends on the choice of
the origin of the reference system used to compute torques. In this work, we use the
centre of mass of the object and limited the magnitude of the torques to 1 choosing
ρ as distancemax defined previously for the measure QB1. Then, the upper limit of
the index is

√
2 and the lower limit is zero. Then, we can normalize this index as:

QC1N = QC1√
2

(6.46)

6.3.3.2 QC2: Volume of the Convex Hull

This measure is defined to avoid the dependence of the previous index on the selection
of the origin of the reference system. The measure calculates the volume of the
boundary of the set of all possible wrenches acting on the object [21].

QC2 = Volume(CW) (6.47)

The reference system and ρ have been chosen as described in the previous measure.
The index has to be maximized and has units of [force]6. Lower limit is zero and
upper limit is no determined so that it is initially not possible to normalize the index
in the range 0 to 1. However, we used the Monte Carlo method to estimate the upper
limit.

Monte Carlo (MC) methods are stochastic techniques that use various distributions
of random numbers to investigate problems. In this case, calculating the maximum

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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Fig. 6.6 Selected contact
points

x
z

y

1.0

1.0

volume of the convex hull that can be generated by a grasp is a problem with no
apparent solution. MC was used to randomly generate wrenches and determine QC2
for a very large number of iterations. The variables that could be randomized are the
contact normals ni = (nxi, nyi, nzi) and the contact points ci/ρ = (cxi, cyi, czi)/ρ.
For each of their components, their values can vary in the range between [−1, 1]. In
order to assure that ni is normalized, it has to satisfy the following equation:

n2
yi + n2

zi = (1 − n2
xi) (6.48)

which can be interpreted as the equation of a circle with radius
√

1 − n2
xi. Therefore

nyi and nzi can be calculated as:

nyi =
√

1 − n2
xicos(θ) (6.49)

nzi =
√

1 − n2
xisin(θ) (6.50)

Giving random values to nxi in the range between [1,−1] and to θ in the range
between [0, 2π ], we obtain a normalized value of ni uniformly distributed.

In order to give values to ci, initial experiments were performed given random
values between [−1, 1] to cxi, cyi, czi. They were represented as a cube centred at
the origin and with dimensions 2 × 2 × 2. As it was expected, greater volume is
obtained when the contacts approach the surface of the cube. Therefore, in order to
maximize the volume and minimize the time and computational costs, 5 contacts
(corresponding to the 5 fingers of the human hand) in the cube boundary are chosen
to assure that the maximum is obtained (see Fig. 6.6). The parameter ρ is calculated
as

√
3 from the centre of the cube to one of the corners.

Having the contact points fixed, nxi and θ are randomized using different number
of iterations until two consecutive trials give the same results with an allowable error.
The maximum and minimum volumes for each set of wrenches with the number of
iterations performed are shown in Fig. 6.7.

The maximum value found after 40 million iterations was 0.7673 N6 and therefore
this is the value used as Volumemax to normalize QC2. The normalized measure then
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can be calculated as:

QC2N = QC2/Volumemax (6.51)

6.3.3.3 QC3: Normal Grasping Force

This measure takes into account the magnitudes of the applied forces as indicative of
the force efficiency in the grasp, because the magnitude of the perturbation wrench
that the grasp can resist is related to the sum of the magnitudes of the contact normal
forces:

QC3 = 1∑k
i=1 fni

(6.52)

where k is the number of fingers and fni is the normal component of the finger force.
This index needs the estimation of the contact forces using the biomechanical model
of the hand, as it is described in Sect. 5.5.7. This measure has to be minimized and
has units of [force]−1. Its lower limit is zero and upper limit tends to ∞.

6.3.4 Group D: Configuration of the Manipulator

The measures presented here are intended as manipulability robotic indices, describ-
ing the ability to reach a certain position or to change the position or orientation at
a given configuration.
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Fig. 6.7 Maximum and minimum volume calculated using MC method for different number of
iterations

http://dx.doi.org/10.1007/978-3-319-01833-1_5
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(a) (b) (c)

Fig. 6.8 Human hand postures: (a) Relaxed posture which is assigned the optimal quality measure;
postures at their (b) minimum and (c) maximum joint limits corresponding to the grasps with the
worst quality measures

6.3.4.1 QD1: Posture of Hand Finger Joints

This index measures how far each joint i is from its maximum limits [24]:

QD1 = 1/nq

nq∑
i=1

(
yi − ai

Ri

)2

(6.53)

where nq is the number of hand joints and Ri is the joint angle range between the
middle-range position ai and either the upper or lower angle limit, used to normalize
the index. It is defined as:

Ri =
{

ai − yim if yi < ai

yiM − ai if yi > ai

where yiM and yim are the maximum and minimum angle limits of the ith joint (see
Table 5.1).

The index has to be minimized, so that the grasp is optimal when all joints are at
the middle-range position, having a quality measure of zero, and it goes to one when
all its joints are at their maximum angle limits (Fig. 6.8). To adapt this index to the
human hand, the joint angles defining the relaxed hand posture (see Sect. 5.5.1) have
been used to define ai. The measure has been modified to have 1 as its best value:

QD1N = 1 − QD1 (6.54)

6.3.4.2 QD2: Inverse of the Condition Number of GJ

The condition number of a matrix is defined as the ratio of its maximum singular
value to its minimum singular value. For the Jacobian, the inverse condition number
gives a measure of the sensitivity of the magnitude of the end-effector velocity to
the direction of the joint velocity vector. It is a dexterity measure that considers the

http://dx.doi.org/10.1007/978-3-319-01833-1_5
http://dx.doi.org/10.1007/978-3-319-01833-1_5
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capability of the hand to move an object in any direction with the same gain, which
implies a good manipulation ability [4]:

QD2 = σmin(GJ)

σmax(GJ)

where σmin and σmax are the smallest and largest singular values of the grasp Jacobian
matrix GJ (defined in Sect. 2.3.1). This measure has to be maximized and has no
units. Lower limit is zero and upper limit is one, indicating a uniform transformation
and a grasp with the maximum quality. Therefore, this measure is already normalized
into the desired range 0 to 1:

QD2N = QD2 (6.55)

6.4 Biomechanic Grasp Quality Measures

In addition to the adapted robotic quality measures, we propose the use of two new
biomechanical quality indicators.

6.4.0.3 QE1: Fatigue Index

This quality measure uses the common definition of fatigue proposed by [36], widely
used in biomechanics, to measure the fatigue caused to the muscles when performing
a grasp:

QE1 =
m∑

i=1

(
Fi

PCSAi

)2

(6.56)

where m represents the number of muscles, Fi the force exerted by each muscle and
PCSAi its physiological cross-sectional area. The smaller the fatigue index the better
will be the grasp. This index needs the estimation of the muscle forces from the use
of a biomechanical model of the hand. It has units of [force]2 × [area]−2. Its lower
limit is 0 and its upper limit is the sum of the maximum stresses Smax the muscles
can bear, which has been considered the same for all muscles [1]. We propose to
normalize the index as:

QE1N = 1 − QE1

m · Smax
2 (6.57)

where the number of muscles (m) = 34 in our biomechanical model and Smax = 35
N/cm2.

http://dx.doi.org/10.1007/978-3-319-01833-1_2
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6.4.0.4 QE2: Muscle Safety Margin Index

This indicator measures the difference between the maximum force that can be
exerted in the grasp posture with respect of the needed grasping force. The bigger
the difference, the farther the hand is from its working limits and therefore, the better
the quality of the grasp will be.

For a given grasp, the total normal force is calculated as the sum of the normal
forces exerted by each finger:

Fn =
k∑

i=1

fni (6.58)

where k is the number of fingers. The problem of obtaining the normal forces
(described in Sect. 5.5.7) consists in finding the appropriate set of contact forces
that satisfy the dynamic equilibrium of the hand and the grasped object. This is an
indeterminate problem that can be solved introducing a criterion chosen by the CNS
with the minimization or maximization of an objective function. Therefore, to find
the maximum force Fnmax that can be exerted by a given grasp, the criterion chosen
is to maximize the sum of the contact normal forces. In a similar way, to find the
needed normal forces to perform the grasp Fngrasp , the criterion is the one used by
the biomechanical model, commonly minimizing the fatigue caused to the muscles
when performing the grasp.

The quality measure is calculated with their difference:

QE2 = Fnmax − Fngrasp (6.59)

This measure can be normalized dividing the difference by Fnmax :

QE2N = Fnmax − Fngrasp

Fnmax

(6.60)

A summary of the selected quality measures is presented in Table 6.1.

6.5 Conclusion

In this chapter, a review of the proposed grasp quality measures in robotics and
ergonomics is presented. We adapted the most common robotic grasp quality mea-
sures to evaluate the human grasp. The fatigue index and the muscle safety margin
index were proposed to consider the biomechanical aspects of the human hand not
taken into account by the existing robotic measures. More research is needed to
investigate other biomechanical measures that might be obtained from the use of
existing biomechanical hand models.

http://dx.doi.org/10.1007/978-3-319-01833-1_5
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The measures were normalized, when possible, in the range between 0 and 1.
The Monte Carlo method has been used to successfully obtain the upper limit for the
robotic measure QC2 in its adaptation of human grasp evaluation in order to illustrate
its potential for the normalization of any of the measures. Moreover, the ranges of
variation which are better-adapted to real human grasping might be also achieved
through its use.

In the next chapters, these measures are used to evaluate the quality of different
grasps. Analysis of variability and sensitivity are performed with the aim of finding
the minimum necessary measures able to evaluate the different aspects of a grasp
and propose how to combine them to obtain an overall quality index.
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Chapter 7
Human Grasping Simulation

7.1 Introduction

In the previous chapter, we proposed the adaptation of the most common robotic
grasp quality measures to the evaluation of human hand grasps together with new
complementary quality indices considering biomechanical aspects not taken into
account by the actual robotic indices (summarized in Table 6.1). However, it is
not efficient to calculate all reported quality measures for evaluating a grasp when
performing several experiments and to analyze the high amount of data produced.
To overcome this problem, a set of measures may be chosen as it is expected that
some of them provide similar information as they were formulated to evaluate the
same aspect.

There have been some attempts in robotics to combine some of the measures to
create global quality indices (see Sect. 6.2.1.6). This was done by using the sum
(or weighted sum) of a set of selected quality measures in a single global index,
considering that all of them have to be either maximized or minimized [1–4]. These
works showed the problem of merging indices with different numerical ranges and
physical units. Each proposal used a different set of quality measures to create the
global quality index. To our knowledge, there is not an accepted unique global index
in the literature capable of measuring all aspects of robotic grasps.

One of the purposes of this chapter is to find the minimum set of indices that allows
the evaluation of the different aspects of the human grasp on simulation. In order
to do that, we had to make the indicators comparable given that they have different
dimensional units and ranges of variation. As a first attempt, their mathematical
limits were used to normalize them—in the cases that it was possible to determine
these limits. In order to find more realistic ranges, we performed a variability analysis.
A series of experiments were simulated, with different grasps of cylinders. We varied
different parameters of the experiments such as the size or weight of the object or
the number of fingers used to perform the grasp. This variability analysis served to
propose new limits to normalize each measure.

B. León et al., From Robot to Human Grasping Simulation, 207
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The robustness of the indices was checked through the results of a sensitivity
analysis of the indicators to the input parameters. This was done through a set of
simulations obtained by randomly varying the input parameters of the grasps. This
sensitivity analysis helped us in the appropriate selection of robust indices when
trying to reduce the set of indicators. We also studied the correlations between the
indicators, in order to find the minimum set of indicators allowing the evaluation of
the different aspects of the human grasp. This allowed us to identify the independent
aspects that are being measured by all the indices that have been calculated. We
have provided a physical interpretation of these independent aspects, and proposed
a global grasp quality index through the use of neural networks.

Finally in the last section, we present a possible application of the developed
human grasp evaluation framework comparing the grasp capabilities of a prosthetic
hand using the grasp quality measures with the ones obtained for the human hand
using our model. This could give insights as how to improve the design of hand
prosthesis or robotic hands by means of obtaining better quality scores.

7.2 Evaluation of Human Grasps

A set of experiments was designed to explore a wide range of possibilities of the
human grasp enabling the analysis of the variability and sensitivity of the measures.

Nylon cylinders, 200 mm in length and with a 50 mm diameter, were chosen for the
experiments (Fig. 7.1). Only grasps involving the distal phalanxes of the fingers and
thumb were considered, taking into account that the frequency of grasping objects
with the finger’s distal phalanxes while performing common daily activities has been
found to be three times the frequency of grasping objects with contacts along the
fingers and the palm [5].

Three different grasps were selected: cylindrical, claw and lateral (Fig. 7.2). The
cylindrical and lateral grasps were selected as the most intuitive, and were comple-
mented with the claw grasp as a forced posture, which would only be performed in
rare cases, especially by persons with some pathology.

Fig. 7.1 Nylon cylinder with 50 mm diameter used for the experiments
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(a) (b) (c)

Fig. 7.2 The three types of grasps selected. a Cylindrical, b claw, c lateral

In order to vary the number of contact points, all grasps were performed using
five and three fingers (thumb, index and middle fingers). The cylinder was grasped
with these six grasps in vertical orientation at its centre and at one of its extremes.
Joint angle data for the simulation of the postures were obtained from the registration
of the 3D position of 29 markers on the hand of a healthy female subject using a
VICON motion tracking system [6].

For the first group of experiments, a cylinder was used with a weight of 460 g.
A total of 36 grasps were simulated (Fig. 7.3) and the results of the quality measures
are presented in Fig. 7.4. Y -axes in this figure have different scales in order to better
display the variation between values for each measure

Group A measures (see Table 6.1 for reference) present a similar behaviour, spe-
cially Q A1N and Q A3N . Lateral grasps were rated better than claw and cylinder grasps
in most cases. In addition, horizontal grasps were rated better than the vertical ones.
Q B1N rated grasp better at the centre than at the object’s edges, as expected. Q B2N

and Q B3N showed an inverse behavior given that grasps with three fingers have a
grasp polygon with less area but closer to a regular triangle than the five finger grasps.
Cylindrical grasps have more regular grasp triangles than claw grasps, which in turn
have more than lateral grasps. However, lateral grasps have a more regular pentagon
than cylindrical and claw grasps. Group C measures, QC1N and QC2N rated better
5-finger grasps than the 3-finger ones and, in most cases, the cylindrical grasps than
the claw and lateral grasps.

QC3 is the only measure that needs to be minimized to obtain a better grasp,
as it could not be normalized. It rated better 3 than 5-finger grasps showing that
bigger normal forces are applied to oppose potential object slides. In many cases, the
biomechanical model did not find a feasible solution, specially for lateral grasps, for
which the model should be improved to account for the passive articular forces that
can counteract abduction-adduction moments. Horizontal grasps applied less normal
forces than the vertical ones, therefore they were worst rated. Similarly, center grasps
were rated worst than those grasping the object at its extremes.

Measure Q D1N gave high values (from 0.57 to 0.87) showing that the selected
grasps are far from the hand joints’ limits. A surprising result is that, in most cases,

http://dx.doi.org/10.1007/978-3-319-01833-1_6
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Fig. 7.4 Quality measures evaluated for 36 simulated grasps. Postures described by: number of
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D Down) (Cont.)
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Fig. 7.4 (Continued)

claw grasps were better rated than cylindrical and lateral grasps. Claw grasps are in
theory the most forced posture simulated but the measure does not reflect that. This is
due to the fact that, although the distal and proximal interphalangeal joints are closer
to their limits, the other joints are closer to the relaxed posture. This measure can be
improved in different ways. On the one hand, different weights could be assigned to
each joint. On the other hand, a correlation between the DIP and PIP joint flexion
angles is expected, as reported in the literature [7]. Therefore, the measure could be
modified to penalise the differences in the relationship between the flexion at DIP
and PIP joints with respect to the relationship measured at the relaxed posture.

Conversely, Q D2N assigned most values close to zero (from 0.0009 to 0.0109) to
the selected grasps. As it is a measure of the grasp manipulability, cylindrical and 5
finger grasps were better rated, instead claw grasps were rated worse.

Biomechanical measures, QE1N and QE2N , also did not find feasible solutions
for some grasps, lateral ones in most cases. Values of QE1N were very close to one
(from 0.83 to 0.999), showing that the muscle stresses are far from their limits for the
selected grasps. Grasping the cylinder with 3 fingers, horizontally and from the right
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Table 7.1 Minimum and maximum values per measure over all postures. The posture giving the
extreme value is also shown

appeared as a especially difficult grasp for all the biomechanical measures together
with QC3. QE2N rated worse grasps with 3 than 5-fingers showing that they need to
apply higher normal forces and therefore, they are closer to the force limits the grasp
can exert.

The maximum and minimum values for each measure were identified and are
shown in Table 7.1 with the corresponding grasp. Although most of the measures
have been normalized, they seem to move in different zones within the range 0–1, in
a non homogeneous distribution.

From these results, it seems that the proposed limits for some of the measures are
not realistic, as they have been found to vary within very small ranges. Therefore,
a variability analysis performing more grasps is presented in the next section in an
attempt to estimate these limits more precisely.

7.3 Variability Analysis

Different experiments were designed to vary different aspects influencing the grasp to
identify ranges of variation which are better-adapted to human grasping. This would
help to find more realistic ranges of variation of the measures than those obtained
with the mathematical limits, enabling the improvement of the normalization of these
indicators.
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7.3.1 Material and Methods

Three important aspects to vary were considered: the object’s weight and size and
the fingers used to perform the grasp.

7.3.1.1 Varying Object’s Weights

Only three of the measures take the weight of the object into account: the Normal
Grasping Force (QC3), the Fatigue Index (QE1N ) and the Muscle Safety Margin Index
(QE2N ). For these measures, a lighter cylinder (180 g) was also used to perform the
same grasps selected for the initial experiment (Fig. 7.3).

7.3.1.2 Varying Object’s Sizes

Two additional cylinders of different diameters (25 and 75 mm) were also evaluated
for the vertical grasps shown in Fig. 7.5.

7.3.1.3 Varying the Number of Fingers

Grasping the cylinders with different fingers was also considered. Three, four and
five fingers were selected to grasp the medium cylinder (50 mm) shown in Fig. 7.6.

Cylinder 25 mm Cylinder 50 mm Cylinder 75 mm
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Fig. 7.5 Selected postures varying the cylinder’s diameter
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The quality measures were evaluated for the simulated grasps finding the maxi-
mum and minimum values for each measure.

7.3.2 Results

7.3.2.1 Varying Weights

Measures QC3, QE1N and QE2N are compared when grasping the light and the
heavy cylinder in Fig. 7.7 and the minimum and maximum values were identified in
Table 7.2.
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Fig. 7.6 Selected postures varying the fingers used in the grasp and the cylinder orientation
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QE1N and QE2N provided the best results for the lighter cylinder, which is in
accordance with the fact that grasping heavier objects results in a more fatiguing task.
QC3, by contrast, always provided the best results for the heaviest cylinder. This is
due to the fact that higher normal forces are required to grasp a heavier object, so
that additional perturbation wrenches will not significantly affect the stability of the
grasp.

Again, there were some lateral grasps for which the biomechanical model could
not find a feasible solution (see Table 7.2). For QE1N and QE2N , the worst grasps
were all horizontals and at the right, and the best were always the vertical 5-finger-
claw grasp at the top. The biomechanical model does not take into account extreme
stresses produced in the ligaments or joints, therefore it is not unreasonable that it
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Table 7.2 Posture with the minimum and maximum grasp quality value for each measure when
varying the object’s weight

rates the claw grasp better, although these rate values are not significantly different
from the values of the cylindrical and lateral ones.

In conclusion, evaluating these quality measures for a different object’s weight
produced changes in their variability ranges. QC3 increased its maximum from 0.24 to
0.53. The biomechanical indices also slightly increased their maximums approaching
them more to 1 (QE1N from 0.9984 to 0.9996 and QE2N from 0.9183 to 0.9624).

7.3.2.2 Varying Sizes

The results of the quality measures for grasping cylinders with different diameters
are presented in Fig. 7.8 and the minimum and maximum values in Table 7.3.
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Fig. 7.8 Quality measures evaluated for 12 vertical grasps for cylinders of different diameter.
Postures described by: Number of fingers (3, 5)—Position (C Centre, D Down)—Grasp type (Cyl
Cylindrical, Cl Claw, Lat lateral)

Measures from Group A rated better claw and lateral 5-finger grasps in the centre,
specially for the thin cylinder. Measure Q B1N showed better values for grasp in the
centre than in the extremes, as expected. In the center, the thinner the cylinder the
better, while in the extremes, grasps of thick cylinders were better rated. Q B2N ,
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Table 7.3 Posture with the minimum and maximum grasp quality value for each measure when
varying the object’s size

which measures the area of the grasp polygon, clearly increased with the cylinder
thickness. In contrast, the regularity of the grasp polygon, measured by Q B3N , usually
increased as the thickness of the cylinder decreased. Group C measures rated better
5 than 3-finger grasps. They also increased with the thickness of the cylinders which
means that these grasps’ ability to resist external wrenches is better. Measure Q D1N

generally rated with high values (from 0.61 to 0.87) all grasps, giving better values
to five-finger grasps that are closer to the relaxed posture. Finally, there is no clear
pattern between the size and measure Q D2N . It rated worst the grasp performed
with 5 fingers of the thinner cylinder which is a difficult grasp, and better the one
performed with five fingers of the medium cylinder from the center which could also
be expected.

In conclusion, evaluating these quality measures for different object’s diameters
produced changes in their variability ranges. In this case, not only their maximums
values increased but also their minimums. Ranges from measures from Groups C
and D remained practically unchanged. In contrast, all measures from Groups A
and B suffered significant increments, being the greater the range from Q B3N which
increased a 20 % of the total range.

7.3.2.3 Varying Fingers

The results of the quality measures for grasping cylinders with different fingers
are presented in Fig. 7.9 and the minimum and maximum values are presented in
Table 7.4.

Group A measures had a similar behaviour, rating better grasping the cylinder
vertically from the bottom than from the top or horizontally. Grasps with four fingers
excluding the index and with 5 fingers were preferred. The distance from the center
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Fig. 7.9 Quality measures evaluated for 18 top grasps varying the number of fingers used to perform
the grasp (T Thumb, I Index, M Middle, R Ring and S Small)

of mass, measured with Q B1N , increased for horizontal grasps and with the number
of fingers. Measure Q B2N increased with the number of fingers but Q B3N remained
similar for 3 and 4 finger grasps but less when using 5 fingers. Measures QC1N

and QC2N increased with the number of fingers and were usually better for vertical
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Table 7.4 Posture with the minimum and maximum grasp quality value for each measure when
varying the fingers used to perform the grasp

than horizontal grasps. Q D1N continued to give high values to all grasps (from 0.56
to 0.84) but there is no a clear pattern for the values when changing the number of
fingers or the object orientation. Measure Q D2N showed significant variation in these
experiments given that the manipulability of the grasps was highly affected when
changing the fingers used to perform the grasp. It assigned better manipulability to
grasps with four fingers excluding the middle in all orientations and worst to grasp
the cylinder in vertical orientation from its bottom with 5 fingers. Three finger grasps
with the thumb, middle and ring seemed to have better manipulability than using the
index, and for 4-finger grasps it changed the values depending on the fingers used. In
general, measures rated better vertical than horizontal grasps, from the bottom than
from the top and with 4 fingers.

To conclude, in contrast with the previous variations studied, varying the number
of fingers used in the grasp didn’t significantly affect the original found ranges. The
minimums of Q B1N and Q D1N were slightly reduced by 0.07 and 0.02 respectively.
Likewise, the maximums of Q A3N and Q B3N were slightly increased by 0.01 and
0.05 respectively.

7.3.3 Discussion

Changing the number of fingers or the posture, weight or size of the object changed
the ranges for each measure. The object weight specially increased the maximum
of QC3 but also slightly of QE1N and QE2N . The object’s size varied the ranges
of all measures specially the ones from Groups A and B. Lastly, the number of
fingers only slightly decreased or increased the limits for few measures. Table 7.5
presents a summary of the minimum and maximum values of each measure over all
the performed experiments.
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Table 7.6 Proposed range for each measure

Q A1 Q A2 Q A3N Q B1N Q B2N Q B3N QC1N QC2N QC3 Q D1N Q D2N QE1N QE2N

Min 0.00 0.00 0.00 0.07 0.00 0.27 0.00 0.00 0.00 0.51 0.00 0.81 0.08
Max 0.52 11.30 0.30 1.00 0.36 1.00 0.09 0.03 0.59 0.90 0.02 1.00 1.00

Although all measures, except Q A1 and Q A2, have been normalized, they seem
to cover a small interval within the theoretical range of variation (0–1). Q B1N and
Q B3N are varying well into the range. Q D1N presents values with bias to 1, while the
remaining normalized measures are biased to 0. It seems so that the mathematical
limits chosen do not correspond to the achievable limits of variation of the measures
in reality.

Therefore the minimum and maximum values found can help us determine the
real range in which the quality measures vary, and better normalize them. It seems
unlikely, even though a larger set of possible grasps was considered, that they cover
the entire range. However, to account for possible variations provided by the con-
sideration of other grasps, we propose to increase these ranges for their use in the
normalization of the measures: the maximum and minimum values of each measure
have been increased and decreased a 10 % of the range of the measure, respectively.
Additionally numbers were rounded to the second decimal. The proposed ranges for
each measure are shown in Table 7.6.

Figure 7.10 shows the comparison between the variability of the measures nor-
malized with mathematical limits and with the proposed ranges for the 36 initial
postures. It can be seen that the values are much better distributed between the range
[0–1].

7.4 Sensitivity Analysis

It is important to determine which of the measures are robust, as the validity of the
evaluations depends on their sensitivity to small variations in the input parameters
used for their calculation. The adapted robotic indicators use the grasp posture as
input parameter, and the simulator calculates the contact points and normal directions
using a collision algorithm between the hand and the grasped object. The joint angles
that define each grasping posture are commonly obtained experimentally registering
the posture that human subjects use to grasp the given objects. This can be performed
using different techniques as motion capture systems with high resolution optical
cameras (e.g. Vicon system) or instrumented gloves (e.g. CyberGlove®, 5DT Data
Glove). All techniques have uncertainty errors in their measurements, which are in
the order of 3–6◦ [8–11]. Therefore, the quality measures calculated can be affected
by these errors.
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Fig. 7.10 Variability ranges over the 36 initial postures. a Normalized with mathematical ranges.
b Normalized with proposed ranges

7.4.1 Material and Methods

In order to determine how much each measure was affected by small variations in
the input grasp posture, a sensitivity analysis was performed. The experiments were
selected choosing the 12 last grasp postures initially considered (Fig. 7.3) which
corresponds to three and five-finger vertical grasps from the cylinder’s centre and
bottom using different grasp postures. Each of the initial postures was considered as
the reference posture, and we introduced a variation in each one of their joints using
a random sampling in an interval of ±5 % of its range of motion. We used 1,000
variations of the original posture for each cylinder. Only ten quality measures were
used, excluding QC3, QE1N and QE2N which required more computational time as
they need to run the muscular model. The evaluation of the measures was performed
for each variation and its sensitivity was calculated analysing its deviation from the
value obtained for the reference posture. A Global Sensitivity Index (GSI) for each
measure was obtained as the root-mean-square deviation (RMSD) with respect to
measure calculated for the reference posture:

GSI =
√√√√

(
1

n − 1

n∑
i=1

(xi − x0)2

)
(7.1)

where n is the number of variations, xi the value of the measure calculated for each
variation of grasp posture and xo the value of the measure of the reference posture.

Each GSI has the same units as each measure. In order to normalize GSI and give
the result in percentage, the range of each measure has been used:

GSI N = GSI

max − min
(7.2)



7.4 Sensitivity Analysis 225

where max and min were selected using two approaches: first the value of 1 and 0
for the measures that are normalized using their mathematical limits, and second,
using the ranges obtained from the variability analysis.

7.4.2 Results

The values of the global sensitivity index obtained for the 10 measures are shown
in Fig. 7.11. However, the values do not have any meaning if they are not compared
with the range of variation of each measure.

For the measures which are normalized with their mathematical limits (all except
Q A1 and Q A2), we compared the GSI with the range between 0 and 1 and showed the
results in percentage for each measure (Fig. 7.12). The graph shows that none of the
indicators varied more than 10 % for all measures, with Q B3N and Q D1N being
the most sensitives. But as the variation was made in 10 % of the range, we could
conclude that these measures would be robust to uncertainties in the initial grasp
posture.

However, as we already verified that the mathematical limits that we used to
normalize the measures between 0 and 1 were not realistic, a more meaningful
evaluation of the sensitivity would be obtained comparing the GSI with the proposed
range found after the variability study. The results for the 10 measures are shown in
Fig. 7.13.

The graph shows that all measures increased the sensitivity in comparison with the
GSI with the adjusted range. Their means are below 12 % and their maximums are all
below 25 % of their range of variation. Measures Q D1N and Q D2N shows their means
close to 10 %, but their maximums were the highest ones, which should be considered
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when using these measures. However, it should be noted that the posture of the hand
was the parameter varied in the experiments, therefore these two measures should
be the most affected as they consider the configuration of the manipulator. Measure
Q B1N is the most robust followed by QC2N . Nevertheless, a 12 % of variation shows
that none of the indicators are too sensitive to changes in the input grasp posture.
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Table 7.7 Results of the statistical correlation between different quality measures (Light Obj. =
180 g)

Q A1 Q A2 Q A3N Q B1N Q B2N Q B3N QC1N QC2N QC3 Q D1N Q D2N QE1N QE2N

Q A1 1.0
Q A2 0.8 1.0
Q A3N 1.0 0.6 1.0
Q B1N 0.3 0.3 0.3 1.0
Q B2N 0.2 0.6 0.1 0.2 1.0
Q B3N −0.2 −0.4 −0.1 −0.1 −0.8 1.0
QC1N 0.1 0.3 0.0 0.2 0.7 −0.8 1.0
QC2N 0.2 0.2 0.0 0.1 0.9 −0.7 0.7 1.0
QC3 0.1 0.2 0.1 0.4 0.3 −0.2 0.2 0.2 1.0
Q D1N 0.0 0.0 0.0 0.0 0.3 −0.5 0.5 0.1 0.0 1.0
Q D2N −0.3 −0.1 −0.4 −0.1 0.4 −0.2 0.3 0.5 0.0 −0.1 1.0
QE1N −0.4 −0.2 −0.4 −0.1 0.1 −0.1 0.1 0.0 0.6 0.1 0.2 1.0
QE2N −0.3 0.0 −0.4 −0.1 0.3 −0.3 0.3 0.2 0.6 0.1 0.3 0.9 1.0

7.5 Independent Grasp Aspects

In order to analyse the relationships between the quality measures, the Pearson cor-
relation coefficient was calculated for each combination of measures. These corre-
lations enable us to determine sets of measures that evaluate similar aspects of the
grasp. The identification of groups of correlated measures can help us to reduce the
number of indices that need to be calculated in order to assess the quality of a given
grasp. For each of the independent sets of measures identified, a physical aspect can
be associated which describes the aspect being measured. Moreover, one measure
from each of these groups can be selected, given that it would be enough to assess
these aspects.

The 36 initial postures were considered for this analysis, for the light and heavy
cylinder. The results of the correlations for each combination of measures are shown
in Table 7.7 for the lighter cylinder (180 g, 50 cm in diameter). Three different ranges
of correlations have been considered and marked in the table. Perfect correlations
(1.0) have been marked in dark grey, high correlations (≥0.7) have been marked in
medium grey and moderate correlations (≥0.5) have been marked in light grey.

Changing the object weight only modifies measures QC3 and QE1; therefore, the
results of the correlations for these measures with the heavier cylinder (460 g) are
shown in Table 7.8.

Measures from Group A showed a high correlation with each other, which leads
us to conclude that calculating only one of them provides us with the same evaluation
of a given grasp. From these three, the measure Q A3N is preferable given that it is
already normalized.

The measure Q B1N showed no correlation with any other measure which means
that measuring stability by avoiding inertial forces when reducing the distance be-
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Table 7.8 Results of the statistical correlation between different quality measures (Heavy Obj. =
460 g)

Q A1 Q A2 Q A3N Q B1N Q B2N Q B3N QC1N QC2N QC3 Q D1N Q D2N QE1N QE2N

QC3 0.5 0.7 0.5 0.5 0.6 −0.5 0.4 0.5 1.0 0.0 0.0 0.6 0.8
QE1N 0.2 0.3 0.1 0.2 0.4 −0.3 0.3 0.3 0.6 0.2 0.1 1.0 0.8
QE1N 0.2 0.5 0.1 0.2 0.7 −0.6 0.5 0.6 0.8 0.2 0.2 0.8 1.0

tween the centroid of the contact polygon and the object’s centre of mass is an
independent aspect of the grasp not evaluated by any of the remaining indices. In
contrast, measures Q B2N and Q B3N were highly correlated with each other and with
measures QC1N and QC2N which also measure stability in terms of the force that a
grasp can resist. Additionally Q B2N was weakly correlated with the stability mea-
sure Q A2N , showing that a grasp is more stable when the area of the grasp polygon
is bigger; and Q B3N was inversely correlated with Q D1N , showing that in order to
achieve a more perfect shape for the grasp polygon, the hand needs to move the
fingers to a configuration in which the joints are closer to their limits, which can lead
to a less manipulable and uncomfortable grasp.

The measures from Group C , QC1N and QC2N , were correlated with each other
and with measures Q B2N and Q B3N , as was mentioned earlier, which shows that
the grasp stability is related to the shape of the grasp polygon. Additionally, they
presented weak correlations with Q A2 which is also a stability indicator.

The measures from Group D seem to measure different aspects of the grasp
because they were only weakly correlated with other measures. Q D1N was correlated
with QC1N and inversely with Q B3N ; and Q D2N was not correlated with any measure.

Finally, the biomechanical indices QE1N and QE2N were highly correlated with
each other and with QC3—the only additional measure which needs the biomechan-
ical model. These measures increased their correlations when grasping a heavier
object: QC3 with measures from Group A and B; and QE2N with Q B2N , Q B3N and
measures from Group C. QE2N however maintained similar high correlations for
both weights.

These correlations show that there are measures that evaluate similar aspects of
the grasp. Therefore, several groups of correlated measures can be identified in order
to reduce the number of indices that need to be calculated in order to assess the
quality of a given grasp:

• Group 1: Q A1, Q A2, Q A3N

• Group 2: Q B2N , Q B3N , QC1N and QC2N

• Group 3: Q B1N

• Group 4: Q D1N

• Group 5: Q D2N

• Group 6: QE1N , QE2N and QC3.

For each of the six independent sets of measures that have been identified above as
evaluating different aspects of the grasp, a physical interpretation can be associated
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which describes the aspect being measured. Moreover, one measure from each of
these groups is selected as representative to evaluate this aspect.

7.5.1 Restriction of the Grip

The first group is composed of stability indicators, which give an idea of how
restricted the grip is. Q A3N can be chosen to calculate this aspect given that it is
already normalized and has been found to be robust enough.

7.5.2 Ability to Resist Forces

The second group is composed of measures from Group B, Q B2N , Q B3N and two
measures from Group C, QC1N and QC2N which give an idea of the grasp’s ability
to resist external wrenches. From this group, QC1N can be chosen given that it is the
most common measure used in robotics and does not present problems of robustness.

7.5.3 Dynamic Effects

The third group is composed only by the measure Q B1N which gives an idea of the
grasp ability to counteract dynamic effects. This measure gives priority to grasps
closer to the centre of mass and penalizes the ones closer to the object’s extremities
which are more likely to be affected by inertial forces. The experiments defined
in this work only consider static grasps which are not affected by dynamic effects,
therefore this measure does not have a high impact. Other experiments considering
transport or manipulation tasks could benefit more from the information provided
by this measure.

7.5.4 Comfort

The fourth group is composed of only the measure Q D1N . When the hand joints
are at their limits, their soft tissues are subjected to large deformation, generating
discomfort. Therefore, this index measures how comfortable a grasp is, assuring
that the finger joints are far from their limits. This aspect also gives an idea of
manipulability of the grasp in a way, because in order to make changes in the hand
posture, the joints should have an available range of movement which does not happen
when they are at their limits.
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7.5.5 Manipulability

The fifth group is composed of only the measure Q D2N which gives an idea of the
manipulation ability measuring the capability of the hand to move an object in any
direction.

7.5.6 Muscular Fatigue

The sixth group is composed of QC3 and the biomechanical indices QE1N and QE2N .
From this group, QE1N is chosen given that it is easier to calculate than QE2N and
its low correlation with the rest of the measures, showing that it is measuring a
completely new aspect of the human grasp.

This set of independent aspects can then be used to evaluate different grasps and
enable their comparison. Radar plots have been used in Fig. 7.14 to show an example
of how to represent the six independent aspects for different sets of grasps.

7.6 Validation of Grasp Quality Measures

The following step consists on the validation of the results obtained using the selected
quality measures. In order to do that, we use the human innate ability that allows
them to evaluate different grasps, compare them and give an overall assessment of
their quality.

7.6.1 Human Assessment

A set of experiments were designed to ask subjects their assessment of different
grasps and use them as the target values to evaluate the results of the proposed grasp
quality measures.

The light (180 g) and heavy (460 g) cylinders (used in the previous section) were
grasped using the 36 different postures shown in Fig. 7.3 to assess the validity of the
global quality measure. Twenty four female subjects were selected with ages ranging
between 18 and 60 years and without hand pathologies. Their hand anthropometric
dimensions were chosen to be within the 25–75 percentiles among a random sample
of 60 women, laying in the range from 170 to 179 mm in HL (length) and 73 to
78 mm in HB (breadth). They were asked to grasp the cylinder imitating a specific
grasp shown in a picture in which we varied the grasp type (cylindrical, claw and
lateral), orientation (horizontal and vertical) and position (centre, up and down for
vertical orientation; centre, right and left for horizontal orientation).
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Fig. 7.14 Comparison of independent grasp aspects. a Comparison between postures (cylindrical,
claw, lateral) with 3 fingers. b Comparison between postures (cylindrical, claw, lateral) with 5
fingers. c Comparison between vertical grasps (up, centre, down) with 3 fingers. d Comparison
between vertical grasps (up, centre, down) with 5 fingers

Since it is not feasible to ask a subject to perform 36 different grasps and sub-
sequently rate them all, we grouped them into two lists of six groups, each group
containing six combinations (Table 7.9).

These groups were distributed randomly between the subjects. Finally, each sub-
ject evaluated six combinations which means that each combination is evaluated by
four different subjects. For each experiment, the subject was asked to perform six
grasps for a transport task and, at the end, assess their quality by ordering them from
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Table 7.9 Combination of
experiments

Constants Variables

Horizontal, Left # fingers, Grasp type
Horizontal, Centre # fingers, Grasp type
Horizontal, Right # fingers, Grasp type
Vertical, Up # fingers, Grasp type
Vertical, Centre # fingers, Grasp type
Vertical, Down # fingers, Grasp type
3 fingers, Cylindrical Position, Orientation
3 fingers, Claw Position, Orientation
3 fingers, Lateral Position, Orientation
5 fingers, Cylindrical Position, Orientation
5 fingers, Claw Position, Orientation
5 fingers, Lateral Position, Orientation

highest to lowest in terms of comfort or ease of grasp. This procedure was performed
for both cylinders.

A statistical analysis, using a Tukey’s honestly significant difference (HSD) test,
was performed with the human assessment for each cylinder and a human global qual-
ity measure (GQM) was assigned ranging between 1 and 6, corresponding to the best
and worst grasp respectively. As the experiments were selected using combinations
of grasps with the same cylinder, there was no information to create a global ranking
of both weights. However, 3 subjects were asked to compare the worst assessed grasp
for the light cylinder with the best grasp for the heavy one. In all cases, subjects pre-
ferred the worst of the light cylinder grasp than the best of the heavy cylinder grasp.
Therefore, the human grasp quality measure of the heavy cylinder has been increased
by 6 to rate them worse than the light’s one. We normalized the human assessment
to obtain a global quality measure in the range between 0 and 1, and modified it to
have 1 as its best value: Human G QMN = 1 − (G QM − 1)/(12 − 1).

The results of ranking the 36 grasps for each cylinder is presented in Table 7.10
and are used in the following section to validate the different independent grasp
quality measures.

7.6.2 Comparison with Quality Measures Results

The subjects’ assessment of the different grasps were compared with the results of
the proposed grasp quality measures. Figure 7.15 shows the results for each grasp
independent aspect evaluated for the 72 postures (36 per cylinder). The postures were
ordered by the human assessment and their expected value is shown in black. The
results obtained using each independent aspect is depicted in red and its Pearson’s
correlation coefficient with the subjects’ assessment is presented.
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Fig. 7.15 Results of the grasp quality evaluation given by each independent aspect for the 72
postures ordered by the human assessment. The correlation coefficient with the human assessment
is shown for each independent aspect

The correlation coefficient of the different independent aspects gave very low
values (less than 0.5) showing the none of the aspects is able to, independently, predict
the ranking assessed by the humans. This variety of the ranking results corroborates
that the indices measure different aspects of the grasp, confirming the importance of
combining them to create an overall quality index.
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Fig. 7.16 Performance of merging the independent quality measures using their mean

7.7 Global Grasp Quality Measure

Different ways to perform the merging of the independent quality measures have
been evaluated. We used the mean square error (MSE) of each proposed grasp quality
measure compared with the human assessment as a measure of its performance. At
the end, we selected the proposed grasp quality measure with the lowest MSE.

A first approximation was obtained by using the mean of the normalised qualities
calculated by the different criteria, being the best grip the one with the largest score.
The results of this average quality index are presented in Fig. 7.16 for the light and
heavy cylinders.

The proposed GQM does not match the human assessment observed in the ex-
periment. It overestimates the values for the light cylinder and underestimates them
for the heavy one. Given that the only measure that considers the weight is the Fa-
tigue index, it should influence the output more than the other measures. In order to
change the influence of each criterion on the global quality value, it is necessary to
use a more complex implementation such as a weighted sum. This approach has been
used in previous studies [3, 4], however the difficulty lies in finding the appropriate
weights for each measure. We propose to use artificial neural networks in which the
independent quality measures are used as input and through a learning process the
weights of the interconnections are updated to approximate the output to the human
global quality measure.

Different one-layer feed-forward neural networks were trained with the
Levenberg-Marquardt backpropagation algorithm. In this networks, the first layer
has a connection from the network input and each subsequent layer has a connection
from the previous layer. The final layer produces the network’s output. They were
implemented using the MATLAB Neural Network Toolbox and their general scheme
is depicted in Fig. 7.17.
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Fig. 7.17 Scheme of the neural network for the global grasp quality measure estimation

Combination of different parameters were tried to find the neural network that
assigns appropriate weights to each independent aspect to best predict the human
assessment:

• Percentage of Data: Randomly divide up the 72 samples

– Training: 80 % (58 samples)
These are input to the network during training and the network is adjusted
according to its error.

– Validation: 10 % (7 samples)
These are used to measure network generalization, and to halt training when
generalization stops improving.

– Testing: 10 % (7 samples)
These have no effect on training and so provide an independent measure of the
network performance during and after training.

• Transfer functions in the hidden layer: They calculate the hidden layer’s output
from their net input. We used the eight functions shown in Fig. 7.18.

• Transfer functions in the output layer: They calculate the output layer’s result
from the hidden layer. We used the Linear function (purelin).

• Number of neurons in the hidden layer: We start with 10, which is the default
number, and increase it by one until 30.

• Number of training trials: As training multiple times with the same parame-
ters generate different results due to different initial conditions and sampling, we
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Radial basis Positive linear Hyperbolic tangent sigmoid Linear
radbas p oslin tansig purelin

Saturating linear Log-sigmoid Triangular basis Soft max

satlin logsig tribas softmax

Fig. 7.18 Graphs of the transfer functions used to calculate the hidden layer’s output from the net
input. They were reproduced from the MATLAB Neural Network Toolbox documentation (http://
www.mathworks.es/es/help/nnet/)

trained 50 times each combination of parameters and save the average performance
error.

In order to measure the network’s performance, we used the mean of squared
errors (MSE). It is calculated as the average squared difference between outputs and
targets. Lower values indicate better performance and zero means no error. Results
of the average performance over 50 trials for each transfer function in the input layer
and varying the number of neurons in the hidden layer are shown in Fig. 7.19.

A summary of the number of neurons which produced the best average perfor-
mance for each transfer function is presented in Table 7.11. The network found with
the best performance corresponds to a network with one hidden layer consisting of
29 neurons, using a hyperbolic tangent sigmoid transfer function which produced a
mean squared error of 0.0284.

Using the saved neural network with the combination of parameters described,
we have a way to evaluate the overall quality measure from the independent grasp
aspects which matches the human assessment. Figure 7.20 shows the comparison of
the net with the human assessment. Although there are still some outliers, it shows a
better approximation to the human evaluation than the mean of the quality measures,
decreasing the mean squared error from 0.090 to 0.028.

http://www.mathworks.es/es/help/nnet/
http://www.mathworks.es/es/help/nnet/
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Fig. 7.19 Results of the average performance over 50 trials for each transfer function in the input
layer and varying the number of neurons in the hidden layer. a Radbas, b poslin, c tansig, d purelin,
e satlin, f logsig, g tribas, h softmax
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Table 7.11 Number of neurons in the hidden layer which produced the best average performance
for each transfer function

Transfer function # Neurons Average performance Best performance

Radbas 27 0.0335 0.0202
Poslin 15 0.0436 0.0399
Tansig 29 0.0284 0.0231
Purelin 30 0.0724 0.0724
Satlin 26 0.0333 0.0228
Logsig 25 0.0308 0.0239
Tribas 19 0.0397 0.0293
Softmax 28 0.0373 0.0314
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Fig. 7.20 Performance of merging the independent quality measures using the best found neural
network

7.8 Comparative Evaluation of Prosthetic and Natural Human
Hand Grasping

In this section, we present an application of the proposed framework for human hand
grasping. We compare the grasp capabilities of a prosthetic hand using the grasp
quality measures with the ones obtained for the human hand using our model. This
could give insights as how to improve the prosthesis design in order to obtain better
quality scores.

Prosthetics hands have evolved and improved over the years, helping people gain-
ing manipulation capabilities. However, the current state of the art offers prosthesis
that generally have a single degree of freedom (simultaneously opening and clos-
ing of joints), and are controlled using signals from only two muscles, captured by
surface electrodes to perform the opening and closing movements. Although these
devices are extremely robust and require little effort to learn its operation by the
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user, they have large deficiencies in their appearance and their functionalities are
very limited. As a result, most available commercial devices do not meet the user
expectations, thus these prostheses are often rejected by the amputee.

The most widely used and successful control method for the prosthesis is based on
the myoelectric signal processing [12]. It consists in controlling the different degrees
of freedom of the prosthesis relating the myoelectrical impulses generated by a user’s
muscle contractions, using a suitable control algorithm. There are several practical
difficulties in reliably use more than two EMG channels to simultaneously control
the prosthesis [13]. Thus, even the multi-finger prototypes more recently introduced
to market, two EMG inputs are used to simultaneously open and close all the fingers.

These multi-finger hands have multiple motors to control different fingers and
different pre-programmed hand positions that the user can select from. Once the
hand position is selected, the user can use myoelectric signals to control the opening
and closing of the hand [14]. Multi-articulating hands include: the Michelangelo from
Otto Bock,1 iLimb-ultra from Touch Bionics2 and BeBionic V3 from RSLSteeper,3

shown in Fig. 7.21.
In general, prosthetic devices that enable movements with several degrees of

freedom perform a sequential control and implement locking mechanisms or signals
interruption to change from one degree of freedom to another. In contrast, the human
neuro-muscular system smoothly and simultaneously articulates multiple degrees of
freedom. Therefore, users often feel that the control of their prosthesis is not intuitive,
generating often long disappointing periods of training and learning [15].

Currently prosthesis rejection is driving recent advances in mechanical prostheses
to develop devices with a functionality comparable to an intact human hand. Clear
examples are the SmartHand [16], the VU hand [17], and the DARPA RP 2009
Intrinsic Hand [18], which has 18 degrees of freedom. These prostheses have not
been yet used in clinical practice due to the lack of adequate control algorithms.

(a) (b) (c)

Fig. 7.21 Most advanced multi-articulating hands currently available. a Michelangelo, b i-limb-
ultra-gallery3, c bebionic3

1 http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/49464.html
2 http://www.touchbionics.com/products/active-prostheses/i-limb-ultra/
3 http://bebionic.com/

http://www.ottobock.com/cps/rde/xchg/ob_com_en/hs.xsl/49464.html
http://www.touchbionics.com/products/active-prostheses/i-limb-ultra/
http://bebionic.com/
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In this section, we are going to use one of the latest developed prosthesis by
Otto Bock, the Michelangelo hand, to show an application of using the grasp quality
measures studied in the previous chapter to evaluate prosthesis grasps and compare
them with the values obtained for the human hand.

7.8.1 Material and Methods

7.8.1.1 The Michelangelo Hand

The Michelangelo hand is a five-finger prosthetic hand which has the ability to
separately position the thumb using muscle signals, which allows seven different
hand positions (see Fig. 7.22).

Additionally, it includes a flexible wrist joint which permits flexion, extension
and rotation. A software and EMG signal processing utilize a graphic user interface,
promoting control predictability. It has a natural-looking appearance with the digits
covered in a soft silicone. The hand has a span of about 114 mm when the fingers
are open. In addition, the oval wrist adapter looks more natural than a conventional
prosthetic wrist.

The Michelangelo hand model for OpenRAVE without the cosmetic glove
(Fig. 7.23) was provided by the Vision4Robotics Group4 with permission from Otto
Bock.

This prosthesis has three active fingers: the thumb, the index finger and the middle
finger; the last two fingers are for cosmetic reasons. The index and middle fingers are
mechanically coupled via a cable, so that usually they both come into contact with
the object (as long as the difference in the joint angles at MCP joints of index and
middle fingers is smaller than approx. 25◦) and produce the same force. If the index
finger come into contact with the object first, the middle finger still continue to move,
until also the middle finger is in contact. Once the index and middle fingers stopped,
the ring finger and little finger do not continue to move. If they come into contact
with the object first, they flex, since they are coupled via soft plastic parts with the

(a) (b) (c) (d) (e) (f) (g)

Fig. 7.22 Different grip types enabled by the Michelangelo hand changing the position of the
thumb5: a open palm, b opposition power grip, c tripod pinch, d lateral power grip, e lateral pinch,
f finger abduction/adduction and g neutral position

4 Automation and Control Institute, Vienna University of Technology, Vienna, Austria.
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main drive of the Michelangelo hand. This behaviour was mimicked implementing
a closure algorithm for the precision grasp. Figure 7.24 shows the prosthetic hand
model most open and closed postures.5

(a) (b)

Fig. 7.23 Otto bock Michelangelo hand: real (Photo courtesy of Otto bock) and model implemented
in OpenRAVE. a Real b simulated model

(a) (b)

Fig. 7.24 Most open and closed postures using the closure algorithm of the Michelangelo hand
using the tripod pinch thumb posture

5 http://www.living-with-michelangelo.com/

http://www.living-with-michelangelo.com/
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7.8.1.2 Grasp Quality Measures Applied to Hand Prosthesis

The quality measures selected to evaluate the independent aspects of the human
hand grasp were considered to evaluate the grasp of this hand prosthesis. However
the meaning of some of this aspects vary or are not applicable to a prosthesis.

The first three aspects: Restriction of the grip (Q A3N ), Ability to resist forces
(QC1N ) and Dynamic effects (Q B1N ) are metrics adopted from robotics which use
the contact points to evaluate the grasp, therefore they can be used for the Michelan-
gelo hand in the same way.

The aspect of Comfort measured by Q D1N does not refer in this case to the
discomfort produced by stresses of the articular soft tissues when they come stretched
close to the joints operating limits, but now must be understood as a reduction of
manipulability, as possible changes in the grasp posture are limited.

The Manipulability of the prothesic hand, measured by Q D2N , is always zero,
given that the hand has only one degree of freedom and therefore one of the singular
values of the grasp Jacobian matrix (G J ) is always zero. This shows that, once
achieving the grasp posture, the hand can not produce other movements to the object,
which have to be produced by the wrist or arm, producing a manipulability of the
hand equal to zero.

The Muscular fatigue has no meaning for a prosthesis without muscles and
therefore it was discarded.

In order to make the values of these measures comparable with the ones obtained
using the human hand model, we normalized them using the same ranges previously
proposed (see Table 7.6).

7.8.1.3 Hand postures

In order to evaluate the grasp quality of the Michelangelo hand, we used the 36
postures evaluated with the human hand model (previously shown in Fig. 7.3) and
attempted to reproduce them using the prosthesis. However, as this hand has prede-
fined thumb positions and only one degree of freedom, several of the grasps achieved
with the human hand were not possible to be reproduced with the prosthesis. Claw
grasps were discarded as the hand has fixed interphalangeal joints. Lateral grasps
could have been reproduced with the lateral power grip, but they were also discarded
as this predefined posture would result in only two-finger grasps (thumb and index
fingers). Therefore, only the 12 cylindrical grasps were considered using the tripod
pinch posture shown in Fig. 7.22c.

In order to reproduce the same postures, the wrist was located in the same position
registered for the human hand using the VICON motion capture system (described in
Sect. 5.6.2). At this position, the closure algorithm was executed until all fingers have
contacted the object or reached their maximum limits. The collision algorithm is used
to determine the contact points and normals and all the selected quality measures
were evaluated. All three-finger grasps were performed closing all fingers as the
Michelangelo hand can not control the fingers used to perform the grasp. However,

http://dx.doi.org/10.1007/978-3-319-01833-1_5
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as only the thumb, index and middle are active fingers, they are the only ones that
produce contact forces. The ring and the small finger produce only a small force
when grasping an object, since they are coupled using springs with the main drive of
the Michelangelo hand. The main reason for the ring and small finger is cosmetics,
nevertheless—also with small grip forces—these fingers can help to stabilise an
object, depending on their shape.

Therefore, when trying to simulate three-finger grasps, grasps with 3, 4 or 5
fingers were achieved, depending if the ring and small fingers reached the object.
But only the three fingers selected to perform the grasp produced active forces. On
the other hand, when trying to simulate five-finger grasps, sometimes the prosthesis
achieved grasps with four fingers, and again, only three of the contacting fingers
produced active grasping forces. We have—in both cases—calculated two values for
each quality measure: (i) one only using the three active fingers and (ii) using the
contacts actually produced; and present these two values as a range among which
the grasp quality measure actually lies.

7.8.2 Results

The results of calculating the independent grasp aspects for the 12 cylindrical postures
are presented in Table 7.12 taking into account both: only the 3 active fingers and
the real number of contacts. The values for each range did not vary significantly for
the different aspects. The comfort was not altered given that, as the fingers move
according to one degree of freedom, all the fingers were at the same position in the
joint range of motion. The restriction of the grip varied less than 1 % of the total
normalized range [0–1]. The dynamic effects aspect presents variations (up to 15 %)
as the centroid of the grasp polygon varied between three and five fingers, reducing
or increasing its distance to the object center of mass. The ability to resist forces
was the one with greater variation (up to 19 %) given that if the number of fingers
increases, the ability of a grasp to resist external forces also increases, and viceversa.

In order to better visualize these results, each grasp is depicted in Fig. 7.25. They
are presented alongside the picture of the respective human hand grasp and radar
plots present the selected 5 independent aspects evaluated for each grasp and both
hands.

The values obtained measuring the restriction of the grip are similar for both
hands, only giving better values for the human hand in the horizontal three-finger
posture grasping the cylinder in the center.

The ability to resist forces gave equal or better results in most of the cases (5 over 6)
for the grasp performed with the Michelangelo hand for three finger grasps. In these
cases, the grasp was performed with three fingers with the human hand for which
the Michelangelo hand used 5, allowing it to increase its ability to resist forces. It
can be visualized that when the measure is evaluated for the 3 active fingers of the
Michelangelo hand, it is equal or less than for the human hand. In contrast, it gave
generally (5 over 6) better results for the grasp performed with the human hand for



246 7 Human Grasping Simulation

Ta
bl

e
7.

12
R

es
ul

ts
of

th
e

gr
as

p
in

de
pe

nd
en

ta
sp

ec
ts

fo
r

th
e

12
cy

lin
dr

ic
al

po
st

ur
es

us
in

g
th

e
M

ic
he

la
ng

el
o

ha
nd

us
in

g
th

e
50

m
m

di
am

et
er

cy
lin

de
r

Po
st

ur
e

Fa
R

es
t.

of
th

e
gr

ip
Q

A
3 N

A
bi

lit
y

to
re

si
st

f.
Q

C
1 N

D
yn

am
ic

ef
fe

ct
s

Q
B

1 N
C

om
fo

rt
Q

D
1 N

3
ac

tiv
e

fin
ge

rs
R

ea
lc

on
ta

ct
s

3
ac

tiv
e

fin
ge

rs
R

ea
lc

on
ta

ct
s

3
ac

tiv
e

fin
ge

rs
R

ea
lc

on
ta

ct
s

3
ac

tiv
e

fin
ge

rs
R

ea
lc

on
ta

ct
s

H
or

iz
on

ta
l

L
ef

t
3

a
5

0.
07

43
0.

06
87

0.
18

89
0.

25
67

0.
42

81
0.

53
65

0.
78

93
0.

78
93

5
4

0.
07

43
0.

06
87

0.
20

33
0.

29
00

0.
44

16
0.

49
48

0.
77

12
0.

77
12

C
en

te
r

3
4

0.
07

17
0.

06
50

0.
01

89
0.

17
00

0.
78

84
0.

81
38

0.
73

26
0.

73
26

5
4

0.
07

53
0.

06
87

0.
11

33
0.

28
00

0.
86

42
0.

86
76

0.
72

26
0.

72
26

R
ig

ht
3

4
0.

07
40

0.
06

73
0.

08
89

0.
22

89
0.

36
16

0.
29

56
0.

78
28

0.
78

28
5

5
0.

07
57

0.
06

77
0.

19
89

0.
21

67
0.

54
98

0.
40

61
0.

83
07

0.
83

07
U

p
3

3
0.

07
43

0.
07

43
0.

14
11

0.
14

11
0.

17
90

0.
17

90
0.

82
42

0.
82

42
V

er
tic

al
5

5
0.

07
40

0.
06

50
0.

06
00

0.
23

67
0.

16
32

0.
28

23
0.

83
05

0.
83

05
C

en
te

r
3

4
0.

07
43

0.
06

80
0.

05
11

0.
19

56
0.

84
82

0.
85

49
0.

79
49

0.
79

49
5

4
0.

07
20

0.
06

60
0.

03
78

0.
21

89
0.

75
54

0.
78

66
0.

76
23

0.
76

23
D

ow
n

3
3

0.
07

40
0.

07
40

0.
06

89
0.

06
89

0.
34

91
0.

34
91

0.
81

70
0.

81
70

5
4

0.
07

53
0.

06
87

0.
13

11
0.

30
78

0.
54

35
0.

47
18

0.
79

00
0.

79
00

a
N

um
fin

ge
rs

th
at

w
er

e
pl

an
ne

d
b

N
um

fin
ge

rs
th

at
ac

tu
al

ly
co

nt
ac

te
d

th
e

ob
je

ct



7.8 Comparative Evaluation of Prosthetic and Natural Human Hand Grasping 247

3 Fingers
Left Center Right

H
or

iz
on

ta
l

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

V
er

tic
al

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

5 Fingers
Left Center Right

H
or

iz
on

ta
l

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

V
er

tic
al

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

0.0

0.2

0.4

0.6

0.8

1.0

Ability to
resist
forces

ComfortManipulability

Restriction
of the grip

Dynamic effects

Fig. 7.25 Independent grasp aspects for the human and Michelangelo hands (red line: Human, con-
tinuous blue line: Michelangelo calculated with all fingers contacted and dotted blue line: Michelan-
gelo calculated with only the 3 active fingers)
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five finger grasps, given that in many of these cases only 4 fingers of the Michelangelo
hand actually contacted the object.

The dynamic effects, measured with the distance from the grasp polygon to the
center of mass, gave similar results for both hands since the wrists were located in
the same position. The results clearly show that grasps performed close to the object
centre are rated better than in the extremes. In some cases, there are small differences
given that the human or Michelangelo hand positioned the fingers differently.

The grasp comfort is measured taking into account how far are the hand joints
from their limits. As it was mentioned before, it should be understood as a measure
of manipulability in terms of the hand ability to move the joints after perform-
ing the grasp. Since the object had a medium size, the prosthesis is grasping it at
approximately the center of its joints’ range of motion thus getting always a very
high performance in this aspect. This is more accentuated when the human hand is
performing grasps with three fingers in which it moves the ring and small fingers to
their limits to put them out of the way. In this cases, it should be considered to modify
this measure to only take into account the joints’ values of fingers that contact the
object.

Lastly, the Manipulability is the aspect that clearly gives a large advantage to grips
performed with the human hand since this measure always gives zero values for the
prosthesis.

7.8.3 Discussion

In this section, we demonstrated one of the possible uses of the proposed framework
for evaluating grasps through its various independent aspects. We showed how the
grasp ability of a prosthetics hand can be compared to the one that the human hand
has.

Although prosthetics hands have evolved and improved over the years, they have
large deficiencies in their appearance and their functionalities are very limited. These
deficiencies are largely related with the quality of the grasps they can perform.

Specifically, the Michelangelo hand largely lose dexterity and versatility com-
pared to the human hand, reducing from 23 to only one degree of freedom. For this
reason, out of 36 grasps that were studied for the human hand only 33 % were able
to be evaluated for the prosthesis.

Additionally, the number of quality measures that are meaningful for the Michelan-
gelo hand is reduced, excluding specially the proposed biomechanical indices as they
do not make sense for hands without muscles.

The results given by the manipulability measure (Q D2) are specially relevant
for this hand. Although it was possible to calculate the singular values of the grasp
Jacobian matrix, the inverse of the condition number always gave zero values. This
demonstrates that once achieving the grasp posture, the hand can not produce other
movements to the object, which have to be produced by the wrist or arm. This clearly
shows one of the major deficiencies with the prosthetic hands: loss of manipulability.



7.8 Comparative Evaluation of Prosthetic and Natural Human Hand Grasping 249

As future work, additional measures might be proposed to take into account the
fact that although the prosthesis is a five-finger hand, only three of its fingers are active
and therefore able to produce significant forces to the grasped object. Specifically,
the role of the passive forces generated by the ring and little fingers should be studied.

Additionally, future studies can investigate how adding different degrees of free-
dom to prosthetic hands can improve their ability to perform better grasps. This can
be used by the robotics community since more and more robotic hands tend to be
more similar to the human hand trying to achieve its dexterity to perform grasps and
manipulate objects.

7.9 Conclusion

In this chapter, we studied the selected grasp quality measures to evaluate the human
grasp. The fatigue and muscle safety margin indices were included to consider bio-
mechanical aspects of the human hand. The varied nature of the measures results in
very different dimensional units and ranges of variation. To make the indicators com-
parable, their mathematical limits—where they could be determined—were used to
normalize them, so that they had the best value of 1 and the worst value of 0.

A variability analysis was performed changing different aspects that may influence
the grasp such as the object’s weight and size, the position, orientation or type of
grasp or the number of fingers used. The results for the normalized indices showed
that their values moved in different and small zones of the range 0–1. Therefore, the
mathematical limits chosen did not seem to fit well to the real limits of variation of
the measures of the grasping hand. Therefore new ranges were proposed to better
normalize the measures. Additionally, a sensitivity analysis demonstrated that with
a 10 % variation in the tentative grasp posture, most of the measures show less than
20 % variation over their proposed ranges, which shows their robustness to their
input uncertainty errors.

Through a correlation analysis, groups of measures that evaluate similar aspects
of the grasp were determined, allowing us to find a reduced number of indices to
assess the overall quality of the grasp. A physical interpretation was given to the
six independent aspects of evaluation: restriction of the grip, ability to resist forces,
dynamic effects, comfort, manipulability and muscular fatigue.

These measures were evaluated using different grasps that were also reproduced
by human subjects. A new generalized grasping quality index to represent all of the
grasp indices as one unified measure is formulated by using a neural network. The
human assessment was used to train the network and validate the results. As future
work, the importance of each aspect being measured by the indices could be modified
to have into account the manipulation task to be performed after the grasp.

The proposed framework for human hand grasping has several applications but
in this chapter we demonstrated how it can be applied to improve the design of hand
prosthesis or robotic hands, comparing the results of the grasp quality measures with
the ones obtained for the human hand model.
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The experiments performed in this study are shown as an example of the procedure
that could be applied to evaluate the human grasp. However, the results can be
extended by performing further experiments varying more aspects of the grasp. These
include using objects of different shapes, increasing the variation of their weight,
as well as varying the task to perform while grasping. In addition, a quantitative
assessment instead of a ranking of grasps would allow us to obtain a global measure
that can then be more easily compared with the results of the quality indices. The
subjects could also be asked to assess the different characteristics of the grasp which
are somehow related with the results of the selected measures to gain additional
information.

All grips studied in this work are precision grasps, in which only the distal pha-
langes of the fingers are in contact with the objects. Therefore, future studies can
also examine how to adapt—and even propose—quality measures for power grasps
where other segments of the fingers and the palm may also be in contact with objects.
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Chapter 8
Conclusions

Grasping is one of the most challenging problems in robotics, and require knowledge
and development from different fields. The problem, like many others in robotics,
benefits greatly from the use of a simulator. First of all, the simulation might be used
to replace the real hardware to the extent that it is capable of reproducing the actual
physical behaviour, which is of special importance in the context of robot manipu-
lation. Second, it might be used as a prediction engine that can help to understand
the effects of actions and provide the base for developmental learning. Additionally,
if simulation accurately reproduces the real sensor and actuator feedback, robots
might automatically learn from low-level sensor inputs without the depreciation of
real hardware.

The quality of simulations has improved rapidly in recent years with the develop-
ment of different physics engines and a wide variety of 3D rendering engines. This
has enabled simulators to improve their prediction capabilities. As a result, several
approaches have been proposed to use simulation to test different grasp hypotheses,
select a stable grasp using different criteria and plan to execute and monitor the
complete grasping task. However, performing dexterous manipulation in complex
environments is still a very challenging task in robotics.

In contrast, humans have the ability to perform a great variety of complex tasks
in a very dexterous way. Therefore, the development of models and algorithms able
to replicate the human grasp could help us in understanding how the human brain is
able to plan and execute these complex actions and improve our robots by providing
them with more dexterous manipulation abilities.

In this book, we tackled the problem of grasping simulation using an interdiscipli-
nary approach. On the one hand, robot grasping simulation has been improved using
state-of-the-art tools to better predict the reality. On the other, a biomechanical model
able to represent the human hand has been developed. The robotic and biomechan-
ical knowledge was used to propose different quality measures to evaluate different
aspects of the human grasps. Finally, the knowledge acquired from the evaluation
of grasping in humans is compared with grasping performed by a prosthetic hand
showing how the gap between robot and human grasp manipulation could be reduced.

B. León et al., From Robot to Human Grasping Simulation, 253
Cognitive Systems Monographs 19, DOI: 10.1007/978-3-319-01833-1_8,
© Springer International Publishing Switzerland 2014
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The proposed framework for human hand grasping has several applications in
various fields of research related with manipulation. They include the development
of more efficient robotic manipulators for replacing the human hand assembly lines
in industry thus freeing operators from repetitive tasks; the development of robotic
arms for assisting people with disabilities; the improvement of the design of hand
prosthesis or robotic hands; the development of devices that transmit haptic touch
sensation during the manipulation processes in virtual reality tele-operation or robotic
tasks, such as during tele-surgery; the planning of medically-oriented operations to
restore or enhance the capabilities of patients with hand grasp pathologies; or the
design of hand tools and other products used by human hands.

Although dexterous manipulation remains as one of the biggest challenges in
robotics, this book presents approaches that aim to provide a procedure that opens
the way to achieve this goal.

This chapter highlights the main contributions presented in this manuscript and
provided some ideas that can be used in future works to extend the approach and
applications presented here.

8.1 Contributions

The specific contributions of this book can be detailed and subdivided following its
two main parts: robot and human grasping simulation.

8.1.1 Robot Grasping Simulation

8.1.1.1 OpenGRASP

This book has presented a fully operational simulation toolkit for robot grasping
and manipulation. Its main design principles are extensibility, interoperability and
public availability. In its development we have used existing and widely-available
components to ensure its standardization and easy adoption. We have also provided
additional tools and features that provide users with a quick start: the robot editor
based on Blender, COLLADA file format, two Physics Abstraction Layers (PAL and
FISICAS), and models of existing robot hands [1, 2].

8.1.1.2 Tactile Sensor Model

This book has addressed the problem of creating a simulation of a tactile sensor as
well as its implementation in a simulation environment. The simulated tactile sensor
model utilizes collision detection and response methods using soft contacts as well
as a full friction description. The tactile element is created based on a geometry
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enabling the creation of a variety of different shape tactile sensors. The tactile sensor
element can be used to detect touch against triangularized geometries. This indepen-
dence in shape enables the use of the sensor model for various applications, ranging
from regular tactile sensors to more complex geometries as the human hand which
makes it possible to explore human-like touch. The developed tactile sensor model
is implemented within OpenGRASP and is available as an open-source plugin. The
model has been validated through several experiments ranging from physical proper-
ties verification to testing on robot grasping applications. This simulated sensor can
provide researchers with a valuable tool for robotic grasping research, especially in
cases where the real sensors are not yet accurate enough [3–5].

8.1.1.3 Grasping Known Objects Using a Model-Driven Grasping Approach

We have presented the Model-Object Overlap Metric to incorporate information
obtained from the depth-sensor into the grasp planning process. We have shown
how this metric can be incorporated at different stages and in different fashions to
conventional grasping pipelines to increase efficiency and robustness to errors from
recognition. The simulator was used to find stable grasps ranked according to the
overlap quality metric in relation to the observed data.

8.1.1.4 Grasping Unknown Objects

The applicability of simulation to support the execution in the real-world in a service
robotic scenario in which the graspable objects were unknown to the robot has been
demonstrated and their shapes were predicted using symmetries. The simulator was
used to select stable grasps and plan collision-free movements to be executed by the
robot [6].

8.1.1.5 Grasping Familiar Objects According to Their Category
and Given Task

We presented a grasping pipeline that allows autonomous robot grasping according
to an object’s category and a given task. Several state-of-the-art modules perform-
ing scene exploration through gaze shifts, segmentation, object categorization and
task-based grasp selection were integrated. We showed how this allows the robot
to transfer task-specific grasp experience between objects of the same category. The
effectiveness of the approach is demonstrated on two humanoid robots: ARMAR-IIIa
and Tombatossals. The simulator was used to generate off-line a set of task-ranked
grasp hypotheses. This involves the generation of grasp hypotheses and their rank-
ing according to the task and the object’s category. In the on-line process, the most
similar object model and the given task serve as a look-up in this database to retrieve
the highest-ranked grasp [7].
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8.1.1.6 Dynamic Grasping Simulation

We addressed the problem of simulating the complete dynamics of a humanoid
torso robot, which includes sensors and actuators, in the context of robot grasping
and manipulation. We evaluated the extent to which the simulation resembles the
real behavior of manipulation tasks by using the same controller on the real and
the simulated platforms and analyzing the differences. The results have shown that
it is possible to simulate manipulation tasks with the current state of the art of
simulation tools. Although the precision is not perfect, the framework is able to
perform manipulation tasks using the same controller as that used in the real world
with very similar results. An important result is that with this framework, it is possible
to use simulated tactile data in manipulation task controllers that use tactile feedback
[8, 9].

8.1.2 Human Grasping Simulation

8.1.2.1 Human Hand Model

A realistic and self-contained biomechanical model of the hand has been developed
by merging the current knowledge of biomechanics, ergonomics and robotics. The
model simulates the complete hand and can be easily scaled to study different per-
centiles of populations. It has a realistic representation that allows the ergonomic
evaluation of products. The model is dynamic and can be used to study the mus-
cular patterns associated with a specific grasp. It allows predicting feasible grasp-
ing postures and provides the contact information required for evaluating the grasp
[10–12].

8.1.2.2 Human Grasping Simulation

The biomechanical simulation of the human hand grasping has been performed by
adding to the biomechanical model the dynamic equilibrium of the grasped object.
Different objective functions have been studied to solve the indeterminate problem of
finding the muscular forces enabling the grasp. The main contribution is in showing
that the widespread Crowninshield minimisation function does not work well when
trying to simulate the grasping of an object with an already validated 3D model of
the hand, and that the consideration of a stability criterion improves the estimations.
This result is significant in the context of human grasp modelling and has not been
reported previously in the literature, contributing to a better understanding of the
human grasp [13].
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8.1.2.3 Human Grasp Evaluation

Based on a review of robotic grasp quality measures, the most common measures have
been adapted to the evaluation of the human grasp. Furthermore, two new measures,
the fatigue index and the muscle safety margin index have been proposed to consider
the biomechanical aspects of the human hand not taken into account by the existing
robotic measures. The Monte Carlo method has been used to successfully obtain the
upper limit for the robotic measure QC2 in its adaptation of human grasp evalua-
tion in order to illustrate its potential for the normalization of any of the measures
[14, 15].

8.1.2.4 Variability and Sensitivity of the Quality Measures

The selected measures were used to evaluate the quality of different grasps. A vari-
ability analysis was performed changing different aspects that may influence the
grasp such as the object’s weight and size, the position, orientation or type of grasp
or the number of fingers used. With these results, ranges to better normalize the mea-
sures were proposed. The robustness of the measures to uncertainty in their input
data has been demonstrated through a sensitivity analysis, by randomly varying the
tentative grasping posture within a 10 % range of variation [16].

8.1.2.5 Independent Grasp Aspects

Through a correlation analysis, groups of measures that evaluate similar aspects
of the grasp were determined, allowing us to find a reduced number of indices to
assess the overall quality of the grasp. A physical interpretation was given to the
six independent aspects of evaluation: restriction of the grip, ability to resist forces,
dynamic effects, comfort, manipulability and muscular fatigue [15].

8.1.2.6 Global Grasp Quality Index

These measures were evaluated for a set of different grasps that were also experi-
mentally assessed by human subjects. The use of a neural network is proposed to
merge all representative quality measures of the independent aspects, generating a
generalized grasping quality index that provides a global assessment of the grasp.
The human assessment was used to train the network and validate the results.

8.1.2.7 Application to Prosthetic Hand Grasping Evaluation

We have shown an application to use the developed human grasping simulation
framework. The independent grasp quality measures were used to evaluate grasps
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produced by the Michelangelo prosthetic hand and compare them with the human
results. The muscular fatigue was discarded given that it can not be applied for the
prosthetic hand and the measure of manipulability always gave zero results for this
one-degree of freedom hand. As prosthesis functionality becomes more similar to
an intact human hand, more aspects can be used to evaluate its capabilities. This
will give insights on how to improve prosthesis design to achieve a similar gripping
ability to the human hand, or even improve it.

8.2 Future Work

The approaches proposed in this book solve some problems related to grasping
simulation and evaluation. However, much work is still required in these fields. The
following are some open research lines that can be further studied.

8.2.1 Tactile Sensor Model

The collision detection method for solving the contact points is currently a brute force
method. Improvements on this area can greatly improve the overall computation times
of the tactile sensor model. Future work includes improving the collision detection
times and improving computational efficiency.

8.2.2 Dynamic Grasping Simulation

The main drawback of the presented approach is the duration that the simulator
requires to perform the same task as the real robot does, limiting its possible use as
a prediction engine. However, recent advances in parallelizing processes to improve
the speed of simulations can be a feasible solution to this issue. The parallel quick-
step package available in ROS, provides an implementation in CUDA, OpenCL
and OpenMP which accelerates the process of calculating each time step. Another
challenging problem is the parameter setting for the simulator, for which learning
algorithms to find the right parameters could be used.

8.2.3 Human Hand Model

There are several parts of the model that are open for improvement. Modifications
of the thumb kinematics taking into account recent biomechanical studies [17, 18]
could improve the model’s estimation of the contact force producing by the thumb.
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Additionally, the skin model can be improved at the joint zones by considering a
deformation algorithm depending on the joint angles. That would enable more real-
istic hand postures. Additionally, neural networks can be used to avoid the experi-
mental measure of the most open and tentative grasp postures. Finally, the graphical
interface could also be improved to provide more options to the user.

8.2.4 Central Nervous System Criterion

Although the stability measure provided good results in these simulations, it may
fail for others entailing certain level of manipulability, as the criterion selected by
the CNS in each case will probably be a function of the task to be performed. Further
research on the application of other robotics grasp quality measures for different
tasks involving different levels of stability and manipulability is needed. Also, the
model presented in this study has been used to study only grasps of cylinders with the
fingertips. More complex grasps, involving more contact zones and more complex
object geometries should be investigated in the future.

8.2.5 Human Hand Evaluation

More research is needed to investigate other biomechanical measures that might be
obtained from the use of existing biomechanical hand models. Additionally, mea-
sures that consider the task to be performed while grasping could be included in
the evaluation as it is an important aspect. The measures used to evaluate the grasp
take only the hand into consideration. Including the whole arm into the evaluation—
specially when evaluating the muscular fatigue—could improve the ability to choose
more comfortable grasps.

8.2.6 Global Grasp Quality Index

The experiments performed in this study are shown as an example of the procedure
that could be applied to evaluate the human grasp. However, the results can be
extended by performing further experiments varying more aspects of the grasp. These
include using objects of different shapes, increasing the variation of their weight,
as well as varying the task to perform while grasping. In addition, a quantitative
assessment instead of a ranking of grasps would allow us to obtain a global measure
that can then be more easily compared with the results of the quality indices. The
subjects could also be asked to assess the different characteristics of the grasp which
are somehow related with the results of the selected measures to gain additional
information.
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