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    Abstract     Spinal navigation is a technique gaining increasing popularity. Different 
approaches as CT-based or intraoperative imaging-based navigation are available, 
requiring different methods of patient registration, bearing certain advantages and 
disadvantages. So far, a large number of studies assessed the accuracy of pedicle 
screw implantation in the cervical, thoracic, and lumbar spine, elucidating the 
advantages of image guidance. However, a clear proof of patient benefi t is missing, 
so far. Spinal navigation is closely related to intraoperative 3D imaging providing 
an imaging dataset for navigational use and the opportunity for immediate intraop-
erative assessment of fi nal screw position giving the option of immediate screw 
revision if necessary. Thus, postoperative imaging and a potential revision surgery 
for screw correction become dispensable. 
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 Different concept of spinal robotics as the DaVinci system and SpineAssist are 
under investigation.  

  Keywords     Spinal navigation   •   Image guidance   •   Robotics   •   3D-Fluoroscopy   • 
  Intraoperative spinal imaging   

       Introduction 

 While the use of navigational systems is established for cranial neurosurgical pro-
cedures since many years, the application of navigation or image-guidance systems 
for spinal surgery is gaining increasing popularity during recent years. With the 
technical development of navigation and instrument tracking in the early 1990s, 
attempts were started to adapt navigation to spinal surgery but were initially ham-
pered by the limited options to attach reference arrays to the surgical target struc-
ture. The fi rst successful navigated implantation of a pedicle screw was reported in 
1995 [ 33 ,  34 ]. From there on spinal navigation was refi ned and feasible systems are 
available nowadays. At present, major applications for spinal navigation are the 
implantation of pedicle screws in the lumbar, thoracic, and cervical spine. However, 
few studies assessed the feasibility of navigation systems for anterior approaches to 
the spine and tumor surgery of the spine. 

 With the refi nement of spinal navigation, the necessity of intraoperative imaging 
became increasingly important to provide accurate registration of the spine to the 
navigation system. Intraoperative fl uoro imaging or CT imaging is currently available 
for immediate automatic registration of the spine to the image-guidance system. 

 Another evolving technology in spinal surgery is robotics. Systems of different 
robotic technology are under investigation and a miniature bone-mounted robot is 
commercially available for the robot-assisted implantation of thoracic, lumbar, and 
sacral pedicle screws.  

   Spinal Navigation 

 The spine brings out certain challenges for the surgeon due to its complex 3D anat-
omy and combination of solid bone and delicate neuronal and vascular structures in 
close proximity. The standard surgical exposure of the spine allows a 2-dimensional 
visualization of a complex 3-dimensional body only, and instrumentation needs a 
large amount of spatial sense to appreciate the exact position of implants in a 3D 
vertebral body. Conventional orientation at the spine is achieved by a combination 
of identifi cation of surface anatomy and in most cases 2-dimensional fl uoroscopic 
imaging. However, identifi cation of surface anatomy gets progressively hampered 
by the advent of minimally invasive approaches to the spine and an increasingly 
older population of spine patients with signifi cant degenerative changes masking 
known surface anatomy. In those cases an adequate orientation at the spine gets a 
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signifi cant challenge. Therefore, spinal navigation is increasingly attractive by pro-
viding the surgeon with additional spatial information enhancing the accuracy of 
surgical procedures and additionally making repetitive intraoperative fl uoroscopy 
unnecessary. This can signifi cantly increase implant position accuracy as shown 
especially for sacral, lumbar, thoracic, and cervical pedicle screws while reducing 
the amount of intraoperative radiation exposure. While the reduction of radiation 
exposure is a welcome by-product for the patient it carries more importance for the 
active spinal surgeon receiving a signifi cant amount of radiation exposure during 
daily spinal procedures. Therefore, the potential advantages of spinal navigation are 
on the one hand an increased surgical accuracy by an enhanced orientation espe-
cially in spinal instrumentation and on the other hand a reduced radiation exposure 
during surgery for the spinal surgeon and OR staff. Due to these advantages naviga-
tion undergoes an increased use in spinal surgery. 

 So far, the most common use of spinal navigation is for posterior implantation of 
pedicle screws in the sacral, lumbar, thoracic, and also cervical spine. Furthermore, 
some groups assessed its applicability for anterior spinal procedures as tumor resec-
tion or anterior cage or disc prosthesis implantations. 

   Techniques of Spinal Navigation 

 Major differences in the presently available techniques of spinal navigation are 
related to the modality of imaging used for navigation, whether it is pre- or intraop-
erative CT imaging, intraoperative 2D fl uoroscopy, or intraoperative 3D fl uoros-
copy, and the method of registration of the imaging dataset to the patients’ anatomy. 
While in the beginning of spinal navigation, CT-based methods were mostly used, 
intraoperative imaging especially 3D fl uoroscopy is currently increasingly used 
and, thereby, registration methods are changing from paired point or surface match-
ing methods to automatically registration of the intraoperative fl uoroscopy imaging 
dataset. 

   Preoperative CT-Based Navigation 

 The classical mode of spinal navigation is preoperative CT-based navigation. A pre-
operative CT scan of the pertinent spine region is transferred to the navigation system 
and after attachment of a reference array to the spine the imaging dataset is registered 
to the anatomy of the spine. Several    different matching algorithms are available 
including paired point matching, region matching, or CT-fl uoro matching. Using the 
technique of paired point matching, anatomical distinct points are marked in the CT 
dataset and the respective points are presented to the navigation system by the use of 
a pointer after attachment of a reference array to the spine for registration. 

 When using region matching the navigation system constructs a 3D model of the 
spine and random surface points on the spine are presented to the system. The system 
matches the cloud of points to the corresponding fi tting area of the 3D spine object. 
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6

 A third method of registration is CT-fl uoro matching. When using this technique 
the preoperative CT is matched to intraoperative 2D-fl uoro images of the spine 
taken from different angles to the patient. 

 Major infl uencing factor for the accuracy of the navigation is the accuracy of the 
registration of the patient’s anatomy to the imaging data set. When using CT-based 
navigation this is hampered by the changed intersegmental relation depending on 
patient position. While the patient is usually in supine position in the scanner he is 
turned to prone position for posterior surgery and the spatial relation of vertebral 
bodies can change in comparison to the CT position. Therefore, several registrations 
can be necessary for a multisegmental instrumentation. 

 In a cadaver study Holly et al. assessed the accuracy of paired point matching 
alone in comparison to paired point matching supplemented with surface matching 
of the cervicothoracic spine [ 14 ]. Though the addition of surface matching decreased 
the registration error, the navigational accuracy did not differ between the two tech-
niques compared. The authors concluded that paired point matching should be suf-
fi cient for cervicothoracic instrumentation. 

 Due to the changed intervertebral relations between imaging and the surgical 
position, standard protocols suggest the registration of each spinal level of interest, 
i.e., single-level registration. In a study of 45 patients undergoing lumbar pedicle 
screw insertion, the option of multilevel registration was compared to single level 
registration accuracy [ 38 ]. The authors found a single-time multilevel registration 
to be suffi ciently accurate for lumbar pedicle screw implantation in their series of 
patients. 

 Independent of the registration technique used, a careful and repeated control of 
registration accuracy during surgery is necessary using distinct points of anatomy to 
verify registration and to decide whether a further level needs additional single- 
level registration or whether registration accuracy is suffi cient for adjacent levels.  

   Intraoperative Imaging-Based Navigation 

 In contrast to preoperative CT-based navigation, several options for the use of intra-
operatively acquired images for navigation are available. The most basic version of 
intraoperative imaging-based navigation is the so-called virtual fl uoroscopy where 
lateral and ap fl uoroscopy images taken intraoperatively are registered to the 
patients’ anatomy and used for navigation [ 9 ]. However   , when compared to the 
conventional approach of lateral and ap fl uoroscopy imaging during spinal instru-
mentation, the approach of virtual fl uoroscopy does not add additional information 
but avoids repeated imaging and time-consuming repositioning of the c-arm form 
lateral to ap imaging and reduces radiation exposure. Registration for virtual fl uo-
roscopy is usually performed automatically by tracking of the c-arm during image 
acquisition. 

 With the availability of 3D c-arms rotating around an isocenter, 3D-fl uoro-based 
navigation became possible. A c-arm automatically rotates around a spinal region of 
interest acquiring repeated images during the orbital scan around the isocenter. 
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Comparable to a CT scan the acquired fl uoro images are reconstructed to a 3D 
image of the spine and multiplanar reconstruction of the images are available for 
navigation. In comparison to preoperative CT imaging the problem of intervertebral 
changes of relation during scanning and surgery are no longer a limitation and reg-
istration is performed automatically by tracking of the c-arm and the spine during 
the imaging scan making further registration steps unnecessary. After simultaneous 
image acquisition and registration, spinal navigation is immediately possible after 
verifi cation of the registration accuracy. Thereby, time-consuming registration steps 
are unnecessary, the problems of intervertebral spatial relation changes are omitted, 
and re-registrations for adjacent vertebral bodies become needless.   

   Navigated Posterior Spinal Instrumentation 

 Major application of spinal navigation is for posterior instrumentation of the cervi-
cal thoracic and lumbar spine where fi xation of the necessary reference array is 
easily achievable. The vast amount of available literature assessed the feasibility 
and accuracy of the implantation of pedicle screws. A meta-analysis published by 
Kosmopoulos in 2007 summarized the accuracy of navigated pedicle screw instru-
mentation and compared it to non-navigated pedicle screws [ 26 ]. The authors 
assessed 130 studies including 69 clinical and 41 cadaveric articles and had a total 
of 37,337 navigated and non-navigated pedicle screws in their database. Of the in 
vivo population, the non-navigated subgroup of 12,299 pedicle screws showed a 
median accuracy of 90.3 % compared to a median accuracy of 95.1 % of 3,059 
navigation-assisted pedicle screws irrespective of the spinal level. These numbers 
give an overall impression of the superiority of spinal navigation with respect to 
pedicle screw placement accuracy. However, when fi ltering for spinal levels cervi-
cal and lumbar pedicle screws are more accurately placed with the use of navigation 
while the median accuracy of thoracic pedicle screws was 94.3 % without and 
82.2 % with the assistance of navigation on fi rst sight. 

   Lumbar Pedicle Screw Insertion 

 The vast majority of literature on spinal navigation evaluated the accuracy of lum-
bar pedicle screw instrumentation and results of several well-conducted studies 
support the accuracy advantage of navigation-assisted placement of lumbar pedi-
cle screws. Already in 2000 a prospective randomized trial revealed a pedicle 
breach rate of 13.4 % without navigation compared to 4.6 % with the use of navi-
gation [ 28 ]. The rate of pedicle breaches above 4 mm was reduced from 1.4 to 0 % 
by image guidance. The meta-analysis by Kosmopoulos assessed the position of 
1,674 non-navigated screws in comparison to 864 navigated lumbar pedicle 
screws and reported a median rate of accurate screws of 79.0 and 96.1 %, respec-
tively [ 26 ].  
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   Thoracic Pedicle Screw Insertion 

 In comparison to the lumbar and cervical spine, the thoracic spine has the most 
unfavorable relationship of spinal canal diameter and cross-sectional surface of the 
contained neuronal structures resulting in a small safety space medial to the bony 
pedicles. Furthermore, pedicle diameters are small increasing the complexity of an 
accurate screw implantation. Therefore, spinal navigation seems to be attractive for 
posterior thoracic instrumentation especially in situations with scoliotic deformities 
and a rotated anatomy. 

 However, as mentioned above a meta-analysis revealed median accuracies for 
thoracic pedicle screws to be 94.3 % without compared to 82.2 % with the assis-
tance of navigation in the thoracic spine [ 26 ]. However, the authors confi ned that 
numbers are based on 6 pure thoracic articles only and that statistical aspects result 
in the reported accuracy differences. When using the more accurate geometric mean 
accuracy of 63.1 % without and 85.1 % with navigation as suggested by the authors, 
the advantage of navigation for the placement of pedicle screws in the thoracic spine 
becomes evident. Later studies support the advantage of thoracic spinal navigation. 
Rajasekaran et al. assessed the advantage of navigation in a prospective randomized 
study of 33 patients treated for thoracic deformities with posterior instrumentation 
using navigation with intraoperative 3D fl uoroscopy or conventional non-navigated 
fl uoroscopic guidance [ 43 ]. While 23 % of the non-navigated screws, only 2 % of 
the navigated screws showed pedicle breaches. In addition, the average screw inser-
tion time was reduced from 4.61 to 2.37 min by the deployment of spinal navigation. 
In a retrospective study of 300 navigated and 185 non- navigated thoracic pedicle 
screws for adolescent idiopathic scoliosis, the probability of a potentially unsafe 
screw was reduced 3.8 times by navigation [ 60 ]. Furthermore, the odds of a signifi -
cant medial breach and intraoperative screw removal were 7.6 and 8.3 times less in 
the navigated group, respectively. Again, Han et al. revealed a higher accuracy and 
reduced surgical time of thoracic pedicle screw instrumentation including the upper 
thoracic spine when navigated in patients with thoracic spine fractures [ 13 ]. 

 Thus, increasing evidence is accumulating supporting the advantage of naviga-
tion in thoracic pedicle screw insertion, as well.  

   Cervical Posterior Instrumentation 

 Cervical instrumentation possesses an outstanding complexity due to the proximity 
of the bony spine, neuronal structures in the spinal canal, and the vertebral artery. 

 Within the upper cervical spine transarticular C1-2 stabilization carries a signifi -
cant risk for vertebral artery injury and vertebral artery lacerations are estimated to 
occur in 2.2 % of transarticular non-navigated instrumentations [ 66 ]. Also the less 
risky Goel/Harms technique using lateral mass screw in C1 and isthmic screws in 
C2 reduces the risk of vertebral artery injury, however, the available bony volume 
for exact screw placement is limited and suboptimal screw placement can be a prob-
lem [ 47 ]. 

F. Ringel et al.
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 In the subaxial cervical spine the implantation of lateral mass screws does not 
carry signifi cant risks of a neurovascular injury, however, the implantation of cervi-
cal pedicle screws offers extremely limited space for a deviation of the implanted 
screw from the ideal trajectory between the spinal canal medially and the vertebral 
artery laterally between C3 and C7 and therefore has a signifi cant risk for neurovas-
cular injury by an inaccurate screw position. 

 Due to these reasons spinal navigation became increasingly popular for cervical 
posterior instrumentation especially for transarticular C1–2 instrumentation and 
pedicle screws from C3 to C6. So far, several case reports and retro- or prospective 
studies evaluated the feasibility and accuracy of screw implantation using CT-based 
navigation or intraoperative 3D fl uoroscopy. 

 Using a human cadaver model Ludwig et al. assessed the accuracy and safety of 
cervical pedicle screw implantation comparing three techniques: (1) using surface 
landmarks, (2) performing laminotomies providing additional visual and tactile 
control, and (3) using a computer-assisted surgical guidance system [ 31 ]. By the 
additional visualization of surgical landmarks by a laminotomy, the number of cor-
rect screw positions increased from 12.5 to 45 % and the incidence of critical perfo-
rations dropped from 65.5 to 39.6 %. The use of a navigation system could further 
increase the rate of correct screw positions to 76 % while reducing the rate of criti-
cal perforations to 10.6 %. Thereby, the authors could show a clear benefi t of the use 
of image guidance for the implantation of cervical pedicle screws, however, in a 
cadaver model, only. 

 Several studies assessed the feasibility and accuracy of the use of navigation for 
the placement of cervical pedicle screws in patient series. Most studies used the 
technique of preoperative CT-based navigation while few assessed intraoperative 
3D imaging as basis for navigation. 

 A single prospective study compared the implantation of cervical pedicle screws 
in 52 consecutive patients with or without navigation [ 46 ]. Ninety-two screws in 20 
patients were implanted without the use of a navigation system while 167 pedicle 
screws in 32 patients were implanted by CT image guidance using a navigation 
system and a surface matching algorithm. None of the implanted screws in either 
group caused a neurovascular complication; no screw needed a revision but 8.6 % 
of the non-navigated screws versus 3.0 % of the navigated screws showed a viola-
tion of the bony cortex.    The authors concluded that the use of navigation in the 
implantation of pedicle screws from C3 to C6 reduces the rate of screw misplace-
ment and, thereby, might reduce the incidence of neurovascular injuries. 

 Apart from this study no other study prospectively compared the incidence of 
screw misplacements and neurovascular injuries by the implantation of pedicle 
screws in the cervical spine. 

 The accuracy of three-dimensional fl uoroscopy-based computer-assisted cervi-
cal pedicle screw placement was compared to the conventional technique in a retro-
spective clinical study [ 16 ]. One hundred twenty-six screws in 30 patients were 
placed with the conventional technique compared to 150 screws in 32 patients using 
3D fl uoroscopy-based navigation. While the rate of pedicle perforations was not 
signifi cantly changed by the application of a navigation system (27.0 % 
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conventionally vs. 18.7 % navigated), the rate of pedicle perforations ≥1 mm was 
signifi cantly reduced by the use of image guidance. The odds ratio of a pedicle per-
foration when using the conventional in comparison to the navigated technique was 
2.72 for a perforation of ≥1 mm and 3.89 for a perforation of ≥2 mm, thus demon-
strating the advantage of 3D fl uoroscopy-based navigation over the conventional 
technique. 

 In a meta-analysis assessing pedicle screw placement accuracy, 1,089 cervical 
pedicle screws placed without the use of navigation were compared to 114 placed 
with the use of image guidance. The application of a navigation system increased 
the median accuracy from 93.3 % (range, 71–100 %) to 99.4 % (range, 98.8–
100 %) [ 26 ]. 

 For posterior stabilization of atlantoaxial instabilities the method of transarticu-
lar C1–2 screw fi xation as described by Magerl or the C1 lateral mass C2 pedicle or 
isthmic screw stabilization as described by Goel and Harms are widely used as 
standard. However, during these procedures especially when using the transarticu-
lar technique, the vertebral artery is at signifi cant risk for injuries. Approximately 
20 % of cases are not amendable to transarticular screw fi xation due to a high riding 
vertebral artery in C2 [ 39 ]. Therefore, navigational guidance can signifi cantly 
increase the safety of these procedures. Acosta et al. retrospectively reviewed a 
series of C1–2 transarticular instrumentation using image guidance and reported a 
92 % rate (33 of 36 screws) of well positioned screws at which 8 of 33 screws could 
not have been safely placed without image guidance [ 2 ]. Three of 36 screws missed 
the lateral mass of C1. 

 In another retrospective series of 60 patients all 109 implanted transarticular 
screws were evaluated at correctly placed without any neuronal or vascular injury 
[ 21 ]. Using the C1 lateral mass C2 pedicle screw technique, the conventional fl uo-
roscopy guidance was compared to 3D fl uoroscopy image guidance in another 
series [ 70 ]. The authors reported 95.8 % versus 83.3 % of correct screw positions in 
the navigated versus the conventional group, respectively. In both groups no neuro-
nal or vascular complications occurred. 

 Since different methods for spinal navigation exists the question of which 
method provides the highest precision and accuracy arises. Few studies assessed the 
difference between the navigational options of CT-based navigation, 2D fl uoros-
copy navigation, and 3D fl uoroscopy navigation. Therefore, a recent meta-analysis 
assessed available studies on pedicle screw insertion techniques with navigation for 
the accuracy with different navigation methods [ 58 ]. From 35 clinical studies and 
6,063 screws, the median accuracy for CT navigation was 90.76 % compared to 
85.48 and 97.16 % with the use of 2D or 3D fl uoroscopy navigation, respectively. 
When analyzing for specifi c spinal levels the accuracy of 2D fl uoroscopy-based 
navigation was comparable to CT-based navigation for the lumbar spine while 
CT-based navigation showed a signifi cant advantage in the thoracic spine. Due to 
the small numbers of publications related to 3D-based navigation a further analysis 
with respect to certain spinal levels was not performed by the authors. However, the 
overall accuracy of 3D fl uoroscopy-based navigation was superior to CT-based 
navigation.  

F. Ringel et al.



11

   Functional Outcome of Navigated Pedicle Screw Implantation 

 Though the accuracy of pedicle screws in the cervical, thoracic, and lumbar spine is 
increased by the application of navigation, the question arises whether this increase 
in accuracy translates into a clinical benefi t for the patient with respect to outcome. 
A meta-analysis assessed 23 studies regarding avoidance of neurological complica-
tions, improved pain relief, improved fusion rates, and better health outcome by the 
use of navigation [ 64 ]. While 93.3 % of the implanted screws were placed accu-
rately with navigational assistance 84.7 % of the analyzed non-navigated screws 
were accurate resembling an increased accuracy by navigation. No reported cases 
of neurological deterioration were found in the navigated patients but 2.3 % of the 
non-navigated patients revealed neurological complications, however, this differ-
ence did not reach a statistical signifi cant level. Fusion rates, pain relief and health 
outcome data were too sparse to be assessed in a reasonable manner. Therefore, to 
present the proof of a clinical benefi t for the patient by the use of navigation is miss-
ing. But, since the overall incidence of neurological complications and screw revi-
sions is low, the lack of evidence for a clinical benefi t must be interpreted as caused 
by the too low number of patients included in comparative studies assessing clinical 
outcomes, so far. Since accuracy is increasing, the number of complications, sec-
ondary screw failures, and revision rates must be expected to decrease which should 
be proven by further studies assessing patient outcome as well, beyond pure 
imaging- based accuracy assessments.   

   Other Navigated Spinal Procedures 

 Though the feasibility and advantage of navigation is well-established for posterior 
spinal instrumentation, only few studies assessed the role for navigation for other 
spinal procedures especially anterior procedures. Anterior transnasal or transoral 
odontoidectomies with the assistance of CT-based navigation were performed in two 
series of three patients each reporting a good accuracy and reduced radiation expo-
sure by navigation [ 11 ,  63 ]. Furthermore, concerning the cervical spine, Hsu et al. 
described a case of anterior image-guided resection of a cervical chordoma [ 15 ]. 
Most other reports on anterior navigated spinal surgery describe procedures of the 
thoracic spine [ 3 ,  4 ,  7 ,  18 ,  23 ,  36 ,  53 ,  62 ] while three cadaver studies evaluated the 
use of navigation for lumbar artifi cial disc replacement [ 19 ,  45 ,  55 ]. Following a 
cadaver feasibility study Assaker et al. performed a navigated anterior thoracoscopic 
procedure for a thoracic disc herniation in a patient [ 3 ,  4 ]. Johnson et al. reported on 
their experience in a series of 16 patients undergoing thoracoscopic image-guided 
discectomies and concluded a high accuracy, effi ciency, and safety of the procedure. 
Vaccaro at al. reported an increased accuracy of anterior thoracic screw placement 
by the use of navigation in a cadaveric study [ 62 ]. Further studies assessed naviga-
tion for thoracic ossifi cation of the posterior longitudinal ligament [ 53 ], Potts dis-
ease [ 7 ], thoracolumbar corpectomies [ 36 ], and costotransversectomies for thoracic 
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disc herniations in fi ve cases [ 23 ]. Overall, navigation for anterior procedures of the 
spine is still evolving. Current problems include the fi xation of the navigational 
reference array and registration of the navigation dataset to the patients’ anatomy.  

   Radiation Exposure 

 During conventional fl uoroscopy-assisted spinal instrumentations, the surgical staff 
and the operated patient are exposed to a signifi cant amount of radiation, which is 
usually increased when using minimally invasive techniques. Especially for the 
operating personnel in active spine units this can result in a signifi cant yearly dose 
of radiation. Several phantom studies assessed the effect of spinal navigation on 
patient and surgeon exposure [ 22 ,  44 ,  54 ,  56 ] while only few studies evaluated this 
topic during surgical procedures. Gebhard et al. [ 10 ] quantifi ed and compared the 
intraoperative radiation dose to the patient using conventional fl uoroscopy assis-
tance and different types of navigation, i.e., CT-based navigation, 2D fl uoroscopy- 
based navigation, and 3D fl uoroscopy-based navigation for the insertion of pedicle 
screws. The authors reported a duration of exposure and dose of 177 s and 1,091 mGy 
for the standard approach, 75 s and 432 mGy when using CT-based navigation, 66 s 
and 664 mGy with the assistance of c-arm-based navigation, and 40 s and 152 mGy 
with 3D intraoperative fl uoroscopy-based navigation. Thus, the duration and dose of 
radiation to the patient is signifi cantly reduced by the application of navigational 
techniques, however, the exposure of the surgeon is sparsely evaluated, so far. The 
radiation exposure of the operating room personnel during the application of intra-
operative O-arm imaging is considerably low when adhered to the necessary safety 
distance as reported lately [ 1 ]. In our own series of patients the radiation exposure of 
the patient and surgeon was assessed in a setting using intraoperative 3D fl uoroscopy- 
based navigation for thoracolumbar instrumentation in comparison to the conven-
tional fl uoroscopy-assisted approach (unpublished results). The radiation dose at the 
level of the eye, chest, and dominant forearm of the surgeon was detected with digi-
tal dosimetry. By the use of navigation the exposure of the eye, chest, and forearm 
of the surgeon was reduced 4.6, 3.8, and 3.4 times, respectively, while the cumula-
tive dose for the patient was reduced 2.7 times with the use of navigation. Thereby, 
surgeon and patient radiation exposure are signifi cantly reduced by the application 
of navigation during otherwise radiation intensive spinal instrumentation.  

   Drawbacks of Spinal Navigation 

 Apart from the well-proven advantages of spinal navigation its use is associated 
with certain drawbacks, which the operating surgeon has to be aware of. It is impor-
tant to bear in mind that the imaging information provided by spinal navigation 
represents a virtual reality and the relation to the anatomic reality needs repetitive 
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verifi cation, i.e., repeated checks for the registration accuracy for each vertebral 
level operated on. With increasing distance from the reference array attached to a 
spinous process, the likelihood of a decreasing accuracy increase, which could 
make additional registrations necessary. Especially if the imaging position of the 
patient is not the position during surgery the change of intervertebral relations could 
result in inaccuracies. Furthermore, any minor displacement of the reference array 
will result in systematic inaccuracies. Moreover, the implementation of spinal navi-
gation is associated with a steep yet present learning curve changing the workfl ow 
of spinal instrumentation, which is a change of habits especially for experienced 
spine surgeons. Though spinal navigation provides the surgeon with a detailed view 
of otherwise hidden 3-dimensional anatomy, the appraisal of plausibility still 
requires a detailed knowledge of surgical spinal anatomy especially of pedicle 
screw entrance points and angulation of trajectories for continuous reconciliation of 
navigation information and patient anatomy. 

 Since the initial implementation of spinal navigation is associated with a learn-
ing curve and changed workfl ow during spinal instrumentation it seems not advis-
able to reserve it to selected cases. Only the consequent use of image guidance for 
all spinal cases including pedicle screw instrumentation can accelerate the work-
fl ow, increase the experience, and thus exploit the advantages of spinal navigation 
for challenging instrumentations.   

   Spinal Robotics 

 The spine as a rigid bony construct seems to be an appealing fi eld to be exploited by 
robotic technologies. At present two commercially available systems, the DaVinci 
(originally developed for minimally invasive endoscopic procedures) and the 
SpineAssist (developed for spinal instrumentation) have been assessed for spinal 
procedures. Additionally, few groups adjusted experimental robotic systems for the 
use in spine surgery [ 25 ,  27 ,  37 ]. The two commercially available systems follow a 
completely different philosophy. While the DaVinci translates the surgeon’s move-
ments and manipulations to the surgical fi eld via robotic arms without any form of 
image guidance, the SpineAssist is an image-guidance system leading the surgeon 
to preplanned trajectories for spinal instrumentations leaving the surgical steps in 
the hand of the surgeon. 

   DaVinci 

 The DaVinci (Intuitive Surgical Inc., Sunnyvale, USA) is an FDA- and CE-approved 
robotic system which consists of a four-armed robot positioned close to the patient 
and a console where the surgeon sits, manipulating the robot. The surgeon views a 
3D high-resolution image of the surgical fi eld at the console. He manipulates 
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control handles at the console and movements of these handles are translated to the 
surgical fi eld by the robotic arms. The system has been broadly used in abdominal 
and thoracic surgery in urology, gynecology, and general surgery for endoscopic 
minimally invasive procedures. It is not associated with any form of image guidance 
and its major aim is the translation of the surgeons movements to the surgical fi eld 
fi ltered for physiological tremor and scaled to improve surgical precision. 

 However, limitations of the system for spinal surgery are the lack of bone-cutting 
instruments and suffi cient force to perform curetting and rongeuring actions. 
Nevertheless, a number of experimental and clinical case studies assessed DaVinci 
with regard to its applicability in spinal surgery. 

 Using a porcine model ALIF procedures using DaVinci were performed via a 
retroperitoneal or transperitoneal approach and general feasibility of the technique 
was shown using one animal for each study [ 24 ,  68 ]. Furthermore, it was tested for 
posterior procedures including laminotomy, laminectomy, and dural suturing in 
another porcine model using one animal [ 41 ]. However, larger experimental studies 
are pending at present. 

 Furthermore, in humans the robot was applied for a transoral odontoidectomy in 
a patient with basilar invagination and another study assessed this application in a 
cadaver experiment [ 29 ,  69 ]. Case reports describe its use for a retroperitoneal 
transdiaphragmatic laparoscopic resection of a thoracolumbar neurofi broma, a tho-
racoscopic resection of a paravertebral mediastinal neurogenic tumor, and a trans-
peritoneal resection of a lumbosacral tumor [ 32 ,  49 ,  67 ]. 

 Thus, so far, the data on the applicability of DaVinci in spinal surgery is sparse 
and its capability to perform instrumented spinal procedures remains questionable. 
Further studies assessing the feasibility of DaVinci for spinal procedures are miss-
ing and its application is purely experimental at present stage.  

   SpineAssist 

 SpineAssist is an FDA- and CE-approved miniature robot for the posterior thoracic 
and lumbar instrumentation. It consists of a miniature robot, which has the size of a 
soda can and a workstation for control of the robots motion. The robot has a hexa-
pod design featuring six degrees of freedom. It serves as a positioning aid to pre-
planned trajectories and therefore has to been seen as an advancement of spinal 
navigation guiding the surgeon to preplanned trajectories. While during standard 
navigation instruments have to be aligned to preplanned trajectories in a free-hand 
manner demanding complex hand-eye coordination, SpineAssist guides the sur-
geons to these trajectories using the robotic technique. 

 Prior to surgery a CT scan of the respective spinal segments is necessary and 
implant trajectories have to be planned which is possible at an offi ce desktop com-
puter. The imaging dataset including the planned trajectories is then transferred to the 
SpineAssist computer workstation. During surgery the robot per se is attached to the 
spine, i.e., it is spine mounted. Different ways of attachment are available including 
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(1) attachment of the robot by a clamp to a spinous process and stabilization by 
K-wires in an adjacent spinous processes, (2) attachment of a hover bar on which the 
robot is mounted to a spinous process and the iliac crest bilaterally, or (3) attachment 
of the hover bar to a spinous process and the OR table, the so-called bed mount. 

 The spinal anatomy is registered to preoperative CT images by CT-fl uoro match-
ing using the intraoperative C-arm. After registration the robot is attached to the 
spine and guides the surgeon to the pertinent preplanned trajectories. Through a 
drill guide positioned by the robotic arm, channels for spinal implants, primarily 
pedicle screws, can be drilled by the surgeon, i.e., the actual surgical act remains in 
the hands of the surgeon. 

 The accuracy of the robotic system per se has been shown in several in vitro 
experiments [ 30 ,  59 ,  65 ]. 

 In an initial clinical series of 15 patients reported from Israel, the SpineAssist 
worked properly in six cases were lumbar pedicle screw positions as controlled by 
postoperative CT scans were accurate and as planned. Nine out of 15 cases were 
identifi ed were the system did not work as smoothly as expected. Problems as insuf-
fi cient CT-fl uoro matching, dislocation of the tool guide by soft tissue pressure or 
surgeon’s pressure on the tool guide, or failure of adjustment of the robotic trajec-
tory to the preplanned trajectory were encountered [ 5 ]. However, those problems 
were majorly overcome and further successful case series were reported. Sukovich 
et al. described 14 cases of lumbar and sacral pedicle screw insertion, out of which 
93 % of cases were successful and 96 % of implanted screws were within 1 mm of 
their planned trajectories [ 57 ]. In 2009 Pechlivanis et al. reported on 31 patients 
undergoing a PLIF procedure with robot-assisted percutaneous pedicle screw inser-
tion of 133 screws [ 40 ]. Screw position was evaluated according to the Gertzbein 
Robbins classifi cation and 98.5 and 91 % screws showed a deviation of <2 mm of 
the ideal trajectory in the pedicle in axial and longitudinal plane, respectively. A 
multicenter retrospective study of robotically inserted thoracic, lumbar, and sacral 
pedicle screws and guide wires assessed 3,271 trajectories by intraoperative fl uo-
roscopy and 646 by postoperative CT scan for its accuracy [ 8 ]. The study summa-
ries the experiences with the use of SpineAssist at 14 different centers in the United 
States, Germany, and Israel between 2005 and 2009. Forty-nine percent of the 
reported cases were performed in a percutaneous fashion. 83.6 % of all planned 
screw/guide wire insertions were successfully executed under robotic guidance, 
while 16.4 % had to be performed manually due to registration failures, robot reach-
ability errors, device failures, mechanical movements, and abortion by the surgeon. 
Of 3,271 SpineAssist-guided implantations controlled by intraoperative fl uoros-
copy, 98 % were assessed as acceptable. Of 646 screws evaluated by postoperative 
CT scans and compared to planned trajectories mean deviation of the screw position 
from the preoperative plan was 1.2 ± 1.49 and 1.1 ± 1.15 mm in axial and sagittal 
plane, respectively. 98.3 % of pedicle screw was accurate as defi ned by Gertzbein 
Robbins criteria, i.e., showed a critical violation of below 2 mm. Kantelhardt et al. 
retrospectively compared a series of robotic-guided percutaneous or open thoracic, 
lumbar, and sacral pedicle screw insertions to a historical group of open conven-
tional screw implantations [ 20 ]. 94.5 % of 250 robotically inserted screws 
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compared to 91.5 % of 286 conventionally implanted screws were accurate as 
assessed by postoperative CT imaging. There was no difference between the accu-
racy of robotically assisted open or percutaneous screw implantations. The intraop-
erative X-ray exposure per screw was reduced from 77 s using the conventional 
technique to 34 s in robot-assisted cases. 

 Therefore, in non-controlled case series the accuracy of SpineAssist seemed to 
be superior to conventional fl uoroscopy-guided pedicle screw insertion in thoracic, 
lumbar, and sacral spine. 

 However, a recently published prospective randomized single center trial- 
assessed lumbar and sacral pedicle screw insertion accuracy by SpineAssist in com-
parison to the traditional free-hand fl uoroscopy-guided technique [ 48 ]. In this series 
60 patients requiring mono- or bisegmental lumbar pedicle screw instrumentation 
were randomized to conventional screw implantation versus SpineAssist-guided 
instrumentation. Screw accuracy was assessed by postoperative CT scans and clas-
sifi ed according to Gertzbein Robbins. Ninety-three percent of conventional 
implanted versus 85 % of robot-assisted screws were classifi ed as Gertzbein 
Robbins grade A or B by an independent blinded radiologist and thus as accurate 
screws. The overall surgical time was not different between groups as well as the 
radiation exposure, which was 1.9 min for the whole case. But, for robot-assisted 
cases a preoperative CT scan is necessary and trajectory planning demands addi-
tional time. Therefore, though SpineAssist showed a superior accuracy in several 
patient series this advantage could not be proven in a prospective randomized trial. 

 Though the overall accuracy of the robot per se seems to be not debatable, sev-
eral aspects related to the robot-spine interface could contribute to these accuracy 
problems: (1) the attachment of the robot to the spine might not be stable enough 
and minor displacements could lead to inaccuracies and (2) soft tissue pressure to 
the drilling canula could lead to displacements, therefore, the anchorage of the can-
ula to the screw entry point needs further refi nement to increase accuracy. 

 Apart from its main purpose – pedicle screw insertion – SpineAssist is promoted 
for the use in GO-LIF (guided oblique lumbar interbody fusion), a fusion technique 
described by Grob in 1996 [ 12 ] which has not received great attention in spine sur-
gery since then. GO-LIF applies bilateral transpedicular-transdiscal screws for lum-
bar stabilization together with an interbody cage. SpineAssist provides the planning 
tools for screw trajectories and the intervertebral cage for GO-LIF procedures. The 
protocol for a European multicenter trial to assess the safety and effi cacy of GO-LIF 
using robot-assisted screw implantations has been published; however, results of 
this study are pending at present [ 6 ]. 

 In summary, SpineAssist is a miniature spine mounted robot for surgeons’ guid-
ance to preplanned trajectories. Several case series could report good accuracy for 
thoracic, lumbar, and sacral pedicle screw insertion while a prospective randomized 
trial failed to reveal an advantage of SpineAssist over the conventional free-hand 
fl uoroscopy-guided technique. Certain    refi nements of the robotic system with 
regard to spine attachment and drill canula stability might enhance the system and 
improve accuracy over conventional techniques. However, these refi nements as well 
as GO-LIF results need to be awaited before further judgment of SpineAssist.   
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   Intraoperative 3D Imaging 

 Since decades 2D fl uoroscopy is used for intraoperative imaging during spinal instru-
mentation guiding implant positioning by ap and lateral fl uoroscopy. For fi nal control 
of correct implant positions, a postoperative CT is performed at many institutions 
since intraoperative 2D fl uoroscopy does not allow for a reliable evaluation of implant 
position. If postoperative CT imaging would show an inacceptable misplaced screw, a 
secondary surgery for screw repositioning was necessary. In cases where CT-based 
navigation was used, an additional preoperative CT scan was necessary. 

 The option of intraoperative 3-dimensional imaging can change this workfl ow 
signifi cantly. Different options of intraoperative 3D imaging are available which are 
intraoperative 3D fl uoroscopy or intraoperative computerized tomography, while 
intraoperative MR imaging has a minor role in spinal surgery. Intraoperative 3D fl uo-
roscopy or computerized tomography allows for image acquisition necessary for 
navigation with the patient in its fi nal position for surgery, abolishing the problem of 
intervertebral relation changes which is encountered if patient position during preop-
erative imaging (supine) is not the same as during surgery with navigation (prone). 
This leads to an increased multilevel accuracy making multiple registrations unneces-
sary. Furthermore, intraoperative imaging devices are usually tracked by the naviga-
tion system and automatically registered which makes a time- consuming registration 
by paired point matching or surface matching expendable, thereby, allowing mini-
mally invasive procedures without wide exposure of the spinal surface anatomy. 

 After spinal instrumentation another intraoperative 3D scan allows for control of 
implant position and the option of immediate implant correction obviating second-
ary surgery due to implant misplacement. The experiences with intraoperative CT 
imaging and 3D fl uoroscopy have been summarized by several authors [ 16 ,  17 ,  35 , 
 50 – 52 ,  61 ,  71 ]. 

 While intraoperative 3D fl uoroscopy systems allow for a limited extent of imaging 
volume which has, depending on the system used, a maximal cubic volume of 15 cm 
side length, intraoperative CT allows for an unlimited imaging volume at the cost of a 
higher logistic OR complexity and lower fl exibility, however, increased image quality. 

 A recent development of intraoperative imaging is robotic multi-axis 2D or 3D fl uo-
roscopy. With this technique the c-arm is controlled by a robotic arm, which automati-
cally adjusts to changed patient positions caused by changes of the operating table. The 
system provides 3D images by a fast robot-guided scan around the isocenter. First 
experiences with this system in spinal surgery have been reported recently [ 42 ].  

   Conclusion 

 While the benefi ts of spinal navigation with regard to instrumentation accuracy have 
been consistently shown for pedicle screw placement in the cervical, thoracic, and 
lumbar spine, its feasibility for anterior spinal procedures is still evolving and need 
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further assessment. Spinal robotics seems a promising advancement of non- robotic 
image guidance, however, some aspects of the mostly promoted system needs fur-
ther refi nement. Intraoperative 3D imaging in combination with spinal navigation 
can refi ne the workfl ow of spinal procedures.     
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    Abstract     New instrumentation techniques have made any correction of the spinal 
architecture possible. Sagittal balance has been described as an important parameter 
for assessing spinal deformity in the early 1970s, but over the last decade its impor-
tance has grown with the published results in terms of overall quality of life and 
fusion rate. Up until now, most of the studies have concentrated on spinal deformity 
surgery, but its use in the daily neurosurgery practice remains uncertain and may 
warrant further studies.  
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       Introduction 

    With the advent of new instrumentation devices and instrumentation techniques over 
the past decades, any correction of the spinal architecture has been made possible. For 
quite a while, spine surgeons, especially those dealing with scoliosis, have focused on 
the correction of the coronal balance. Although some authors have advocated in the 
early 1970s the need to assess the sagittal balance in order to achieve an adequate cor-
rection of spinal deformity, the lack of adequate implants made the sagittal correction 
diffi cult. With the experience of long-term follow-up of the coronal balance correction 
through Harrington rods and the bad functional outcomes of the posttraumatic kypho-
sis, the correction of sagittal balance reappeared to be a hot topic in the past decade. Its 
importance has grown with the published results in terms of overall quality of life and 
fusion rate. There is actually also growing evidence that it is not only important to 
consider the spinal and pelvic parameters in spinal deformity but also in any spinal 
fusion. Undoing so might lead to unsuccessful outcomes including pain, adjacent seg-
ment degeneration, and pseudarthrosis even in the case of short instrumentations.  

   Imaging 

 The external aspect of the body and spine shape is unfortunately a bad predictor of the 
spine and pelvis morphology. Except for some seldom and low-radiating technique pre-
ferred in pediatric scoliosis (Moiré bands) that are still used for the bracing follow-up of 
scoliosis, X-ray is the gold standard for the evaluation of the spine morphology and 
pelvis parameters. The technique is called conventional of digitalized teleradiography 
and is a widely used technique. Morvan et al. [ 1 ] proposed a standardized way for imag-
ing of the sagittal spinal balance. The distance between the subject and the 30*90 cm 
vertical cassette should be more than 2.5 m. An attenuation fi lter should be used over the 
cervicothoracic area. Mean parameters are 90 kV/100 mA for the lateral view and 
70 kV/160 mA for the frontal view, which means a quite high X-Ray dose. In order to 
be able to evaluate the patient balance and to decrease the artifacts due to the projection 
of the humerus on the spine in the lateral view without modifying the spine shape, the 
following parameters for the evaluation of sagittal balance are commonly recommended: 
the patient is asked to stand in an erect position, looking horizontally, both feet on the 
same alignment, 20–25 cm between the 2 ft, upper arm fi ngers tip on the clavicle. This 
technique is preferred over the technique where arms rest on a vertical support because 
the height of the support can infl uence the overall patient’s sagittal balance. In order to 
be able to assess the bending compensatory mechanism of the knees, we must visualize 
the patient from skull base to the 10 cm upper part of the femurs. The conventional 
radiographs can be digitalized and analyzed with some dedicated softwares [ 2 ,  3 ]. 
Several constructors propose digital systems where the X-ray tube and the receptor 
translate vertically. The patient positioning is in both cases the same. 

 Nobel prize winner in 1992, G. Charpak, developed a high sensitive xenon par-
ticle detector. In the EOS ®  system (Biospace, Paris, France) two of these detectors 
are mounted on a C-arm and scan all or part of the patient’s body. This allows for 
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frontal and lateral X-rays of a patient to be carried out simultaneously. Two variable 
gain detectors detect line by line an extremely high contrast digital radiograph 
(>30,000 gray levels), while the dose administered to the patient is 80–90 % smaller 
as the conventional imaging. Moreover, due to the simultaneous acquisition of sag-
ittal and frontal view, it is possible with appropriate software and a bone morphing 
technique to construct a 3D bone envelope weight-bearing image of the spine, pel-
vis, and lower limb. Axial plane is particularly useful to visualize the rotational 
abnormalities. These features, and particularly the low radiation dose, the absence 
of parallax distortion, and the ability to assess a 3D imaging of the standing patient, 
represent a real progress in the imaging of the spine (Figs. 1  and  2 ).

       Parameters 

   Spinal Parameters 

 Many studies of sagittal balance of healthy and low back pain volunteers have been 
published in the past [ 4 – 8 ], and the authors have analyzed the standing X-Rays 
using the Cobb angles technique for the assessment of the lumbar lordosis (LL), 
thoracic kyphosis (TK), and cervical lordosis (CL). The spinal parameters in stand-
ing position are defi ned as follow:

•     Lumbar Lordosis  (LL): angle between L5 and T12  
•    Thoracic Kyphosis  (TK): angle between T12 and T1  
•    Cervical Lordosis  (CL): angle between T1 and C1  
•    Cobb Angle  (CA): angle between the most tilted endplates    

  Fig. 1    EOS system and principle of scanning acquisition       
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 Recently, the division of the spine into the three spine segments (cervical, tho-
racic, and lumbar) has been contested [ 9 ]. Roussouly and Pinheiro-Franco [ 10 ] pro-
posed a functional segmentation of the spine curve in the sagittal plane, where the 

  Fig. 2    Example of EOS 
whole body images       
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limits of the curves are defi ned by the point where the orientation of the curves 
changes. As a consequence, there can be short and long lumbar lordosis, when the 
lumbar curvature extends to the lower thoracic area for instance. The contribution 
of each lumbar vertebra increases progressively from L1 to S1, therefore 2/3 of the 
overall lordosis is shown in the lower lumbar spine L4–S1 [ 11 ,  12 ], which is a cru-
cial parameter to take into account when instrumenting the lumbar spine. 

 Numerous authors have considered the center of C7 as the crucial point of the 
global sagittal balance [ 5 ,  9 – 11 ,  13 ,  14 ], also because it can easily be seen on long 
sagittal X-rays.

•     C7 plumb line  (C7PL) is often defi ned as the horizontal distance between a verti-
cal line originating in the center of the C7 vertebral body with respect to the 
posterior-superior corner of S1 [ 5 ,  13 – 15 ]. Some authors refer to it as the hori-
zontal distance between C7PL and the center of the femoral heads (negative 
value if anterior to the femoral heads and positive value behind). Kuntz et al. [ 15 ] 
have noted in their review of the literature that the C7PL parameter was a stable, 
reliable index of the sagittal balance, being maintained in narrow ranges for 
alignment of the spine over the pelvis and femoral heads. The vertical line origi-
nating in the center of C7, also called  sagittal vertical axis  (SVA) and often 
misnamed as the C7PL, describes the cumulative balance of the sagittal curves 
of the spine. In a population with balanced spine the C7PL is generally located 
at the level or behind the posterior edge of the sacral endplate [ 16 ]. Instead of 
measuring the linear distance and in order to reduce magnifi cation effects 
through imaging, some authors [ 11 ,  17 ,  18 ] advice to use the spinosacral angle 
or ratio parameters: C7PL- sacrofemoral distance  (SFD) ratio. This ratio is equal 
to zero when the sagittal vertical axis is exactly on the posterior corner of the 
sacrum, one when the sagittal vertical axis projects exactly on the bicoxofemoral 
axis, it is negative when the axis is posterior to the sacrum, and more than one 
when the axis is anterior to the femoral heads. In the normal population the value 
of this ratio is −0.9+/−1 [ 11 ]. Bridwell [ 19 ] defi nes normal sagittal balance, 
which he defi nes as the C7PL within 6 cm of the posterior-superior corner of the 
S1 body.  

•    Spinosacral angle  (SSA) is an angle between the center of C7 to the center of the 
sacral plate and the sacral plate line itself. It quantifi es the kyphosis of the whole 
spine. In the normal population the mean value of SSA is 135° +/−8 [ 16 ].  

•    Gravity line  (GL): the location of the body’s center of gravity with respect of the 
sagittal spine morphology is considered an important determinant of spinal sta-
bility and balance. Historically, authors [ 5 ,  13 ,  20 ,  21 ] believed that the C7PL 
was at the same place in the sagittal plane as a line passing through the patient’s 
center of gravity. Gangnet et al. [ 22 ] and Roussouly    et al. [ 9 ] assessed the center 
of gravity line by measuring the location of the sum of the ground reactive forces. 
They showed that the C7PL and the GL are not located in the same position. 
Since then, assessment of the gravity line (GL) has gained interest among spine 
surgeons in the evaluation of the global balance in normal subjects [ 16 ,  22 – 24 ] 
and in patients with spinal deformity [ 25 – 28 ].  
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•    C7PL vs GL?  Although C7PL and GL are parameters of sagittal balance, they 
measure different aspects of the spinal balance. C7PL is a good parameter for the 
spinal balance whereas GL better assesses the global balance. On a technical 
point of view, GL needs dedicated devices, but on the other hand provides infor-
mation regarding the mechanical stresses sustained by the spine and does not 
require full spine radiographs.     

   Pelvic Parameters 

 Jackson et al. [ 6 ,  7 ] analyzed the pelvic balance (alignment of the sacropelvis over the 
hips) and characterized the pelvis with the pelvic radius (distance between the center 
of the hip axis and the S1 reference point) and the sacral inclination (angle between a 
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  Fig. 3    Sagittal pelvic parameters based on 
standing radiograph. The pelvic incidence 
( PI ) is constant for each person. Sacral slope 
( SS ) and pelvic tilt ( PT ) are variable 
dependent on the version of the pelvis about 
the hip axis ( O ).  VRL  vertical reference line, 
 HRL  horizontal reference line (Reproduced 
with permission from O’Brien et al. [ 93 ])       
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vertical line through the posterior-superior corner of S1 and a line drawn parallel 
along the pack of the proximal sacrum). While few authors still use this technique for 
assessing the sagittal balance [ 29 ], most of the literature is based on the pelvic param-
eters proposed by During et al. [ 30 ] and more recently by Duval- Beaupère et al. [ 31 ] 
and Legaye et al. [ 32 ]: the pelvic incidence (PI), pelvic tilt (PT), and sacral slope (SS) 
angles are used to describe the shape and orientation of the pelvis. 

 These parameters remain actually the most widely accepted and used parame-
ters. They were described by Legaye et al. [ 32 ] like this (see also Fig.  3 ):

    1.    The  pelvic incidence  (PI), defi ned as the angle between the line perpendicular 
to the sacral plate at its midpoint and the line connecting this point to the axis 
of the femoral heads. It is an anatomical parameter, unique to each individual, 
and independent of the spatial orientation of the pelvis. The anatomical com-
ponents involved in the make-up of this parameter are the fi rst three sacral 
vertebrae, the sacroiliac joints, and the posterior segment of the iliac bone. 
This parameter could be considered as a constant because it is an anatomical 
one, independent of the position of the pelvis, the mobility of sacroiliac joint 
being considered negligible, and independent of the age once growth is com-
pleted [ 33 ].   

   2.    The  sacral slope  (SS), defi ned as the angle between the superior plate of S1 and 
a horizontal line. A vertical sacrum is described by a low value, a horizontal 
sacrum by a high value.   

   3.     Pelvic tilt  (PT), defi ned as the angle between the line connecting the midpoint of 
the sacral plate to the femoral heads axis and the vertical.   

   4.    The overhang of S1 with regard to the femoral heads commonly also called the 
 sacrofemoral distance  (SFD) defi ned as the distance between the bicoxofemoral 
axis and the projection to this level of the midpoint of the sacral plate. It is 
expressed in millimeters. A point posterior to the bicoxofemoral axis is consid-
ered positive, a point anterior to this axis is considered negative.    

   These last three parameters refl ect the sagittal orientation of the pelvis. 
 A geometric construction using the complementary angles reveals that

  PI = PT + SS.    

  Studies have shown that these parameters have very low intra- and interob-
server variations [ 34 ]. Both the spinal and the pelvic parameters are highly inter-
dependent and it is now well-established that there is a strong correlation between 
the PI and SS and the sagittal curves, especially the LL [ 30 ,  32 ,  35 ]. In the analy-
sis of standing lateral X-rays of a cohort of 160 asymptomatic young adult volun-
teers, Berthonnaud et al. [ 36 ] have shown that they can be considered as an open 
linear chain linking the head to the pelvis where the shape and orientation of each 
successive anatomic segment are closely related and infl uence the adjacent seg-
ment. In fact, any change in one of these parameters induces a change in the others 
in order to ensure an economical sagittal balance [ 31 ]. The only fi xed parameter 
is the pelvic incidence.  
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   Normal Values 

 Normal values of sacropelvic parameters have been published for pediatric [ 37 ], 
adult [ 2 ,  15 ,  36 ,  38 ,  39 ], and elderly subjects [ 20 ]. Boulay et al. [ 38 ] and Janssen 
et al. [ 39 ] did not fi nd any signifi cant difference in sacral slope (SS), pelvic tilt (PT), 
or pelvic incidence (PI) when comparing asymptomatic adult females with males. 
Hammerberg and Wood [ 20 ] evaluated 50 asymptomatic subjects aged 70–85 years 
and did not fi nd any relationship between increasing age and sacropelvic parameters 
of balance and morphology, but they suggest that the mean PT and PI in their study 
were higher than those observed previously in younger adult populations. Mac- 
Thiong et al. [ 33 ] study presents the largest cohort of asymptomatic adults without 
spinal pathology in the literature dedicated to the evaluation of sagittal sacropelvic 
morphology and balance. Their study specifi cally describes the age- and sex-related 
changes in sacropelvic morphology and balance in 709 asymptomatic adults with-
out spinal pathology. In normal adults, PI is expected to fall between 48° and 55°, 
PT between 12° and 18°, and SS between 36° and 42. Values outside those ranges 
could potentially predispose to the development of spinal pathology (Table     1 ).

       Analysis and Interpretation of the Pelvic Parameters and Values 

 The whole pelvis can rotate around the femoral heads, increasing PT when it 
rotates backwards (retroversion) and decreasing in anteversion. Both PT and SS 
are position parameters and the rotation of the pelvis around the femoral heads 

   Table 1    Defi nitions of spinopelvic sagittal parameters   

 Parameter  Defi nition 
 Values in asymptom-
atic adults (°) a  

 Pelvic incidence 
(PI) b  

 Angle between the line perpendicular to the S1 end 
plate at its midpoint and the line connecting this 
point to the middle axis of the femoral heads 

 48–55 

 Sacral slope (SS)  Angle between the line connecting the superior end 
plate of S1 and a horizontal line 

 36–42 

 Pelvic tilt (PT)  Angle between the line connecting the midpoint of 
the sacral plate to the middle axis of femoral 
heads and a vertical line 

 12–18 

 Lumbar lordosis 
(LL) 

 Angle from the superior end plate of L1 to the 
caudal L5 end plate 

 43–61 

 Thoracic kyphosis 
(TK) 

 Angle from the superior end plate of T4 to the 
inferior end plate of T12 

 41–48 

 C7 plumb line  Distance from a vertical line drawn from the center 
of the C7 vertebral body to the inferior-posterior 
comer of the body of L5 

 <3 cm 

   a Values are means from studies including adult subject aged 20 to  85  years who did not have any 
symptoms or history suggestive of spinal disease 
  b Studies evaluating PI in men and women have generally not found a difference in the mean value   
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axis is one of the best mechanism of regulation of the sagittal balance [ 41 ]. Mac-
Thiong et al. [ 42 ] suggested in the analysis of the large cohort that the non-
pathological upper limit of PT would be ideally <50 % of PI. Since SS cannot be 
negative in the erect position, the retroversion is limited by the value of PI. Pelvic    
incidence is mentioned above as a fi xed and determined parameter. The lower PI 
values are around 30°, which implies a vertical position of the pelvis and a short 
pelvic ring with femoral heads just below the sacral plate [ 41 ]. Patients with a 
low PI have therefore a small capacity to compensate their sagittal imbalance 
through pelvis retroversion and are more prone to spinal pathologies. On the 
other hand, patients with high PI need a big LL to be balanced and are more 
prone to post-fusion problems related to an insuffi cient lordosis in the instru-
mented segments. 

 The pelvic orientation will affect the entire sagittal profi le of the spine. Stagnara 
et al. [ 17 ] demonstrated the strong relation between the lumbar lordosis and the tilt 
of the sacral slope. More recently, Duval-Beaupère et al. [ 31 ] showed that lumbar 
lordosis to be proportional to sacral slope. Global spinal balance involves harmoni-
zation with overlying lumbar lordosis and thoracic kyphosis [ 36 ]. The TK tends to 
increase with age and shifts the C7PL anteriorly [ 24 ] and leads to a small retrover-
sion increasing PT to keep the body center of gravity line is position slightly behind 
the femoral heads [ 16 ,  24 ].  

   Sagittal Balance and Quality of Life 

 Many studies [ 19 ,  43 – 48 ] have shown that spinal sagittal balance is an important 
determinate of quality of life. In particular, patients with fi xed sagittal imbalance 
tend to expend more energy in gait and standing position and have pain. Glassman 
et al. [ 44 ] have shown that positive sagittal balance (defi ned in the study as C7PL 
anterior to the posterior-superior corner of S1) in the adult patient with a spinal 
deformity negatively impacts quality of life. They compared multiple radiographic 
measures in 298 patients and evaluated their health related quality of life (HRQOL) 
with different scores: Scoliosis Research Society-29 Index, SF-12, and Oswestry 
Disability Index (ODI). They demonstrated that sagittal balance is the most impor-
tant and reliable radiographic predictor of clinical health status. Patients with posi-
tive sagittal imbalance reported worse self-assessment in pain, function, and 
self-image domains, whereas coronal imbalance correction is unlikely to result in a 
signifi cantly better clinical outcome. 

 In a review of 73 patients with adult scoliosis, Mac-Thoing et al. [ 47 ] confi rmed 
this. They measured the C7PL and assessed the GL with a device that calculated the 
center of pressure from the ground reaction forces during X-ray acquisition (Patent 
pending, FASK Biomechanics Laboratory, Minneapolis, MN). Their study con-
fi rmed that the sagittal spinal balance measured from the C7PL with respect to S1 
>6 cm was correlated with poor ODI scores (>34) and that sagittal GL >6 cm was 
also associated with higher risk of having a poor ODI.  
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   Role of Sagittal Balance in the Development and Treatment 
Strategies of Spinal Pathologies 

 The restoration of sagittal spinal balance has been directly related to improvement 
of pain and function after spine surgery [ 6 ,  44 ,  46 ,  49 ,  50 ]. Therefore, it is important 
for spine surgeons to realize that fusion of any mobile region of the spine limits the 
ability of the spine to adapt to any sagittal imbalance and may result in an increased 
risk of fi xed sagittal imbalance. Regardless of the disease process, pelvic retrover-
sion is a sign of unbalanced spinopelvic alignment and all attempts should be made 
to promote a LL consistent with patient’s PI [ 51 ,  52 ]. 

   Degenerative Disease 

 The analysis of sagittal balance appears to be an essential step in the management 
of lumbar degenerative diseases, especially when a fusion is planned [ 32 ,  36 ,  50 ,  53 , 
 54 ]. Several studies have addressed the sagittal parameters in the low back pain 
population [ 6 ,  53 ,  55 ,  56 ]. Their data suggest that patients with low back pain have 
a more proximal and smaller lordosis (LL 56.3° vs 60.9°), a vertical sacrum (SS 
47.2° vs 50.4°), and more hip extension. They present similar C7PL and TK as the 
control population, refl ecting the compensation mechanisms used to balance the 
spine. 

 Berrey et al. [ 57 ] evaluated the pelvic parameters in 85 patients with lumbar 
degenerative disease: disc herniation (DH), degenerative disc disease (DDD), and 
degenerative spondylolisthesis (DSPL) and compared their sagittal balance param-
eters with age-matched control asymptomatic patients. They showed that DH and 
DDD patients had a normal PI value; whereas patients with DSPL had a signifi -
cantly greater PI than the normal population. SS was signifi cantly diminished and 
PT increased for the three diseases. Concerning the spinal parameters, all three 
diseases presented signifi cantly less LL and an anterior translation of the C7PL. 
Only DH and DDD patients had less TK. A    fl at back with signifi cant reduction of 
both the LL and the TK therefore characterizes DH and DDD patients. These 
changes are both structural due to the loss of disc height and postural secondary to 
the research of an analgesic posture. The compensatory mechanism for the loss of 
LL is a retroversion of the pelvis [ 6 ]. Rajnic et al. [ 56 ] already proved this in patients 
with DH, showing a straight spine and a signifi cant decrease in the LL and the SS. 

 Aono et al. [ 58 ] confi rmed the role of an increase of PI in the development of 
DSPL in a 12-year prospective study, following 142 healthy perimenopausal 
women. The incidence of newly developed DSPL was 12.7 % and a multivariate 
analysis showed that high PI was an independent predictor of DSPL. This signifi -
cant increase of the PI in patients with DSPL tends to suggest that the shape of the 
pelvis is the main predisposing factor for DSPL and shows the impact of the sagittal 
profi le in pathogenesis of the degenerative spondylolisthesis. 
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   Compensatory Mechanisms 

 Recent studies [ 50 ,  54 ,  59 ,  60 ] have shown that it is important to assess the sagittal 
balance before planning surgery for lumbar degenerative pathologies. It is impor-
tant to recognize the different compensatory mechanisms in order not to underesti-
mate the surgical correction needed. Barrey et al. [ 18 ] reviewed the compensatory 
mechanisms of sagittal unbalance described in the literature. 

 In the spine area, the fi rst compensatory mechanism is the reduction of the tho-
racic kyphosis that limits the anterior translation of the axis of gravity. This leads to 
a fl at spine and is possible for younger patients with mobile spine and more mark-
edly in patients under 45 years old [ 56 ,  57 ]. As already mentioned above, low back 
pain patients tend to have less distal lordosis, a more vertical sacrum and a more 
proximal lumbar lordosis [ 6 ,  53 ]. This loss of lordosis is compensated by either 
multi- or unisegmental hyperextension predominantly at the upper lumbar spine. 
This mechanism is effi cient to place the vertical spinal axis posteriorly, but gener-
ates lots of stress on the posterior elements and exposes to the risk of retrolisthesis. 
Moreover, the posterior spine muscles trying to restore some lumbar lordosis 
become rapidly painful, contributing to the overall back pain [ 61 ]. 

 The next compensatory mechanism is the posterior tilting of the pelvis. This 
results in a more posterior placement of the sacrum and so increasing the sacro-
femoral distance, again limiting the anterior shift of the vertical spinal axis (Fig.  4 ). 
Lots of studies [ 6 ,  53 ,  55 ,  57 ,  62 ] have shown that low back pain patients are char-
acterized by a lower SS and higher PT. These patients might appear globally 

SS

PT
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PT

  Fig. 4    Pelvis back tilt mechanism. Increase of pelvis tilt results in posterior placement of sacrum 
related to the coxo-femoral heads thus increasing the sacro-femoral distance ( red lines )       
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balanced but at the cost of a pelvic retroversion. It is therefore important to recog-
nize these patients in order to restore the appropriate lordosis to fi t the pelvic param-
eters especially if instrumentation is planned [ 50 ,  61 ]. Some studies provide 
formulae to calculate the “normal” PT for a given pelvic PI [ 35 ,  63 ]. Mac-Thiong 
et al. [ 42 ] suggested that the non-pathological upper limit of PT is ideally under 
50 % of the PI.

   Compensatory mechanisms take also place in the lower limbs by a knee fl exion 
[ 60 ,  64 ], evaluated by the pelvi-femoral angle defi ned by Mangione and Senegas 
[ 65 ] or the femoral shaft angle [ 66 ] (see below).  

   Planning Surgery for Degenerative Pathologies 

 The main problem in the daily practice is to determine how much correction a 
patient needs to maintain or to correct its sagittal balance. Many studies [ 40 ,  67 , 
 68 ] have insisted on the importance of restoring adequate LL, even for short 
instrumentations, to avoid a fi xed sagittal imbalance (FSI), also known as fl at back 
deformity. As mentioned above, the overall spine shape will adapt to pelvic mor-
phology mainly PI, mostly through LL but also through the adaptability of all 
other spinopelvic parameters [ 32 ,  69 ]. Legaye and Duval-Beaupere [ 52 ] showed 
that patients with high PI needed greater than normal LL for optimal sagittal bal-
ance and may be more vulnerable to any loss of LL. In order to assess the needed 
correction when planning a surgery, Le Huec et al. [ 66 ] proposed a simple method: 
the full balance integrated technique or FBI technique. Three angles are needed 
(see Fig.  5 ):

 –     Angle of C7 translation  (C7TA): In order to restore a global balance, the C7PL 
must be translated vertically over the sacral endplate. The actual position of C7 
is a, the future position over the sacral endplate is b. The C7TA is the angle 
between these two points and the tip of the L4 vertebra (point c). L4 is chosen 
since it is the apex of the lumbar lordosis in a normal population [ 63 ].  

 –    Angle of femur obliquity  (FOA) is measured as the inclination of the femoral axis 
to the vertical. This angle shows the compensation mechanism of knee fl exion 
and is easily measured on a total spine X-Ray if the fi rst 10 cm of the femur shaft 
are seen.  

 –    Angle of tilt compensation  (PTCA): in order to take the compensation mecha-
nism of pelvic retroversion into account and to keep the evaluation as simple as 
possible, the authors [ 66 ] proposed the simple following rule: if the PT is between 
15° and 25°, PTCA = 5°; if PT is >25° PTCA = 10°.   

   The overall correction is then: FBI angle of correction = C7TA + FOA + PTCA. 
 To achieve this angle of correction, various techniques can be used, depending 

on the amount of correction needed. Multilevel anterior release and interbody fusion 
can be used to correct a fl exible sagittal imbalance [ 68 ,  70 ,  71 ]. TLIF or PLIF pro-
cedures can be used to enhance lumbar lordosis [ 72 ]. For fi xed sagittal imbalance, 
more demanding surgeries are needed to achieve adequate restoration of the sagittal 
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balance. Interpedicular osteotomy often called Smith-Peterson Osteotomy implies 
resection of the laminae, the facets, and ligamentum fl avum. This creates a 1-cm 
gap that is closed down by compression of the screws to shorten the posterior col-
umn and provides a 8°–10° correction per level [ 66 ]. An anterior cage, located as 
anteriorly as possible, guarantees the best long-term correction. 

 To achieve bigger correction, a pedicle subtraction osteotomy should be con-
sidered. This technique was originally described by Scudese et al. [ 94 ] for rigid 
anterior and posterior columns such as in ankylosing spondylitis. This technique 
permits a correction through all three columns from a posterior approach, 
thereby maximizing the healing potential. The correction is from 24° to 35° in 
the lumbar spine, depending on the technique used and 25° in the thoracic spine 
[ 19 ,  73 ].   

c

d

FOA

C7TA

PT

ba
  Fig. 5    Preoperative planning. C7 translation angle: 
 C7TA . Midpoint of C7 inferior plateau ( a ) is 
translated on the plumb line ascending from the mid 
part of the S1 plateau ( b ). Point  c  is on the anterior 
cortex of the selected vertebra for osteotomy, which 
is mainly L4 vertebra. Femur obliquity angle:  FOA . 
Femur fl exion is measured as the angle between the 
femoral axis and the plumb line ( d ). Pelvis 
compensation angle: PTA. Pelvic tilt is measured as 
usual: line between center femoral head to mid part 
of S1 plateau and vertical line. If PT between 15 and 
25: add 5°. If PT superior 25° add 10°       
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   Isthmic Spondylolysis and Spondylolisthesis 

 Many studies [ 51 ,  74 – 84 ] have addressed the relationship between spondylolisthesis 
or isthmic spondylolysis and sagittal balance. They showed that an elevated PI was 
related to the development, the progression, and the severity of spondylolisthesis. 
Roussouly et al. [ 80 ] analyzed 82 patients with low-grade spondylolisthesis. They 
reported two subgroups, patients with a high PI and high SS that provokes high shear 
stresses at the lumbosacral junction, the “shear type.” The other subgroup present 
with a low PI and a smaller SS leading to an impingement of the posterior elements 
during extension, causing a “nutcracker” effect on the isthmus at L5 (Fig.  6 ).

   Recently, the Spinal Deformity Study Group proposed a classifi cation of spondy-
lolisthesis based on spinopelvic posture [ 79 ]. The degree of slip is fi rst assessed 
(<50 % or ≥50 % slip) and then the sagittal balance is measured with the PI, SS, PT, 
and C7PL (Fig.  7 ). For low-grade spondylolisthesis (Meyerding grade 1 and 2), 
three types of sacropelvic balance can be found:

•    Type 1: the “nutcracker type” with a PI lower than 45°  
•   Type 2: corresponds to patients with normal PI values (45°–60°)  
•   Type 3: corresponds to the shear type described above with PI >60°   

ss

ss

PI

PI

Shear Nutcracker

  Fig. 6    The shear and nutcracker spino-pelvic postures reported by Roussouly et al. [ 80 ] in low 
grade spondylolisthesis       
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   For high-grade spondylolisthesis, the overall balance should be assessed fi rst, 
using the graph provided by Hresko et al. [ 82 ] (Fig.  8 ). Balanced pelvis patients 
(low PT and high SS) are grouped in type 4 and unbalanced patients presenting a 
retroverted pelvis and a vertical sacrum (high PT and low SS) must further be 
divided in two groups, with a balanced spine (C7PL >3 cm) or unbalanced spine 
(C7PL ≥3 cm) (Fig.  9 ). The six types are depicted on Fig.  10 . A recent study [ 85 ] 
proved substantial inter- and intraobserver reliability of this classifi cation.

Slip grade Sacro-peivic balance and morphology Spinal balance Type

Type1

Type2

Type3

Type4

C7

C7

Type5

Type6

Nutcracker (PI < 45° )

Normal pelvic incidence (PI ≥ 45° and < 60°)

High pelvic incidence (PI ≥ 60°)

Balanced (high SS / low PT)

High-grade Balanced (C7 ≤ hip axis)

Balanced (C7 > hip axis)

PI: Pelvic incidence
SS: Sacral slope
PT: Pelvic tilt

Unbalanced (low SS / high PT)

Low-grade

  Fig. 7    Spinal Deformity Study Group classifi cation of lumbosacral spondylolisthesis       
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       Treatment Protocol for Spondylolisthesis 

 Most treatment protocols proposed in the literature have mostly focused on the slip 
grade. For low-grade spondylolisthesis, surgery is recommended for patients unre-
sponsive to conservative therapy while it is recommended for all high-grade spon-
dylolisthesis. The presence of different pattern of sagittal imbalance in this pathology 
suggests that the underlying biomechanics involved is different from one type to the 
other and the treatment protocol should be therefore changed accordingly. The 
SDSG classifi cation organizes the subgroups of spondylolisthesis in an ascending 
order of severity and therefore helps to defi ne the surgical strategy. Up until now, 
there is still debate about the need for reduction in the surgical treatment of spondy-
lolisthesis. Hresko et al. [ 82 ] state that this failure to obtain a consensus opinion 
regarding the role of reduction is due to the lack of sacropelvic balance analysis in 
the higher spondylolisthesis grades. While no distinction between the SDSG grade 
4, grade 5, and 6 has been made in most published studies, the results of reduction 
gave very variable results. They propose accordingly reduction of the spondylolis-
thesis in grades 5 and 6 with an unbalanced sacropelvis. Mac-Thiong et al. [ 83 ] and 
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  Fig. 8    Determination of sacropelvic balance in high-grade lumbosacral spondylolisthesis (bal-
anced  vs.  unbalanced sacropelvis). Original scatter plot of 133 patients with high-grade spondylo-
listhesis with subgroups based on K-means cluster analysis described by Hresko et al. [ 82 ].  X  axis 
is pelvic tilt and  Y  axis is sacral slope. Groups are divided by a line of Y _(0.844835X) _ 25.021       
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Labelle et al. [ 86 ] later confi rmed the importance of this subdivision and treatment 
strategy for grades 5 and 6 were. Outcome studies fail in this fi eld before defi nitive 
treatment algorithm for L5–S1 spondylolisthesis, but since the high-grade spondy-
lolisthesis is so heterogenous, the treatment therapy must be adapted accordingly. In 
summary, Labelle et al. [ 79 ] suggest the following treatment strategies:

•    Grade 4: Forceful attempts at reduction of the deformity are not required and 
simple instrumentation and fusion after postural reduction may be suffi cient to 
maintain sagittal balance.  

•   Grade 5: Reduction and realignment should be preferably attempted, but if in 
diffi cult cases simple instrumentation and fusion may be suffi cient to maintain 
sagittal alignment since spinal alignment is maintained.  

•   Grade 6: Reduction and realignment is mandatory.       

   Outcomes After Spine Surgery 

 Fixed sagittal imbalance (FSI) may result from loss of adequate LL after spinal 
fusion, resulting in positive sagittal balance. Gottfried et al. [ 40 ] described the 
importance of the PI for the development of FSI. In fact, patients with high PI 

High Grade Spondylolisthesis

Balanced  Pelvis Unbalanced Pelvis

  Fig. 9    Sagittal view of spinopelvic alignment in high-grade spondylolisthesis: balanced and 
unbalanced pelvis (Copyright 2007 Medtronic Sofamor Danek USA, Inc.)       
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require greater than normal LL to achieve sagittal balance. Any loss of LL in the 
instrumentation will therefore be less well tolerated by high PI patients. Patients 
with high PI will most of the time have a low relative LL even in the presence of 
normal-appearing LL and are at risk for delayed complications, including implant 
failure or loosening and adjacent segment degeneration due to the increased solici-
tation of the mobile segments. They showed that FSI patient had a typical spinopel-
vic profi le: high PI and PT and low LL and TK compared with aged-matched 
controls. Kim et al. [ 49 ] showed that net kyphosis (TK + PI − LL) > 45° was a statis-
tically signifi cant predictor of suboptimal sagittal balance for patients who under-
went long spinal instrumentation [ 87 ]. 

 Kyu-Jung Cho et al. [ 88 ] studied the risks factors of sagittal decompensation in 
long instrumentation for degenerative lumbar scoliosis. They showed that 42 % of 
the patients with degenerative deformity would decompensate sagittal balance after 
long instrumentation and fusion. The most signifi cant risk factor was a preoperative 
sagittal imbalance (C7PL >5 cm). Their study confi rmed that PI was another signifi -
cant factor, a “normal” correction of the LL in patients with high PI lead to higher 
sagittal decompensation rate after surgery. Insuffi cient lumbar correction can also 
lead to implant failure because of the increase of the posterior tension on the 
implants. 

 Park et al. [ 89 ] showed the impact of high PI in the development of ASD (adja-
cent segment degeneration). They evaluated the correlation between ASD and 

  Fig. 10    Typical cases of lumbosacral spondylolisthesis described in the Spinal Deformity Study 
Group classifi cation.  PI  indicates pelvic incidence,  PT  pelvic tilt,  SS  sacral slope       
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pelvic parameters in patients with spondylolytic spondylolisthesis and showed that 
the postoperative PI in patients with ASD (70.8°) was statistically signifi cantly 
higher than in patients without ASD. They also proved that there was no difference 
in the degree of postoperative PI in patients without ASD (51.1°) compared to the 
PI of a healthy population (51.4°). 

 Ignoring the sagittal profi le in primary spinal fusion is shown to be a common 
reason for revision surgery [ 90 ,  91 ]. Etminam et al. [ 92 ] showed that restoration of 
sagittal balance was highly improving the fusion rate in case of postoperative lum-
bar pseudarthrosis.  

   Conclusion 

 Many articles have stretched over the past few years the importance of maintaining 
and restoring a correct sagittal balance of the spine. Also this was mainly an ortho-
pedic concern at fi rst, these studies have shown that regardless of the specifi c surgi-
cal treatment or pathology involved, maintaining or rebalancing the spine’s sagittal 
balance results in a positive outcome in terms of stability, fusion rate, and pain. 
Segmental fusion and short instrumentations as performed by neurosurgeons have 
therefore to be planned considering the whole spine sagittal balance. Also patients 
have more means of compensating the sagittal balance in short instrumentations, 
unsuccessful long-terms outcomes might ensure. Therefore, routine measurement 
of the sagittal parameters and careful planning of the instrumentation should be 
done to ensure adequate lumbar lordosis and sagittal balance even in short 
instrumentations.     
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    Abstract     Multilevel laminectomy to open the spinal canal carries the risk of spinal 
deformities and instability. With the aim of preserving and reconstructing the poste-
rior structures the authors developed a novel, minimally invasive, multilevel spinous 
process splitting and distracting laminotomy approach with or without complemen-
tary corticocancellous iliac crest or PEEK cage “archbone” grafting. The technique 
allows exploration of the spinal canal and the removal of intramedullary patholo-
gies. Moderate enlargement of the spinal canal with preservation of the majority of 
posterior structures is also possible, so that muscle attachments remain intact and 
postoperative complications are substantially reduced. 
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 This surgical approach, while fulfi lling the requirements of previous laminotomy 
techniques, helps to prevent damage to the crucial posterior stabilizers of the spine. 
In contrast to conventional spinal canal approaches, preservation of the majority of 
posterior structures is possible, leaving muscle attachments on the spinous pro-
cesses and laminae completely intact. 

 Furthermore, the procedure for exposure and decompression of the spinal canal 
is a suitable method for all spinal segments, the cervical, thoracic, and the lumbar 
spine in all age groups.  

  Keywords     Bone graft   •   Cage   •   Intramedullary tumor   •   Laminotomy   •   Lamin-
ectomy   •   Spacer   •   Split   •   Splitting laminotomy  

       Introduction 

 The most common procedure to visualize the spinal canal and remove lesions in and 
around the spinal cord has been laminectomy [ 6 ,  14 ,  26 ]. Two major groups of such 
pathologies are segmental as well as longitudinal. Segmental lesions, like neurino-
mas and meningiomas (juxtamedullary tumors), or cavernomas and hemangioblas-
tomas (intramedullary lesions) need 1–3 segmental approaches. However, the 
longitudinal ones, like ependymomas and astrocytomas, require multilevel 
laminectomy. 

 According to the literature, multilevel laminectomy may lead to spinal deformi-
ties, instability, subluxation, spreading of hematoma, and scar tissue within the spi-
nal canal and loss of the posterior bony protection of the spinal cord [ 6 ,  9 – 11 ,  20 , 
 22 ,  29 – 31 ]. Postlaminectomy kyphotic deformity is one of the most known long- 
term complications of the classic dorsal surgical procedures (Fig.  1a, b ). The surgi-
cal correction of this deformity is diffi cult and in most cases not curative (Fig.  2 ).

    Several authors have reported on the usefulness of laminoplasty for the removal 
of spinal cord tumors [ 6 ,  18 ,  23 ,  24 ]. Various kinds of laminoplasty techniques have 
been described with osteoplastic posterior spinal arch reconstruction in tumor 
removal as well as in degenerative cases [ 6 ,  13 ,  15 ,  17 ,  18 ,  23 ,  24 ,  27 – 29 ]. The 
conventional posterior approaches invariably separate the muscle attachments from 
the spinous processes and laminae [ 14 ,  25 ,  26 ]. Damage to these muscles and bony 
connections can lead to persistent axial pain, cervical malalignment, and spinal 
instability [ 1 ,  7 ,  8 ,  12 ,  25 ]. Other investigators in trying to preserve the integrity of 
the spinal column and prevent the atrophy of these muscles reattach the extensor 
musculature [ 32 ] or preserve the attachments of the semispinalis cervicis and mul-
tifi dus muscles [ 25 ]. All of these steps extend the inherently time-consuming sur-
gery with additional risks. 

 To follow the principle of less invasiveness and the simplest preservation of 
attachments of musculatures, the split laminotomy technique (Fig.  3 ) for surgery of 
multilevel lesions located within the spinal canal was introduced by us 11 years ago. 
The method was fi rst proven successful for pediatric cases [ 3 ].
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a b

  Fig. 1    Sagittal T2-weighted MR image ( a ) at the cervicothoracic region and lateral view fl uoros-
copy picture ( b ) at the cervical region of the spine show the postlaminectomy kyphotic deformity       

  Fig. 2    Lateral view 
fl uoroscopy picture shows the 
surgical intervention of 
postlaminectomy kyphotic 
deformity at the cervical 
region. The correction is 
often diffi cult or impossible       
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   A multilevel splitting of spinous process and lamina has subsequently been 
applied to older age groups at our institutes in Hungary and Israel with similar ben-
efi ts. The distracting laminotomy technique (Figs.  3  and  4 ) was then developed to 
explore intramedullary spinal pathologies with the aim of preservation of the func-
tional unity of the main posterior structures. This leaves muscle attachments intact 
and reduces postoperative complications. It has been shown that the split laminot-
omy approach is suitable to remove intramedullary pathologies located mainly in 
the midline [ 2 ]. In addition, this method has been applied to other types of spinal 
diseases, not only for the cervical but also for the thoracic and lumbar regions.

   If total resection of an intramedullary tumor is not possible due to infi ltration of 
the surrounding spinal cord or in cases where the regrowth of malignant tumor is to 
be expected, enlargement of the spinal canal is needed. The multilevel spinous pro-
cess splitting and distracting laminotomy technique with a complementary 

  Fig. 3    Illustration of the 
multilevel split and distracted 
spinous processes       
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corticocancellous iliac crest auto graft between the split laminas was suitable for 
moderate spinal canal permanent enlargement and decompression (Figs.  5  and  6 ).

    To avoid both short- and long-term bone harvesting area complications, as well as 
to shorten the time of the surgical procedure, the use of different interbody spacers is 
widely accepted for spinal surgical procedures. To achieve the necessary enlargement 
of the spinal canal and decompress the spinal cord, polyether-ether- ketone (PEEK) 
cages have been implanted between the split laminae (Fig.  7 ). With the PEEK cage 
implantation, all of the donor site complications, and the possibility of late-time bone 
graft resorption or compression are avoided. The bony healing throughout the spacer 
is similar to the iliac crest bone graft procedure. Solid fusion between the osteoto-
mized parts can be shown at about 12 months after the implantation [ 21 ].

      Surgical Techniques 

     1.     Spinous process splitting and distracting technique  
 The patients were positioned either sitting or prone for cervical and prone for 

thoracic and thoracolumbar procedures. A special midline posterior approach was 
used. The skin, fascia, nuchal (in the cervical region), and the supraspinous liga-
ment were incised in the midline. The interspinous ligaments and muscles were 

  Fig. 4    3D CT reconstruction 
image shows the multilevel 
split spinous processes in the 
cervical and upper thoracic 
region       
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dissected longitudinally between the spinous processes without injuring the 
attachments of the interspinous muscles; then the ligamentum fl avum was 
removed in the middle part to expose the midline epidural space above and below 
the intended levels. In some cases, involving the upper and mid-thoracic region of 
the spinal column, it was necessary to remove a small bony part of the angle of the 
cephalad vertebral arch in the midline, due to the oblique location of the spinous 
processes. The spinous processes were split in the midline with an oscillating saw 
or an extra long (35 mm) craniotome blade (laminotome, GR 004 Zeppelin/Adeor 
D-82049 Pullach Germany) (Fig.  8a, b ). The cut plane of the spinous processes 
and the laminae were separated and distracted with Cloward- type retractors 
(Fig.  9 ). It is important to accurately fi t the end of the retractors to the inner cortex 

  Fig. 5    Illustration of the 
multilevel split and distracted 
spinous processes with the 
complementary iliac crest 
grafts between the facing 
bony parts of the spinous 
processes       
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  Fig. 6    Postoperative axial 
CT scan image shows the 
distracted spinous process 
and the graft between the 
facing bony parts in the 
thoracic region allowing 
moderate enlargement of the 
spinal canal       

  Fig. 7    Postoperative axial 
CT scan image shows the 
distracted spinous process 
and the PEEK cage between 
the facing bony parts in the 
cervical region allowing 
moderate enlargement of the 
spinal canal       
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of the vertebral arch immediately above the dura. This is facilitated by visualizing 
the epidural space and opening the retractor with gentle but progressive force in 
order to prevent the fracture of the spinous process during distraction. Two retrac-
tors were applied for each laminae to help step by step distraction of the bone. All 
muscle attachments to the spinous processes and laminae and the laminae them-
selves were completely preserved. In cases of intramedullary lesions, the dura 
was opened and the pathology was removed (Fig.  10 ). If the lesion was visible on 
the dorsal surface of the cord, a longitudinal posterior direct surgical approach 
was used with one exception. In case the lesion was hiding entirely intramedul-
lary, surgery continued via midline myelotomy.

     The same principle was applied for ependymomas and astrocytomas. 
Debulking of the tumor was performed before searching for a cleavage plane. 
Tumor resection was continued until the tumor could clearly be differentiated 
from the surrounding spinal cord (satisfactory surgery). Hemangioblastomas and 
cavernomas were removed en bloc without debulking and bipolar coagulation 
was used to reduce blood fl ow and to shrink the lesion. 

a b

  Fig. 8    The intraoperative photograph shows the spinous process splitting in the midline ( a ) with 
a specially lengthened craniotome blade (laminotome) ( b )       
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 Following removal of the space-occupying lesions, the dura and the spinous 
processes were closed and the facing parts of the processes were sutured directly 
to each other (Fig.  11 ). In cases, where the dural sac did not need enlargement, a 
simple 5–0 or 6–0 nonabsorbable suture was used still under the operating micro-
scope for a watertight closure.

   If tumor histology was malignant or only debulking of an infi ltrative tumor 
was performed, duraplasty was carried out. We used a bay leaf-shaped liodural 
patch and 5–0 or 6–0 nonabsorbable sutures in a watertight manner under the 
operating microscope, which was rotated during the sewing process to the appro-
priate side of the dural edge. The duraplasty proved to be technically diffi cult and 
time-consuming across the available operative corridor. In some cases the dura 
had to be left open and the surface was covered with a dural fl ap, overlayed with 
fi brin glue. TachoSil (Nycomed UK Ltd. High Wycombe, HP10 0HH United 
Kingdom) has recently been used as alternative to duraplasty with excellent 

  Fig. 9    Intraoperative 
photograph shows the 
distraction of spinous 
processes and laminas by 
Cloward-type retractors. The 
separated and distracted 
laminae open the operating 
fi eld and after the opening of 
the dura the dorsal surface of 
the spinal cord becomes 
visible       
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results. In terms of dural decompression, complete closure of the CSF spaces, 
simplicity, and operating time, this method can be highly recommended.   

   2.     Spinous process splitting and distracting technique with complementary cortico-
cancellous iliac crest autografting  

 If total resection of an intramedullary tumor was not possible due to the lack 
of a recognizable cleavage plane (diffusely infi ltrative tumors), a bony 
 decompression was carried out to create more intraspinal space. To avoid the 
laminae returning to their original position and with the aim of a moderate 
enlargement of the spinal canal, a tricortical iliac bone graft was placed between 
the bony parts facing each other (Fig.  6 ). The space between the distracted lami-
nae was fi rst measured, then the posterior iliac crest was approached and a graft 
of appropriate size and shape was cut with an oscillating saw, shaped with a drill, 
and inserted between the osteotomized parts of the spinous processes and under-
lying laminae in a manner similar to the anterior cervical iliac bone grafting 
technique, taking care to avoid compression of the spinal cord. Precise insertion 
and continuous control of the inner edge of the graft during insertion were neces-
sary to avoid penetration of the graft into the spinal canal. The technique resem-
bles the placement of an “arch stone” into the arch of a vault in architecture. We 
borrowed the concept and modifi ed the phrase to “archbone” for surgery.   

  Fig. 10    Intraoperative 
photograph shows the tumor 
removal under operating 
microscope       
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   3.     Spinous process splitting and distracting technique with complementary PEEK 
cage grafting  

 To avoid donor site complications, we slightly modifi ed the surgical proce-
dure in 5 cases, inserting hemostatic gelatin sponge-fi lled PEEK cages. The 
SOLIS Cervical Cage (Stryker Spine SAS, Z.I Marticot – 33610 Cestas France) 
was used. This cage has a D-shaped design, with 4° wedge confi guration. It has 
serrations on the top and the bottom face and incorporates titanium spikes for 
fi xation. The cage is available in two footprints and a variety of heights ranging 
from 4 to 12 mm. The cage was inserted between the laminae with the plane side 
of the D-shaped cage facing toward the spinal cord, and the convex side of the 
cage facing outward (Figs.  7 ,  12 , and  13 ). The wedge shape of the cage prevents 
it sliding out, while the serrations at the top and the bottom sides prevent it slid-
ing into the spinal canal. The strong grasping power of the retracted laminae, 

  Fig. 11    Intraoperative 
photograph shows the suture 
of the facing parts of the 
processes directly to each 
other       
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when returning to their original position and the two pairs of titanium spikes, 
located both sides of the cage, fi xed it fi rmly in place.

    After grafting, the Cloward-type retractors were removed. The split spinous 
processes were sutured to each other with Vicryl (Ethicon, Inc., Sommerville, 
NJ) by passing the sutures through drilled holes in each half. Finally, the fascia 
and the skin were closed.      

   Results of the Previous and Current Studies 

 The studies carried out in our institutes on the usage and advantages of the split 
laminotomy approach are summarized below. 

  Fig. 12    Intraoperative 
photograph shows the 
distracted spinous processes 
and the PEEK cages between 
the facing bony parts       
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 The method was fi rst shown to be successful in pediatric cases and was published 
in 2004 [ 3 ]. Six children underwent split laminotomy for their spinal lesion. The 
ages ranged from 1.5 to 7 years. The mean was 3.4 years, and the median was 
3 years. The pathologies treated were two tethered cord cases, one ependymoma, 
PNET, lipoma, and epidural bleeding from a dural arteriovenous fi stula. The affected 
spinal locations included the cervicothoracic, the thoracolumbar and the lumbar 
regions. The duration of follow-up ranged from 5 to 15 months with a mean of 
8.6 months. 

 Perioperative data of pediatric patients who underwent split laminotomy showed 
excellent results. The postoperative hospital stay was shortened, early mobilization 
was feasible, and wound reactions (infl ammation signs, pain, limitation of move-
ments, guarding) were none or minimal. The postoperative neurological course 
showed no complications related to the novel approach to the spinal canal. 

 Bony changes on control imaging studies were strikingly less traumatic, and in 
patients younger than 4 years, the signs of the splitting procedure had even disap-
peared. No alteration in the spinal column alignment could be detected. Split lami-
notomy prevented the development of kyphoscoliosis in children after intraspinal 
surgery. It also prevented the development of a myodural cicatrix. Although split 
laminotomy provided a slightly narrower operative fi eld compared to Raimondi’s 
laminotomy, it was still wide enough for the management of the lesions as well as 
the spinal cord. With a slight tilt of the microscope (keyhole surgery), dentate 
 ligaments were easily cut on both sides in all cases. 

  Fig. 13    3D CT 
reconstruction image shows 
the multilevel split spinous 
processes in the cervical 
region with the PEEK cages 
between the facing bony parts       
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 This new technique seemed superior to the previously introduced laminotomy 
and alternative laminectomy methods since it helped the spinal column to return to 
its full anatomical and functional status. The midline opening of the spinal canal 
gave a keyhole approach in which the laminae were not separated from the muscles 
and the disintegration of the vertebral arch was minimal. Operative time was much 
shorter than the traditional laminotomy and even laminectomy. 

 The next study revealed the usefulness of the spinous process splitting and distract-
ing technique in adults was published in Neurosurgery in 2008 [ 2 ]. The technique 
were applied with or without complementary iliac bone grafting in 19 adult patients 
with different pathologies located within the spinal canal (Figs.  3 ,  4 ,  5 , and  6 ). 
The technique is a slightly modifi ed for adults as compared to children [ 3 ]. 

 There were nine women and ten men in this series, with a mean age of 48 years 
(range 32–64 years) at the time of surgery. 

 The affected spinal location included the cervical in 7, the cervicothoracic in 4, 
the thoracic in 5, and the thoracolumbar region in 3 cases. The highest number of 
split lamina was 6. The split spinous processes were closed directly to each other in 
13; in 6 cases a tricortical iliac bone graft was placed between the facing bony parts. 

 The average follow-up was 15.4 months, with a range from 8 to 36 months. One 
patient was lost to follow-up after 8 months. 

 Histological results were as follows: 7 intramedullary astrocytomas (Grade I 
pilocytic astrocytoma, 1 case; Grade II, 4 cases; Grade III, 2 cases), 8 ependymo-
mas, 2 cavernous hemangiomas, 1 multilevel epidural hematoma caused by a dural 
AVM, and 1 hemangioblastoma. 

 Surgery was considered satisfactory in tumor cases when the resection was con-
tinued only until the tumor could clearly be differentiated from the surrounding 
spinal cord. In the cavernoma and hemangioblastoma cases, complete removal of 
the multilevel lesions located within the spinal cord was achieved in all patients. The 
midline opening of the spinal canal gave a keyhole approach, achieving an adequate 
view of the intraspinal space for surgery in its entire longitudinal extension. Under 
the operating microscope the operating fi eld was suffi cient for lesion removal 
(Fig.  10 ). The practice of tumor removal did not differ considerably from conven-
tional strategies and practice, and surgery through the newly developed approach 
did not affect the extent of resection. The completeness of surgical removal depended 
on the cleavage plane in tumor cases and not on the approach.

   This technique required a relatively short operative time for the approach. The 
mean duration of the whole surgical procedure, including intraspinal surgery, was 
159 min (range, 90–290). The mean blood loss was only 158 ml (range, 48–442), as 
detachment of the muscles was avoided. A dural tear occurred in one case when 
using the oscillating saw for the splitting process, but injury to nervous structures 
was never observed. After the more frequent use of the laminotome, no more dural 
tears were detected. 

 Autograft donor site pain was observed as the most frequent hip graft complica-
tion in our limited series. The incidence of postoperative local pain was lower, 
within acceptable limits, and early mobilization was allowed. The average length of 
hospital stay was 7.2 days (ranged 5–14). 
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 On postoperative neurological follow-up, no complications were related to this 
novel approach to the spinal canal. To confi rm the extent of resection, all patients under-
went 2-month postoperative MRI evaluations (Fig.  14a–d ). Of the 8 ependymomas, 6 

a b

c d

  Fig. 14    Sagittal ( a ) and axial ( b ) T1-weighted MRI images with contrast material show an intra-
medullary ependymoma in the thoracolumbar region (D12-L1) before and 1 year after the surgery 
( c ,  d ). No change of the posterior spinal column elements in their functional integrity       
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(75 %) had been completely and 2 (25 %) partially removed. Of the 7 astrocytomas, 2 
(28.7 %) had been completely, 1 (14.3 %) subtotally, and 4 (57 %) partially removed. 
Cavernomas and hemangioblastoma had all been completely removed. 

 In 51 of the 57 (89.5 %) spinous processes that were split, bony healing was 
observed on CT scanning (Fig.  15a–d ). Fracture of the spinous process was seen in 

a b

c d

  Fig. 15    Postoperative axial CT scan ( a ) and 3D reconstruction images show the split spinous 
processes in the thoracolumbar region that were directly closed after tumor removal ( b ) and the 
bony healing 1 year later ( c ,  d ). No change of the posterior spinal column elements in their func-
tional integrity       
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9 (15.8 %) and traumatic bony changes of the body of the vertebra in the midline in 
three levels (5.2 %) (Fig.  16 ); these were without clinical signifi cance and showed 
complete healing at a later imaging. Instability was not detected in any of the 
patients by fl exion or extension lateral radiographs.

    The next study demonstrated the usefulness of PEEK cages inserted between the 
split and distracted spinous processes with an amplifi ed experience in the adult pop-
ulation. It was published in Biomechanica Hungarica [ 21 ] in 2010. 

 Multilevel splitting of spinous process and distracting laminotomy technique 
with or without complementary auto- or allograft insertion were used in 38 (19 
cases from the previous study included) adult patients with intramedullary lesions, 
located in various level of the spinal cord from CIII to LI. The split spinous pro-
cesses were closed directly to each other in 24 patients (Fig.  15a, b ). The number of 
split laminae was 3–6. In 9 cases a tricortical bone graft (Fig.  6 ) and in 5 cases a 
heterologous PEEK spacer was inserted in between the facing bony parts (Figs.  7 , 
 12  and  13 ). 

 The average follow-up was 18.7 months, with a range from 7 to 19 months. 
Histological results were as follows: 15 intramedullary astrocytomas (Grade I pilo-
cytic astrocytoma, n:2; Grade II, n:7; Grade III, n:6), 16 ependymomas, 3 caverno-
mas, 2 dural arteriovenous malformations, one longitudinal spinal edema following 
embolization of an intramedullary arteriovenous malformation, and one 
hemangioblastoma. 

 Moderate enlargement and permanent decompression of the spinal canal was 
achieved with the insertion of homologues tricortical iliac crest bone graft or heter-
ologous PEEK spacer. The use of PEEK cages between the osteotomized bony 
faces required shorter operative time compared to the classic iliac crest bone graft-
ing method. 

 In our cases the mean duration of the complete surgical procedure was 118 min 
with the range of 91–145 min. No dural tear occurred in our small series. Injury to 
nervous structures was not observed. 

  Fig. 16    Postoperative axial 
CT scan shows a traumatic 
fracture of the body of the 
vertebra and spinous process 
without dislocation or hints 
of functional disintegration       
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 The incidence of postoperative local pain was lower and within acceptable limits 
(VAS: 2–5). Furthermore, the patients needed smaller doses of analgesic medica-
tions, and early mobilization was possible. The average length of hospital stay was 
6 days (range 5–7). 

 Neither the inserted homologous bone graft nor the PEEK cage with the incorpo-
rated titanium spikes disturbed the evaluation of the spinal cord on MRI images. 
Out of the 15 astrocytomas, four were removed completely, three were removed 
subtotally, and eight were partially removed. Out of the 16 ependymomas, 13 were 
removed completely and 3 were partially removed, as confi rmed by postoperative 
MRI scans at 2 months. Cavernomas and hemangioblastomas were completely 
removed. The complex intramedullary AVM was closed via endovascular micro-
catheters and an immediate spinal cord decompression by distracting split laminot-
omy followed so as to prevent devastating spinal cord edema. 

 Some partial fractures of the spinous process were shown on early postoperative 
CT scans in all groups, without clinical signifi cance. Instability was not detected in 
any of the patients by fl exion or extension lateral radiographs. 

 Since the publication of our reports [ 2 ,  21 ], a further cohort of patients under-
went split laminotomy to approach longitudinal lesions within the spinal canal with 
favorable results. Twenty seven cases of intramedullary tumors were explored, 65 % 
in the cervicothoracic, 35 % thoracolumbar areas. Twenty were ependymomas with 
radical removal in 16 of them. In the six cases of astrocytoma, all of them underwent 
a subtotal removal and a distracting decompression of the spinal canal to prevent 
future increasing intramedullary pressure. One case of hemangioblastoma located 
in the thoracic segment needed a split laminotomy during this period and could be 
removed completely. As our experience has grown, operating time has steadily 
decreased without untoward complications. 

 Furthermore we no longer hesitate to extend the laminar splitting in order to 
reach supra- and infra-lesional syrinxes, when presented, as in one case of splitting 
ten segments (Fig.  4 ).  

   Discussion 

 Multilevel laminectomy for exploring the spinal canal to remove spinal cord lesions 
involving more levels has the longest history in neurosurgical strategy and still com-
monly used [ 4 ,  14 ,  26 ], despite conventional posterior approaches, which may 
involve multilevel laminectomies and facetectomies, leading to spinal deformities 
and instability [ 6 ,  9 – 11 ,  20 ,  22 ,  29 – 31 ]. These complications should nowadays be 
unacceptable, especially in the younger age groups with benign intraspinal tumors. 
These patients have a long life expectancy and will suffer from a signifi cant handi-
cap for the rest of their lives if a postlaminectomy kyphotic deformity develops. The 
split laminotomy technique prevents this serious complication. 

 With the aim of preserving and reconstructing the posterior structures and of 
preventing the frequently reported postoperative complications, various kinds of 
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laminoplasty techniques have been described [ 6 ,  13 ,  15 ,  17 ,  18 ,  23 ,  24 ,  27 – 29 ]. 
Several publications deal with different techniques of reconstruction of the laminar 
roof, which proved to be a valuable alternative to laminectomy. Investigators often 
use implants involving increased costs [ 29 ]. 

 Kurokawa [ 17 ] modifi ed the open-door technique, but because of technical dif-
fi culties and the risk of cord injury, it has not been widely accepted [ 5 ,  28 ]. The 
development of a thread wire saw by Tomita [ 28 ] led to further modifi cation of the 
spinous process splitting laminoplasty technique. The advantages of this technique 
are that the posterior arch can be reconstructed symmetrically, and there is a low 
risk of hemorrhage, as fewer veins are located in the dorsal midline epidural space 
[ 5 ,  28 ]. 

 We used an oscillating saw or in most cases an extra long (35 mm) craniotome 
blade, named laminotome (Fig.  8 ) to achieve splitting of the spinous process with 
no complication. In our experience, the oscillating saw proved to be less advanta-
geous than the laminotome as the control of the edge of the saw blade during the 
splitting procedure took considerably more time and was less effective. 

 The literature emphasizes the important role of the deep extensor muscles, espe-
cially in the neck. The multifi dus and the semispinalis cervicis muscles act as 
dynamic stabilizers of the cervical spine [ 19 ], together with the important static 
stabilizing structures including the ligaments and intervertebral joint capsules. 
Once these muscles have been detached, it is impossible to reconstruct the compli-
cated anatomy [ 25 ]. The integrity of the nerves is also important, because if they 
are injured preservation of the muscles becomes meaningless [ 33 ]. To minimize 
damage, a procedure was developed by Shirashi in which the attachments of the 
semispinalis cervicis and the multifi dus muscles to the spinous process are left 
intact [ 25 ]. 

 The spinous process splitting and distracting laminotomy technique fulfi lls the 
requirements of other minimal invasive laminotomy techniques, in that it is quick 
and even less invasive. The operative time is shorter in comparison with the laminar 
roof reconstruction technique [ 29 ] and the transverse placement laminoplasty [ 6 ] in 
intraspinal surgery. However, we believe that this is only partially due to the 
approach and reconstruction of the posterior structures; it also depends on the dura-
tion of tumor removal. The minor blood loss is also comparable with these other 
techniques [ 6 ,  29 ]. 

 The midline opening of the spinal canal gives a keyhole approach in which the 
laminae and the spinous processes are not separated from the muscle attachments 
and disintegration of the vertebral arch and the spinous process is minimal. The 
intracranial cavity is approximately spherical and it is possible to obtain a good 
view through one keyhole. On the other hand, the intraspinal cavity is cylindrical 
and longitudinal, necessitating the “longitudinal extension of the keyhole” for 
achieving an adequate view of the intraspinal space [ 16 ]. Theoretically, the number 
of vertebral segments involved in the surgical process is unlimited. This method is 
suitable not only for the cervical but also for the thoracic and lumbar region. 

 The spinal canal can be opened in this fashion to visualize both sides of the lat-
eral dural curve; the width of horizontal exposure is up to approximately 1.5 cm. 
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The operative fi eld is restricted compared to laminectomy, but according to the key 
whole principle, it is still enough under the operating microscope for the surgery of 
lesions located within the spinal canal, especially of intramedullary lesions. The 
approach did not affect the extent of resection or the neurological outcome in our 
experience. It is suitable to remove extra- or intradurally located dorsal lesions and 
most intramedullary pathologies. The fi eld given by the stepwise in and out posi-
tioned spacers is enough to achieve the same quality of watertight closure of the 
dura as in routine multiple laminectomy. 

 In children the scope of surgical indications is probably wider, being suitable for 
lesions located within the spinal canal around the cord, as the elasticity of the spinal 
arch is much more pronounced, allowing for a wider fi eld for manipulation. 

 Intraoperative identifi cation of the cleavage plane makes the removal of intra-
medullary tumors possible. If there is no recognizable plane in cases of infi ltrative 
or malignant intramedullary tumors, tumor removal is not continued at all costs, as 
this could be dangerous and unnecessary for the patient, in agreement with Brotchi’s 
explanation [ 4 ]. If partial tumor removal is performed, bony decompression of the 
spinal canal is indicated to provide more intraspinal space for the in general gradual 
growth of the residual tumor while preserving the posterior structures of the spine 
and the attachments of the muscles. 

 The approach is not primarily intended for the laterally or ventrolaterally located 
intradural tumors, confi ned to one side; the technique has no proven value in these 
cases, where a dorsal unilateral, partial hemilaminectomy or hemilaminectomy, 
approach is the treatment of choice in our practice. 

 The split laminotomy technique can be modifi ed – when enlargement of the spi-
nal canal becomes necessary – by placing a tricortical graft between the facing split 
bony parts of the spinous process. The degree of enlargement of the spinal canal 
depends on the elasticity of the arches, the force of distraction, and the size of the 
inserted bone graft. The compressive force between the closing laminae does not 
allow the graft to penetrate into the spinal canal after its placement; likewise the 
compressive force and the sutured split laminae prevent the slipping out of the bone 
graft as well. Another incision is needed to remove the graft from the iliac crest. 
This procedure is well tolerated but sometimes can be painful and holds a poten-
tially higher risk for wound infection. Because of the donor site morbidity, it is 
worth considering the use of heterologous grafts or allografts. 

 The surgical procedure was modifi ed to achieve the enlargement of the spinal 
canal by placing heterologous spacers between the facing split bony halves of the 
spinous process. With this modifi cation of the split laminotomy technique, no iliac 
crest bone graft needed, and all complications of the graft harvesting procedure are 
avoided. 

 Fusion of the grafted iliac bone with the split bony faces and the bony healing of 
osteotomized faces of the spinous process were seen in most cases (89.5 %) during 
follow-up. Healthy bone infi ltration was detected through the PEEK cages as well. 
The bony healing between the osteotomy sites was in agreement with fi ndings of the 
literature in connection with posterior arch reconstructions of the cervical canal in 
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spondylotic myelopathy cases [ 28 ], and with reconstructions of the laminar roof for 
a posterior approach [ 6 ,  29 ]. 

 To achieve satisfactory decompression for the dilated medulla, one needs to 
enlarge the dural sac as well. For that, dural patch was sutured over the opened dural 
edges, but recently Tachosil patch was simply used to gain a watertight covering. In 
no case were CSF leak or meningocele experienced. 

 It is more diffi cult to perform a complete distraction of the spinous process and 
the lamina in adults than in pediatric cases [ 2 ], because the spinal arch is less elastic 
and more fragile. In the elderly, elasticity is reduced and fractures are more frequent 
in osteoporotic patients. It is easier to distract the relatively thinner and more elastic 
arches in the cervical region than in the thoracic or lumbar part of the spine. The 
fi nal break of the split lamina is easier and more straightforward in children than in 
older age groups. 

 Traumatic bony changes can be observed rarely in the body of the vertebra, 
mainly in the midline, and fracture of the spinous process can also occur. It was 
observed in around 16 % of the distracted laminas on routinely performed postop-
erative control CT studies, increasing in frequency with age. If the end of the retrac-
tors was not accurately fi t to the inner cortex of the vertebral arch immediately 
above the dura in the epidural space, partial fracture of the spinous processes was 
more frequent during the distraction. 

 Theoretically, the compliance and elasticity of the spinal arches, the facet joints, 
the capsules, and the ligaments together allow enough movement under the distrac-
tion process to prevent irreversible damage to these structures. In case of the rarely 
observed overload distraction, these structures moved together and traumatic bony 
changes occurred in the midline of the body of the vertebra without clinical signifi -
cance, only seen on CT. 

 A wide range of spinal deformities following intraspinal surgery has been 
reported in the literature. The development of a spinal deformity is a multifactorial 
process [ 29 ]. In our series, no newly developed instability, subluxation or kyphotic 
deformity was observed. Although the clinical and radiological results are very 
promising, the limited follow-up time precludes conclusions regarding the long- 
term results of the procedure, especially with respect to kyphotic deformity. The 
bony protection of the spinal canal and the function of the paraspinal muscles were 
restored, and we observed better cosmetic results in comparison to the laminectomy 
technique. The minimal invasive splitting laminotomy technique allows the incision 
to be limited to the immediate region of exploration of the spinal canal, as with this 
method tissue retraction is minimalized and there is excellent access to the affected 
area. The preservation of the spinous processes and the restoration of the inter- and 
supraspinous ligament complex maintains the normal posterior median furrow, 
which is often lost with other more destructive techniques. 

 Based on our 10-year experience, the technique appears to be safe at all spinal 
segments (the cervical, thoracic, and lumbar spine), with an acceptable complica-
tion rate. Furthermore, it proved to be suitable for removing different, mainly intra-
medullary spinal pathologies located in the midline. 
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 Our previous papers and presentations on the split laminotomy technique have 
been received with enthusiasm. It remains to be seen how widely it will be tried and 
with what experience. Generally it is diffi cult to estimate how widespread a newly 
offered method is until papers and reports are presented, but usually they are pub-
lished when the authors could add something to it. The present authors do not think 
that split laminotomy is for virtuoso surgeon, but the learning curve takes time simi-
larly to every newly developed method. It is relative simple to perform and gives the 
usual necessary space to manipulate within the spinal canal. The newly offered 
procedure has been adopted by several other groups (mainly in Hungary and Israel) 
with similar results since its fi rst presentation. Wherever this method was tried, to 
our best knowledge, it has been used ever since, with different levels of dexterity. 

 The procedure may be more readily adopted in the pediatric age, where the 
approach is easier and the consequence of laminectomy in a growing child may lead 
to long-term spinal deformities. 

 Our modifi ed, minimally invasive, novel technique enables the surgeon to obtain 
a suffi cient fi eld for exploring different spinal pathologies that do or do not require 
spinal canal decompression, with preservation of the posterior structures of the 
spine and the attachments of the muscles.  

   Conclusions 

 The minimally invasive multilevel spinous process splitting and distracting lami-
notomy approach with or without complementary iliac or PEEK “archbone” graft-
ing is a safe and effective surgical management, suitable for exploring different 
longitudinal pathologies located in the spinal canal. The laminae and the spinous 
processes are not separated from muscle attachments, disintegration of vertebral 
arches and spinous processes is minimal, and damage to the essential posterior sta-
bilizers of the spine is prevented. 

 Its major advantage is that unnecessary surgical exposure and tissue trauma, 
common in cases of longitudinal pathologies in the spinal canal requiring multilevel 
laminectomies, are reduced. Functional integrity of dorsal structures of the spinal 
column not directly involved in the pathologic process can be preserved. The opera-
tive procedure is safe, much less time-consuming, and simple.  

   Proposals for the Future 

 Although considerable experience has been gathered in using split laminotomy with 
or without distracting decompression technique, data on long-term follow-up in 
terms of clinical and mechanical consequences are still needed. Is there any age 
group or type of pathology that benefi ts more or does not benefi t from the enlarge-
ment of the spinal canal in the long run? How long is the widened diameter of the 
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spinal canal preserved? Which distracting material gives the best chances of reopen-
ing of the spinal canal if necessary? 

 Nowadays intraoperative monitoring of numerous neuro-functions has been 
included in our routine. It seems that studies in this fi eld will signifi cantly lead to 
better results. 

 Further development of intraoperative imaging control and of more appropriate 
instrumentation will play a considerable role in improving surgical effi cacy.     
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    Abstract     Kyphosis is a diffi cult topic of spinal surgery, and its management contains 
many controversies. Surgical management needs consideration of different aspects of 
the kyphotic deformity such as neurological status, the presence of spinal cord com-
pression, angle of the kyphosis, the quality of bone, and accompanying diseases. In 
case of signifi cant cord compression and neurological compromise, anterior surgery 
should have the priority. However, in smooth-angled kyphosis and ankylosing spon-
dylitis patients, deformity can easily be reduced by a posterior-only approach. Since 
they have no neurological defi cits, and large spinal canals, most suitable patients for 
pedicle subtraction osteotomy are the patients with ankylosing spondylitis. 
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 In lumbar kyphosis one-level pedicle subtraction osteotomy (especially at L2 or 
L3 levels), in thoracic kyphosis multilevel osteotomies, and in cervicothoracic 
kyphosis an osteotomy at C7–T1 level should be preferred. 

 Pedicle subtraction osteotomy is a technically demanding procedure that requires 
surgeons to perform meticulous technique and consider biomechanical issues to 
achieve satisfactory results and avoid complications. An attempt to correct the rigid 
fi xed spinal deformity is a diffi cult task and requires the capability of a highly expe-
rienced spine surgeon. Although the physical outcome and patient satisfaction of 
surgical treatment is quite good, risks and complications should always be consid-
ered by both the physician and patient.  

  Keywords     Kyphosis   •   Sagittal plane deformity   •   Ankylosing spondylitis   •   Pedicle 
subtraction osteotomy   •   Deformity correction  

       Introduction 

 Kyphosis is a sagittal spine deformity that may cause signifi cant disability, pain, and 
neurological defi cits. Kyphosis may be due to trauma, infection such as tuberculo-
sis, ankylosing spondylitis, Scheuermann disease, degenerative diseases, and osteo-
porotic compression and iatrogenic reasons usually after multilevel laminectomy. 

 This chapter aims to review the surgical techniques to correct thoracolumbar 
kyphosis and diminish the neurological defi cits caused by compression of the 
kyphotic deformity. Cervical kyphosis will not be reviewed in this manuscript.  

   History 

 Surgery to correct the kyphosis was possibly fi rst attempted in Pott’s disease. In 
1945, vertebral osteotomy to correct spinal deformity in ankylosing spondylitis was 
fi rst introduced by Smith-Peterson [ 27 ]. Smith-Peterson and coworkers [ 27 ] have 
reported their results in six patients by applying a single posterior osteotomy and 
hyperextension of lumbar spine. Postoperatively the patients were placed in plaster 
immobilization.    The results were satisfactory, and patients could stand erect and 
were able to see ahead. 

 LaChapelle [ 16 ] have performed a two-stage osteotomy for thoracolumbar 
kyphosis under local anesthesia at L2–L3 level. After removal of posterior elements 
in fi rst stage, he had performed an anterior osteotomy to place bone grafts into the 
disc space under general anesthesia 2 weeks later. He then placed the patient in a 
plaster jacket. Briggs and coworkers [ 4 ] and have used similar technique and again 
without internal fi xation. 

 First articles reporting posterior osteotomy declared a signifi cant incidence of 
major complications with mortality up to 10 % and paraplegia 30 % [ 4 ,  16 ,  27 ]. 
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Rupture of the aorta, acute gastric dilation, and superior mesenteric artery thrombo-
sis have also been reported. 

 Since anterior opening-wedge osteotomies pose a particular risk to rupture or 
obstruct the aorta [ 1 ,  18 ], Scudese and Calabro [ 24 ] have modifi ed the Smith- 
Peterson osteotomy by removing the disc at the selected level together with the 
superior portion of the body. They claimed that aortic or inferior vena cava obstruc-
tion is less likely by shortening posterior part of the spine and not opening the disc 
space and anterior longitudinal ligament in front. 

 Simmons [ 25 ] has done osteotomy of the cervical and lumbar spine by using 
local anesthesia, which allows continuous intraoperative monitoring of neurologic 
status. However, with recent surgical techniques, the use of general anesthesia, and 
early mobilization by internal fi xations, morbidity and mortality have markedly 
decreased [ 5 ,  11 ,  13 ,  19 ,  20 ,  23 ]. 

 In 1985, Thomasen [ 30 ] fi rst reported a transpedicular closing-wedge osteotomy 
in treating ankylosing spondylitic kyphosis. This technique has been widely used 
for correcting kyphosis of various kinds with good results.  

   Etiology 

 There are many causes of kyphosis which are summarized below:

    (a)     Congenital : Congenital vertebral body and posterior element anomalies, fusion 
defects, and segmentation abnormalities may result in progressive fl exion 
deformity. Without surgical intervention, the deformity is progressive. 

 The congenital kyphosis is radiographically classifi ed as failure of formation 
(Type 1), failure of segmentation (Type 2), and mixed deformity (Type 3) [ 20 , 
 36 ,  37 ].   

   (b)     Ankylosing spondylitis : Ankylosing spondylitis belongs to a group of seronega-
tive spondyloarthropathies. The incidence of the ankylosing spondylitis is esti-
mated 1.4 % of the general population [ 8 ]. It goes with remission and 
exacerbation periods and primarily affects the spine and hip joints causing pro-
gressive bone fusion resulting with ossifi cation of the intervertebral disc, nar-
rowing of joints, and osteoporosis and fusion of the spine. Spinal fusion starts 
from lumbar level and progresses cranially to the cervical spine. Whole spine is 
now like a long bone and susceptible to fractures. A progressive fl exion defor-
mity may result with a disabling kyphosis. 

 A severely disturbed sagittal contour, loss of horizontal gaze resulting to 
inability to see the front and especially the sky, and social and psychological 
isolation are results of severe kyphosis. Besides, respiratory restriction and a 
higher risk for trauma occur. Although not a strong indicator, HLA-B27 antigen 
is a test for searching ankylosing spondylitis.    Besides, the attachment of 
sacroiliac joints is an important indicator of the disease. Kyphotic deformity 
can be measured by the Cobb method and the chin-brow technique. 
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 Trauma in ankylosing spondylitis may also cause kyphosis. Although frac-
tures occurring in ankylosing spondylitis patients are potentially very disabling, 
even lethal, they may sometimes be unrecognized and cause insidious kyphosis 
with mild pain. The majority occur in the lower cervical spine and often result 
in quadriplegia [ 2 ,  9 ,  22 ,  29 ,  31 ].   

   (c)     Trauma : Thoracolumbar fractures and dislocations may result with kyphotic 
deformity if not properly treated [ 5 ]. Kyphosis after trauma may be accepted as 
a long-term complication which can lead to further deterioration in function and 
quality of life.   

   (d)     Infection : The most frequent infection causing kyphosis is tuberculosis, or the 
so-called Pott’s disease. Besides, other infections, primary or iatrogenic spon-
dylodiscitis, may also cause kyphosis in chronic forms.   

   (e)     Degenerative : Degenerative diseases, especially in the lumbar spine, may 
change the sagittal balance and cause the so-called fl at back deformity and 
sometimes signifi cant kyphosis [ 12 ].   

   (f)     Postlaminectomy : Postlaminectomy kyphosis is more frequent in cervical spine. 
However, especially in pediatric ages, multilevel laminectomies in thoracic and 
lumbar spine can also cause kyphotic deformity.      

   Clinical and Radiological Evaluation 

 From the physician’s point of view, there are mainly two types of kyphosis: (a) 
kyphosis without neurological defi cits and (b) kyphosis with neurological defi cits. 
For a good management planning, the bone density, angle of the kyphosis, age of the 
patient, associated disorders, and comorbidities should also be evaluated (Table  1 ).

   The normal values of physiological thoracic kyphosis (T2–T12) vary between 
30° and 50°. Lumbar lordosis varies between 45° and 70°. The sagittal vertical axis 
passes 2 cm of the posterior superior corner of S1. 

 The C7 plumb line is the line drawn perpendicular to the fl oor from the centrum 
of C7 body. It must cross from the posterior superior edge of S1 end plate. If the 

  Table 1    Kyphosis 
classifi cation  

  According to etiology  
 (a) Congenital 
 (b) Ankylosing spondylitis 
 (c) Trauma 
 (d) Infection 
 (e) Degenerative 
 (f) Postlaminectomy 
  According to neurological defi cits  
 (a) Kyphosis without neurological defi cits 
 (b) Kyphosis with neurological defi cits 
  According to angulation  
 (a) Sharp-angled kyphosis 
 (b) Smooth-angled kyphosis 
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plumb line is anterior to the S1, it is called positive sagittal balance which indicates 
a hyperkyphosis. If the C7 plumb line is dorsal to the S1, it is called negative sagittal 
balance which indicates a hyperlordosis. 

 Spinal deformity can be clinically measured by the “chin-brow technique.” A 
line drawn from the brow to the chin intersecting the vertical axis would give 
approximate angle of kyphosis. It is a practical method to measure the angulation 
clinically without direct X-rays. 

 Radiologic assessment should include a whole-spine standing direct roentgeno-
gram including hip joints. For evaluation of the fexibility, a fl exion-extension view 
should also be obtained. 

 With assessment of radiographic images, the site of the primary deformity should 
be determined. This will be the site of major surgical correction. The amount of 
bone to be resected at each level can then be measured. 

 Magnetic resonance images will also be valuable to obtain information about 
bone density and edema and other abnormalities, such as congenital problems and 
tethered cord syndrome.  

   Treatment Planning 

 Surgical indications are summarized in Table  2 . The indications are quite variable 
and more related with etiology of the kyphosis.

     (a)     Cord compression : If it causes signifi cant cord compression, the principle of the 
surgery must be to decompress the apex of the kyphotic deformity. At the same 
session, deformity correction may also be tried. Kyphosis due to trauma, Pott’s 
disease, and some congenital diseases are most frequent reasons for kyphosis 
with neurological defi cits.   

   (b)     Pain  may be the only symptom in traumatic, degenerative, osteoporotic kypho-
sis. In that instance, the aim of the surgery must be deformity correction together 
with fusion.   

   (c)     Respiratory problems  are a late complication of severe kyphosis. Surgery 
should aim to prevent respiratory failure. However, in severe kyphotic cases 
with signifi cant restriction of respiration, the surgery under general anesthesia 
will pose signifi cant risk.   

   (d)     Deformity  itself can cause signifi cant disability and may be the primary aim of 
the surgery. Ankylosing spondylitis is a good example to that situation. If the 
angle of the kyphosis exceeds 75°, patients are not able to see the faces of the 
other persons when sitting and standing. They cannot walk easily. To correct 
their sagittal balance, they try to fl ex their knees and hips.    

  Table 2    Surgical indications 
in kyphosis  

 Neurological defi cits—mostly due to sharp-angled severe kyphosis 
 Pain not responding to conservative treatment 
 Respiratory insuffi ciency 
 Kyphosis exceeding 75° 
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  In general, an anterior surgery is necessary if kyphosis is with neurologic 
 defi cits and if the angle of kyphosis is more than 70°. Posterior techniques with 
osteotomy is necessary, if there is a long curvature kyphosis, if the short 
 curvature thoracic kyphosis is between 30° and 70°, or if lumbar kyphosis is 
more than 20°. 

 Decision making in kyphosis management is not well defi ned, and there are many 
options for surgery. Table  3  gives a personal algorithm for surgical management.

      General Precautions 

 Before surgery, specifi c problems that might result in intraoperative complications 
should be evaluated.

    (a)     Respiratory function  may be diminished by kyphotic deformity, especially in 
severe thoracic kyphosis. Besides, ankylosis of the ribs may restrict chest 
expansion. As a result, postoperative use of a ventilator may be necessary.   

   (b)     Intubation diffi culty  may pose an important problem especially in ankylosing 
spondylitis patients. Deformity in cervicothoracic junction and ankylosis of 
temporomandibular joints are the reasons for that. Fiber-optic intubation may 
be helpful. In some cases a tracheostomy may be necessary.   

Kyphotic Deformity

Soft angle kyphosis
Mostly ankylosing

spondylitis

Sharp angle kyphosis
Other etiology

Neurological deficits

Yes No

Flexible
Scheuermann

kyphosis

Fixed
Trauma,

congenital

Posterior osteotomy
Pedicle subtraction or

Smith Peterson

Anterior
decompression +

anterior ± posterior
fixation

Posterior fixation
± Smith Peterson

osteotomy

Anterior-Posterior
surgery or

Vertebrectomy

   Table 3    Algorithm    for surgical management of kyphosis       
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   (c)     Nutritional status : Ankylosing spondylitis patients may have associated ileitis 
or colitis. The nutritional status of the patient may be worse.   

   (d)     Osteoporosis : Bone density is another condition that must be evaluated well. 
Geriatric patients and patients with ankylosing spondylitis are prone to dimin-
ished bone density. In case of signifi cant osteopenia, special planning of fi xa-
tion should be anticipated.   

   (e)     Hip joints : If hip joints are ankylosed and a fl exion deformity is developed, cor-
rection of this problem, i.e., hip replacement, should proceed before kyphosis 
correction.      

   Surgical Techniques 

 In thoracolumbar kyphosis, anterior surgery is necessary mainly for decompression 
of the spinal cord. If there is no cord compression, posterior-only approaches may be 
used. However, both for correction purposes and stabilization of the vertebral col-
umn, posterior surgery is necessary. Table  4  summarizes the surgical techniques.

   Van Royen and De Gast [ 34 ] have classifi ed the posterior osteotomies as follows: 
(1) opening-wedge osteotomy, (2) polysegmental wedge osteotomies, and (3) 
closing- wedge osteotomy. There is no consensus on the literature of which tech-
nique is more suitable for surgery of kyphosis correction.

    (a)     Rod reduction and fi xation : This technique may be applied for more fl exible 
kyphosis, and good candidates are patients with degenerative kyphosis and 
Scheuermann disease. Rods are fi rst placed on the proximal screws, then the 
rods are pushed to the distal screws by reducing the hyperkyphosis and con-
nected to the distal part of the construct [ 19 ] (Fig.  1 ).

   Kyphosis in Scheuermann disease can be managed by an anterior apical 
release and fusion before posterior rod compression instrumentation and closing-
wedge lamina resection. A report by Johnston and coworkers [ 13 ] has examined 
the necessity of anterior spinal fusion and concluded that a posterior-only surgery 
with posterior compressive instrumentation with threaded rods is suffi cient.   

   (b)     Smith-Peterson osteotomy : This an extension osteotomy and is originally 
described by Smith-Peterson in 1945. Osteotomies are done by removing the 
posterior elements completely at the disc level. Then, the spine is extended 
through the osteotomized segments and disc spaces. It causes approximately 

  Table 4    Type of surgical 
techniques in kyphosis  

 (a) Rod reduction and fi xation 
 (b) Smith-Peterson osteotomy 
 (c) Pedicle subtraction osteotomy 
 (d) Combined anterior-posterior surgery 
 (e) Vertebral column resection 
  Posterior-only resection 
  Anterior-posterior resection 
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10–15° of correction at each level (Figs.  2  and  3 ). The main risk of this tech-
nique as originally described is rupture of the ventral part of the disc and ante-
rior longitudinal ligament, resulting to stretching of the abdominal viscera 
which may cause rupture or obstruction of the aorta. Some surgeons prefer to 
place anterior strut grafts after posterior instrumentation [ 16 ].

        (c)     Pedicle subtraction osteotomy : This is an approach resecting posterior ele-
ments, both pedicles and a part of the body in a wedge style (Fig.  4 ). The main 
advantage is that the whole procedure can be done by a posterior-only approach.

   Thirty to thirty-fi ve degrees of lordosis can be achieved with this technique. If 
the surgeon expects more degrees of correction, osteotomies must be performed 

a b

     Fig. 1    Rod reduction and fi xation technique for fl exible kyphosis. The upper and lower segments 
of the kyphosis are anchored whether by screws or hooks; after placing and tightening both rods 
on the upper vertebra, rods are pushed ventrally and placed on the lower screws by achieving some 
kyphosis correction       
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a b

  Fig. 2    Smith-Peterson osteotomy in one level. Only a part of the lamina and facet joints is 
removed, and a kyphosis is reduced by defl ection of the table. The ventral part of the disc space 
opens and even anterior longitudinal ligament may rupture during this reduction       

in multiple consecutive levels. For example, 100° of kyphosis may be corrected 
by three-level pedicle subtraction osteotomy. 

 The so-called egg-shell procedure is to enter the vertebral body via pedicles 
and remove spongious bone inside the body by leaving the cortex of the body 
like a shell of an egg. Then, compressive instrumentation would result in col-
lapse of the body and result with lordosis. This procedure, however, poses a risk 
that the posterior part of the body may retropulse the spinal canal and cause 
spinal cord compression. 

 Pedicle subtraction osteotomy is performed by a careful resection of the poste-
rior  elements than decancellation of the body via a transpedicular route. I perform 
this procedure under operation microscope, remove transverse processes and lat-
eral margins of the pedicle, enter the body using a high-speed drill, and go through 
till the anterior longitudinal ligament. At last, I push the posterior cortex of the body 
ventrally and excise the posterior longitudinal ligament. Afterwards, the entire 
spine is extended through the osteotomy site using defl ection of the operating table 
and sometimes by additional compression of the  adjacent pedicle screws on the 
rod. After closing the gap, the dura must be observed carefully, and any kinking or 
compression by lamina must be avoided to prevent neurological defi cits. 

 If it is a whole-spine—thoracic and lumbar—kyphosis, correction may be 
achieved through lumbar osteotomy, and relordosation is accomplished. Thomasen 
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has chosen the L2 vertebra for posterior osteotomy [ 30 ]. Although he has used 
plates and metallic wires posteriorly in some patients, he also has placed the 
patients in a plaster jacket for 3 months. Simmons [ 26 ] has used Harrington com-
pression system for thoracic deformity. With the advent of new pedicle-based 
internal fi xation techniques, plaster jackets have been abandoned today [ 3 ,  28 ,  34 ].   

   (d)     Combined anterior-posterior surgery : This is advocated in severe deformity 
with signifi cant compromise to the spinal cord. If a combined anterior-posterior 
osteotomy is chosen, thoracotomy is performed from the convex site of the 
deformity. In both approaches a ventral cage with grafts should also be placed. 

 Anterior strut grafting has also been advocated after Smith-Peterson osteot-
omy to support anterior column [ 10 ,  16 ]. LaChapelle [ 16 ] has fi rst performed a 
posterior laminectomy and osteotomy under local anesthesia and, 2–3 weeks 
later, an anterior surgery under general anesthesia and excised the intervertebral 
disc and applied autologous bone grafts inside the disc space. He then applied a 
plaster brace for 6 months.   

   (e)     Vertebral column resection : This is the procedure of choice in severe rigid 
deformities. Although a combined anterior-posterior osteotomy may be chosen 

a b

  Fig. 3    Smith-Peterson osteotomy in multiple levels. One-level osteotomy cannot provide more 
than 15–20° reduction. By multilevel osteotomies, more correction in a smooth-angled kyphosis 
may be achieved       
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in some instances, deformities 90° or more can easily be handled with a 
posterior- only approach, since the deformity facilitates it. Some surgeons prefer 
a circumferential decompression and instrumentation in the same stage [ 21 ]. 

    Chen and coworkers [ 7 ] have claimed that in severe sharp-angled kyphosis, 
a shortening procedure will be too risky, and they advocated the resection of the 
apex of the kyphosis, corrected the segment with two rods, and placed a cage in 
the resected segment ventrally.    

     Operative Positioning and Anesthesia 

 Early reports on posterior kyphosis surgery have used local anesthesia [ 26 ]. Smith- 
Peterson and colleagues have used general anesthesia with the patient lying in the 
prone position. Adams [ 1 ] has performed the surgery with the patients lying on their 
side. 

 For cervical osteotomy, Simmons [ 26 ] and Law [ 17 ] have also used local anes-
thesia in sitting position on a dentist’s chair. Urist [ 32 ] has used general anesthesia 

a b

  Fig. 4    Pedicle subtraction osteotomy. This technique is done by removing lamina, facet joints, 
pedicles, and transverse processes on both sides. Posterior part of the body removal is deepened  
till anterior longitudinal ligament by creating a wedge of the body. I push the hidden posterior 
cortex of the body ventrally to prevent retropulsion during reduction. This type of osteotomy does 
not distract the ventral disc or ligament and causes some shortening of the spine. Approximately 
30° of kyphosis reduction may be provided in one level       
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for cervical osteotomy. Two reasons for local anesthesia are observing the neuro-
logical function and diffi culty of intubation [ 26 ]. 

 We always preferred general anesthesia and prone position with three-pin head 
holder. We seldom used sitting position. The surgeon must be prepared to change 
the position of the table and correct the deformity after completing the osteotomy 
(Fig.  5 ). Although it is advocated to use spinal cord monitoring, we did not use it in 
any of our cases.

   Some surgeons recommend to place a nasogastric tube since the superior mesen-
teric artery may be stretched over duodenum resulting in gastric dilation [ 15 ].  

   Technical Considerations in Lumbar and Thoracolumbar 
Junction Kyphosis 

 Posterior-only surgeries in lumbar spine is easier than thoracic and cervical spine, 
because the retraction of the cauda equina is possible and reduction is not hard as is 
thoracic spine with rigidity provided by the ribs. In patients with ankylosing spon-
dylitis, a patient will resume a more erect position, diaphragmatic ventilation will be 
possible, and compression to the abdominal structures by the edges of the ribs will 
be reduced. 

 In smooth-angled kyphosis at the thoracolumbar junction, an osteotomy at L2 
level will be suffi cient. In lumbar kyphosis, L3 may be the level of choice.  

  Fig. 5    Positioning of the patient in operating table and correction by defl ection of the table       
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   Technical Considerations in Thoracic Kyphosis 

 The previous reports have tried not to implement reduction of thoracic kyphosis 
with posterior-only approaches. Simmons [ 26 ] has recommended anterior and pos-
terior combined approaches in severe thoracic kyphosis. 

 It is our intention also to be more cautious at the thoracic levels during correction 
by a posterior osteotomy. We believe that multilevel pedicle subtraction osteotomies 
by gaining a 30° reduction at each level and meticulous observation of the spinal 
cord to be sure that there is no kinking of the dura should be applied. 

 Simmons has advocated an osteotomy in the midlumbar spine, in case the dorsal 
kyphosis is associated with a loss of lumbar lordosis or if the thoracolumbar defor-
mity is less than 40° [ 26 ]. We believe that in smooth-angled kyphosis involving both 
thoracic and lumbar levels, the midpoint of osteotomy should be L2.  

   Technical Considerations in Cervicothoracic Kyphosis 

 Cervicothoracic kyphosis is a more disabling problem than thoracolumbar kypho-
sis. The fi eld of vision is severely restricted, and the patient cannot open his/her 
mouth. Because of excessive loads on craniocervical junction, atlantoaxial sublux-
ation may develop. Dyspnea and dysphagia may happen because of compression of 
trachea and esophagus. 

 The fi rst experience of cervical osteotomy is from the 1960s. Urist [ 32 ] is the 
fi rst surgeon performing osteotomy of the cervical spine in 1958. In 1962 Law 
[ 17 ] made an extensive report of this technique. Law has performed osteotomy 
under general anesthesia at any level below the second cervical vertebra. Internal 
fi xation was done with wire or plates, and then the patient was placed in a 
Minerva cast. 

 In 1972, Simmons has recommended cervical osteotomy under local anesthesia 
and in sitting position because of intubation diffi culty [ 25 ].    One other advantage of 
surgery under local anesthesia is the patients report on paresthetic pain along the 
distribution of the cervical roots and prevent damage to the roots. Another differ-
ence from Law’s approach is the site of osteotomy which was at C7 or T1. The 
vertebral artery compromise is unlikely at that level since it enters the foramen at C6 
level. Besides, C8 and T1 roots are less eloquent roots and can be mobilized easily. 
Simmons has not used internal fi xation and placed the patient in a halo cast after 
surgery which was worn for 4 months (Fig.  6 ).

   The technique we use for cervicothoracic kyphosis is a C7 osteotomy. I con-
sider that kinking of the vertebral artery at upper levels may pose a great risk and 
stretching of C8 nerve roots is unlikely. We choose the prone position and use a 
Mayfi eld three-pin head holder. The most diffi cult part is the intubation of the 
patient. The diffi culty comes not just from the deformity, but also the ankylosis 
of temporomandibular joints causes immobility. A fi ber-optic intubation in an 
awake patient and using nasal route may be helpful in severely deformed patients. 
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After removing C7 spinous process, both pedicles and posterior part of the ver-
tebral body are removed using a high-speed drill. Both C8 roots were mobilized. 
Then, by holding the head with both hands, the Mayfi eld head holder is released 
and the head is extended carefully, and the gap between C6 and T1 lamina is 
closed. The dura and roots are observed again to be sure there is no kinking and 
impingement. A posterior screw system two levels up and two levels below is 
then applied in corrected position. The patient is let to walk the next day using a 
rigid collar.  

   Complications and Outcome 

 There are many reported complications in kyphosis correction:

    (a)     Neurological worsening : Neurologic compromise could result from spinal cord 
compression as a result of inadequate decompression    [ 33 ] or subluxation [ 10 ]. 
In Simmons’ series [ 26 ] using single-level wedge osteotomy in 90 patients, 
seven (8 %) developed L3 root or cauda equina compression.   

  Fig. 6    Posterior osteotomy of C7 vertebra and correction. C7 is chosen since that will not com-
promise the vertebral artery. Special attention to C8 roots is necessary       
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   (b)     Aorta rupture and death : This complication is reported in earlier series with 
posterior osteotomies causing rupture of the anterior longitudinal ligament 
that loads stretching forces to the aorta. The fi rst report for aortic rupture in 
correction of ankylosing spondylitis is in 1956 by Lichtblau and Wilson [ 18 ]. 
Law [ 17 ] presented a large sample of kyphotic correction and reported a 
10 % risk of death associated with surgical intervention.    In patients with 
ankylosing spondylitis, infl ammatory changes may cause the fi brosis of 
 cardiac vessels and the aorta, and the aorta weakens and becomes prone to 
rupture from aneurysms. There are some other reports describing aortic rup-
ture due to lumbar extension osteotomy during surgery or late after surgery 
[ 6 ,  14 ,  35 ]. 

 Besides, by elongation of the anterior column, a stretch of the superior mes-
enteric artery over duodenum may cause gastric dilation and vomiting [ 26 ].   

   (c)     Respiratory problems : This is possible especially in patients with preoperative 
restriction of the lung capacity.   

   (d)     Infection  is a common complication in long-lasting and instrumented spine 
surgeries.   

   (e)     Correction loss : Loss of correction may happen by many reasons such as inap-
propriate surgical planning, pseudarthrosis, osteopenia, and smoking.     

    In a report of 33 patients with lumbar pedicle subtraction osteotomy, Bridwell 
and coworkers [ 3 ] reported that 7 had pseudarthrosis, 2 had acute angular 
kyphosis, and 5 had transient neurologic defi cits whose defi cits resolved after 
central canal enlargement. Overall patient satisfaction was good, and they con-
cluded that the clinical result with pedicle subtraction osteotomy is reduced 
with pseudarthrosis in the thoracic or lumbar spine and subsequent breakdown 
adjacent to the fusion. The results with a degenerative sagittal imbalance 
etiology were worse, and the complications were higher. They found that central 
canal enlargement is a critical issue in surgical management of thoracolumbar 
kyphosis. 

 Ikenaga and coworkers [ 11 ] have examined the rate of complications after pedi-
cle subtraction osteotomy in a clinical series and reported 48 complications in 67 
patients. There were 6 intraoperative, 4 perioperative (during fi rst 2 weeks), and 38 
late postoperative complications. Among late complications, there were adjacent- 
segment collapse, 8 (12 %); progression of kyphosis without collapse, 10 (15 %); 
infection, 2 (3 %); pseudarthrosis, 7 (10 %); and instrumentation failure, 3 (4 %). 
Additional surgery was necessary in 7 patients (10 %).  

   Personal Series 

 Between 1992 and 2011, 62 patients with thoracic and lumbar kyphosis were surgi-
cally treated. The mean age is 38 (between 6 and 70 years); male/female ratio is 
32/30. Etiology of kyphosis were congenital (21), ankylosing spondylitis (13), 
degenerative diseases (7), trauma (7), infection (4), previous laminectomy (4), 
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Scheuermann kyphosis (2), tuberculosis (2), myelomeningocele (1), and osteopo-
rotic compression (1) (Table  5 ).

   There were soft angle kyphosis in 15 patients (cervicothoracic 3, thoracic 3, 
thoracolumbar 9).    Remaining 47 patients had a sharp-angle kyphosis in either cer-
vicothoracic junction (T1, 1 case; T3–4, 4 cases), thoracic spine (T6, 1 case; T7–8 
2 cases; T8–9, 1 case; T9, 1 case; T10, 1 case; T11–12, 2 cases; T12, 4 cases; T12–
L1, 2 cases; L1, 10 cases), or lumbar spine (L1–2, 1 case; L2, 3 cases; L3, 4 cases; 
L3–4, 5 cases; L4, 2 cases; L4–5, 3 cases). 

 The type of surgery performed for this series was posterior osteotomy and reduc-
tion with pedicle fi xation (36), posterior fi xation with interbody fusion (11), anterior 
decompression and reduction with fi xation (7), and combined anterior and posterior 
surgery (8) (Table  6 ).

   Results: Signifi cant reduction could be achieved in 57 cases. Neurological 
defi cits did not worsen in patients with preoperative defi cits. Complications of 
surgery were hardware failures (5 cases), loss of correction (8 cases), wound 
problems and local infection (12 cases), and CSF leakage (3 cases). There were 
no neurological complications. Figures  7 ,  8 ,  9 , and  10  are some examples from 
our personal series.

  Table 5    Etiology of 
kyphosis in 62 patients who 
were surgically treated  

 Etiology of kyphosis   n  

 Congenital  21 
 Ankylosing spondylitis  13 
 Degenerative  7 
 Traumatic  7 
 Postlaminectomy  4 
 Infection  4 
 Tuberculosis  2 
 Scheuermann disease  2 
 Myelomeningocele  1 
 Osteoporotic  1 

  Table 6    The type of surgery 
performed in personal series  

 Posterior osteotomy and reduction with pedicle fi xation  36 
 Posterior fi xation with interbody fusion  11 
 Anterior decompression and reduction with fi xation  7 
 Combined anterior and posterior surgery with fi xation  8 
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a b

  Fig. 7    A 21-year-old male with Scheuermann kyphosis ( a ,  b ). Smith-Peterson osteotomies were 
performed at T6–7, T7–8, T8–9, and T9–10 levels. T2–5 and T9–12 pedicle screw fi xations were 
performed, and a compressive correction on rods was performed through a posterior-only approach 
( c ,  d ). Postop direct radiograms ( e – g ) and posture ( h ) show the reduction of the kyphosis       
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  Fig. 8    A 42-year-old male with severe thoracolumbar kyphosis. He suffers from ankylosing spon-
dylitis for 20 years. He was not able to walk in erect position and look at the faces of other persons 
and also the sky when standing ( a ,  b ). The kyphosis was approximately 100° ( c – f ). A four-level 
pedicle subtraction osteotomy was performed ( g – j ), and an excellent reduction could be achieved 
( k–n ). Note the degree of kyphosis on the operating table before ( g ) and after ( j ) surgery       
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  Fig. 9    A 34-year-old male with ankylosing spondylitis for more than 10 years. He had kyphosis 
more prominent on cervicothoracic junction in addition to some lumbar kyphosis ( a – c ). Intubation 
was not diffi cult; however, you can note the degree of deformity in supine position ( d ). After a Ct 
posterior osteotomy, both C8 nerve roots are visualized ( e ). The gap at the osteotomy site is closed 
using manual extension with the release of Mayfi eld head holder ( f ).    C5 and C6 lateral mass and 
T1 and T2 pedicle screw fi xations were performed ( g ). Postoperative photograph 2 days after sur-
gery depicts the amount of correction and recovery of the forward gaze angle ( h ). Postoperatively 
he used a SOMI brace for 8 weeks       
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  Fig. 10    A 51-year-old female admitted with severe cervicothoracic kyphosis. She has been diag-
nosed with ankylosing spondylitis for 15 years. She was unable to look at the faces of other people 
when she was standing, and her chin was on her sternum with 1 cm distance between ( a – c ).    She 
had diffi culty of swallowing due to compression of the esophagus by manubrium sterni ( d ,  e ). Also 
she described abdominal pain due to xiphoid compression to the abdomen. We planned to perform 
a two-stage surgery with posterior osteotomies on 7 levels, cervical and thoracic ( e ). The fi rst stage 
was performed in sitting position. The hardest part was intubation and could be performed with 
fi ber-optic bronchoscopy ( f ). Pedicle subtraction osteotomies were performed at T4, T6, T8, and 
T11 levels ( g ), and pedicle screw fi xation was performed ( h ).    At the end of the fi rst session, it was 
possible to place fi ngers under the mandible ( i ). Two weeks later, the second stage of surgery was 
performed with the patient on prone position ( j ) with osteotomies at C6–7, C7–T1, and T2–3 disc 
levels. The previous rods were removed, and new rods were inserted from C6 to L3 ( k ). Signifi cant 
reduction was achieved by defl ection of the head on Mayfi eld head holder ( l ). She stayed in inten-
sive care unit for 1 month and recovered well with signifi cant deformity correction ( m – r ). Block 1 
( a –  c ,  o ,  p ,  r ) Pre- and postoperative photographs of the patient. Block 2 ( d ,  e ,  m ,  n ) Pre- and 
postoperative direct radiograms and sagittal MR. Block 3 ( f–i ) Stage 1 surgery, thoracic osteoto-
mies. Block 4 ( j–l ) Stage 2 surgery, cervicothoracic osteotomies       
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         Conclusion 

 Surgical management of kyphosis needs consideration of different aspects of the 
kyphotic deformity such as neurological status, the presence of spinal cord com-
pression, angle of the kyphosis, the quality of bone, and accompanying diseases. In 
case of signifi cant cord compression and neurological compromise, anterior should 
have the priority. 

 However, in smooth-angled kyphosis and ankylosing spondylitis patients, defor-
mity can easily be reduced by a posterior-only approach. Since they have no neuro-
logical defi cits, and large spinal canal, most suitable patients for pedicle subtraction 
osteotomy are the patients with ankylosing spondylitis. 

 In lumbar kyphosis one-level pedicle subtraction osteotomy (especially at L2 or 
L3 levels), in thoracic kyphosis multilevel osteotomies, and in cervicothoracic 
kyphosis an osteotomy at C7–T1 level should be preferred. 

 Pedicle subtraction osteotomy is a technically demanding procedure that requires 
surgeons to exercise caution to achieve satisfactory results while avoiding compli-
cations. An attempt to correct the rigid fi xed spinal deformity in ankylosing spon-
dylitis is not an easy task and requires the capability of a highly experienced spine 
surgeon. Although the physical outcome of surgical treatment is benefi cial, risks 
and complications exist that demand awareness by both the physician and patient.     
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    Abstract     Anterior cervical discectomy and fusion (ACDF) has been a very suc-
cessful procedure in the management of cervical radiculopathy and myelopathy. 
Concerns with adjacent segment disease and the desire to preserve physiological 
motion have led to technological and clinical efforts for cervical disc arthro-
plasty. The suggested move to cervical disc replacement has led to this latter 
procedure being one of the most scrutinised surgical treatments in the twenty-
fi rst century. Short- and medium-term prospective randomised clinical trials and 
systematic reviews show cervical disc replacement to be at least as good as 
ACDF as regards the clinical outcomes in the management of degenerative cervi-
cal spondylosis. This is logical since the neural decompression procedure is 
essentially the same. However, the rationale for arthroplasty over arthrodesis has 
been built on two main proposed roles: the preservation of segmental motion and 
the prevention of adjacent segment disease. Whilst results thus far show that this 
fi rst role seems to be achieved, its clinical signifi cance is as yet unproven; the 
second is so far not proven. In addition, the long-term fate of the implants is also 
unknown. Long-term safety and effi cacy, therefore, still await further clinical 
studies.  

  Keywords     Anterior cervical discectomy and fusion (ACDF)   •   Cervical total disc 
replacement (C-TDR)   •   Cervical fusion/arthrodesis   •   Cervical arthroplasty/disc 
replacement   •   Radiculopathy   •   Myelopathy   •   Adjacent segment disease (ASD)   • 
  Motion preservation  

       Introduction 

 The treatment of spondylotic cervical radiculopathy and/or myelopathy with ante-
rior cervical discectomy has been a successful treatment for several decades [ 22 , 
 49 ]. It has evolved from pure discectomy to discectomy with fusion to prevent post-
operative kyphosis and neck pain. Technical advances in allografts have led to a 
shift from iliac crest autograft fusion to the use of cages, and complications are of 
low incidence. There remains, however, concern about the biomechanical effect of 
a fused segment upon the kinematics and potential subsequent disc degeneration 
upon its adjacent level [ 25 ], hence the interest in motion preservation and cervical 
total disc replacement (C-TDR). 
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 The fi rst artifi cial cervical disc was reported in 1964 by Reitz and Joubert, who 
treated a series of patients with cervicobrachialgia, and in 1966 by Fernstrom who 
used a stainless steel ball-shaped prosthesis in a small series of patients [ 18 ,  47 ]. 
These studies lacked follow-up beyond 12 months, and their implants were aban-
doned due to hypermobility and subsidence. Further interest in cervical arthroplasty 
did not come until 1991 with the fi rst generation of Cummins-Bristol ball-and- 
socket, metal-on-metal implant. Its use was limited by disc space and facet joint 
overdistraction, limited motion and screw complications [ 13 ]. Further improve-
ments led to the Bristol-Cummins/Frenchay/Prestige disc. Technical developments 
led to the design of a metal-on-plastic prosthesis by Bryan, the fi rst of which was 
used in 2000. There are now several such devices, with either CE mark (in Europe) 
or FDA approved (in the USA) or investigational status, and to date several thou-
sand operations have taken place worldwide. 

 In this review, we revisit the rationale for T-CDR, its indications and contraindi-
cations, the surgical and postoperative considerations and biomechanics. We review 
the latest clinical evidence from trials, systematic reviews and meta-analyses in 
relation to the clinical outcomes, paying particular attention to the issues of motion 
preservation, adjacent segment disease, neurological recovery and patient satisfac-
tion, with single- and multi-level arthroplasty. We also review the specifi c complica-
tions of heterotopic ossifi cation, inadvertent fusion (autofusion), postoperative 
kyphosis, vertebral fracture and implant failure. We conclude with the unanswered 
questions and need for future work. 

   The Rationale for Cervical Total Disc Replacement (C-TDR) 

 The rationale for a total disc replacement in the cervical spine was borne out of 
concerns for altered biomechanics that arise with an ACDF. Motion-preservation 
technology has been developed to preserve motion at the segments of the cervical 
spine, as such motion was observed to be lost with ACDF both at the index operated 
level and at adjacent segments, leading to adjacent segment degeneration, which 
when clinically relevant is termed adjacent segment disease (ASD). The theory 
behind adjacent segment loss of motion is that it is due to an increased rate of degen-
eration secondary to an initially increased range of motion, but with raised intradis-
cal pressures, next to the fused segment where motion is lost [ 17 ]. The specifi c 
underlying aetiology of ASD has not been proven; however, cumulative risks as 
high as 25 % have been reported at 10 years post ACDF [ 25 ]. The rationale there-
fore of cervical arthroplasty is to provide anterior neural decompression whilst 
allowing motion preservation and preventing ASD and possible reoperation. 

 Whilst it is generally accepted that ACDF alters the kinematics of the cervical 
spine and that cervical spondylosis is a natural consequence with aging, it is still 
unclear whether adjacent segment degeneration is a natural progression or a conse-
quence of fusion, or whether it is a natural phenomenon accelerated by fusion. In 
Hilibrand’s oft-quoted study, multilevel ACDF had less ASD than single-level ASD, 

Cervical Disc Arthroplasty: A Critical Review and Appraisal



110

suggesting the inclusion of all degenerative levels in the original procedure [ 25 ]. 
Hilibrand, though, comments in a follow-up article that ASD may be related to 
natural history [ 26 ]. 

 Non-biomechanical advantages of TDR include the avoidance of discomfort and 
complications associated with harvesting an autograft such as an iliac crest graft—
pain, infection and pelvic fracture [ 7 ]—and the risk of viral transmission, non- or 
delayed or malunion, pseudoarthrosis and subsidence with an allograft [ 19 ].  

   Indications and Contraindications 

 The indications are drawn from the clinical trials that have been used to assess the 
effi cacy and safety of C-TDR [ 1 ,  3 ,  33 ] (Table  1 ).

   Such ‘on-label’ indications are limited to the selection criteria within the trials, 
yet more indications are added once a device becomes approved. The cervicotho-
racic junction, for instance, is a level which trials have excluded; it represents the 

   Table 1    Indications and contraindications for cervical disc arthroplasty   

 Indications for C-TDR  Contraindications for C-TDR 

 Symptoms and fi ndings referable to a 
pathology between C3 and T1 

 Spinal infection/active malignancy 

 Failed conservative management for a 
minimum of 6 weeks 

 Osteoporosis/osteopaenia/metabolic bone disease 

 Radiculopathy/myelopathy with or without 
axial neck pain due to spondylosis 

 Rheumatoid arthritis/autoimmune disease 

 Radiculopathy/myelopathy with or without 
axial neck pain due to disc herniation 

 Trauma/acute traumatic disc herniation 

 1 or 2 vertebral levels  Severe spondylosis/disc height loss >50 % 
 Radiologic confi rmation of spinal cord and/

or nerve root compression that 
corresponds to the symptomatology 

 Ankylosing spondylitis 

 OPLL (ossifi cation of the posterior longitudinal 
ligament) 

 DISH (diffuse idiopathic skeletal hyperostosis) 
 Instability on dynamic radiographs, translation 

>3 mm, rotational difference between adjacent 
levels >11° 

 Kyphosis 
 Prior laminectomy or laminoplasty or same-level 

ACDF 
 Facet arthropathy 
 Predominantly posterior stenosis 
 Axial neck pain as the sole symptom 
 Extreme obesity/BMI >40 
 Insulin-dependent diabetes mellitus/chronic 

steroids 
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transition from the highly mobile cervical spine to the relatively immobile thoracic 
spine. Likewise, the C2/3 level has not been studied either and arthroplasties at such 
levels should be regarded with caution due to the lack of evidence. As regards the 
levels operated, there have been reports of three or more levels treated with C-TDR, 
some with better results than single-level operations [ 45 ].  

   Surgical Considerations 

 Whilst the procedure for C-TDR is similar to ACDF, there are some technical consid-
erations that are prerequisite to a successful arthroplasty. A total discectomy is 
required with removal of all osteophytes to prevent impeded motion and to minimise 
the risk of inadvertent fusion, as well as the risk of dynamic foraminal compression. 
Therefore, bilateral nerve root decompression is necessary even in unilateral radicu-
lopathy, and identifi cation of the proximal nerve root serves as a landmark of adequate 
decompression. The resection of the posterior longitudinal ligament (PLL) is not 
always removed in ACDF [ 59 ], but its complete resection is even more important in 
C-TDR as this will ensure complete decompression as well as mobilisation of the disc 
space, allowing parallel restoration of the disc height and symmetrical segment mobil-
ity. The cartilaginous endplates are removed whilst preserving the bony endplates, to 
facilitate the even implantation of the device and its symmetrical contact. More so 
than in ACDF, the fl uoroscopically guided midline insertion of the implant is required 
so as to allow appropriate motion along its centre of rotation. A correctly sized implant 
must be selected, with maximal endplate coverage and not excessive height. 
Overdistraction of the disc space can lead to facet joint distraction and overload, nerve 
root stretching and eventual reduction of motion [ 28 ]. In cases where due to body 
habitus it is diffi cult to visualise the interspace, consideration for fusion rather than 
arthroplasty should be given. Similar consideration should be given when there is 
ossifi cation of the PLL, where the risk of heterotopic ossifi cation, a poorly understood 
event, with subsequent inadvertent fusion may occur. The manufacturer’s recommen-
dations should be adhered with regard both to the technique and to patient selection. 

 The potential complications as they relate to the approach are similar to ACDF 
and include nerve root injury, cord injury, oesophageal injury, vertebral artery injury, 
vertebral body fracture, dysphonia, dysphagia, durotomy, airway compromise due to 
postoperative haematoma and implant failure. Earlier reports of arthroplasty using 
the Bryan prosthesis, for example, reported 4 % radiculomyelopathy, 4 % dysphagia/
dysphonia and 1 % symptomatic haematoma [ 44 ], but later reports actually showed 
a lower incidence of dysphagia with cervical arthroplasty than with fusion [ 35 ].  

   Postoperative Considerations 

 The use of a collar is not required. Physiotherapy can start from the fi rst postopera-
tive day and should address fl exibility and strengthening. A home exercise regime 
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can be useful. Return to work can be assessed on a case-by-case basis, without 
specifi c restrictions and as soon as the patient feels ready. Compared to cervical 
fusion, return to work after cervical arthroplasty has been reported to be earlier [ 55 ].  

   Design Considerations: Kinematics and Biomechanics 

 The aim of any cervical arthroplasty is to mimic as close to normal as possible the 
physiological motion and kinematics, whilst preserving alignment and stability 
across a motion segment. The biomechanical properties of C-TDR will depend on 
short- and long-term stability, the material interfaces, articulation geometry and 
centre of rotation, which are the main characteristics of an artifi cial cervical disc. 

 The methods employed to ensure good short-term fi xation to the endplates 
include anchoring teeth, a keel and vertebral screws. Long-term stability requires 
osteointegration, and this can be encouraged with osteoconductive surfacing, tita-
nium wire mesh, plasma-sprayed titanium, porous cobalt-chromium and hydroxy-
apatite. Good short- and long-term fi xation will prevent subsidence and 
subluxation. 

 The articulating interface can be metal on metal, metal-on-polymer composite, 
ceramic-on-polymer composite, totally polymer composite and ceramic on ceramic. 
The majority of designs feature metal alloys and polymer. Metal alloys reduce the 
risk of metal wear, fracture or corrosion. Titanium is preferred for its modulus of 
elasticity, which is similar to bone, and its limited MRI artefacts, but it is at risk of 
wear and notching. Cobalt-chromium is preferred for its wear features and durability, 
but at the expense of MRI artefact. Stainless steel has a high modulus of elasticity 
and a higher rate of subsidence. Ceramic design has even better wear resistance and 
durability as well as MRI compatibility, but is subject to manufacturing challenges 
and reduced shock absorption. Polymers have lower stiffness, with higher wear. 

 Implants can be modular (i.e. with replaceable components) or non-modular. 
Kinematic classifi cation of discs includes non-articulating, uni-articulating or bi- 
articulating. Based on the degree of freedom between the articulating surfaces and 
as such the gliding motion permitted, the devices are classifi ed as unconstrained, 
semi-constrained, constrained or biomimetic. 

 Biomechanically, the restoration of disc space height has an effect on the facet 
joints. Disc designs try to balance a simulation of physiologic motion; unconstrained 
implants allow translation, against the risk of increased shear and torsion forces on 
the facet joints, because their unfi xed axis of rotation distributes load away from the 
device-bone interface. In unconstrained implants it is the ligaments and joints that 
defi ne the extremes of motion. Constrained devices allow less than physiologic 
motion and reduce facet joint load, but their fi xed axis of rotation demands greater 
surgical precision during placement. On the one extreme there is the risk of sublux-
ation and on the other suboptimal motion preservation with inadvertent fusion. 

 As regards the centre of rotation, there are differences from level to level in the 
physiologic cervical spine; it is usually in the posterior half of the upper portion of the 
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vertebra below the disc. This is termed the fi nite axis of rotation (FAR) in sagittal plane 
motion, as in fl exion and extension. This FAR progressively moves more superiorly 
under the endplate and closer to the disc, as one moves craniocaudally through the 
cervical spine. The sagittal axis of rotation continuously changes with the fl exion and 
extension of the motion segment. Not fi xing the axis of rotation is the design advantage 
of unconstrained prostheses; preliminary studies have demonstrated preservation of the 
FAR and range of motion in the coronal and sagittal planes at the treated level with 
unconstrained and semi-constrained implants, as well as good durability. 

 Overall, the optimum device kinetics are unclear and device selection is indi-
vidualised. The diffi culty lies in that long-term multifactorial biomechanical data 
will be required, including disc height, facet loading, device design and implant 
positioning within the intervertebral space [ 20 ] (Table  2 ).

       Clinical Evidence 

   Randomised Controlled Trials (RCTs) 

 Six randomised controlled trials assessed the safety and effi cacy of cervical disc 
arthroplasty in comparison to ACDF in single-level disease; another assessed 
two- level disc disease. Most of these failed to mention if analysis was intention-
to-treat, blinding of assessors and of patients, though it was acknowledged that 
blinding the treatment provider in a surgical trial with such instrumentation was 
impossible [ 10 ]. 

   Mummaneni et al. (Prestige ST Prosthesis by Medtronic Sofamor Danek) [ 38 ] 

 This was an FDA (Federal Drug Administration)-regulated IDE (investigational 
device exemption) study to evaluate the safety and effectiveness of the Prestige ST 
cervical disc prosthesis compared to ACDF. This prospective, randomised, multicen-
tre trial reported outcomes on 421 (out of the recruited 541) patients at 2 years ran-
domly assigned to single-level ACDF or T-CDR. The conclusion was that Prestige ST 
arthroplasty was as safe and effective as fusion and maintained physiological motion. 
There were no statistically signifi cant differences in reoperation rate at the index level 
(1.9 % Prestige ST vs. 3.4 % ACDF), but the adjacent-level surgery rate was higher 
with ACDF (3.4 % vs. 1.1 %,  p  = 0.0492). Clinical evaluation was with NDI (Neck 
Disability Index), VAS (Visual Analogue Scale) and SF-36 (short form 36). 
Neurological success, defi ned as a maintained or improved neurological status, was 
better in the arthroplasty group (92.8 % vs. 84.3 %), both groups showing signifi cant 
improvement from preoperatively, but with no signifi cant difference between them. 
The arthroplasty patients returned to work at an average of 45 days postoperatively 
versus 61 days after ACDF. Two limitations were the incomplete data collection and 
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the presentation of mean scores without standard deviation, precluding estimation of 
effects that could be used in a meta-analysis with any degree of confi dence [ 10 ].  

   Murrey et al. (ProDisc-C Prosthesis by Synthes) [ 39 ] 

 This was an FDA-regulated IDE study to evaluate the safety and effectiveness of the 
ProDisc-C prosthesis compared to ACDF for single-level disease. This prospective, 
randomised, multicentre trial reported on 209 patients with up to 2-year follow- up. 
The conclusion was that ProDisc-C is a safe and effective surgical treatment for 
patients with disabling cervical radiculopathy because of single-level disease and 
that clinical outcomes were either equivalent or superior to fusion. Both groups 
showed improvement in all clinical parameters (NDI, VAS, SF-36, neurological 
recovery), improvements being higher with arthroplasty but not with statistical sig-
nifi cance. One signifi cant difference is the lower reoperation rate with arthroplasty 
(1.8 %) compared to ACDF (8.5 %) ( p  = 0.033). There was also a statistically signifi -
cant improvement in the number of patients not requiring strong opiates or muscle 
relaxants after arthroplasty. Motion preservation was achieved in 84.4 % of ProDisc-C 
patients, with ≥4° maintained motion relative to preoperative baseline at the index 
level. One limitation of this trial relates to the plots with distributions of scores, 
where the standard deviations were not clear; also unclear was whether the error bars 
were referring to standard error, standard deviation or confi dence intervals [ 10 ].  

   Sasso et al. (Bryan Disc Prosthesis by Medtronic Sofamor Danek) [ 50 ] 

 This was an FDA-regulated IDE study to evaluate the safety and effectiveness of the 
Bryan disc prosthesis. It was a prospective, randomised, 3-centre clinical trial, 
reporting the 24-month outcomes in 115 patients assigned to T-CDR or ACDF. The 
conclusion was that arthroplasty with the Bryan prosthesis compared favourably 
with fusion. This was because there were statistically signifi cant ( p  < 0.05) improve-
ments in NDI, VAS for neck pain and SF-36 PCS. VAS for arm pain and SF-36 
MCS were equivalent at 24 months; four patients in the control group required 
surgical intervention and three patients in the investigational group required ACDF 
for adjacent-level disease. The main limitation of this report was a large (61 %) loss 
to follow-up at 24 months and the resultant selection bias. A systematic review 
recalculated the reported results and found no statistical signifi cance [ 10 ].  

   Nabhan et al. (ProDisc-C Prosthesis by Synthes) [ 40 ] 

 This was a prospective randomised trial in Germany assessing the effectiveness of 
ProDisc-C against fusion at 1 year in 49 patients. The conclusion was that motion 
was preserved with arthroplasty at 1 year and that clinical outcomes were similar in 
the two groups. A recalculation of these results showed statistically signifi cant 
improvement in arm pain and neck pain scores with arthroplasty ( p  < 0.05) [ 10 ].  
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   Coric et al. (Kinefl ex|C Prosthesis by Spinal Motion) [ 12 ] 

 This was an FDA-regulated IDE study to evaluate the safety and effi cacy of a metal-
on- metal prosthesis (Kinefl ex|C). This was a prospective, randomised, multicentre 
trial comparing arthroplasty to ACDF in single-level spondylotic radiculopathy in 
269 patients.    Its conclusions at 2 years were a comparable clinical outcome between 
the two procedures: signifi cant motion preservation at the index level with arthro-
plasty and signifi cantly reduced radiological ASD with arthroplasty. There were no 
differences in the reoperation rates in the two groups.  

   Zhang et al. (Bryan Disc Prosthesis by Medtronic Sofamor Danek) [ 65 ] 

 This prospective, randomised, controlled, 3-centre clinical trial was held in China and 
compared the outcomes in 120 patients randomised between ACDF and T-CDR in the 
local population. At 2-year follow-up, the arthroplasty achieved the desired motion 
preservation, whereas ROM was reduced in the fusion group ( p  < 0.001). There was 
no signifi cant difference between the two groups with respect to the baseline changes 
in NDI and VAS for neck or arm pain. One patient in the C-TDR group and three 
patients in the ACDF group required reoperations due to adjacent segment disease, 
with another reoperation in the fusion group for disc prolapse at a nonadjacent level.  

   Cheng et al. (Bryan Disc Prosthesis by Medtronic Sofamor Danek) [ 11 ] 

 This prospective, randomised single-centre controlled trial assessed the effi cacy of 
arthroplasty versus fusion in two-level cervical disc disease. In 65 patients and with 
2-year follow-up, both groups had statistically signifi cant improvement in all out-
come measures at 2 years with respect to their preoperative scores. The arthroplasty 
group showed better clinical outcomes (arm pain VAS, neck pain VAS, SF-36, NDI) 
in comparison to the ACDF group. There was no autofusion and no heterotopic 
ossifi cation; motion preservation was 93 % in the Bryan group. The main limita-
tions were the small sample size and the single-centre study arrangement (Table  3 ).

       Update Reports on RCT Cohorts 

 The 5-year outcomes of the Prestige RCT were reported in 271 of the 541 (50 %) 
randomised patients [ 8 ]. Radiological assessment showed no implant migration and 
preserved angular motion in the arthroplasty group with an average 6.5°. Clinical 
improvements reported previously by Mummaneni [ 38 ] were sustained in both 
groups. The clinical improvement was statistically signifi cantly better in the arthro-
plasty group as assessed by NDI, VAS and SF-36 up to 3 years, but results con-
verged by 5 years. There was no statistically signifi cant difference in the rates of 
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reoperation for ASD. This is an important report; in the medium-term arthroplasty 
maintains improved clinical outcomes and does exhibit motion preservation, which 
is one of its aims, but its effect on ASD is unproven [ 8 ]. 

 Delamarter et al. provided a further analysis of the ProDisc-C IDE patients    [ 39 ] ,  
as well as a further 136 patients with continued access, with a minimum of 4-year 
follow-up. NDI and VAS scores were improved from baseline but not different 
between groups ( p  < 0.0001); there was a statistically higher risk for reoperation in 
the fusion group at the index or adjacent level (2.9 % vs. 11.3 %), but both groups 
showed good clinical results at longer-term follow-up [ 15 ]. 

 Sasso et al. provided an update to their original trial with the Bryan prosthesis, 
giving 4-year clinical outcomes of their prospective, randomised controlled trial for 
single-level disc disease [ 50 ,  51 ]. This medium-term follow-up showed persistence 
of the greater improvement in the Bryan disc cohort in the NDI and neck pain scores 
( p  < 0.001); the arm pain score ( p  = 0.028), which was improved in both groups from 
baseline; and SF-36 PCS ( p  = 0.007). The mean range of motion for the Bryan disc 
was maintained from 8.08° at 2 years to 8.48° at 4 years. Total and serious adverse 
event rates were similar between the groups. Overall, this showed that the arthro-
plasty group maintained its superior outcomes [ 51 ]. 

 A cross-sectional analysis of the Prestige ST and Bryan IDE studies [ 38 ,  50 ] 
looked at the effect of arthroplasty in myelopathic patients [ 48 ]. In this subset of 
199 subjects, patients in both the arthroplasty and fusion groups improved at 
24 months after surgery; improvement was similar between the groups, with no 
neurological deterioration in the arthroplasty group, suggesting myelopathy due to 
single-level disease can be treated with arthroplasty [ 48 ].  

   Nonrandomised Medium-Term Comparative Studies 

 Several comparative studies exist where the limitations are lack of randomisation, 
retrospective follow-up and lack of long-term follow-up. Data, however, is gener-
ally in agreement with higher level evidence from RCTs, and experience with 
respect to motion preservation seems to be converging to the same conclusion. A 

   Table 3    Prospective randomised controlled trials comparing cervical disc arthroplasty and 
arthrodesis for 1- or 2-level disc disease   

 Study  Implant 
 No. of 
levels 

 Number 
C-TDR:ACDF 

 Mean age 
(years) 

 Follow-up 
(months) 

 Mummaneni et al. [ 38 ]  Prestige ST  1  276:265  43  24 
 Murrey et al. [ 39 ]  ProDisc-C  1  103:106  42  24 
 Nabhan et al. [ 40 ]  ProDisc-C  1  19:21  Not specifi ed  12 
 Sasso et al. [ 50 ]  Bryan  1  56:59  46  24 
 Coric et al. [ 12 ]  Kinefl ex|C  1  136:133  44  24 
 Zhang et al. [ 65 ]  Bryan  1  60:60  45  24 
 Cheng et al. [ 11 ]  Bryan  2  31:34  45  24 
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small prospective study compared the outcomes between the Prestige LP arthrode-
sis for one- or two-level disease. At a mean of 2.9-year follow-up, both groups 
improved clinically with statistical signifi cance from preoperative levels but with no 
intergroup difference. Motion was preserved [ 43 ]. Motion preservation at 4–6 years 
is also reported in a prospective but nonrandomised European multicentre study 
using both single-level and multilevel arthroplasty [ 21 ]. Another study with an even 
longer prospective follow-up of 8 years reported on 21 patients who received the 
Bryan arthroplasty for one- or two-level radiculopathy; clinical improvement was 
maintained and so was a satisfactory ROM (10.6 ° ) in 21/27 (78 %) segments that 
were still mobile. Heterotopic ossifi cation (HO) was high at 13/27 (48 %) and 
restricted motion in nine cases. Adjacent segment degeneration was evident in 4/21 
(19 %). It may be possible that HO increases with time [ 46 ]. Specifi c outcomes will 
be addressed in the next section (Table  4 ).

       Clinical Outcomes 

   Does C-TDR Reduce the Incidence of ASD? 

 The hypothesis that cervical fusion increases the physical strain upon adjacent seg-
ments and accelerates their degeneration led to the development of arthroplasty, a 
non-fusion procedure aimed at preserving normal disc kinematics. However, even 
though this has been the prevailing argument in promoting cervical disc arthro-
plasty, adjacent-level degeneration has not been adequately studied in the ran-
domised controlled trials of ACDF versus C-TDR and was not even a main outcome 
measure. Of the several multicentre randomised trials on different prostheses, which 
studied in excess of 1,000 patients, only Mummaneni et al. had reported the number 
of operations at adjacent levels [ 38 ]. A systematic review by Botelho et al. found no 
clinical evidence of reduction in adjacent-level degeneration with cervical arthro-
plasty [ 6 ]. A recent meta-analysis came to the same conclusion that with the avail-
able evidence it cannot be concluded that C-TDR can signifi cantly reduce the 

   Table 4    Medium   -term prospective follow-up studies on cervical arthroplasty   

 Study  Implant 
 No. of 
levels  Number C-TDR:ACDF 

 Mean age 
(years) 

 Follow-up 
(years) 

 Burkus et al. [ 8 ]  Prestige  1  276:265  43  5 
 Delamarter et al. [ 15 ]  ProDisc-C  1  103:106 + 136 further 

C-TDR with continued 
access 

 43  4 

 Sasso et al. [ 51 ]  Bryan  1  181:138  4 
 Goffi n et al. [ 21 ]  Bryan  1 or 2  89 single and 9 two levels  43 and 49  4–5 
 Peng et al. [ 43 ]  Prestige LP  1 or 2  25 single and 15 two 

levels 
 44  2.9 

 Quan et al. [ 46 ]  Bryan  1 or 2  15 single and 6 two levels  46  8 
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postoperative rate of adjacent segment degeneration or disease [ 61 ]; the incidence 
of adjacent segment disease after T-CDR was 8.8 % and after ACDF was 13 %, but 
this was not statistically signifi cant. This conclusion was limited by the quality of 
available evidence; only fi ve studies were included in the meta-analysis. This has 
limitations due to insuffi cient effectiveness, possible publication bias with under-
reporting of negative results and overestimation of the intervention effectiveness. 
The authors themselves warned that their conclusion should be seen with caution 
until further specifi c data are available. The most conclusive evidence does come 
from very recent prospective randomised clinical trial data. Nunley et al. specifi -
cally evaluated the outcome data of patients treated for 1- and 2-level cervical disc 
disease to assess adjacent-level disease. At the median follow-up of 42 months, 
14.3 % ACDF and 16.8 % T-CDR patients developed and received treatment for 
ASD. Importantly, the risk of developing adjacent segment degeneration was equiv-
alent at a median 38 months after both ACDF and TDA procedures [ 41 ]. 

 As such, there is currently no convincing high-level evidence that T-CDR pre-
vents ASD more than ACDF. Furthermore, the question remains as to whether 
fusion or arthroplasty leads to accelerated degeneration as opposed to natural pro-
gression of the disease. Multifactorial risk factors, such as the presence of adjacent- 
level degeneration at the time of fi rst surgery, kyphosis, single-level fusion or 
fusions that end adjacent to the commoner levels of degeneration (C5/6 and C6/7), 
are not easy to eliminate by substituting fusion with arthroplasty. The different disc 
designs may also play a part, but it is questionable whether enough data will be 
available for adequately powered studies for individual implants.  

   Reoperation Rate 

 The incidence of adjacent segment disease requiring surgery after anterior cervical 
discectomy and fusion was recently addressed in a 10-year cohort and found to be 
5.6 % [ 60 ]. There is mixed evidence from level II studies as to the signifi cance of 
secondary surgery associated with ACDF and T-CDR. One trial found no revisions 
in either group [ 11 ], whereas in the ProDisc-C trial, secondary surgical procedures 
were performed in 1.9 % of arthroplasty patients and 8.5 % of fusion patients. 
Implant revision was required in 4.7 % of the ACDF patients, and 2.8 % of the 
ACDF patients had supplemental fi xation; no arthroplasty patients required revision 
[ 39 ]. Anderson et al. reported a statistical signifi cance of more serious adverse 
events and reoperations occurring in the fusion group [ 2 ]. And more recently, 
Burkus et al. reported clinical and radiographic outcomes from a trial using the 
Prestige disc; there were statistically signifi cant differences between the arthro-
plasty and fusion groups with regard to the reoperation rate and supplemental fi xa-
tion procedures performed subsequent to the index procedure. Rates for surgery at 
adjacent levels were lower in the arthroplasty group, but this difference was not 
statistically signifi cant [ 8 ]. Overall, the data supports arthroplasty as an at least 
equivalent procedure to fusion.  
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   Preservation of Motion 

 It is unclear whether motion preservation is correlated to improved clinical out-
comes. Evidence from prospective RCTs has shown that single-level arthroplasty 
maintains an average motion of 2.36–9.36° in fl exion and extension compared to 
0.5–0.95° in the fusion groups. In multilevel arthroplasty, kinematic assessment 
showed a 7.9° range of motion (ROM) with the Bryan disc in dynamic X-rays at 
2 years versus a 0.5° range with ACDF ( p  < 0.001) [ 11 ]. Sagittal ROM at the 
implanted level was signifi cantly reduced, as expected, with fusion and preserved 
with arthroplasty. At both the adjacent upper and lower levels, sagittal ROM was 
maintained with arthroplasty; it was signifi cantly reduced after fusion ( p  < 0.001) at 
the level above and maintained but less than with arthroplasty at the level below 
[ 30 ]. Long-term data, device-specifi c follow-up and clinical correlation will be 
essential in determining the fate of arthroplasty, since motion preservation is the 
hallmark of the rationale for its use.  

   Neurological Recovery 

 Both ACDF and T-CDR are meant to achieve neural decompression—of roots and 
cord—and it is not surprising that no statistically signifi cant differences were shown 
between them in early neurological success rates around 90 %. Later follow-up at 
2 years supports the non-inferiority of arthroplasty regarding neurological recovery 
[ 24 ,  38 ,  39 ]. Data from Burkus et al. show a statistically signifi cant neurological 
status maintenance or improvement after T-CDR over ACDF at 24 and 36 months, 
with convergence of results by 60 months [ 8 ].  

   Alleviation of Cervicobrachialgia 

 There are a variety of mixed results. The Neck Disability Index (NDI) has been 
reported to be signifi cantly better after T-CDR over ACDF at 3 months, but this 
advantage seemed to neutralise by 2 years [ 39 ]. In other studies such an advan-
tage was indeed preserved at 2 years [ 11 ,  24 ]. VAS reports of arm pain intensity 
and frequency, however, were not signifi cantly different at 24 months between 
the two groups [ 24 ,  39 ]. More recent data from Burkus et al. in a trial with the 
Prestige disc show signifi cant improvements in NDI scores, SF-36 PCS scores 
and neck and arm pain scores; these were achieved by 1.5 months in both groups 
and sustained at 5 years [ 8 ]. It is diffi cult to defi nitively conclude whether 
T-CDR is superior to ACDF, which itself has been a very successful procedure, 
but some studies suggest it is at least equal in alleviating neck pain and 
brachialgia.  
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   Patient Satisfaction 

 Confl icting results are available from different studies as to the presence and timing 
of a statistically signifi cant difference between T-CDR and ACDF as assessed by 
SF-36. In one trial, T-CDR had better SF-36 physical component summary (PCS) 
and mental component summary (MCS) scores at 12 months, but this difference 
was not signifi cant at 24 months [ 24 ]. In another prospective randomised study, 
there was a signifi cant difference in favour of arthroplasty at 2 years [ 11 ]. SF-36 
PCS scores at 2 years were 45–50. SF-36 MCS was similar also at 2 years at 
around 50.  

   Multilevel T-CDR Versus Multilevel ACDF 

 The effectiveness and safety of multilevel T-CDR in comparison to multilevel 
ACDF was addressed by a randomised clinical trial using the Bryan disc [ 11 ]. 
Assessment as per Odom’s criteria at 2-year follow-up showed excellent overall 
success in 80 % cases of ACDR versus 68.8 % of ACDF. Functional outcome, as 
measured by the Neck Disability Index (NDI), was comparable in the two treatment 
groups preoperatively, but at 2-year follow-up the NDI improved from 50 to 11 in 
ACDR versus 51 to 19 in ACDF, a signifi cant difference ( p  = 0.2)[ 11 ]. Another 
study, however, showed no statistical signifi cance between the groups of fusion and 
arthroplasty [ 30 ]. This same study found no signifi cant differences in pain relief, 
assessed using the Visual Analogue Scale (VAS) for neck and arm pain. Differences, 
however, were detected ( p  = 0.01) by Cheng et al.; pre-op VAS for neck pain reduced 
from 7.3 to 1.5 at 2 years with T-CDR and from 7.1 to 2.6 with ACDF. The VAS for 
brachialgia reduced from 7.1 pre-op to 1.5 at 2 years after arthroplasty, compared to 
a change from 7.2 to 2.7 with fusion. Patient-reported outcome using SF-36 PCS 
was signifi cantly better at 24 months with arthroplasty (35 pre-op and 50 post-op) 
than fusion (34 pre-op and 45 post-op) ( p  = 0.01) [ 11 ].  

   Multilevel T-CDR Versus Single-Level T-CDR 

 Several studies provide evidence for the overall success of arthroplasty, as per 
Odom’s criteria [ 42 ]. Goffi n et al. reported their 6-year results: excellent/good 
results in 90 % of single-level cases and 100 % of two-level cases, comparable over-
all neurological success, comparable NDI improvement from 40 pre-op to 20, lower 
VAS scores for arm and neck pain in the two-level cases, and SF-36 PCS 47 versus 
51 for one versus two levels [ 21 ]. Other studies, however, reported nonstatistically 
signifi cant results in SF-36 PCS at 2 years, together with a return to work rate of 
70 % for single-level and 46 % in two-level T-CDR ( p  = 0.09). No signifi cant 
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difference was shown in biomechanics either [ 27 ]. Pimenta et al., on the other hand, 
reported in their 3-year outcomes after arthroplasty with the PCM disc that after 
multilevel arthroplasty, there was a signifi cantly better improvement than after 
single- level arthroplasty [ 45 ]. Their cohort included up to four-level arthroplasties. 
Sekhon et al.’s study of up to three-level arthroplasties using the Bryan disc showed 
a signifi cant improvement in pain scores at 12 months in patients who had previ-
ously undergone cervical fusion or posterior foraminotomy [ 52 ]. Whilst there are no 
major signifi cant clinical differences between single-and    multilevel arthroplasty, 
initial results demonstrate safety and effi cacy; however, further information is required 
as regards both adjacent segment biomechanics and long-term results [ 4 ,  29 ].  

   Return to Work and Cost-Effectiveness 

 Whilst there were no signifi cant differences in the return to work at 24 months in the 
ProDisc trial, the Bryan group patients returned to work an average 13 days earlier than 
the fusion group patients. The return to work was also shorter with arthroplasty in the 
Prestige trial [ 24 ,  38 ,  39 ]. Length of hospital stay was not different. An economic assess-
ment of C-TDR (Prestige) and ACDF found the total direct cost per patient to be $431 
lower on average in the arthroplasty group, with those patients working an average of 
38 days longer and producing an average productivity gain of $6,547; at 2 years arthro-
plasty was associated with an average savings of $6,978 per patient [ 37 ]. If further stud-
ies show this to be consistent and if clinical data prove the long-term non-inferiority of 
arthroplasty, then it could become a cost- effective and effi cient treatment.  

   Hybrid Arthroplasty and Fusion 

 A reasonable concern would be that in a hybrid fusion/arthroplasty there could be 
increased biomechanical stress on the disc prosthesis, due to its placement adjacent 
to a fused level, which could potentially predispose to device malfunction or disloca-
tion. Such fears have not been proven. In fact, cadaveric biomechanical studies have 
shown that a hybrid construct seems biomechanically advantageous over two- level 
fusion in reducing both compensatory adjacent-level hypermobility and loads 
required to achieve a predetermined ROM [ 31 ]. Such advantage has also been shown 
in clinical studies. A prospective analysis of arthroplasty combined with fusion ver-
sus two-level fusion in cervical two-level disc disease showed better results in the 
hybrid surgery group with respect to NDI recovery at 1 and 2 years ( p  < 0.05): less 
postoperative neck pain at 1 month and 1 year ( p  < 0.05), no difference in brachialgia 
relief, faster C2–C7 ROM recovery and less adjacent ROM increase [ 54 ]. Improved 
neurological outcomes for radiculopathy and myelopathy have been reported, with 
observed as expected motion preservation at arthroplasty levels as well as fusion at 
the fused levels [ 5 ]. There are no randomised trials for hybrid arthroplasty/fusion.   
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   Specifi c Complications 

   Heterotopic Ossifi cation (HO) and Inadvertent Fusion 

 The major concern when implanting a motion-preserving implant is autofusion 
and the potential loss of motion. An unpredictably high rate (18 %) of HO was 
observed in a prospective multicentre trial using the Bryan disc, at 1-year fol-
low-up; 62 % of these (11 % of the study population) had less than 2° motion at 
the affected level. Older male patients were identifi ed as potential risk factors 
[ 32 ]. HO has been classifi ed in a scale ranging from grade 0 (no HO) to grade 
IV (complete ankylosis) [ 34 ]. HO has subsequently been observed in other 
devices also. Only 34 % of patients in a study with ProDisc-C did not have HO; 
the rate ossifi cation that led to restriction of motion was 10 % [ 36 ]. A 4-year 
follow-up of the same prosthesis revealed signifi cant HO (grade III or more) in 
45 % and segmental ankylosis in another 18 % [ 56 ]. A study of 71 patients 
assessed HO with T-CDR using the Mobi-C disc; at a mean follow-up of 
21 months there was radiological HO in 28 %. This did not affect clinical out-
come as assessed by VAS for neck pain, VAS for arm pain, SF-36 PCS, SF-36 
MCS and NDI. The mean ROM increased from 8.1° preoperatively to 10.2° 
postoperatively, though 4 prostheses that had grade IV HO had fused. No spe-
cifi c risk factors were identifi ed. 

 In an attempt to assess the role of the implant in HO, Yi et al. examined retro-
spectively three types of artifi cial disc in 170 patients. The overall rate of HO was 
40.6 %; occurrence rate was 21 % in the Bryan prosthesis group, 52.5 % in the 
Mobi-C group and 71.4 % in the ProDisc-C group. The Bryan group showed statis-
tically longer survival than the other groups. Differences in the design, biomechani-
cal characteristics, endplate articulation component and surgical procedure were 
suggested as contributing factors for the different rates of HO [ 64 ]. 

 It has been postulated that HO may be related to surgical trauma to the longus 
colli muscle, and recommendations include limited muscle retraction, ample intra-
operative irrigation to clear the bone dust from high-speed drilling and nonsteroi-
dal anti-infl ammatories (NSAIDs) postoperatively [ 36 ]. A study specifi cally 
looking at the clinical relevance of HO, not verifi ed by the previously mentioned 
series, found the overall rate of HO to be 42 % and no difference in the functional 
scores with or without HO. Motion preservation ≥3° was preserved in 94 % with 
HO [ 5 ]. 

 Overall, it seems that HO after T-CDR is common and with variable incidence in 
short- to medium-term studies. It also seems that it does not infl uence clinical out-
come in the majority of cases. Segmental motion, in addition, seems to be preserved 
and the rate of complete fusion is low (<10 %). What remains unanswered is whether 
HO is a sign of a slowly progressing fusion, though midterm results up to 5 years do 
not suggest this.    What is unknown is whether motion preservation were to be a 
temporary achievement, how this would affect ASD and would it be economically 
worthwhile.  
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   Postoperative Kyphosis 

 One of the aims of cervical arthroplasty is to maintain normal sagittal balance and 
lordosis and therefore normal ROM and biomechanics, even though there is no 
evidence that sagittal imbalance affects clinical outcome [ 63 ]. Kyphosis, such as 
that reported after arthroplasty with the Bryan disc, may be due to pre-existing 
kyphosis, lack of lordotic profi le on the implant, hyperlordotic patient positioning, 
asymmetric endplate preparation, overdrilling of the dorsal vertebral endplate and 
suboptimal insertion angle of the prosthesis [ 62 ].  

   Vertebral Fracture 

 This is a particular risk of those prostheses that have a keel for initial anchoring. The 
chisel or drill action, such as required in ProDisc-C, has been reported to be associ-
ated with avulsion and sagittal split vertebral fractures. Multilevel T-CDR may 
mean two keel osteotomies in the same vertebra and in the same sagittal plane, 
predisposing to a fracture [ 14 ], though this can happen in a single-level arthroplasty 
too [ 57 ]. A posterior avulsion fracture can lead to cord compression [ 53 ]. 
Consideration should be given to age; bone density; osteopaenia; comorbidities and 
medications, such as steroids in asthmatics; and surgical technique as predisposing 
factors.  

   Implant Subsidence and Wear 

 Implant migration is uncommon. In a prospective analysis of 96 Bryan implants in 
74 patients, there were two cases of migration: one intraoperative migration in a 
two-level case and one migration at 3 months which was associated with segmental 
kyphosis, where the inferior endplate of the device migrated posteriorly causing 
neck and bilateral shoulder pain, but no myelopathy. This series also included the 
fi rst reported implant failure with the Bryan prosthesis, a partial dislocation in 
extension, in a patient who had exhibited segmental hypermobility preoperatively 
[ 44 ]. In multilevel arthroplasty, malalignment in the coronal and sagittal planes 
might be a risk factor for endplate migration [ 16 ], but level II evidence from pro-
spective studies has not shown this [ 45 ]. It is worth bearing in mind that similar 
complications of subsidence or plate migration also occur during ACDF with a cage 
or graft and that instrumentation-specifi c complications, such as those in ACDF, 
would reduce with experience. 

 Recent concern about wear debris is reasonable given the physical motion 
across a bearing surface. Debris can induce a cytokine-mediated infl ammatory 
reaction with subsequent osteolysis, but this has only been rarely reported [ 58 ]. 
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Hypersensitivity reaction to metal implant ions has also been described, leading to 
pseudotumour formation comprising chronic infl ammatory debris and causing 
myelopathy [ 9 ,  23 ].   

   Conclusion 

 ACDF has been a very successful procedure in the management of cervical radiculopa-
thy and myelopathy. The proposed move to cervical disc arthroplasty has led to this 
latter procedure being one of the best scrutinised surgical treatments in the twenty-fi rst 
century. Short- and medium-term prospective randomised clinical trials and systematic 
reviews show T-CDR to be at least as good as ACDF as regards the management of 
degenerative cervical spondylosis. Clinical outcomes are as good as ACDF, and this 
makes sense since the neural decompression procedure is essentially the same. 
However, the rationale for ACDR over ACDF has been built on two main proposed 
roles: the preservation of segmental motion and the prevention of adjacent segment 
disease. Whilst the fi rst seems to be achieved, its clinical signifi cance is as yet unproven; 
the second is so far not proven. In addition, the long-term fate of the implants is also 
unknown. Long-term safety and effi cacy still await further clinical studies.  

   Future Directions 

 The future of T-CDR revolves around motion preservation and the prevention or not 
of ASD. The acquisition of long-term clinical data will hopefully elucidate whether 
ASD is a natural progression of spondylosis or an event accelerated by fusion. If the 
latter proves to be the case, long-term data can also help clarify whether arthroplasty 
can help decelerate ASD or whether it is an expensive form of delayed fusion. 

 It is, therefore, paramount that we:

    1.    Continue collecting prospective data from the patients that participated in the 
original RCTs so far and continue updating clinical outcomes and revising the 
rates of ASD, motion preservation and reoperation.   

   2.    Understand heterotopic ossifi cation and its role in autofusion and ASD. The 
longer-term rates in these two issues will effectively determine the future of cer-
vical arthroplasty, as they remain the two main theoretical rationales for its use.   

   3.    Undertake subgroup analyses, for example, between soft- and hard-disc disease 
and foraminal versus central canal stenosis.   

   4.    Continue technical appraisal and evolution of implants, to answer questions such 
as their life expectancy, long-term wear, hypersensitivity and infl ammation 
characteristics.   

   5.    Perform newer and better designed RCTs addressing clinical, radiological, qual-
ity of life and cost-effectiveness issues.         
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    Abstract     Over the last decades, spinal fusion has become one of the most impor-
tant principles in surgical treatment of spinal pathologies. Despite the undoubted 
benefi ts of fusion surgery, there are several drawbacks associated with this tech-
nique, including adjacent segment degeneration and pseudoarthrosis. Based on bio-
mechanical data, dynamic stabilization of the spine is intended to ameliorate 
adjacent level degeneration by stabilizing vertebral motion in defi ned planes and 
mimicking natural spine movements. 

 In this paper, we review the literature and discuss past and present pedicle-based 
non-fusion dynamic stabilization devices. Although there is a paucity of high- 
quality prospective trials, studies have indicated both promising and disappointing 
results. In comparison to 360° fusion surgery, the perioperative risk seems to be 
lower. Other complications like screw loosening, however, have been reported with 
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various systems, while a reduction of adjacent segment disease has not yet been 
demonstrated. The necessary degree of restabilization to achieve pain-free motion 
seems to vary greatly between patients and current systems are far from perfection. 
If these problems can be solved, dynamic stabilization may nevertheless be an 
important option of spinal surgery in the future.  

  Keywords     Low back pain   •   Non-fusion techniques   •   Dynamic stabilization   • 
  Pedicle-based devices  

      Introduction 

 Lumbar degenerative disc disease affects adults in middle and advanced age. 
Pain is the leading symptom and occurs as low back pain, unilateral or bilateral 
sciatica, and as combined lumbar and sciatic pain. In most of the patients, con-
servative methods are appropriate to treat the symptoms successfully. If severe 
symptoms persist and can no longer be tolerated by the patient, an operative 
procedure is indicated [ 20 ]. Although disc degeneration is one reason for chronic 
low back pain, painful motion due to instability of the lumbar spine is consid-
ered to be a major cause for symptoms. Because of the fact that abnormal motion 
does not cause back pain in all cases, the defi nition of instability has been 
updated to include abnormal movement at the joint surface and altered load 
transmission [ 9 ]. 

 Over the last decades, spinal fusion has become one of the most important prin-
ciples in surgical treatment of spinal pathologies [ 4 ]. Despite the undoubted benefi ts 
of fusion surgery, there are several complications associated with this technique, 
including adjacent segment degeneration and pseudoarthrosis [ 5 ,  18 ]. Biomechanical 
and long-term clinical studies have shown that fusion surgery can cause increased 
rates of adjacent vertebral segment degeneration with an incidence in the range of 
5   .2–100 % [ 8 ,  13 ,  19 ]. 

 To prevent adjacent segment degeneration, different types of motion preserva-
tion surgeries have been developed. A remote expectation is that once normal 
motion and load transmission – by stabilizing vertebral motion in defi ned planes 
– are achieved, the damaged disc may repair itself and the controlled motion may 
also decrease the secondary effects of fusion, unless the degeneration is too 
advanced [ 32 ]. 

 Based on the location and the way the different devices work, the posterior 
dynamic stabilization systems can be classifi ed in three types: (1) posterior interspi-
nous spacers, (2) posterior pedicle fi xation-based dynamic stabilization devices, and 
(3) total facet replacement devices [ 16 ]. This paper will summarize and discuss 
pedicle-based non-fusion stabilization devices, e.g., dynamic rod and screw systems 
and total facet replacement devices.  
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   Clinical Evidence 

   Dynamic Rods 

   Graf Ligamentoplasty 

 The use of the Graf ligamentoplasty system to treat low back pain without fusion 
was fi rst published in 1992. The device used titanium pedicle screw anchors into the 
vertebra, both superior and inferior to the symptomatic level and a braided polypro-
pylene tension band to link the titanium pedicle screws. Due to compression on the 
posterior annulus, it was claimed that Graf’s system allowed annular tears to heal, 
but initial outcomes from Graf ligamentoplasty showed only modest improvements 
in functional ability and required high rates of reoperation [ 9 ]. Different case series 
reported the use of the Graf ligamentoplasty. Grevitt et al. reported improved 
Oswestry disability indices (ODI) from 59 to 31 %, but also an increasing rate of 
postoperative radiculopathies, so that prophylactic foraminal decompressions were 
recommended [ 10 ]. On the one hand, Markwalder et al. described the Graf ligamen-
toplasty as an acceptable alternative to fusion surgery and to provide long-term pain 
relief. On the other hand, however, a signifi cantly higher reoperation rate after Graf 
ligamentoplasty was detected [ 12 ,  22 ]. 

 Recent randomized evaluations reported better clinical outcomes in patients that 
underwent Graf ligament placements versus fusion. If the patient presents with 
spondylolisthesis or fl exion instability, a Graf ligamentoplasty is claimed to be a 
good choice. The device, however, also produces a signifi cant increase in lateral 
canal stenosis, especially when patients exhibited preexisting degenerative changes 
in the facet joints or in the infolding of the ligamentum fl avum, owing to the marked 
lordosis of the segment instrumented [ 9 ]. Overall, there is not enough clinical evi-
dence to support the use of this early dynamic stabilization technique, which thus 
does not currently play a role in spinal surgery.  

   FASS 

 The FASS (fulcrum-assisted soft stabilization) system was developed by Sengupta 
and Mulholland with the intention to eliminate the most common disadvantages of 
the Graf system: (1) increased lordosis, with the narrowing of the lateral recess, 
leading to root entrapment and (2) increased loading of the posterior annulus. The 
fulcrum is placed between the pedicle screws, in front of the ligament, and acts by 
distracting the posterior annulus. The elastic ligament is placed at the heads of the 
pedicle screws, posterior to the fulcrum, and maintains lordosis. The fulcrum trans-
forms the compressive effect of the elastic ligament into an anterior distraction force 
that unloads the disc [ 9 ,  33 ].  
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   DSS 

 The dynamic stabilization system (DSS) was developed by Sengupta et al. as an 
improvement of the FASS system to reduce the risk of early device failures [ 34 ]. 
The DSS-I consists of a titanium spring, made of a 3-mm cross-sectional diameter 
of spring-grade titanium wire. The DSS-II system consists of an elliptical coil 
spring, made from 4-mm spring-grade titanium rods. The    authors reported the 
results of a study with 16 patients treated with the DSS for single-level mechanical 
back pain associated with disc degenerations. Mean ODI scores decreased from 65 
to 27 %, and VAS scores decreased from 7.3 to 3.7 within a 2-year follow-up. There 
were no reports of device failure [ 34 ].  

   Dynamic Neutralization System (Dynesys) 

 Dynesys (Zimmer, Warsaw, IN) was developed in 1994 as a semirigid dynamic 
pedicular fi xation system [ 36 ]. This system uses conventional titanium alloy pedicle 
screws, polyethylene (PET) cords, and polycarbonate urethane (PCU) spacers. The 
pedicle screws on each side are connected by the PET cord. Therefore, the system 
resembles the Graf ligamentoplasty system, fi rst described in 1992, in which con-
ventional pedicle screws are linked by a braided polypropylene tension band [ 30 ]. 
This band locks an entire segment in extension, leading to compression of the pos-
terior annulus. Furthermore, rotational range of motion is limited. In theory, the 
Graf system unloads the anterior portion of the intervertebral disc which is consid-
ered as one of the origins of low back pain. The posterior compression was consid-
ered to allow healing of posterior annulus tears. 

 Mid- and long-term results demonstrated mediocre outcomes and relatively high 
revision rates. It was proved that the system may lead to narrowing of the lateral 
recess as well as the neuroforamina with compression of nerve roots as a result. 
Furthermore, increased load on the posterior annulus may even increase discogenic 
back pain, as opposed to the original theory [ 12 ,  32 ]. 

 In Dynesys, however, the PCU spacer encases the PET cord similar to a sleeve. 
The spacers are not elastic and therefore limit the amount of extension in the treated 
segment. More important, if lordosis is maintained, the spacers become weight- 
bearing in extension and therefore unload the posterior annulus. The overall range 
of motion in the treated segment is reduced signifi cantly [ 12 ,  38 ]. 

 Indications for Dynesys include degenerative diseases of the lumbar spine with 
instability and functional or structural spinal canal stenosis. Dynesys is contraindi-
cated in all conditions which are accompanied by structural defi ciencies such as 
bone tumors, fractures, and osteoporosis. Furthermore, lytic and isthmic spondylo-
listhesis as well as higher-grade degenerative spondylolisthesis should not be treated 
with Dynesys [ 31 ]. 

 Bothmann et al. performed a retrospective study including 54 patients treated 
with Dynesys. Eighty-one percent suffered from radicular pain and 59 % had neu-
rological defi cits. All patients did unsuccessfully undergo conservative treatment 
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for at least 3 months. The indication for semirigid lumbar fusion was spinal canal 
stenosis in 41 %, degenerative disc diseases in 28 %, spondylolisthesis 1° in 26 %, 
and segmental instability in 6 % of all cases. Eighty-one percent  of the patients 
additionally underwent nerve root decompression; in 15 % of cases, an additional 
PLIF was performed. 72.5 % of the patients scored good to excellent clinical results 
postoperatively. Pain scores as well as functional scores improved signifi cantly 
when additional nerve root decompression was performed. In total, 27.5 % had to 
undergo revision surgery due to postoperative complications such as screw loosen-
ing, screw breakage, and degeneration of an adjacent segment [ 2 ]. 

 A study published by Grob et al. included 50 patients treated with Dynesys in a 
retrospective study. Indications for Dynesys included degenerative disc disease and 
stenosis-associated lumbar instability. Thirty-one patients were available for a 
2-year follow-up. Lower back pain improved in 67 % and radiating pain in 64 %; 
however, 33 % of the patients reported no change or worsening of lower back pain 
or radiating pain. Revision surgery was performed in 19 % [ 11 ]. The worsening of 
lower back pain might have been caused by hypermobility of the segments adjacent 
to the dynamic fi xation, possibly resulting in a progression of degeneration of these 
segments, which was shown in biomechanical analyzes [ 37 ]. 

 Stoll et al. demonstrated positive results in their multicenter trial including 83 
patients. Dynesys was used in cases of segmental instability combined with spinal 
canal stenosis, degenerative disc disease, or revision surgery. In 67 %, nerve root 
decompression was performed additionally. The VAS back pain scale improved 
from 7.4 to 3.1, the VAS leg pain scale from 6.9 to 2.4, and the Oswestry disability 
index from 55 to 23 % [ 36 ]. 

 A review performed by Anand and Baron concluded that Dynesys may be a use-
ful technology in selected patients. Heterogeneous indications as well as heteroge-
nous techniques may lead to undesired results. In future, however, semirigid systems 
such as Dynesys that lead to decompression of the posterior portion of the interver-
tebral disc may become more important due to the need for disc stabilization in disc 
restoring procedures [ 1 ]. 

 A 6-year follow-up observation of dynamic stabilization adjacent to single-level 
fusion did not show any radiological or clinical benefi t in patients with asymptom-
atic initially degenerated adjacent segments. Because of the missing benefi t and the 
fact that the authors also observed a high number of implant failures, they do not 
recommend the dynamic fi xation adjacent to a fusion [ 27 ]. 

 Hoff et al. compared sequestrectomy alone to additional transpedicular dynamic 
stabilization – using the Dynesys device – for lumbar disc herniations. Thus in a 
reasonable percentage of patients, solely sequestrectomy leads to unsatisfying 
results; the addition of a dynamic stabilization does not lead to a clinical benefi t in 
case of symptomatic disc herniations and initial segment degeneration at a long- 
term follow-up. In combination with a high rate of necessary reoperations, the 
authors do not recommend the use of dynamic stabilization for this indication at the 
moment [ 14 ]. 

 In a recent study by Hoppe et al., 39 patients were included in a retrospective study 
with a mean follow-up of 7.2 years. In all cases, surgery was performed at the L4/5 level. 
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The indication was limited to symptomatic degenerative lumbar spondylolisthesis, and 
additional bilateral decompression was performed in all cases. Back pain improved in 
89 % and leg pain in 86 %. Twenty-one percent required further surgery [ 15 ].  

   NFlex Controlled Stabilization System 

 The NFlex controlled stabilization system (Synthes Spine Inc., West Chester, PA, 
SA) consists of polyaxial titanium alloy pedicle screws that are fi xed to a semirigid 
polycarbonate urethane-sleeved rod. The integrated polycarbonate urethane (PCU) 
spacer is surrounded by a central titanium ring, to which a pedicle screw is locked. 
The controlled pistoning of this spacer along the axis of the central titanium core 
provides a shock absorber effect, reducing the overall rigidity of the construct [ 6 ]. 

 Jeffrey et al. published a retrospective analysis of 65 NFlex cases. With a mean 
follow-up period of 25.6 months, the mean VAS score improved from 8.1 preopera-
tively to 3.8 postoperatively ( p  < 0.001), representing a 53 % improvement. 
Functional status also showed signifi cant improvement, with a mean preoperative 
ODI score of 44.5 improving to 21.8 ( p  < 0.001) postoperatively, representing a 
51 % improvement. The incidence of adverse events and reoperation was not incon-
sistent with the authors’ experience with rigid fusion [ 6 ].  

   AccuFlex Rod System 

 The AccuFlex system (Globus Medical, Inc.) is a pedicle screw-/rod-based con-
struct that combines Protex (Globus Medical, Inc.) 6.5-mm pedicle screws with a 
double helical cut made within a standard 6.5-mm rod and is approved by the Food 
and Drug Administration for lumbar fusions when used in conjunction with an ante-
rior interbody device. The AccuFlex rod has undergone extensive biomechanical 
testing. The results of these tests demonstrated an adequate fatigue life [ 21 ]. In a 
clinical case series of 20 patients, Reyes-Sanchez et al. demonstrated that after a 
2-year follow-up, 83 % of patients showed clinical benefi ts but 22 % required hard-
ware removal due to fatigue [ 28 ].  

   Isobar TTL 

 The Isobar TTL system (Scient’x USA) is composed of a titanium alloy rod with a 
dampener made of stacked titanium alloy o-rings and received FDA clearance for 
use as an adjunct to spinal fusion in 1999 [ 9 ]. The system allows a small amount of 
both axial and angular motion via this dampener. Perrin and Cristini reported a 
retrospective study of 22 patients. During the 8.27-year follow-up period, 68.2 % 
of the patients reported mild leg pain and 72 % of the patients reported no or mild 
back pain. The adjacent level was also shown to be protected by the Isobar TTL 
system [ 25 ].  
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   CD Horizon Legacy PEEK Rod 

 The CD Horizon Legacy PEEK rod (Medtronic Sofamor Danek, Memphis, TN) is 
composed of polyetheretherketone and is more fl exible than the titanium rods [ 9 ].  

   Biofl ex Spring Rod Pedicle Screw System 

 The Biofl ex system (Bio-Spine Inc.) is a pedicle screw-based system that is com-
posed of rod-shaped nitinol with one or two loops to confer stability in fl exion, 
extension, and lateral bending. Nitinol is an alloy of titanium and nickel, also called 
the “memory metal” due to its ability to return to its original shape after deforma-
tion [ 9 ]. Kim et al. published the results of 103 patients treated with the Biofl ex 
system alone or in combination with rigid fi xation (PLIF + Biofl ex). The authors 
observed that the range of motion (ROM) in looped segments that were treated with 
PLIF was signifi cantly reduced, but the changes in the ROM in looped segments 
without PLIF were not signifi cant. The authors concluded that the Nitinol Biofl ex 
dynamic stabilization system achieved stabilization while simultaneously permit-
ting physiological movement which in turn decreases the degeneration of adjacent 
segments [ 17 ].   

   Dynamic Screws 

   Cosmic Posterior Dynamic System 

 The Cosmic posterior dynamic system (Ulrich medical) is a pedicle screw-based 
dynamic stabilization system. The device has been used as non-fusion technique in 
spinal stenosis with or without mild degenerative spondylolisthesis. A calcium 
phosphate-coated hinged pedicle screw head is the main character of the system 
allowing minimal segmental motion. 

 Biochemical in vitro studies showed in a 1-level pedicle screw-rod construct, 
hinged-dynamic screws allowed a quantity of motion that was substantially closer 
to normal motion than that allowed by rigid pedicle screws. Both systems altered 
kinematics similarly. Less load was borne by the hinged screw construct, indicating 
that the hinged-dynamic screws allow less stress shielding than standard rigid 
screws [ 3 ]. 

 Another biomechanical analyses – published by Schmoelz et al. – showed that 
after bisegmental decompression, the ROM in all motion planes was restored to the 
range of intact segments by the implantation of the Cosmic device [ 29 ]. 

 In a prospective observational designed study, Stoffel et al. presented 103 patients 
that were consecutively treated using the Cosmic system for painful degenerative 
segmental instability spinal stenosis between April 2006 and December 2007 [ 35 ]. 
Preoperatively MRI and myelography/CT and clinical parameters (general/
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neurological examination, visual analogue scale (VAS), Oswestry disability index 
(ODI), SF-36, and Karnofsky (KPS)) were recorded and repeated in defi ned inter-
vals. Full data was collected in 100 out of 103 patients (65f/38m, median age 65a), 
mean follow-up was 15 months, and dynamic stabilization was performed as fi rst-
tier surgery in 43 cases and as second-tier therapy in 60 cases. Decompression of the 
neuronal structures was necessary in 83 cases. Degenerative pseudospondylolisthe-
sis was present in 51 patients, and osteochondrosis or macroinstability without olis-
thesis was present in 52 patients. One-level operation was performed in 47 cases, 
two-level in 47, and three-level in 9 cases. 

    The analyzes showed 3 cases of early reoperation due to misplaced screws, 8 
cases of hematomas or impaired wound healing and one case of a misjudged insta-
bility/stenosis of adjacent motion segments but no case of postoperative neurologi-
cal deterioration (transient/permanent). Later reoperations within the follow-up 
period were necessary in 10 patients due to symptomatic advanced degeneration of 
an adjacent segment ( n  = 6), persistent stenosis/disc protrusion of an instrumented 
segment ( n  = 3), secondary screw loosening ( n  = 2), or osteoporotic fracture of an 
adjacent vertebra ( n  = 1). Dynamic stabilization led to signifi cant improvement of 
pain (VAS preop, 65 ± 1; post-op, 21 ± 2,  p  < 0.001) and performance (KPS preop, 
70 ± 1; post-op, 82 ± 1,  p  < 0.001) and a signifi cant reduction of back pain-related 
disability (ODI preop, 51 ± 1 %; post-op, 21 ± 1 %,  p  < 0.001). The results of the 
SF-36 were summarized in a mental and in a physical health component. Both com-
ponents refl ect a statistically signifi cant improvement of the subjectively felt health 
between the preoperative status and the status at last follow-up (norm-based SF-36: 
mental preop, 44; post-op, 48; physical preop, 41; post-op, 46,  p  < 0.01). 

 A multicenter study initiated by von Strempel et al. using the Cosmic screws 
demonstrated similar results [ 20 ]: between May 2004 and January 2005, six ortho-
pedic and neurosurgical departments recruited 139 patients treated with Cosmic for 
stabilization without fusion. Indications for surgery were low back pain, sciatica, 
and neurogenic claudication after failed conservative therapy. Age, sex, weight, 
ODI score, and 10-point VAS score were recorded in each patient. Additionally, the 
height of the intervertebral discs (IVH) and lordosis were measured radiographi-
cally. Data from 185 patients with a follow-up of at least 24 months were recorded. 
Twenty-four patients were excluded due to a combination of instrumentation with 
bony fusion and another 22 patients were lost to follow-up. Decompression of neu-
ral structures was performed in 70 patients, 26 % of which had previous surgery in 
the index level. In the remaining 69 patients without decompression, 30 % had 
previous surgery. Patients without decompression demonstrated an improvement in 
ODI of 49.3–24.5 % after 2 years, whereas those with decompression showed 
improvement of 48.7–20.6 %. Pain decreased from 7.4 to 2.4 and from 7.1 to 2.7 on 
the 10-point VAS in patients without and with decompression, respectively. Changes 
in IVH and lumbar lordosis were not detected. Eleven patients underwent revision 
surgery, fi ve of them with deep wound infection, the others because of adjacent 
level instability, hematoma formation, broken or loosened screws, and osteoporotic 
fracture. In eight patients radiolucent areas around the screws were documented, 
without clinically need of revision. There were no screw misplacements. 
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 A multicenter prospective randomized controlled trial comparing Cosmic-based 
dynamic stabilization with 360° fusion (pedicle screw instrumentation plus inter-
body cage) is currently underway in Germany to establish class I data.   

   Total Facet Replacement Devices 

   TOPS: Total Posterior Arthroplasty System 

 The total posterior arthroplasty system (TOPS) uses a pedicle screw-based posterior 
arthroplasty prosthesis that was developed to provide dynamic, multiaxial, and 
3-column stabilization while preserving normal motion [ 9 ]. A study of 29 patients 
who were treated with the TOPS for spinal stenosis and/or spondylolisthesis at L4-5 
due to facet arthropathy showed that the clinical status improved signifi cantly fol-
lowing treatment with the TOPS device [ 23 ]. ODI score decreased by 41 %, and the 
100-mm VAS score decreased by 76 mm in a 1-year follow-up. There was no 
device-related failure.  

   TFAS: The Total Facet Arthroplasty System 

 The total facet arthroplasty system (TFAS) is a posterior non-fusion stabilization 
device to treat moderate to severe spinal stenosis using prosthetic metal joints to 
replace degenerated joints as used in knee and hip arthroplasty [ 9 ]. An in vitro study 
in nine human cadavers showed that after a wide range of decompressions on the 
neural elements, TFAS overcame the need for fusion by stabilizing the surgically 
modifi ed spine in a manner similar to intact vertebrae while restoring the physio-
logic kinematics [ 26 ].    

   Conclusion 

 Fusion surgery has been used as a predominant technique to treat degenerative spi-
nal disorders for decades. Adjacent segment disease is supposed to occur due to a 
transfer of load from a stabilized motion segment to the adjacent level. 
Biomechanically, a dynamic stabilization device should restrict (painful) motion to 
a physiological level, thus controlling pain and avoiding adjacent segment degen-
eration. Most pedicle screw-based systems so far, however, have either been too 
rigid almost imitating fusion or prone to mechanical failure. The rigidity of, e.g., the 
Dynesys system has been held responsible for a high rate of screw breakage and 
loosening. These hardware failures are compensated by lower perioperative mor-
bidity in comparison to 360° fusion, as interbody work increases OR time and com-
plication rates. 

Pedicle-Based Non-fusion Stabilization Devices: A Critical Review and Appraisal



140

 Compared to rigid stabilizations, short-term results with a follow-up of up to 
2 years promise similar clinical outcomes for dynamic pedicle screw-based stabiliza-
tion [ 24 ] but also demonstrated the abovementioned increased rate of revisions [ 7 ]. 
Due to the problems of screw loosening, dynamic stabilization devices are not an 
option to treat osteoporotic patients [ 9 ]. Overall, clinical results from uncontrolled 
prospective and retrospective series vary greatly, and both patient cohorts and surgi-
cal techniques are heterogenous. For hybrid constructs, combining rigid and dynamic 
pedicle screw-based systems, hardly any clinical data has been published. 

 The benefi t of the currently available dynamic stabilization systems with respect 
to adjacent segment disease is still questionable, as an advantage over fusion sur-
gery could not yet been demonstrated. Many devices like facet joint arthroplasty 
systems are still experimental. As a randomized comparison of dynamic stabiliza-
tion versus 360° fusion is lacking, there is currently not suffi cient evidence to sup-
port (or refuse) pedicle screw-based dynamic technology.  

   Proposal for the Future 

 Complication rates and long-term revision rates of fusion surgery particularly for 
chronic low back pain dramatically call for other surgical options in lumbar degen-
erative disc disease. Adjacent segment disease is posing a prominent clinical prob-
lem in these patients. Some authors argue for optimizing sagittal balance to avoid 
this sequel of fusion, but the relationship of sagittal balance and adjacent segment 
disease is still a matter of debate. Regardless of the applied technique of fusion, a 
dynamic stabilization that eliminates painful motion without increasing stress on 
adjacent levels should be benefi cial. This theoretical demand, however, potentially 
requires a different stiffness for each individual patient. 

 Future research must thus be dedicated to develop (1) diagnostic tests, which 
identify the individual biomechanical situation of the patient, (2) less rigid dynamic 
stabilization devices with (3) lower revision and hardware failure rates, and ideally 
(4) devices with variable or a wide range of different stabilization magnitudes. 
Maybe future implant generations will fulfi ll these tasks or biological approaches 
will be developed that render mechanical solutions unnecessary.     
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    Abstract 

  Introduction   Juvenile chronic arthritis (JCA) is a systemic disease of childhood 
affecting particularly joints. JCA is a heterogeneous group of infl ammatory joint 
disorders with onset before the age of 16 years and is comprised of 7 subtype 
groups. The pathogenesis of JCA seen in the cervical spine is synovial infl amma-
tion, hyperaemia, and pannus formation at the occipitoatlantoaxial joints resulting 
in characteristic craniovertebral junction fi ndings. Treatment of craniovertebral 
junction instability as a result of JCA is a challenge. The best treatment strategy 
may be diffi cult because of various radiological and clinical severities. A review of 
the literature and management considerations is presented.  

  Review   No randomised controlled trial or systematic review on this subject has 
been published. Only experts’ opinions, case reports, and case series have been 
described. Thirty-four studies have been reviewed in this study. Involvement of the 
cervical spine in patients with JCA can lead to pain and functional disability. The 
subtypes that usually affect the cervical spine are the polyarticular type and sys-
temic onset type and rarely the pauciarticular type. The most common cervical 
spine changes related to JCA are as follows: (1) apophyseal joint ankylosis at C2–
C3, (2) atlantoaxial subluxation, (3) atlantoaxial impaction, (4) atlantoaxial rotatory 
fi xation, and (5) growth disturbances of the cervical spine. The incidence of severe 
subluxations has decreased in the last decade as result of antirheumatoid drugs and 
biologicals. However, neurological compromise still occurs in JCA patients neces-
sitating surgical treatment.  

  Conclusion   Whenever the cervical spine is involved in rheumatoid arthritis patients 
without neurological defi cits, conservative treatment is legitimate. Once patients 
develop neurological signs and symptoms, surgical treatment should be considered 
with particular focus to age, severity of the disease, and general health condition. 
Skilled anaesthesia is crucial and the surgical procedure should only be carried out 
in centres with experience in craniovertebral junction abnormalities.   

  Keywords     Rheumatoid arthritis   •   Craniocervical junction   •   Atlantoaxial   •   Paediatric  

        Introduction 

 The craniovertebral junction (CVJ) has been identifi ed as the most complex joint of 
the axial skeleton from both anatomical and kinetical point of view. The main fea-
tures ensuring stability of the region, while allowing movements of the head and 
neck to take place, are (1) the bony structure of the axis with its odontoid process; 
(2) the transverse ligament of the atlas, a thick, strong band which holds the odon-
toid process in contact with the anterior arch of the atlas; and (3) the alar ligaments, 
two strong rounded cords arising one on each side of the upper part of the odontoid 
process, passing upwards obliquely and laterally inserted into the occipital bone. 
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 Cervical spine instability in children is rare and can be caused by many factors. 
Although it most frequently occurs in the upper cervical spine, all vertebrae bodies 
from the occiput to the thoracic spine may be involved [ 11 ]. CVJ instability of non- 
traumatic origin represents 27 % of all the CVJ instabilities in the paediatric age 
group. The presence of different anatomical and motion abnormalities of the osteo-
ligamentous elements may result in severe spinal cord compression [ 14 ]. 

 Juvenile chronic arthritis (JCA) is a systemic disease of childhood affecting con-
nective tissue, particularly joints. Different names and slightly differing defi nitions 
are used throughout the world; the entity JCA is used in Europe and juvenile rheu-
matoid arthritis (JRA) in the United States. The main difference between JCA and 
JRA is the inclusion of juvenile spondyloarthropathies (i.e. ankylosing spondylitis, 
infl ammatory bowel disease, psoriatic arthritis) in the European but not in the US 
criteria for the disease [ 20 ]. 

 JCA is a heterogeneous group of infl ammatory joint disorders with onset before 
the age of 16 years [ 33 ]. JCA is comprised of 7 subtype groups based on the clinical 
presentation: systemic arthritis, oligoarthritis, rheuma factor-positive polyarthritis, 
rheuma factor-negative arthritis, enthesitis-related arthritis, psoriatic arthritis, and 
undifferentiated JCA [ 10 ,  12 ]. 

 Anatomical and biomechanical differences between the developing child and the 
adult account for the different patterns of injury in these two groups. A thorough 
knowledge of the anatomy, embryology, and normal development of the paediatric 
cervical spine is essential to understand its specifi c problems and avoid pitfalls [ 11 ].  

    Review 

 No randomised controlled trial (RCT) or systematic review on JCA with cervical 
spine involvement has been published [ 31 ,  32 ]. Only expert’s opinions, case reports, 
and case series have been described. PubMed and Embase were used to search for 
relevant studies and articles. Nine-hundred and nineteen studies were selected and 
their abstracts reviewed from 1960. Thirty-four studies were included in this review.  

    Cervical Spine Involvement in Juvenile Chronic Arthritis 

 In patients with JCA the cervical spine is often affected, leading to pain, disability, 
and functional limitations [ 20 ]. The pathogenesis of JCA seen in the cervical spine 
is synovial infl ammation, hyperaemia, and pannus formation at the occipitoatlanto-
axial joints resulting in characteristic craniovertebral junction fi ndings (Table  1 ).

   The subtypes that usually involve the cervical spine are the polyarticular and 
systemic onset types; only rarely does the oligoarticular type affect the cervical 
spine [ 15 ]. The incidence of cervical spine involvement varies among the different 
subtypes of the disease; 45 % of all patients with juvenile chronic polyarthritis were 
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reported to have clinical symptoms due to cervical spine involvement [ 3 ], whereas 
only two out of 46 patients (4 %) with the oligoarticular subtype showed cervical 
spine involvement [ 4 ]. Cervical spine involvement usually occurs in the fi rst 
1–2 years from the onset of the disease and presents with stiffness [ 11 ]. The radio-
graphic manifestations of JCA differ from the adult form and include the following: 
relatively late destruction of articular cartilage and bone, growth disturbances, spon-
dylitis of the cervical spine with associated vertebral subluxation and ankylosis of 
the apophyseal joint, and micrognathia [ 15 ]. Several studies on JCA with cervical 
spine involvement have been published (Table  2 ). Radiographic examinations have 
documented cervical spine involvement in 31–94 % of the patients with JCA. 
Erosive changes around the odontoid process occurred in 15–19 % of the patients 
with the polyarthritic and systemic onset subtype. The most common cervical spine 
changes related to JCA are listed below:

     1.     Apophyseal joint ankylosis  (Fig.  1 )
   Apophyseal joint ankylosis, or fusion, constitutes a characteristic cervical 

spine change in JRA. Apophyseal joint ankylosis at C2–C3 level is the most 
frequently noted cervical spine abnormality which has been reported 4–67 % of 
the patients with JCA. It may result in growth disturbances of the cervical spine, 
especially in patients with early onset subtype (Table  2 ).   

      Table 2    Review of cervical spine involvement in JCA   

 Study   N   AAS  AAI  Ankylosis 
 Odontoid 
erosion 

 Subaxial 
subluxation 

 Growth 
disturbance 
vertebra 

 Cervical 
spine 
involvement 

 Fried et al. [ 9 ]  92  5 (5 %)  –  4 (4 %)  –  –  –  31 % 

 Hensinger et al. 
[ 15 ] 

 121  14 %  –  28 %  19 %  3 %  (28 %)  – 

 Laiho et al. [ 19 ]  18  5 (28 %)  –  12 (67 %)  –  3 (17 %)  –  94 % 

 Laiho et al. [ 20 ]  159  27 (17 %)  39 (25 %)  65 (41 %)  –  10 (6 %)  41 (26 %)  62 % 

 Kjellberga and 
Pavloub [ 17 ] 

 82  4 (5 %)  13 %  15 (18 %)  12 (15 %)  –  –  35 % 

 Elhai et al. [ 6 ]  57  19 (33 %)  6 (10 %)  8 (14 %)  11 (19 %)  4 (7 %)  9 (16 %)  65 % 

   Table 1    Different cervical spine involvements in JCA   

 Cervical spine involvement in JCA 

 Anterior atlantoaxial subluxation 
 Anterior erosions of odontoid process 
 Apophyseal joint ankylosis 
 Atlantoaxial impaction 
 Fusion C2–C3 
 Growth abnormalities, change in the longitudinal and circumferential growth between adjacent 

vertebral bodies and decreased disc height 
 Occipitoatlantoaxial rotatory fi xation (OAARF) 
 Soft-tissue calcifi cation appearing adjacent to the ring of the atlas. The aetiology is unknown but 

may refl ect excessive traction producing osteophytes secondary to hypermobility 
 Subaxial subluxation 
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   2.     Atlantoaxial subluxation  (Fig.  1 ) 
 Anterior atlantoaxial subluxation (AAAS) is defi ned as an increase of the 

space between the anterior arch of the atlas and the odontoid peg. The anterior 
atlantodental interval (AADI) is the space between the anterior aspect of the 
dens and the posterior aspect of the anterior ring of the atlas. In children, AADI 
more than 5 mm on lateral radiographs indicates instability [ 21 ,  27 ]. This is 
more than the 3 mm rule in adults because of an increased cartilage content of 
the odontoid and ring of the atlas in children as well as the increased ligamen-
tous laxity in children. In children with rheumatoid arthritis, the AADI is fre-
quently more than 3–5 mm, without disruption of the transverse ligament. The 
space available for the spinal cord (SAC) or posterior atlantodental interval 
(PADI) is a more useful measure in this situation. It is defi ned as the distance 
between the posterior aspect of the dens and the anterior aspect of the posterior 
ring of the atlas. SAC or PADI less than 13 mm may be associated with neuro-
logical  symptoms. Spinal cord compression caused by atlantoaxial subluxation 
may result in a devastating traumatic quadriplegia or sudden death. More com-
monly it produces spasticity of extremities, tetraparesis, or weak and atrofi c 
hands. 

 The normal range of motion of the atlantooccipital joint is not well defi ned 
[ 11 ]. The prevalence of anterior atlantoaxial subluxation in JCA patients varies 
between 5 and 33 % in different studies (Table  2 ).   

  Fig. 1    Apophyseal joint 
ankylosis of the subaxial 
cervical spine. Also 
atlantoaxial subluxation in a 
patient with JCA       
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   3.     Atlantoaxial impaction (AAI)  
 Cranial settling or atlantoaxial impaction is another serious complication of 

long-standing rheumatoid arthritis. This occurs when the skull and C1 begin to 
settle down on the cervical spine, and the commonly eroded odontoid process 
will be located more cranially, leading to impingement of the brainstem or cra-
niovertebral junction. According to some authors, the compression of the 
medulla oblongata and vertebral arteries is the aetiology of sudden death among 
patients with rheumatoid arthritis who experience cranial settling. AAI occurs in 
10–25 % of patients with JCA (Table  2 ).   

   4.     Atlantoaxial rotatory fi xation (AARF)  
 Injury to the atlantoaxial joint capsules or ligaments can result in atlantoaxial 

rotatory subluxation. If reduction of this subluxation does not occur, ligamentous 
or joint capsule contraction can result in AARF. Atlantoaxial rotatory fi xation 
typically causes the head to be held slightly fl exed, tilted 20° to one side, and 
rotated 20° in the opposite direction from the head tilt, the so-called Cock-Robin 
position. Risk factors for chronic or irreducible AARF include ligamentocapsu-
lar contractures, fi brous formations within the synovial joint, infl amed adherent 
synovial surfaces, osseous union between C1 and C2, and abnormal facet defor-
mities [ 10 ]. The C1–C2 rotatory dislocation is classifi ed into four types: type I 
simple rotatory displacement without any anterior shift, type II rotatory displace-
ment with anterior shift less than 5 mm, type III anterior shift greater than 5 mm, 
and type IV rotatory displacement with posterior shift. Defi nitive treatment for 
types III and IV includes open reduction, C1 laminectomy, and occipitocervical 
internal fi xation and fusion [ 10 ]. Atlantoaxial rotatory fi xation may also develop 
after trauma, upper respiratory tract infection (Grisel syndrome), rheumatoid 
arthritis, congenital conditions of Down syndrome, Morquio and Marfan syn-
drome, and surgery of the neck. 

 Diagnosis and management of atlantoaxial rotatory subluxation is challeng-
ing because of its variability in clinical presentation. Although several treatment 
modalities have been defi ned, there is no consensus on the most appropriate 
therapy [ 2 ]. 

 Occipitoatlantoaxial rotatory fi xation (OAARF) is a rare condition involving 
fi xed rotational subluxation of the atlas in relation to both the occiput and axis. 
Atlantoaxial rotatory fi xation appears to precede OAARF in most cases, as 
untreated AARF may cause compensatory counterrotation and occipitoaxial 
fi xation at an apparently neutral head position [ 10 ].   

   5.     Growth disturbances in the cervical spine  
 Infl ammatory changes of the cervical spine are common, and growth distur-

bances of cervical vertebrae in patients with JCA have been described in 16–28 % 
of patients. This is probably caused by the infl ammatory disease and/or its more 
aggressive pharmacotherapy. The spinal canal diameter was only slightly smaller 
in the JCA group [ 7 ]. 

 In general, patients with severe JCA have smaller cervical vertebral bodies. 
They also have more variations in the sizes of their own vertebrae, representing 
growth disturbances of individual vertebral bodies. Laiho described that the 
fourth cervical vertebra was abnormally small in 41 patients (26 %) [ 20 ].    
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      Radiological Examination 

 As in adults, standard radiographs remain an important diagnostic tool of paediatric 
cervical instability [ 8 ,  22 ,  26 ]. Plain neutral radiographs of the cervical spine are 
often hard to interpret. However, additional fl exion/extension views can show insta-
bility in this region. Magnetic resonance imaging (MRI) is the method of choice to 
detect spinal cord compression and intramedullary signal abnormalities. Nevertheless, 
MRI studies are not able to provide information on the functional involvement of the 
cervical spinal cord. MR imaging provide optimal information on soft issue and 
potential presence of craniocervical stenosis. MRI easily depicts the space available 
for the spinal cord. Presently, there is no dispute that a sagittal diameter of <13 mm 
may be associated with neurological symptoms or signs. However, spinal canal 
 stenosis without cord compression on neutral cervical position may exist since the 
anteroposterior diameter of the cord is usually some millimetres narrower than the 
canal itself. Possible compression is present when no cerebrospinal fl uid can be 
discerned between the cord and the surrounding soft-tissue structures, and defi nite 
cord compression is present when the spinal cord shows indentation. 

 Computed tomography (CT) may be performed to better defi ne the osseous anat-
omy of the craniovertebral junction, atlantoaxial relationship, and the odontoid 
process. 

 Oren et al. reported on MRI of the cervical spine in 20 patients (mean age 10 years) 
with a preliminary diagnosis of juvenile rheumatoid arthritis (JRA). In all patients 
conventional x-rays of the cervical spine were obtained, and the relationship between 
clinical status and MRI fi ndings were evaluated. Two patients with clinical manifes-
tations, including neck pain and diminished range of motion, exhibited signifi cant 
pathologic features on radiogram and MRI, the latter providing more detailed infor-
mation. Among 18 patients who had no complaints of their cervical spines, 3 patients 
(16) had soft-tissue involvement, pannus formation, or erosions on the surface of 
atlantoaxial joints; only four patients (20 %) had erosions on plain x-ray views. An 
MRI should be performed in every patient with a probable diagnosis of JRA since the 
early diagnostic ability of MRI allows early therapeutic intervention [ 25 ]. 

 Arthritic changes in the cervical spine can be detected at a young age on plain 
lateral cephalometric radiographs and should be evaluated when available. Cervical 
spine involvement is seen in 21–94 % of patients with JCA. The large range in fre-
quencies depends on the severity of the disease of patients examined and the age of 
the patients when the radiographs were taken [ 17 ]. 

 By contrast, anomalies of the craniovertebral junction in otherwise normal indi-
viduals are rare, the most common being atlantooccipital assimilation, which occurs 
in 1–2 % of the normal population [ 5 ]. 

 Clinical and roentgenographic follow-up examinations of patients with JCA sug-
gest that neurologic complications are less likely to develop in these patients than in 
patients with adult rheumatoid arthritis (RA). The neurologic sequelae of cervical 
spine involvement in adult rheumatoid arthritis have been well documented. 
Compression of the spinal cord or medulla oblongata can develop secondary to 
basilar invagination, atlantoaxial subluxation, or subaxial instability in RA [ 9 ]. 
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 The paediatric cervical spine has the distinguishing feature of being able to adapt 
to an abnormal situation of one or the other of the two segments. Thus, a decrease 
in upper cervical spine mobility results in an adaptive increase in the rotatory mobil-
ity of the lower segment. Range of motion of both of these segments decreases as 
the child gets older, being limited by osteoligamentous structures ensuring mechan-
ical stability during growth. Cervical instability mainly affects the upper cervical 
spine, particularly between C1 and C2. 

 Studies have reported that atlantoaxial instability can be a feature of juvenile and 
adult ankylosing spondylitis (AS), reactive arthritis, juvenile idiopathic arthritis, and 
rheumatoid arthritis. Spondylarthritis in childhood and adolescence refers to a family 
of rheumatic diseases with overlapping clinical features that may cause peripheral 
arthritis and often enthesitis at an early age and may span through adulthood [ 19 ,  23 ].  

    Conservative Treatment 

 If the cervical spine is involved in patients with JCA without neurological defi cits, 
conservative treatment with physical therapy and antirheumatoid drugs is an option. 
Once patients develop neurological signs and symptoms, surgical treatment should 
be considered with respect to the age, the severity of the disease, and general health 
condition. In fact, after the age of 10–12 years, the sequel of paediatric and adult 
cervical trauma becomes similar [ 14 ]. A treatment algorithm for patients with JCA 
and craniovertebral junction pathology is shown in Fig.  2 .

Ventral brain stem
compression due to CVJ
pathologies

Mechanical
and
neurological
stability

Ventral brain stem
compression signs

Conservative
observation

Reducible with
close reduction

Non-reducible with
close reduction

Posterior fixation
with fusion

Ventral
decompression

Posterior
stabilization
if unstable

  Fig. 2    Treatment algorithm of paediatric patients with craniovertebral junction anomalies       
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   Epidural lipomatosis, a condition characterised by abnormal unencapsulated 
accumulations of fat on or outside the dura, is rare [ 1 ]. However, it should be con-
sidered in the differential diagnosis of JCA patients receiving high-dose and/or pro-
longed corticosteroid therapy who present with neurologic signs and symptoms 
referable to the spinal cord. 

 It is noteworthy, however, that most advances in the treatment of JCA were per-
formed during the past decade with the advent of biotherapies. Consequently, the 
prevalence and characteristics of radiological cervical involvement in JCA persist-
ing into adulthood in the current era remain unknown [ 6 ].  

    Anaesthetic Evaluation 

 A potential risk of AAS and AAI is the diffi culty that is often encountered when 
inducing general anaesthesia. Micrognathia and stiffness or instability of the neck 
make intubation diffi cult, and care must be taken to avoid fracture of an already 
compromised odontoid process or neurological deterioration [ 17 ]. If the patient’s 
predisposition to atlantoaxial dislocation is recognised, excessive head movements 
during general anaesthesia should be avoided. Otherwise, this may result in severe 
neurological defi cits or quadriplegia.  

    Timing of Surgery 

 The optimal time for surgery may be early in life in order to prevent neurological dete-
rioration by spinal cord compression. In asymptomatic patients, the current recommen-
dations for surgical decompression with fusion are <14 mm space available for the cord 
or cervical instability >8 mm. Patients with 5–8 mm of cervical instability, with clini-
cal evidence of spinal cord impingement, and patients with a deteriorating neurologi-
cal condition warrant surgical treatment. Transoral excision of the anterior soft-tissue 
mass should be considered in order to achieve immediate and direct anterior decom-
pression of the spinal cord and in cases of unreasonably hazardous posterior fusion. 
However, after atlantodental fi xation the anterior located pannus mass will resolve, 
making anterior transoral surgery not always necessary. Even in paediatric patients 
with catastrophic neurological conditions, a prompt and aggressive management of 
CVJ instability is justifi ed since remarkable clinical improvement is possible [ 14 ].  

    Operative Treatment 

 The major goals of surgical treatment of CVJ instability are neural decompression 
with stabilisation and fusion of the spine. The type of fi xation depends on the age of 
the patient with the resultant bone quality and anatomical dimensions. Generally, 
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screw fi xation is the most stable solution although wiring techniques can also be 
used in smaller and younger patients. The surgical fi xation techniques performed in 
adults are not always possible in children. Lateral mass screw placement is often the 
best option with the lowest complication rate. Pedicle screws offer the best mechan-
ical strength by achieving three-column fi xation. They do, however, carry a signifi -
cant risk of injury to the vertebral artery, spinal cord, and exiting nerve roots. 
Different wiring techniques are available if screw fi xation is too risky. Spinous pro-
cess and facet wire techniques not only are safer than sublaminar wires but also 
have equivalent biomechanical strength. Because of the high complexity of these 
surgeries, custom made implants are often used and necessary to be able to treat this 
pathology. Complications such as infection, pseudarthrosis, malalignment, nerve 
root injury, spinal cord lesion, implant failure, and extension of the fusion are poten-
tial problems with all techniques. 

 Once patients are severely incapacitated or ventilator dependent, the prognosis 
of surgical decompression and fi xation is very poor. Preoperative traction can be 
suitable for improvement of the patient’s neurological status and alignment of the 
cervical spine [ 29 ,  30 ]. 

    Transoral Decompression 

 In 1962 Fand and Ong approached irreducible CVJ pathologies with transoral 
decompression and reported high mortality and morbidity rates. Today, with 
advances in microsurgery and diagnostic tools, this region can be easily reached and 
results have much improved [ 18 ]. 

 The commonly accepted paradigm for neuroradiologically demonstrable irre-
ducible C1–C2 dislocation with anterior neural compression is surgical decompres-
sion by the transoral route. 

 The transoral approach is accepted as a safe procedure with an aid of specially 
organised retractors. A split mandibular osteotomy is possible to gain a wide opera-
tive fi eld for odontoid resection. Guyuron reported that about 25 % of patients with 
juvenile rheumatoid arthritis tend to have complications with the mandibular micro-
gnathia, undeveloped and retropositioned mandible, and trisms, which make the 
birdface deformity [ 16 ]. 

 There are three advantages of initial transoral excision of the anterior extradural 
soft-tissue elements in patients with severe spinal cord compression. Firstly, tran-
soral surgery is performed with the head extended, a position in which any anterior 
atlantoaxial subluxation is reduced and the available subarachnoid space is usually 
enlarged. Secondly, adequate anterior decompression permits safer posterior fusion. 
And thirdly, excision of the anterior soft-tissue mass is often the only way to achieve 
direct and immediate decompression of the spinal cord, which will possibly contrib-
ute to improvement of established neurological defi cit. 
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 However, when preoperative dynamic manoeuvres and traction show a reducible 
deformity, neural decompression may be obtained by reduction of the dislocation 
and fi xation and fusion with posterior instrumentation. 

 Optimal stabilisation after transoral dens resection is still a controversial issue in 
the literature. Neurological impairment due to instability can be prevented in most 
cases. However, if there is instability in addition to ventral compression, the need 
for stabilisation in these cases is accepted [ 18 ]. Posterior decompression and fusion 
following anterior decompression can usually be performed under the same anaes-
thesia. Many similar posterior occipitocervical implants with unique advantages 
and disadvantages have been described, and many alternative fi xation methods used 
in surgery in recent years have been reported [ 18 ].  

    C1–C2 Fixation 

 An option of surgical treatment of atlantoaxial rotatory fi xation can be C1 lateral 
mass screws and C2 pedicle screws with a temporary transverse rod across the atlas 
and axis to secure a three-column fi xation to derotate the subluxed atlas into ana-
tomical alignment. Rods are then connected between the C1 lateral mass and the C2 
pedicle screws and fusion obtained with autologous grafts [ 28 ]. Goel et al. proposed 
a posterior approach to this pathology by opening the facet joints posteriorly, excis-
ing the capsules, and sectioning of the large C2 ganglion with stabilisation by a 
C1–C2 plate and screw construct [ 13 ]. An always posterior strategy for irreducible 
C1–C2 dislocation has also been recommended by Visocchi et al. It is also known 
that the pathologic stickiness of the atlantoaxial complex in AARF progressively 
increases with the duration of pretreatment delay. Also, irreducibility in a case of 
rheumatoid arthritis may develop as a consequence of the high grade of synovitis 
and adhesion of the thick pannus. In such a scenario, an anterior release procedure 
may be necessary. Surgical OAARF treatments have included open reduction fol-
lowed by C1–C2 arthrodesis, occiput C1–C2 arthrodesis, and C1–C2 transarticular 
screw fi xation. Direct posterior reduction of basilar invagination and C1–C2 sub-
luxation can be achieved without anterior decompression. 

 Intraoperative reduction of C1–C2 subluxations can be technically challenging 
when one uses traditional techniques (e.g. wiring and transarticular screw fi xation). 
Wiring techniques are limited in their ability to achieve and maintain adequate 
reduction intraoperatively. Transarticular screw techniques are excellent for main-
taining alignment, but they do not enable reduction very well. The advantage of the 
C1 lateral mass screw with C2 pedicle screw constructs provides the surgeon with 
the ability to independently manipulate C1 and C2 as well as the ability to maintain 
reduction for fusion. In certain patients, the anomalous course of the vertebral artery 
precludes the safe placement of C2 pedicle screws. In these instances, translaminar 
(or intralaminar) screw placement in C2 can provide an alternative fi xation point in 
C2 without threatening injury to the vertebral artery [ 24 ,  34 ].   
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    Conclusion 

 Conservative treatment is a legitimate option in patients with JCA without neuro-
logical defi cits. Once patients develop neurological signs and symptoms, surgical 
treatment should be considered. Prophylactic surgical decompression and fusion 
can be performed when the space available for the spinal cord is <14 mm or if there 
is cervical instability >8 mm. Depending on the age and bone quality of the patients, 
different types of surgical fi xations can be used: occipitocervical screw fi xation with 
transarticular or pedicle screw placement as well as hooks or wiring techniques. 

 Multidisciplinary tailored treatment of craniocervical instability with rigid inter-
nal fi xation is recommended in regard to effective long-term results, even in severely 
symptomatic children with CVJ abnormalities [ 14 ]. The long-term stabilisation of 
the CVJ, without undesired effects on the developing spinal structures, and overall 
clinical improvement are major end points related to the evaluation of effectiveness 
of surgical management of symptomatic CVJ abnormalities in children [ 14 ]. In case 
of CVJ instability of malformative origin, it is mandatory to tailor the operative 
technique and the surgical devices to the anatomical features of each patient and to 
the experience and technical skill of individual surgeons as well as anaesthetists. 

 Skilled anaesthesia is crucial and the surgical procedure should only be carried 
out in centres with experience in CVJ abnormalities.     
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