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Abstract. We test the a posteriori error estimates of discontinuous Galerkin (DG)
discretization errors (Adjerid and Baccouch, J. Sci. Comput. 33(1):75–113, 2007; Adj-
erid and Baccouch, J. Sci. Comput. 38(1):15–49, 2008; Adjerid and Baccouch Comput.
Methods Appl. Mech. Eng. 200:162–177, 2011) for hyperbolic problems on adaptively
refined unstructured triangular meshes. A local error analysis allows us to construct
asymptotically correct a posteriori error estimates by solving local hyperbolic problems
on each element. The Taylor-expansion-based error analysis (Adjerid and Baccouch, J.
Sci. Comput. 33(1):75–113, 2007; Adjerid and Baccouch, J. Sci. Comput. 38(1):15–49,
2008; Adjerid and Baccouch Comput. Methods Appl. Mech. Eng. 200:162–177, 2011)
does not apply near discontinuities and shocks and lead to inaccurate estimates under
uniform mesh refinement. Here, we present several computational results obtained from
adaptive refinement computations that suggest that even in the presence of shocks our
error estimates converge to the true error under adaptive mesh refinement. We also
show the performance of several adaptive strategies for hyperbolic problems with dis-
continuous solutions.
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teriori error estimation, Unstructured meshes
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1. Introduction. The DGmethod was first developed for the neutron
equation [20]. Since then, DG methods have been used to solve hyperbolic
[11, 13–15, 17], parabolic [16], and elliptic [10] partial differential equations.

The DG methods are a family of locally conservative, stable, and
high-order accurate methods that are easily coupled with other well-known
methods and are well suited to adaptive strategies. For these reasons, they
have attracted the attention of many researchers working in computational
mechanics, computational mathematics, and computer science. They pro-
vide an appealing approach to address problems having discontinuities,
such as those arising in hyperbolic conservation laws. The DG method
does not require the approximate solutions to be continuous across element
boundaries, it instead involves a flux term to account for the discontinuities.
For a more complete list of citations on DG methods and its applications,
consult [12]. A main advantage of using discontinuous finite element basis
is to simplify adaptive p- and h-refinement with hanging nodes.

The DG method has a simple communication pattern between ele-
ments with a common face that makes it useful for parallel computation.
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Furthermore, it can handle problems with complex geometries to high
order. Regardless of the type of DG method, we need to know how well our
computed solution approximates the exact solution. In practice, the exact
solution of the problem is not available and a method to estimate the dis-
cretization error is needed. For these reasons, a posteriori error estimates
have been developed for DG methods and provide some initial guidance for
deciding on the degree of the approximation and the size of the mesh that
guarantee a prescribed level of accuracy. Furthermore, error estimates may
be used to guide hp-adaptive refinement.

The first superconvergence result for DG solutions of hyperbolic partial
differential equations appeared in Adjerid et al. [4]. The authors showed
that DG solutions of one-dimensional linear and nonlinear hyperbolic prob-
lems using p-degree polynomial approximations exhibit an O(hp+2) super-
convergence rate at the roots of (p + 1)-degree Radau polynomial. This
lead to the conclusion that the leading term of the DG error on each ele-
ment is proportional to (p + 1)-degree Radau polynomial which was used
to construct asymptotically correct a posteriori error estimates. They fur-
ther established a strong O(h2p+1) superconvergence at the downwind end
of every element. Later, Krivodonova and Flaherty [19] showed that the
leading term of the local discretization error on triangles having one out-
flow edge is spanned by a suboptimal set of orthogonal polynomials of
degree p and p+1 and computed DG error estimates by solving local prob-
lems involving numerical fluxes, thus requiring information from neigh-
boring inflow elements. Adjerid and Massey [5] extended these results
to multi-dimensional problems using rectangular meshes and presented an
error analysis for linear and nonlinear hyperbolic problems. They showed
that the leading term in the true local error is spanned by two (p+1)-degree
Radau polynomials in the x and y directions, respectively. They further
discovered that a p-degree discontinuous finite element solution exhibits an
O(hp+2) superconvergence at Radau points obtained as a tensor product
of the roots of Radau polynomial of degree p+1. Using these results, they
were able to compute asymptotically exact a posteriori error estimates for
linear and nonlinear hyperbolic problems on Cartesian meshes.

Adjerid and Baccouch [1, 2] investigated the superconvergence prop-
erties of discontinuous Galerkin solutions of a scalar first-order hyperbolic
problem on triangular meshes. They presented a detailed discussion on the
superconvergence properties versus the choice of finite element polynomial
spaces. First, they classified triangular elements into three types: (i) type
I with one inflow edge and two outflow edges, (ii) type II with two inflow
edges and one outflow edge, and (iii) type III with one inflow edge, one
outflow edge, one edge parallel to the characteristics. Through computa-
tions, they showed that the local superconvergence results [1] extend to
global DG solutions on general meshes with a corrected inflow boundary
condition. In particular, they showed that the discontinuous finite element
solution is O(hp+2) superconvergent at the Legendre points on the outflow
edge for triangles having one outflow edge. For triangles having two outflow
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edges the finite element error is O(hp+2) superconvergent at the end points
of the inflow edge.

Adjerid and Weinhart [7–9] studied the asymptotic behavior of the
local DG error for multi-dimensional first-order linear symmetric and sym-
metrizable hyperbolic systems of partial differential equations. They per-
formed a local error analysis by writing the local error as a series and
showing that its leading term can be expressed as a linear combination
of Legendre polynomials of degree p and p + 1. They were able to com-
pute efficient and asymptotically exact estimates of the discontinuous finite
element error.

In this manuscript we consider the modified discontinuous Galerkin
method [2] with a corrected inflow flux and an enriched polynomial space
Up with adaptive mesh refinement. We consider several mesh refinement
strategies guided by both discretization error estimates and local residu-
als. Since L2 a posteriori error estimates based on Taylor expansions fail
to be asymptotically exact under uniform mesh refinement in the pres-
ence of shocks [3, 5, 6], we present several numerical results which suggest
that such error estimates converge to the true errors under adaptive mesh
refinement on general unstructured triangular meshes in the presence of
discontinuities. Numerical results further suggest that using local residuals
to guide the adaptive mesh refinement yield more efficient algorithms when
compared to using the error estimate itself in the presence of discontinu-
ities. Thus, we recommend an adaptive strategy that combines the local
residuals or any other explicit estimators to guide mesh refinement and
the proposed error estimate to assess solution accuracy and terminate the
adaptive refinement process.

This paper is organized as follows: In Sect. 2 we state the modified DG
formulation for linear and nonlinear hyperbolic problem and present our
a posteriori error estimation procedures for linear and nonlinear problems.
In Sect. 3 we describe several adaptive mesh refinement strategies that will
be used to test the performance of our error estimates. Finally, in Sect.
4 we present numerical results for several linear and nonlinear hyperbolic
problems with discontinuous solutions and conclude with a few remarks in
Sect. 5.

2. Discontinuous Galerkin Formulation and Error Estima-
tion. In this section we present an adaptive modified discontinuous
Galerkin method [1–3] combined with a posteriori error estimation pro-
cedure. In addition to being used to steer the adaptive process, the a
posteriori error estimate is also used to correct the numerical flux needed
to compute the DG solution on downwind elements. This modified DG
method maintains the structure of the local discretization error on each
element of the mesh which makes the error estimation both efficient and
accurate.
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In order to further simplify the error estimation procedure we use the
augmented polynomial space Up given by

Up = Pp ∪ span{xp+1, yp+1}, p ≥ 1,

where

Pk =

{
q | q =

k∑
m=0

m∑
i=0

cmi xiym−i

}
, k = 0, 1, . . . , p. (2.1a)

The finite element space Up is suboptimal, i.e., it contains p+1-degree
terms that do not contribute to global convergence rate but simplifies the
a posteriori error estimation procedures described later in this manuscript.

We consider a reference triangle Δ0 defined by the vertices (0, 0), (1, 0),
and (0, 1) and define the following orthogonal polynomials [18]

ϕl
k(ξ, η) = 2kL̂k

(
2ξ

1− η
− 1

)
(1−η)kP̂ 2k+1,0

l (2η−1), k, l ≥ 0 k+l = p ≥ 0,

(2.2a)
where P̂α,β

n (x), −1 ≤ x ≤ 1, is the Jacobi polynomial

P̂α,β
n (x) =

(−1)n

2nn!
(1−x)−α(1+x)−β dn

dxn
[(1−x)α+n(1+x)β+n], α, β > −1,

(2.2b)
and L̂n(x) = P̂ 0,0

n (x), −1 ≤ x ≤ 1 is the nth-degree Legendre polynomial.

We note that these polynomials satisfy the L2 orthogonality∫ 1

0

∫ 1−η

0

ϕl
kϕ

q
pdξdη = clqkpδkpδlq. (2.3)

Radau polynomials are defined by

R̂p+1(x) = (1− x)P̂ 1,0
p (x) = C(L̂p+1(x)− L̂p(x)), −1 ≤ x ≤ 1. (2.4)

We drop the hat and let Lp, P
α,β
p and Rp, respectively, denote the Jacobi,

Legendre and Radau polynomials shifted to [0, 1].
Let us note that U on the physical element is in the modified polyno-

mial space

Up = Pp + span{ξ(x, y)p+1, η(x, y)p+1},
where (x, y) → (ξ(x, y), η(x, y)) is the standard affine mapping from the
physical element Δ to the reference element Δ0.

First, let us consider a divergence-free linear stationary hyperbolic
problem on an open bounded convex polygonal domain Ω ⊆ R2. Let a =
[a1(x, y), a2(x, y)]

T denote a nonzero velocity vector. If n denotes the out-
ward unit normal vector, the domain boundary ∂Ω = ∂Ω+ ∪ ∂Ω− ∪ ∂Ω0,
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where the inflow, outflow, and characteristic boundaries, respectively, are
∂Ω− = {(x, y) ∈ ∂Ω | a · n < 0}, ∂Ω+ = {(x, y) ∈ ∂Ω | a · n > 0}, and
∂Ω0 = {(x, y) ∈ ∂Ω | a · n = 0}.
Let u(x, y) denote a smooth function on Ω and consider the following
hyperbolic boundary value problem

L(u) = a.∇u+ cu = f, (x, y) ∈ Ω = (0, 1)2, (2.5a)

∇.a =
∂a1
∂x

+
∂a2
∂y

= 0, (2.5b)

subject to the boundary conditions

u(x, 0) = g0(x), u(0, y) = g1(y), (2.5c)

where the functions a(x, y), c(x, y), f(x, y), g0(x), and g1(y) are selected
such that the exact solution u(x, y) ∈ C∞(Ω).

In order to obtain the weak discontinuous Galerkin formulation for
(2.5), we partition the domain Ω into N triangular elements Δj , j =
1, . . . , N, such that on every edge a · n does not change sign. Thus, every
edge is either inflow, outflow, or characteristic, respectively, if a · n < 0,
a · n > 0 or a · n = 0. Using this mesh orientation, a triangle can be
classified into type I having one inflow edge and 2 outflow edges, type II
having two outflow and one inflow edges, or type III having one inflow,
one outflow and one characteristic edges. The problem is solved on each
element starting from the upwind elements and proceeding to the neigh-
boring elements in the downwind direction, i.e., we order the elements such
that the inflow boundary Γ−

j of an element Δj is contained in the inflow

boundary ∂Ω− of the domain or in the outflow boundary Γ+
i of Δi, i < j.

In the remainder of this paper we omit the element index and refer to
an arbitrary element by Δ whenever confusion is unlikely. Note that Γ+

and Γ−, respectively, denote the outflow and inflow boundaries of Δ.
Thus, our discontinuous Galerkin method consists of finding U ∈ Up

such that∫
Γ−

a · nÛV ds+

∫
Γ+

a · nUV ds−
∫∫

Δ

(a · ∇V − cV )Udxdy

=

∫∫
Δ

fV dxdy, ∀ V ∈ Up. (2.6a)

In order to complete the definition of the DG method we need to select
the corrected upwind numerical flux Û on Γ− as

Û =

{
u, on Γ− ⋂

∂Ω−

U− + E−, elsewhere,
(2.6b)

where U− and E−, respectively, are the limit of U and E from the inflow
element sharing Γ− , i.e., if (x, y) ∈ Γ−, then

U−(x, y) = lim
s→0+

U((x, y) + sn),E−(x, y) = lim
s→0+

E((x, y) + sn). (2.6c)
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Here, E is an a posteriori error estimate that will be defined by
following [2, 3] to write the leading term of the local DG error on each
triangle as a linear combination of the following p error basis functions

(u− U)(x, y) ≈ E(x, y) =

p∑
i=1

diχi
p+1−i(ξ(x, y), η(x, y)), (2.7a)

where χj are given in [2]. For the sake of completeness we include them
in Tables 1 and 2 for types I and II and [α, β] as given in (2.11) while for
type III the leading term of the error can be written as

Qp+1 =
∑

i,j≥0
i+j=p

cji (1−ξ−η)P 2j+2,0
i (2η−1)(1−η)jP 1,0

j

(
2ξ

1− η
− 1

)
, (2.7b)

with

cp0 =
1

p+ 1

p∑
i=1

(−1)i+1(p+ 1− i)cp−i
i . (2.7c)

After computing the finite element solution U on an element Δ, we compute
an error estimate by solving the problem for i = 1, 2, . . . , p,∫∫

Δ

(a · ∇(U + E) + c(U + E))χi
p+1−idxdy =

∫∫
Δ

fχi
p+1−idxdy.

(2.7d)
Next we consider nonlinear problems of the form

L(u) = ∇ ·F(u) = h(u)x + g(u)y = f(x, y), (x, y) ∈ Ω = (0, 1)2, (2.8a)

subject to the boundary conditions

u(x, 0) = g0(x), u(0, y) = g1(y). (2.8b)

In our analysis [3] we assume F : R → R
2, u : R2 → R, f, g0 and g1 to be

analytic functions such that g′(u) > 0 and h′(u) > 0 over the domain Ω.
The inflow, outflow, and characteristic boundaries, respectively, are defined
by ∂Ω− = {(x, y) ∈ ∂Ω | F′(u) · n = [h′(u), g′(u)]t · n < 0}, ∂Ω+ =
{(x, y) ∈ ∂Ω | F′(u) · n > 0}, and ∂Ω0 = {(x, y) ∈ ∂Ω | F′(u) · n = 0},
such that ∂Ω = ∂Ω− ∪ ∂Ω+ ∪ ∂Ω0 and n is the outward unit normal to
∂Ω. We further assume that the unstructured triangular mesh is such that
F′(u).n does not change sign on all edges, i.e., every edge is either inflow,
outflow, or characteristic.
The discrete DG formulation consists of determining U ∈ Up such that∫

Γ−
n · F(Û)V ds+

∫
Γ+

n · F(U)V ds−
∫∫

Δ

F(U) · ∇V dxdy

=

∫∫
Δ

fV dxdy, ∀ V ∈ Up, (2.9a)
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Table 1
Error basis functions for the spaces Up for p = 1 to 3 on the reference triangle of

type I where s = α/β

p = 1

χ1
1 = (12(ϕ0

1 + ϕ1
1)s

2 + 2(10ϕ0
0 − 2ϕ1

0 − 3ϕ0
1 − 2ϕ2

0 + 12ϕ1
1 + 5ϕ0

2)s + 12ϕ1
0 + 6ϕ0

1 − 8ϕ2
0+

6ϕ1
1 + 5ϕ0

2)/10s + 5

p = 2

χ1
2 = (75(2ϕ1

1 + ϕ0
2 + 2ϕ2

1 + ϕ1
2)s

4 + 5(28ϕ0
0 + 28ϕ1

0 − 42ϕ0
1 − 12ϕ2

0 + 54ϕ1
1 + 51ϕ0

2−
12ϕ3

0 + 96ϕ2
1 + 51ϕ1

2)s
3 + (−140ϕ0

0 + 532ϕ1
0 + 126ϕ0

1 − 68ϕ2
0 + 36ϕ1

1 + 140ϕ0
2 − 180ϕ3

0+
540ϕ2

1 + 315ϕ1
2)s

2 + (−140ϕ0
0 + 280ϕ1

0 + 168ϕ0
1 + 100ϕ2

0 − 12ϕ1
1 − 10ϕ0

2 − 180ϕ3
0+

240ϕ2
1 + 165ϕ1

2)s + 5(16ϕ2
0 + 6ϕ1

1 − ϕ0
2 − 12ϕ3

0 + 6ϕ2
1 + 6ϕ1

2))/15(s + 1)3(5s + 2)

χ2
1 = (−240(ϕ1

1 + ϕ2
1)s

5 + (−448ϕ0
0 − 112ϕ1

0 + 840ϕ0
1 + 128ϕ2

0 − 780ϕ1
1 − 350ϕ0

2 + 72ϕ3
0−

1200ϕ2
1 + 105ϕ0

3)s
4 − 21(24ϕ0

0 + 56ϕ1
0 − 68ϕ0

1 − 24ϕ2
0 + 12ϕ1

1 + 30ϕ0
2 − 16ϕ3

0+
108ϕ2

1 − 17ϕ0
3)s

3 + (616ϕ0
0 − 2072ϕ1

0 − 84ϕ0
1 + 408ϕ2

0 + 936ϕ1
1 + 576ϕ3

0 − 2004ϕ2
1+

441ϕ0
3)s

2 + (392ϕ0
0 − 784ϕ1

0 − 336ϕ0
1 − 184ϕ2

0 + 624ϕ1
1 + 280ϕ0

2 + 432ϕ3
0 − 804ϕ2

1+
231ϕ0

3)s + 2(−80ϕ2
0 + 30ϕ1

1 + 35ϕ0
2 + 60ϕ3

0 − 54ϕ2
1 + 21ϕ0

3))/21(s + 1)3(5s + 2)

p = 3

χ1
3 = (420(2ϕ3

1 + ϕ2
2 + 2ϕ2

1 + ϕ1
2)s

5 + 4(84ϕ0
0 + 228ϕ1

0 − 80ϕ4
0 + 870ϕ3

1 + 455ϕ2
2−

54ϕ0
1 + 108ϕ2

0 − 324ϕ1
1 − 116ϕ3

0 + 600ϕ2
1 + 455ϕ1

2)s
4 + (−2352ϕ0

0 + 2976ϕ1
0 − 1280ϕ4

0+
5520ϕ3

1 + 3080ϕ2
2 + 4608ϕ0

1 + 2736ϕ2
0 − 2592ϕ1

1 − 2520ϕ0
2 − 1352ϕ3

0 + 1596ϕ2
1 + 2450ϕ1

2+
441ϕ0

3)s
3 + 6(8ϕ0

0 − 232ϕ1
0 − 320ϕ4

0 + 680ϕ3
1 + 420ϕ2

2 + 156ϕ0
1 + 888ϕ2

0 + 216ϕ1
1−

240ϕ0
2 − 152ϕ3

0 − 112ϕ2
1 + 120ϕ1

2 + 63ϕ0
3)s

2 + (720ϕ0
0 − 1440ϕ1

0 − 1280ϕ4
0 + 1320ϕ3

1+
980ϕ2

2 − 864ϕ0
1 + 2160ϕ2

0 + 1296ϕ1
1 + 520ϕ3

0 − 372ϕ2
1 − 190ϕ1

2 + 63ϕ0
3)s − 20(16ϕ4

0−
6ϕ3

1 − 7ϕ2
2 − 20ϕ3

0 − 6ϕ2
1 + 2ϕ1

2))/140(s + 1)4(3s + 1)

χ2
2 = (−168(4ϕ3

1 − ϕ1
3 + 4ϕ2

1 − ϕ0
3)s

5 − 4(168ϕ0
0 + 240ϕ1

0 − 40ϕ4
0 + 708ϕ3

1 − 182ϕ1
3−

216ϕ0
1 − 486ϕ1

1 + 135ϕ0
2 − 112ϕ3

0 + 438ϕ2
1 + 135ϕ1

2 − 182ϕ0
3)s

4 + 2(1512ϕ0
0 − 2088ϕ1

0+
320ϕ4

0 − 2304ϕ3
1 + 616ϕ1

3 − 2916ϕ0
1 − 648ϕ2

0 + 2484ϕ1
1 + 1350ϕ0

2 + 752ϕ3
0 − 180ϕ2

1−
540ϕ1

2 + 175ϕ0
3)s

3 + 3(48ϕ0
0 + 288ϕ1

0 + 320ϕ4
0 − 1184ϕ3

1 + 336ϕ1
3 − 576ϕ0

1 − 1392ϕ2
0+

144ϕ1
1 + 600ϕ0

2 + 488ϕ3
0 + 724ϕ2

1 + 30ϕ1
2 − 21ϕ0

3)s
2 + (−528ϕ0

0 + 1056ϕ1
0 + 640ϕ4

0−
1248ϕ3

1 + 392ϕ1
3 + 432ϕ0

1 − 1584ϕ2
0 − 648ϕ1

1 + 180ϕ0
2 − 8ϕ3

0 + 1236ϕ2
1 + 450ϕ1

2−
49ϕ0

3)s + 160ϕ4
0 − 144ϕ3

1 + 56ϕ1
3 − 200ϕ3

0 + 108ϕ2
1 + 90ϕ1

2 − 7ϕ0
3)/56(s + 1)4(3s + 1)

χ3
1 = (3360(ϕ3

1 + ϕ2
1)s

6 + 14(384ϕ0
0 + 240ϕ1

0 − 64ϕ4
0 + 1440ϕ3

1 + 54ϕ0
4 − 648ϕ0

1 − 648ϕ1
1+

540ϕ0
2 − 136ϕ3

0 + 1116ϕ2
1 + 270ϕ1

2 − 189ϕ0
3)s

5 + (−6720ϕ0
0 + 29280ϕ1

0 − 5216ϕ4
0+

48240ϕ3
1 + 3276ϕ0

4 + 13968ϕ0
1 + 4320ϕ2

0 − 44712ϕ1
1 + 3780ϕ0

2 − 9680ϕ3
0 + 22320ϕ2

1+
17640ϕ1

2 − 4410ϕ0
3)s

4 − 6(4984ϕ0
0 − 6248ϕ1

0 + 1984ϕ4
0 − 9760ϕ3

1 − 924ϕ0
4 − 10452ϕ0

1−
4728ϕ2

0 + 9108ϕ1
1 + 3990ϕ0

2 + 2944ϕ3
0 − 196ϕ2

1 − 4200ϕ1
2 − 441ϕ0

3)s
3 + (144ϕ0

0−
11232ϕ1

0 − 13376ϕ4
0 + 37440ϕ3

1 + 4536ϕ0
4 + 16416ϕ0

1 + 44208ϕ2
0 − 5184ϕ1

1 − 14400ϕ0
2−

10856ϕ3
0 − 18900ϕ2

1 + 11610ϕ1
2 + 5985ϕ0

3)s
2 + (4848ϕ0

0 − 9696ϕ1
0 − 7424ϕ4

0+
11520ϕ3

1 + 1764ϕ0
4 − 3600ϕ0

1 + 14544ϕ2
0 + 5400ϕ1

1 − 1260ϕ0
2 + 2008ϕ3

0−
9180ϕ2

1 + 1530ϕ1
2 + 2835ϕ0

3)s + 3(−544ϕ4
0 + 400ϕ3

1 + 84ϕ0
4 + 680ϕ3

0−
188ϕ2

1 + 30ϕ1
2 + 147ϕ0

3))/252(s + 1)4(3s + 1)

where Û is as defined in (2.6b). We estimate the error by solving the
linearized problem∫∫

Δ

[h′(U), g′(U)]T · ∇(U + E)χi
p+1−idxdy

=

∫∫
Δ

fχi
p+1−idxdy, i = 1, . . . , p. (2.9b)
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Table 2
Error basis functions for the spaces Up for p = 1 to 4 on the reference element of

type II, s = α/β

p = 1

χ1
1 = ((−24ϕ1

0 − 12ϕ0
1 + 16ϕ2

0 + 18ϕ1
1 + 5ϕ0

2)s
2 − 3(8ϕ1

0 + 12ϕ0
1 + 8ϕ2

0−
18ϕ1

1 − 5ϕ0
2)s − 24ϕ0

1 + 6ϕ1
1 + 15ϕ0

2)5(s
2 + 3s + 3)

p = 2

χ1
2 = −((32ϕ2

0 + 18ϕ1
1 + ϕ0

2 − 24ϕ3
0 − 24ϕ1

2 − 6ϕ0
3)s

2 + 4(8ϕ2
0 + 18ϕ1

1+
ϕ0

2 + 8ϕ3
0 − 24ϕ1

2 − 6ϕ0
3)s + 6(10ϕ1

1 + ϕ0
2 − 4ϕ1

2 − 6ϕ0
3))6(s

2 + 4s + 6)

χ2
1 = ((320ϕ2

0 + 90ϕ1
1 − 35ϕ0

2 − 240ϕ3
0 − 204ϕ1

2 + 21ϕ2
1)s

2 + 4(80ϕ2
0 + 90ϕ1

1−
35ϕ0

2 + 80ϕ3
0 − 204ϕ1

2 + 21ϕ2
1)s + 6(10ϕ1

1 − 35ϕ0
2 − 4ϕ1

2 + 21ϕ2
1))21(s

2 + 4s + 6)

p = 3

χ1
3 = ((32ϕ4

0 + 30ϕ3
1 + 7ϕ2

2 − 40ϕ3
0 − 24ϕ1

2 − 2ϕ0
3)s

2 − 5(8ϕ4
0 − 30ϕ3

1−
7ϕ2

2 + 8ϕ3
0 + 24ϕ1

2 + 2ϕ0
3)s + 10(6ϕ3

1 + 7ϕ2
2 − 2(6ϕ1

2 + ϕ0
3)))7(s

2 + 5s + 10)

χ2
2 = ((−800ϕ4

0 − 624ϕ3
1 + 56ϕ1

3 + 1000ϕ3
0 + 348ϕ1

2 − 90ϕ0
3 − 7ϕ2

1)s
2 + 5(200ϕ4

0−
624ϕ3

1 + 56ϕ1
3 + 200ϕ3

0 + 348ϕ1
2 − 90ϕ0

3 − 7ϕ2
1)s − 10(24ϕ3

1 − 56ϕ1
3 − 48ϕ1

2+
90ϕ0

3 + 7ϕ2
1))56(s

2 + 5s + 10)

χ3
1 = ((2656ϕ4

0 + 2000ϕ3
1 + 84ϕ0

4 − 3320ϕ3
0 − 1012ϕ1

2 + 30ϕ0
3 − 147ϕ2

1)s
2−

5(664ϕ4
0 − 2000ϕ3

1 − 84ϕ0
4 + 664ϕ3

0 + 1012ϕ1
2 − 30ϕ0

3 + 147ϕ2
1)s+

10(8ϕ3
1 + 84ϕ0

4 − 16ϕ1
2 + 30ϕ0

3 − 147ϕ2
1))84(s

2 + 5s + 10)

p = 4

χ1
4 = ((−48ϕ4

0 − 30ϕ3
1 − 3ϕ2

2 + 40ϕ5
0 + 36ϕ4

1 + 8ϕ3
2)s

2 − 6(8ϕ4
0 + 30ϕ3

1+
3ϕ2

2 + 8ϕ5
0 − 36ϕ4

1 − 8ϕ3
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2)))8(s
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3)s
2+
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2−
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4)s−

15(42ϕ3
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4 − 24ϕ4
1 + 495ϕ0

5))495(s
2 + 6s + 15)

Next, we consider transient hyperbolic problems of the form

L(u) = ut +∇ · F(u) = f(x, y, t), (x, y) ∈ Ω = (0, 1)2, t > 0,

subject to initial condition u0(x, y) and inflow boundary conditions.
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The semi-discrete DG formulation consists of determining U ∈ Up such
that ∫∫

Δ

(UtV − F(U) · ∇V )dxdy +

∫
Γ−

n · F(Û)V ds+∫
Γ+

n · F(U)V ds =

∫∫
Δ

fV dxdy, ∀ V ∈ Up, (2.10a)

where Û is as defined in (2.6b). We compute an error estimate by solving
the linearized problem∫∫

Δ

[h′(U), g′(U)]T · ∇(U + E)χk
p+1−kdxdy

=

∫∫
Δ

(f − Ut)χ
k
p+1−kdxdy, k = 1, 2, . . . , p. (2.10b)

In order for the DG error to have the same structure for all times, we
approximate the initial conditions u0 by U0 ∈ Up computed from the sta-
tionary problem∫

Γ−
n · F(Û0)V ds+

∫
Γ+

n · F(U0)V ds−
∫∫

Δ

F(U0) · ∇V dxdy

=

∫∫
Δ

∇ · F(u0)V dxdy, ∀ V ∈ Up, (2.10c)

with Û0 being u0 on the boundary edges and U0+E0 on the interior edges.
We estimate the error E0 at t = 0 on Δ by solving the linearized problem∫∫

Δ

[h′(U0), g
′(U0)]

T · ∇(U0 + E0)χ
i
p+1−idxdy

=

∫∫
Δ

∇ · F(u0)χ
i
p+1−idxdy, i = 1, 2, . . . , p. (2.10d)

Basic calculus shows that, if h = diam(Δ), the Jacobian of the affine
transformation from Δ to Δ0 can be written as

J =

[
ξx ηx
ξy ηy

]
=

1

h
J0,

where J0 is a 2× 2 matrix independent of h.
Applying Taylor’s theorem we expand J0a as

ǎ(ξ, η, h) = a0 +

∞∑
k=1

hkak(ξ, η),

where ak ∈ [Pk]
2, and

a0 = [α, β]T =

{
J0ã(1/2, 1/2), if Δ is of type I,

J0ã(0, 0), if Δ is of type II or III
.

The sign of [α, β]T · n is used to determine inflow and outflow edges.
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An accepted efficiency measure of a posteriori error estimates is the
effectivity index. In this paper we use the effectivity indices in the L2 norm
defined as

θ =
||E||L2(Ω)

||e||L2(Ω)
. (2.11)

Ideally, the effectivity indices should approach unity under mesh refine-
ment. We note that for transient problems the effectivity index is denoted
by θ(t).

3. Adaptive Mesh Refinement. In this section we test our error
estimation procedures presented in the previous section on adaptively ref-
ined meshes. We implement several h-refinement strategies and adaptive
algorithms to compute DG solutions and error estimates on successively
refined meshes.

Again, we recall that our modified DGmethod solves steady hyperbolic
problems by first creating a mesh and arranging its elements into a list
M = {Δ1,Δ2, . . . ,Δj , . . .} such that

• Rule 1: All inflow elements, whose inflow edges are on the domain
inflow ∂Ω−, are put first in the list M .

• Rule 2: The inflow edges of an element Δj in M are either on
the domain inflow boundary ∂Ω− or outflow edges of an element
Δi, i < j.

The modified DG method starts by computing the solution on the first
element Δ1 and proceeds downwind by computing the solution on elements
in Δ2, Δ3, . . . until the last element in M . Next we discuss several adaptive
refinement algorithms that subdivide element having large “errors.”

Algorithm 1 solves hyperbolic problems on a succession of locally ref-
ined meshes obtained by subdividing elements with errors larger than a
specified threshold delta.

• Algorithm 1 consists of the following steps

(i) Set delta and Maxiter and k=0

(ii) construct an initial mesh Omega_0, order its elements

in a list M of elements satisfying Rules 1 and 2

while k < Maxiter

a- Solve the DG problem on Omega_k as described above.

b- Compute errors ||E||_{Delta} for each element Delta in

Omega_k

c- For all elements Delta in M

if ||E||_{Delta} < delta

accept the DG solution on Delta

else

reject the DG solution on Delta
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subdivide Delta into 4 congruent triangles

endif

d- Complete triangulation by eliminating hanging nodes

to create new mesh Omega_k+1 and order its elements

in a list M satisfying Rules 1 and 2.

e- k <-- k+1

endwhile

• Algorithm 2a solves the whole problem on an initial mesh and then
goes back and solves the problem on each element and applies a local
refinement algorithm to obtain a more accurate DG solution. It consists of
the following steps:

(i) Set omega and Create an initial mesh Omega

(ii) Solve discrete DG problem on Omega as described above

(iii) Compute errors ||E||_{Delta} for each element Delta

and compute error Emax = max_{Delta} ||E||_{Delta}

(iv) For all elements Delta in M satisfying Rules 1 and 2

if ||E||_{Delta} < omega*Emax

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

• Algorithm 2b follows the same steps as Algorithm 2a except for the
refinement selection strategy. An element is selected for refinement if the
local error exceeds a fraction of the average error Eavg following the steps:

(i) Set omega and create a mesh Omega with N elements

(ii) Solve discrete DG problem on Omega described above

(iii) Compute errors ||E||_{Delta} for each element Delta

Compute average error Eavg=sum_{Delta}||E||_{Delta}/N

(iv) For all elements in M satisfying Rules 1 and 2

if ||E||_{Delta} < omega*Eavg

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end
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•Algorithm 2c is similar to Algorithm 2a. However, an element is selected
for refinement if its residual exceeds a fraction of the maximum residual
and follows the steps:
(i) Set omega and Create an initial mesh Omega

(ii) Solve discrete DG problem on Omega described above

(iii) Compute residual ||r||_{Delta}=||L(U)-f||_{Delta}

on each element Delta and compute maximum residual

rmax= max_{Delta} ||r||_{Delta}

(iv) For all elements in M satisfying Rules 1 and 2

if ||r||_{Delta} < omega*rmax

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

• Algorithm 2d follows the same steps as Algorithm 2a with one excep-
tion: an element is selected for refinement if the element residual exceeds
a fraction of the average residual and follows the steps:
(i) Set omega and Create a mesh Omega with N elements

(ii) Solve discrete DG problem on Omega described above

(iii) Compute residual ||r||_{Delta}=||L(U)-f||_{Delta}

on each element Delta and compute average residual

ravg= sum_{Delta} ||r||_{Delta}/N

(iv) For all elements in M satisfying Rules 1 and 2

if ||r||_{Delta} < omega*ravg

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

• Algorithm 3 prevents the errors on elements near the discontinuity from
polluting elements having smooth solutions. Each element having a large
error is immediately refined after computing its DG solution, while the
refinement in Algorithm 1 is performed after computing the solution on all
elements. Thus, this algorithm will reduce the errors as they appear and
is expected to reduce the pollution errors observed with Algorithm 1. This
algorithm consists of the following steps:
(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2
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(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute error ||E||_{Delta}

c- If ||E||_{Delta} < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

•Algorithm 4 is similar to Algorithm 3 except for the refinement selection
criteria. Here an element Delta is selected for refinement if the maximum
residual over all elements before Delta in the list M exceeds a user specified
tolerance delta and follows the following steps:

(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2

(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute maximum residual rmax over all elements

in M before element Delta

c- If rmax < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

•Algorithm 5 is similar to Algorithm 4 except for the refinement selection
criteria. Here an element Delta is selected for refinement if the average
residual over all elements before Delta exceeds a user specified tolerance
delta and follows the following steps:

(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2

(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute average residual ravg over all elements

in M and before element Delta
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c- If ravg < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

• Algorithm 6 is used with a time-marching scheme that converges to a
steady state solution and consists of the following steps:

(i) Set delta, NStep, k=0 and construct a mesh Omega_k

Set dt and t_k = k*dt

while k < Nstep

(ii) Integrate from t_k to t_{k+1} on Omega_k

(iii) Compute errors ||E||_{Delta} on each element Delta

(iv) For all elements Delta

If ||E||_{Delta} < delta

Accept the DG solution on Delta

Else

Subdivide Delta into 4 congruent triangles

endif

(v) Complete triangulation to eliminate hanging nodes

Create a new mesh Omega_{k+1}

(vi) Increment k <--k+1 and return to step (ii)

endwhile

4. Computational Examples. In this section, we present numerical
results for several hyperbolic problems showing the convergence properties
of DG solutions and a posteriori error estimates in the presence of dis-
continuities on unstructured meshes. The error estimates are tested on
linear and nonlinear problems with discontinuous solutions to show their
efficiency and accuracy under adaptive mesh refinement. For all examples
we use exact boundary conditions at the inflow boundary. In all our exam-
ples we use the space Up on unstructured triangular meshes. Furthermore,
for the transient problem we apply the MATLAB ode45 to perform the
temporal integration and assume the temporal discretization errors to be
negligible.
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Fig. 1. Unstructured meshes having N = 34, 50, 74, 100 triangles

Example 1. Let us consider the initial-boundary value problem for
the inviscid Burgers’ equation

uy +

(
u2

2

)
x

= uy + uux = 0, (x, y) ∈ [0, 1]× [0, 0.999], (4.1a)

subject to the initial conditions

u(x, 0) = g0(x) = 1 +
1

2
sin(2πx). (4.1b)

and select u(0, y) = g1(y) such that the true solution is periodic and forms
a shock discontinuity at the point ( 1π ,

1
π ) which propagates along y = x.

We perform several tests on this example to study both the accuracy and
efficiency of our a posteriori error estimates for the modified DG method
on adaptively refined unstructured meshes.
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First, we apply the modified DG method (2.10) and (2.6b) to solve
problem (4.1) on the unstructured meshes shown in Fig. 1 having N =
34, 50, 74, 100 triangular elements with Up, p = 1, 2, 3, 4. We observe that
the proposed error estimates do not converge to the true error under regular
mesh refinement. The global error is underestimated is due to the fact
that errors on elements near the discontinuity, which have an important
contribution to the global error, are underestimated (Table 3).

Table 3
L2 errors and global effectivity indices on for problem (4.1) on unstructured meshes

having N = 34, 50, 74, 100 elements using p = 1, 2, 3, 4

N p = 1 p = 2
||e||L2 θ ||e||L2 θ

34 8.0543e−1 0.87505 1.2714e−1 0.67312
50 5.1083e−1 0.88783 4.1497e−2 0.68294
74 2.6779e−1 0.89174 2.0175e−2 0.68595
100 1.2956e−1 0.89585 1.1439e−2 0.68912

p = 3 p = 4
34 1.5127e−1 0.36461 1.1168e−1 0.25002
50 4.6004e−2 0.36993 2.2925e−2 0.25366
74 1.6925e−2 0.37156 6.9803e−3 0.25478
100 8.0424e−3 0.37327 2.8216e−3 0.25596

We apply the modified DG method (2.9) and (2.6b) to solve the in-
viscid Burgers’ equation (4.1) on [0, 1]× [0, 0.999] on unstructured meshes
having N = 432 elements shown in Fig. 2 with Up and with no special
treatment at the shock such as stabilization or limiting. Then, we apply
Algorithm 1 to locally refine the mesh by performing 6 iterations to gen-
erate a sequence of refined meshes. Algorithm 1 subdivides triangles for
which the local error in the L2 norm is larger than a prescribed tolerance
δ. In Figs. 3 and 4 we show the sequence of meshes obtained by applying
Algorithm 1 with δ = 0.001 for p = 1, 2 where elements near the shock dis-
continuity are refined. However, we notice that a large portion of elements
away from the discontinuity are refined which suggest that this algorithm
is not efficient.

In Table 4 we present the number of elements in each mesh obtained
at every refinement iteration of Algorithm 1, the true L2 errors and the
effectivity indices for p = 1, 2 for each refinement iteration. These results
suggest that the global L2 error estimates converge to the true error under
a “crude” adaptive mesh refinement of Algorithm 1 in the presence of shock
discontinuities.

We now consider the same problem (4.1) and use Algorithm 2a with the
modified DG method (2.9) and (2.6b). In Figs. 5 and 6 we plot the meshes
obtained from Algorithm 2a with ω = 0.85, ω = 0.75, ω = 0.5, ω = 0.25,
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Fig. 2. An unstructured mesh having N = 432 triangles

Table 4
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 1 with 6 refinement iterations

p = 1 p = 2
Iteration N ||e||L2 θ N ||e||L2 θ

1 432 2.5104e−2 0.5462 432 3.0244e−3 0.4189
2 841 1.4230e−2 0.6253 711 1.3184e−3 0.5491
3 1,778 9.2502e−3 0.7555 1,323 6.9683e−4 0.6393
4 3,012 6.4997e−3 0.8508 2,544 4.0806e−4 0.7595
5 5,514 4.2522e−4 0.9448 3,970 2.5819e−5 0.8698
6 8,148 2.0173e−4 0.9747 5,783 1.5164e−5 0.9499

and p = 1, 2. In Table 5 we present the number of elements N , the true L2

errors, and the global L2 effectivity indices with p = 1, 2 which suggest

that the proposed error estimates converge to the true error under adaptive
refinement of unstructured triangular meshes.

Now, we use Algorithm 2b to solve (4.1) with the modified DG method
(2.9) and (2.6b). In Fig. 7 we plot the meshes obtained by applying the
adaptive algorithm with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and
p = 1, 2. In Table 6 we present the number of elements N , the true L2

errors, and the global L2 effectivity indices with p = 1, 2 for ω = 2, 1.75,
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Fig. 3. Adaptive meshes obtained by Algorithm 1 for problem (4.1) and p = 1

Fig. 4. Adaptive meshes obtained by Algorithm 1 for problem (4.1) and p = 2
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Table 5
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

havingN elements using Algorithm 2a with ω = 0.85, 0.75, 0.5, 0.25, 0.15, 0.1 and p = 1, 2

p p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

0.85 627 2.3903e−2 0.6528 842 2.9155e−3 0.5561
0.75 917 1.3549e−2 0.7744 1,262 6.7175e−4 0.6898
0.5 1,433 8.8076e−3 0.8704 2,156 3.9337e−4 0.8674
0.25 2,094 4.0488e−4 0.9761 5,011 4.5249e−5 0.9686
0.15 3,450 1.9546e−4 0.9798 7,213 2.2231e−5 0.9752
0.1 4,343 1.5432e−4 0.9812 8,982 1.1856e−5 0.9765

Fig. 5. Meshes generated by Algorithm 2a for the problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 1

1.5, 1.25, 1, 0.75, 0.5, 0.25 which show that our error estimates converge to
the true error under adaptive refinement of unstructured triangular meshes.

This adaptive mesh-refinement strategy also yields an efficient adap-
tive algorithm.

Next, we solve problem (4.2) using Algorithm 2c with the modified DG
method (2.9) and (2.6b). In Figs. 8 and 9 we plot the meshes obtained by
Algorithm 2c with ω = 0.85, ω = 0.75, ω = 0.5, ω = 0.25 and p = 1, 2 to the
problem (4.1). In Table 7 we present the number of elements N , the global
L2 norm of the error, and the global L2 effectivity indices with p = 1, 2



82 Slimane Adjerid and Mahboub Baccouch

Fig. 6. Meshes generated by Algorithm 2a for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 2

which show that the error estimates converge to the true error under
adaptive mesh refinement. They further show that the proposed error est-
imates are accurate on adaptively refined unstructured triangular meshes.

Table 6
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 2d with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25
and p = 1, 2

p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

2.00 705 1.8498e−2 0.5351 803 1.7897e−3 0.5448
1.75 865 1.0485e−2 0.5819 967 1.0145e−3 0.5938
1.50 1,426 6.8160e−3 0.6959 1,756 6.5947e−4 0.7167
1.25 1,941 5.7147e−3 0.7813 2,305 4.6337e−4 0.7978
1.00 3,140 4.7892e−3 0.8918 3,922 3.3465e−4 0.9186
0.75 5,462 3.1332e−4 0.9631 6,431 3.0315e−5 0.9435
0.50 11,142 2.0637e−4 0.9722 8,670 2.0813e−5 0.9627
0.25 19,280 1.2973e−4 0.9828 14,548 1.0637e−5 0.9749

Next, we apply Algorithm 2d with the modified DG method (2.9) and
(2.6b) to solve (4.1). In Fig. 10 we plot the meshes obtained by applying
Algorithm 2d with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 for p = 1, 2. In
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Fig. 7. Meshes obtained by Algorithm 2b for problem (4.1) with
ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 (upper left to lower right) and p = 1
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Table 7
L2 errors and global effectivity indices for problem (4.1) on unstructured

meshes having N elements using Algorithm 2c with ω = 0.85, 0.75, 0.5, 0.25, 0.15, 0.1
and p = 1, 2

Degree p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

0.85 677 2.3062e−2 0.5942 817 3.0276e−3 0.5860
0.75 937 1.3072e−2 0.7368 1,362 1.3199e−3 0.7395
0.50 1,505 8.4978e−3 0.8477 2,130 4.0850e−4 0.8453
0.25 2,543 3.9064e−4 0.9664 3,385 3.5191e−5 0.9599
0.15 3,143 2.1354e−4 0.9713 4,328 1.6104e−5 0.9674
0.10 3,951 1.4983e−4 0.9784 5,235 1.1467e−5 0.9733

Table 8 we present the number of elements N , the L2 errors, and the global
L2 effectivity indices for p = 1, 2 and ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5,
0.25 which suggest that the proposed error estimates converge to the true
error under adaptive mesh refinement on unstructured triangular meshes.

Fig. 8. Meshes generated by Algorithm 2c for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 1

Now we apply the modified DG method (2.9) and (2.6b) with Algo-
rithm 3 to solve (4.1). Again, the final mesh is constructed through a
sequence of successively refined meshes by refining triangles whose local
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Fig. 9. Meshes generated by Algorithm 2c for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 2

Table 8
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 2b with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25
and p = 1, 2

Degree p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

2.00 580 2.0179e−2 0.5263 678 2.0660e−3 0.4536
1.75 749 2.7182e−2 0.5631 957 1.1710e−3 0.5138
1.50 1,399 1.1438e−2 0.6860 1,832 7.6126e−4 0.6313
1.25 1,836 7.4356e−3 0.7539 2,450 5.3490e−4 0.6868
1.00 3,094 5.2246e−3 0.8962 3,985 3.6675e−4 0.8171
0.75 5,430 3.4181e−4 0.9648 5,043 8.3722e−5 0.8791
0.50 10,272 2.2616e−4 0.9781 8,086 3.1995e−5 0.9409
0.25 17,841 1.4217e−4 0.9787 15,479 1.1250e−5 0.9629

error in the L2 norm is larger than some prescribed δ. For instance, in
Figs. 11 and 12 we show the final meshes obtained by applying Algorithm
3 with δ = 0.01, 0.001, for p = 1, 2. The L2 errors and effectivity indices
for δ = 0.05, 0.01, 0.005, 0.001, 0.0005 and p = 1, 2 shown in Table 9
suggest that the proposed error estimates converge to the true error un-
der adaptive mesh refinement. Furthermore, we observe that the adaptive
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Fig. 10. Meshes obtained by Algorithm 2d for problem (4.1) with
ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 (upper left to lower right) and p = 1
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Table 9
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 3 with p = 1, 2

p p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.05 759 9.8076e−3 0.9541 1,167 9.7476e−4 0.9569
0.01 904 8.3650e−3 0.9628 2,092 6.2409e−4 0.9644
0.005 1,532 7.2128e−4 0.9718 3,945 7.0488e−5 0.9718
0.001 2,267 3.8453e−4 0.9737 5,444 2.4167e−5 0.9754
0.0005 5,890 1.4675e−4 0.9813 8,412 1.1247e−5 0.9841

Fig. 11. Meshes obtained by Algorithm 3 for problem (4.1) with tolerance δ = 0.01
and p = 1 (left), p = 2 (right)

Fig. 12. Meshes obtained by Algorithm 3 for problem (4.1) with tolerance δ = 0.001
and p = 1 (left), p = 2 (right)
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Table 10
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 4 with p = 1, 2

p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.0500 732 9.3422e−3 0.6447 1,087 8.8284e−4 0.5558
0.0100 1,023 6.3276e−3 0.7864 1,983 5.2330e−4 0.6574
0.0050 1,465 6.6306e−4 0.8771 3,829 5.5168e−5 0.7681
0.0010 2,105 3.0643e−4 0.9372 5,356 2.1162e−5 0.8882
0.0005 5,459 1.2974e−4 0.9800 8,221 1.0933e−5 0.9588

mesh-refinement strategy of Algorithm 3 yields a more efficient adaptive
algorithm for the modified DG method applied to hyperbolic problems on
general unstructured triangular meshes.

Now, we use Algorithm 4 and the modified DG method (2.9) and
(2.6b) to solve (4.1). The final mesh is constructed through a sequence of
successively refined meshes where triangles for which the L2 norm of the
residual on each element ||ri|| is larger than δ = 0.001 are refined. In Fig. 13
we plot the final meshes obtained by applying Algorithm 4 for p = 1, 2. In
Table 10 we present the number of elements, L2 errors, and the global L2

effectivity indices for the tolerances δ = 0.05, 0.01, 0.005, 0.001, 0.0005,
p = 1, 2 which suggest that the error estimates converge to the true error
during under adaptive mesh refinement.

As a final test, we solve (4.1) using Algorithm 5 with modified DG
method (2.9) and (2.6b). The final mesh is constructed through a sequence
of successively refined meshes where triangles for which the average residual
exceeds the specified threshold δ are refined. In Fig. 14 we plot the final
meshes from Algorithm 5 with δ = 0.001 and p = 1, 2. In Table 11 we
present the number of elements, L2 errors, and the global L2 effectivity
indices for tolerances δ = 0.05, 0.01, 0.005, 0.001, 0.0005, and degrees p =
1, 2. These results suggest that our a posteriori error estimates converge to
the true error under adaptive mesh refinement.

Table 11
L2 errors and global effectivity indices for problem (4.1) on unstructured meshes

having N elements using Algorithm 5 with p = 1, 2

p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.0500 712 9.9638e−3 0.6257 1,054 8.9863e−4 0.5578
0.0100 914 3.2468e−3 0.7474 1,623 4.8685e−4 0.7594
0.0050 1,296 5.4606e−4 0.8881 3,298 5.2624e−5 0.8601
0.0010 1,949 2.9263e−4 0.9482 4,846 2.0400e−5 0.9202
0.0005 4,787 1.3041e−4 0.9788 6,759 1.0845e−5 0.9608
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We observe that Algorithms 2–5 generate adaptive meshes with fine
elements only in the vicinity of the shock. The results from Algorithms
2a–d of Tables 12 and 13 suggest that Algorithms 2a–d have comparable
efficiency. In Fig. 15 we plot the true L2 errors versus the number of
elements needed to satisfy the specified tolerance for all Algorithms 1–5
applied to the Burger’s equation with a shock (4.1). Our computations
suggest that Algorithm 1 is the least efficient adaptive method, while Al-
gorithms 3, 4, and 5 are the most efficient adaptive procedures. We further
note that using the local residuals to refine elements in Algorithm 5 yields a
slightly more efficient algorithm. Thus, we recommend the space-time DG
method that uses local residuals to select elements for refinement and the
a posteriori error estimates to assess the solution accuracy and terminate
the adaptive process.

Table 12
L2 errors and number of elements for Algorithms 2a and 2c applied to problem (4.1)

p = 1 p = 2
Algorithm 2a Algorithm 2c Algorithm 2a Algorithm 2c

ω N ||e||L2 N ||e||L2 N ||e||L2 N ||e||L2

0.85 627 2.3903e−2 677 2.3062e−2 842 2.9155e−3 817 3.0276e−3
0.75 917 1.3549e−2 937 1.3072e−2 1,262 6.7175e−4 1,362 1.3199e−3
0.50 1,433 8.8076e−3 1,505 8.4978e−3 2,156 3.9337e−4 2,130 4.0850e−4
0.25 2,094 4.0488e−4 2,543 3.9064e−4 5,011 4.5249e−5 3,385 3.5191e−5
0.15 3,450 1.9546e−4 3,143 2.1354e−4 7,213 2.2231e−5 4,328 1.6104e−5
0.10 4,343 1.5432e−4 3,951 1.4983e−4 8,982 1.1856e−5 5,235 1.1467e−5

Example 2 (Transient Burger’s equation). Let us consider the initial-
boundary value problem for the inviscid Burgers’ equation

εut + uy +

(
u2

2

)
x

= 0, (x, y, t) ∈ [0, 1]× [0, 0.999]× [0, T ], (4.2a)

subject to the boundary conditions

u(x, 0, t) = u2(x) = 1 +
1

2
sin(2πx), u(0, y, t) = u(1, y, t) = u1(y).

(4.2b)
The initial conditions u(x, y, 0) = u0(x, y) are selected such that u0(x, 0) =
u2(x) and u0(0, y) = u1(y) as follows

u0(x, y) = N1(x)u1(y) +N2(x)ũ1(y) +N1(y)u2(x) +N2(y)ũ2(x)

−N1(x)N1(y)u1(0)−N2(x)N2(y)ũ1(1)−N1(x)N2(y)u1(1)

−N2(x)N1(y)u2(1). (4.2c)

where N1(x) = 1 − x, N2(x) = x, ũ1(y) = (1 − y)u2(1) and ũ2(x) =
(1− x)u1(1).

We apply the modified DG method (2.10) to solve this problem on
[0, 1] × [0, 0.999] × [0, T ] with a smooth solution on initial unstructured
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Table 13
L2 errors and number of elements for Algorithms 2b and 2d applied to problem (4.1)

Algorithm 2b Algorithm 2d
ω N ||e||L2 N ||e||L2

p = 1
2.00 580 2.0179e−2 705 1.8498e−2
1.75 749 2.7182e−2 865 1.0485e−2
1.5 1,399 1.1438e−2 1,426 6.8160e−3
1.25 1,836 7.4356e−3 1,941 5.7147e−3
1.00 3,094 5.2246e−3 3,140 4.7892e−3
0.75 5,430 3.4181e−4 5,462 3.1332e−4
0.50 10,272 2.2616e−4 11,142 2.0637e−4
0.25 17,841 1.4217e−4 19,280 1.2973e−4

p = 2
2.00 678 2.0660e−3 803 1.7897e−3
1.75 957 1.1710e−3 967 1.0145e−3
1.5 1,832 7.6126e−4 1,756 6.5947e−4
1.25 2,450 5.3490e−4 2,305 4.6337e−4
1.00 3,985 3.6675e−4 3,922 3.3465e−4
0.75 5,043 8.3722e−5 6,431 3.0315e−5
0.50 8,086 3.1995e−5 8,670 2.0813e−5
0.25 15,479 1.1250e−5 14,548 1.0637e−5

Fig. 13. Meshes generated by Algorithm 4 for problem (4.1) with tolerance
δ = 0.001 and p = 1 (left), p = 2 (right)

meshes having N = 500 triangular elements of type I, II, and III with
Up, p = 1, 2, and ε = 10−2.

We use the adaptive mesh-refinement procedure given in Algorithm
6. The final mesh at t = T = 1 is constructed through a sequence of
successively refined meshes where triangles for which the L2 error exceeds
δ are refined. In Figs. 16 and 17 we plot the sequence of meshes obtained
by applying the adaptive method with δ = 0.001 and t = 0, 0.25, 0.5, 0.75, 1
to the problem (4.2).
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Fig. 14. Meshes generated by Algorithm 5 for problem (4.1) with δ = 0.001 and
p = 1 (left), p = 2 (right)

In Table 14 we present the number of elements, the true L2 errors,
and the global L2 effectivity indices at t = 0, 0.25, 0.5, 0.75, 1 and p = 1, 2
which show that the error estimates converge to the true error during the
simulation. These computational results indicate that our estimators are
accurate on adaptively refined unstructured triangular meshes and further
suggest that they converge to the true error under adaptive mesh refinement
of Algorithm 6.

Example 3. We consider the following linear problem

2ux + uy = 0, (x, y) ∈ [0, 1]2, (4.3a)

subject to the boundary conditions

u(x, 0) = e−x, 0 ≤ x ≤ 1, (4.3b)

u(0, y) = e2y + .25, 0 < y ≤ 1, (4.3c)

with the true solution having a contact discontinuity along y = x/2

u(x, y) =

{
e2y−x if x ≥ y

e2y−x + .25 if x < y
. (4.3d)

We solve (4.3) on the unstructured mesh having 100 elements shown in
Fig. 1 with the spaces Up, p = 1, 2, 3, 4 and apply the modified DG method
(2.6) and (2.7) with the adaptive refinement strategy described in Algo-
rithm 3 for δ = 0.01, 0.005, and 0.001. We present the mesh in Fig. 18
for δ = 0.001 and show in Table 15 the number of elements N , the global
L2 norm of the error, and the global L2 effectivity indices with δ = 0.01,
0.005, and 0.001 and p = 1, 2, 3, 4. These results suggest that the error
estimates converge to the true error under local adaptive mesh refinement
algorithm that refines elements near the discontinuity and whose errors are
underestimated.
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Table 14
L2 errors and global effectivity indices for problem (4.2) on unstructured meshes

having N elements with p = 1, 2 at t = 0, 0.25, 0.5, 0.75, 1

p = 1 p = 2
t N ||e||L2 θ N ||e||L2 θ

0.00 432 1.4402e−2 0.5860 432 2.7326e−3 0.4879
0.25 834 8.1633e−3 0.6743 984 1.1912e−3 0.5679
0.50 1,895 5.3067e−3 0.7654 2,348 6.2960e−4 0.6974
0.75 3,469 3.7288e−3 0.8904 4,467 3.6869e−4 0.8279
1.00 5,737 2.4394e−4 0.9747 7,404 1.4292e−5 0.9372
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Fig. 15. True L2 errors versus the number of elements for Algorithms 1–6 with
p = 1 (left) and p = 2 (right) for Problem (4.1)

Table 15
Global effectivity indices and final number of elements N for problem (4.3) with

p = 1, 2, 3, 4 and error tolerances of δ = 0.01, 0.005, 0.001

p = 1 p = 2 p = 3 p = 4
δ θ N θ N θ N θ N

0.01 0.9280 100 0.9255 100 0.9242 100 0.9348 100
0.005 0.9628 139 0.9456 121 0.9399 116 0.9482 116
0.001 0.9941 738 0.9928 523 0.9864 492 0.9858 426

5. Conclusions. We tested the residual-based a posteriori DG error
estimates of Adjerid and Baccouch [3] for hyperbolic problems on unstruc-
tured triangular meshes. Several computational examples suggest that the
Taylor’s series residual-based error estimates proposed in this manuscript
converge to the true error under local mesh refinement and in the presence
of discontinuities. Similarly, we expect that the error estimates proposed
by Adjerid and Mechai [6] on tetrahedral meshes will also converge to the
true error under adaptive mesh refinement. Our future work will focus on
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Fig. 16. Adaptive meshes for problem (4.2) with p = 1 at t =
0.00, 0.25, 0.50, 0.75, 1.00 (upper left to lower right)

applying adaptive refinement strategies to multi-dimensional hyperbolic
systems of conservation laws and reach similar conclusions for general uns-
tructured tetrahedral meshes.
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Fig. 17. Adaptive meshes for problem (4.2) with p = 2 at t =
0.00, 0.25, 0.50, 0.75, 1.00 (upper left to lower right)
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