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Abstract. We consider an elliptic distributed optimal control problem on convex
polygonal domains with pointwise state constraints and solve it as a fourth order varia-
tional inequality for the state by a quadratic C0 interior penalty method. The error for
the state in an H2-like energy norm is O(hα) on quasi-uniform meshes (where α ∈ (0, 1]
is determined by the interior angles of the domain) and O(h) on graded meshes. The
error for the control in the L2 norm has the same behavior. Numerical results that
illustrate the performance of the method are also presented.
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1. Introduction. Let Ω be a bounded convex polygonal domain in
R

2, yd ∈ L2(Ω), γ ≥ 0 and β > 0 be constants. The following problem
[33] is a model elliptic distributed optimal control problem with pointwise
state constraints:

Find the minimizer of the functional

J(y, u) =
γ

2

∫
Ω

(y − yd)
2 dx+

β

2

∫
Ω

u2 dx, (1.1)

where (y, u) ∈ H1
0 (Ω)× L2(Ω) are subjected to the constraints∫
Ω

∇y · ∇v dx =

∫
Ω

uv dx ∀ v ∈ H1
0 (Ω), (1.2)

ψ1 ≤ y ≤ ψ2 a.e. in Ω. (1.3)

Here the functions ψ1(x), ψ2(x) ∈ C2(Ω) ∩ C(Ω̄) satisfy
ψ1 < ψ2 in Ω, (1.4a)

ψ1 < 0 < ψ2 on ∂Ω. (1.4b)

Since Ω is convex, elliptic regularity [36, 45, 58] implies that (1.2) is
equivalent to y ∈ H2(Ω) ∩ H1

0 (Ω) and u = −Δy. Note that [46, Theo-
rem 2.2.1]∫

Ω

(Δv)(Δw) dx =

∫
Ω

(D2v : D2w) dx ∀ v, w ∈ H2(Ω) ∩H1
0 (Ω), (1.5)
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where

D2v : D2w =
∑

1≤i,j≤2

(
∂2v

∂xi∂xj

)(
∂2w

∂xi∂xj

)

is the (Frobenius) inner product of the Hessian matrices of v and w. There-
fore we can solve the optimal control problem (1.1)–(1.3) by looking for the
minimizer of the reduced functional

Ĵ(y) =
γ

2

∫
Ω

(y − yd)
2dx+

β

2

∫
Ω

(D2y : D2y) dx

in the set

K = {v ∈ H2(Ω) ∩H1
0 (Ω) : ψ1 ≤ v ≤ ψ2 in Ω}. (1.6)

A simple calculation shows that this is equivalent to the following problem:

Find ȳ = argmin
y∈K

[
1

2
A(y, y)− (f, y)

]
, (1.7)

where f = γyd, (·, ·) is the inner product of L2(Ω), and

A(v, w) =

∫
Ω

[
β(D2v : D2w) + γvw

]
dx. (1.8)

Since (1.4) implies that K is a nonempty closed convex subset of
H2(Ω)∩H1

0 (Ω) and the bilinear form A(·, ·) is symmetric, bounded, and co-
ercive on H2(Ω)∩H1

0 (Ω), we can apply the standard theory [43, 52, 54, 59]
to conclude that the problem (1.7) has a unique solution ȳ ∈ K character-
ized by the variational inequality

A(ȳ, y − ȳ) ≥ (f, y − ȳ) ∀ y ∈ K. (1.9)

The solution of the optimal control problem is then given by (ȳ, ū), where
ū = −Δȳ. Note that (1.7) becomes the displacement obstacle problem for
simply supported Kirchhoff plates if we take γ to be 0. For this reason we
will also refer to (1.7) as an obstacle problem.

According to the regularity results in [32, 41, 42] for fourth order
obstacle problems, the solution ȳ of (1.7) belongs to H3

loc(Ω)∩C2(Ω) under
our assumptions on the functions yd, ψ1, and ψ2. Note that (1.4b) implies
that the constraints are inactive near ∂Ω and hence

βΔ2ȳ + γȳ = f

near ∂Ω. It then follows from the elliptic regularity theory for the bih-
armonic equation (cf. [8] and Appendix A) that there exists α ∈ (0, 1]
(determined by the interior angles of Ω) such that ȳ ∈ H2+α(N ) in a
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neighborhood N of ∂Ω disjoint from the active set. Thus globally ȳ belongs
to H2+α(Ω). We shall refer to α as the index of elliptic regularity for the
obstacle problem (1.7).

A main difficulty in the analysis of finite element methods for fourth
order obstacle problems is that the solutions in general do not belong to
H4

loc(Ω) even for smooth data, which means that the complementarity form
of the variational inequality (1.9) in general only exists in a weak sense. In
contrast, the solutions of second order obstacle problems belong to H2(Ω)
under appropriate assumptions on the data (cf. [29, 53]). Hence the com-
plementarity forms of the variational inequalities arising from second order
obstacle problems exist in the strong sense, which is a crucial ingredient
for the derivations of optimal error estimates in [30, 31, 40].

A new approach to the obstacle problem for clamped Kirchhoff plates
on convex polygonal domains was introduced in [25], where optimal er-
ror estimates were obtained for C1 finite element methods, classical non-
conforming finite element methods, and discontinuous Galerkin methods.
The results were later extended to general domains and general Dirichlet
boundary conditions in [15, 23, 24]. This new approach does not rely on
the complementarity forms of the variational inequalities and hence can
bypass the aforementioned difficulty. The goal of this paper is to extend
the results in [23] to (1.7)/(1.9), which covers both obstacle problems for
simply supported plates and optimal control problems with pointwise state
constraints. We will show that the magnitude of the error in the energy
norm is O(hα) on quasi-uniform meshes and O(h) on graded meshes.

Finite element methods for state constrained elliptic optimal control
problems were investigated in [37, 56], where the finite element approxi-
mation (ȳh, ūh) of (ȳ, ū) is obtained from discrete versions of the optimal
control problems. In this approach the error analysis for the state and
the error analysis for the control are coupled and hence the estimates for
|ȳ− ȳh|H1(Ω) and ‖ū−ūh‖L2(Ω) have the same magnitude, which in the case
of a rectangle with quasi-uniform meshes is O(h1−ε). In our approach we
obtain instead an error estimate for the approximation ȳh of ȳ in an H2-like
energy norm, which then implies an error estimate in the L2 norm for the
approximation ūh of ū (generated from ȳh by a postprocessing procedure)
with the same magnitude. In the case of a rectangle with quasi-uniform
meshes, the magnitudes of these errors are O(h). On the other hand, the
convergence of ȳh in the H1(Ω) norm and the L∞(Ω) norm, which are
weaker than the energy norm, can be expected to be of higher order. This
is indeed observed in our numerical experiments, where the magnitudes of
the errors of ȳh in the H1(Ω) norm and the L∞(Ω) norm are O(h2) for a
rectangle.

The optimal control problem defined by (1.1)–(1.3) is solved as a fourth
order variational inequality in [55] by a Morley finite element method and
in [44] by a mixed finite element method. However the analyses in [44, 55]
rely on additional assumptions on the active set first introduced in [7].
Our new approach for fourth order obstacle problems may provide an error
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analysis for the finite element methods in [44, 55] without the additional
assumptions on the active set.

Other numerical methods for (1.1)–(1.3) are investigated, for example,
in [5, 6, 34, 48–51, 57, 60].

The rest of the paper is organized as follows. We introduce a quadratic
C0 interior penalty method for (1.7) in Sect. 2 and an intermediate obstacle
problem that connects the continuous and discrete obstacle problems in
Sect. 3. Section 4 contains several preliminary estimates which are useful
for the convergence analysis carried out in Sect. 5. Numerical results that
illustrate the performance of our method are presented in Sect. 6, followed
by some concluding remarks in Sect. 7. Elliptic regularity results for simply
supported plates, which play an important role in the error analysis, are
summarized in Appendix A. Some technical results concerning an enriching
operator that connects the discrete and continuous spaces are given in
Appendix B.

We will follow the notation for Sobolev spaces and norms in [20, 35].
Throughout the paper we will denote by C a generic positive constant
independent of mesh sizes that can take different values at different occur-
rences. To avoid the proliferation of constants, we will also use A � B (or
B � A) to denote the statement that A ≤ (constant)B, where the positive
constant is independent of mesh sizes. The statement A ≈ B is equivalent
to A � B and B � A.

2. A Quadratic C0 Interior Penalty Method. C0 interior penalty
methods were introduced in [39] for fourth order elliptic boundary value
problems. They were further studied in [13, 16, 18, 21] and fast solvers
for C0 interior methods were developed in [22, 26, 27]. Adaptive [17] and
isoparametric [19] versions of C0 interior penalty methods are also available.
Below we will recall the notation for C0 interior penalty methods and
introduce the discrete obstacle problem for (1.7).

2.1. Triangulation. Let Th be a simplicial triangulation of Ω that
is regular (i.e., Th satisfies a minimum angle condition). We will use the
following notation throughout the paper.

• hT is the diameter of the triangle T .
• h is a mesh parameter proportional to maxT∈Th

hT .
• vT is the restriction of the function v to the triangle T .
• Eh is the set of the edges of the triangles in Th.
• E i

h is the subset of Eh consisting of edges interior to Ω.
• Eb

h is the subset of Eh consisting of edges along ∂Ω.
• |e| is the length of an edge e.
• Vh is the set of the vertices of the triangles in Th.
• VT is the set of the three vertices of T .
• E i

VT
is the set of the edges in E i

h emanating from the vertices of T .
• TT is the set of triangles sharing a vertex with T .
• ST is the interior of the closure of ∪T ′∈TT

T ′.
• Tp is the set of the triangles in Th that share the common vertex p.
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• Te is the set of the triangles in Th that share the common edge e.
• |Tp| (resp. |Te|) is the number of triangles in Tp (resp. Te).
• Let e ∈ Eb

h. Then Te is the triangle in Th such that Te = {Te}.
We will consider both quasi-uniform and graded triangulations. For a

quasi-uniform triangulation Th, we have

hT ≈ h ∀T ∈ Th. (2.1)

Let p1, . . . , pL be the corners of Ω and ω� be the interior angle at p�
for 1 ≤ � ≤ L. For a graded triangulation Th, we have

hT ≈ hΦ(cT ) ∀T ∈ Th, (2.2)

where cT is the center of T ,

Φ(x) =
L∏

�=1

|p� − x|1−α� , (2.3)

and the grading parameters α� > 0 are determined as follows:

⎧⎪⎨
⎪⎩
α� = 1 if ω� ≤

π

2
,

α� <

(
π

ω�

)
− 1 if

π

2
< ω� < π.

(2.4)

Note that (2.2) and (2.3) imply

hα�

T ≈ h (2.5)

if T ∈ Th touches the corner p�.
Remark 2.1. We can take α = min

1≤�≤L
α� to be the index of elliptic

regularity (cf. Appendix A).
Remark 2.2. The construction of regular triangulations that satisfy

(2.2) is discussed, for example, in [1, 10, 14].

2.2. Jumps and Averages. The jumps and averages of the normal
derivatives for functions in the piecewise Sobolev spaces

Hs(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ Hs(T ) ∀T ∈ Th}

are defined as follows.
Let e ∈ E i

h be the common edge of T± ∈ Th and ne be the unit normal
of e pointing from T− to T+. We define on e

{{
∂2v

∂n2

}}
=

1

2

(
∂2v+
∂n2e

∣∣∣∣
e

+
∂2v−
∂n2e

∣∣∣∣
e

)
∀v ∈ Hs(Ω, Th), s >

5

2
, (2.6a)

[[
∂v

∂n

]]
=
∂v+
∂ne

∣∣∣∣
e

− ∂v−
∂ne

∣∣∣∣
e

∀v ∈ H2(Ω, Th), (2.6b)
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where v± = v
∣∣
T±

. Similarly, we define on e

{{
∂v

∂ne

}}
=

1

2

(
∂v+
∂ne

∣∣∣∣
e

+
∂v−
∂ne

∣∣∣∣
e

)
∀v ∈ H2(Ω, Th), (2.7a)

[[
∂2v

∂n2e

]]
=
∂2v+
∂n2e

∣∣∣∣
e

− ∂2v−
∂n2e

∣∣∣∣
e

∀v ∈ Hs(Ω, Th), s >
5

2
. (2.7b)

Remark 2.3. Note that the definitions for the average
{{
∂2v/∂n2

}}
and

the jump [[∂v/∂n]] in (2.6), which appear in C0 interior penalty methods, are
independent of the choice of T± (or ne). On the other hand, the definitions
in (2.7) for {{∂v/∂ne}} and [[∂2v/∂n2e]], which appear only in the analysis,
do depend on the choice of T± (or ne). However their product is also
independent of the choice of T± (or ne).

Let e ∈ Eb
h be a boundary edge and ne be the unit normal of e pointing

towards the outside of Ω. We define on e{{
∂v

∂ne

}}
=

∂v

∂ne

∣∣∣∣
e

∀v ∈ H2(Ω, Th), (2.8a)

[[
∂2v

∂n2e

]]
= − ∂

2v

∂n2e

∣∣∣∣
e

∀v ∈ Hs(Ω, Th), s >
5

2
. (2.8b)

2.3. The Discrete Obstacle Problem. Let Vh ⊂ H1
0 (Ω) be the P2

Lagrange finite element space associated with Th whose members vanish
on ∂Ω. We define the bilinear form ah(·, ·) on Vh × Vh by

ah(v, w) =
∑
T∈Th

∫
T

(D2v : D2w)dx+
∑
e∈Ei

h

∫
e

{{∂2v/∂n2}}[[∂w/∂n]]ds

+
∑
e∈Ei

h

∫
e

{{∂2w/∂n2}}[[∂v/∂n]]ds (2.9)

+ σ
∑
e∈Ei

h

|e|−1

∫
e

[[∂v/∂n]] [[∂w/∂n]]ds,

where σ > 0 is a penalty parameter. Note that ah(·, ·) is a consistent
bilinear form for the biharmonic equation with the boundary conditions of
simply supported plates.

It follows from (2.6a) and scaling that∑
e∈Ei

h

|e|‖{{∂2v/∂n2}}‖2L2(e)
�
∑
T∈Th

|v|2H2(T ) ∀v ∈ Vh. (2.10)

Therefore, for sufficiently large σ, we have (cf. [21])

ah(v, v) �

⎛
⎝∑

T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎠ ∀v ∈ Vh.

(2.11)
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The discrete bilinear form that approximates A(·, ·) is then given by

Ah(v, w) = βah(v, w) + γ(v, w), (2.12)

and

‖v‖h =

⎡
⎣β
⎛
⎝∑

T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎠ (2.13)

+ γ‖v‖2L2(Ω)

] 1
2

is the mesh-dependent energy norm. It follows from (2.10)–(2.13) that

|Ah(v, w)| � ‖v‖h‖w‖h ∀v, w ∈ Vh, (2.14)

Ah(v, v) � ‖v‖2h ∀v ∈ Vh, (2.15)

provided that σ is sufficiently large, which we assume to be the case.
Note that

‖v‖2H1(Ω) �
∑
T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)
(2.16)

for all v ∈ H2(Ω, Th) ∩ H1
0 (Ω) by a Poincaré–Friedrichs inequality [28,

Example 5.4], and hence

‖v‖H1(Ω) � ‖v‖h (2.17)

for all v ∈ H2(Ω, Th) ∩H1
0 (Ω) (⊃ Vh +H2(Ω) ∩H1

0 (Ω)).
We can now define the discrete obstacle problem for (1.7):

Find ȳh = argmin
yh∈Kh

[
1

2
Ah(yh, yh)− (f, yh)

]
, (2.18)

where

Kh = {v ∈ Vh : ψ1(p) ≤ v(p) ≤ ψ2(p) ∀p ∈ Vh}. (2.19)

Let Πh be the nodal interpolation operator for the P2 Lagrange finite
element space. Then Πh maps H2(Ω) ∩ H1

0 (Ω) into Vh and K into Kh.
Therefore Kh is a nonempty closed convex subset of Vh. Moreover the
bilinear form Ah(·, ·) is symmetric positive definite by (2.15). Hence the
discrete problem (2.18) has a unique solution ȳh ∈ Kh characterized by the
discrete variational inequality:

Ah(ȳh, yh − ȳh) ≥ (f, yh − ȳh) ∀yh ∈ Kh. (2.20)



104 S.C. Brenner, L.-Y. Sung and Y. Zhang

Let ΠT be the nodal interpolation operator for the P2 Lagrange finite
element on a triangle T . We have a standard local interpolation error
estimate [20, 35]

2∑
m=0

hm−2
T |ζ −ΠT ζ|Hm(T ) � hsT |ζ|H2+s(T ) (2.21)

for all ζ ∈ H2+s(T ), T ∈ Th and s ∈ [0, 1].
The following lemma provides global interpolation error estimates for

the solution ȳ of (1.7)/(1.9).
Lemma 2.1. There exists a positive constant C independent of h such

that

‖ȳ −Πhȳ‖h ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since the estimate for a quasi-uniform Th is standard (cf. [21]),
we will focus on a graded Th. Let T I

h be the set of triangles in Th that do
not touch any corner of Ω and T C

h = Th \ T I

h = ∪1≤�≤LT C

h,�, where T C

h,� is
the set of the triangles that touch the corner p�.

Since ȳT ∈ H3(T ) for T ∈ T I

h (cf. Appendix A), we have, by (2.21),

∑
T∈T I

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) (2.22)

�
∑

T∈T I
h

(
Φ−2(cT )h

2
T

)
Φ2(cT )|ȳ|2H3(T )

where the function Φ is defined in (2.3).
It follows from (2.2), (2.3), (2.22), and (A.7) that

∑
T∈T I

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2. (2.23)

Let T ∈ T C

h,� be a triangle that touches a corner p�. Then ȳ ∈ H2+α�(T )
(cf. Appendix A) and we have, by (2.21),

2∑
m=0

hm−2
T |ȳ −Πhȳ|Hm(T ) � hα�

T |ȳ|H2+α� (T ) ∀T ∈ T C

h,�. (2.24)

It follows from (2.5) and (2.24) that

∑
T∈T C

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) (2.25)
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=

L∑
�=1

∑
T∈T C

h,�

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2.

Combining (2.23) and (2.25), we find

∑
T∈Th

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2. (2.26)

By the trace theorem with scaling, (2.6b) and (2.26), we also have

∑
e∈Ei

h

|e|−1‖[[∂(ȳ −Πhȳ)/∂n]]‖2L2(e)
(2.27)

�
∑
T∈Th

(
h−2
T |ȳ −Πhȳ|2H1(T ) + |ȳ −Πhȳ|2H2(T )

)
� h2.

The lemma for a graded Th follows from (2.13), (2.16), (2.26), and
(2.27).

3. An Intermediate Obstacle Problem. As mentioned in Sect. 1,
the difficulties due to the lack of H4

loc(Ω) regularity can be bypassed if
the convergence analysis does not rely on the complementarity form of the
variational inequality (1.9). We can accomplish this by introducing the
following intermediate obstacle problem:

Find ȳ∗h = argmin
y∗
h∈K∗

h

[
1

2
A(y∗h, y

∗
h)− (f, y∗h)

]
, (3.1)

where

K∗
h = {v ∈ H2(Ω) ∩H1

0 (Ω) : ψ1(p) ≤ v(p) ≤ ψ2(p) ∀p ∈ Vh}. (3.2)

By the standard theory (3.1) has a unique solution ȳ∗h characterized by the
variational inequality

A(ȳ∗h, y
∗
h − ȳ∗h) ≥ (f, y∗h − ȳ∗h) ∀y∗h ∈ K∗

h. (3.3)

Note that, on the one hand, ȳ∗h ∈ H2(Ω) ∩H1
0 (Ω) minimizes the same

functional as ȳ but on the larger set K∗
h ⊃ K, and, on the other hand, ȳ∗h

shares the same pointwise constraints as ȳh. Thus the intermediate obstacle
problem connects the continuous obstacle problem (1.7) and the discrete
obstacle problem (2.18). We will carry out the convergence analysis using
(1.9), (2.20), and (3.3), but not their complementarity forms.
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3.1. Relation Between ȳ and ȳ∗h. Using the fact that H2(Ω) is
compactly embedded in C(Ω̄), it was shown in [25] that there exist two
nonnegative functions φ1, φ2 ∈ C∞

0 (Ω) and a positive number h0 such that
for any h ≤ h0 we can find two positive numbers δh,1 and δh,2 with the
following properties:

ŷh := ȳ∗h + δh,1φ1 − δh,2φ2 ∈ K and δh,i � h2. (3.4)

Note that we can treat ȳ as an internal approximation of ȳ∗h since
K ⊂ K∗

h. It then follows from (3.4) and a standard result [3] that

‖ȳ∗h − ȳ‖H2(Ω) �
[
inf
y∈K

‖ȳ∗h − y‖H2(Ω)

] 1
2

� ‖ȳ∗h − ŷh‖
1
2

H2(Ω) � h. (3.5)

Remark 3.1. Even though the results in [25] are obtained for clamped
Kirchhoff plates on convex polygonal domains, these results are also valid
for general boundary conditions and general polygonal domains because they
are interior results that only require the following ingredients: (i) The set
K∗

h is a closed convex subset of H2(Ω). (ii) The constraints and the bound-
ary conditions are separated. (iii) The obstacle functions ψ1, ψ2 and the
solution ȳ belong to C2(Ω).

3.2. Connection Between Kh and K∗
h. We can connect Kh and

K∗
h by an enriching operator Eh that maps Vh into H2(Ω) ∩ H1

0 (Ω). By
construction Eh is a linear operator that preserves the nodal values at the
vertices of Th, i.e.,

(Ehv)(p) = v(p) ∀p ∈ Vh, v ∈ Vh, (3.6)

which, in view of (2.19) and (3.2), implies

EhKh ⊂ K∗
h. (3.7)

Moreover we have (cf. the notation in Sect. 2.1),

2∑
m=0

h2mT |v − Ehv|2Hm(T ) (3.8)

� h4T

⎛
⎜⎝ ∑

T ′∈TT

|v|2H2(T ′) +
∑

e∈Ei
VT

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎟⎠

for any v ∈ Vh and T ∈ Th, and

2∑
m=0

hm−2
T |ζ − EhΠhζ|Hm(T ) � hsT |ζ|H2+s(ST ) (3.9)
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for all ζ ∈ H2+s(ST ), T ∈ Th and s ∈ [0, 1]. The construction of Eh, which
is similar to the constructions of the enriching operators in [16, 21] under
different boundary conditions, is given in Appendix B, where we also derive
the estimates (3.8) and (3.9).

The estimate (3.8) implies

∑
T∈Th

h
2(m−2)
T |v − Ehv|2Hm(T ) � ‖v‖2h ∀ v ∈ Vh, (3.10)

and in particular,

|Ehv|H2(Ω) � ‖v‖h ∀ v ∈ Vh. (3.11)

Combining (2.7a), (2.8a), (3.10) and the trace theorem with scaling, we
also have

∑
e∈Eh

|e|−1‖{{∂(v − Ehv)/∂ne}}‖2L2(e)
� ‖v‖2h ∀ v ∈ Vh. (3.12)

Finally the quasi-local estimate (3.9) implies the following result for
the solution ȳ of (1.7). We omit the proof due to its similarity with the
proof of Lemma 2.1.

Lemma 3.1. There exists a positive constant C independent of h such
that

‖ȳ − EhΠhȳ‖L2(Ω) + h|ȳ − EhΠhȳ|H1(Ω) + h2|ȳ − EhΠhȳ|H2(Ω) ≤ Ch2+τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

4. Preliminary Estimates. In this section we derive some prelimi-
nary estimates that are useful for the convergence analysis in Sect. 5. We
begin by stating the following integration by parts formula that holds for
v, w ∈ Vh:

∑
T∈Th

∫
T

D2v : D2(w − Ehw)dx

=
∑
T∈Th

∫
∂T

[(
∂2v

∂n2

)(
∂(w − Ehw)

∂n

)

+

(
∂2v

∂n∂t

)(
∂(w − Ehw)

∂t

)]
ds (4.1)

= −
∑
e∈Eh

∫
e

[[
∂2v

∂n2e

]]{{
∂(w − Ehw)

∂ne

}}
ds

−
∑
e∈Ei

h

∫
e

{{
∂2v

∂n2

}}[[
∂(w − Ehw)

∂n

]]
ds.
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Note that v ∈ P2(T ) and hence on any edge e of T ∈ Th we have

∫
e

(
∂2vT
∂n∂t

)(
∂(wT − Ehw)

∂t

)
ds =

(
∂2vT
∂n∂t

)∫
e

∂(wT − Ehw)

∂t
ds = 0

because of (3.6).
Next we derive a basic estimate for ȳ − ȳh, where ȳ (resp. ȳh) is the

solution of (1.7)/(1.9) [resp. (2.18)/(2.20)].
Lemma 4.1. There exists a positive constant C independent of h such

that

‖ȳ− ȳh‖2h ≤ 2‖ȳ −Πhȳ‖2h +C
[
Ah(Πhȳ,Πhȳ− ȳh)− (f,Πhȳ− ȳh)

]
. (4.2)

Proof. Since Πhȳ ∈ Kh, we deduce from (2.15) and (2.20) that

‖ȳ − ȳh‖2h ≤ 2‖ȳ −Πhȳ‖2h + 2‖Πhȳ − ȳh‖2h
≤ 2‖ȳ −Πhȳ‖2h + CAh(Πhȳ − ȳh,Πhȳ − ȳh)

≤ 2‖ȳ −Πhȳ‖2h + C
[
Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)

]
.

In view of Lemmas 2.1 and 4.1, we can complete the error analysis
by bounding the second term on the right-hand side of (4.2). This will be
carried out in Sect. 5 after we have developed several technical lemmas in
the remaining part of this section.

Lemma 4.2. There exists a positive constant C independent of h such
that

∑
e∈Eh

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

≤ Ch2τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. We will split the estimate into two cases. Let ER

h = {e ∈ Eh :
e is not an edge of any triangle that touches a corner of Ω where the
angle is strictly greater than π/2} and ES

h = Eh \ ER

h . Note that the num-
ber of edges in ES

h is bounded by a constant determined by the minimum
angle of Th.

Since away from the corners of Ω where the angles are strictly greater
than π/2 the function ȳ belongs to H3 and ∂2ȳ/∂n2 = Δȳ vanishes on ∂Ω
(cf. Appendix A), we have, by (2.7b), (2.21) and the trace theorem with
scaling,

∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

=
∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ − ȳ)/∂n2e]]

∥∥2
L2(e)

�
∑
e∈ER

h

∑
T∈Te

(h2TΦ
−2(cT ))Φ

2(cT )|ȳ|2H3(T ),
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where the function Φ is defined in (2.3). It then follows from (2.1)–(2.3)
and (A.7) that

∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

� h2τ , (4.3)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
Let e ∈ ES

h be an edge of a triangle that touches a corner p� of Ω where
the angle ω� ∈ (π/2, π). It follows from scaling that

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

�
∑
T∈Te

|Πhȳ|2H2(T )

�
∑
T∈Te

(
|Πhȳ − ȳ|2H2(T ) + |ȳ|2H2(T )

)
.

Let T ∈ Te. Since ȳ ∈ H2+α�(T ) (cf. Appendix A), we have

|Πhȳ − ȳ|H2(T ) � |ȳ|H2+α� (T )h
α�

T .

Moreover we have

|ȳ|H2(T ) ≈
∑
|μ|=2

‖∂μȳ‖L2(T )

=
∑
|μ|=2

‖Ψ−1
(
Ψ(∂μȳ)

)
‖L2(T ) � hα�

T

∑
|μ|=2

‖Ψ(∂μȳ)‖L2(T ),

where Ψ is define in (A.9). Therefore it follows from (2.1), (2.5), Remark 2.1
and (A.8) that

∑
e∈ES

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

� h2τ , (4.4)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
The lemma follows from (4.3) and (4.4).
Lemma 4.3. There exists a positive constant C independent of h such

that
∣∣∣∣ah(Πhȳ,Πhȳ − ȳh)−

∫
Ω

D2ȳ : D2Eh(Πhȳ − ȳh) dx

∣∣∣∣ (4.5)

≤ Chτ‖Πhȳ − ȳh‖h,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since both [[∂Eh(Πhȳ− ȳh)/∂n]] and [[∂ȳ/∂n]] equal 0, we have,
from (2.9),
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ah(Πhȳ,Πhȳ − ȳh)

=
∑
T∈Th

∫
T

D2ȳ : D2Eh(Πhȳ − ȳh)dx

+
∑
T∈Th

∫
T

D2(Πhȳ − ȳ) : D2Eh(Πhȳ − ȳh)dx

+
∑
T∈Th

∫
T

D2(Πhȳ) : D
2
[
(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

]
dx

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ)

∂n2

}}[[
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂n

]]
ds (4.6)

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ − ȳh)

∂n2

}}[[
∂(Πhȳ − ȳ)

∂n

]]
ds

+
∑
e∈Ei

h

σ

|e|

∫
e

[[
∂(Πhȳ − ȳ)

∂n

]][[
∂(Πhȳ − ȳh)

∂n

]]
ds,

and we can use (2.6), (2.13), Lemma 2.1, (3.11) and scaling to estimate the
second, fifth, and sixth terms on the right-hand side of (4.6) as follows:

∣∣∣∣∣
∑
T∈Th

∫
T

D2(Πhȳ − ȳ) : D2Eh(Πhȳ − ȳh)dx

∣∣∣∣∣

≤
(∑

T∈Th

|Πhȳ − ȳ|2H2(T )

) 1
2

|Eh(Πhȳ − ȳh)|H2(Ω) (4.7)

� hτ‖Πhȳ − ȳh‖h,

∣∣∣∣∣∣
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ − ȳh)

∂n2

}}[[
∂(Πhȳ − ȳ)

∂n

]]
ds

∣∣∣∣∣∣

≤

⎛
⎝∑

e∈Ei
h

|e|‖{{∂2(Πhȳ − ȳh)/∂n
2}}‖2L2(e)

⎞
⎠

1
2

×

⎛
⎝∑

e∈Ei
h

1

|e| ‖[[∂(Πhȳ − ȳ)/∂n]]‖2L2(e)

⎞
⎠

1
2

(4.8)

�
(∑

T∈Th

|Πhȳ − ȳh|2H2(T )

) 1
2

⎛
⎝∑

e∈Ei
h

1

|e| ‖[[∂(Πhȳ − ȳ)/∂n]]‖2L2(e)

⎞
⎠

1
2

� hτ‖Πhȳ − ȳh‖h,
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∣∣∣∣∣∣
∑
e∈Ei

h

σ

|e|

∫
e

[[
∂(Πhȳ − ȳ)

∂n

]][[
∂(Πhȳ − ȳh)

∂n

]]
ds

∣∣∣∣∣∣

�

⎛
⎝∑

e∈Ei
h

1

|e| ‖ [[∂(Πhȳ − ȳ)/∂n ]] ‖2L2(e)

⎞
⎠

1
2

(4.9)

×

⎛
⎝∑

e∈Ei
h

1

|e| ‖ [[∂(Πhȳ − ȳh)/∂n ]] ‖2L2(e)

⎞
⎠

1
2

� hτ‖Πhȳ − ȳh‖h.

Now we use (3.12), the integration by parts formula (4.1) together
with Lemma 4.2 to estimate the sum of the third and fourth terms on the
right-hand side of (4.6) by

∑
T∈Th

∫
T

D2(Πhȳ) : D
2
[
(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

]
dx

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ)

∂n2

}}[[
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂n

]]
ds

= −
∑
e∈Eh

∫
e

[[
∂2(Πhȳ)

∂n2e

]]{{
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂ne

}}
ds (4.10)

≤
(∑

e∈Eh

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

) 1
2

×
(∑

e∈Eh

1

|e|
∥∥{{∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]/∂ne}}

∥∥2
L2(e)

) 1
2

� hτ‖Πhȳ − ȳh‖h.

The lemma follows from (4.6)–(4.10).
Lemma 4.4. There exists a positive constant C independent of h such

that

A(ȳ, EhΠhȳ − ȳ) ≤ Ch1+τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since Δȳ ∈ H1
0 (Ω) (cf. Appendix A), we have, by (1.5) and

Lemma 3.1,
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∫
Ω

D2ȳ : D2(EhΠhȳ − ȳ) dx =

∫
Ω

(Δȳ)
(
Δ(EhΠhȳ − ȳ)

)
dx

= −
∫
Ω

∇(Δȳ) · ∇(EhΠhȳ − ȳ) dx (4.11)

� |EhΠhȳ − ȳ|H1(Ω) � h1+τ .

Moreover Lemma 3.1 also implies

(ȳ, EhΠhȳ − ȳ) � h2+τ . (4.12)

The lemma follows from (1.8), (4.11), and (4.12).

5. Convergence Analysis. In this section we complete the error
analysis by finding a bound for the second term on the right-hand side of
(4.2). We will show that

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh) � h2τ + hτ‖Πhȳ − ȳh‖h, (5.1)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
But first we use (5.1) to establish the main result of this paper.

Theorem 5.1. There exists a positive constant C independent of h
such that

‖ȳ − ȳh‖h ≤ Chτ , (5.2)

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. It follows from Lemma 2.1, (4.2), (5.1), and the inequality of
arithmetic and geometric means that

‖ȳ − ȳh‖2h ≤ C
(
h2τ + hτ‖Πhȳ − ȳh‖h

)

≤ C
(
h2τ + hτ‖ȳ − ȳh‖h

)
≤ Ch2τ +

1

2
‖ȳ − ȳh‖2h,

which implies (5.2).

The following lemma reduces the derivation of (5.1) to an estimate at
the continuous level.

Lemma 5.1. There exists a positive constant C independent of h such
that

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)

≤ Chτ‖Πhȳ − ȳh‖h +A
(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f,Eh(Πhȳ − ȳh)

)
,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).
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Proof. From (1.8) and (2.12) we have

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)

= β

[
ah(Πhȳ,Πhȳ − ȳh)−

∫
Ω

(
D2ȳ : D2Eh(Πhȳ − ȳh)

)
dx

]

+ γ
[
(Πhȳ,Πhȳ − ȳh)−

(
ȳ, Eh(Πhȳ − ȳh)

)]
−
(
f, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

)
(5.3)

+A
(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f,Eh(Πhȳ − ȳh)

)
,

and we can bound the second and third terms on the right-hand side of
(5.3) as follows:

(Πhȳ,Πhȳ − ȳh)−
(
ȳ, Eh(Πhȳ − ȳh)

)
= (Πhȳ − ȳ,Πhȳ − ȳh) +

(
ȳ, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

)
(5.4)

� h2‖Πhȳ − ȳh‖h

by (2.21) and (3.10); and

∣∣(f, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)
)∣∣ � h2‖Πhȳ − ȳh‖h (5.5)

by (3.10).
The lemma follows from Lemma 4.3 and (5.3)–(5.5).
In view of Lemma 5.1, it only remains to show that

A
(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f,Eh(Πhȳ − ȳh)

)
� h2τ + hτ‖Πhȳ − ȳh‖h. (5.6)

We will use the relation A ≤
. B to streamline the derivation of (5.6), where

A ≤
. B means that A−B � h2τ + hτ‖Πhȳ − ȳh‖h.

The estimate (5.6) can then be written as

A
(
ȳ, Eh(Πhȳ − ȳh)

) ≤
.
(
f,Eh(Πhȳ − ȳh)

)
. (5.7)

It follows from (1.9), (3.3), (3.4), (3.7), and Lemma 4.4 that

A
(
ȳ, Eh(Πhȳ − ȳh)

)
= A(ȳ, EhΠhȳ − ȳ) +A(ȳ, ȳ − Ehȳh)

≤
. A(ȳ, ȳ − Ehȳh)

= A(ȳ, ȳ − ŷh) +A(ȳ, ŷh − Ehȳh)

≤ (f, ȳ − ŷh) +A(ȳ, ȳ∗h − Ehȳh) +A(ȳ, δh,1φ1 − δh,2φ2) (5.8)

≤
. (f, ȳ − ŷh) +A(ȳ, ȳ∗h − Ehȳh)

= (f, ȳ − ŷh) +A(ȳ∗h, ȳ
∗
h − Ehȳh) +A(ȳ − ȳ∗h, ȳ

∗
h − Ehȳh)

≤ (f, ȳ − ŷh) + (f, ȳ∗h − Ehȳh) +A(ȳ − ȳ∗h, ȳ
∗
h − Ehȳh)

≤
. (f, ȳ − Ehȳh) +A(ȳ − ȳ∗h, ȳ

∗
h − Ehȳh).
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Moreover we have

(f, ȳ − Ehȳh) =
(
f,Eh(Πhȳ − ȳh)

)
+ (f, ȳ − EhΠhȳ) (5.9)

≤
.
(
f,Eh(Πhȳ − ȳh)

)

by Lemma 3.1, and

A(ȳ − ȳ∗h, ȳ
∗
h − Ehȳh)

= A(ȳ − ȳ∗h, ȳ
∗
h − ȳ) +A(ȳ − ȳ∗h, ȳ − Ehȳh) (5.10)

≤ A(ȳ − ȳ∗h, ȳ − EhΠhȳ) +A
(
ȳ − ȳ∗h, Eh(Πhȳ − ȳh)

)
≤
. 0

by (3.5), (3.11), and Lemma 3.1. The relation (5.7) then follows from
(5.8)–(5.10). Therefore we have established (5.6) and hence (5.1).

The following corollary is an immediate consequence of (2.17) and
Theorem 5.1.

Corollary 5.1. There exists a positive constant C independent of h
such that

|ȳ − ȳh|H1(Ω) ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Since the energy norm ‖ · ‖h is an H2-like norm, we can also deduce
an L∞ norm error estimate from Theorem 5.1. The proof of the follow-
ing theorem, which is based on Lemmas 2.1, 3.1, Theorem 5.1, standard
inverse estimates and the Sobolev inequality, is identical to the proof of
Theorem 4.1 in [23] and thus omitted.

Theorem 5.2. There exists a positive constant C independent of h
such that

‖ȳ − ȳh‖L∞(Ω) ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Remark 5.1. Since the norms ‖ ·‖L∞(Ω) and | · |H1(Ω) are weaker than
the energy norm ‖ · ‖h, the order of convergence in these norms should be
higher than the order of convergence in ‖ · ‖h. This is confirmed by the
numerical results in Sect. 6. Therefore the estimates for ‖ȳ − ȳh‖L∞(Ω)

and |ȳ − ȳh|H1(Ω) in Corollary 5.1 and Theorem 5.2 are not sharp.
For the optimal control problem defined by (1.1)–(1.3), we can take

the approximation for the optimal control ū to be the function ūh ∈ Vh
defined by

∫
Ω

∇ȳh · ∇v dx =

∫
Ω

ūhv dx ∀ v ∈ Vh. (5.11)
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Theorem 5.3. There exists a positive constant C independent of h
such that

‖ū− ūh‖L2(Ω) ≤ Chτ , (5.12)

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Let Qh : L2(Ω) −→ Vh be the orthogonal projection. From
(1.2) we have

∫
Ω

∇ȳ · ∇v dx =

∫
Ω

ūv dx =

∫
Ω

(Qhū)v dx ∀ v ∈ Vh. (5.13)

Let v ∈ Vh be arbitrary. Using integration by parts, the Cauchy–
Schwarz inequality, scaling, (2.7b), (2.13), and Theorem 5.1, we find

∫
Ω

∇(ȳ − ȳh) · ∇v dx

= −
∑
e∈Ei

h

∫
e

[[∂(ȳ − ȳh)/∂n]]v ds−
∑
T∈Th

∫
T

[Δ(ȳ − ȳh)]v dx

≤

⎛
⎝∑

e∈Ei
h

|e|−1‖[[∂(ȳ − ȳh)/∂n]]‖2L2(e)

⎞
⎠

1
2
⎛
⎝∑

e∈Ei
h

|e|‖v‖2L2(e)

⎞
⎠

1
2

+

(∑
T∈Th

|ȳ − ȳh|2H2(T )

) 1
2

‖v‖L2(Ω)

� ‖ȳ − ȳh‖h‖v‖L2(Ω) � hτ‖v‖L2(Ω).

It then follows from (5.11), (5.13) and duality that

‖Qhū− ūh‖L2(Ω)

= sup
v∈Vh\{0}

(∫
Ω

(Qhū− ūh)v dx

)
/‖v‖L2(Ω) (5.14)

= sup
v∈Vh\{0}

(∫
Ω

∇(ȳ − ȳh) · ∇v dx
)
/‖v‖L2(Ω) � hτ .

Furthermore, we have, by a standard interpolation error estimate [61],

‖Qhū− ū‖L2(Ω) � |ū|H1(Ω)h. (5.15)

The estimate (5.12) follows from (5.14) and (5.15).



116 S.C. Brenner, L.-Y. Sung and Y. Zhang

Remark 5.2. One can also take the piecewise constant function ūh =
−Δhȳh to be an approximation of the optimal control ū, where Δh is the
piecewise Laplacian with respect to Th. The estimate (5.12) then immedi-
ately follows from (2.13) and Theorem 5.1. But numerical results indicate
that the approximation of ū defined by (5.11) is a better choice.

Remark 5.3. By tracing the constants in all the estimates (including
(3.4)) one can show (using (A.7), (A.8), and (A.10)) that the constant C in
Theorem 5.1, Corollary 5.1, Theorem 5.2, and Theorem 5.3 is of the form

C

⎛
⎝‖f‖L2(Ω) +

2∑
i=1

‖ψi‖W 2∞(K) + |Δȳ|H1(Ω) +
∑
|μ|=3

‖Φ(∂μȳ)‖L2(Ω)

+
∑
|μ|=2

‖Ψ(∂μȳ)‖L2(Ω) + ‖ȳ‖W 2∞(K)

⎞
⎠ ,

where Φ (resp. Ψ) is defined in (2.3) (resp. (A.9)), K ⊂⊂ Ω is a compact
neighborhood of the contact set where (ȳ−ψ1)(ȳ−ψ2) = 0, and the positive
constant C depends only on Ω and the shape regularity of Th.

6. Numerical Results. In this section we present several numerical
examples for the obstacle problem (1.7) with ψ1(x) = −∞. The com-
putational domain for the first four examples is the square (−0.5, 0.5) ×
(−0.5, 0.5). The discrete problems are defined on uniform triangulations Tj
with mesh parameter hj = 2−j (= the length of the horizontal and vertical
edges) for 1 ≤ j ≤ 8, and the penalty parameter σ is chosen to be 5 which
ensures the coercivity of the discrete bilinear form on uniform meshes. The
solutions of the discrete problems are denoted by ȳj (1 ≤ j ≤ 8), which are
obtained by a primal–dual active set algorithm [4, 47].
Example 1. In this example we validate our numerical scheme by solving
(1.7)/(1.9) with a known solution. We begin with the obstacle problem on
the disc {x : |x| < 2} with γ = 0, β = 1, f = 0 and ψ2(x) =

1
2 |x|2−1. This

problem can be solved analytically because of rotational symmetry and the
exact solution is given by

y†(x) =

{
C1|x|2 ln |x|+ C2|x|2 + C3 ln |x|+ C4 |x| > r0
1
2 |x|2 − 1 |x| � r0

, (6.1)

where r0 = 0.31078820 . . . , C1 = −0.26855864 . . . , C2 = 0.45470930 . . . ,
C3 = −0.02593989 . . ., and C4 = −1.05625438 . . . .

Let ȳ be the restriction of y† to Ω = (−0.5, 0.5)2. Then we have

ȳ = argmin
y∈K̃

[
1

2

∫
Ω

(D2y : D2y)dx−
∫
∂Ω

(
∂2y†
∂n2

)(
∂y

∂n

)
ds

]
, (6.2)

where n is the unit outer normal on ∂Ω and

K̃ = {v ∈ H2(Ω) : v − y† ∈ H1
0 (Ω) and v ≤ ψ2 in Ω},
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i.e., ȳ is the solution of an obstacle problem for a simply supported plate
with nonhomogeneous boundary conditions.

As in the case of clamped plates [23], our results for simply supported
plates with homogeneous boundary conditions (Theorems 5.1 and 5.2) can
be extended to the nonhomogeneous case. Let Ṽh be the P2 Lagrange finite
element space associated with the triangulation Th. The discrete problem
for (6.2) is to find

ȳh = argmin
yh∈K̃h

⎡
⎣1
2
ah(yh, yh)−

∑
e∈Eb

h

∫
e

(
∂2y†
∂n2

)(
∂yh
∂n

)
ds

⎤
⎦ , (6.3)

where

K̃h = {v ∈ Ṽh : v −Πhy† ∈ H1
0 (Ω) and v(p) ≤ ψ2(p) ∀ p ∈ Vh}.

Let ȳj be the solution of (6.3) for the jth level triangulation and Πj be
the Lagrange nodal interpolation operator for the jth level finite element
space Vj . We evaluate the error ej = Πj ȳ − ȳj in the energy norm ‖ · ‖hj

and in the �∞ norm ‖ · ‖∞ defined by

‖ej‖∞ = max
p∈Nj

|ej(p)|,

where Nj is the set of the vertices and midpoints of Tj . We also compute
the order of convergence in these norms by the formulas

ln(‖ej−1‖hj−1
/‖ej‖hj

)/ ln 2 and ln(‖ej−1‖∞/‖ej‖∞)/ ln 2.

The numerical results are presented in Table 1. The order of convergence
in the energy norm is observed to be 1.5, which is better than the order
of 1 predicted by Theorem 5.1. This is likely due to the fact that ȳ is
actually a C∞ function on Ω away from the circle with radius r0 and
therefore superconvergence occurs since we use uniform triangulations. We
also observe that the order of convergence in the �∞ norm is close to 2,
better than the order of 1 predicted by Theorem 5.2.

We plot the discrete coincidence sets I7 and I8 in Fig. 1, where

Ij = {p ∈ Nj : ȳj(p) ≥ ψ2(p)− ‖ej‖∞}.

The black circle represents the exact free boundary F = {x ∈ Ω : |x| = r0}
(cf. (6.1)). It is evident that the discrete coincidence sets (resp. free bound-
aries) are converging to the exact coincidence set (resp. free boundary).

The second set of examples are optimal control problems with state
constraints that come from [6, 55]. The value of γ is taken to be 1. Since
the exact solutions are not known, we take ẽȳ,j = ȳj−1 − ȳj and evaluate
‖ẽȳ,j‖hj

(the error of the state in the energy norm), |ẽȳ,j |H1 (the error of
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Table 1

Energy and l∞ errors for Example 1

j ‖ej‖hj
/‖ȳ8‖h8

Order ‖ej‖∞ Order
1 2.1840×10−1 7.0940×10−3

2 6.8348×10−2 1.68 5.9691×10−4 3.57
3 3.1394×10−2 1.12 5.7224×10−4 0.06
4 9.8571×10−3 1.67 1.1579×10−4 2.31
5 3.8462×10−3 1.36 3.5461×10−5 1.71
6 1.4533×10−3 1.40 1.0669×10−5 1.73
7 5.4157×10−4 1.42 3.3085×10−6 1.69
8 1.9884×10−4 1.45 8.9654×10−7 1.88

Fig. 1. Discrete coincidence sets I7 (left) and I8 (right) for Example 1

the state in the H1(Ω) seminorm), and ‖ẽȳ,j‖∞ (the error of the state in
the l∞ norm) defined by

‖ẽȳ,j‖∞ = max
p∈Nj

|ẽȳ,j(p)|.

The approximations of the optimal control in these examples are given by
the piecewise quadratic functions ūj ∈ Vj defined by (5.11). We take ẽū,j =
ūj−1−ūj and evaluate ‖ẽū,j‖L2

(the error of the control in the L2(Ω) norm).
The orders of convergence in these examples are generated by the formulas

ln(‖ẽȳ,j−1‖/‖ẽȳ,j‖)/ ln(2) and ln(‖ẽū,j−1‖/‖ẽū,j‖)/ ln(2).

Example 2. In this example we take yd(x) = 10(sin(2π(x1+0.5))+ (x2+
0.5)), ψ2(x) = 0.01 and β = 0.1. The errors for the approximations of the
state and the control are reported in Tables 2 and 3. The discrete state ȳ8
and control ū8 are depicted in Fig. 2.
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Table 2

Energy and �∞ state errors for Example 2

j ‖ẽȳ,j‖hj
/‖ȳ8‖h8

Order ‖ẽȳ,j‖∞ Order

1 3.3661×100 1.1842×10−1

2 1.9062×100 0.82 3.9252×10−2 1.59
3 7.4142×10−1 1.36 6.5358×10−3 2.59
4 4.4582×10−1 0.73 2.0856×10−3 1.66
5 2.2066×10−1 1.01 6.2389×10−4 1.74
6 1.0916×10−1 1.02 1.8209×10−4 1.78
7 5.4174×10−2 1.01 4.5582×10−5 2.00
8 2.7011×10−2 1.00 1.1677×10−5 1.96

Table 3

H1 state errors and L2 control errors for Example 2

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2
/‖ū8‖L2

Order

1 4.9436×100 3.6418×100

2 1.9541×100 1.34 2.1388×100 0.77
3 3.6305×10−1 2.43 7.9054×10−1 1.44
4 1.1593×10−1 1.65 3.3568×10−1 1.24
5 3.4745×10−2 1.74 1.2506×10−1 1.42
6 9.7768×10−3 1.83 4.0060×10−2 1.64
7 2.5550×10−3 1.94 1.3141×10−2 1.61
8 6.4538×10−4 1.99 4.4595×10−3 1.56

Fig. 2. Discrete state ȳ8 (left) and control ū8 (right) for Example 2

Example 3. In this example we take yd(x) = sin(2π(x1 + 0.5)(x2 + 0.5)),
ψ2(x) = 0.1 and β = 10−3. The errors for the approximations of the state
and the control are given in Tables 4 and 5. Figure 3 contains the plots for
the discrete state ȳ8 and the discrete control ū8.
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Table 4

Energy and �∞ state errors for Example 3

j ‖ẽȳ,j‖hj
/‖ȳ8‖h8

Order ‖ẽȳ,j‖∞ Order

1 2.6968×100 6.3179×10−1

2 1.2439×100 1.12 1.2247×10−1 2.37
3 6.7643×10−1 0.88 3.7137×10−2 1.72
4 3.4552×10−1 0.97 7.2368×10−3 2.36
5 1.7485×10−1 0.98 2.5667×10−3 1.50
6 8.6434×10−2 1.01 7.3986×10−4 1.79
7 4.2673×10−2 1.02 1.9661×10−4 1.91
8 2.1230×10−2 1.01 4.9541×10−5 1.99

Table 5

H1 state errors and L2 control errors for Example 3

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2
/‖ū8‖L2

Order

1 3.2873×100 2.6748×100

2 1.1542×100 1.51 1.5626×100 0.78
3 3.3936×10−1 1.77 9.4478×10−1 0.73
4 9.2061×10−2 1.88 3.5294×10−1 1.42
5 2.6639×10−2 1.79 1.2171×10−1 1.54
6 7.2818×10−3 1.87 4.1983×10−2 1.54
7 1.8560×10−3 1.97 1.3128×10−2 1.68
8 4.6711×10−4 1.99 4.4419×10−3 1.56

Fig. 3. Discrete state ȳ8 (left) and control ū8 (right) for Example 3

Example 4. In this example we take yd(x) = sin(4π(x1+0.5)(x2+0.5))+
1.5, ψ2(x) = 1 and β = 10−4. The errors for the approximations in the
state and the control are presented in Tables 6 and 7. The plots of the
discrete state ȳ8 and the discrete control ū8 are given in Fig. 4.
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Table 6

Energy and �∞ state errors for Example 4

j ‖ẽȳ,j‖hj
/‖ȳ8‖h8

Order ‖ẽȳ,j‖∞ Order

1 8.6145×10−1 1.9915×100

2 7.0373×10−1 0.29 1.3112×100 0.60
3 3.6102×10−1 0.96 3.7238×10−1 1.82
4 2.3689×10−1 0.61 8.4619×10−2 2.14
5 1.1894×10−1 0.99 1.6099×10−2 2.39
6 5.9093×10−2 1.01 5.6989×10−3 1.50
7 2.9179×10−2 1.02 1.5619×10−3 1.87
8 1.4505×10−2 1.01 3.4243×10−4 2.19

Table 7

H1 state errors and L2 control errors for Example 4

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2
/‖ū8‖L2

Order

1 1.3273×100 1.2796×100

2 8.1485×10−1 0.70 1.2466×100 0.04
3 2.9527×10−1 1.46 8.4385×10−1 0.56
4 1.0283×10−1 1.52 4.0479×10−1 1.06
5 3.3447×10−2 1.62 1.6078×10−1 1.33
6 8.4522×10−3 1.98 5.3193×10−2 1.60
7 2.2334×10−3 1.92 1.7536×10−2 1.60
8 5.5791×10−4 2.00 5.7008×10−3 1.62

Fig. 4. Discrete state ȳ8 (left) and control ū8 (right) for Example 4

The numerical results in Tables 2–7 confirm the error estimate for
‖ȳ − ȳh‖h in Theorem 5.1, since the index of elliptic regularity α = 1 for a
rectangular domain. On the other hand, the order of convergence for ȳh is
2 for both the �∞ norm and the H1(Ω) seminorm, which is better than the
first order convergence predicted by Theorem 5.2 and Corollary 5.1; and
the order of convergence for ūh is around 1.5, which is also better than the
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first order convergence predicted by Theorem 5.3. The plots of the state
and control in Figs. 2–4 also agree with the ones reported in [6, 55].

Example 5. In this example we take Ω to be the pentagonal domain
obtained from the square (−0.5, 0.5)2 by deleting the triangle with vertices
(0.5, 0), (0.5, 0.5) and (0, 0.5). We use the same data as Example 3, i.e.,
ψ2(x) = 0.1, yd(x) = sin(2π(x1+0.5)(x2+0.5)), β = 10−3 and γ = 1. The
mesh parameter for the jth level uniform triangulation Tj is hj = 2−(j+1).
The errors for the approximate state ȳj and approximate control ūj are
presented in Tables 8 and 9. Since the index of elliptic regularity α for
the pentagonal domain can be taken to be any number less than 1/3 (cf.
Remark 2.1), the results in Tables 8 and 9 agree with Theorems 5.1 and
5.3. However, for this example the magnitude of the l∞ error of the state
seems to be O(h2α) and the magnitude of the H1(Ω) error of the state
seems to be O(h).

We also plot the discrete state ȳ8 and control ū8 in Fig. 5. The singular
nature of ȳ near the corners at (0.5, 0) and (0, 0.5) can be observed in the
plot of ū6.

Table 8

Energy and �∞ state errors for Example 5

j ‖ẽȳ,j‖hj
/‖ȳ8‖h8

Order ‖ẽȳ,j‖∞ Order

1 1.2749×100 1.2541×10−1

2 7.3054×10−1 0.80 3.7113×10−2 1.76
3 3.6072×10−1 1.02 4.6868×10−3 2.99
4 1.9576×10−1 0.88 1.3685×10−3 1.78
5 1.1763×10−1 0.73 3.4423×10−4 1.99
6 7.8971×10−2 0.57 1.4986×10−4 1.20
7 5.7723×10−2 0.45 7.7115×10−5 0.96
8 4.4159×10−2 0.39 4.6283×10−5 0.74

Table 9

H1 state errors and L2 control errors for Example 5

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2
/‖ū8‖L2

Order

1 1.1561×100 1.7291×100

2 3.4840×10−1 1.73 1.0841×100 0.67
3 8.2785×10−2 2.07 3.9368×10−1 1.46
4 2.2172×10−2 1.90 1.3651×10−1 1.53
5 6.5259×10−3 1.76 5.3314×10−2 1.36
6 2.1309×10−3 1.61 2.5368×10−2 1.07
7 8.7597×10−4 1.28 1.7158×10−2 0.56
8 4.5704×10−4 0.94 1.3122×10−2 0.39
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Fig. 5. Discrete state ȳ8 (left) and control ū8 (right) for Example 5

Table 10

Energy and �∞ state errors for Example 6

j ‖ẽȳ,j‖hj
/‖ȳ7‖h7

Order ‖ẽȳ,j‖∞ Order

1 5.1533×10−1 2.1625×10−2

2 3.4325×10−1 0.59 8.5234×10−3 1.34
3 1.9843×10−1 0.79 3.9322×10−3 1.12
4 1.0957×10−1 0.86 1.5313×10−3 1.36
5 6.0125×10−2 0.87 6.2314×10−4 1.30
6 3.2836×10−2 0.87 2.2180×10−4 1.49
7 1.7795×10−2 0.88 7.5681×10−5 1.55

Example 6. In this example we solve the same problem in Example 5 on
graded meshes obtained from a uniform triangulation T0 of the pentagonal
domain by the refinement process in [10] (cf. Fig. 6), and we take the
penalty parameter σ to be 20.

The errors of the approximate state ȳj and approximate control ūj are
reported in Tables 10 and 11. It is observed that the order of convergence
for the state in the energy norm and for the control in the L2(Ω) norm is
about 1, which agrees with Theorems 5.1 and 5.3. On the other hand, the
order of convergence for the state in the �∞ norm and the H1(Ω) seminorm
is about 1.5, which is better than the order of convergence predicted by
Theorem 5.2 and Corollary 5.1.

The discrete state ȳ7 and control ū3 are depicted in Fig. 7. By compar-
ing Figs. 5 and 7 we see that the graphs of the optimal states computed by
a uniform mesh and a graded mesh are very similar. But the graph of the
optimal control computed by graded meshes exhibited a more pronounced
singular behavior near the corners (0, 0.5) and (0.5, 0) since the triangles at
these corners are much smaller than the corresponding ones in a uniform
mesh.
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Table 11

H1 state errors and L2 control errors for Example 6

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2
/‖ū8‖L2

Order

1 2.2461×10−1 4.7166×10−1

2 1.0985×10−1 1.03 2.9528×10−1 0.68
3 4.5006×10−2 1.29 1.5324×10−1 0.95
4 1.5012×10−2 1.58 7.7635×10−2 0.98
5 5.7283×10−3 1.39 4.0842×10−2 0.93
6 1.9491×10−3 1.56 2.1646×10−2 0.92
7 6.6083×10−4 1.56 1.1353×10−2 0.93

Fig. 6. Triangulation T0 (left) and T1 (right) for the pentagonal domain

7. Concluding Remarks. In this paper we have only considered
the optimal control problem (1.1)–(1.3) on convex polygonal domains.
It is possible to treat this problem on general polygonal domains, in
which case the space H2(Ω) ∩ H1

0 (Ω) will be replaced by the space
{v ∈ H1

0 (Ω) : Δv ∈ L2(Ω)} that has been thoroughly analyzed in [45, 46]
and the discretization will involve singular functions.

The three-dimensional version of (1.1)–(1.3) can also be solved as
fourth order variational inequalities by finite element methods. For smooth
domains, a straightforward extension of the approach in [15, 23–25] and this

paper will lead to O(h
1
2 ) errors for the state in the energy norm and the

control in the L2(Ω) norm, similar to the error estimates in [37, 56]. Again
we expect the convergence of the state in the H1(Ω) norm and the L∞(Ω)
norm to be of higher order.

These and other topics, such as the solution of optimal control prob-
lems with both state and control constraints as fourth order variational
inequalities are subjects of ongoing investigations.
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Fig. 7. Discrete state ȳ7 (left) and control ū3 (right) for Example 6
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APPENDIX

A. Elliptic Regularity for Simply Supported Plates. In this
appendix we summarize elliptic regularity results for the biharmonic equa-
tion on convex polygonal domains with the boundary conditions of simply
supported plates and also discuss related results for the solution ȳ of the
obstacle problem (1.7). We will focus on the H3 regularity (or lack thereof)
for the solution since ȳ ∈ H3

loc(Ω).
Let Ω be a convex polygonal domain with corners p1, . . . , pL and ω�

be the interior angle of Ω at p�. Let g ∈ L2(Ω) and z ∈ H2(Ω) ∩ H1
0 (Ω)

satisfy

∫
Ω

D2z : D2v dx =

∫
Ω

gv dx ∀ v ∈ H2(Ω) ∩H1
0 (Ω). (A.1)

It follows from (A.1) that w = −Δz ∈ L2(Ω) has the following properties:
(i) w is an H2 function away from the corners of Ω, (ii) w vanishes on
∂Ω \ {p1, . . . , pL}. These two conditions then imply that

w = −Δz belongs to H2(Ω) ∩H1
0 (Ω) (A.2)

and that z also satisfies
∫
Ω

∇z · ∇v dx =

∫
Ω

wv dx ∀ v ∈ H1
0 (Ω).

Thus we can deduce the elliptic regularity of z from the elliptic regularity
theory for the Laplace operator [36, 45, 58].

First of all,

z is an H4 function away from the corners of Ω, (A.3)
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which also follows directly from (A.1). Secondly we have

z ∈ H3(N�) if ω� ≤ π/2, (A.4)

where N� ⊂ Ω is a neighborhood of p�. Finally, at a corner p� where
ω� > π/2, we have

z − κ�ϕ� ∈ H3(N�), (A.5)

where N� ⊂ Ω is a neighborhood of p�, κ� is a constant (generalized stress
intensity factor), and the singular function ϕ� is defined by

ϕ� = r
π/ω�

� sin
(
(π/ω�)θ�

)
. (A.6)

Here (r�, θ�) are the polar coordinates at p� such that the two edges of Ω
emanating from p� are given by θ� = 0 and θ� = ω�. Note that ϕ� is a
harmonic function and ϕ� ∈ H1+(π/ω�)−ε(N�) for any ε > 0.

Now we turn to the solution ȳ of (1.7)/(1.9). Since the constraints in
(1.3) are not active near ∂Ω because of (1.4b), we have

∫
Ω

[
β
(
D2(ρ1ȳ) : D

2w
)]
dx =

∫
Ω

β
[
D2(ρ1ȳ) : D

2
(
(1− ρ2)w

)]
dx

+

∫
Ω

ρ2(f − γȳ)w dx

for all w ∈ H2(Ω) ∩ H1
0 (Ω), where ρ1 = ρ2 = 1 near ∂Ω, ρ1 = 1 on the

support of ρ2, and the support of ρ1 is disjoint from the active set where
ȳ(x) = ψ1(x) or ψ2(x). Note that standard interior elliptic regularity [62,
Sect. 20] implies

∫
Ω

[
D2(ρ1ȳ) : D

2
(
(1− ρ2)w

)]
dx =

∫
Ω

(1− ρ2)[Δ
2(ρ1ȳ)]w dx,

where (1− ρ2)Δ
2(ρ1ȳ) ∈ L2(Ω).

Therefore z = ρ1ȳ satisfies (A.1) with g = ρ2(f − γȳ)/β + (1 −
ρ2)Δ

2(ρ1ȳ) ∈ L2(Ω). Combining (A.2)–(A.6) and the fact that ȳ ∈
H3

loc(Ω), we can draw the following conclusions about ȳ.
• The function Δȳ belongs to H1

0 (Ω). Therefore ū = −Δȳ belongs
to H1

0 (Ω) for the optimal control problem (1.1)–(1.3).
• Let α� be chosen according to (2.4). Then ȳ ∈ H2+α�(N�), where
N� (⊂ Ω) is a neighborhood of p�. Globally we have ȳ ∈ H2+α(Ω)
where α = min1≤�≤L α�.

• We can write ȳ = ȳS + ȳR, where ȳR ∈ H3(Ω) ∩ H1
0 (Ω), ΔȳR ∈

H1
0 (Ω) and ȳS have the following properties.
– ȳS is an H3 function away from the corners of Ω where the

angles are > π/2.
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– ȳS is a multiple of ϕ� in a neighborhood N� of a corner p�
where ω� > π/2.

– ΔȳS belongs to H1
0 (Ω).

• Since r1−α�

� (∂μϕ�) ∈ L2(N�) for |μ| = 3, we have Φ(∂μȳS) ∈ L2(Ω)
for |μ| = 3 and hence

Φ(∂μȳ) ∈ L2(Ω) for |μ| = 3, (A.7)

where the function Φ is defined by (2.3).
• Since r−α�

� (∂μϕ�) ∈ L2(N�) for |μ| = 2, we have Ψ(∂μȳS) ∈ L2(Ω)
for |μ| = 2 and hence

Ψ(∂μȳ) ∈ L2(Ω) for |μ| = 2, (A.8)

where the function Ψ is defined by

Ψ(x) =

L∏
�=1

|p� − x|−α� . (A.9)

Finally we note that (cf. [36, Theorem AA.3 and Theorem AA.7])

|ȳ|H2+α(Ω) ≤ CΩ

∑
|μ|=3

‖Φ(∂μȳ)‖L2(Ω). (A.10)

B. An Enriching Operator. In this appendix we construct the en-
riching operator introduced in Sect. 3.2. Such operators have played an
important role in the design and analysis of fast solvers for nonconforming
finite element methods [11, 12, 22, 26].

Let Ṽh ⊂ H1(Ω) be the P2 Lagrange finite element space associated
with Th and W̃h ⊂ H2(Ω) be the P6 Argyris finite element space [2] associ-
ated with Th. The degrees of freedom of w ∈ W̃h (cf. Fig. 8) consist of the
values of the derivatives of w up to second order at the vertices of Th, the
values of w at the midpoints of the edges of Th and at the centers of the
triangles of Th, and the values of the normal derivative of w at two nodes
on each edge in Eh.

The enriching operator Eh : Ṽh −→ W̃h is defined by averaging as
follows (cf. Sect. 2.1 for the notation).

(i) Let N be a degree of freedom associated with an interior node p.
We define

N(Ehv) =
1

|Tp|
∑
T∈Tp

N(vT ).

(ii) Let N be a degree of freedom involving the normal derivative as-
sociated with a boundary node interior to an edge e ∈ Eb

h. We
define

N(Ehv) = N(vTe
).
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Fig. 8. Degrees of freedom for the P6 Argyris finite element

(iii) Let p be a boundary node which is not a corner of Ω such that p
is the common endpoint of two edges e1, e2 ∈ Eb

h. For any degree
of freedom N associated with p, we define

N(Ehv) =
1

2

[
N(vTe1

) +N(vTe2
)
]
.

(iv) Let p be a corner of Ω. Then p is the common endpoint of e1, e2 ∈
Eb
h. Let tj (resp. nj) be a unit tangent (resp. normal) of ej . We

define

(Ehv)(p) = v(p),

(∂(Ehv)/∂tj)(p) = (∂vTej
/∂tj)(p) for j = 1, 2,

(∂2(Ehv)/∂t
2
j )(p) = (∂2vTej

/∂t2j )(p) for j = 1, 2,

(∂2(Ehv)/∂t1∂n1)(p) = (∂2vTe1
/∂t1∂n1)(p).

Remark B.1. We can also replace the last equation in (iv) by

(∂2(Ehv)/∂t2∂n2)(p) = (∂2vTe2
/∂t2∂n2)(p).

Since v is continuous at the vertices, the relation (3.6) follows imme-
diately from (i), (iii), and (iv). It is also easy to check that

Ehv ∈Wh = W̃h ∩H1
0 (Ω) ⊂ H2(Ω) ∩H1

0 (Ω) if v ∈ Vh = Ṽh ∩H1
0 (Ω).

We now turn to the derivations of (3.8) and (3.9). Let T ∈ Th be
arbitrary. Since v = Ehv at the vertices and the center of T , we have, by
scaling,
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‖v − Ehv‖2L2(T ) � h4T

⎛
⎝∑

p∈VT

|∇(v − Ehv)(p)|2

+
∑

p∈NT

∣∣∣∣∂(v − Ehv)

∂n
(p)

∣∣∣∣
2

+
∑
p∈VT

h2T |D2(v − Ehv)(p)|2
⎞
⎠ (B.1)

for all v ∈ Ṽh, where NT is the set of the six nodes on ∂T associated with
the degrees of freedom of the P6 Argyris finite element that involve the
normal derivative (cf. Fig. 8).

Let p ∈ VT be interior to Ω. Since the tangential derivative of v−Ehv
is continuous across element boundaries, we have, by the definition of Eh

and a standard inverse estimate,

|∇(v − Ehv)(p)|2 =

∣∣∣∣∣
1

|Tp|
∑

T ′∈Tp

(∇vT (p)−∇vT ′(p))

∣∣∣∣∣
2

(B.2)

�
∑
e∈Ei

p

|e|−1‖ [[∂v/∂n ]] ‖2L2(e)

where E i
p is the set of the edges in E i

h sharing p as a common endpoint.
Similarly, we have

|D2(v − Ehv)(p)|2 =

∣∣∣∣∣
1

|Tp|
∑

T ′∈Tp

D2(vT − vT ′)(p)

∣∣∣∣∣
2

(B.3)

�
∑

T ′∈Tp

h−2
T ′ |v|2H2(T ′).

The estimates (B.2) and (B.3) are also valid for p ∈ ∂Ω by similar argu-
ments.

Now we consider p ∈ NT . If p is a boundary node, then
∣∣(∂(v −

Ehv)/∂n)(p)
∣∣ = 0 by the definition of Eh. Otherwise we have, by a stan-

dard inverse estimate,

|∂(v − Ehv)/∂n(p)|2 � |e|−1‖ [[∂v/∂n ]] ‖2L2(e)
(B.4)

for some e ∈ E i
h.

Combining (B.1)–(B.4), we obtain the estimate (3.8) for m = 0, which
then implies the estimates for m = 1 and 2 through standard inverse esti-
mates.

For the operator Eh ◦ Πh, first we observe that it is a bounded linear
operator from H2+s(ST ) into H

2(T ) because of (2.21) and (3.8). Further-
more, by construction, EhΠhζ = ζ on T if ζ ∈ P2(ST ). Hence the estimate
(3.9) follows from the Bramble–Hilbert lemma (cf. [9, 38]).
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