A QUADRATIC C° INTERIOR PENALTY METHOD FOR
AN ELLIPTIC OPTIMAL CONTROL PROBLEM WITH
STATE CONSTRAINTS
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Abstract. We consider an elliptic distributed optimal control problem on convex
polygonal domains with pointwise state constraints and solve it as a fourth order varia-
tional inequality for the state by a quadratic C° interior penalty method. The error for
the state in an H2-like energy norm is O(h®) on quasi-uniform meshes (where o € (0, 1]
is determined by the interior angles of the domain) and O(h) on graded meshes. The
error for the control in the Lo norm has the same behavior. Numerical results that
illustrate the performance of the method are also presented.
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1. Introduction. Let Q be a bounded convex polygonal domain in
R2, yq € L2(Q), v > 0 and 3 > 0 be constants. The following problem
[33] is a model elliptic distributed optimal control problem with pointwise
state constraints:

Find the minimizer of the functional

J(y,u) = l/(y — ya)” dz + é/ u? da, (L.1)
2 Ja 2 Jo
where (y,u) € Hg(Q) x La(2) are subjected to the constraints
/ Vy~Vvdx:/ wdr Vv e H)(Q), (1.2)
Q Q
P <y < o a.e. in . (1.3)
Here the functions 1 (), ¥2(z) € C?(2) N C(Q) satisfy
Y1 <o in €, (1.4a)
P1 <0 < g on Jf). (14b)

Since 2 is convex, elliptic regularity [36, 45, 58] implies that (1.2) is
equivalent to y € H*(Q2) N H}(Q) and v = —Ay. Note that [46, Theo-
rem 2.2.1]

/(Av)(Aw) dox = / (D?v : D*w) dx Yo, we H*(Q) N Hy (Q), (1.5)
Q Q
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where

0% 0w
2 . P2,
Do Drw = Z (&riaxj) <8x¢8xj>

1<ij<2

is the (Frobenius) inner product of the Hessian matrices of v and w. There-
fore we can solve the optimal control problem (1.1)—(1.3) by looking for the
minimizer of the reduced functional

i) =3 [w-varde+ [ 0% D) ds

in the set
K={ve H* Q) NH}Q): ¥ <v<1hyin Q). (1.6)

A simple calculation shows that this is equivalent to the following problem:

1
Find g = arguin |3 A) - (£0)]. (17)
yek |2

where f = ~yq4, (+,-) is the inner product of Lo (), and
Alv,w) = / [B(D*v : D*w) + yow] da. (1.8)
Q

Since (1.4) implies that K is a nonempty closed convex subset of
H?(Q)NH{(Q) and the bilinear form A(-, -) is symmetric, bounded, and co-
ercive on H?(Q)N HE (), we can apply the standard theory [43, 52, 54, 59]
to conclude that the problem (1.7) has a unique solution § € K character-
ized by the variational inequality

Awy—9) = (fy—9) Vyek (1.9)

The solution of the optimal control problem is then given by (g, ), where
@ = —Ag. Note that (1.7) becomes the displacement obstacle problem for
simply supported Kirchhoff plates if we take v to be 0. For this reason we
will also refer to (1.7) as an obstacle problem.

According to the regularity results in [32, 41, 42] for fourth order
obstacle problems, the solution § of (1.7) belongs to HZ _(2)NC?(£2) under

our assumptions on the functions yg, ¥1, and ¥5. Note that (1.4b) implies
that the constraints are inactive near 02 and hence

BA*j+~y = f

near 0f). It then follows from the elliptic regularity theory for the bih-
armonic equation (cf. [8] and Appendix A) that there exists o € (0,1]
(determined by the interior angles of §2) such that § € H*t*(N) in a
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neighborhood N of 99 disjoint from the active set. Thus globally 3 belongs
to H?T(2). We shall refer to « as the index of elliptic regularity for the
obstacle problem (1.7).

A main difficulty in the analysis of finite element methods for fourth
order obstacle problems is that the solutions in general do not belong to
H ﬁ)C(Q) even for smooth data, which means that the complementarity form
of the variational inequality (1.9) in general only exists in a weak sense. In
contrast, the solutions of second order obstacle problems belong to H?(£2)
under appropriate assumptions on the data (cf. [29, 53]). Hence the com-
plementarity forms of the variational inequalities arising from second order
obstacle problems exist in the strong sense, which is a crucial ingredient
for the derivations of optimal error estimates in [30, 31, 40].

A new approach to the obstacle problem for clamped Kirchhoff plates
on convex polygonal domains was introduced in [25], where optimal er-
ror estimates were obtained for C! finite element methods, classical non-
conforming finite element methods, and discontinuous Galerkin methods.
The results were later extended to general domains and general Dirichlet
boundary conditions in [15, 23, 24]. This new approach does not rely on
the complementarity forms of the variational inequalities and hence can
bypass the aforementioned difficulty. The goal of this paper is to extend
the results in [23] to (1.7)/(1.9), which covers both obstacle problems for
simply supported plates and optimal control problems with pointwise state
constraints. We will show that the magnitude of the error in the energy
norm is O(h®) on quasi-uniform meshes and O(h) on graded meshes.

Finite element methods for state constrained elliptic optimal control
problems were investigated in [37, 56], where the finite element approxi-
mation (g, ap) of (7, u) is obtained from discrete versions of the optimal
control problems. In this approach the error analysis for the state and
the error analysis for the control are coupled and hence the estimates for
|Y—Jn| 1 (o) and ||@—1p|| L, o) have the same magnitude, which in the case
of a rectangle with quasi-uniform meshes is O(h!=¢). In our approach we
obtain instead an error estimate for the approximation i, of 7 in an H?-like
energy norm, which then implies an error estimate in the Lo norm for the
approximation @y, of @ (generated from g, by a postprocessing procedure)
with the same magnitude. In the case of a rectangle with quasi-uniform
meshes, the magnitudes of these errors are O(h). On the other hand, the
convergence of i, in the H'(Q) norm and the L. (2) norm, which are
weaker than the energy norm, can be expected to be of higher order. This
is indeed observed in our numerical experiments, where the magnitudes of
the errors of 4 in the H'(Q) norm and the L. (©2) norm are O(h?) for a
rectangle.

The optimal control problem defined by (1.1)—(1.3) is solved as a fourth
order variational inequality in [55] by a Morley finite element method and
in [44] by a mixed finite element method. However the analyses in [44, 55]
rely on additional assumptions on the active set first introduced in [7].
Our new approach for fourth order obstacle problems may provide an error
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analysis for the finite element methods in [44, 55] without the additional
assumptions on the active set.

Other numerical methods for (1.1)—(1.3) are investigated, for example,
in [5, 6, 34, 48-51, 57, 60].

The rest of the paper is organized as follows. We introduce a quadratic
CY interior penalty method for (1.7) in Sect. 2 and an intermediate obstacle
problem that connects the continuous and discrete obstacle problems in
Sect. 3. Section 4 contains several preliminary estimates which are useful
for the convergence analysis carried out in Sect. 5. Numerical results that
illustrate the performance of our method are presented in Sect. 6, followed
by some concluding remarks in Sect. 7. Elliptic regularity results for simply
supported plates, which play an important role in the error analysis, are
summarized in Appendix A. Some technical results concerning an enriching
operator that connects the discrete and continuous spaces are given in
Appendix B.

We will follow the notation for Sobolev spaces and norms in [20, 35].
Throughout the paper we will denote by C a generic positive constant
independent of mesh sizes that can take different values at different occur-
rences. To avoid the proliferation of constants, we will also use A < B (or
B 2> A) to denote the statement that A < (constant)B, where the positive
constant is independent of mesh sizes. The statement A ~ B is equivalent
to A< Band B S A

2. A Quadratic C° Interior Penalty Method. C? interior penalty
methods were introduced in [39] for fourth order elliptic boundary value
problems. They were further studied in [13, 16, 18, 21] and fast solvers
for CY interior methods were developed in [22, 26, 27]. Adaptive [17] and
isoparametric [19] versions of C? interior penalty methods are also available.
Below we will recall the notation for C° interior penalty methods and
introduce the discrete obstacle problem for (1.7).

2.1. Triangulation. Let 7; be a simplicial triangulation of 2 that
is regular (i.e., 7, satisfies a minimum angle condition). We will use the
following notation throughout the paper.

e hr is the diameter of the triangle T

h is a mesh parameter proportional to maxrer, hr.
v is the restriction of the function v to the triangle 7.
&y, is the set of the edges of the triangles in 7j.

,i is the subset of &, consisting of edges interior to (2.
5}; is the subset of &, consisting of edges along 0f).
le| is the length of an edge e.
V}, is the set of the vertices of the triangles in Tj,.
V', is the set of the three vertices of T.
&}, is the set of the edges in £/ emanating from the vertices of T'.
Tr is the set of triangles sharing a vertex with 7.
St is the interior of the closure of Up/e7,.T".
Tp is the set of the triangles in 7}, that share the common vertex p.
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e 7. is the set of the triangles in 7, that share the common edge e.
o |7, (resp. |T¢|) is the number of triangles in 7, (resp. T¢).
e Let e € Y. Then T, is the triangle in 7;, such that T, = {T.}.
We will consider both quasi-uniform and graded triangulations. For a
quasi-uniform triangulation 7, we have

hr~h NYTET,. (2.1)

Let p1,...,pr be the corners of 2 and wy be the interior angle at p,
for 1 < /¢ < L. For a graded triangulation 7}, we have

hr =~ h®(cr) VT € Th, (2.2)

where ¢, is the center of T,

L
®(z) = [ [ Ipe — a7, (2:3)
£=1

and the grading parameters oy > 0 are determined as follows:

ap=1 if wy < g,
- o (2.4)
ap<|—)—1 if — <wp<m.
Wy 2
Note that (2.2) and (2.3) imply
h3f ~h (2.5)

if T € T, touches the corner py.
REMARK 2.1. We can take a = 1<méi£1L ay to be the index of elliptic

reqularity (cf. Appendiz A).
REMARK 2.2. The construction of reqular triangulations that satisfy
(2.2) is discussed, for example, in [1, 10, 14].

2.2. Jumps and Averages. The jumps and averages of the normal
derivatives for functions in the piecewise Sobolev spaces

H(Q,Tn) ={ve L) : vp =v|p € H(T) VT € T}

are defined as follows.
Let e € E,fb be the common edge of T € T, and n. be the unit normal
of e pointing from T_ to T}. We define on e

o) 1 [(0%,| 0% . 5

{{W}} T2 ( on2 |, on? ) Vue H (QTh),s > 5, (2.6a)
31} B 8’[}+ 81}7 )

|[8nﬂ T One|, One|, Vv e H*(Q,Th), (2.6b)
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where vy = U‘Ti. Similarly, we define on e

ov . 1 8U+ ov_ )
{{3716}} ) (87’7,6 . 8716 e> Voe H (Qv 777.)7 (27&)
82'0 82’U+ 82’1}7 s 5
ﬂang]l_ange_ange Voe H (QTh),s > 5. (27D)

REMARK 2.3. Note that the definitions for the average {{82v/8n2}} and
the jump [Ov/On] in (2.6), which appear in C° interior penalty methods, are
independent of the choice of Ty (orn.). On the other hand, the definitions
in (2.7) for {Ov/0n.} and [0%v/On?], which appear only in the analysis,
do depend on the choice of Ty (or n.). However their product is also
independent of the choice of Ty (or ne).

Let e € £ be a boundary edge and n. be the unit normal of e pointing
towards the outside of 2. We define on e

0 0
{{8: }} - 8: Vo e H2(Q,771), (2.8a)
82’0 821)4 s 5
[Wﬂ:_ang o TwEHAQTh) s > 5 (28b)

2.3. The Discrete Obstacle Problem. Let V,, C H}(Q) be the Ps
Lagrange finite element space associated with 7, whose members vanish
on 99). We define the bilinear form a(-,-) on V,, x V}, by

(v, w) Z/ 2v: D*w)dx + Z/{{@zv/anz}}[[aw/an]]ds

T€Th e€s;

+> / {0%w/on>}[0v/On] ds (2.9)

5’65’

—I—O’Z le|~ 1/ Ov/on] [Ow/dn] ds

6€51

where ¢ > 0 is a penalty parameter. Note that ap(-,-) is a consistent
bilinear form for the biharmonic equation with the boundary conditions of
simply supported plates.

It follows from (2.6a) and scaling that

> lellfo*v/on* Y7, S D iy Vv € Vi, (2.10)
4 TETh

Therefore, for sufficiently large o, we have (cf. [21])

an(v,v) 2 Z (02 ¢y + Z le|"HI[0v/0n] |17, ¢ Vo € V.
TETh ecE;
(2.11)
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The discrete bilinear form that approximates A(:,-) is then given by

Ap(v,w) = Bap(v,w) + v(v,w), (2.12)
and
lolln = |81 D Wliemy + Y lel[0v/0n]l3, (2.13)
TETh ec&l

2

+W||’U||%2(sz)

is the mesh-dependent energy norm. It follows from (2.10)—(2.13) that

[An(v, w)| S vllnlwlln Yo,w e Vi, (2.14)
An(v,v) 2 ||v]2 Vv € Vy, (2.15)
provided that o is sufficiently large, which we assume to be the case.
Note that
[olFry S D [l + D el I[0v/on]l17, . (2.16)

TETh ec&l

for all v € H2(Q,T,) N HY(Q) by a Poincaré-Friedrichs inequality [28,
Example 5.4], and hence

vl @) S llvlln (2.17)

for all v € H?(Q,T,) N HE(Q) (D Vi + HA(Q) N HE()).
We can now define the discrete obstacle problem for (1.7):

1
Find g, = argmin §Ah(yha yn) — (fryn)| (2.18)
yn€Kp
where
Kp={veV,: ¥i(p) <v(p) <valp) Vpe W} (2.19)

Let 1T be the nodal interpolation operator for the Py Lagrange finite
element space. Then II, maps H?(Q) N H}(Q) into Vj, and K into Kj.
Therefore K} is a nonempty closed convex subset of Vj. Moreover the
bilinear form Ajy(-,-) is symmetric positive definite by (2.15). Hence the
discrete problem (2.18) has a unique solution gy, € K}, characterized by the
discrete variational inequality:

An G, yn — n) = (fyyn — Un) Vyn € K. (2.20)
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Let II7 be the nodal interpolation operator for the P Lagrange finite
element on a triangle 7. We have a standard local interpolation error
estimate [20, 35]

2
ST T2 = Tl (ry S B ICL 2oy (2.21)

m=0

for all ¢ € H?>T*(T), T € T, and s € [0, 1].

The following lemma provides global interpolation error estimates for
the solution g of (1.7)/(1.9).

LEMMA 2.1. There exists a positive constant C' independent of h such
that

1 —Tnyl[n < CAT,

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)—(2.4).

Proof. Since the estimate for a quasi-uniform 7}, is standard (cf. [21]),
we will focus on a graded 7Tj. Let 7,” be the set of triangles in 7, that do
not touch any corner of Q and 7, = T, \ T,/ = U1<i<1.T,"y, where 7,5, is
the set of the triangles that touch the corner p,. 7 7

Since yr € H3(T) for T € T,' (cf. Appendix A), we have, by (2.21),

2
2(m—2)| — _
SN RN - Wl oy (2.22)
TeT,) m=0
<3 (@72 en)hd) D2 (en)lildps
TeT!

where the function ® is defined in (2.3).
It follows from (2.2), (2.3), (2.22), and (A.7) that

2
2(m—2), - _
SR PG = gy S B2 (2.23)
TeT,I m=0

Let T € T,°, be a triangle that touches a corner pg. Then § € H*+¢(T)
(cf. Appendix A) and we have, by (2.21),

2
Z hip =2y — ny

m=0

It follows from (2.5) and (2.24) that

aory S hylGlgerecry VT € Tyl (2.24)

2
Z Z hzT(m72)|g - Hh?l%{m(T) (2.25)

TeT,C m=0
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2
2(m—2), - _
=3 > > "Ny~ Wl ) S B

(=1Te f}rn:O

Combining (2.23) and (2.25), we find

2
Z Z hg“(m72)|37 - thﬁqm(T) S . (2.26)
TET;, m=0

By the trace theorem with scaling, (2.6b) and (2.26), we also have

> lel 0@ — 11h9)/onlll7 ) (2:27)
ec&}
<> (h52|§ — W3y + 17 — thﬁ{?(T)) S B2
TeTh

The lemma for a graded 7 follows from (2.13), (2.16), (2.26), and
(2.27). O

3. An Intermediate Obstacle Problem. As mentioned in Sect. 1,
the difficulties due to the lack of H () regularity can be bypassed if
the convergence analysis does not rely on the complementarity form of the
variational inequality (1.9). We can accomplish this by introducing the

following intermediate obstacle problem:

) ,* 1 . *
Find ¥y, = argmin iA(yh, vr)— (fyun) |, (3.1)
yhREK}

where
Ki={ve H*(Q)NH;(Q): ¥1(p) <v(p) <valp) VpeVi} (32)

By the standard theory (3.1) has a unique solution g; characterized by the
variational inequality

AW@rvn —9n) = (Fun —0n) Yy € K. (3-3)

Note that, on the one hand, g;; € H*(2) N H{ () minimizes the same
functional as y but on the larger set K; D K, and, on the other hand, y;
shares the same pointwise constraints as g,. Thus the intermediate obstacle
problem connects the continuous obstacle problem (1.7) and the discrete
obstacle problem (2.18). We will carry out the convergence analysis using
(1.9), (2.20), and (3.3), but not their complementarity forms.
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3.1. Relation Between j and j;. Using the fact that H?(Q) is
compactly embedded in C(£2), it was shown in [25] that there exist two
nonnegative functions ¢1, ¢2 € C§°(€2) and a positive number hg such that
for any h < hy we can find two positive numbers dj,,; and dp, 2 with the

following properties:
Un =1p + On,1P1 — Op2¢2 € K and < h2. (34)

Note that we can treat § as an internal approximation of g since
K C Kj. It then follows from (3.4) and a standard result [3] that

1

1
Ty < |inf |77 — <NGE = GnllZer0n <
1gn = dllaze) S | E 110, —vllae) | S0 = dnllfzg) She (35)

REMARK 3.1. Even though the results in [25] are obtained for clamped
Kirchhoff plates on convex polygonal domains, these results are also valid
for general boundary conditions and general polygonal domains because they
are interior results that only require the following ingredients: (i) The set
K is a closed convex subset of H*(Q). (ii) The constraints and the bound-
ary conditions are separated. (iii) The obstacle functions 11,1s and the
solution j belong to C%(Q).

3.2. Connection Between K; and K. We can connect K} and
K} by an enriching operator Ej, that maps Vj, into H*(Q) N HJ(Q). By
construction Fj, is a linear operator that preserves the nodal values at the
vertices of Ty, i.e.,

(Epv)(p) = v(p) Vp eV, vEVy, (3.6)
which, in view of (2.19) and (3.2), implies
EhKh C KZ (37)

Moreover we have (cf. the notation in Sect. 2.1),

2
Z h%?n'U — Ehvﬁ{m(T) (38)

m=0

Shr | D Wlieey + Y lel7HIIBv/onllL,

T eTr e€&s,
T

for any v € Vj, and T € Ty, and

2
>R = EnllnCl g (ry S hplClmeese) (3.9)

m=0
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for all ¢ € H***(Sr), T € T, and s € [0,1]. The construction of Ej,, which
is similar to the constructions of the enriching operators in [16, 21] under
different boundary conditions, is given in Appendix B, where we also derive
the estimates (3.8) and (3.9).

The estimate (3.8) implies

> hAm2 |y — By iy SI0IE - Vv eV, (3.10)
TETH

and in particular,
|Eh7)|H2(Q) 5 HUHh Vo eV, (3.11)

Combining (2.7a), (2.8a), (3.10) and the trace theorem with scaling, we
also have

D lel Mo = Bro)fon i, S vl Vv € Vi (3.12)
eclh

Finally the quasi-local estimate (3.9) implies the following result for
the solution g of (1.7). We omit the proof due to its similarity with the
proof of Lemma 2.1.

LEMMA 3.1. There exists a positive constant C' independent of h such
that

15 — Enllngl 100 + AT — ExlL gl o) + 1215 — Epllpglgeo) < CR*TT,

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)—(2.4).

4. Preliminary Estimates. In this section we derive some prelimi-
nary estimates that are useful for the convergence analysis in Sect. 5. We
begin by stating the following integration by parts formula that holds for
v,w € Vi

> /D% D?*(w — Epw)dx

[ (25

TETh

<anat>( )| as b
) bo] e

eclp

= )]

eeg;
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Note that v € Py(T") and hence on any edge e of T' € Tj, we have

82UT 8(wT - Ehw) - 82’UT 8(wT - Ehw) _
/e<anat> ( ot ) ds = <8n8t> / ot ds=0

because of (3.6).

Next we derive a basic estimate for § — gy, where ¢ (resp. ) is the
solution of (1.7)/(1.9) [resp. (2.18)/(2.20)].

LEMMA 4.1. There exists a positive constant C' independent of h such
that

19— 9nll7 <2017 — agll7 + Cl ALY, 100G — Gn) — (f, 115 — Gn)]. (4.2)

Proof. Since 11,y € K}, we deduce from (2.15) and (2.20) that

17— gnllyy < 2117 — Waglls + 201007 — a7
< 2|5 — W7 + CAL(TLG — G, Ung — n)
< 2|y — Wpgll} + ClAIL7, 0y — §n) — (f. 1107 — Fn)].-

a
In view of Lemmas 2.1 and 4.1, we can complete the error analysis
by bounding the second term on the right-hand side of (4.2). This will be
carried out in Sect. 5 after we have developed several technical lemmas in
the remaining part of this section.
LEMMA 4.2. There exists a positive constant C' independent of h such
that

S lelll[o* gy /on? ][5, ., < OB

ecéy,

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)—(2.4).

Proof. We will split the estimate into two cases. Let £ = {e € & :
e is not an edge of any triangle that touches a corner of 2 where the
angle is strictly greater than 7/2} and &; = &, \ &. Note that the num-
ber of edges in &} is bounded by a constant determined by the minimum
angle of Ty,

Since away from the corners of ) where the angles are strictly greater
than 7/2 the function 3 belongs to H? and 9%i/0n? = Ajj vanishes on 95
(cf. Appendix A), we have, by (2.7b), (2.21) and the trace theorem with
scaling,

> lell[o* ) /on]5, ., = > lelllo* (g — 9)/on21;, .,
ectft ecgl

S D D (R ()@ (en)lglipa s

ccef TET.
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where the function @ is defined in (2.3). It then follows from (2.1)—(2.3)
and (A.7) that

> lelll[*amg)/on?] |2, ., < B (4.3)
ecEf

where 7 = « if Ty, is quasi-uniform and 7 = 1 if T}, satisfies (2.2)—(2.4).
Let e € & be an edge of a triangle that touches a corner py of Q@ where
the angle w, € (7/2, 7). It follows from scaling that

‘e|||[[82(th)/6”§]]”§2(6) S Z |th|?'—12(T)
TeT.

S (\th — Ytz + |§|?{2(T)> :
TeT.

Let T € T,. Since § € H**¢(T) (cf. Appendix A), we have
1hy = Ylaz(ry S |Ylgzvee by
Moreover we have

|9 2 (1) =~ Z 10"l 2o (1)

[ul=2
= > (Y0 D) Loy S AT W0 Loy
[|=2 [nl=2

where W is define in (A.9). Therefore it follows from (2.1), (2.5), Remark 2.1
and (A.8) that

> lelll[o* g /on] |15, ., S B2 (4.4)

6685

where 7 = a if T}, is quasi-uniform and 7 = 1 if 7}, satisfies (2.2)—(2.4).
The lemma follows from (4.3) and (4.4). O
LEMMA 4.3. There exists a positive constant C' independent of h such
that

an(Ihy, ny — gn) — / D?*y: D*Ep(Iny — gn) dzx (4.5)
Q
< Ch™|1ny — Yullns
where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)(2.4).

Proof. Since both [0E},(IIny — yr)/0On] and [0y/0n] equal 0, we have,
from (2.9),
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an(Upy, Uny — yn)
-y / D2 DBy (g — ) do

TETh

+ > /D (hy — §) : D*Ep(ny — gn) dz
TETh

+ Z / D*(y) : D* [y — 4n) — En(y — §n)] dz
TeTh

s /{{32821221 }}|[3[(Hh17 — Un) gnEh(th — Un)] ]] s (4.6)

ec&l

Py /{{32 Hgiz yh)}}|[3(ﬂhai— y)}]ds

n ;| |/|[ th y H[a(ﬂhgn—ﬂh)}lds’

and we can use (2.6), (2.13), Lemma 2.1, (3.11) and scaling to estimate the
second, fifth, and sixth terms on the right-hand side of (4.6) as follows:

Z /D2 11,5 — 9) : D*Ep (11,9 — gn) do
TeTh

1
2
< < > Mg - y|12qz(T)> |En(I1ny — Yn)| (0 (4.7)

TeTh
S ATIIRg — Ynlln,

Z/{{ ngz yh)}}[[a(ﬂ}gib—y)ﬁds

ec&}

< (Z le||| {8 (1,5 — gh)/8n2}“%2(e)>

e€&l

Nl

x (Z RN —y)/anﬂ|li2(e)) (1)

ee&;

S (Z |th_yh|%{2(T)> (Z ;H[[f)(l'[hy—y)/an]]%z(e))

TETh ecE}

S BT |hg — gnllns
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6|/|[ th y Ha(ﬂhgn—yh)]]ds

< %n[@(w —p)/onl12, 0, (4.9)

e€&l

651

N

N

< | X lang - a0 /omi,

e€&l
S ATILRY = gnlla-

Now we use (3.12), the integration by parts formula (4.1) together
with Lemma 4.2 to estimate the sum of the third and fourth terms on the
right-hand side of (4.6) by

Y /{{62822 }}|[3[(th — Un) gnEh(th — n)] ]| ds

Te7—h

_ ;Z:L/[Waggy ﬂ{ [(ITny — Qh)a—nf’h(ﬂh@ - Z/h)]}} ds  (4.10)
< (e;:h €|||ﬂaz(nhy)/anﬂ“ig(e)) E

1 o i g 2 '

x (Z MH{G[(thfyh) Eh(thyh)]/ane}HLz(e)>
e€&y

S ALY — Yn -

The lemma follows from (4.6)-(4.10). O
LEMMA 4.4. There exists a positive constant C' independent of h such
that

A(g, EpILg — g) < Ch'T,

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)(2.4).

Proof. Since Ay € H}(Q) (cf. Appendix A), we have, by (1.5) and
Lemma 3.1,
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| P DB = e = [ (A5G- 5) do
—— [ V@) VB - de @)
SIEWTLG — Gl ) S hMT.
Moreover Lemma 3.1 also implies
(@, Enllng —5) S B (4.12)

The lemma follows from (1.8), (4.11), and (4.12). O

5. Convergence Analysis. In this section we complete the error
analysis by finding a bound for the second term on the right-hand side of
(4.2). We will show that

A (Wn g, 0y — §n) — (F, 00§ — gn) S BT + BTG — gnlln,  (5.1)

where 7 = « if Tj, is quasi-uniform and 7 = 1 if 7, satisfies (2.2)—(2.4).
But first we use (5.1) to establish the main result of this paper.

THEOREM 5.1. There exists a positive constant C' independent of h
such that

19 = ynlln < CRT, (5.2)

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)—(2.4).

Proof. Tt follows from Lemma 2.1, (4.2), (5.1), and the inequality of
arithmetic and geometric means that

15 = nlli < C(R*" + A7 |15 — Gnlln)
T T~ — T 1 — —
<C(RT 407G = nlln) < CR*" + 115 = 5nll7,

which implies (5.2). O

The following lemma reduces the derivation of (5.1) to an estimate at
the continuous level.

LEMMA 5.1. There exists a positive constant C' independent of h such
that

An(Upy, Upy — yn) — (f 1ny — Un)
< ChT LG = Gnlln + A@, En(ng — gn)) — (f, En(Tng — n)),

where T = « if Ty 1s quasi-uniform and T = 1 if Ty, is graded according to
(2.2)—(2.4).
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Proof. From (1.8) and (2.12) we have
An(Wn g, 100y — gn) — (f, 1ny — Un)
= B |an (g, 11ny — yn) — /Q (D*g : D*Ey (g — §n)) dz
+ Y [(ng, Ung — gn) — (4, En(Ung — gn)) |

— (f. (g — 9n) — En(Uny — 4n)) (5.3)
+ A7, En(0hg — n)) — (f, En(Iag — Gn)),

and we can bound the second and third terms on the right-hand side of
(5.3) as follows:

(07, 007 — Gn) — (4, En (TG — §n))
= (047 — 5, Uny — n) + (U, (Uny — §n) — En(I047 — Gn)) (5.4)
< RA|LG — Gnlln

by (2.21) and (3.10); and
|(f, (0hy = 9n) — En(0ay — §n)) | < BP0 — Gnlln (5.5)

by (3.10).
The lemma follows from Lemma 4.3 and (5.3)—(5.5). O
In view of Lemma 5.1, it only remains to show that

Ay, En(ILyg — 9n)) — (f, En(ny — gn)) S B°7 + A7 15 — Gnlln- (5.6)
We will use the relation A < B to streamline the derivation of (5.6), where
A S B means that A — B < h? + KL G — gnlln-

The estimate (5.6) can then be written as
A9, Bn(ng = gn)) < (f. En(ng — Fn))- (5.7)
It follows from (1.9), (3.3), (3.4), (3.7), and Lemma 4.4 that

«4(?7 Ey(Ihg — gn)) = AW, Exlng — §) + A5, 5 — Engn)
Engn

A9 - )
AW,y — 9n) + AU, 90 — Enbn)
< ( U = Un) + AW, U, — Entn) + AW, 0n,161 — On,202) (5.8)
< (fs9—9n) + AY, U, — Enbn)
= (£,9 = 9n) + AWh: Uh — Enyn) + AY — Un, U, — Entn)
(fs9 =) + (f:Un — Enn) + AW — Up, Ui — Enn)

(f, U — Enyn) + AW — Uns U — Enn)-
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Moreover we have

(f,9— Engn) = (f, En(Iay — 9n)) + (f, ¥ — Exllg) (5.9)
< (f, En(I1h5 — 7))

by Lemma 3.1, and

AW — U, Un — Entn)

=AY — 9, U —9) + AY — Un ¥ — Enin) (5.10)
< AW — 55§ — Enllag) + A — ¥, En(Ia — 7))
<0

by (3.5), (3.11), and Lemma 3.1. The relation (5.7) then follows from
(5.8)—(5.10). Therefore we have established (5.6) and hence (5.1).

The following corollary is an immediate consequence of (2.17) and
Theorem 5.1.

COROLLARY 5.1. There exists a positive constant C' independent of h
such that

|y — Unlar o) < Ch7,

where T = « if Ty, is quasi-uniform and 7 = 1 if Ty, is graded according to
(2.2)(2.4).

Since the energy norm || - ||, is an H?-like norm, we can also deduce
an Lo, norm error estimate from Theorem 5.1. The proof of the follow-
ing theorem, which is based on Lemmas 2.1, 3.1, Theorem 5.1, standard
inverse estimates and the Sobolev inequality, is identical to the proof of
Theorem 4.1 in [23] and thus omitted.

THEOREM 5.2. There exists a positive constant C' independent of h
such that

17 = 9nllp.. < ChT,

where T = « if Ty, is quasi-uniform and T =1 if Ty, is graded according to
(2.2)—(2.4).

REMARK 5.1. Since the norms || || () and |- |g1(q) are weaker than
the energy norm || - ||n, the order of convergence in these norms should be
higher than the order of convergence in || - ||n. This is confirmed by the
numerical results in Sect. 6. Therefore the estimates for ||y — ynllL_(q)
and |§ — Yn|mr () in Corollary 5.1 and Theorem 5.2 are not sharp.

For the optimal control problem defined by (1.1)-(1.3), we can take
the approximation for the optimal control @ to be the function up € V;,
defined by

/ Vi - Vodz = / upv dx Vo eV, (5.11)
Q Q
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THEOREM 5.3. There exists a positive constant C' independent of h
such that

i — @l o) < CA (5.12)
where T = « if Ty, is quasi-uniform and 7 = 1 if T, is graded according to
(2.2)—(2.4).

Proof. Let Qp, : L2(Q2) — V}, be the orthogonal projection. From
(1.2) we have

/Vy~Vvdx:/ﬂvdx:/(Qhﬁ)vdx Yo e V. (5.13)
Q Q Q

Let v € Vj be arbitrary. Using integration by parts, the Cauchy—
Schwarz inequality, scaling, (2.7b), (2.13), and Theorem 5.1, we find

/ V(y—gn) - Vvdx
Q

-y / [0 — ) /Onvds — 3 /T A — g)lode

eEE,’; T67-h
2 2
<D el 0@ = gn)/onlll e > lelllvliZ, e
ee€} ees}
1
2
+ ( Z 1y — yh%ﬁ(T)) vl L.
TETh
ST = GnllnllvliLae) S A1V @)-

It then follows from (5.11), (5.13) and duality that

|Qnt — tnll 1,0

= sup (/ (Qru — up)v dx) /vl Lo ) (5.14)
UE‘/}L\{O} Q

= sup (/ V(G —1n)- Vv dac) [l Ly ShT
UE‘/}L\{O} Q

Furthermore, we have, by a standard interpolation error estimate [61],
1@nt — tl[1,0) < |l (0)h- (5.15)

The estimate (5.12) follows from (5.14) and (5.15). O
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REMARK 5.2. One can also take the piecewise constant function ay, =
—Apyn to be an approzimation of the optimal control u, where Ay is the
piecewise Laplacian with respect to Tp,. The estimate (5.12) then immedi-
ately follows from (2.13) and Theorem 5.1. But numerical results indicate
that the approximation of @ defined by (5.11) is a better choice.

REMARK 5.3. By tracing the constants in all the estimates (including
(3.4)) one can show (using (A.7), (A.8), and (A.10)) that the constant C in
Theorem 5.1, Corollary 5.1, Theorem 5.2, and Theorem 5.3 is of the form

2
Lo + D 1illwe (o) + 1Al @) + Y (120" )ll 200
i=1 [n]=3

+ 0 1@ Do) + 13llwz i) |

[p]=2

where ® (resp. V) is defined in (2.3) (resp. (A.9)), K CC Q is a compact
neighborhood of the contact set where (§—11)(§—2) = 0, and the positive
constant € depends only on Q and the shape regularity of Ty,

6. Numerical Results. In this section we present several numerical

examples for the obstacle problem (1.7) with t;(x) = —oco. The com-
putational domain for the first four examples is the square (—0.5,0.5) x
(—0.5,0.5). The discrete problems are defined on uniform triangulations 7;
with mesh parameter h; = 277 (= the length of the horizontal and vertical
edges) for 1 < j <8, and the penalty parameter ¢ is chosen to be 5 which
ensures the coercivity of the discrete bilinear form on uniform meshes. The
solutions of the discrete problems are denoted by 7, (1 < j < 8), which are
obtained by a primal-dual active set algorithm [4, 47].
Example 1. In this example we validate our numerical scheme by solving
(1.7)/(1.9) with a known solution. We begin with the obstacle problem on
the disc {z : [#] <2} withy =0, =1, f =0 and v2(z) = 3|x|? — 1. This
problem can be solved analytically because of rotational symmetry and the
exact solution is given by

(6.1)

(z) = Ci|z|? In |z| + Colx|? + C3In|z| + Cy4 |z| > 7o
! Yol —1 2 <ro”

where 79 = 0.31078820..., C; = —0.26855864 ..., Cy = 0.45470930...,
C3 = —0.02593989.. ., and Cy = —1.05625438.. ...
Let g be the restriction of y; to Q = (—0.5,0.5)%. Then we have

1 0%y dy
j = argmin |~ | (D2 : D*y)dz — / U (Y 2
7 ar;ger;}(m [2 /Q( Y y)dx . ( T2 on ds|, (6.2)

where n is the unit outer normal on 092 and

K={veH*Q):v—y € H}(Q) and v<1p inQ},
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i.e., ¢ is the solution of an obstacle problem for a simply supported plate
with nonhomogeneous boundary conditions.

As in the case of clamped plates [23], our results for simply supported
plates with homogeneous boundary conditions (Theorems 5.1 and 5.2) can
be extended to the nonhomogeneous case. Let Vi, be the P, Lagrange finite
element space associated with the triangulation 7,. The discrete problem
for (6.2) is to find

_ |1 oyn
yn = argmin iah Yn Yn) Z / < 8n2) () ds|, (6.3)

yh€EKn ec&l

where
Ky = {ve Vi, v— My € H&(Q) and v(p) <a(p) Vpe W}

Let g; be the solution of (6.3) for the jth level triangulation and II; be
the Lagrange nodal interpolation operator for the jth level finite element
space V;. We evaluate the error e; = II;§ — g; in the energy norm || - |5,
and in the ¢y, norm || - || defined by

lejlloe = maaxe; (p)],

where Nj is the set of the vertices and midpoints of 7;. We also compute
the order of convergence in these norms by the formulas

n(llej1lln;_,/llejlln;)/ 2 and  In(flej1lloo/ll€jllc0)/ I 2.

The numerical results are presented in Table 1. The order of convergence
in the energy norm is observed to be 1.5, which is better than the order
of 1 predicted by Theorem 5.1. This is likely due to the fact that y is
actually a C'°° function on Q away from the circle with radius ry and
therefore superconvergence occurs since we use uniform triangulations. We
also observe that the order of convergence in the /., norm is close to 2,
better than the order of 1 predicted by Theorem 5.2.
We plot the discrete coincidence sets I7 and I in Fig. 1, where

Ii={peNj;: gi(p) = v2(p) — lle&jlloc}-

The black circle represents the exact free boundary F' = {x € Q : |z| = ¢}
(cf. (6.1)). It is evident that the discrete coincidence sets (resp. free bound-
aries) are converging to the exact coincidence set (resp. free boundary).
The second set of examples are optimal control problems with state
constraints that come from [6, 55]. The value of v is taken to be 1. Since
the exact solutions are not known, we take €5 ; = ;1 — ¥; and evaluate
l€g.illn, (the error of the state in the energy norm), |€y j|g1 (the error of
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TABLE 1
Energy and l errors for Example 1

J | llejlln /11gsllng  Order lle;1lo Order
1| 2.1840x10° 1 7.0940%x103
2 | 6.8348x1072  1.68 | 5.9691x10~*  3.57
3| 3.1394x1072  1.12 | 5.7224x10~*  0.06
4| 98571x1073  1.67 | 1.1579x10~* 2.31
5| 3.8462x107%  1.36 | 3.5461x107°% 1.71
6 | 1.4533x107%  1.40 | 1.0669x10~>  1.73
71 54157x10~*  1.42 | 3.3085x107%  1.69
8 | 1.9884x10~*  1.45 | 8.9654x10°7  1.88

05 0s

04 ] 04 b

03 03t

02 02

01 01 f

A ] S0F

=00 F =01 F

02 =02

03t 03

04t ] 04 1

055 0 0s 25 0 0s

% b
Iz Is

Fic. 1. Discrete coincidence sets I7 (left) and Ig (right) for Example 1

the state in the H'(Q2) seminorm), and [|é; ;s (the error of the state in
the lo norm) defined by

€7,5llc = max l€g.5()]-

The approximations of the optimal control in these examples are given by
the piecewise quadratic functions %; € V; defined by (5.11). We take éz ; =
@j_1—u; and evaluate ||€z ;| ., (the error of the control in the Ly ({2) norm).
The orders of convergence in these examples are generated by the formulas

n(lleg,;-1ll/l1ég 1)/ n(2) and  In(|léa;-1[l/]€a,;]1)/ n(2).

Example 2. In this example we take yq(z) = 10(sin(27 (21 +0.5)) + (22 +
0.5)), ¥2(z) = 0.01 and 8 = 0.1. The errors for the approximations of the
state and the control are reported in Tables 2 and 3. The discrete state ys
and control ug are depicted in Fig. 2.
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TABLE 2
Energy and ¢~ state errors for Example 2

J | ll€g,lln, /llsllns  Order l1€5,5lloo Order
1| 3.3661x109 1.1842x 1071

2 | 1.9062x10° 0.82 | 3.9252x1072  1.59
3| 7.4142x1071 1.36 | 6.5358x107%  2.59
4| 4.4582x1071 0.73 | 2.0856x1073  1.66
51 2.2066x107! 1.01 | 6.2389x10~%  1.74
6| 1.0916x1071 1.02 | 1.8209x10~%  1.78
7|1 5.4174x1072 1.01 | 4.5582x10~°  2.00
8 | 2.7011x10~2 1.00 | 1.1677x107°  1.96

TABLE 3

H' state errors and Lg control errors for Example 2

J | 1€gjle/|gslmr  Order | ||€allz,/|usl|r, Order
1| 4.9436x10° 3.6418x10°

2| 1.9541x10° 1.34 2.1388x10° 0.77
3| 3.6305%x107! 2.43 7.9054%x 1071 1.44
4| 1.1593x10°! 1.65 3.3568x 10! 1.24
5| 3.4745%x1072 1.74 1.2506x 1071 1.42
6| 9.7768x1073 1.83 | 4.0060x1072 1.64
71 2.5550x1073 1.94 1.3141x10~2 1.61
8 | 6.4538x1074 1.99 | 4.4595x103 1.56

am
0005

0005 o
oot
0015

002 oL
0s

05 a5

05 s

119

F1G. 2. Discrete state gs (left) and control ug (right) for Example 2

Example 3. In this example we take yq(x) = sin(2m (21 + 0.5)(z2 + 0.5)),
Pa(x) = 0.1 and B = 1073. The errors for the approximations of the state
and the control are given in Tables 4 and 5. Figure 3 contains the plots for
the discrete state yg and the discrete control usg.
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TABLE 4
Energy and ¢~ state errors for Example 3

[€g,jlln; /[Ysllng  Order | [lég,lloc  Order
2.6968x10° 6.3179x10~"
1.2439x10° 112 | 1.2247x10°1  2.37

6.7643x 101 0.88 | 3.7137x1072  1.72
3.4552x10 1 0.97 | 7.2368x107%  2.36
1.7485%x 1071 0.98 | 2.5667x10~%  1.50
8.6434x102 1.01 | 7.3986x10~%  1.79
4.2673x1072 1.02 | 1.9661x10~*  1.91
2.1230x 102 1.01 | 4.9541x107° 1.99

0 3O U= WIS,

TABLE 5
H! state errors and Lo control errors for Example 3

|€g.jle /19s|mn Order | ||€ajllz,/l|Usll, — Order
3.2873x10° 2.6748x10°
1.1542x10° 1.51 1.5626x10° 0.78

3.3936x10! 1.77 | 9.4478x107! 0.73
9.2061x102 1.88 | 3.5294x107! 1.42
2.6639x102 1.79 1.2171x10~ 1 1.54
7.2818x1073 1.87 4.1983%x1072 1.54
1.8560x 1073 1.97 1.3128x1072 1.68
4.6711x10~4 1.99 | 4.4419x10°3 1.56

0 O Ui WN |,

05 45

05 .05

F1a. 3. Discrete state ys (left) and control ug (right) for Example 3

Example 4. In this example we take y4(x) = sin(4r(x1 +0.5) (224 0.5)) +
1.5, ¢o(x) = 1 and B = 10~*. The errors for the approximations in the
state and the control are presented in Tables 6 and 7. The plots of the
discrete state ys and the discrete control ug are given in Fig. 4.
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TABLE 6
Energy and ¢~ state errors for Example 4

€g,illn; /|Ysllns ~ Order €5, 1l Order
8.6145x107! 1.9915% 109
7.0373x10°! 0.29 | 1.3112x10° 0.60
3.6102x107! 0.96 | 3.7238x10"1  1.82
2.3689x 10! 0.61 | 8.4619x10~2  2.14
1.1894x 1071 0.99 | 1.6099%x10~2  2.39
5.9093x 102 1.01 | 5.6989x1073  1.50
2.9179%x 102 1.02 | 1.5619x1073  1.87
1.4505%x 102 1.01 | 3.4243x10~4  2.19

00 1 O U i W N —|%.

TABLE 7
H?' state errors and Ls control errors for Example 4

|€g,j|m1/Ys|n Order | ||€g 5ll1,/||ts]|r,  Order
1.3273x 109 1.2796x 109
8.1485%x10~! 0.70 1.2466 %109 0.04
2.9527x10~! 1.46 | 8.4385x107! 0.56
1.0283x 1071 1.52 4.0479%x107 " 1.06

3.3447x 1072 1.62 | 1.6078x107! 1.33
8.4522x 1073 1.98 | 5.3193x1072 1.60
2.2334x1073 1.92 1.7536x 1072 1.60
5.5791x10~* 2.00 | 5.7008x1073 1.62

00 J O U = W N —H |,

05 .08 05 .08

F1G. 4. Discrete state gg (left) and control ag (right) for Example 4

The numerical results in Tables 2-7 confirm the error estimate for
|7 — Grlln in Theorem 5.1, since the index of elliptic regularity a = 1 for a
rectangular domain. On the other hand, the order of convergence for gy, is
2 for both the /5, norm and the H'(Q2) seminorm, which is better than the
first order convergence predicted by Theorem 5.2 and Corollary 5.1; and
the order of convergence for @y, is around 1.5, which is also better than the
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first order convergence predicted by Theorem 5.3. The plots of the state
and control in Figs. 2-4 also agree with the ones reported in [6, 55].

Example 5. In this example we take (2 to be the pentagonal domain
obtained from the square (—0.5,0.5)% by deleting the triangle with vertices
(0.5,0), (0.5,0.5) and (0,0.5). We use the same data as Example 3, i.e.,
Po(r) = 0.1, yg(z) = sin(27 (21 +0.5) (22 +0.5)), 8= 1073 and v = 1. The
mesh parameter for the jth level uniform triangulation 7; is h; = 27 0+1,
The errors for the approximate state y; and approximate control u; are
presented in Tables 8 and 9. Since the index of elliptic regularity « for
the pentagonal domain can be taken to be any number less than 1/3 (cf.
Remark 2.1), the results in Tables 8 and 9 agree with Theorems 5.1 and
5.3. However, for this example the magnitude of the [, error of the state
seems to be O(h?*) and the magnitude of the H'(f2) error of the state
seems to be O(h).

We also plot the discrete state yg and control ug in Fig. 5. The singular
nature of § near the corners at (0.5,0) and (0,0.5) can be observed in the
plot of ug.

TABLE 8
Energy and {~ state errors for Example 5

I€g,5lln; /1Ysllns ~ Order [[€g,5lloo Order
1.2749% 109 1.2541x 1071
7.3054x10~1 0.80 | 3.7113x10~2  1.76
3.6072x 10! 1.02 | 4.6868x1073  2.99
1.9576x 10" 0.88 | 1.3685%x1073  1.78
1.1763x 1071 0.73 | 3.4423x10~*  1.99
7.8971x10~2 0.57 | 1.4986x10~*  1.20
5.7723x1072 0.45 | 7.7115x10~%  0.96
4.4159%x 102 0.39 | 4.6283x107°  0.74

0 1O U= WIS,

TABLE 9
H' state errors and Lg control errors for Example 5

|€g.jle/|Ys|mr Order | |€q L, /||usl|z,  Order

1.1561x10° 1.7291x10°
3.4840x 107! 1.73 1.0841x10° 0.67
8.2785x102 2.07 | 3.9368x10~! 1.46

2.2172x102 1.90 1.3651x10~ 1 1.53
6.5259x103 1.76 | 5.3314x1072 1.36
2.1309%x103 1.61 2.5368x102 1.07
8.7597x10~* 1.28 1.7158x10~2 0.56
4.5704x1074 0.94 1.3122x1072 0.39

0 J O Ui WIN |,
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F1G. 5. Discrete state gs (left) and control ug (right) for Example 5

TABLE 10
Energy and {~ state errors for Example 6

I€g,5lln; /1y7l[n,  Order [[€g,5lloo Order
5.1533x10! 2.1625x102
3.4325x10! 0.59 | 8.5234x10~3  1.34
1.9843x10~1 0.79 | 3.9322x1073 1.12
1.0957x10~1 0.86 | 1.5313x10~%  1.36
6.0125x102 0.87 | 6.2314x10~*  1.30
3.2836% 1072 0.87 | 2.2180x10~*  1.49
1.7795%x 1072 0.88 | 7.5681x10~°  1.55

N O TR WN S,

Example 6. In this example we solve the same problem in Example 5 on
graded meshes obtained from a uniform triangulation 7y of the pentagonal
domain by the refinement process in [10] (cf. Fig. 6), and we take the
penalty parameter o to be 20.

The errors of the approximate state y; and approximate control u; are
reported in Tables 10 and 11. It is observed that the order of convergence
for the state in the energy norm and for the control in the Lo(Q2) norm is
about 1, which agrees with Theorems 5.1 and 5.3. On the other hand, the
order of convergence for the state in the /o, norm and the H'(£2) seminorm
is about 1.5, which is better than the order of convergence predicted by
Theorem 5.2 and Corollary 5.1.

The discrete state 7 and control @3 are depicted in Fig. 7. By compar-
ing Figs. 5 and 7 we see that the graphs of the optimal states computed by
a uniform mesh and a graded mesh are very similar. But the graph of the
optimal control computed by graded meshes exhibited a more pronounced
singular behavior near the corners (0,0.5) and (0.5,0) since the triangles at
these corners are much smaller than the corresponding ones in a uniform
mesh.



124 S.C. Brenner, L.-Y. Sung and Y. Zhang

TABLE 11
H' state errors and Lg control errors for Example 6

J | |5l /1gs|ar Order | [|€a L, /llusllr, —Order
1] 2.2461x10~1! 4.7166x10~!
2| 1.0985x10°! 1.03 2.9528x10~! 0.68
3| 4.5006x10~2 1.29 1.5324x 1071 0.95
4| 1.5012x10~2 1.58 7.7635x 102 0.98
5| 5.7283x1073 1.39 4.0842x1072 0.93
6| 1.9491x10°3 1.56 2.1646x 102 0.92
71 6.6083x10~¢ 1.56 1.1353x10~2 0.93
05 i ~ 0s b
7Y SN 5 ™ 04 ) o \‘\\
03 \‘\__ \‘\\ .-'\ 03 .\‘\_\ \"\\_ ™~ \\{,
02 | N i ™ 02 "\\ \\\ . ™ .
a1 b N \\ N 01 e S . '\_\
> | % ™ ~ N - ~
u: \ > E . ke \\\ 01u % ~, | ™ i
02 3 E 4 ™ 02 \'-\_\ \ \ .'\\ \'“'\\\‘\\ \
03 " \\\..\ . . " . i \ \ \\..\ \\\_\\ \\\_\\ \_\\. \ _.\___\
=04 l \‘\__I\\ . 'l\\\ l \: d. 'l-\_\. -04 '\\i\ '\_\I \ '-.I_\ . l\ “-‘\__ .\_\:\ '\:\\\ “-\\-
-05 -04 =03 =02 =01 1] 01 0z 03 04 0s -08 -04 -03 -0z -01 0 01 0z 03 04 o0s

F1G. 6. Triangulation To (left) and T1 (right) for the pentagonal domain

7. Concluding Remarks. In this paper we have only considered
the optimal control problem (1.1)—(1.3) on convex polygonal domains.
It is possible to treat this problem on general polygonal domains, in
which case the space H?(Q) N H}(Q) will be replaced by the space
{v e H Q) : Av € Ly(Q)} that has been thoroughly analyzed in [45, 46]
and the discretization will involve singular functions.

The three-dimensional version of (1.1)-(1.3) can also be solved as
fourth order variational inequalities by finite element methods. For smooth
domains, a straightforward extension of the approach in [15, 23-25] and this
paper will lead to O(h%) errors for the state in the energy norm and the
control in the Ly(€2) norm, similar to the error estimates in [37, 56]. Again
we expect the convergence of the state in the H'(€) norm and the L., (Q)
norm to be of higher order.

These and other topics, such as the solution of optimal control prob-
lems with both state and control constraints as fourth order variational
inequalities are subjects of ongoing investigations.
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F1G. 7. Discrete state g7 (left) and control @3 (right) for Example 6
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APPENDIX

A. Elliptic Regularity for Simply Supported Plates. In this
appendix we summarize elliptic regularity results for the biharmonic equa-
tion on convex polygonal domains with the boundary conditions of simply
supported plates and also discuss related results for the solution 7 of the
obstacle problem (1.7). We will focus on the H? regularity (or lack thereof)
for the solution since y € H{ ().

Let © be a convex polygonal domain with corners pq,...,pr and wy
be the interior angle of  at py,. Let g € L2(Q) and z € H2(Q) N H ()
satisfy

/D2Z:D2vdx:/gvdx Yo € H2(Q)N HL Q). (A1)
Q Q

It follows from (A.1) that w = —Az € La(2) has the following properties:
(i) w is an H? function away from the corners of Q, (ii) w vanishes on
OQ\ {p1,...,pr}. These two conditions then imply that

w = —Az belongs to H(Q) N H () (A.2)

and that z also satisfies

/Vz-Vvdx:/wvdx Vo e Hy (Q).
Q Q

Thus we can deduce the elliptic regularity of z from the elliptic regularity
theory for the Laplace operator [36, 45, 58].
First of all,

z is an H* function away from the corners of €, (A.3)
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which also follows directly from (A.1). Secondly we have
z € H*(NY) if wy <7/2, (A4)

where A, C Q is a neighborhood of p,. Finally, at a corner p, where
we > /2, we have

2 — kg € H3(NG), (A.5)

where N, C Q is a neighborhood of py, ; is a constant (generalized stress
intensity factor), and the singular function ¢y is defined by

0= r;/w sin ((7/we)0y). (A.6)

Here (r¢,0;) are the polar coordinates at py such that the two edges of
emanating from p, are given by 6, = 0 and 6, = w,. Note that ¢y is a
harmonic function and ¢, € H't(7/«)=¢(A}) for any € > 0.

Now we turn to the solution g of (1.7)/(1.9). Since the constraints in
(1.3) are not active near 92 because of (1.4b), we have

[ 80 : D) de = [ 5010 s DP((1 = )] do
Q Q
+/sz(f*’727)1Ud$

for all w € H2(Q) N H}(2), where p; = pa = 1 near 99, p1 = 1 on the
support of po, and the support of p; is disjoint from the active set where
g(x) = Y1(x) or ¢o(x). Note that standard interior elliptic regularity [62,
Sect. 20] implies

[ 102010): D21 = poy)] de = [ (1= g pai
where (1 — p2)A?(p17) € L2(9).

Therefore z = p1y satisfies (A.1) with g = po(f — v9)/8 + (1 —
p2)A%(p1y) € L2(R)). Combining (A.2)—(A.6) and the fact that § €
H} (), we can draw the following conclusions about .

e The function Ay belongs to Hg(€2). Therefore 4 = —A% belongs
to Hg () for the optimal control problem (1.1)—(1.3).

e Let ay be chosen according to (2.4). Then 3 € H?t%¢(N}), where
N (C Q) is a neighborhood of p,. Globally we have § € H*T(Q)
where o = minj <<y, ay.

e We can write § = s + §r, where 4§, € H>(Q) N HE(Q), Ay, €
H(Q) and g5 have the following properties.

— s is an H3 function away from the corners of Q where the
angles are > /2.
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— ¥s is a multiple of ¢, in a neighborhood N} of a corner py
where wy > /2.
- Ays belongs to H}(Q).
e Since 7, *(9"pr) € La(Ny) for [u| = 3, we have ®(87s) € La(Q)
for |u| = 3 and hence
O(0"y) € Lo(Q)  for |u] = 3, (A7)
where the function ® is defined by (2.3).
e Since 7, “(0*p¢) € La(Ny) for |u| = 2, we have U(9'jys) € La(Q)
for |u| = 2 and hence

U(0"g) € L2(Q)  for |u| =2, (A.8)
where the function ¥ is defined by

L
o § ZEE (A.9)
=1
Finally we note that (cf. [36, Theorem AA.3 and Theorem AA.7])
[l bza () < Ca Y 19(9"9) | L0 (A.10)
|n]=3

B. An Enriching Operator. In this appendix we construct the en-
riching operator introduced in Sect. 3.2. Such operators have played an
important role in the design and analysis of fast solvers for nonconforming
finite element methods [11, 12, 22, 26].

Let Vi, ¢ H 1(Q) be the P, Lagrange finite element space associated
with 7;, and W, € H?(Q) be the Pg Argyris finite element space [2] associ-
ated with 7;,. The degrees of freedom of w € W), (cf. Fig. 8) consist of the
values of the derivatives of w up to second order at the vertices of 7, the
values of w at the midpoints of the edges of 7} and at the centers of the
triangles of T,, and the values of the normal derivative of w at two nodes
on each edge in &,.

The enriching operator Ey, : Vi, — Wy is defined by averaging as
follows (cf. Sect. 2.1 for the notation).

(i) Let N be a degree of freedom associated with an interior node p.

We define
|T | 2N

TeT,

N Eh’U

(ii) Let N be a degree of freedom involving the normal derivative as-
sociated with a boundary node interior to an edge e € 5}:. We
define

N(Ehv) = N(UTE).
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F1a. 8. Degrees of freedom for the Pg Argyris finite element

(iii) Let p be a boundary node which is not a corner of 2 such that p
is the common endpoint of two edges e1,es € 5};. For any degree
of freedom N associated with p, we define

N(Epv) = [N(UTEI) + N(UTE2 )] .

DN | =

(iv) Let p be a corner of 2. Then p is the common endpoint of eq, e3 €
EY. Let t; (vesp. nj) be a unit tangent (resp. normal) of e;. We

define
(Env)(p) = v(p),
(0(Env)/0t;)(p) = (dvr,, /0t;)(p) for j =1,2,
(0 (En)02)() = (JPur,, J02)(0) for j= 1,2,
(0*(Epv)/0t,0n1)(p) = (GQUTEI/atlanl)(p).

REMARK B.1. We can also replace the last equation in (iv) by
(0*(Env)/0ta0ns)(p) = (0%vr,, /0t20n2)(p).

Since v is continuous at the vertices, the relation (3.6) follows imme-
diately from (i), (iii), and (iv). It is also easy to check that

Eww e W, =W, N HYHQ) € H2(Q)NHLQ) if veV,=V,nHYQ).

We now turn to the derivations of (3.8) and (3.9). Let T € T, be
arbitrary. Since v = Epv at the vertices and the center of T', we have, by
scaling,
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v = Ewvll3 oy ShT | D V(0= Ewv)(p)?
pEVT

2

pENT

+ 3 RPN - Bl | (B

pEVT

(v — Epv), |?
o)

for all v € Vh, where N7 is the set of the six nodes on T associated with
the degrees of freedom of the Pg Argyris finite element that involve the
normal derivative (cf. Fig. 8).

Let p € V1 be interior to ). Since the tangential derivative of v — Epv
is continuous across element boundaries, we have, by the definition of Fj,
and a standard inverse estimate,

2

V(0 — Bro)(p)? = ﬁ (Vor(p) — Vor () (B.2)
PlpreT,
S 3 0w/l i
=¥k

s

where £/ is the set of the edges in &}, sharing p as a common endpoint.

Similarly, we have

2

ID*(v = Ewo)0)* = |77 D D*(vr —vr)(p) (B.3)
\7;| e
< Z h |U|H2(T’
T'€ET,

The estimates (B.2) and (B.3) are also valid for p € 9Q by similar argu-
ments.

Now we consider p € Nr. If p is a boundary node, then ’(8(1} —
E,v)/0n)(p)| = 0 by the definition of Ej,. Otherwise we have, by a stan-
dard inverse estimate,

|0(v — Epv)/on(p)* < le| = [0v/0n] |17, o) (B.4)

for some e € &}

Combining (B.1)-(B.4), we obtain the estimate (3.8) for m = 0, which
then implies the estimates for m = 1 and 2 through standard inverse esti-
mates.

For the operator Ej, oIlj, first we observe that it is a bounded linear
operator from H?"%(Sr) into H?(T) because of (2.21) and (3.8). Further-
more, by construction, E,II,¢ = ( on T if ( € Po(S7). Hence the estimate
(3.9) follows from the Bramble-Hilbert lemma (cf. [9, 38]).
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