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Foreword

This volume was based on the 2012 Barrett Lectures on “Recent Devel-
opments in Discontinuous Galerkin Finite Element Methods for Partial
Differential Equations (PDEs)” which was partially funded by the Institute
for Mathematics and its Applications (IMA) at the University of Minnesota.
The workshop took place at the University of Tennessee at Knoxville from
May 9–11, 2012. We would like to thank all the participants for making
this a stimulating and productive workshop. In particular we would like
to thank the organizers, Xiaobing Feng Ohannes Karakashian and Yulong
Xing for organizing this volume which came out of the invited speakers at
the workshop.

We also take this opportunity to thank the National Science Founda-
tion for its support of the IMA.

Minneapolis, MN Fadil Santosa
Jiaping Wang
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Preface

The John H. Barrett Memorial Lectures at the University of Tennessee,
Knoxville (UTK) were established in honor of John H. Barrett, a distin-
guished researcher in ordinary differential equations and department head,
at the time of his death in 1969. The Lectures have been given annually
since 1970 in a variety of mathematical fields by a succession of distin-
guished lecturers. The topic of the Barrett Lectures changes from year
to year and is chosen to reflect research interests within the Department
of Mathematics at the University of Tennessee. Since 1993 the Lectures
have consisted of two or three one-hour survey talks by each of two or
three leading researchers, representing different themes/directions in a sin-
gle field. The Lectures are partly funded by a grant from Mathematics
Department of the University of Tennessee and have often received addi-
tional support from the National Science Foundation. They attract wide
interest, with an audience of between 40 and 60 participants from the whole
country, in addition to faculty and students from UTK and the Oak Ridge
National Laboratory. They represent one of the few long-standing lecture
series in mathematics in the southeastern USA.

The 2012 Barrett Lectures, which is the 42nd Lecture in the series,
were held on the campus of the University of Tennessee at Knoxville from
May 9–11, 2012. The topic of the 2012 Barrett Lectures was “Recent De-
velopments in Discontinuous Galerkin Finite Element Methods for Partial
Differential Equations (PDEs),” which is a hot topic and has a broad appeal
to researchers from applied sciences and engineering. One of the primary
goals of the Barrett Lectures is to bring prominent researchers working in
such active areas to UTK, as a service to the university and to the south-
eastern region of the USA. As one of the few long running lecture series
in mathematics in the southeastern USA, plus the popularity and broad
appeal of its topic, it was expected that there was a large attendance of
the Lectures in 2012. About 70 people from the USA and Europe attended

vii



viii Preface

the Lectures and half of the attendees are junior researchers (assistant
professors, postdocs, and graduate students).

The main speakers of the 2012 Barrett Lectures were Franco Brezzi of
University of Pavia (Italy) and Chi-Wang Shu of Brown University. Each of
them delivered three one-hour survey lectures with Franco Brezzi focusing
on theoretical aspects of discontinuous Galerkin methods for elliptic prob-
lems and Chi-Wang Shu on discontinuous Galerkin methods for evolution
problems and their applications. The titles of their talks were:

1. Franco Brezzi (University of Pavia, Italy)
• Part I: Theoretical aspects of discontinuous Galerkin (DG)
methods for stationary problems: mathematical background of
DG methods.
• Part II: Classical DG methods for second and fourth order ellip-
tic problems.
• Part III: Connections between DG and other methods.

2. Chi-Wang Shu (Brown University)
• Discontinuous Galerkin methods for time-dependent prob-
lems: survey and recent developments: Parts I–III

In addition to the two main speakers, there were also ten one-hour
invited talks for the 2012 Lectures. These ten speakers and titles of their
talks were

1. Slimane Adjerid (Virginia Tech): Accurate error estimates and
superconveregnce for DG methods.

2. Susanne Brenner (Louisiana State University): C0 interior penalty
methods.

3. Bernardo Cockburn (University of Minnesota): Devising supercon-
vergent DG methods.

4. Clint Dawson (University of Texas at Austin): Local time stepping
in DG methods and applications to the shallow water equations.

5. Leszek Demkowicz (University of Texas at Austin): Discontinuous
Petrov–Galerkin methods with optimal test functions.

6. Jean-Luc Guermond (Texas A & M University): Discontinuous
Galerkin methods for the radiative transport equation.

7. Donatella Marini (University of Pavia, Italy): Virtual elements
and DG.

8. Charalambos Makridakis (University of Crete, Greece): Transport,
dispersion, and local reconstructions in discontinuous Galerkin
methods.

9. Ricardo Nochetto (University of Maryland): Time-discrete higher
order ALE formulations: a DG approach.

10. Beatrice Riviere (Rice University): Coupled free flows and porous
media flows.

This book contains articles from 11 speakers, each of whom is a leading
researcher in the field of discontinuous Galerkin finite element methods and
its applications. Following the tradition of the Barrett Lectures, several of
these articles are in-depth survey papers with an expository discussion that
should make this book a useful reference for researchers both in and out-
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side the field, including other applied science and engineering communities,
young researchers, and graduate students.

The 2012 Barrett Lectures were partially funded by a grant from the
National Science Foundation (DMS-1203237), by the Institute for Math-
ematics and its Applications (IMA) at University of Minnesota, and by
Research Office and College of Arts and Sciences as well as Department
of Mathematics at the University of Tennessee, Knoxville. The organizers,
together with all attendees, are grateful to these funding agencies. Their
generous support made the Lectures possible and, among other things,
allowed the organizers to fund the participation of young researchers in-
cluding graduate students and recent postdocs.

Finally, we would like to express our thanks to Ms. Connie Mroz
and Jane Parker, the secretaries of the 2012 Barrett Lectures, who made
all organizational details run smoothly, and Juvy Melton, who helped to
do the budget and all the paper work for grant applications. We would
also like to thank Ben Walker, Angela Woofter, Thomas Lewis, and Cody
Lorton for their various help during the Lectures.

This is the first time when the proceedings of the Barrett Lectures is
published as a volume in the IMA book series. We are grateful to Professor
Fadil Santosa, the director of IMA, for his enthusiasm and encouragement
to publish the proceedings. We would also like to thank Katherine Cramer
of IMA and Achi Dosanjh of Springer for their help during the course of
the preparation.

Knoxville, TN Xiaobing Feng
Ohannes Karakashian

Yulong Xing
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A QUICK TUTORIAL ON DG METHODS FOR ELLIPTIC
PROBLEMS

F. BREZZI∗ AND L.D. MARINI†

Abstract. In this paper we recall a few basic definitions and results concerning
the use of DG methods for elliptic problems. As examples we consider the Poisson
problem and the linear elasticity problem. A hint on the nearly incompressible case is
given, just to show one of the possible advantages of DG methods over continuous ones.
At the end of the paper we recall some physical principles for linear elasticity problems,
just to open the door towards possible new developments.

AMS Classification 65N12, 65N15, 65N30

Key words. Discontinuous Galerkin, Elliptic problems, Linear elasticity

1. Introduction. The main purpose of this paper is to present the
basic features of Discontinuous Galerkin Methods for elliptic problems.
We will give some hints on the basic mathematical tools typically used to
study and analyze them and on their capability to avoid some common
troubles (as the discretization of nearly incompressible materials). We will
state approximation properties and show how to derive a-priori estimates.
We will also present some possible variants and relationships with other
approaches (as mixed or hybrid methods for linear elasticity) that possibly
deserve a deeper analysis.

The paper is addressed to readers with a more engineering oriented
background, and an interest in continuum mechanics, with the idea to
help them in getting more familiar with the basic concepts and features of
DG methods, that indeed, according to the latest developments, show an
interesting potential also in structural problems.

Actually, applications of DG methods to other problems, and in partic-
ular to hyperbolic problems, conservation laws and the like, started already
forty years ago, and are fully developed nowadays (see, e.g., [19, 35]). In this
book these applications are discussed at a much higher level (starting from
the “parallel” contribution of Chi Wang Shu [36]); this is quite natural,
since the interested people are (in general) already acquainted with all the
basic instruments and with the applications to the more common problems.

Instead, most practitioners in structural engineering and continuum
mechanics, so far, are not yet familiar with the use of DG methods, that
have been pushed forward mainly by applied mathematicians and more

∗Istituto Universitario di Studi Superiori (IUSS), Piazza della Vittoria 15, 27100
Pavia, Italy and Department of Mathematics, King Abulaziz University, PO Box
80203, Jeddah 21589, Saudi Arabia, brezzi@imati.cnr.it

†Dipartimento di Matematica, Università di Pavia, Via Ferrata 1, 27100 Pavia, Italy,
marini@imati.cnr.it

X. Feng et al. (eds.), Recent Developments in Discontinuous Galerkin Finite
Element Methods for Partial Differential Equations, The IMA Volumes in
Mathematics and its Applications 157, DOI 10.1007/978-3-319-01818-8 1,
© Springer International Publishing Switzerland 2014
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2 Franco Brezzi and L. Donatella Marini

“mathematically oriented” engineers. Hence the idea of addressing people
who are less familiar with the DG machinery but are interested in trying
them on their problems.

We will not discuss issues related to a-posteriori estimates and mesh-
adaptivity, a very interesting subject that, however, goes beyond the scope
of this paper. For this we refer, for instance, to [30–32]. For the same
reason, we will not discuss matters related to the solution of the final linear
systems, such as the construction of efficient solvers and preconditioners
(see, e.g., [9, 25]).

The paper is organized as follows. In Sect. 2 we recall some basic ins-
truments, such as Poincaré, trace, and inverse inequalities, that will be
useful in the sequel. In Sect. 3 typical tools for dealing with discontinuous
functions are introduced: jumps and averages, norms and bounds for the
edge contributions. Sect. 4 is devoted to the treatment of the Poisson prob-
lem; the most common DG schemes are derived and proved to be stable
and consistent. Error estimates are also recalled. In Sect. 5 linear elasticity
problems are treated, including the nearly incompressible case where the
use of DG approximations proves to be particularly well suited for dealing
with the so-called locking phenomenon. Finally, in Sect. 6 we recall some
basic physical principles that are at the basis of alternative variational for-
mulations (always for linear elasticity). The use of DG discretizations for
many of these formulations is still at the beginning, and their potential is,
in our opinion, still to be fully assessed.

Throughout the paper we shall follow the usual notation for Sobolev
norms and seminorms, as, for instance, in [18]. Hence, for a geometric
object O (as an edge, or an element, or a general domain) and a smooth-
enough function v defined on O, we will denote by

‖v‖20,O ≡ |v|20,O ≡
∫
O
v2 dO

the (square) norm of v in L
2(O). On the other hand, the notation |v|2k,O

will indicate, for k integer ≥ 1, the square of the seminorm of v obtained
summing all the squares of the L

2 norms of all the derivatives of order k.
Hence, in two dimensions,

|v|21,O ≡
∣∣∣∣ ∂v∂x1
∣∣∣∣
2

0,O
+

∣∣∣∣ ∂v∂x2
∣∣∣∣
2

0,O

|v|22,O ≡
∣∣∣∣∂

2v

∂x21

∣∣∣∣
2

0,O
+

∣∣∣∣ ∂2v

∂x1∂x2

∣∣∣∣
2

0,O
+

∣∣∣∣∂
2v

∂x22

∣∣∣∣
2

0,O
,

and so on.

2. Some Basic Mathematical Instruments. We start with a few
very basic inequalities. We will give a rather detailed proof in one dimen-
sion, and often only a general idea on the case of several dimensions.
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2.1. Poincaré Inequality. Let v ∈ C1([0, T ]) with v = 0 at t0 ∈
[0, T ]. Then, using the fundamental theorem of calculus we get

v(t) =

∫ t

t0

v′(τ) dτ, then, taking the absolute values,

|v(t)| ≤
∫ T

0

|v′(τ)| dτ then squaring both sides and using C-S

|v(t)|2 ≤
(∫ T

0

|v′(τ)| dτ2
)
≤ T
∫ T

0

|v′(τ)|2 dτ ; integrating from 0 to T

∫ T

0

|v(t)|2 dt ≤ T 2

∫ T

0

|v′(τ)|2 dτ. (2.1)

2.2. Trace Inequalities. Let v ∈ C1([0, T ]) Then, using the funda-
mental theorem of calculus on the function v2:

v2(0) = v2(t)−
∫ t

0

(v2(τ))′ dτ and then taking the absolute value

v2(0) ≤ v2(t) +
∫ T

0

|2v(τ)v′(τ)| dτ then multiplying and dividing by
√
T

v2(0) ≤ v2(t) +
∫ T

0

2
|v(τ)|√
T

√
T |v′(τ)| dτ and using 2ab ≤ a2 + b2

v2(0) ≤ v2(t) +
∫ T

0

(
|v(τ)|2
T

+ T |v′(τ)|2
)
dτ ; integrating from 0 to T

T v2(0) ≤
∫ T

0

v2(t) dt+ T

∫ T

0

(
v2(τ)

T
+ T (v′(τ))2

)
dτ ; and dividing by T

v2(0) ≤
∫ T

0

(
2

T
v2(τ) + T (v′(τ))2

)
dτ ≤ 2

T
‖v‖20 + T |v|21. (2.2)

2.3. Comments on the Above Inequalities. Note that both in
(2.1) and in (2.2) the physical dimensions of the two terms coincide. In
particular in (2.1) we have

[∫
v2 dt

]
≡ [v]2[t] ≡ [v]2[t]

[
[t]2

[t]2

]
≡ [t]2
[
[v]2[t]

[t]2

]

≡ [t]2
[
[v]

[t]

]2
[t] ≡ [t]2

[∫
|v′|2 dt
]
.

Similarly, considering (2.2) we easily check that

[v]2 ≡
[
1

t

]
[v]2[t] ≡ 1

[t]

[∫
v2 dt

]
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and

[v]2 ≡ [t]
[v
t

]2
[t] ≡ [t]

[∫
|v′|2 dt
]

A rough interpretation of the trace inequality could be: if the value at
one point is big, then either the function has a big integral [and you can use
the first piece in the right-hand side of (2.2)] or it has a big derivative [and
you can use the second piece in the right-hand side of (2.2)]. See Fig. 1.

1
Big  | v |

2
Big  | v |

2

0 

Fig. 1. Trace inequality: If you are big at one point, either you go down quickly
(and have a big | · |1 norm), or you stay up, and have a big | · |0 norm.

If you are big at one point (say, at zero), either you go down quickly
(and have a big | · |1 norm), or you stay up, and have a big | · |0 norm. See
Fig. 1.

2.4. 2-D Versions. We summarize here the two-dimensional versions
of the above inequalities, with some picture that indicates a possible proof
(using the one-dimensional results) in some particular geometries.

In Fig. 2 we illustrate Poincaré inequality for functions v vanishing on
the edge of ∂Ω contained in the x axis.
From the 1-d case

‖v(x, ·)‖20, ]0,T [ ≤ T 2|v(x, ·)|21, ]0,T [

we deduce

‖v‖20,Ω ≤ T 2

∥∥∥∥∂v∂t
∥∥∥∥
2

0,Ω

.

At a more general level, we already saw that in the estimate (2.1) the
physical dimensions match. It is easy to see that, in a more general bounded
domain K ⊂ IRd with characteristic length � we have

[
‖v‖20,K

]
= [v]2 [�]d and

[
|v|21,K
]
= [v]2 [�]d−2
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v=0
0 

T

0 L
x

Fig. 2. Poincaré inequality in two dimensions

so that a natural guess is

‖v‖20,K ≤ (d(K))2|v|21,K (2.3)

where d(K) is the diameter of K, and where we have to assume, for in-
stance, that v has zero mean value on K (or some other condition that
allows to take care of constant functions).

Possibly this is a good moment to point out that the widely used
definition

‖v‖21,K := ‖v‖20,K + |v|21,K
doesn’t make any sense, unless everything has been adimensionalized:
a practice rather unhealthy from the engineering point of view.

0 

0 L
x

T

0

0 L
x

T

Fig. 3. Trace inequality in two dimensions

Concerning instead the trace inequality, from the one-dimensional case
we have, again for the rectangle K ≡]0, L[×]0, T [

|v2(x, 0)| ≤ 2

T
‖v(x, t)‖20, ]0,T [ + T

∥∥∥∥∂v∂t (x, t)
∥∥∥∥
2

0, ]0,T [

∀x ∈]0, L[.
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Here, and in what follows, ]a, b[ denotes the open interval (a, b). By inte-
grating in x from 0 to L we have:

‖v(·, 0)‖20, ]0,L[ ≤
2

T
‖v‖20,K + T

∣∣∣∣∂v∂t
∣∣∣∣
2

0,K

from which we reasonably guess the more general version

‖v‖20,∂K ≤ C
(
�−1‖v‖20,K + �|v|21,K

)
(2.4)

where both the constant C and the characteristic length � can depend on
several geometric features (see Fig. 3 for a simple example where the bound
on the L2 norm of the trace on the lower edge of the rectangle depends on
the height T of the rectangle), but the constant C does not depend on the
size of K.

2.5. Inverse Inequalities. In a finite dimensional space, all norms
are equivalent, in the sense that for any two norms ‖ · ‖@ and ‖ · ‖# there

exist two positive constants c and C such that

c ‖v‖@ ≤ ‖v‖# ≤ C ‖v‖@ for every v in the space.

However if the norms are, say, ‖v‖0,K and ‖v‖1,K the constants c and C
might depend on the size of K. Indeed we already saw in (2.3) that in
the inequality

‖v‖20,K ≤ C|v|21,K (2.5)

the constant C should have physical dimension

[C ] = [�]2

and actually behave as the square of the diameter of K.
On the other hand, it is natural to ask the question whether one could

have (in one dimension, to start with) an inequality of the type

h2|v|21, ]0,h[ ≤ C‖v‖20, ]0,h[

for some constant C. But taking

v = sin

(
2πkx

h

)
k ∈ N, (2.6)

we have

‖v‖20, ]0,h[ =
h

2
h2|v|21, ]0,h[ = 4π2k2

h

2

and our dreams dissolve.
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Fig. 4. Homothetic elements

However. . . .we cannot fit all the functions (2.6), for all the possible
integers k, in a single finite dimensional space! Hence the inequality

h2|v|21, ]0,h[ ≤ C‖v‖20, ]0,h[

has still some possibilities, if we are ready to accept a constant C that
depends on the finite dimensional subspace I am using. For instance, for
v = (x/h)r (with r integer ≥ 1) we have

h2|v|21, ]0,h[ =
h r2

2r − 1
and ‖v‖20, ]0,h[ =

h

2r + 1
(2.7)

and we might get away with a constant C that depends on the degree of
the polynomials (and actually this is the case). For instance, in the case
of (2.7) we have

h2|v|21, ]0,h[ ≤
r2(2r + 1)

2r − 1
‖v‖20, ]0,h[ ≤ 3r2 ‖v‖20, ]0,h[.

More generally, for a family of homothetic elements (see Fig. 4) and
an integer r there exists a C = C(r) such that

|v|21,K ≤ Ch−2‖v‖20,K

where h = diameter of K, and the inequality holds for every v polynomial
of degree ≤ r, and even more generally (see e.g. [18])

|v|2s,K ≤ Ch−2(s−k)‖v‖2k,K for s, k integers with s ≥ k (2.8)

For a much wider and deeper review of the basic mathematical instru-
ments for dealing with Finite Elements we refer, for instance, to [13].
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3. Some Inequalities for DG Elements. As we want to deal with
spaces of piecewise polynomials that can be discontinuous from one element
to the neighboring one, it is natural to begin by considering the simplest
case of two triangles (as in the next figure) and functions that are poly-
nomials separately in each triangle (and possibly discontinuous from one
triangle to the other).

3.1. Definition of Averages and Jumps. If K+ and K− are two
elements with an edge e in common, we denote by n+ and n− the outward
unit normal at e of K+ and K−, respectively.

_

K

K+

nn+

_

Then for every pair (v+, v−) of smooth functions on K+ and K−,
respectively, and for every pair (τ+, τ−) of smooth vector valued functions
on K+ and K−, respectively, we set

{{v}} := 1

2
(v+ + v−), [[v]] := v+n+ + v−n−

{{τ}} := 1

2
(τ+ + τ−), [[τ ]] := τ+ ⊗ n+ + τ− ⊗ n−

where a⊗ b := 1
2 (ab

T + baT ). We will also use the so-called scalar jump:
[[τ ]]s ≡ [[τ ]]nn = τ+ · n+ + τ− · n−

K

n

Ω

On a boundary edge, instead, for every smooth function v and for
every smooth vector valued function τ we set

{{v}} := v [[v]] := vn

{{τ}} := τ , [[τ ]] := τ ⊗ n, [[τ ]]s := τ · n

3.2. Piecewise Integrals. Given a decomposition (that for simplic-
ity we assume compatible) of our computational domain Ω we denote:
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• The set of all elements by Th,
• The set of all edges by Eh,
• The set of all internal edges by E0h,
• The set of all boundary edges by E∂h .

For the sake of simplicity we also assume Th to be quasi-uniform,
meaning that there exists a positive constant γ such that

hmin ≥ γ hmax, (3.1)

where hmin and hmax are the minimum and maximum diameter of the
elements of Th, respectively. This will allow us to simplify notation, and
use h to denote the characteristic length of all the elements of Th. Moreover
we set:

(f, g)Th
:=
∑

K∈Th

∫
K

f g dx < f, g >Eh
:=
∑
e∈Eh

∫
e

f g ds

< f, g >E0
h
:=
∑
e∈E0

h

∫
e

f g ds < f, g >E∂
h
:=
∑
e∈E∂

h

∫
e

f g ds

3.3. The Magic Formula. For any piecewise smooth scalar function
v, and for any piecewise smooth vector valued function τ we have now

∑
K∈Th

∫
∂K

v τ · nK ds =< [[v]], {{τ}} >Eh
+ < {{v}}, [[τ ]]s >E0

h
. (3.2)

The (elementary) proof is based on the algebraic equality:

a1b1 − a2b2 =
1

2
(a1 + a2)(b1 − b2) +

1

2
(b1 + b2)(a1 − a2)

3.4. Continuity of Edge Contributions. For piecewise smooth
scalar functions u and v, using on each edge

|{{∇u}}| ≤ (|∇u+|+ |∇u−|)/2, (3.3)

and the trace inequality (2.4) we have

< [[v]], {{∇u}} >Eh
≤
∑
e∈Eh

∣∣∣∣
∫
e

[[v]] · {{∇u}} ds
∣∣∣∣

≤ C
(∑

e∈Eh

1

h
‖[[v]]‖20,e

)1/2 ( ∑
K∈Th

(‖∇u‖20,K + h2|∇u|21,K)

)1/2
. (3.4)

If u is a piecewise polynomial of degree ≤ r, (3.4) becomes, thanks to the
inverse inequality (2.8),

< [[v]], {{∇u}} >Eh
≤ Cr

(∑
e∈E

1

h
‖[[v]]‖20,e

)1/2( ∑
K∈Th

‖∇u‖20,K

)1/2
. (3.5)
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We define now, for v piecewise smooth and k ∈ N:

‖v‖2jump :=
∑
e∈Eh

1

h
‖[[v]]‖20,e, |∇v|2k,h :=

∑
K∈Th

|∇v|2k,K , |v|2k+1,h := |∇v|2k,h.

Often we will write ‖ · ‖j instead of ‖ · ‖jump. We also set:

‖v‖2DG := ‖v‖2jump + |∇v|20,h + h2|∇v|21,h (3.6)

that, using (2.8), for piecewise polynomials of degree less than or equal to
a given degree r is equivalent to

‖v‖2DG � ‖v‖2jump + |∇v|20,h. (3.7)

Then our continuity Eqs. (3.4) and (3.5) become, respectively,

< [[v]], {{∇u}} >Eh
≤ C‖v‖j(|u|1,h + h2|u|2,h) ≤ C‖u‖DG‖v‖DG (3.8)

and

< [[v]], {{∇u}} >Eh
≤ Cr‖v‖j |u|1,h ≤ Cr‖u‖DG‖v‖DG. (3.9)

In a quite similar way, using on each edge

{{v}} ≤ (|v+|+ |v−|)/2 |[[∇u]]| ≤ (|∇u+|+ |∇u−|)/2 (3.10)

one proves the inequalities

< {{v}}, [[∇u]]s >Eh
≤ C‖u‖DG‖v‖DG (3.11)

and

< {{v}}, [[∇u]]s >Eh
≤ Cr‖u‖DG‖v‖DG. (3.12)

Finally, for v piecewise smooth on a domain O, the trace inequality
gives

‖v‖2jump ≤ C (h−2‖v‖20,O + |v|21,h). (3.13)

4. DG for the Poisson Problem. We consider now one of the sim-
plest possible elliptic problems, in order to understand the behavior of DG
methods. We will deal only with the more popular variants (SIPG, NIPG,
IIPG). For a more detailed analysis of the numerous other variants of DG
methods for the Poisson problem, we refer, for instance, to [5].

Given a two-dimensional domain Ω and f ∈ L2(Ω) we look for u such
that

−Δu = f in Ω and u = 0 on ∂Ω (4.1)
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Given a decomposition of Ω into triangles (for simplicity) we want to
use a DG method. We fix, once and for all, the degree r of the local poly-
nomials, and we define Vh as the space of functions vh that are piecewise
polynomials of degree ≤ r on Ω and can be discontinuous from one triangle
to another. For a vh ∈ Vh we have

∫
Ω

−Δu vhdx =
∑
T∈Th

(∫
T

∇u · ∇vhdx−
∫
∂T

vh∇u · nT ds

)
.

For u = exact solution and vh ∈ Vh we have

∫
Ω

−Δu vhdx =
∑
T∈Th

(∫
T

∇u · ∇vhdx −
∫
∂T

vh∇u · nTds

)

that using (3.2) becomes

= (∇u,∇vh)Th
− < {{∇u}}, [[vh]] >Eh

− < [[∇u]]s, {{vh}} >E0
h

= (∇u,∇vh)Th
− < {{∇u}}, [[vh]] >Eh

. since [[∇u]] = 0

4.1. The Three Main Variants. We recall that if u is the solution
of problem (4.1), then for every piecewise polynomial vh we have

(−Δu , vh)Th
= (∇u,∇vh)Th

− < {{∇u}}, [[vh]] >Eh
.

For δ = −1, 1, 0 (three variants) and αstab > 0 we define the discrete
problem as: Find uh ∈ Vh such that

(f, vh)Th
= (∇uh,∇vh)Th

− < {{∇u}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh
+
αstab

h
< [[uh]], [[vh]] >Eh

.

We point out that the terms in the last line are zero for uh = u.

We now set

aδ(uh, vh) := (∇uh,∇vh)Th
− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh
+
αstab

h
< [[uh]], [[vh]] >Eh

(4.2)

so that the discrete problem becomes

aδ(uh, vh) = (f, vh)Th
∀vh ∈ Vh.

We have now to check consistency and stability of all the variants, in
order to prove optimal error bounds
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4.2. Consistency. We note first that, for every δ and for every αstab,
when u is the exact solution we have, for all vh ∈ Vh:

aδ(u, vh) = (∇u,∇vh)Th
− < {{∇u}}, [[vh]] >Eh

= (f, vh).

Hence, if uh solves aδ(uh, vh) = (f, vh)Th
for all vh ∈ Vh we have the

Galerkin Orthogonality

aδ(u− uh, vh) = 0 ∀vh ∈ Vh. (4.3)

Recalling that, for piecewise smooth u and v,

aδ(u, v) := (∇u,∇v)Th
− < {{∇u}}, [[v]] >Eh

+ δ < {{∇v}}, [[u]] >Eh
+
αstab

h
< [[u]], [[v]] >Eh

,

and using the definition of the jump-norm together with (3.8) and (3.11)
we gather easily that for all piecewise smooth u and v we have

aδ(u, v) ≤ C ‖u‖DG ‖v‖DG

with a constant C independent of the mesh-size.

4.3. Stability. We first recall that, in the subspace Vh, from the in-
verse inequality (2.8)

‖vh‖2DG = ‖vh‖2j + ‖∇vh‖20,h + h2‖∇vh‖1,h � ‖vh‖2j + ‖∇vh‖20,h.

Therefore, from the definition (4.2) we have:

aδ(vh, vh) := |vh|21,h + αstab‖vh‖2j + (δ − 1)<{{∇vh}}, [[vh]]>Eh

so that

aδ(vh, vh) ≥ |vh|21,h + αstab‖vh‖2j−|δ − 1|C|vh|1,h ‖vh‖j (4.4)

with a constant C independent of the mesh size. At this point it is conve-
nient to recall that, given a quadratic form x2+αsy

2−2βxy, the associated
matrix (

1 −β
−β αs

)

is positive definite if and only if αs > β2. In other words, for β fixed, we
will always have

x2 + αsy
2 − βxy ≥ α∗(x2 + y2)

for some constant α∗ > 0, whenever αs is big enough. Going back to (4.4)
we deduce that, for every δ,

aδ(vh, vh) ≥ |vh|21,h + αstab‖vh‖2j−|δ − 1|C|vh|1,h ‖vh‖j
≥ α∗‖vh‖2DG ∀vh ∈ Vh

(4.5)

for some constant α∗ > 0, whenever αstab is big enough.
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4.4. The Corresponding Methods and Some Variants. At this
point we recall that we had three choices for δ, namely δ = −1, 1, 0, in the
discrete bilinear form

aδ(uh, vh) := (∇uh,∇vh)Th
− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh
+
αstab

h
< [[uh]], [[vh]] >Eh

.

We can now comment that for all the three methods we have consistency
(actually: Galerkin orthogonality) and stability (in the subspace) with a
constant independent of the mesh size. We can further comment that, in
particular

• For δ = −1 (SIPG, [3, 38]) we have a symmetric method
• For δ = 1 (NIPG, [10, 34]) we have stability for all αstab > 0
• For δ = 0 (IIPG, [24, 37]) we have a simpler expression.

We can also consider other variants. Always for δ = −1, 1, 0 we denote
by Πe

r−1 the L2(e) projection onto the polynomials of degree ≤ r− 1 on e.
We consider the following variants

aδ(uh, vh) := (∇uh,∇vh)Th
− < {{∇uh}}, [[vh]] >Eh

+ δ < {{∇vh}}, [[uh]] >Eh
+
αstab

h
< Πe

r−1[[uh]],Π
e
r−1[[vh]] >Eh

.

For r = 1, these variants are denoted, respectively, SIPG-0, NIPG-0, and
IIPG-0. In particular, IIPG-0 has several nice features that allow an easier
construction of solvers and/or pre-conditioners [8, 9].

Other variants include the possibility of adding, on top of the stabiliz-
ing term

αstabh
−1 < [[uh]], [[vh]] >Eh

, (4.6)

an additional stabilizing term of the type

βstabh < [[∇uh]]s, [[∇vh]]s >Eh

(see, e.g., [16]).
Finally we point out that, for δ = 1, and piecewise linear elements

(r = 1), we can eliminate the jump-penalty term (4.6) and obtain stability
by inserting a bubble function into the local space [1, 2, 15, 17].

4.5. Convergence. Let uI be an approximation of u in Vh. Setting
δh := uh − uI we have

α∗‖δh‖2DG ≤ aδ(δh, δh) (use the definition of δh)

= aδ(uh − uI , δh) (use (4.3))

= aδ(u− uI , δh) (use (3.8))

≤M ‖u− uI‖DG ‖δh‖DG

(4.7)
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so that

‖u− uh‖DG ≤ ‖u− uI‖DG + ‖δh‖DG ≤
(
1 +

M

α∗

)
‖u− uI‖DG. (4.8)

4.6. Approximation. We assume that uI is an approximation of u
in Vh with the following property: There exists an integer r (the degree of
the local polynomials) and a constant C such that

|uI − u|s,K ≤ Chr+1−s|u|r+1,K (4.9)

for all integers s with 0 ≤ s ≤ r, for all h and for all element K ∈ Th.
Using (4.9) we bound first the jump norm:

‖uI − u‖2j =
∑
e∈Eh

1

h
‖[[uI − u]]‖20,e ≤ 2

∑
K∈Th

∑
e∈∂K

1

h
‖uI − u‖20,e

≤ C
∑

K∈Th

(
h−2‖uI − u‖20,K + |uI − u|21,K

)
≤ C h2r|u|2r+1,K .

Now, always using (4.9) we bound the second part of the DG norm:

∑
K∈Th

(
|∇(uI − u)|20,K + h2 |∇(uI − u)|21,K

)

≤
∑

K∈Th

(
|uI − u|21,K + h2 |uI − u|22,K

)
≤ C h2r|u|2r+1,K .

We conclude that under the assumption (4.9) we have

‖uI − u‖2DG = ‖[[uI − u]]‖2j +
∑

K∈Th

(
|∇(uI − u)|20,K + h2|∇(uI − u)|21,K

)

≤ C h2r|u|2r+1,K .

5. Linear Elasticity.

5.1. The Problem. Given a domain Ω and a distributed load f , we
define

Aμu := −divε(u) Aλ := −∇divu A := 2μAμ + λAλ

where μ and λ are the Lamé coefficients, depending on the material, and
ε(v) := (1/2)(∇v+(∇v)T ) is the usual symmetric gradient. Then we look
for u such that

Au = f in Ω and u = 0 on ∂Ω (5.1)

The bilinear forms associated with the operators Aμ, Aλ, and A are
given by

aμ(u,v) :=

∫
Ω

ε(u) : ε(v)dx, (5.2)

aλ(u,v) :=

∫
Ω

divu divvdx, (5.3)
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and

a(u,v) := 2μaμ(u,v) + λaλ(u,v), (5.4)

respectively. Hence, setting V := (H1
0 (Ω))

2, the variational formulation of
(5.1) reads: find u ∈ such that

a(u,v) := 2μaμ(u,v) + λaλ(u,v) = (f ,v) ∀v ∈ V. (5.5)

Remark 5.1. We point out that from the variational formulation
(5.5), taking as usual v = u and using the Korn inequality

CKorn‖v‖2V ≤ aμ(v,v) ∀v ∈ V (5.6)

we easily have

2μCKorn‖u‖2V + λ‖divu‖20,Ω ≤ 2μaμ(u,u) + λ‖divu‖20,Ω = (f ,u) (5.7)

and therefore

√
μ‖u‖V +

√
λ‖divu‖0,Ω ≤ C ‖f‖|V′ (5.8)

with a constant C independent of μ and λ. On the other hand, we also
have easily

2μaμ(u,v) + λaλ(u,v) ≤ C (2μ+ λ)‖u‖V ‖v‖V (5.9)

with a constant C independent of μ and λ.

5.2. Discretization. Assume now that we have again a decomposi-
tion Th of Ω into elements K. On every element K we set

aK(u,v) = 2μ

∫
K

ε(u) : ε(v)dx + λ

∫
K

divu divvdx.

and we recall the Green formula:

aK(u,v) = −2μ
∫
K

(Aμu) · vdx− λ
∫
K

(∇divu) · vdx

+

∫
∂K

(
2μMμ

nK
(u) + λMλ

nK
(u)
)
· vds

where Mμ
nK

(u) := ε(u) · nK and Mλ
nK

(u) := (divu)nK . We also recall
that the stress field σ is given by

σ := 2με(u) + λdivuI, (in short: σ = Cε(u))

where I is the identity matrix. We rewrite

aK(u,v) = (Cε(u), ε(v))K , MnK (u) = (2μMμ
nK

+ λMλ
nK

)(u).



16 Franco Brezzi and L. Donatella Marini

The Green formula can then be written as

(Cε(u), ε(v))K = (Au,v)K+ <MnK (u),v >∂K .

We now introduce, in the spirit of the previous sections, the space Vh of
piecewise polynomial (possibly discontinuous) vectors, concentrating our
attention, for simplicity, on the piecewise linear case. For u and v piecewise
smooth, summing over K and then applying the correspondent (for this
case) of the “magic trick,” we have

∑
K

(Cε(u), ε(v))K = (Au,v)Th
+ <{{MnK (u)}}, [[v]] · n >Eh

+< [[MnK (u)]] · n, {{v}}>Eh
.

When u is the exact solution and v = vh is an element of Vh we obviously
have [[MnK (u)]] · n = 0. Hence

(Cε(u), ε(vh))Th
− < {{MnK (u)}}, [[vh]] · n >Eh

= (f ,vh)Th
. (5.10)

5.3. The Discretized Problem. As before, from (5.10) we take in-
spiration in order to write the discretized problem. Taking again into ac-
count that the regularity of the exact solution implies [[MnK (u)]] ·n = 0 as
well as [[u]] = 0, we introduce the bilinear form

Bh(u,v) := (Cε(u), ε(v))Th
− < {{MnK (u)}}, [[v]] · n >Eh

+ δ < {{MnK (v)}}, [[u]] · n >Eh
+
αstab

h
< [[u]], [[v]] >Eh

,

(5.11)

where again we can take δ = −1, 1, 0 (three methods) and αstab > 0 is a
stabilization parameter. We consider then the discretized problem

Find uh ∈ Vh such that: Bh(uh,vh) = (f ,vh)Th
∀vh ∈ Vh. (5.12)

It is immediate to see, from (5.10) and (5.12), that Galerkin orthogonality
holds:

Bh(u− uh,vh) = 0 ∀vh ∈ Vh. (5.13)

Moreover, defining, as in (3.6),

‖v‖2DG := |v|21,h +
∑
K

h2K |v|22,K +
∑
e

1

he
‖[[v]]‖20,e,

we have, with arguments quite similar to the ones of the previous section
and using the DG version of (5.6) (see [12]), that for αstab big enough we
have stability:

∃κs > 0 such that κsμ‖vh‖2DG ≤ Bh(vh,vh) ∀vh ∈ Vh, (5.14)
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with a κs independent of μ, λ, and h. Similarly, using (5.9) in every element
and following again the same arguments used for Poisson problem in the
previous section, we can also prove continuity

∃M > 0 s. t. Bh(u,v) ≤M (μ+ λ) ‖u‖DG‖v‖DG ∀u, v ∈ H2(Th),
(5.15)

with an M independent of μ, λ, and h.

5.4. The Nearly Incompressible Case. As we saw, for every λ
and μ positive we have stability [see (5.14)] and continuity [see (5.15)].
However, for λ >> μ we have a mismatch between the stability and the
continuity constant.

Let us see the effects of this on the classical error estimate. Let uI be
an approximation of the solution u in Vh. Setting ηh := uh−uI we have,
as in (4.7) and (4.8),

κsμ‖ηh‖2DG ≤ Bh(ηh,ηh) = Bh(uh − uI ,ηh)

= Bh(u− uI ,ηh) ≤M(μ+ λ) ‖u− uI‖DG ‖ηh‖DG

(5.16)

so that

‖u− uh‖DG ≤ ‖u− uI‖DG + ‖ηh‖DG ≤
(
1 +

M (μ+ λ)

μκs

)
‖u− uI‖DG

and for λ >> μ we are in deep trouble. Actually, if instead of DG methods
we were using traditional H1-conforming methods we would face the so-
called locking phenomenon, and the solution uh of our discretized problem
would be bounded, but would not converge to the exact solution u.

With DG methods, instead, we have good results: let us see why. As
a first step, we recall the so-called inf-sup condition for the continuous
problem (5.5)

∃β > 0 such that inf
q∈Q

sup
v∈V

(divv, q)

‖q‖Q ‖v‖V
≥ β > 0, (5.17)

where Q := L2(Ω)/R is the subspace of L2(Ω) made of functions with zero
mean value.

5.5. Solving Troubles with DG . We can now start proving error
bounds for the discretized problem (5.12). We restart as in (5.16), setting
now δh := uh − uI , and stop at

κsμ‖δh‖2DG ≤ Bh(δh, δh) = Bh(uh − uI , δh) = Bh(u− uI , δh). (5.18)

Instead of bounding brutally the last term, we now observe that

Bh(u− uI , δh) ≤ 2μC‖u− uI‖DG ‖δh‖DG + αstab

h |< [[u− uI ]]s, [[δh]]s>Eh
|

+λ |(div(u− u)I , divδh)Th
+<{div(u− uI)}, [[δh]] · n>Eh

+δ <{divδh}, [[u− uI ]] · n>Eh
| .

(5.19)
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The only way to bound this with a constant that does not depend on λ
would be to find a uI , in the subspace Vh, such that:

(a)

∫
K

div(u − uI)dx = 0 ∀K;

(b)

∫
e

(u− uI) · nds = 0 ∀e;

(c) ‖u− uI‖r,K ≤ C h2−r‖u‖2 ∀K, r = 0, 1.

Property (a) would cancel the term (div(u−uI), divδh)Th
, since divδh

(for our piecewise linear elements) is constant in each element. Moreover,
(since divuI is piecewise constant) it will also imply

‖λdiv(u− uI)‖0,K ≤ C hK‖λdivu‖1,K
on every element K.

Property (b) would cancel the term < {divδh}, [[u− uI ]] ·n >Eh
since,

again, divδh is constant in each element (and therefore its trace is constant
on each edge).

Property (c) takes care of the the jump terms. Indeed, combined with
(3.13) it will provide

‖u− uI‖2j ≤ C (h−2‖u− uI‖20,O + |u− uI |21,h) ≤ C h2‖u‖22,O.
Recalling the H(div)-conforming Finite Elements (as, for instance, the

BDM1 spaces [14]), we see that such a uI can be easily constructed, and
our work is concluded.

We note that the BDM1 is not a subspace of V, so that the above con-
struction could not be used to prove convergence for traditional continuous
Galerkin approximations.

Remark 5.2. The use of uI in the above construction was instrumen-
tal to derive error bounds for fully discontinuous approximations. The idea,
however, can be used to construct semi-discontinuous approximations, that
is, with Vh ⊂ H(div) only, thus guaranteeing continuity of the normal
component but not of the tangential component. This approach was used,
for instance, in [23] for the Stokes problem.

6. Alternative Formulations. In this section we recall some ba-
sic physical principles that are the basis for several numerical methods.
For convenience and simplicity we restrict our attention to linear elasticity
problems, although the range of applications (of the physical principles and
of the related numerical methods) is much wider.

6.1. Minimum Potential Energy. The primal formulation of the
linear elasticity problem (say, with homogeneous Dirichlet boundary con-
ditions all over ∂Ω) that we saw already in the previous section is based on
the minimum potential energy principle:

1

2
(Cε(u), ε(v))− (f ,v) = minimum, (6.1)
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that is equivalent to our variational Eq. (5.5), that we repeat here for
convenience of the reader

a(u,v) ≡ (Cε(u), ε(v)) = (f ,v) ∀v ∈ V = (H1
0 (Ω))

d.

6.2. Complementary Energy. We introduce the following notation

Σ := (L2(Ω))d×d
sym

∀g we set Σg := {τ ∈ Σ with div τ + g = 0}

that we are going to use mainly for g = f or g = 0. The dual formulation

of elasticity problems is based on the complementary energy principle:

1

2
(C−1σ,σ) = minimum over Σf , (6.2)

giving rise to the variational equation

σ ∈ Σf and (C−1σ, τ ) = 0 ∀τ ∈ Σ0.

6.3. The Hellinger–Reissner Principle. The Hellinger–Reissner
principle is at the basis of the two more common mixed formulations. The
principle reads:

1

2
(C−1σ,σ)− (ε(u),σ) + (f ,u) = stationary. (6.3)

The (Euler–Lagrange) equations of (6.3) are:

{
(C−1σ, τ )− (ε(u), τ ) = 0 ∀ τ ∈ Σ

(ε(v),σ) = (f ,v) ∀v ∈ V
(6.4)

This is the primal mixed formulation for elasticity.
On the other hand, the Euler–Lagrange equations (6.4) become, upon

integration by parts,

{
(C−1σ, τ ) + (u,div τ ) = 0 ∀ τ ∈ Σ with divτ ∈ (L2(Ω))d

(v,divσ) = −(f ,v) ∀v ∈ (L2(Ω))d
(6.5)

This is the dual mixed formulation for elasticity.

6.4. Discontinuous Approximations. In the discretization of (6.3)
one clearly chooses either −(ε(u), τ ) or (u,div τ ) depending on whether
one takes continuous displacements or continuous (normal) stresses, and
this, as we have seen, corresponds to using primal mixed or dual mixed
methods, respectively.
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Clearly, if both displacements (v) and stresses (τ ) are approximated
by discontinuous piecewise polynomials, the two above terms are no
longer equal. Indeed one has

(ε(v), τ )h + (v,div τ )h = < {{τ}}, [[v]] > + < [[τ ]], {{v}} > (6.6)

in the best tradition of DG methods. Here, and in what follows, for func-
tions v, w piecewise smooth, (v, w)h will indicate the scalar product:

(v, w)h =
∑

K∈Th

(v, w)0,K .

6.5. Towards Hybrid Methods. Formula (6.6) opens the door to-
wards Hybrid methods. Assume that your discretization allows you to
know the displacements only at the interelement boundaries (to fix the
ideas, because the displacement trial and test functions are defined, inside
each element, to be the solution of some PDE). On the other hand, in this
case you can reasonably take them (that is, the displacements) to be single
valued on the skeleton, so that [[v]] = 0 in (6.6). Then, if divh τ = 0 in
each element K, (6.6) becomes

(ε(v), τ )h = < [[τ ]], {{v}} >, (6.7)

so that in (6.4) you can write < [[τ ]], {{v}} > instead of (ε(v), τ )h. Similarly,
when divh σ + f = 0 Eq. (6.6) gives

(ε(v),σ)h − (f ,v) = < [[σ]], {{v}} >, (6.8)

that can be used in the second equation of (6.4).
Using both (6.7) and (6.8) (always for divhτ = 0 and divhσ + f = 0,

respectively) in (6.4), we have then

{
(C−1σ, τ )− < [[τ ]], {{u}} >= 0 ∀ τ ∈ Σ0

< [[σ]], {{v}} >= 0 ∀v ∈ V
(6.9)

6.6. Dual Hybrid Methods. The general strategy for constructing
a dual hybrid method is as follows.

Pick up a particular solution σf (such that divhσ+ f = 0), and write
σ = σf + σ0 with σ0 to be found. Then look for σ0 and u such that

{
(C−1(σ0 + σf ), τ0)− < [[τ0]], {{u}} > = 0 ∀ τ0 ∈ Σ0

< [[σ0 + σf ]], {{v}} > = 0 ∀v ∈ V.
(6.10)

Note that the values of u and v are used only at the interelement bound-
aries. Separating σf , and considering σ0 as the true stress unknown, we
have then the final formulation: Find σ0 ∈ Σ0 and u on the skeleton such
that
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{
(C−1σ0, τ0)− < [[τ0]], {{u}} > = −(C−1σf , τ0) ∀ τ0 ∈ Σ0

< [[σ0]], {{v}} > = −< [[σf ]], {{v}} > ∀v ∈ V.
(6.11)

Note: When you discretize (6.11) you will need sufficiently many τ0 to
control {{u}}. . . .

6.7. Primal Hybrid. Assume now that, in the primal formulation
(6.1), we start with discontinuous u and v. One possibility to do this would
be to proceed as in the previous section. Another possibility, however, is to
consider that we are actually dealing with a minimization problem, and to
consider the interelement continuity (here [[u]] = 0) as a constraint. Then
we could introduce a Lagrange multiplier (that will turn out to be the
normal component of the stress field σ at the interelement boundaries),
obtaining the two equations{

(Cε(u), ε(v))h+ < {{σ}}, [[v]] > = (f ,v) ∀v
< {{τ}}, [[u]] >= 0 ∀ τ .

(6.12)

where u and v are (a priori) discontinuous from one element to the other
while σ and τ are defined only at the interelement boundaries.

Equation (6.12) are the basis for the Primal Hybrid Methods. Note
that, in this case, you will need sufficiently many v’s to control {{σ}} .

6.8. Nonconforming Methods. In discretizing (6.12) you can re-
strict yourself to consider displacement fields u and v in some subspace
(of discontinuous p.w. polynomials) Vh. To fix the ideas, assume that the
elements of Vh are, piecewise, polynomials of degree k for some k ≥ 1. In a
similar way, you will assume that you have, at the interelement boundaries,
a space Σh to discretize the normal components of the stress field, made of
piecewise (actually: egdewise) polynomials of degree m. We can assume,
for the sake of simplicity, that m < k (otherwise, in general, the inf-sup
condition would fail, since you will not have sufficiently many v’s to con-
trol {{σ}}). At this point you might restrict your attention to displacements
that belong to the space Vnc defined by

Vnc := {v ∈ Vh such that < {{τ}}, [[v]] >= 0 ∀ τ ∈ Σh}.
Then you will just look for u ∈ Vnc such that

(Cε(u), ε(v))h = (f ,v) ∀v ∈ Vnc.
This could obviously be seen as using a Nonconforming Finite Element
Method.

In a quite similar way you could instead start from (6.11), and int-
roduce a discretized space Σh (made of piecewise polynomial symmetric
tensors) and a discretized space V made of edgewise polynomial vectors
on the skeleton. Then you could think of using an H(div)-nonconforming
space of the form

Σnc := {τ ∈ Σh such that < {{v}}, [[τ ]] >= 0 ∀v ∈ Vh}.
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6.9. Hybridizing Dual Mixed Methods. Let us go back to the
Hellinger–Reissner principle for dual mixed elements (6.5), that uses “con-
tinuous stresses” (i.e., “H(div)-conforming”) and discontinuous displace-
ments. Assume now that you want to use, a priori, discontinuous stresses
σ, and enforce back their continuity by means of a Lagrange multiplier.

Then you will consider spacesVh and Σh made of discontinuous piece-
wise polynomials, and a space of edgewise polynomials Mh, and look for
σ ∈ Σ, u ∈ Vh, and U ∈Mh such that

(C−1σ, τ ) + (u,div τ )h− < {{U}}, [[τ ]] >= 0 ∀ τ ∈ Σh (6.13)

−(v,divσ)h = (f ,v) ∀v ∈ Vh (6.14)

< {{V}}, [[σ]] >= 0 ∀V ∈ M (6.15)

Noting that in (6.13)–(6.15)Vh andΣh are “bubbles-spaces” (meaning
that you can easily have a basis made of vectors and tensors (respectively)
having support in a single element), we can eliminate σ and u by static
condensation, and end up with a system of the type

Λ({{U}}, {{V}}) =< F, {{V}} > ∀V

whose matrix is, in general, symmetric and positive definite. Remember,
however, that you will still need some sort of inf-sup condition. Indeed, rec-
alling the hybridized formulation (6.13)–(6.15), if you are interested only in
the U variable (eliminating the others by static condensation), you cannot
avoid an inf-sup condition: you need sufficiently many τ ’s to control {{U}}
(that appears only in the first Eq. (6.13)).

This procedure, originally introduced by Fraeijs de Veubeke [26], has
been first analyzed for Poisson problem in [4] and is used in a rather sys-
tematic way when dealing with mixed finite element methods for scalar
elliptic problems. Apart from the paramount advantage of going back to a
single elliptic problem, the procedure has many additional advantages:

• The Lagrange multiplier U is a good approximation of u at the
interfaces. You can postprocess U and get an approximation of
u one order better than the original one coming from the mixed
formulation (see, e.g., [4]).
• In many cases, U can be computed directly using suitable noncon-
forming discretizations of the primal formulation (see e.g. [33])
• In many problems, U can be identified with the flux variable of
Finite Volumes and DG Methods, with many interesting features
to be exploited (see, e.g., [20, 21]).

However, the application to linear elasticity problems is less spectacular,
since the combined need to work with symmetric stress fields, to have an
inf-sup condition and to have H(div) compatibility is a considerable source
of troubles. See, for instance, [6, 11, 22, 27, 29] for some recent attempts
using reduced symmetry (and the references therein for earlier attempts),
and see as well [7] and [28] for an attempt to use nonconforming elements.
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DISCONTINUOUS GALERKIN METHOD FOR
TIME-DEPENDENT PROBLEMS: SURVEY AND RECENT

DEVELOPMENTS

CHI-WANG SHU∗

Abstract. In these lectures we give a general survey on discontinuous Galerkin
methods for solving time-dependent partial differential equations. We also present a
few recent developments on the design, analysis, and application of these discontinuous
Galerkin methods.

Key words. Discontinuous Galerkin method, Time-dependent partial differential
equations, Superconvergence, Positivity-preserving, δ-functions.
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1. Introduction. Discontinuous Galerkin (DG) methods belong to
the class of finite element methods. The finite element function space corre-
sponding to DG methods consists of piecewise polynomials (or other simple
functions) which are allowed to be completely discontinuous across element
interfaces. Therefore, using finite element terminologies, DG methods are
the most extreme case of nonconforming finite element methods.

The first DG method was introduced in 1973 by Reed and Hill in a Los
Alamos technical report [72]. It solves the equations for neutron transport,
which are time independent linear hyperbolic equations. A major devel-
opment of the DG method is carried out by Cockburn et al. in a series
of papers [23, 25, 27–29], in which the authors have established a frame-
work to easily solve nonlinear time-dependent hyperbolic equations, such
as the Euler equations of compressible gas dynamics. The DG method of
Cockburn et al. belongs to the class of method-of-lines, namely the DG
discretization is used only for the spatial variables, and explicit, nonlin-
early stable high order Runge–Kutta methods [81] are used to discretize
the time variable. Other important features of the DG method of Cock-
burn et al. include the usage of exact or approximate Riemann solvers as
interface fluxes and total variation bounded (TVB) nonlinear limiters [79]
to achieve non-oscillatory properties for strong shocks, both of which are
borrowed from the methodology of high resolution finite volume schemes.

The DG method has found rapid applications in such diverse areas as
aeroacoustics, electro-magnetism, gas dynamics, granular flows, magneto-
hydrodynamics, meteorology, modeling of shallow water, oceanography, oil
recovery simulation, semiconductor device simulation, transport of con-
taminant in porous media, turbomachinery, turbulent flows, viscoelastic
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flows and weather forecasting, among many others. For earlier work on
DG methods, we refer to the survey paper [24], and other papers in that
Springer volume, which contains the conference proceedings of the First In-
ternational Symposium on Discontinuous Galerkin Methods held at New-
port, Rhode Island in 1999. The lecture notes [21] is a good reference for
many details, as well as the extensive review paper [31]. The review paper
[99] covers the local DG method for partial differential equations (PDEs)
containing higher order spatial derivatives. More recently, there are three
special journal issues devoted to the DG method [32, 33, 35], which contain
many interesting papers on DG method in all aspects including algorithm
design, analysis, implementation, and applications. There are also a few
recent books and lecture notes [38, 54, 59, 75, 80] on DG methods.

2. DG Methods for Hyperbolic Conservation Laws. As we
mentioned in the previous section, the first DG method [72] was designed
to solve linear hyperbolic equations in neutron transport. Let us use the
following simple example to demonstrate the idea of this method. We con-
sider a one-dimensional linear steady state hyperbolic equation

ux = f, x ∈ [0, 1]; u(0) = g. (2.1)

First, we divide [0,1] into N cells

0 = x 1
2
< x 3

2
< · · · < xN+ 1

2
= 1,

and denote

Ij =
(
xj− 1

2
, xj+ 1

2

)
, xj =

1

2

(
xj− 1

2
+ xj+ 1

2

)
, hj = xj+ 1

2
− xj− 1

2

as the cells, cell centers and cell lengths, respectively. We also define h =
hmax = maxj hj and hmin = minj hj , and we consider only regular meshes,
that is hmax ≤ λhmin where λ ≥ 1 is a constant during mesh refinement.
If λ = 1, then the mesh is uniformly distributed. Define the discontinuous
Galerkin finite element space as

V k
h = {v : v|Ij ∈ Pk(Ij), j = 1, · · · , N}, (2.2)

where Pk(Ij) denotes the space of polynomials in Ij of degree at most k.
This polynomial degree k can actually change from cell to cell, but we
assume it is a constant in these lectures for simplicity. The DG scheme for
solving (2.1) is: find uh ∈ V k

h , such that for any vh ∈ V k
h and all 1 ≤ j ≤ N ,

−
∫
Ij

uh (vh)xdx+ (uh)
−
j+ 1

2

(vh)
−
j+ 1

2

(2.3)

−(uh)−j− 1
2

(vh)
+
j− 1

2

=

∫
Ij

fvhdx.

Here we define (uh)
−
1
2

= g using the given boundary condition in (2.1). If

a local basis of P k(Ij) is chosen and denoted as ϕ�
j(x) for � = 0, 1, · · · , k,
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we can express the numerical solution as

uh(x) =
k∑

�=0

u�jϕ
�
j(x), x ∈ Ij ,

and we should solve for the coefficients

uj =

⎛
⎜⎝

u0j
...
ukj

⎞
⎟⎠ , (2.4)

which, according to the scheme (2.3), satisfy the linear equation

Ajuj = bj (2.5)

where Aj is a (k + 1)× (k + 1) matrix whose (�,m)th entry is given by

a�,mj = −
∫
Ij

ϕm
j (x)(ϕ�

j(x))xdx+ ϕm
j (xj+ 1

2
)ϕ�

j(xj+ 1
2
) (2.6)

and the �th entry of the right-hand-side vector bj is given by

b�j = uh(x
−
j− 1

2

)ϕ�
j(xj− 1

2
) +

∫
Ij

f(x)ϕ�
j(x)dx,

which depends on the information of uh in the left cell Ij−1, if it is in the
computational domain, or on the boundary condition, if it is outside the
computational domain (i.e., when j = 1). It is easy to verify that the matrix
Aj in (2.5) with entries given by (2.6) is invertible, hence the numerical
solution uh in the cell Ij can be easily obtained by solving the small linear
system (2.5), once the solution at the left cell Ij−1 is already known, or
if the left cell is outside the computational domain. Therefore, we can
obtain the numerical solution uh in the following ordering: first we obtain
it in the cell I1, since its left boundary is equipped with the prescribed
boundary condition in (2.1). We then obtain the solution in the cell I2, as
the numerical solution uh in its left cell I1 is already available. This process
can be repeated sequentially to obtain solutions in Ij with j = 3, 4, . . . until
we obtain the solution uh for all cells in the computational domain.

Notice that this method does not involve any large linear system
solvers and is very easy to implement. The first order version (k = 0)
is a well-known upwind finite difference scheme; however, it is more diffi-
cult to generalize the same scheme for higher order finite difference schemes
which involve a wide stencil. On the other hand, this DG scheme can be
designed for any polynomial degree k, and it is easy to be generalized to
two and higher spatial dimensions. In [56], Lesaint and Raviart proved that
this DG method is convergent with the optimal order of accuracy, namely
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O(hk+1), in the L2 norm, when piecewise tensor product polynomials of
degree k are used as basis functions in multi-dimensions. Numerical exper-
iments indicate that the convergence rate is also optimal when the usual
piecewise polynomials of degree k are used instead in multi-dimensions.

Notice that, even though the method (2.3) is designed for the steady
state problem (2.1), it can be easily used on initial-boundary value problems
of linear time-dependent hyperbolic equations: we just need to identify the
time variable t as one of the spatial variables. Also, this DG method can be
easily designed and efficiently implemented on arbitrary triangulations. L2

error estimates of O(hk+1/2) where k is again the polynomial degree and h
is the mesh size can be obtained when the solution is sufficiently smooth,
for arbitrary meshes, see, e.g., [53]. This estimate is actually sharp for the
most general situation [67]; however, in many cases the optimal O(hk+1)
error bound can be proved [22, 74]. In actual numerical computations, one
almost always observe the optimal O(hk+1) accuracy.

Unfortunately, even though the method (2.3) is easy to implement,
accurate, and efficient, it cannot be easily generalized to linear systems,
where the characteristic information comes from different directions, or to
nonlinear problems, where the characteristic wind direction depends on the
solution itself. This difficulty can be overcome when the DG discretization
is only used for the spatial variables, and the time discretization is achieved
by the explicit Runge–Kutta methods. This is the approach of the so-called
Runge–Kutta discontinuous Galerkin (RKDG) method [23, 25, 27–29]. We
demonstrate the RKDG method with the one-dimensional conservation law

ut + f(u)x = 0. (2.7)

The semi-discrete DG method for solving (2.7) is defined as follows: find the
unique function uh = uh(t) ∈ V k

h such that, for all test functions vh ∈ V k
h

and all 1 ≤ j ≤ N , we have∫
Ij

(uh)t vhdx−
∫
Ij

f(uh)(vh)xdx (2.8)

+f̂j+ 1
2
(vh)

−
j+ 1

2

− f̂j− 1
2
(vh)

+
j− 1

2

= 0.

Here, f̂i+ 1
2
is the numerical flux, which is a single-valued function defined

at the cell interfaces and in general depends on the values of the numerical
solution uh from both sides of the interface

f̂i+ 1
2
= f̂(uh(x

−
i+ 1

2

, t), uh(x
+
i+ 1

2

, t)).

We use the so-called monotone fluxes from finite difference and finite vol-
ume schemes for solving conservation laws, which satisfy the following
conditions:

• Consistency: f̂(u, u) = f(u);

• Continuity: f̂(u−, u+) is at least Lipschitz continuous with respect
to both arguments u− and u+.
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• Monotonicity: f̂(u−, u+) is a non-decreasing function of its first
argument u− and a non-increasing function of its second argument
u+. Symbolically f̂(↑, ↓).

We refer to, e.g., [57] for more details about monotone fluxes.
The semi-discrete version of this DG scheme can again be written in

the compact form

d

dt
uj = A(uj−1) +B(uj) + C(uj+1)

where the vectors uj are defined in (2.4), and A, B, C are vector functions.
If the conservation law is linear, then A, B, C are linear operators, namely

A(uj−1) = Auj−1; B(uj) = Buj ; C(uj+1) = Cuj+1

with constant matrices A, B, and C (scaled by the local mesh sizes). This
makes the implementation of the RKDG method local and highly efficient.
It also makes the method easy for parallel implementation. The method
can achieve almost 100% parallel efficiency for static meshes and over
80% parallel efficiency for dynamic load balancing with adaptive meshes
[9, 73].

As a finite element method, the DG method can be designed in multi-
dimensions on arbitrary triangulations (even those with hanging nodes)
in the same fashion as in the one-dimensional case. It is easy to handle
complicated geometry and boundary conditions.

2.1. Stability. It is well known that weak solutions of (2.7) may not
be unique and the unique, physically relevant weak solution (the so-called
entropy solution) satisfies the following entropy inequality

U(u)t + F (u)x ≤ 0 (2.9)

in distribution sense, for any convex entropy U(u) satisfying U ′′(u) ≥ 0
and the corresponding entropy flux F (u) =

∫ u
U ′(u)f ′(u)du. It will be

nice if a numerical approximation to (2.7) also shares a similar entropy
inequality as (2.9). It is usually quite difficult to prove a discrete entropy
inequality for finite difference or finite volume schemes, especially for high
order schemes and when the flux function f(u) in (2.7) is not convex or
concave. However, it turns out that it is easy to prove that the solution uh
to the semi-discrete DG scheme (2.8) satisfies a cell entropy inequality [51]:

d

dt

∫
Ij

U(uh) dx+ F̂j+ 1
2
− F̂j− 1

2
≤ 0 (2.10)

for the square entropy U(u) = u2

2 , with a consistent entropy flux

F̂i+ 1
2
= F̂
(
uh

(
x−
i+ 1

2

, t
)
, uh

(
x+
i+ 1

2

, t
))

satisfying F̂ (u, u) = F (u).
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An easy corollary of the cell entropy inequality is the following L2

stability. For periodic or compactly supported boundary conditions for
the computational domain [a, b], the solution uh to the semi-discrete DG
scheme (2.8) satisfies the following L2 stability

d

dt

∫ b

a

(uh)
2dx ≤ 0, (2.11)

or

‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (2.12)

Here and below, an unmarked norm is the usual L2 norm.
Notice that both the cell entropy inequality (2.10) and the L2 stability

(2.11) are valid even when the exact solution of the conservation law (2.7) is
discontinuous. Both conclusions are valid in multi-dimensions on arbitrary
triangulations [51], and for both scalar equations and symmetric hyperbolic
systems [39]. They also hold true for fully discrete RKDG methods for
linear conservation laws [110].

2.2. Error Estimates and Superconvergence. If we assume the
exact solution of (2.7) is smooth, we can obtain optimal L2 error estimates.
Namely, the solution uh of the DG scheme (2.8) for the PDE (2.7) with
a smooth solution u, using the space of kth degree piecewise polynomials
(2.2), satisfies the following error estimate

‖u− uh‖ ≤ Chk+1 (2.13)

where C depends on u and its derivatives but is independent of h. Such
error estimates can be obtained for the general nonlinear scalar conserva-
tion law (2.7) and symmetrizable hyperbolic systems, and for both semi-
discrete DG methods and fully discretized RKDG methods, see [108–110].
The results also hold in multi-dimensions in tensor-product meshes and
basis functions.

In recent years, there are a lot of efforts in the literature to obtain
superconvergence results for DG methods solving hyperbolic conservation
laws. These results consist of two categories.

The first category is to explore the superconvergence of the DG solu-
tion to the exact smooth solution in negative norms for linear hyperbolic
equations:

‖u− uh‖−k ≤ Ch2k+1 (2.14)

where C depends on u and its derivatives but is independent of h [26]. Here
‖ · ‖−k is the negative Sobolev norm defined by

‖v‖−k = max
ϕ∈Hk, ϕ �=0

(v, ϕ)

‖ϕ‖Hk
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where (·, ·) is the standard L2 inner product and Hk is standard Sobolev
space of order k. This result (and similar results for divided differences
on uniform meshes), together with a local post-processing technique [12],
allows us to obtain a post-processed solution wh = P (uh) (where P is a
local post-processing operator) on uniform meshes which is superconvergent
in the strong L2 norm:

‖u− wh‖ ≤ Ch2k+1 (2.15)

where C depends on u and its derivatives but is independent of h [26].
These results have been generalized to one-sided post-processing near the
boundaries [76], structured triangular meshes [65], nonuniform meshes [34],
and nonlinear problems [50]. It has also been applied to aeroacoustics [77]
and computer graphics [82].

The second category is to explore the superconvergence of the DG
solution to a special projection of the exact smooth solution, or super-
convergence of the DG solution to the exact smooth solution at certain
Gauss–Radau quadrature points.

The superconvergence of the DG solution to a special projection of the
exact smooth solution takes the form

‖Pu− uh‖ ≤ Chk+1+α (2.16)

where Pu is a projection (of the Gauss–Radau type) of the exact solution u
into the finite element space V k

h , and α > 0 is the rate of superconvergence.
In [18], Cheng and Shu started this line of study by obtaining (2.16) with
α = 1/2 for linear, time-dependent hyperbolic equations in one-dimension,
with uniform meshes and periodic boundary conditions. The proof is based
on Fourier analysis and is carried out only for the piecewise linear k = 1
case; however, numerical results confirm the validity for higher k’s. Another
important consequence of this superconvergence result is that the constant
C in (2.16) only grows linearly with time t, therefore the standard error
‖u − uh‖ does not grow for a very long time t ∼ 1/

√
h. This analysis

verifies an observation by practitioners, that the error of the DG solution
for wave propagation does not seem to grow much with time. The result
in [18] is improved in [20] to general polynomial degree k, on nonuniform
regular meshes, and without periodic boundary conditions. The technique
used in [20] is a finite element type, not a Fourier analysis. In [105], the
result in [20] is further improved to α = 1. This half-order increase in the
analysis is highly nontrivial and involves subtle handling of cancellation of
errors during time evolution. The result in [105] is optimal. In [64], (2.16)
with α = 1/2 is proved for scalar nonlinear conservation laws with a fixed
wind direction in one space dimension.

The superconvergence of the DG solution to the exact smooth solution
at certain Gauss–Radau quadrature points has been explored in the litera-
ture. In [2, 3], Adjerid et al. proved the (k + 2)th order superconvergence
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of the DG solutions at the downwind-biased Radau points for ordinary
differential equations. Later, Adjerid and Weihart [4, 5] investigated the
local DG error for multi-dimensional first-order linear symmetric and sym-
metrizable hyperbolic systems of partial differential equations. The authors
showed the projection of the local DG error is also (k+2)th order supercon-
vergent at the downwind-biased Radau points by performing a local error
analysis on Cartesian meshes. The global superconvergence is given by
numerical experiments. In [4, 5], only initial-boundary value problems are
considered, and the local DG error estimate is valid for t sufficiently large.
Subsequently, Adjerid and Baccouch [1] investigated the global convergence
of the implicit residual-based a posteriori error estimates and proved that
these estimates at a fixed time t converge to the true spatial error in the
L2 norm under mesh refinement. In [117], using Fourier analysis, Zhong
and Shu showed that the error between the DG numerical solution and the
exact solution is (k + 2)th order superconvergent at the downwind-biased
Radau points and (2k+1)th order superconvergent at the downwind point
in each cell on uniform meshes with periodic boundary conditions for k = 1,
2 and 3, for linear time-dependent hyperbolic equations in one dimension,
with uniform meshes and periodic boundary conditions.

One of the applications of these superconvergence results is the design
of asymptotically exact a posteriori error indicators, which are useful in
adaptive computations.

2.3. Nonlinear Limiters. For computing solutions with strong dis-
continuities, the cell entropy inequality (2.10) and the L2 stability (2.11),
although helpful, are often not enough to control spurious numerical os-
cillations. In practice, especially for nonlinear problems containing strong
discontinuities, we often need to apply nonlinear limiters to control these
oscillations. Most of the limiters studied in the literature come from the
methodologies of finite volume and finite difference high resolution schemes.

A limiter can be considered as a post-processor of the computed DG
solution. In any cell which is deemed to contain a possible discontinuity
(the so-called troubled cells), the DG polynomial is replaced by a new poly-
nomial of the same degree, while maintaining the original cell average for
conservation. Different limiters compute this new polynomial in different
fashions. The main idea is to require that the new polynomial is less os-
cillatory than the old one, and, if the solution in this cell happens to be
smooth, then the new polynomial should have the same high order accu-
racy as the old one. Some of the limiters are applied to all cells, while
they should take effect (change the polynomial in the cell) only in the cells
near the discontinuities. The total variation diminishing (TVD) limiters
[37] belong to this class. Unfortunately, such limiters tend to take effect
also in some cells in which the solution is smooth, for example in cells near
smooth extrema of the exact solution. Accuracy is therefore lost in such
cells. The TVB limiters [79], applied to RKDG schemes in [23, 25, 27, 29],
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attempt to remove this difficulty and to ensure that the limiter takes effect
only in cells near the discontinuities. The TVB limiters are widely used in
applications, because of their simplicity in implementation. However, the
TVB limiters involve a parameter M , related to the value of the second
derivative of the exact solution near smooth extrema, which must be chosen
by the user for different test cases. The moment-based limiter [9] and the
improved moment limiter [13] also belong to this class, and they are specif-
ically designed for DG methods and limit the moments of the polynomial
sequentially, from the highest order moment downwards. Unfortunately,
the moment-based limiters may also take effect in certain smooth cells,
thereby destroying accuracy in these cells.

The limiters based on the weighted essentially non-oscillatory (WENO)
methodology are designed with the objective of maintaining the high or-
der accuracy even if they take effect in smooth cells. These limiters are
based on the WENO methodology for finite volume and finite difference
schemes [52, 62], and involve nonlinear reconstructions of the polynomials
in troubled cells using the information of neighboring cells. The WENO
reconstructed polynomials have the same high order of accuracy as the
original polynomials when the solution is smooth, and they are (essentially)
non-oscillatory near discontinuities. Qiu and Shu [70] and Zhu et al. [119]
designed WENO limiters using the usual WENO reconstruction based on
cell averages of neighboring cells as in [40, 52, 78], to reconstruct the values
of the solutions at certain Gaussian quadrature points in the target cells,
and then rebuild the solution polynomials from the original cell average
and the reconstructed values at the Gaussian quadrature points through
a numerical integration for the moments. This limiter needs to use the
information from not only the immediate neighboring cells but also neigh-
bors’ neighbors, making it complicated to implement in multi-dimensions,
especially for unstructured meshes [40, 116, 119]. The effort in [68, 71]
attempts to construct Hermite type WENO approximations, which use the
information of not only the cell averages but also the lower order moments
such as slopes, to reduce the spread of reconstruction stencils. However
for higher order methods the information of neighbors’ neighbors is still
needed. More recently, Zhong and Shu [118] developed a new WENO
limiting procedure for RKDG methods on structured meshes. The idea is
to reconstruct the entire polynomial, instead of reconstructing point values
or moments in the classical WENO reconstructions. That is, the entire
reconstruction polynomial on the target cell is a convex combination of
polynomials on this cell and its immediate neighboring cells, with suitable
adjustments for conservation and with the nonlinear weights of the convex
combination following the classical WENO procedure. The main advan-
tage of this limiter is its simplicity in implementation, as it uses only the
information from immediate neighbors and the linear weights are always
positive. This simplicity is more prominent for multi-dimensional unstruc-
tured meshes, which is studied in [120] for two-dimensional unstructured
triangular meshes.
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The WENO limiters are typically applied only in designated “troubled
cells,” in order to save computational cost and to minimize the influence of
accuracy in smooth regions. Therefore, a troubled cell indicator is needed,
to correctly identify cells near discontinuities in which the limiters should be
applied. Qiu and Shu in [69] have compared several troubled cell indicators.
In practice, the TVB indicator [79] and the KXRCF indicator [55] are often
the best choices.

Finally, let us mention the recently developed positivity-preserving
limiters for DG schemes [114]. These limiters involve only simple scal-
ing of the polynomials and is very inexpensive to implement. They can
guarantee maximum principle in the scalar case [111, 115] and positivity-
preserving for certain systems, for example positivity-preserving for density
and pressure for Euler equations of compressible gas dynamics [112, 113,
115] and positivity-preserving for water height for shallow water equations
[88]. They are also proved to maintain the original high order accuracy of
the DG scheme. It is worth mentioning that, in [83], the RKDG method
with only the positivity-preserving limiter is used to compute the very de-
manding gaseous detonations in two-dimensional structured and unstruc-
tured meshes, with stable and high resolution results.

2.4. Hyperbolic Equations Involving δ-Functions. In a hyper-
bolic conservation law

ut + f(u)x = g(x, t), (x, t) ∈ R× (0, T ],
u(x, 0) = u0(x), x ∈ R, (2.17)

the initial condition u0, or the source term g(x, t), or the solution u(x, t)
may contain δ-singularities. Such problems appear often in applications
and are difficult to approximate numerically. Many numerical techniques
rely on modifications with smooth kernels and hence may severely smear
such singularities, leading to large errors in the approximation. On the
other hand, the DG methods are based on weak formulations and can be
designed directly to solve such problems without modifications, leading to
very accurate results.

In [106], DG methods to solve hyperbolic Eq. (2.17) involving δ-
singularities are explored. Negative-order norm error estimates for the
accuracy of DG approximations to δ-singularities are investigated. First,
linear hyperbolic conservation laws in one space dimension with singular
initial data are investigated. It is proved that, by using piecewise kth de-
gree polynomials, at time t, the error in the H−(k+2) norm over the whole
domain is (k + 1/2)th order, and the error in the H−(k+1)(R\Rt) norm is
(2k + 1)th order, where Rt is the pollution region due to the initial sin-
gularity with the width of order O(h1/2 log(1/h)) and h is the maximum
cell length. As an application of the negative-order norm error estimates,
the numerical solution can be convolved with a suitable kernel which is a
linear combination of B-splines, to obtain L2 error estimate of (2k + 1)th



Time Dependent Discontinuous Galerkin Method 35

order for the post-processed solution. Second, high order superconvergence
error estimates for linear hyperbolic conservation laws with singular source
terms are obtained in [106] by applying Duhamel’s principle. Numerical
examples including an acoustic equation and the nonlinear rendezvous alg-
orithms are given to demonstrate the good performance of DG methods
for solving hyperbolic equations involving δ-singularities. The results in
[106] give us evidence that the DG method is a good algorithm for prob-
lems involving δ-singularities in their solutions. In future work we will
apply the DG method to more nonlinear hyperbolic equations involving
δ-singularities.

2.5. Generalization to Hamilton–Jacobi Equations. Time-dep-
endent Hamilton–Jacobi equations take the form

ϕt +H(ϕx1 , . . . , ϕxd
) = 0, ϕ(x, 0) = ϕ0(x), (2.18)

where H is a Lipschitz continuous function. H could also depend on ϕ,
x, and t in some applications. Hamilton–Jacobi equations appear often in
many applications. Examples include front propagation, level set methods,
image processing and computer vision, control and differential games.

At least in the one-dimensional case, there is a strong relationship
between the Hamilton–Jacobi equation

ϕt +H(ϕx) = 0, ϕ(x, 0) = ϕ0(x) (2.19)

and the hyperbolic conservation law

ut +H(u)x = 0, u(x, 0) = u0(x). (2.20)

In fact, if we identify u = ϕx, the two Eqs. (2.19) and (2.20) are equiv-
alent. This equivalency provides motivations for designing algorithms for
one equation based on the success for another equation. Therefore, it is
very natural to attempt an adaptation of the DG methods designed for the
conservation laws (2.20) to solve the Hamilton–Jacobi equation (2.19).

The first attempt to design a DG method was based exactly on
this observation: at least in one dimension, the viscosity solution of the
Hamilton–Jacobi equation (2.19) is equivalent to the entropy solution of
the conservation law (2.20), when we identify ϕx = u. Therefore, a DG
scheme for solving the conservation law (2.20), as given by (2.8) (with f
there replaced by H), can be directly used to approximate the derivative of
the viscosity solution of the Hamilton–Jacobi equation (2.19). This leads
to the following DG algorithm of Hu and Shu [41]: Find ϕh ∈ V k+1

h , such
that uh = (ϕh)x ∈ V k

h is determined by the DG scheme (2.8) (with f there
replaced by H), and the missing degree of freedom is determined by

∫
Ij

((ϕh)t +H(uh)) dx = 0.
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This algorithm is well defined for one dimension. Additional compli-
cations exist for multi-dimensional cases. We take two space dimensions as
an example. The Hamilton–Jacobi equation

ϕt +H(ϕx, ϕy) = 0 (2.21)

is (in some sense) equivalent to the following system of conservation laws

ut +H(u, v)x = 0, vt +H(u, v)y = 0 (2.22)

when we identify u = ϕx and v = ϕy. We would like to still use a piecewise
polynomial ϕh as our solution variable and take its derivatives to approxi-
mate u and v. The DG algorithm of Hu and Shu [41], as re-interpreted by
Li and Shu [43], can be formulated as follows: Find ϕh ∈ V k+1

h , such that
(uh, vh) = ((ϕh)x, (ϕh)y) ∈W k

h is determined by the standard DG scheme
solving the conservation laws (2.22), and the missing degree of freedom is
determined by

∫
Ij

((ϕh)t +H(uh, vh)) dxdy = 0.

Here, Ij denotes two-dimensional elements (triangles or rectangles), and
W k

h is the locally curl-free subspace of V k
h × V k

h :

W k
h = {(u, v) ∈ V k

h × V k
h : uy − vx = 0 ∀(x, y) ∈ Ij}.

Some analysis for this DG method (including L2 stability for a specific
class of the Hamiltonian H) is given in [42]. A priori L2 error estimates for
smooth solutions are given in [89].

Even though the DG schemes in [41, 43] are successful in approxi-
mating the Hamilton–Jacobi equation (2.18), it involves rewriting it as a
conservation law satisfied by the derivatives of the solution ϕ. It is de-
sirable to design a DG method which solves directly the solution ϕ to the
Hamilton–Jacobi equation (2.18). The scheme of Cheng and Shu [16] serves
this purpose. The scheme is defined as: find ϕh ∈ V k

h , such that

∫
Ij

((ϕh)t +H((ϕh)x)) vh(x)dx

+

(
min

x∈Ij+1/2

H ′((ϕ̃h)x)

)
−
[ϕh]j+ 1

2
(vh)

−
j+ 1

2

(2.23)

+

(
max

x∈Ij−1/2

H ′((ϕ̃h)x)

)
+

[ϕh]j− 1
2
(vh)

+
j− 1

2

= 0

holds for any vh ∈ V k
h and all 1 ≤ j ≤ N . Here a− = min(a, 0), a+ =

max(a, 0), [w] = w+ − w− denotes the jump of w, and H ′(u) denotes the
derivative of H(u) with respect to u. The interval Ij+1/2 = [xj , xj+1],
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and the function ϕ̃h is the L2 projection of ϕh (which is discontinuous at
the interface point xj+ 1

2
) into P2k+1(Ij ∪ Ij+1). It can be easily verified

that when the Hamiltonian H(u) = au is linear and the Hamilton–Jacobi
equation is also a conservation law with a possible source term (when a
depends on x), the scheme (2.23) becomes the standard DG scheme for
this conservation law. Extension of this method to multi-dimensions is
straightforward. Further development and application of this method to
problems in optimal control are given in [10, 11]. A priori L2 error estimates
for smooth solutions are given in [89].

Another DG method which solves directly the Hamilton–Jacobi equa-
tions (2.18) is that of Yan and Osher [102]. This method is motivated by
the local discontinuous Galerkin (LDG) method for solving second order
partial differential equations [30], to be described in next section. We re-
fer the readers to [102] for more details of this method. A priori L2 error
estimates for smooth solutions are given in [89].

3. DG Methods for Convection-Diffusion Equations. DG
methods are most suitable for convection equations; however, they are
also good methods for solving convection dominated convection diffusion
equations, such as Navier–Stokes equations with high Reynolds numbers.
In this section we discuss the DG methods for time-dependent convection-
diffusion equations

ut +

d∑
i=1

fi(u)xi −
d∑

i=1

d∑
j=1

(aij(u)uxj)xi = 0, (3.1)

where (aij(u)) is a symmetric, semi-positive definite matrix.
For equations containing higher order spatial derivatives, such as the

convection-diffusion equation (3.1), discontinuous Galerkin methods de-
signed for hyperbolic conservation laws cannot be directly applied. Let us
look at the heat equation as an example

ut = uxx. (3.2)

Comparing with the hyperbolic conservation law (2.7), we can treat the
heat equation (3.2) also as a “conservation law” by identifying f(u) in
(2.7) with −ux in (3.2). Therefore, it would appear that we could change
the DG scheme (2.8), designed for solving the conservation law (2.7), to
the following scheme for solving the heat equation (3.2). Find uh ∈ V k

h

such that, for all test functions vh ∈ V k
h and all 1 ≤ j ≤ N , we have∫

Ij

(uh)t vhdx+

∫
Ij

(uh)x(vh)xdx (3.3)

−ûxj+ 1
2
(vh)

−
j+ 1

2

+ ûxj− 1
2
(vh)

+
j− 1

2

= 0,

where f(u) in (2.8) is replaced by −ux in (3.3). Of course, we still need to
define the numerical fluxes ûxj+ 1

2
. Upwinding and monotone fluxes are no
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longer relevant, as we are dealing with the heat equation (3.2) for which
there is no preferred wind direction. It would appear that the average flux

ûxj+ 1
2
=

1

2

(
((uh)x)

−
j+ 1

2

+ ((uh)x)
+
j+ 1

2

)
(3.4)

is a reasonable choice. If we take this flux in the scheme (3.3), we would
observe numerically a very strange phenomenon. The numerical solution
appears to be convergent when the mesh is refined; however, it does not
seem to converge to the correct solution of the PDE. One would then
suspect that the scheme is stable but inconsistent. However, the scheme
can be written as a standard finite difference scheme and standard linear
analysis for finite difference schemes can be performed. It turns out that the
scheme (3.3) with the flux (3.4) is consistent but (very weakly) unstable [31,
107]. Therefore, we should be very careful when generalizing DG schemes
from first order hyperbolic equations to PDEs with higher order spatial
derivatives.

3.1. Local Discontinuous Galerkin Methods. One possible
way to design a stable and convergent DG method for solving convection-
diffu-sion equations is to rewrite the equation into a first order system,
then apply the discontinuous Galerkin method on the system. A key
ingredient for the success of such methods is the correct design of interface
numerical fluxes. These fluxes must be designed to guarantee stability and
local solvability of all the auxiliary variables introduced to approximate
the derivatives of the solution. The local solvability of all the auxiliary
variables is why the method is called a LDG method in [30].

The first local discontinuous Galerkin method was developed by Cock-
burn and Shu [30], for the convection-diffusion equation (3.1) containing
second derivatives. Their work was motivated by the successful numeri-
cal experiments of Bassi and Rebay [7] for the compressible Navier–Stokes
equations.

We will use the heat equation (3.2) to demonstrate the idea of LDG
schemes. We rewrite Eq. (3.2) as the following system

ut − qx = 0, q − ux = 0, (3.5)

which “looks like” a system of conservation laws, except that the second
equation does not have a time derivative in q. We can then formally write
down the DG scheme (2.8) for each equation in (3.5), resulting in the
following scheme. Find uh, qh ∈ V k

h such that, for all test functions vh, ph ∈
V k
h and all 1 ≤ j ≤ N , we have

∫
Ij

(uh)t vhdx+

∫
Ij

qh (vh)xdx− q̂j+ 1
2
(vh)

−
j+ 1

2

+ q̂j− 1
2
(vh)

+
j− 1

2

= 0;

∫
Ij

qhphdx+

∫
Ij

uh (ph)xdx− ûj+ 1
2
(ph)

−
j+ 1

2

+ ûj− 1
2
(ph)

+
j− 1

2

= 0. (3.6)
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Of course, we would still need to define the numerical fluxes ûj+ 1
2
and q̂j+ 1

2
.

Again, based on the fact that upwinding and monotone fluxes are no longer
relevant, as we are dealing with the heat equation (3.2) for which there is
no preferred wind direction, we could still try the average flux

ûj+ 1
2
=

1

2

(
(uh)

−
j+ 1

2

+ (uh)
+
j+ 1

2

)
, q̂j+ 1

2
=

1

2

(
(qh)

−
j+ 1

2

+ (qh)
+
j+ 1

2

)
. (3.7)

Notice that, from the second equation in the scheme (3.6), we can solve
qh explicitly and locally (in the cell Ij) in terms of uh, by inverting the
small mass matrix inside the cell Ij . This is why the method is referred
to as the “local” discontinuous Galerkin method. It turns out that the
LDG scheme (3.6) with the central fluxes (3.7) is stable and convergent,
but it loses one order of accuracy, to O(hk) only in the L2 norm, for odd k.
A better choice of the numerical fluxes is the so-called alternating fluxes,
defined as

ûj+ 1
2
= (uh)

−
j+ 1

2

, q̂j+ 1
2
= (qh)

+
j+ 1

2

. (3.8)

The important point is that q̂ and û should be chosen from different direc-
tions. Thus, the choice

ûj+ 1
2
= (uh)

+
j+ 1

2

, q̂j+ 1
2
= (qh)

−
j+ 1

2

is also fine. It can be proved that the LDG scheme (3.6) with the alternating
fluxes (3.8) is stable and convergent, with optimal O(hk+1) error order in
the L2 norm, see, e.g., [80].

The beauty of the DG method is that, once it is designed for the
linear equation (3.2) and proved to be stable and accurate, it can be easily
generalized to fully nonlinear convection-diffusion equations

ut + f(u)x = (a(u)ux)x (3.9)

with a(u) ≥ 0. We again rewrite this equation as the following system

ut + f(u)x − (b(u)q)x = 0, q −B(u)x = 0, (3.10)

where

b(u) =
√
a(u), B(u) =

∫ u

b(u)du. (3.11)

The semi-discrete LDG scheme is defined as follows. Find uh, qh ∈ V k
h such

that, for all test functions vh, ph ∈ V k
h and all 1 ≤ i ≤ N , we have

∫
Ij

(uh)t vhdx−
∫
Ij

(f(uh)− b(uh)qh)(vh)xdx

+(f̂ − b̂q̂)j+ 1
2
(vh)

−
j+ 1

2

− (f̂ − b̂q̂)j− 1
2
(vh)

+
j− 1

2

= 0, (3.12)
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∫
Ij

qhphdx +

∫
Ij

B(uh)(ph)xdx− B̂j+ 1
2
(ph)

−
j+ 1

2

+ B̂j− 1
2
(ph)

+
j− 1

2

= 0.

In [30], sufficient conditions for the choices of the numerical fluxes to
guarantee the stability of the scheme (3.12) are given. Here, we only dis-
cuss a particularly attractive choice, i.e. the so-called alternating fluxes
discussed before for the linear heat equation, now defined as

b̂ =
B(u+h )−B(u−h )

u+h − u
−
h

, q̂ = q+h , B̂ = B(u−h ). (3.13)

The important point is that q̂ and B̂ should be chosen from different di-
rections. Thus, the choice

b̂ =
B(u+h )−B(u−h )

u+h − u
−
h

, q̂ = q−h , B̂ = B(u+h )

is also fine.

Notice that, even for this fully nonlinear case, from the second equation
in the scheme (3.12), we can still solve qh explicitly and locally (in cell Ij)
in terms of uh, by inverting the small mass matrix inside the cell Ij , thus
justifying the terminology “local” discontinuous Galerkin methods.

In [30], it is proved that, for the solution uh, qh to the semi-discrete
LDG scheme (3.12), we still have the following “cell entropy inequality”

1

2

d

dt

∫
Ij

(uh)
2 dx+

∫
Ij

(qh)
2dx+ F̂j+ 1

2
− F̂j− 1

2
≤ 0 (3.14)

for a consistent entropy flux

F̂j+ 1
2
= F̂
(
uh

(
x−
j+ 1

2

, t
)
, qh

(
x−
j+ 1

2

, t
)
;uh

(
x+
j+ 1

2

, t
)
, qh

(
x+
j+ 1

2

))

satisfying F̂ (u, q;u, q) = F (u) − ub(u)q where, as before, F (u) =∫ u
uf ′(u)du. This, together with periodic or compactly supported bound-

ary conditions, implies the following L2 stability

d

dt

∫ b

a

(uh)
2dx+ 2

∫ b

a

(qh)
2dx ≤ 0, (3.15)

or

‖uh(·, t)‖2 + 2

∫ t

0

‖qh(·, τ)‖2dτ ≤ ‖uh(·, 0)‖2. (3.16)

A priori L2 error estimates for smooth solutions are provided in [94].
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3.2. Internal Penalty Discontinuous Galerkin Methods. Ano-
ther important class of DG methods for solving diffusion equations is the
class of internal penalty discontinuous Galerkin methods. We will use the
simple heat equation (3.2) to demonstrate the idea. If we multiply both
sides of (3.2) by a test function v and integrate over the cell Ij , and integrate
by parts for the right-hand side, we obtain the equality
∫
Ij

utvdx = −
∫
Ij

uxvxdx+ (ux)j+ 1
2
v−
j+ 1

2

− (ux)j− 1
2
v+
j− 1

2

(3.17)

where we have used superscripts ± on v at cell boundaries to prepare for
numerical schemes involving functions which are discontinuous at those cell
boundaries. Summing over j, we obtain, with periodic boundary conditions
for simplicity, the following equality

∫ b

a

utvdx = −
N∑
j=1

∫
Ij

uxvxdx−
N∑
j=1

(ux)j+ 1
2
[v]j+ 1

2
(3.18)

where [w] ≡ w+ − w− denotes the jump of w at the cell interface. If we
attempt to convert the equality (3.18) into a numerical scheme, we could
try the following. Find uh ∈ V k

h such that, for all test functions vh ∈ V k
h ,

we have

∫ b

a

(uh)t(vh)dx = −
N∑
j=1

∫
Ij

(uh)x(vh)xdx −
N∑
j=1

{(uh)x}j+ 1
2
[vh]j+ 1

2
(3.19)

where {w} ≡ 1
2 (w

+ + w−) denotes the average of w at the cell interface.
This scheme is actually exactly the same as the scheme (3.3) with the
numerical flux (3.4), which is known to be unstable as mentioned above
[31, 107]. Notice that the right-hand side of (3.19) is not symmetric with
respect to uh and vh. We can therefore add another term to symmetrize
it, obtaining the following scheme. Find uh ∈ V k

h such that, for all test
functions vh ∈ V k

h , we have

∫ b

a

(uh)t(vh)dx = −
N∑
j=1

∫
Ij

(uh)x(vh)xdx

−
N∑
j=1

{(uh)x}j+ 1
2
[vh]j+ 1

2
−

N∑
j=1

{(vh)x}j+ 1
2
[uh]j+ 1

2
.

(3.20)

Notice that, since the exact solution is continuous, the additional term
−
∑N

j=1{(vh)x}j+ 1
2
[uh]j+ 1

2
is zero if the numerical solution uh is replaced

by the exact solution u, hence the scheme is consistent. Scheme (3.20) is
symmetric, unfortunately it is still unconditionally unstable. In order to
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stabilize the scheme, a further penalty term must be added, resulting in
the following symmetric internal penalty discontinuous Galerkin (SIPG)
method [6, 84]

∫ b

a

(uh)t(vh)dx = −
N∑
j=1

∫
Ij

(uh)x(vh)xdx−
N∑
j=1

{(uh)x}j+ 1
2
[vh]j+ 1

2

−
N∑
j=1

{(vh)x}j+ 1
2
[uh]j+ 1

2
−

N∑
j=1

α

h
[uh]j+ 1

2
[vh]j+ 1

2
.

(3.21)

Clearly, the scheme (3.21) is still symmetric, and it can be proved [6, 84]
that, for sufficiently large α, it is stable and has optimal O(hk+1) order
convergence in L2. The disadvantage of this scheme is that it involves a
parameter α which has to be chosen adequately to ensure stability. Another
possible way to obtain a stable scheme is to change the sign of the last term
in the unstable scheme (3.20), resulting in the following non-symmetric
internal penalty discontinuous Galerkin (NIPG) method [8, 66] of Baumann
and Oden

∫ b

a

(uh)t(vh)dx = −
N∑
j=1

∫
Ij

(uh)x(vh)xdx

−
N∑
j=1

{(uh)x}j+ 1
2
[vh]j+ 1

2
+

N∑
j=1

{(vh)x}j+ 1
2
[uh]j+ 1

2
.

(3.22)

This scheme is not symmetric; however, it is L2 stable and convergent,
although it has a suboptimal O(hk) order of L2 errors for even k [8, 66, 107].

There are other types of DG methods involving the internal penalty
methodology, for example the direct discontinuous Galerkin (DDG) meth-
ods [60, 61].

3.3. Ultra Weak Discontinuous Galerkin Methods. Ultra weak
discontinuous Galerkin methods are designed in [17]. Let us again use
the simple heat equation (3.2) to demonstrate the idea. If we multiply
both sides of (3.2) by a test function v and integrate over the cell Ij , and
integrate by parts twice for the right-hand side, we obtain the equality∫

Ij

utvdx =

∫
Ij

uvxxdx + (ux)j+ 1
2
vj+ 1

2
− (ux)j− 1

2
vj− 1

2
(3.23)

−uj+ 1
2
(vx)j+ 1

2
+ uj− 1

2
(vx)j− 1

2
.

We can then follow the general principle of designing DG schemes, namely
converting the solution u and its derivatives at the cell boundary into num-
erical fluxes, and taking values of the test function v and its derivatives
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at the cell boundary by values inside the cell Ij , to obtain the following
scheme. Find uh ∈ V k

h such that, for all test functions vh ∈ V k
h and all

1 ≤ j ≤ N , we have∫
Ij

(uh)t vhdx =

∫
Ij

uh (vh)xxdx + ûxj+ 1
2
(vh)

−
j+ 1

2

− ûxj− 1
2
(vh)

+
j− 1

2

−ûj+ 1
2
((vh)x)

−
j+ 1

2

+ ûj− 1
2
((vh)x)

+
j− 1

2

. (3.24)

The crucial ingredient for the stability of the scheme (3.24) is still the
choice of numerical fluxes. It is proved in [17] that the following choice of
numerical fluxes

ûj+ 1
2
= (uh)

−
j+ 1

2

, ûxj+ 1
2
= ((uh)x)

+
j+ 1

2

+
α

h
[uh]j+ 1

2
(3.25)

would yield a stable DG scheme if the constant α > 0 is sufficiently large.
Notice that the choice in (3.25) is a combination of alternating fluxes and
internal penalty. The following choice of alternating fluxes would also work

ûj+ 1
2
= (uh)

+
j+ 1

2

, ûxj+ 1
2
= ((uh)x)

−
j+ 1

2

+
α

h
[uh]j+ 1

2
.

Suboptimal L2 error estimates are given in [17] for the scheme (3.24) with
the fluxes (3.25) for k ≥ 1. In numerical experiments, optimal L2 con-
vergence rate of O(hk+1) is observed for all k ≥ 1. The scheme can be
easily generalized to the general nonlinear convection-diffusion equation
(3.9) with the same stability property [17].

3.4. Superconvergence. Results for superconvergence of DG meth-
ods, similar to those for hyperbolic equations discussed in Sect. 2.2, have
been obtained for convection-diffusion equations in the literature. Super-
convergence of the DG solution to the exact smooth solution in negative
norms for convection-diffusion equations is studied in [49]. The supercon-
vergence of the DG solution to a special projection of the exact smooth
solution is addressed in [19, 20].

4. DG Methods for Third Order Convection-Dispersion
Equations. In this section we study convection-dispersion equations
which are wave equations involving third spatial derivatives. We study the
following general KdV type equations

ut +

d∑
i=1

fi(u)xi +

d∑
i=1

⎛
⎝r′i(u)

d∑
j=1

gij(ri(u)xi)xj

⎞
⎠

xi

= 0, (4.1)

where fi(u), ri(u), and gij(q) are arbitrary (smooth) nonlinear functions.
The one-dimensional KdV equation

ut + (αu+ βu2)x + σuxxx = 0, (4.2)

where α, β, and σ are constants, is a special case of the general class (4.1).
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It is important to realize that third order dispersive equations are wave
equations, sharing similarity with first order hyperbolic conservation laws
and being quite different from diffusion equations. For example, the third
order linear equation

ut + uxxx = 0 (4.3)

admits the following simple wave solution

u(x, t) = sin(x+ t),

that is, information propagates from right to left. Therefore, upwinding is
a relevant concept for the design of DG schemes for convection-dispersion
equations.

We will discuss two classes of DG schemes for third order dispersive
PDEs.

4.1. Local Discontinuous Galerkin Methods. We can again de-
sign LDG methods for third order dispersive PDEs, by rewriting such a
PDE into a first order system and then applying the discontinuous Galerkin
method on the system. Of course, a key ingredient for the success of such
methods is still the correct design of interface numerical fluxes. These
fluxes must be designed to guarantee stability and local solvability of all
the auxiliary variables introduced to approximate the derivatives of the
solution, thus justifying the terminology “local” DG. As mentioned above,
upwinding should participate in the guiding principles for the design of
numerical fluxes for dispersive PDEs.

We will use the simple linear equation (4.3) to demonstrate the idea
of LDG schemes. We rewrite Eq. (4.3) as the following system

ut + px = 0, p− qx = 0, q − ux = 0, (4.4)

which “looks like” a system of conservation laws, except that the second
and third equations do not have time derivatives. We can then formally
write down the DG scheme (2.8) for each equation in (4.4), resulting in
the following scheme. Find uh, ph, qh ∈ V k

h such that, for all test functions
vh, wh, zh ∈ V k

h and all 1 ≤ j ≤ N , we have

∫
Ij

(uh)t vhdx−
∫
Ij

ph (vh)xdx+ p̂j+ 1
2
(vh)

−
j+ 1

2

− p̂j− 1
2
(vh)

+
j− 1

2

= 0;

∫
Ij

phwhdx+

∫
Ij

qh (wh)xdx− q̂j+ 1
2
(wh)

−
j+ 1

2

+ q̂j− 1
2
(wh)

+
j− 1

2

= 0; (4.5)

∫
Ij

qhzhdx+

∫
Ij

uh (zh)xdx − ûj+ 1
2
(zh)

−
j+ 1

2

+ ûj− 1
2
(zh)

+
j− 1

2

= 0.
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Of course, we would still need to define the numerical fluxes ûj+ 1
2
, q̂j+ 1

2

and p̂j+ 1
2
. Since the wind blows from right to left, intuitively, we should

choose more information from the right. If we take all three fluxes from
the right

û = (uh)
+, q̂ = (qh)

+, p̂ = (ph)
+,

we obtain an unstable scheme. It is often the case that we should not
attempt to be completely upwind, only upwind-biased. The next logical
thing to try is to take two numerical fluxes from the right and one from the
left. Analysis helps us to pinpoint the following upwind-biased alternating
fluxes

û = (uh)
−, q̂ = (qh)

+, p̂ = (ph)
+. (4.6)

In fact, it turns out that the most important thing is to take q̂, which
approximates ux, from the upwind side (qh)

+. The fluxes û and p̂, ap-
proximating u and uxx, respectively, can be taken in alternating sides.
Therefore, the following choice of upwind-biased alternating fluxes

û = (uh)
+, q̂ = (qh)

+, p̂ = (ph)
−

is also fine.
It is proved in [103] that the LDG scheme (4.5) with the upwind-biased

alternating fluxes (4.6) is L2 stable

d

dt

∫ b

a

(uh)
2dx ≤ 0, (4.7)

or

‖uh(·, t)‖ ≤ ‖uh(·, 0)‖. (4.8)

A suboptimal L2 error estimate of order O(hk+1/2) is also proved in [103].
In a more recent work [101], Xu and Shu proved optimal L2 error estimate
of order O(hk+1) for this scheme. This extra half order turns out to be
difficult to obtain, mainly because of the wave nature of the Eq. (4.3)
and hence a lack of control of the derivatives. The approach in [101] is
to establish stability not only for uh as in (4.7), but also for qh and ph
approximating ux and uxx.

The LDG scheme can be designed for the general nonlinear convection-
dispersion equation (4.1). Let us use the one-dimensional case to describe
the scheme

ut + f(u)x + (r′(u)g(r(u)x)x)x = 0, (4.9)

where f(u), r(u), and g(q) are arbitrary (smooth) nonlinear functions. The
LDG method is based on rewriting it as the following system

ut + (f(u) + r′(u)p)x = 0, p− g(q)x = 0, q − r(u)x = 0. (4.10)
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The semi-discrete LDG scheme is defined as follows. Find uh, ph, qh ∈ V k
h

such that, for all test functions vh, wh, zh ∈ V k
h and all 1 ≤ i ≤ N , we have

∫
Ij

(uh)t vhdx−
∫
Ij

(f(uh) + r′(uh)ph)(vh)xdx

+(f̂ + r̂′p̂)j+ 1
2
(vh)

−
j+ 1

2

− (f̂ + r̂′p̂)j− 1
2
(vh)

+
j− 1

2

= 0; (4.11)∫
Ij

phwhdx+

∫
Ij

g(qh) (wh)xdx− ĝj+ 1
2
(wh)

−
j+ 1

2

+ ĝj− 1
2
(wh)

+
j− 1

2

= 0;

∫
Ij

qhzhdx+

∫
Ij

r(uh) (zh)xdx− r̂j+ 1
2
(zh)

−
j+ 1

2

+ r̂j− 1
2
(zh)

+
j− 1

2

= 0.

By our experience with linear equations discussed above, we would like to
use the following upwind-biased alternating fluxes

r̂′ =
r((uh)

+)− r((uh)−)
(uh)+ − (uh)−

, r̂ = r((uh)
−), ĝ = ĝ((qh)

−, (qh)
+), p̂ = (ph)

+.

(4.12)
Here, −ĝ((qh)−, (qh)+) is a monotone flux for −g(q), namely ĝ is a non-
increasing function in the first argument and a non-decreasing function
in the second argument. The important point is again the “alternating
fluxes,” namely r̂ and p̂ should come from opposite sides. Thus

r̂′ =
r((uh)

+)− r((uh)−)
(uh)+ − (uh)−

, r̂ = r((uh)
+), ĝ = ĝ((qh)

−, (qh)
+), p̂ = (ph)

−

would also work.

It is quite interesting to observe that monotone fluxes, which are orig-
inally designed for hyperbolic conservation laws, can be used also for non-
linear dispersive equations to obtain stability. Also notice that, from the
third equation in the scheme (4.11), we can solve qh explicitly and locally
(in cell Ij) in terms of uh, by inverting the small mass matrix inside the cell
Ij . Then, from the second equation in the scheme (4.11), we can solve ph
explicitly and locally (in cell Ij) in terms of qh. Thus only uh is the global
unknown and the auxiliary variables qh and ph can be solved in terms of
uh locally. This justifies again the terminology of “local” discontinuous
Galerkin method.

It is proved in [103] that the LDG scheme (4.11) with the upwind-
biased alternating fluxes (4.12) is L2 stable, i.e. (4.7) or (4.8) holds. This
is also true for the multi-dimensional case (4.1). A suboptimal L2 error
estimate of order O(hk+1/2) is also proved in [94].

4.2. Ultra Weak Discontinuous Galerkin Methods. Ultra weak
discontinuous Galerkin methods are designed in [17]. Let us again use the
simple linear equation (4.3) to demonstrate the idea. If we multiply both



Time Dependent Discontinuous Galerkin Method 47

sides of (4.3) by a test function v and integrate over the cell Ij , and integrate
by parts three times for the right-hand side, we obtain the equality∫

Ij

utvdx −
∫
Ij

uvxxxdx+ (uxx)j+ 1
2
vj+ 1

2
− (uxx)j− 1

2
vj− 1

2

−(ux)j+ 1
2
(vx)j+ 1

2
+ (ux)j− 1

2
(vx)j− 1

2
(4.13)

+uj+ 1
2
(vxx)j+ 1

2
− uj− 1

2
(vxx)j− 1

2
= 0.

We can then follow the general principle of designing DG schemes, namely
converting the solution u and its derivatives at the cell boundary into num-
erical fluxes, and taking values of the test function v and its derivatives
at the cell boundary by values inside the cell Ij , to obtain the following
scheme. Find uh ∈ V k

h such that, for all test functions vh ∈ V k
h and all

1 ≤ j ≤ N , we have∫
Ij

(uh)t vhdx−
∫
Ij

uh (vh)xxxdx+ ûxxj+ 1
2
(vh)

−
j+ 1

2

−ûxxj− 1
2
(vh)

+
j− 1

2

− ûxj+ 1
2
((vh)x)

−
j+ 1

2

+ ûxj− 1
2
((vh)x)

+
j− 1

2

(4.14)

+ûj+ 1
2
((vh)xx)

−
j+ 1

2

− ûj− 1
2
((vh)xx)

+
j− 1

2

= 0.

The crucial ingredient for the stability of the scheme (4.14) is still the
choice of numerical fluxes. It is proved in [17] that the following choice of
upwind-biased alternating fluxes

û = (uh)
−, ûx = ((uh)x)

+, ûxx = ((uh)xx)
+, (4.15)

would yield a stable DG scheme. Notice that the choice of numerical fluxes
(4.15) is exactly the same as that for the stable LDG scheme (4.6). The
most important thing is to take ûx from the upwind side ((uh)x)

+. The
fluxes û and ûxx can be taken in alternating sides. Therefore, the following
choice of upwind-biased alternating fluxes

û = (uh)
+, ûx = ((uh)x)

+, ûxx = ((uh)xx)
−

is also fine.
It is proved in [17] that the ultra weak DG scheme (4.14) with the

upwind-biased alternating fluxes (4.15) is L2 stable, namely (4.7) or (4.8)
holds. Suboptimal L2 error estimates are also given in [17] for this scheme
with k ≥ 2. In numerical experiments, optimal L2 convergence rate of
O(hk+1) is observed for all k ≥ 2. The scheme can be easily generalized to
general nonlinear convection-dispersion equations with the same stability
property [17].

5. DG Methods for Other Dispersive Wave Equations. DG
methods have also been designed for other dispersive wave equations con-
taining higher order (usually odd order) derivatives. We will describe
briefly some of these schemes in this section.
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5.1. Equations with Fifth Order Spatial Derivatives. An LDG
scheme for solving the following fifth order convection-dispersion equation

ut +

d∑
i=1

fi(u)xi +

d∑
i=1

gi(uxixi)xixixi = 0, (5.1)

where fi(u) and gi(q) are arbitrary functions, was designed in [104]. The
numerical fluxes are chosen following the same upwind-biased alternating
fluxes principle similar to the third order KdV type Eq. (4.1), namely the
flux corresponding to uxx should be chosen according to upwinding, and the
flux pairs corresponding to u and uxxxx, and the flux pairs corresponding
to ux and uxxx, should be chosen in an alternating fashion within each
pair. A cell entropy inequality and the L2 stability of the LDG scheme
for the nonlinear equation (5.1) can be proved [104], which again do not
depend on the smoothness of the solution of (5.1), the order of accuracy of
the scheme, or the triangulation. For the linear fifth order equation

ut + uxxxxx = 0, (5.2)

optimalO(hk+1) order L2 error estimate is obtained in [101]. Similar results
can be obtained for PDEs of higher odd order spatial derivatives.

Ultra weak DG methods for solving (5.2) are designed in [17]. The
choice of numerical fluxes are identical to that for the LDG schemes de-
scribed above. The resulting scheme can be proved to be L2 stable, and
a suboptimal L2 error estimate for k ≥ 4 is proved in [17]. Numerical ex-
periments indicate optimal convergence in L2 for all k ≥ 4. The scheme as
well as the stability analysis can be generalized to certain nonlinear fifth
order PDEs [17]. Similar results can also be obtained for PDEs of higher
odd order spatial derivatives.

5.2. The K(m,n) Equation. The so-called K(m,n) equation

ut + (um)x + (un)xxx = 0 (5.3)

arises from mathematical physics and has the compactons solutions. In [58],
an LDG scheme is designed for (5.3), which is proved to be Ln+1 stable
for the K(n, n) equation with odd n. For all other cases, the LDG scheme
is proved to be linearly stable. Computational results including those for
compactons indicate excellent performance of these schemes.

This example indicates that we do not always seek to prove L2 stability
for DG schemes. In fact, most time-dependent PDEs arising from physics
and applications have certain “energy,” which is a positive functional of the
solution, and the energy usually does not increase with time. An ideal DG
scheme would produce numerical solutions for which the same energy also
does not increase with time. In this particular example (K(n, n) equation
with odd n), this “energy” is the square of the Ln+1 norm.
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5.3. The KdV-Burgers Type Equations. LDG methods for
solving the KdV-Burgers (KdVB) equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x = 0, (5.4)

where f(u), a(u) ≥ 0, r(u), and g(q) are arbitrary functions, are designed
in [90]. The design of numerical fluxes follows the same lines as that
for the convection-diffusion equation (3.9) for the second derivative term
(a(u)ux)x and for the KdV type Eq. (4.9) for the third derivative term
(r′(u)g(r(u)x)x)x. A cell entropy inequality and the L2 stability of the
LDG scheme for the nonlinear equation (5.4) are proved [90], which again
do not depend on the smoothness of the solution of (5.4) and the order
of accuracy of the scheme. For smooth solutions, a suboptimal O(hk+1/2)
order L2 error estimate for the linearized version is proved [90]. The LDG
scheme is used in [90] to study different regimes when one of the dissipation
and the dispersion mechanisms dominates, and when they have comparable
influence on the solution. An advantage of the LDG scheme designed in
[90] is that it is stable regardless of which mechanism (convection, diffusion,
dispersion) actually dominates.

5.4. The Fifth-Order KdV-Type Equations. An LDG scheme is
designed in [90] for the fifth-order KdV type equations

ut + f(u)x + (r′(u)g(r(u)x)x)x + (s′(u)h(s(u)xx)xx)x = 0, (5.5)

where f(u), r(u), g(q), s(u), and h(p) are arbitrary functions, and a cell
entropy inequality and L2 stability are proved. A special case is the Kawa-
hara equation

ut + uux + uxxx − δuxxxxx = 0

which has very interesting close-form exact solutions that can be used to
test the accuracy of the scheme [90]. Other special cases of (5.5) include
the generalized Kawahara equation, Ito’s fifth-order KdV equation, and
a fifth-order KdV type equations with high nonlinearity, which are also
explored in [90].

5.5. The Fully Nonlinear K(n, n, n) Equations. LDG methods
for solving the fifth-order fully nonlinear K(n, n, n) equations

ut + (un)x + (un)xxx + (un)xxxxx = 0, (5.6)

where n is a positive integer, have been designed in [90]. The design of
numerical fluxes follows the same lines as that for the K(m,n) Eq. (5.3).
For odd n, stability in the Ln+1 norm of the resulting LDG scheme can
be proved for the nonlinear equation (5.6) [90]. This scheme is used to
simulate compacton propagation in [90].
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5.6. The Nonlinear Schrödinger Equations. The nonlinear
Schrödinger (NLS) equation

i ut + uxx + i (g(|u|2)u)x + f(|u|2)u = 0, (5.7)

the two-dimensional version

i ut +Δu+ f(|u|2)u = 0, (5.8)

and the coupled nonlinear Schrödinger equation
{
i ut + i αux + uxx + β u+ κv + f(|u|2, |v|2)u = 0
i vt − i αvx + vxx − β u+ κv + g(|u|2, |v|2)v = 0,

(5.9)

where f(q) and g(q) are arbitrary functions and α, β, and κ are constants,
are also dispersive wave equations, even though they involve second order
spatial derivatives with i =

√
−1 as the coefficient. In [91], LDG methods

are designed for these equations. The cell entropy inequality and L2 sta-
bility are proved for these schemes in [91]. For smooth solutions, an L2

error estimate of O(hk+1/2) for the linearized version is also obtained in
[91]. The LDG scheme is used in [91] to simulate the soliton propagation
and interaction, and the appearance of singularities. The easiness of h− p
adaptivity of the LDG scheme and rigorous stability for the fully nonlinear
case make it an ideal choice for the simulation of Schrödinger equations,
for which the solutions often have quite localized structures.

5.7. The Ito-Type Coupled KdV Equations. An LDG method
is developed in [93] to solve the Ito-type coupled KdV equations

ut + αuux + βvvx + γuxxx = 0, vt + β(uv)x = 0,

where α, β, and γ are constants. An L2 stability is proved for the LDG
method. For the Ito’s equation

ut − (3u2 + v2)x − uxxx = 0,

vt − 2(uv)x = 0,

the result for u behaves like dispersive wave solutions and the result for
v behaves like shock wave solutions. Simulation for such solutions is per-
formed in [93] using the LDG scheme.

5.8. The Kadomtsev–Petviashvili (KP) Equations. The two-
dimensional Kadomtsev–Petviashvili (KP) equations

(ut + 6uux + uxxx)x + 3σ2uyy = 0, (5.10)

where σ2 = −1 (referred to as KP-I) or σ2 = 1 (referred to as KP-II) are
generalizations of the one-dimensional KdV equations and are important
models for water waves.
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This equation is equivalent to

ut + 6(uux) + uxxx + 3σ2∂−1
x uyy = 0 (5.11)

where the nonlocal operator ∂−1
x makes the equation well posed only in the

restricted space

V(R2) =

{
f :

∫
R2

(
1 + ξ2 +

η2

ξ2

)
|f̂(ξ, η)|2dξdη <∞

}
.

It is therefore complicated to design an efficient LDG scheme which relies
on local operations. In [92], an LDG scheme for (5.10) is designed by care-
fully choosing locally supported bases which satisfy the global constraint
needed by the solution of (5.10). The LDG scheme satisfies a cell entropy
inequality and is L2 stable for the fully nonlinear equation (5.10). Numer-
ical simulations are performed in [92] for both the KP-I equations and the
KP-II equations. Line solitons and lump-type pulse solutions have been
simulated.

5.9. The Zakharov–Kuznetsov (ZK) Equation. The two-dimen-
sional Zakharov–Kuznetsov (ZK) equation

ut + (3u2)x + uxxx + uxyy = 0 (5.12)

is another generalization of the one-dimensional KdV equations.
An LDG scheme is designed for (5.12) in [92]. A cell entropy inequality

and the L2 stability are proved. A suboptimal L2 error estimate is given in
[94]. Various nonlinear waves have been simulated by this scheme in [92].

5.10. The Camassa–Holm (CH) Equation. The Camassa–Holm
(CH) equation is given as

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx,

where κ is a constant. An LDG scheme is designed in [95]. L2 stability for
general solutions and a suboptimal L2 error estimate for smooth solutions
are provided in [95].

5.11. The Hunter–Saxton (HS) Equation. The Hunter–Saxton
(HS) equation is given as

uxxt + 2uxuxx + uuxxx = 0.

A regularization with viscosity is given as

uxxt + 2uxuxx + uuxxx − ε1uxxxx = 0,

and a regularization with dispersion is given as

uxxt + 2uxuxx + uuxxx − ε2uxxxxx = 0,

where ε1 ≥ 0 and ε2 are small constants.
In [96, 98], we design LDG schemes for these equations and prove their

energy stability.
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5.12. The Generalized Zakharov System. The following system

iEt +ΔE −Nf(|E|2)E + g(|E|2)E = 0,

ε2Ntt −Δ(N + F (|E|2)) = 0

is referred to as the generalized Zakharov system and is originally intro-
duced to describe the Langmuir turbulence in a plasma. In [87], we design
an LDG scheme for this system and prove two energy conservations for this
scheme. Numerical experiments for the Zakharov system are presented to
illustrate the accuracy and capability of the methods, including accuracy
tests, plane waves, soliton–soliton collisions of the standard and generalized
Zakharov system and a two-dimensional problem.

5.13. The Degasperis–Procesi (DP) Equation. The Degasperis–
Procesi (DP) equation is given as

ut − utxx + 4f(u)x = f(u)xxx,

where f(u) = 1
2u

2. The solution may be discontinuous regardless of the
smoothness of the initial conditions.

In [100], we develop LDG methods and prove L2 stability for the gen-
eral polynomial spaces and total variation stability for P 0 elements. The
numerical simulation results for different types of solutions of the nonlin-
ear Degasperis–Procesi equation are provided to illustrate the accuracy and
capability of the LDG method in [100].

6. DG Methods for Other Dissipative Equations. DG methods
have also been designed for other dissipative equations containing higher
even order derivatives. We will describe briefly some of these schemes in
this section.

6.1. The Bi-harmonic Type Equations. An LDG scheme for solv-
ing the time-dependent convection bi-harmonic equation

ut +

d∑
i=1

fi(u)xi +

d∑
i=1

(ai(uxi)uxixi)xixi = 0, (6.1)

where fi(u) and ai(q) ≥ 0 are arbitrary functions, was designed in [104].
The numerical fluxes are chosen following the same “alternating fluxes”
principle similar to the second order convection-diffusion equation (3.1),
namely the flux pairs corresponding to u and uxxx, and the flux pairs
corresponding to ux and uxx, should be chosen in an alternating fashion
within each pair. A cell entropy inequality and the L2 stability of the LDG
scheme for the nonlinear equation (6.1) can be proved [104], which do not
depend on the smoothness of the solution of (6.1), the order of accuracy
of the scheme, or the triangulation. Optimal L2 error estimates can be
proved for the linear biharmonic equation

ut +�2u = 0, (6.2)
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for both structured and unstructured meshes, see [36]. In [63], supercon-
vergence of the LDG method for linear fourth order equations is studied.

Ultra weak DG methods for solving (6.2) are designed in [17]. The
choice of numerical fluxes are similar to that for the LDG schemes described
above, with additional internal penalty term on the flux corresponding to
uxxx. The resulting scheme can be proved to be L2 stable, and a suboptimal
L2 error estimate for k ≥ 3 is proved in [17]. Numerical experiments
indicate optimal convergence in L2 for all k ≥ 3. The scheme as well as
the stability analysis can be generalized to certain nonlinear fourth order
PDEs [17].

Both the LDG schemes and the ultra weak DG methods can be gener-
alized to PDEs of higher even order spatial derivatives. For example, [36]
contains optimal L2 error estimates for linear diffusion PDEs with higher
even orders.

6.2. The Kuramoto–Sivashinsky Type Equations. LDG meth-
ods are developed in [93] to solve the Kuramoto–Sivashinsky type equations

ut + f(u)x − (a(u)ux)x + (r′(u)g(r(u)x)x)x + (s(ux)uxx)xx = 0, (6.3)

where f(u), a(u), r(u), g(q), and s(p) ≥ 0 are arbitrary functions. The
Kuramoto–Sivashinsky equation

ut + uux + αuxx + βuxxxx = 0, (6.4)

where α and β ≥ 0 are constants, which is a special case of (6.3), is a
canonical evolution equation which has attracted considerable attention
over the last decades. When the coefficients α and β are both positive, its
linear terms describe a balance between long-wave instability and short-
wave stability, with the nonlinear term providing a mechanism for energy
transfer between wave modes. The LDG method developed in [93] can be
proved to satisfy a cell entropy inequality and is therefore L2 stable, for
the general nonlinear equation (6.3). The LDG scheme is used in [93] to
simulate chaotic solutions of (6.4).

6.3. Semi-conductor Device Simulations. Device simulation
models in semi-conductor device simulations include drift-diffusion, hy-
drodynamic, energy transport, high field, kinetic and Boltzmann–Poisson
models. DG or LDG methods have been designed for these models, many
of them with stability analysis and error estimates.

In [44, 45], an LDG method is designed to solve time-dependent and
steady state moment models including the hydrodynamic (HD) models and
the energy transport (ET) models, for semiconductor device simulations, in
which both the first derivative convection terms and second derivative dif-
fusion (heat conduction) terms exist and are discretized by the DG method
and the LDG method, respectively. The potential equation for the electric
field is also discretized by the LDG method, thus the numerical tool is based
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on a unified discontinuous Galerkin methodology for different components
and is hence potentially viable for efficient h − p adaptivity and parallel
implementation. One-dimensional n+−n−n+ diode and two-dimensional
MESFET device are simulated by the DG methods using the HD and ET
models and comparison is made with earlier finite difference essentially
non-oscillatory (ENO) simulation results. In [46], we obtain L2 error esti-
mates for smooth solutions of the drift-diffusion (DD) and high-field (HF)
models using the LDG method.

In [14, 15], a discontinuous Galerkin scheme applied to deterministic
computations of the transients for the Boltzmann–Poisson system describ-
ing electron transport in semiconductor devices is developed and applied
to simulate hot electron transport in bulk silicon, in a silicon n+ − n− n+

diode and in a double gated 12nm MOSFET. Additionally, the obtained
results are compared to those of a high order WENO scheme simulation.

6.4. Cahn–Hilliard Equations. An important class of high order
nonlinear diffusion equations is the class of the Cahn–Hilliard equation

ut = ∇ · (b(u)∇(−γΔu+Ψ′(u))), (6.5)

and the Cahn–Hilliard system

ut = ∇ · (B(u)∇ω), ω = −γΔu+DΨ(u), (6.6)

where {DΨ(u)}l = ∂Ψ(u)
∂ul

and γ is a positive constant. Here b(u) is the

nonnegative diffusion mobility and Ψ(u) is the homogeneous free energy
density for the scalar case (6.5). For the system case (6.6), B(u) is the
symmetric positive semi-definite mobility matrix and Ψ(u) is the homoge-
neous free energy density.

In [85, 86], LDG methods are designed for the Cahn–Hilliard equation
(6.5) and the Cahn–Hilliard system (6.6), respectively. The proof of the
energy stability for the LDG schemes is given for the general nonlinear
solutions. Many simulation results are given. In [36], optimal L2 error
estimate is obtained for the LDG method for solving the linearized Cahn–
Hilliard equation.

6.5. The Surface Diffusion Equations. The surface diffusion
equation is given as

ut +∇ ·
(
Q

(
I− ∇u⊗∇u

Q2

)
∇H
)

= 0 (6.7)

where Q is the area element

Q =
√
1 + |∇u|2
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and H is the mean curvature of the domain boundary Γ

H = ∇ ·
(
∇u
Q

)
.

The Willmore flow equation is given as

ut +Q∇ ·
(
1

Q

(
I− ∇u⊗∇u

Q2

)
∇(QH)

)
(6.8)

−1

2
Q∇ ·
(
H2

Q
∇u
)
= 0.

In [97], LDG methods are designed for both the surface diffusion equa-
tion (6.7) and the Willmore flow equation (6.8). Energy stability is proved.
In [47, 48], L2 error estimates are given for these LDG methods.

7. Concluding Remarks. In these lectures we have given a brief
summary of discontinuous Galerkin (DG) methods for time-dependent
PDEs. Clearly, DG schemes can be designed for a wide class of PDEs, both
of the dispersive type and of the dissipative type, and often energy stability
similar to those for the exact solution of the PDEs can be obtained. Among
the current and future research topics for discontinuous Galerkin method,
we would like to point out the following.

First, it is worthwhile to study efficient time discretization techniques.
While the explicit TVD Runge–Kutta time discretization might be suit-
able for hyperbolic equations or strongly convection dominated problems,
for other equations, the time step restriction is too severe to use explicit
Runge–Kutta time discretization for the semi-discrete DG schemes. Suit-
able time discretization techniques, such as exponential time stepping,
preconditioning and multigrid techniques, are being investigated. It is
particularly challenging to design efficient time discretization techniques
for PDEs with high and odd leading order of spatial derivatives (dispersive
type PDEs), especially when the leading term is nonlinear.

Second, it is worthwhile to study effective and efficient error indica-
tors and a posteriori error estimates, to guide the design of both h and
p adaptivity. DG methods have the flexibility in h-p adaptivity; however,
this potential can only be fully realized if we have reliable error indicators
to tell us where to refine or coarsen the mesh and where to increase or
decrease the polynomial degree. Again, it is particularly challenging to
design reliable error indicators for PDEs with high and odd leading order
of spatial derivatives (dispersive type PDEs).

Finally, it is worthwhile to study the design and stability analysis of
DG schemes for more demanding nonlinear PDEs from applications.
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ADAPTIVITY AND ERROR ESTIMATION FOR
DISCONTINUOUS GALERKIN METHODS

SLIMANE ADJERID∗ AND MAHBOUB BACCOUCH†

Abstract. We test the a posteriori error estimates of discontinuous Galerkin (DG)
discretization errors (Adjerid and Baccouch, J. Sci. Comput. 33(1):75–113, 2007; Adj-
erid and Baccouch, J. Sci. Comput. 38(1):15–49, 2008; Adjerid and Baccouch Comput.
Methods Appl. Mech. Eng. 200:162–177, 2011) for hyperbolic problems on adaptively
refined unstructured triangular meshes. A local error analysis allows us to construct
asymptotically correct a posteriori error estimates by solving local hyperbolic problems
on each element. The Taylor-expansion-based error analysis (Adjerid and Baccouch, J.
Sci. Comput. 33(1):75–113, 2007; Adjerid and Baccouch, J. Sci. Comput. 38(1):15–49,
2008; Adjerid and Baccouch Comput. Methods Appl. Mech. Eng. 200:162–177, 2011)
does not apply near discontinuities and shocks and lead to inaccurate estimates under
uniform mesh refinement. Here, we present several computational results obtained from
adaptive refinement computations that suggest that even in the presence of shocks our
error estimates converge to the true error under adaptive mesh refinement. We also
show the performance of several adaptive strategies for hyperbolic problems with dis-
continuous solutions.

Key words. Adaptive discontinuous Galerkin method, Hyperbolic problems, A pos-
teriori error estimation, Unstructured meshes
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1. Introduction. The DGmethod was first developed for the neutron
equation [20]. Since then, DG methods have been used to solve hyperbolic
[11, 13–15, 17], parabolic [16], and elliptic [10] partial differential equations.

The DG methods are a family of locally conservative, stable, and
high-order accurate methods that are easily coupled with other well-known
methods and are well suited to adaptive strategies. For these reasons, they
have attracted the attention of many researchers working in computational
mechanics, computational mathematics, and computer science. They pro-
vide an appealing approach to address problems having discontinuities,
such as those arising in hyperbolic conservation laws. The DG method
does not require the approximate solutions to be continuous across element
boundaries, it instead involves a flux term to account for the discontinuities.
For a more complete list of citations on DG methods and its applications,
consult [12]. A main advantage of using discontinuous finite element basis
is to simplify adaptive p- and h-refinement with hanging nodes.

The DG method has a simple communication pattern between ele-
ments with a common face that makes it useful for parallel computation.

∗Department of Mathematics, Virginia Tech, Blacksburg, VA 24061, USA, ad-
jerids@vt.edu

†Department of Mathematics, University of Nebraska, Omaha, NE 68182, USA,
mbaccouch@unomaha.edu

X. Feng et al. (eds.), Recent Developments in Discontinuous Galerkin Finite
Element Methods for Partial Differential Equations, The IMA Volumes in
Mathematics and its Applications 157, DOI 10.1007/978-3-319-01818-8 3,
© Springer International Publishing Switzerland 2014

63

http://adjerids@vt.edu
http://mbaccouch@unomaha.edu


64 Slimane Adjerid and Mahboub Baccouch

Furthermore, it can handle problems with complex geometries to high
order. Regardless of the type of DG method, we need to know how well our
computed solution approximates the exact solution. In practice, the exact
solution of the problem is not available and a method to estimate the dis-
cretization error is needed. For these reasons, a posteriori error estimates
have been developed for DG methods and provide some initial guidance for
deciding on the degree of the approximation and the size of the mesh that
guarantee a prescribed level of accuracy. Furthermore, error estimates may
be used to guide hp-adaptive refinement.

The first superconvergence result for DG solutions of hyperbolic partial
differential equations appeared in Adjerid et al. [4]. The authors showed
that DG solutions of one-dimensional linear and nonlinear hyperbolic prob-
lems using p-degree polynomial approximations exhibit an O(hp+2) super-
convergence rate at the roots of (p + 1)-degree Radau polynomial. This
lead to the conclusion that the leading term of the DG error on each ele-
ment is proportional to (p + 1)-degree Radau polynomial which was used
to construct asymptotically correct a posteriori error estimates. They fur-
ther established a strong O(h2p+1) superconvergence at the downwind end
of every element. Later, Krivodonova and Flaherty [19] showed that the
leading term of the local discretization error on triangles having one out-
flow edge is spanned by a suboptimal set of orthogonal polynomials of
degree p and p+1 and computed DG error estimates by solving local prob-
lems involving numerical fluxes, thus requiring information from neigh-
boring inflow elements. Adjerid and Massey [5] extended these results
to multi-dimensional problems using rectangular meshes and presented an
error analysis for linear and nonlinear hyperbolic problems. They showed
that the leading term in the true local error is spanned by two (p+1)-degree
Radau polynomials in the x and y directions, respectively. They further
discovered that a p-degree discontinuous finite element solution exhibits an
O(hp+2) superconvergence at Radau points obtained as a tensor product
of the roots of Radau polynomial of degree p+1. Using these results, they
were able to compute asymptotically exact a posteriori error estimates for
linear and nonlinear hyperbolic problems on Cartesian meshes.

Adjerid and Baccouch [1, 2] investigated the superconvergence prop-
erties of discontinuous Galerkin solutions of a scalar first-order hyperbolic
problem on triangular meshes. They presented a detailed discussion on the
superconvergence properties versus the choice of finite element polynomial
spaces. First, they classified triangular elements into three types: (i) type
I with one inflow edge and two outflow edges, (ii) type II with two inflow
edges and one outflow edge, and (iii) type III with one inflow edge, one
outflow edge, one edge parallel to the characteristics. Through computa-
tions, they showed that the local superconvergence results [1] extend to
global DG solutions on general meshes with a corrected inflow boundary
condition. In particular, they showed that the discontinuous finite element
solution is O(hp+2) superconvergent at the Legendre points on the outflow
edge for triangles having one outflow edge. For triangles having two outflow
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edges the finite element error is O(hp+2) superconvergent at the end points
of the inflow edge.

Adjerid and Weinhart [7–9] studied the asymptotic behavior of the
local DG error for multi-dimensional first-order linear symmetric and sym-
metrizable hyperbolic systems of partial differential equations. They per-
formed a local error analysis by writing the local error as a series and
showing that its leading term can be expressed as a linear combination
of Legendre polynomials of degree p and p + 1. They were able to com-
pute efficient and asymptotically exact estimates of the discontinuous finite
element error.

In this manuscript we consider the modified discontinuous Galerkin
method [2] with a corrected inflow flux and an enriched polynomial space
Up with adaptive mesh refinement. We consider several mesh refinement
strategies guided by both discretization error estimates and local residu-
als. Since L2 a posteriori error estimates based on Taylor expansions fail
to be asymptotically exact under uniform mesh refinement in the pres-
ence of shocks [3, 5, 6], we present several numerical results which suggest
that such error estimates converge to the true errors under adaptive mesh
refinement on general unstructured triangular meshes in the presence of
discontinuities. Numerical results further suggest that using local residuals
to guide the adaptive mesh refinement yield more efficient algorithms when
compared to using the error estimate itself in the presence of discontinu-
ities. Thus, we recommend an adaptive strategy that combines the local
residuals or any other explicit estimators to guide mesh refinement and
the proposed error estimate to assess solution accuracy and terminate the
adaptive refinement process.

This paper is organized as follows: In Sect. 2 we state the modified DG
formulation for linear and nonlinear hyperbolic problem and present our
a posteriori error estimation procedures for linear and nonlinear problems.
In Sect. 3 we describe several adaptive mesh refinement strategies that will
be used to test the performance of our error estimates. Finally, in Sect.
4 we present numerical results for several linear and nonlinear hyperbolic
problems with discontinuous solutions and conclude with a few remarks in
Sect. 5.

2. Discontinuous Galerkin Formulation and Error Estima-
tion. In this section we present an adaptive modified discontinuous
Galerkin method [1–3] combined with a posteriori error estimation pro-
cedure. In addition to being used to steer the adaptive process, the a
posteriori error estimate is also used to correct the numerical flux needed
to compute the DG solution on downwind elements. This modified DG
method maintains the structure of the local discretization error on each
element of the mesh which makes the error estimation both efficient and
accurate.



66 Slimane Adjerid and Mahboub Baccouch

In order to further simplify the error estimation procedure we use the
augmented polynomial space Up given by

Up = Pp ∪ span{xp+1, yp+1}, p ≥ 1,

where

Pk =

{
q | q =

k∑
m=0

m∑
i=0

cmi x
iym−i

}
, k = 0, 1, . . . , p. (2.1a)

The finite element space Up is suboptimal, i.e., it contains p+1-degree
terms that do not contribute to global convergence rate but simplifies the
a posteriori error estimation procedures described later in this manuscript.

We consider a reference triangle Δ0 defined by the vertices (0, 0), (1, 0),
and (0, 1) and define the following orthogonal polynomials [18]

ϕl
k(ξ, η) = 2kL̂k

(
2ξ

1− η − 1

)
(1−η)kP̂ 2k+1,0

l (2η−1), k, l ≥ 0 k+l = p ≥ 0,

(2.2a)
where P̂α,β

n (x), −1 ≤ x ≤ 1, is the Jacobi polynomial

P̂α,β
n (x) =

(−1)n
2nn!

(1−x)−α(1+x)−β dn

dxn
[(1−x)α+n(1+x)β+n], α, β > −1,

(2.2b)
and L̂n(x) = P̂ 0,0

n (x), −1 ≤ x ≤ 1 is the nth-degree Legendre polynomial.

We note that these polynomials satisfy the L2 orthogonality

∫ 1

0

∫ 1−η

0

ϕl
kϕ

q
pdξdη = clqkpδkpδlq. (2.3)

Radau polynomials are defined by

R̂p+1(x) = (1− x)P̂ 1,0
p (x) = C(L̂p+1(x)− L̂p(x)), −1 ≤ x ≤ 1. (2.4)

We drop the hat and let Lp, P
α,β
p and Rp, respectively, denote the Jacobi,

Legendre and Radau polynomials shifted to [0, 1].
Let us note that U on the physical element is in the modified polyno-

mial space

Up = Pp + span{ξ(x, y)p+1, η(x, y)p+1},

where (x, y) → (ξ(x, y), η(x, y)) is the standard affine mapping from the
physical element Δ to the reference element Δ0.

First, let us consider a divergence-free linear stationary hyperbolic
problem on an open bounded convex polygonal domain Ω ⊆ R2. Let a =
[a1(x, y), a2(x, y)]

T denote a nonzero velocity vector. If n denotes the out-
ward unit normal vector, the domain boundary ∂Ω = ∂Ω+ ∪ ∂Ω− ∪ ∂Ω0,
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where the inflow, outflow, and characteristic boundaries, respectively, are
∂Ω− = {(x, y) ∈ ∂Ω | a · n < 0}, ∂Ω+ = {(x, y) ∈ ∂Ω | a · n > 0}, and
∂Ω0 = {(x, y) ∈ ∂Ω | a · n = 0}.
Let u(x, y) denote a smooth function on Ω and consider the following
hyperbolic boundary value problem

L(u) = a.∇u+ cu = f, (x, y) ∈ Ω = (0, 1)2, (2.5a)

∇.a =
∂a1
∂x

+
∂a2
∂y

= 0, (2.5b)

subject to the boundary conditions

u(x, 0) = g0(x), u(0, y) = g1(y), (2.5c)

where the functions a(x, y), c(x, y), f(x, y), g0(x), and g1(y) are selected
such that the exact solution u(x, y) ∈ C∞(Ω).

In order to obtain the weak discontinuous Galerkin formulation for
(2.5), we partition the domain Ω into N triangular elements Δj , j =
1, . . . , N, such that on every edge a · n does not change sign. Thus, every
edge is either inflow, outflow, or characteristic, respectively, if a · n < 0,
a · n > 0 or a · n = 0. Using this mesh orientation, a triangle can be
classified into type I having one inflow edge and 2 outflow edges, type II
having two outflow and one inflow edges, or type III having one inflow,
one outflow and one characteristic edges. The problem is solved on each
element starting from the upwind elements and proceeding to the neigh-
boring elements in the downwind direction, i.e., we order the elements such
that the inflow boundary Γ−

j of an element Δj is contained in the inflow

boundary ∂Ω− of the domain or in the outflow boundary Γ+
i of Δi, i < j.

In the remainder of this paper we omit the element index and refer to
an arbitrary element by Δ whenever confusion is unlikely. Note that Γ+

and Γ−, respectively, denote the outflow and inflow boundaries of Δ.
Thus, our discontinuous Galerkin method consists of finding U ∈ Up

such that∫
Γ−

a · nÛV ds+
∫
Γ+

a · nUV ds−
∫∫

Δ

(a · ∇V − cV )Udxdy

=

∫∫
Δ

fV dxdy, ∀ V ∈ Up. (2.6a)

In order to complete the definition of the DG method we need to select
the corrected upwind numerical flux Û on Γ− as

Û =

{
u, on Γ−⋂ ∂Ω−

U− + E−, elsewhere,
(2.6b)

where U− and E−, respectively, are the limit of U and E from the inflow
element sharing Γ− , i.e., if (x, y) ∈ Γ−, then

U−(x, y) = lim
s→0+

U((x, y) + sn),E−(x, y) = lim
s→0+

E((x, y) + sn). (2.6c)
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Here, E is an a posteriori error estimate that will be defined by
following [2, 3] to write the leading term of the local DG error on each
triangle as a linear combination of the following p error basis functions

(u − U)(x, y) ≈ E(x, y) =

p∑
i=1

diχi
p+1−i(ξ(x, y), η(x, y)), (2.7a)

where χj are given in [2]. For the sake of completeness we include them
in Tables 1 and 2 for types I and II and [α, β] as given in (2.11) while for
type III the leading term of the error can be written as

Qp+1 =
∑

i,j≥0
i+j=p

cji (1−ξ−η)P
2j+2,0
i (2η−1)(1−η)jP 1,0

j

(
2ξ

1− η − 1

)
, (2.7b)

with

cp0 =
1

p+ 1

p∑
i=1

(−1)i+1(p+ 1− i)cp−i
i . (2.7c)

After computing the finite element solution U on an element Δ, we compute
an error estimate by solving the problem for i = 1, 2, . . . , p,
∫∫

Δ

(a · ∇(U + E) + c(U + E))χi
p+1−idxdy =

∫∫
Δ

fχi
p+1−idxdy.

(2.7d)
Next we consider nonlinear problems of the form

L(u) = ∇ ·F(u) = h(u)x + g(u)y = f(x, y), (x, y) ∈ Ω = (0, 1)2, (2.8a)

subject to the boundary conditions

u(x, 0) = g0(x), u(0, y) = g1(y). (2.8b)

In our analysis [3] we assume F : R → R
2, u : R2 → R, f, g0 and g1 to be

analytic functions such that g′(u) > 0 and h′(u) > 0 over the domain Ω.
The inflow, outflow, and characteristic boundaries, respectively, are defined
by ∂Ω− = {(x, y) ∈ ∂Ω | F′(u) · n = [h′(u), g′(u)]t · n < 0}, ∂Ω+ =
{(x, y) ∈ ∂Ω | F′(u) · n > 0}, and ∂Ω0 = {(x, y) ∈ ∂Ω | F′(u) · n = 0},
such that ∂Ω = ∂Ω− ∪ ∂Ω+ ∪ ∂Ω0 and n is the outward unit normal to
∂Ω. We further assume that the unstructured triangular mesh is such that
F′(u).n does not change sign on all edges, i.e., every edge is either inflow,
outflow, or characteristic.
The discrete DG formulation consists of determining U ∈ Up such that

∫
Γ−

n ·F(Û )V ds+

∫
Γ+

n ·F(U)V ds−
∫∫

Δ

F(U) · ∇V dxdy

=

∫∫
Δ

fV dxdy, ∀ V ∈ Up, (2.9a)
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Table 1

Error basis functions for the spaces Up for p = 1 to 3 on the reference triangle of
type I where s = α/β

p = 1

χ1
1 = (12(ϕ0

1 + ϕ1
1)s

2 + 2(10ϕ0
0 − 2ϕ1

0 − 3ϕ0
1 − 2ϕ2

0 + 12ϕ1
1 + 5ϕ0

2)s + 12ϕ1
0 + 6ϕ0

1 − 8ϕ2
0+

6ϕ1
1 + 5ϕ0

2)/10s + 5

p = 2

χ1
2 = (75(2ϕ1

1 + ϕ0
2 + 2ϕ2

1 + ϕ1
2)s

4 + 5(28ϕ0
0 + 28ϕ1

0 − 42ϕ0
1 − 12ϕ2

0 + 54ϕ1
1 + 51ϕ0

2−
12ϕ3

0 + 96ϕ2
1 + 51ϕ1

2)s
3 + (−140ϕ0

0 + 532ϕ1
0 + 126ϕ0

1 − 68ϕ2
0 + 36ϕ1

1 + 140ϕ0
2 − 180ϕ3

0+
540ϕ2

1 + 315ϕ1
2)s

2 + (−140ϕ0
0 + 280ϕ1

0 + 168ϕ0
1 + 100ϕ2

0 − 12ϕ1
1 − 10ϕ0

2 − 180ϕ3
0+

240ϕ2
1 + 165ϕ1

2)s + 5(16ϕ2
0 + 6ϕ1

1 − ϕ0
2 − 12ϕ3

0 + 6ϕ2
1 + 6ϕ1

2))/15(s + 1)3(5s + 2)

χ2
1 = (−240(ϕ1

1 + ϕ2
1)s

5 + (−448ϕ0
0 − 112ϕ1

0 + 840ϕ0
1 + 128ϕ2

0 − 780ϕ1
1 − 350ϕ0

2 + 72ϕ3
0−

1200ϕ2
1 + 105ϕ0

3)s
4 − 21(24ϕ0

0 + 56ϕ1
0 − 68ϕ0

1 − 24ϕ2
0 + 12ϕ1

1 + 30ϕ0
2 − 16ϕ3

0+
108ϕ2

1 − 17ϕ0
3)s

3 + (616ϕ0
0 − 2072ϕ1

0 − 84ϕ0
1 + 408ϕ2

0 + 936ϕ1
1 + 576ϕ3

0 − 2004ϕ2
1+

441ϕ0
3)s

2 + (392ϕ0
0 − 784ϕ1

0 − 336ϕ0
1 − 184ϕ2

0 + 624ϕ1
1 + 280ϕ0

2 + 432ϕ3
0 − 804ϕ2

1+
231ϕ0

3)s + 2(−80ϕ2
0 + 30ϕ1

1 + 35ϕ0
2 + 60ϕ3

0 − 54ϕ2
1 + 21ϕ0

3))/21(s + 1)3(5s + 2)

p = 3

χ1
3 = (420(2ϕ3

1 + ϕ2
2 + 2ϕ2

1 + ϕ1
2)s

5 + 4(84ϕ0
0 + 228ϕ1

0 − 80ϕ4
0 + 870ϕ3

1 + 455ϕ2
2−

54ϕ0
1 + 108ϕ2

0 − 324ϕ1
1 − 116ϕ3

0 + 600ϕ2
1 + 455ϕ1

2)s
4 + (−2352ϕ0

0 + 2976ϕ1
0 − 1280ϕ4

0+
5520ϕ3

1 + 3080ϕ2
2 + 4608ϕ0

1 + 2736ϕ2
0 − 2592ϕ1

1 − 2520ϕ0
2 − 1352ϕ3

0 + 1596ϕ2
1 + 2450ϕ1

2+
441ϕ0

3)s
3 + 6(8ϕ0

0 − 232ϕ1
0 − 320ϕ4

0 + 680ϕ3
1 + 420ϕ2

2 + 156ϕ0
1 + 888ϕ2

0 + 216ϕ1
1−

240ϕ0
2 − 152ϕ3

0 − 112ϕ2
1 + 120ϕ1

2 + 63ϕ0
3)s

2 + (720ϕ0
0 − 1440ϕ1

0 − 1280ϕ4
0 + 1320ϕ3

1+
980ϕ2

2 − 864ϕ0
1 + 2160ϕ2

0 + 1296ϕ1
1 + 520ϕ3

0 − 372ϕ2
1 − 190ϕ1

2 + 63ϕ0
3)s − 20(16ϕ4

0−
6ϕ3

1 − 7ϕ2
2 − 20ϕ3

0 − 6ϕ2
1 + 2ϕ1

2))/140(s + 1)4(3s + 1)

χ2
2 = (−168(4ϕ3

1 − ϕ1
3 + 4ϕ2

1 − ϕ0
3)s

5 − 4(168ϕ0
0 + 240ϕ1

0 − 40ϕ4
0 + 708ϕ3

1 − 182ϕ1
3−

216ϕ0
1 − 486ϕ1

1 + 135ϕ0
2 − 112ϕ3

0 + 438ϕ2
1 + 135ϕ1

2 − 182ϕ0
3)s

4 + 2(1512ϕ0
0 − 2088ϕ1

0+
320ϕ4

0 − 2304ϕ3
1 + 616ϕ1

3 − 2916ϕ0
1 − 648ϕ2

0 + 2484ϕ1
1 + 1350ϕ0

2 + 752ϕ3
0 − 180ϕ2

1−
540ϕ1

2 + 175ϕ0
3)s

3 + 3(48ϕ0
0 + 288ϕ1

0 + 320ϕ4
0 − 1184ϕ3

1 + 336ϕ1
3 − 576ϕ0

1 − 1392ϕ2
0+

144ϕ1
1 + 600ϕ0

2 + 488ϕ3
0 + 724ϕ2

1 + 30ϕ1
2 − 21ϕ0

3)s
2 + (−528ϕ0

0 + 1056ϕ1
0 + 640ϕ4

0−
1248ϕ3

1 + 392ϕ1
3 + 432ϕ0

1 − 1584ϕ2
0 − 648ϕ1

1 + 180ϕ0
2 − 8ϕ3

0 + 1236ϕ2
1 + 450ϕ1

2−
49ϕ0

3)s + 160ϕ4
0 − 144ϕ3

1 + 56ϕ1
3 − 200ϕ3

0 + 108ϕ2
1 + 90ϕ1

2 − 7ϕ0
3)/56(s + 1)4(3s + 1)

χ3
1 = (3360(ϕ3

1 + ϕ2
1)s

6 + 14(384ϕ0
0 + 240ϕ1

0 − 64ϕ4
0 + 1440ϕ3

1 + 54ϕ0
4 − 648ϕ0

1 − 648ϕ1
1+

540ϕ0
2 − 136ϕ3

0 + 1116ϕ2
1 + 270ϕ1

2 − 189ϕ0
3)s

5 + (−6720ϕ0
0 + 29280ϕ1

0 − 5216ϕ4
0+

48240ϕ3
1 + 3276ϕ0

4 + 13968ϕ0
1 + 4320ϕ2

0 − 44712ϕ1
1 + 3780ϕ0

2 − 9680ϕ3
0 + 22320ϕ2

1+
17640ϕ1

2 − 4410ϕ0
3)s

4 − 6(4984ϕ0
0 − 6248ϕ1

0 + 1984ϕ4
0 − 9760ϕ3

1 − 924ϕ0
4 − 10452ϕ0

1−
4728ϕ2

0 + 9108ϕ1
1 + 3990ϕ0

2 + 2944ϕ3
0 − 196ϕ2

1 − 4200ϕ1
2 − 441ϕ0

3)s
3 + (144ϕ0

0−
11232ϕ1

0 − 13376ϕ4
0 + 37440ϕ3

1 + 4536ϕ0
4 + 16416ϕ0

1 + 44208ϕ2
0 − 5184ϕ1

1 − 14400ϕ0
2−

10856ϕ3
0 − 18900ϕ2

1 + 11610ϕ1
2 + 5985ϕ0

3)s
2 + (4848ϕ0

0 − 9696ϕ1
0 − 7424ϕ4

0+
11520ϕ3

1 + 1764ϕ0
4 − 3600ϕ0

1 + 14544ϕ2
0 + 5400ϕ1

1 − 1260ϕ0
2 + 2008ϕ3

0−
9180ϕ2

1 + 1530ϕ1
2 + 2835ϕ0

3)s + 3(−544ϕ4
0 + 400ϕ3

1 + 84ϕ0
4 + 680ϕ3

0−
188ϕ2

1 + 30ϕ1
2 + 147ϕ0

3))/252(s + 1)4(3s + 1)

where Û is as defined in (2.6b). We estimate the error by solving the
linearized problem

∫∫
Δ

[h′(U), g′(U)]T · ∇(U + E)χi
p+1−idxdy

=

∫∫
Δ

fχi
p+1−idxdy, i = 1, . . . , p. (2.9b)



70 Slimane Adjerid and Mahboub Baccouch

Table 2

Error basis functions for the spaces Up for p = 1 to 4 on the reference element of
type II, s = α/β

p = 1

χ1
1 = ((−24ϕ1

0 − 12ϕ0
1 + 16ϕ2

0 + 18ϕ1
1 + 5ϕ0

2)s
2 − 3(8ϕ1

0 + 12ϕ0
1 + 8ϕ2

0−
18ϕ1

1 − 5ϕ0
2)s − 24ϕ0

1 + 6ϕ1
1 + 15ϕ0

2)5(s
2 + 3s + 3)

p = 2

χ1
2 = −((32ϕ2

0 + 18ϕ1
1 + ϕ0

2 − 24ϕ3
0 − 24ϕ1

2 − 6ϕ0
3)s

2 + 4(8ϕ2
0 + 18ϕ1

1+
ϕ0

2 + 8ϕ3
0 − 24ϕ1

2 − 6ϕ0
3)s + 6(10ϕ1

1 + ϕ0
2 − 4ϕ1

2 − 6ϕ0
3))6(s

2 + 4s + 6)

χ2
1 = ((320ϕ2

0 + 90ϕ1
1 − 35ϕ0

2 − 240ϕ3
0 − 204ϕ1

2 + 21ϕ2
1)s

2 + 4(80ϕ2
0 + 90ϕ1

1−
35ϕ0

2 + 80ϕ3
0 − 204ϕ1

2 + 21ϕ2
1)s + 6(10ϕ1

1 − 35ϕ0
2 − 4ϕ1

2 + 21ϕ2
1))21(s

2 + 4s + 6)

p = 3

χ1
3 = ((32ϕ4

0 + 30ϕ3
1 + 7ϕ2

2 − 40ϕ3
0 − 24ϕ1

2 − 2ϕ0
3)s

2 − 5(8ϕ4
0 − 30ϕ3

1−
7ϕ2

2 + 8ϕ3
0 + 24ϕ1

2 + 2ϕ0
3)s + 10(6ϕ3

1 + 7ϕ2
2 − 2(6ϕ1

2 + ϕ0
3)))7(s

2 + 5s + 10)

χ2
2 = ((−800ϕ4

0 − 624ϕ3
1 + 56ϕ1

3 + 1000ϕ3
0 + 348ϕ1

2 − 90ϕ0
3 − 7ϕ2

1)s
2 + 5(200ϕ4

0−
624ϕ3

1 + 56ϕ1
3 + 200ϕ3

0 + 348ϕ1
2 − 90ϕ0

3 − 7ϕ2
1)s − 10(24ϕ3

1 − 56ϕ1
3 − 48ϕ1

2+
90ϕ0

3 + 7ϕ2
1))56(s

2 + 5s + 10)

χ3
1 = ((2656ϕ4

0 + 2000ϕ3
1 + 84ϕ0

4 − 3320ϕ3
0 − 1012ϕ1

2 + 30ϕ0
3 − 147ϕ2

1)s
2−

5(664ϕ4
0 − 2000ϕ3

1 − 84ϕ0
4 + 664ϕ3

0 + 1012ϕ1
2 − 30ϕ0

3 + 147ϕ2
1)s+

10(8ϕ3
1 + 84ϕ0

4 − 16ϕ1
2 + 30ϕ0

3 − 147ϕ2
1))84(s

2 + 5s + 10)

p = 4

χ1
4 = ((−48ϕ4

0 − 30ϕ3
1 − 3ϕ2

2 + 40ϕ5
0 + 36ϕ4

1 + 8ϕ3
2)s

2 − 6(8ϕ4
0 + 30ϕ3

1+
3ϕ2

2 + 8ϕ5
0 − 36ϕ4

1 − 8ϕ3
2)s − 15(14ϕ3

1 + 3ϕ2
2 − 8(ϕ4

1 + ϕ3
2)))8(s

2 + 6s + 15)

χ2
3 = ((720ϕ4

0 + 282ϕ3
1 − 55ϕ2

2 − 8ϕ1
3 − 600ϕ5

0 − 444ϕ4
1 + 36ϕ2

3)s
2+

6(120ϕ4
0 + 282ϕ3

1 − 55ϕ2
2 − 8ϕ1

3 + 120ϕ5
0 − 444ϕ4

1 + 36ϕ2
3)s+

15(42ϕ3
1 − 55ϕ2

2 − 8ϕ1
3 − 24ϕ4

1 + 36ϕ2
3))36(s

2 + 6s + 15)

χ3
2 = ((−4176ϕ4

0 − 1434ϕ3
1 + 55ϕ2

2 − 154ϕ1
3 − 9ϕ0

4 + 3480ϕ5
0 + 2460ϕ4

1 + 90ϕ1
4)s

2−
6(696ϕ4

0 + 1434ϕ3
1 − 55ϕ2

2 + 154ϕ1
3 + 9ϕ0

4 + 696ϕ5
0 − 2460ϕ4

1 − 90ϕ1
4)s−

15(42ϕ3
1 − 55ϕ2

2 + 154ϕ1
3 + 9ϕ0

4 − 24ϕ4
1 − 90ϕ1

4))90(s
2 + 6s + 15)

χ4
1 = ((47376ϕ4

0 + 15834ϕ3
1 − 55ϕ2

2 + 154ϕ1
3 − 891ϕ0

4 − 39480ϕ5
0 − 27660ϕ4

1+
495ϕ0

5)s
2 + 6(7896ϕ4

0 + 15834ϕ3
1 − 55ϕ2

2 + 154ϕ1
3 − 891ϕ0

4 + 7896ϕ5
0 − 27660ϕ4

1+
495ϕ0

5)s + 15(42ϕ3
1 − 55ϕ2

2 + 154ϕ1
3 − 891ϕ0

4 − 24ϕ4
1 + 495ϕ0

5))495(s
2 + 6s + 15)

Next, we consider transient hyperbolic problems of the form

L(u) = ut +∇ ·F(u) = f(x, y, t), (x, y) ∈ Ω = (0, 1)2, t > 0,

subject to initial condition u0(x, y) and inflow boundary conditions.
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The semi-discrete DG formulation consists of determining U ∈ Up such
that ∫∫

Δ

(UtV − F(U) · ∇V )dxdy +

∫
Γ−

n · F(Û)V ds+

∫
Γ+

n ·F(U)V ds =

∫∫
Δ

fV dxdy, ∀ V ∈ Up, (2.10a)

where Û is as defined in (2.6b). We compute an error estimate by solving
the linearized problem∫∫

Δ

[h′(U), g′(U)]T · ∇(U + E)χk
p+1−kdxdy

=

∫∫
Δ

(f − Ut)χ
k
p+1−kdxdy, k = 1, 2, . . . , p. (2.10b)

In order for the DG error to have the same structure for all times, we
approximate the initial conditions u0 by U0 ∈ Up computed from the sta-
tionary problem∫

Γ−
n ·F(Û0)V ds+

∫
Γ+

n ·F(U0)V ds−
∫∫

Δ

F(U0) · ∇V dxdy

=

∫∫
Δ

∇ · F(u0)V dxdy, ∀ V ∈ Up, (2.10c)

with Û0 being u0 on the boundary edges and U0+E0 on the interior edges.
We estimate the error E0 at t = 0 on Δ by solving the linearized problem∫∫

Δ

[h′(U0), g
′(U0)]

T · ∇(U0 + E0)χ
i
p+1−idxdy

=

∫∫
Δ

∇ ·F(u0)χi
p+1−idxdy, i = 1, 2, . . . , p. (2.10d)

Basic calculus shows that, if h = diam(Δ), the Jacobian of the affine
transformation from Δ to Δ0 can be written as

J =

[
ξx ηx
ξy ηy

]
=

1

h
J0,

where J0 is a 2× 2 matrix independent of h.
Applying Taylor’s theorem we expand J0a as

ǎ(ξ, η, h) = a0 +

∞∑
k=1

hkak(ξ, η),

where ak ∈ [Pk]
2, and

a0 = [α, β]T =

{
J0ã(1/2, 1/2), if Δ is of type I,

J0ã(0, 0), if Δ is of type II or III
.

The sign of [α, β]T · n is used to determine inflow and outflow edges.



72 Slimane Adjerid and Mahboub Baccouch

An accepted efficiency measure of a posteriori error estimates is the
effectivity index. In this paper we use the effectivity indices in the L2 norm
defined as

θ =
||E||L2(Ω)

||e||L2(Ω)
. (2.11)

Ideally, the effectivity indices should approach unity under mesh refine-
ment. We note that for transient problems the effectivity index is denoted
by θ(t).

3. Adaptive Mesh Refinement. In this section we test our error
estimation procedures presented in the previous section on adaptively ref-
ined meshes. We implement several h-refinement strategies and adaptive
algorithms to compute DG solutions and error estimates on successively
refined meshes.

Again, we recall that our modified DGmethod solves steady hyperbolic
problems by first creating a mesh and arranging its elements into a list
M = {Δ1,Δ2, . . . ,Δj , . . .} such that

• Rule 1: All inflow elements, whose inflow edges are on the domain
inflow ∂Ω−, are put first in the list M .
• Rule 2: The inflow edges of an element Δj in M are either on
the domain inflow boundary ∂Ω− or outflow edges of an element
Δi, i < j.

The modified DG method starts by computing the solution on the first
element Δ1 and proceeds downwind by computing the solution on elements
in Δ2, Δ3, . . . until the last element inM . Next we discuss several adaptive
refinement algorithms that subdivide element having large “errors.”

Algorithm 1 solves hyperbolic problems on a succession of locally ref-
ined meshes obtained by subdividing elements with errors larger than a
specified threshold delta.

• Algorithm 1 consists of the following steps

(i) Set delta and Maxiter and k=0

(ii) construct an initial mesh Omega_0, order its elements

in a list M of elements satisfying Rules 1 and 2

while k < Maxiter

a- Solve the DG problem on Omega_k as described above.

b- Compute errors ||E||_{Delta} for each element Delta in

Omega_k

c- For all elements Delta in M

if ||E||_{Delta} < delta

accept the DG solution on Delta

else

reject the DG solution on Delta
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subdivide Delta into 4 congruent triangles

endif

d- Complete triangulation by eliminating hanging nodes

to create new mesh Omega_k+1 and order its elements

in a list M satisfying Rules 1 and 2.

e- k <-- k+1

endwhile

• Algorithm 2a solves the whole problem on an initial mesh and then
goes back and solves the problem on each element and applies a local
refinement algorithm to obtain a more accurate DG solution. It consists of
the following steps:

(i) Set omega and Create an initial mesh Omega

(ii) Solve discrete DG problem on Omega as described above

(iii) Compute errors ||E||_{Delta} for each element Delta

and compute error Emax = max_{Delta} ||E||_{Delta}

(iv) For all elements Delta in M satisfying Rules 1 and 2

if ||E||_{Delta} < omega*Emax

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

• Algorithm 2b follows the same steps as Algorithm 2a except for the
refinement selection strategy. An element is selected for refinement if the
local error exceeds a fraction of the average error Eavg following the steps:

(i) Set omega and create a mesh Omega with N elements

(ii) Solve discrete DG problem on Omega described above

(iii) Compute errors ||E||_{Delta} for each element Delta

Compute average error Eavg=sum_{Delta}||E||_{Delta}/N

(iv) For all elements in M satisfying Rules 1 and 2

if ||E||_{Delta} < omega*Eavg

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end
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•Algorithm 2c is similar to Algorithm 2a. However, an element is selected
for refinement if its residual exceeds a fraction of the maximum residual
and follows the steps:
(i) Set omega and Create an initial mesh Omega

(ii) Solve discrete DG problem on Omega described above

(iii) Compute residual ||r||_{Delta}=||L(U)-f||_{Delta}

on each element Delta and compute maximum residual

rmax= max_{Delta} ||r||_{Delta}

(iv) For all elements in M satisfying Rules 1 and 2

if ||r||_{Delta} < omega*rmax

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

• Algorithm 2d follows the same steps as Algorithm 2a with one excep-
tion: an element is selected for refinement if the element residual exceeds
a fraction of the average residual and follows the steps:
(i) Set omega and Create a mesh Omega with N elements

(ii) Solve discrete DG problem on Omega described above

(iii) Compute residual ||r||_{Delta}=||L(U)-f||_{Delta}

on each element Delta and compute average residual

ravg= sum_{Delta} ||r||_{Delta}/N

(iv) For all elements in M satisfying Rules 1 and 2

if ||r||_{Delta} < omega*ravg

Accept the DG solution on Delta

else

Reject the DG solution

Subdivide Delta into 4 congruent triangles

Complete triangulation to eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

end

•Algorithm 3 prevents the errors on elements near the discontinuity from
polluting elements having smooth solutions. Each element having a large
error is immediately refined after computing its DG solution, while the
refinement in Algorithm 1 is performed after computing the solution on all
elements. Thus, this algorithm will reduce the errors as they appear and
is expected to reduce the pollution errors observed with Algorithm 1. This
algorithm consists of the following steps:
(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2
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(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute error ||E||_{Delta}

c- If ||E||_{Delta} < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

•Algorithm 4 is similar to Algorithm 3 except for the refinement selection
criteria. Here an element Delta is selected for refinement if the maximum
residual over all elements before Delta in the list M exceeds a user specified
tolerance delta and follows the following steps:

(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2

(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute maximum residual rmax over all elements

in M before element Delta

c- If rmax < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

•Algorithm 5 is similar to Algorithm 4 except for the refinement selection
criteria. Here an element Delta is selected for refinement if the average
residual over all elements before Delta exceeds a user specified tolerance
delta and follows the following steps:

(i) Set delta

(ii) Construct an initial mesh

(iii) Order elements in a list M satisfying Rules 1 and 2

(iv) For all elements Delta in M

a- Compute DG solution on Delta

b- Compute average residual ravg over all elements

in M and before element Delta
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c- If ravg < delta

Accept the DG solution on Delta

else

Reject DG solution on Delta

Subdivide Delta into 4 congruent triangles

Eliminate hanging nodes

Update the list M satisfying Rules 1 and 2

endif

• Algorithm 6 is used with a time-marching scheme that converges to a
steady state solution and consists of the following steps:

(i) Set delta, NStep, k=0 and construct a mesh Omega_k

Set dt and t_k = k*dt

while k < Nstep

(ii) Integrate from t_k to t_{k+1} on Omega_k

(iii) Compute errors ||E||_{Delta} on each element Delta

(iv) For all elements Delta

If ||E||_{Delta} < delta

Accept the DG solution on Delta

Else

Subdivide Delta into 4 congruent triangles

endif

(v) Complete triangulation to eliminate hanging nodes

Create a new mesh Omega_{k+1}

(vi) Increment k <--k+1 and return to step (ii)

endwhile

4. Computational Examples. In this section, we present numerical
results for several hyperbolic problems showing the convergence properties
of DG solutions and a posteriori error estimates in the presence of dis-
continuities on unstructured meshes. The error estimates are tested on
linear and nonlinear problems with discontinuous solutions to show their
efficiency and accuracy under adaptive mesh refinement. For all examples
we use exact boundary conditions at the inflow boundary. In all our exam-
ples we use the space Up on unstructured triangular meshes. Furthermore,
for the transient problem we apply the MATLAB ode45 to perform the
temporal integration and assume the temporal discretization errors to be
negligible.
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Fig. 1. Unstructured meshes having N = 34, 50, 74, 100 triangles

Example 1. Let us consider the initial-boundary value problem for
the inviscid Burgers’ equation

uy +

(
u2

2

)
x

= uy + uux = 0, (x, y) ∈ [0, 1]× [0, 0.999], (4.1a)

subject to the initial conditions

u(x, 0) = g0(x) = 1 +
1

2
sin(2πx). (4.1b)

and select u(0, y) = g1(y) such that the true solution is periodic and forms
a shock discontinuity at the point ( 1π ,

1
π ) which propagates along y = x.

We perform several tests on this example to study both the accuracy and
efficiency of our a posteriori error estimates for the modified DG method
on adaptively refined unstructured meshes.
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First, we apply the modified DG method (2.10) and (2.6b) to solve
problem (4.1) on the unstructured meshes shown in Fig. 1 having N =
34, 50, 74, 100 triangular elements with Up, p = 1, 2, 3, 4. We observe that
the proposed error estimates do not converge to the true error under regular
mesh refinement. The global error is underestimated is due to the fact
that errors on elements near the discontinuity, which have an important
contribution to the global error, are underestimated (Table 3).

Table 3

L2 errors and global effectivity indices on for problem (4.1) on unstructured meshes
having N = 34, 50, 74, 100 elements using p = 1, 2, 3, 4

N p = 1 p = 2
||e||L2 θ ||e||L2 θ

34 8.0543e−1 0.87505 1.2714e−1 0.67312
50 5.1083e−1 0.88783 4.1497e−2 0.68294
74 2.6779e−1 0.89174 2.0175e−2 0.68595
100 1.2956e−1 0.89585 1.1439e−2 0.68912

p = 3 p = 4
34 1.5127e−1 0.36461 1.1168e−1 0.25002
50 4.6004e−2 0.36993 2.2925e−2 0.25366
74 1.6925e−2 0.37156 6.9803e−3 0.25478
100 8.0424e−3 0.37327 2.8216e−3 0.25596

We apply the modified DG method (2.9) and (2.6b) to solve the in-
viscid Burgers’ equation (4.1) on [0, 1]× [0, 0.999] on unstructured meshes
having N = 432 elements shown in Fig. 2 with Up and with no special
treatment at the shock such as stabilization or limiting. Then, we apply
Algorithm 1 to locally refine the mesh by performing 6 iterations to gen-
erate a sequence of refined meshes. Algorithm 1 subdivides triangles for
which the local error in the L2 norm is larger than a prescribed tolerance
δ. In Figs. 3 and 4 we show the sequence of meshes obtained by applying
Algorithm 1 with δ = 0.001 for p = 1, 2 where elements near the shock dis-
continuity are refined. However, we notice that a large portion of elements
away from the discontinuity are refined which suggest that this algorithm
is not efficient.

In Table 4 we present the number of elements in each mesh obtained
at every refinement iteration of Algorithm 1, the true L2 errors and the
effectivity indices for p = 1, 2 for each refinement iteration. These results
suggest that the global L2 error estimates converge to the true error under
a “crude” adaptive mesh refinement of Algorithm 1 in the presence of shock
discontinuities.

We now consider the same problem (4.1) and use Algorithm 2a with the
modified DG method (2.9) and (2.6b). In Figs. 5 and 6 we plot the meshes
obtained from Algorithm 2a with ω = 0.85, ω = 0.75, ω = 0.5, ω = 0.25,
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Fig. 2. An unstructured mesh having N = 432 triangles

Table 4

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 1 with 6 refinement iterations

p = 1 p = 2
Iteration N ||e||L2 θ N ||e||L2 θ

1 432 2.5104e−2 0.5462 432 3.0244e−3 0.4189
2 841 1.4230e−2 0.6253 711 1.3184e−3 0.5491
3 1,778 9.2502e−3 0.7555 1,323 6.9683e−4 0.6393
4 3,012 6.4997e−3 0.8508 2,544 4.0806e−4 0.7595
5 5,514 4.2522e−4 0.9448 3,970 2.5819e−5 0.8698
6 8,148 2.0173e−4 0.9747 5,783 1.5164e−5 0.9499

and p = 1, 2. In Table 5 we present the number of elements N , the true L2
errors, and the global L2 effectivity indices with p = 1, 2 which suggest

that the proposed error estimates converge to the true error under adaptive
refinement of unstructured triangular meshes.

Now, we use Algorithm 2b to solve (4.1) with the modified DG method
(2.9) and (2.6b). In Fig. 7 we plot the meshes obtained by applying the
adaptive algorithm with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 and
p = 1, 2. In Table 6 we present the number of elements N , the true L2
errors, and the global L2 effectivity indices with p = 1, 2 for ω = 2, 1.75,
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Fig. 3. Adaptive meshes obtained by Algorithm 1 for problem (4.1) and p = 1

Fig. 4. Adaptive meshes obtained by Algorithm 1 for problem (4.1) and p = 2
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Table 5

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 2a with ω = 0.85, 0.75, 0.5, 0.25, 0.15, 0.1 and p = 1, 2

p p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

0.85 627 2.3903e−2 0.6528 842 2.9155e−3 0.5561
0.75 917 1.3549e−2 0.7744 1,262 6.7175e−4 0.6898
0.5 1,433 8.8076e−3 0.8704 2,156 3.9337e−4 0.8674
0.25 2,094 4.0488e−4 0.9761 5,011 4.5249e−5 0.9686
0.15 3,450 1.9546e−4 0.9798 7,213 2.2231e−5 0.9752
0.1 4,343 1.5432e−4 0.9812 8,982 1.1856e−5 0.9765

Fig. 5. Meshes generated by Algorithm 2a for the problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 1

1.5, 1.25, 1, 0.75, 0.5, 0.25 which show that our error estimates converge to
the true error under adaptive refinement of unstructured triangular meshes.

This adaptive mesh-refinement strategy also yields an efficient adap-
tive algorithm.

Next, we solve problem (4.2) using Algorithm 2c with the modified DG
method (2.9) and (2.6b). In Figs. 8 and 9 we plot the meshes obtained by
Algorithm 2c with ω = 0.85, ω = 0.75, ω = 0.5, ω = 0.25 and p = 1, 2 to the
problem (4.1). In Table 7 we present the number of elements N , the global
L2 norm of the error, and the global L2 effectivity indices with p = 1, 2
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Fig. 6. Meshes generated by Algorithm 2a for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 2

which show that the error estimates converge to the true error under
adaptive mesh refinement. They further show that the proposed error est-
imates are accurate on adaptively refined unstructured triangular meshes.

Table 6

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 2d with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25
and p = 1, 2

p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

2.00 705 1.8498e−2 0.5351 803 1.7897e−3 0.5448
1.75 865 1.0485e−2 0.5819 967 1.0145e−3 0.5938
1.50 1,426 6.8160e−3 0.6959 1,756 6.5947e−4 0.7167
1.25 1,941 5.7147e−3 0.7813 2,305 4.6337e−4 0.7978
1.00 3,140 4.7892e−3 0.8918 3,922 3.3465e−4 0.9186
0.75 5,462 3.1332e−4 0.9631 6,431 3.0315e−5 0.9435
0.50 11,142 2.0637e−4 0.9722 8,670 2.0813e−5 0.9627
0.25 19,280 1.2973e−4 0.9828 14,548 1.0637e−5 0.9749

Next, we apply Algorithm 2d with the modified DG method (2.9) and
(2.6b) to solve (4.1). In Fig. 10 we plot the meshes obtained by applying
Algorithm 2d with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 for p = 1, 2. In
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Fig. 7. Meshes obtained by Algorithm 2b for problem (4.1) with
ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 (upper left to lower right) and p = 1
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Table 7

L2 errors and global effectivity indices for problem (4.1) on unstructured
meshes having N elements using Algorithm 2c with ω = 0.85, 0.75, 0.5, 0.25, 0.15, 0.1
and p = 1, 2

Degree p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

0.85 677 2.3062e−2 0.5942 817 3.0276e−3 0.5860
0.75 937 1.3072e−2 0.7368 1,362 1.3199e−3 0.7395
0.50 1,505 8.4978e−3 0.8477 2,130 4.0850e−4 0.8453
0.25 2,543 3.9064e−4 0.9664 3,385 3.5191e−5 0.9599
0.15 3,143 2.1354e−4 0.9713 4,328 1.6104e−5 0.9674
0.10 3,951 1.4983e−4 0.9784 5,235 1.1467e−5 0.9733

Table 8 we present the number of elements N , the L2 errors, and the global
L2 effectivity indices for p = 1, 2 and ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5,
0.25 which suggest that the proposed error estimates converge to the true
error under adaptive mesh refinement on unstructured triangular meshes.

Fig. 8. Meshes generated by Algorithm 2c for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 1

Now we apply the modified DG method (2.9) and (2.6b) with Algo-
rithm 3 to solve (4.1). Again, the final mesh is constructed through a
sequence of successively refined meshes by refining triangles whose local
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Fig. 9. Meshes generated by Algorithm 2c for problem (4.1) with ω = 0.85,
ω = 0.75, ω = 0.5, ω = 0.25 (upper left to lower right) and p = 2

Table 8

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 2b with ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25
and p = 1, 2

Degree p = 1 p = 2
ω N ||e||L2 θ N ||e||L2 θ

2.00 580 2.0179e−2 0.5263 678 2.0660e−3 0.4536
1.75 749 2.7182e−2 0.5631 957 1.1710e−3 0.5138
1.50 1,399 1.1438e−2 0.6860 1,832 7.6126e−4 0.6313
1.25 1,836 7.4356e−3 0.7539 2,450 5.3490e−4 0.6868
1.00 3,094 5.2246e−3 0.8962 3,985 3.6675e−4 0.8171
0.75 5,430 3.4181e−4 0.9648 5,043 8.3722e−5 0.8791
0.50 10,272 2.2616e−4 0.9781 8,086 3.1995e−5 0.9409
0.25 17,841 1.4217e−4 0.9787 15,479 1.1250e−5 0.9629

error in the L2 norm is larger than some prescribed δ. For instance, in
Figs. 11 and 12 we show the final meshes obtained by applying Algorithm
3 with δ = 0.01, 0.001, for p = 1, 2. The L2 errors and effectivity indices
for δ = 0.05, 0.01, 0.005, 0.001, 0.0005 and p = 1, 2 shown in Table 9
suggest that the proposed error estimates converge to the true error un-
der adaptive mesh refinement. Furthermore, we observe that the adaptive
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Fig. 10. Meshes obtained by Algorithm 2d for problem (4.1) with
ω = 2, 1.75, 1.5, 1.25, 1, 0.75, 0.5, 0.25 (upper left to lower right) and p = 1
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Table 9

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 3 with p = 1, 2

p p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.05 759 9.8076e−3 0.9541 1,167 9.7476e−4 0.9569
0.01 904 8.3650e−3 0.9628 2,092 6.2409e−4 0.9644
0.005 1,532 7.2128e−4 0.9718 3,945 7.0488e−5 0.9718
0.001 2,267 3.8453e−4 0.9737 5,444 2.4167e−5 0.9754
0.0005 5,890 1.4675e−4 0.9813 8,412 1.1247e−5 0.9841

Fig. 11. Meshes obtained by Algorithm 3 for problem (4.1) with tolerance δ = 0.01
and p = 1 (left), p = 2 (right)

Fig. 12. Meshes obtained by Algorithm 3 for problem (4.1) with tolerance δ = 0.001
and p = 1 (left), p = 2 (right)
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Table 10

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 4 with p = 1, 2

p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.0500 732 9.3422e−3 0.6447 1,087 8.8284e−4 0.5558
0.0100 1,023 6.3276e−3 0.7864 1,983 5.2330e−4 0.6574
0.0050 1,465 6.6306e−4 0.8771 3,829 5.5168e−5 0.7681
0.0010 2,105 3.0643e−4 0.9372 5,356 2.1162e−5 0.8882
0.0005 5,459 1.2974e−4 0.9800 8,221 1.0933e−5 0.9588

mesh-refinement strategy of Algorithm 3 yields a more efficient adaptive
algorithm for the modified DG method applied to hyperbolic problems on
general unstructured triangular meshes.

Now, we use Algorithm 4 and the modified DG method (2.9) and
(2.6b) to solve (4.1). The final mesh is constructed through a sequence of
successively refined meshes where triangles for which the L2 norm of the
residual on each element ||ri|| is larger than δ = 0.001 are refined. In Fig. 13
we plot the final meshes obtained by applying Algorithm 4 for p = 1, 2. In
Table 10 we present the number of elements, L2 errors, and the global L2
effectivity indices for the tolerances δ = 0.05, 0.01, 0.005, 0.001, 0.0005,
p = 1, 2 which suggest that the error estimates converge to the true error
during under adaptive mesh refinement.

As a final test, we solve (4.1) using Algorithm 5 with modified DG
method (2.9) and (2.6b). The final mesh is constructed through a sequence
of successively refined meshes where triangles for which the average residual
exceeds the specified threshold δ are refined. In Fig. 14 we plot the final
meshes from Algorithm 5 with δ = 0.001 and p = 1, 2. In Table 11 we
present the number of elements, L2 errors, and the global L2 effectivity
indices for tolerances δ = 0.05, 0.01, 0.005, 0.001, 0.0005, and degrees p =
1, 2. These results suggest that our a posteriori error estimates converge to
the true error under adaptive mesh refinement.

Table 11

L2 errors and global effectivity indices for problem (4.1) on unstructured meshes
having N elements using Algorithm 5 with p = 1, 2

p = 1 p = 2
δ N ||e||L2 θ N ||e||L2 θ

0.0500 712 9.9638e−3 0.6257 1,054 8.9863e−4 0.5578
0.0100 914 3.2468e−3 0.7474 1,623 4.8685e−4 0.7594
0.0050 1,296 5.4606e−4 0.8881 3,298 5.2624e−5 0.8601
0.0010 1,949 2.9263e−4 0.9482 4,846 2.0400e−5 0.9202
0.0005 4,787 1.3041e−4 0.9788 6,759 1.0845e−5 0.9608
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We observe that Algorithms 2–5 generate adaptive meshes with fine
elements only in the vicinity of the shock. The results from Algorithms
2a–d of Tables 12 and 13 suggest that Algorithms 2a–d have comparable
efficiency. In Fig. 15 we plot the true L2 errors versus the number of
elements needed to satisfy the specified tolerance for all Algorithms 1–5
applied to the Burger’s equation with a shock (4.1). Our computations
suggest that Algorithm 1 is the least efficient adaptive method, while Al-
gorithms 3, 4, and 5 are the most efficient adaptive procedures. We further
note that using the local residuals to refine elements in Algorithm 5 yields a
slightly more efficient algorithm. Thus, we recommend the space-time DG
method that uses local residuals to select elements for refinement and the
a posteriori error estimates to assess the solution accuracy and terminate
the adaptive process.

Table 12

L2 errors and number of elements for Algorithms 2a and 2c applied to problem (4.1)

p = 1 p = 2
Algorithm 2a Algorithm 2c Algorithm 2a Algorithm 2c

ω N ||e||L2 N ||e||L2 N ||e||L2 N ||e||L2

0.85 627 2.3903e−2 677 2.3062e−2 842 2.9155e−3 817 3.0276e−3
0.75 917 1.3549e−2 937 1.3072e−2 1,262 6.7175e−4 1,362 1.3199e−3
0.50 1,433 8.8076e−3 1,505 8.4978e−3 2,156 3.9337e−4 2,130 4.0850e−4
0.25 2,094 4.0488e−4 2,543 3.9064e−4 5,011 4.5249e−5 3,385 3.5191e−5
0.15 3,450 1.9546e−4 3,143 2.1354e−4 7,213 2.2231e−5 4,328 1.6104e−5
0.10 4,343 1.5432e−4 3,951 1.4983e−4 8,982 1.1856e−5 5,235 1.1467e−5

Example 2 (Transient Burger’s equation). Let us consider the initial-
boundary value problem for the inviscid Burgers’ equation

εut + uy +

(
u2

2

)
x

= 0, (x, y, t) ∈ [0, 1]× [0, 0.999]× [0, T ], (4.2a)

subject to the boundary conditions

u(x, 0, t) = u2(x) = 1 +
1

2
sin(2πx), u(0, y, t) = u(1, y, t) = u1(y).

(4.2b)
The initial conditions u(x, y, 0) = u0(x, y) are selected such that u0(x, 0) =
u2(x) and u0(0, y) = u1(y) as follows

u0(x, y) = N1(x)u1(y) +N2(x)ũ1(y) +N1(y)u2(x) +N2(y)ũ2(x)

−N1(x)N 1(y)u1(0)−N2(x)N2(y)ũ1(1)−N1(x)N 2(y)u1(1)

−N2(x)N 1(y)u2(1). (4.2c)

where N1(x) = 1 − x, N2(x) = x, ũ1(y) = (1 − y)u2(1) and ũ2(x) =
(1− x)u1(1).

We apply the modified DG method (2.10) to solve this problem on
[0, 1] × [0, 0.999] × [0, T ] with a smooth solution on initial unstructured



90 Slimane Adjerid and Mahboub Baccouch

Table 13

L2 errors and number of elements for Algorithms 2b and 2d applied to problem (4.1)

Algorithm 2b Algorithm 2d
ω N ||e||L2 N ||e||L2

p = 1
2.00 580 2.0179e−2 705 1.8498e−2
1.75 749 2.7182e−2 865 1.0485e−2
1.5 1,399 1.1438e−2 1,426 6.8160e−3
1.25 1,836 7.4356e−3 1,941 5.7147e−3
1.00 3,094 5.2246e−3 3,140 4.7892e−3
0.75 5,430 3.4181e−4 5,462 3.1332e−4
0.50 10,272 2.2616e−4 11,142 2.0637e−4
0.25 17,841 1.4217e−4 19,280 1.2973e−4

p = 2
2.00 678 2.0660e−3 803 1.7897e−3
1.75 957 1.1710e−3 967 1.0145e−3
1.5 1,832 7.6126e−4 1,756 6.5947e−4
1.25 2,450 5.3490e−4 2,305 4.6337e−4
1.00 3,985 3.6675e−4 3,922 3.3465e−4
0.75 5,043 8.3722e−5 6,431 3.0315e−5
0.50 8,086 3.1995e−5 8,670 2.0813e−5
0.25 15,479 1.1250e−5 14,548 1.0637e−5

Fig. 13. Meshes generated by Algorithm 4 for problem (4.1) with tolerance
δ = 0.001 and p = 1 (left), p = 2 (right)

meshes having N = 500 triangular elements of type I, II, and III with
Up, p = 1, 2, and ε = 10−2.

We use the adaptive mesh-refinement procedure given in Algorithm
6. The final mesh at t = T = 1 is constructed through a sequence of
successively refined meshes where triangles for which the L2 error exceeds
δ are refined. In Figs. 16 and 17 we plot the sequence of meshes obtained
by applying the adaptive method with δ = 0.001 and t = 0, 0.25, 0.5, 0.75, 1
to the problem (4.2).
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Fig. 14. Meshes generated by Algorithm 5 for problem (4.1) with δ = 0.001 and
p = 1 (left), p = 2 (right)

In Table 14 we present the number of elements, the true L2 errors,
and the global L2 effectivity indices at t = 0, 0.25, 0.5, 0.75, 1 and p = 1, 2
which show that the error estimates converge to the true error during the
simulation. These computational results indicate that our estimators are
accurate on adaptively refined unstructured triangular meshes and further
suggest that they converge to the true error under adaptive mesh refinement
of Algorithm 6.

Example 3. We consider the following linear problem

2ux + uy = 0, (x, y) ∈ [0, 1]2, (4.3a)

subject to the boundary conditions

u(x, 0) = e−x, 0 ≤ x ≤ 1, (4.3b)

u(0, y) = e2y + .25, 0 < y ≤ 1, (4.3c)

with the true solution having a contact discontinuity along y = x/2

u(x, y) =

{
e2y−x if x ≥ y
e2y−x + .25 if x < y

. (4.3d)

We solve (4.3) on the unstructured mesh having 100 elements shown in
Fig. 1 with the spaces Up, p = 1, 2, 3, 4 and apply the modified DG method
(2.6) and (2.7) with the adaptive refinement strategy described in Algo-
rithm 3 for δ = 0.01, 0.005, and 0.001. We present the mesh in Fig. 18
for δ = 0.001 and show in Table 15 the number of elements N , the global
L2 norm of the error, and the global L2 effectivity indices with δ = 0.01,
0.005, and 0.001 and p = 1, 2, 3, 4. These results suggest that the error
estimates converge to the true error under local adaptive mesh refinement
algorithm that refines elements near the discontinuity and whose errors are
underestimated.
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Table 14

L2 errors and global effectivity indices for problem (4.2) on unstructured meshes
having N elements with p = 1, 2 at t = 0, 0.25, 0.5, 0.75, 1

p = 1 p = 2
t N ||e||L2 θ N ||e||L2 θ

0.00 432 1.4402e−2 0.5860 432 2.7326e−3 0.4879
0.25 834 8.1633e−3 0.6743 984 1.1912e−3 0.5679
0.50 1,895 5.3067e−3 0.7654 2,348 6.2960e−4 0.6974
0.75 3,469 3.7288e−3 0.8904 4,467 3.6869e−4 0.8279
1.00 5,737 2.4394e−4 0.9747 7,404 1.4292e−5 0.9372
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Fig. 15. True L2 errors versus the number of elements for Algorithms 1–6 with
p = 1 (left) and p = 2 (right) for Problem (4.1)

Table 15

Global effectivity indices and final number of elements N for problem (4.3) with
p = 1, 2, 3, 4 and error tolerances of δ = 0.01, 0.005, 0.001

p = 1 p = 2 p = 3 p = 4
δ θ N θ N θ N θ N

0.01 0.9280 100 0.9255 100 0.9242 100 0.9348 100
0.005 0.9628 139 0.9456 121 0.9399 116 0.9482 116
0.001 0.9941 738 0.9928 523 0.9864 492 0.9858 426

5. Conclusions. We tested the residual-based a posteriori DG error
estimates of Adjerid and Baccouch [3] for hyperbolic problems on unstruc-
tured triangular meshes. Several computational examples suggest that the
Taylor’s series residual-based error estimates proposed in this manuscript
converge to the true error under local mesh refinement and in the presence
of discontinuities. Similarly, we expect that the error estimates proposed
by Adjerid and Mechai [6] on tetrahedral meshes will also converge to the
true error under adaptive mesh refinement. Our future work will focus on
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Fig. 16. Adaptive meshes for problem (4.2) with p = 1 at t =
0.00, 0.25, 0.50, 0.75, 1.00 (upper left to lower right)

applying adaptive refinement strategies to multi-dimensional hyperbolic
systems of conservation laws and reach similar conclusions for general uns-
tructured tetrahedral meshes.
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Fig. 17. Adaptive meshes for problem (4.2) with p = 2 at t =
0.00, 0.25, 0.50, 0.75, 1.00 (upper left to lower right)
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A QUADRATIC C0 INTERIOR PENALTY METHOD FOR
AN ELLIPTIC OPTIMAL CONTROL PROBLEM WITH

STATE CONSTRAINTS

S.C. BRENNER, L.-Y. SUNG, AND Y. ZHANG∗

Abstract. We consider an elliptic distributed optimal control problem on convex
polygonal domains with pointwise state constraints and solve it as a fourth order varia-
tional inequality for the state by a quadratic C0 interior penalty method. The error for
the state in an H2-like energy norm is O(hα) on quasi-uniform meshes (where α ∈ (0, 1]
is determined by the interior angles of the domain) and O(h) on graded meshes. The
error for the control in the L2 norm has the same behavior. Numerical results that
illustrate the performance of the method are also presented.

Key words. Elliptic distributed optimal control problem, Pointwise state con-
straints, Simply supported plate, Fourth order variational inequality, Finite element, C0

interior penalty method, Discontinuous Galerkin, Graded meshes
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1. Introduction. Let Ω be a bounded convex polygonal domain in
R

2, yd ∈ L2(Ω), γ ≥ 0 and β > 0 be constants. The following problem
[33] is a model elliptic distributed optimal control problem with pointwise
state constraints:

Find the minimizer of the functional

J(y, u) =
γ

2

∫
Ω

(y − yd)2 dx+
β

2

∫
Ω

u2 dx, (1.1)

where (y, u) ∈ H1
0 (Ω)× L2(Ω) are subjected to the constraints∫
Ω

∇y · ∇v dx =

∫
Ω

uv dx ∀ v ∈ H1
0 (Ω), (1.2)

ψ1 ≤ y ≤ ψ2 a.e. in Ω. (1.3)

Here the functions ψ1(x), ψ2(x) ∈ C2(Ω) ∩C(Ω̄) satisfy

ψ1 < ψ2 in Ω, (1.4a)

ψ1 < 0 < ψ2 on ∂Ω. (1.4b)

Since Ω is convex, elliptic regularity [36, 45, 58] implies that (1.2) is
equivalent to y ∈ H2(Ω) ∩ H1

0 (Ω) and u = −Δy. Note that [46, Theo-
rem 2.2.1]∫

Ω

(Δv)(Δw) dx =

∫
Ω

(D2v : D2w) dx ∀ v, w ∈ H2(Ω) ∩H1
0 (Ω), (1.5)
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where

D2v : D2w =
∑

1≤i,j≤2

(
∂2v

∂xi∂xj

)(
∂2w

∂xi∂xj

)

is the (Frobenius) inner product of the Hessian matrices of v and w. There-
fore we can solve the optimal control problem (1.1)–(1.3) by looking for the
minimizer of the reduced functional

Ĵ(y) =
γ

2

∫
Ω

(y − yd)2dx+
β

2

∫
Ω

(D2y : D2y) dx

in the set

K = {v ∈ H2(Ω) ∩H1
0 (Ω) : ψ1 ≤ v ≤ ψ2 in Ω}. (1.6)

A simple calculation shows that this is equivalent to the following problem:

Find ȳ = argmin
y∈K

[
1

2
A(y, y)− (f, y)

]
, (1.7)

where f = γyd, (·, ·) is the inner product of L2(Ω), and

A(v, w) =
∫
Ω

[
β(D2v : D2w) + γvw

]
dx. (1.8)

Since (1.4) implies that K is a nonempty closed convex subset of
H2(Ω)∩H1

0 (Ω) and the bilinear formA(·, ·) is symmetric, bounded, and co-
ercive on H2(Ω)∩H1

0 (Ω), we can apply the standard theory [43, 52, 54, 59]
to conclude that the problem (1.7) has a unique solution ȳ ∈ K character-
ized by the variational inequality

A(ȳ, y − ȳ) ≥ (f, y − ȳ) ∀ y ∈ K. (1.9)

The solution of the optimal control problem is then given by (ȳ, ū), where
ū = −Δȳ. Note that (1.7) becomes the displacement obstacle problem for
simply supported Kirchhoff plates if we take γ to be 0. For this reason we
will also refer to (1.7) as an obstacle problem.

According to the regularity results in [32, 41, 42] for fourth order
obstacle problems, the solution ȳ of (1.7) belongs to H3

loc(Ω)∩C2(Ω) under
our assumptions on the functions yd, ψ1, and ψ2. Note that (1.4b) implies
that the constraints are inactive near ∂Ω and hence

βΔ2ȳ + γȳ = f

near ∂Ω. It then follows from the elliptic regularity theory for the bih-
armonic equation (cf. [8] and Appendix A) that there exists α ∈ (0, 1]
(determined by the interior angles of Ω) such that ȳ ∈ H2+α(N ) in a
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neighborhoodN of ∂Ω disjoint from the active set. Thus globally ȳ belongs
to H2+α(Ω). We shall refer to α as the index of elliptic regularity for the
obstacle problem (1.7).

A main difficulty in the analysis of finite element methods for fourth
order obstacle problems is that the solutions in general do not belong to
H4

loc(Ω) even for smooth data, which means that the complementarity form
of the variational inequality (1.9) in general only exists in a weak sense. In
contrast, the solutions of second order obstacle problems belong to H2(Ω)
under appropriate assumptions on the data (cf. [29, 53]). Hence the com-
plementarity forms of the variational inequalities arising from second order
obstacle problems exist in the strong sense, which is a crucial ingredient
for the derivations of optimal error estimates in [30, 31, 40].

A new approach to the obstacle problem for clamped Kirchhoff plates
on convex polygonal domains was introduced in [25], where optimal er-
ror estimates were obtained for C1 finite element methods, classical non-
conforming finite element methods, and discontinuous Galerkin methods.
The results were later extended to general domains and general Dirichlet
boundary conditions in [15, 23, 24]. This new approach does not rely on
the complementarity forms of the variational inequalities and hence can
bypass the aforementioned difficulty. The goal of this paper is to extend
the results in [23] to (1.7)/(1.9), which covers both obstacle problems for
simply supported plates and optimal control problems with pointwise state
constraints. We will show that the magnitude of the error in the energy
norm is O(hα) on quasi-uniform meshes and O(h) on graded meshes.

Finite element methods for state constrained elliptic optimal control
problems were investigated in [37, 56], where the finite element approxi-
mation (ȳh, ūh) of (ȳ, ū) is obtained from discrete versions of the optimal
control problems. In this approach the error analysis for the state and
the error analysis for the control are coupled and hence the estimates for
|ȳ− ȳh|H1(Ω) and ‖ū− ūh‖L2(Ω) have the same magnitude, which in the case
of a rectangle with quasi-uniform meshes is O(h1−ε). In our approach we
obtain instead an error estimate for the approximation ȳh of ȳ in an H2-like
energy norm, which then implies an error estimate in the L2 norm for the
approximation ūh of ū (generated from ȳh by a postprocessing procedure)
with the same magnitude. In the case of a rectangle with quasi-uniform
meshes, the magnitudes of these errors are O(h). On the other hand, the
convergence of ȳh in the H1(Ω) norm and the L∞(Ω) norm, which are
weaker than the energy norm, can be expected to be of higher order. This
is indeed observed in our numerical experiments, where the magnitudes of
the errors of ȳh in the H1(Ω) norm and the L∞(Ω) norm are O(h2) for a
rectangle.

The optimal control problem defined by (1.1)–(1.3) is solved as a fourth
order variational inequality in [55] by a Morley finite element method and
in [44] by a mixed finite element method. However the analyses in [44, 55]
rely on additional assumptions on the active set first introduced in [7].
Our new approach for fourth order obstacle problems may provide an error
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analysis for the finite element methods in [44, 55] without the additional
assumptions on the active set.

Other numerical methods for (1.1)–(1.3) are investigated, for example,
in [5, 6, 34, 48–51, 57, 60].

The rest of the paper is organized as follows. We introduce a quadratic
C0 interior penalty method for (1.7) in Sect. 2 and an intermediate obstacle
problem that connects the continuous and discrete obstacle problems in
Sect. 3. Section 4 contains several preliminary estimates which are useful
for the convergence analysis carried out in Sect. 5. Numerical results that
illustrate the performance of our method are presented in Sect. 6, followed
by some concluding remarks in Sect. 7. Elliptic regularity results for simply
supported plates, which play an important role in the error analysis, are
summarized in Appendix A. Some technical results concerning an enriching
operator that connects the discrete and continuous spaces are given in
Appendix B.

We will follow the notation for Sobolev spaces and norms in [20, 35].
Throughout the paper we will denote by C a generic positive constant
independent of mesh sizes that can take different values at different occur-
rences. To avoid the proliferation of constants, we will also use A � B (or
B � A) to denote the statement that A ≤ (constant)B, where the positive
constant is independent of mesh sizes. The statement A ≈ B is equivalent
to A � B and B � A.

2. A Quadratic C0 Interior Penalty Method. C0 interior penalty
methods were introduced in [39] for fourth order elliptic boundary value
problems. They were further studied in [13, 16, 18, 21] and fast solvers
for C0 interior methods were developed in [22, 26, 27]. Adaptive [17] and
isoparametric [19] versions of C0 interior penalty methods are also available.
Below we will recall the notation for C0 interior penalty methods and
introduce the discrete obstacle problem for (1.7).

2.1. Triangulation. Let Th be a simplicial triangulation of Ω that
is regular (i.e., Th satisfies a minimum angle condition). We will use the
following notation throughout the paper.

• hT is the diameter of the triangle T .
• h is a mesh parameter proportional to maxT∈Th

hT .
• vT is the restriction of the function v to the triangle T .
• Eh is the set of the edges of the triangles in Th.
• E ih is the subset of Eh consisting of edges interior to Ω.
• Ebh is the subset of Eh consisting of edges along ∂Ω.
• |e| is the length of an edge e.
• Vh is the set of the vertices of the triangles in Th.
• VT is the set of the three vertices of T .
• E iVT

is the set of the edges in E ih emanating from the vertices of T .
• TT is the set of triangles sharing a vertex with T .
• ST is the interior of the closure of ∪T ′∈TT T

′.
• Tp is the set of the triangles in Th that share the common vertex p.
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• Te is the set of the triangles in Th that share the common edge e.
• |Tp| (resp. |Te|) is the number of triangles in Tp (resp. Te).
• Let e ∈ Ebh. Then Te is the triangle in Th such that Te = {Te}.

We will consider both quasi-uniform and graded triangulations. For a
quasi-uniform triangulation Th, we have

hT ≈ h ∀T ∈ Th. (2.1)

Let p1, . . . , pL be the corners of Ω and ω� be the interior angle at p�
for 1 ≤ � ≤ L. For a graded triangulation Th, we have

hT ≈ hΦ(cT ) ∀T ∈ Th, (2.2)

where cT is the center of T ,

Φ(x) =

L∏
�=1

|p� − x|1−α� , (2.3)

and the grading parameters α� > 0 are determined as follows:

⎧⎪⎨
⎪⎩
α� = 1 if ω� ≤

π

2
,

α� <

(
π

ω�

)
− 1 if

π

2
< ω� < π.

(2.4)

Note that (2.2) and (2.3) imply

hα�

T ≈ h (2.5)

if T ∈ Th touches the corner p�.
Remark 2.1. We can take α = min

1≤�≤L
α� to be the index of elliptic

regularity (cf. Appendix A).
Remark 2.2. The construction of regular triangulations that satisfy

(2.2) is discussed, for example, in [1, 10, 14].

2.2. Jumps and Averages. The jumps and averages of the normal
derivatives for functions in the piecewise Sobolev spaces

Hs(Ω, Th) = {v ∈ L2(Ω) : vT = v|T ∈ Hs(T ) ∀T ∈ Th}

are defined as follows.
Let e ∈ E ih be the common edge of T± ∈ Th and ne be the unit normal

of e pointing from T− to T+. We define on e

{{
∂2v

∂n2

}}
=

1

2

(
∂2v+
∂n2

e

∣∣∣∣
e

+
∂2v−
∂n2

e

∣∣∣∣
e

)
∀v ∈ Hs(Ω, Th), s >

5

2
, (2.6a)

[[
∂v

∂n

]]
=
∂v+
∂ne

∣∣∣∣
e

− ∂v−
∂ne

∣∣∣∣
e

∀v ∈ H2(Ω, Th), (2.6b)
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where v± = v
∣∣
T±

. Similarly, we define on e

{{
∂v

∂ne

}}
=

1

2

(
∂v+
∂ne

∣∣∣∣
e

+
∂v−
∂ne

∣∣∣∣
e

)
∀v ∈ H2(Ω, Th), (2.7a)

[[
∂2v

∂n2
e

]]
=
∂2v+
∂n2

e

∣∣∣∣
e

− ∂2v−
∂n2

e

∣∣∣∣
e

∀v ∈ Hs(Ω, Th), s >
5

2
. (2.7b)

Remark 2.3. Note that the definitions for the average
{{
∂2v/∂n2

}}
and

the jump [[∂v/∂n]] in (2.6), which appear in C0 interior penalty methods, are
independent of the choice of T± (or ne). On the other hand, the definitions
in (2.7) for {{∂v/∂ne}} and [[∂2v/∂n2

e]], which appear only in the analysis,
do depend on the choice of T± (or ne). However their product is also
independent of the choice of T± (or ne).

Let e ∈ Ebh be a boundary edge and ne be the unit normal of e pointing
towards the outside of Ω. We define on e{{

∂v

∂ne

}}
=

∂v

∂ne

∣∣∣∣
e

∀v ∈ H2(Ω, Th), (2.8a)

[[
∂2v

∂n2
e

]]
= − ∂

2v

∂n2
e

∣∣∣∣
e

∀v ∈ Hs(Ω, Th), s >
5

2
. (2.8b)

2.3. The Discrete Obstacle Problem. Let Vh ⊂ H1
0 (Ω) be the P2

Lagrange finite element space associated with Th whose members vanish
on ∂Ω. We define the bilinear form ah(·, ·) on Vh × Vh by

ah(v, w) =
∑
T∈Th

∫
T

(D2v : D2w)dx +
∑
e∈Ei

h

∫
e

{{∂2v/∂n2}}[[∂w/∂n]]ds

+
∑
e∈Ei

h

∫
e

{{∂2w/∂n2}}[[∂v/∂n]]ds (2.9)

+ σ
∑
e∈Ei

h

|e|−1

∫
e

[[∂v/∂n]] [[∂w/∂n]]ds,

where σ > 0 is a penalty parameter. Note that ah(·, ·) is a consistent
bilinear form for the biharmonic equation with the boundary conditions of
simply supported plates.

It follows from (2.6a) and scaling that∑
e∈Ei

h

|e|‖{{∂2v/∂n2}}‖2L2(e)
�
∑
T∈Th

|v|2H2(T ) ∀v ∈ Vh. (2.10)

Therefore, for sufficiently large σ, we have (cf. [21])

ah(v, v) �

⎛
⎝∑

T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎠ ∀v ∈ Vh.

(2.11)
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The discrete bilinear form that approximates A(·, ·) is then given by

Ah(v, w) = βah(v, w) + γ(v, w), (2.12)

and

‖v‖h =

⎡
⎣β
⎛
⎝∑

T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎠ (2.13)

+ γ‖v‖2L2(Ω)

] 1
2

is the mesh-dependent energy norm. It follows from (2.10)–(2.13) that

|Ah(v, w)| � ‖v‖h‖w‖h ∀v, w ∈ Vh, (2.14)

Ah(v, v) � ‖v‖2h ∀v ∈ Vh, (2.15)

provided that σ is sufficiently large, which we assume to be the case.
Note that

‖v‖2H1(Ω) �
∑
T∈Th

|v|2H2(T ) +
∑
e∈Ei

h

|e|−1‖[[∂v/∂n]]‖2L2(e)
(2.16)

for all v ∈ H2(Ω, Th) ∩ H1
0 (Ω) by a Poincaré–Friedrichs inequality [28,

Example 5.4], and hence

‖v‖H1(Ω) � ‖v‖h (2.17)

for all v ∈ H2(Ω, Th) ∩H1
0 (Ω) (⊃ Vh +H2(Ω) ∩H1

0 (Ω)).
We can now define the discrete obstacle problem for (1.7):

Find ȳh = argmin
yh∈Kh

[
1

2
Ah(yh, yh)− (f, yh)

]
, (2.18)

where

Kh = {v ∈ Vh : ψ1(p) ≤ v(p) ≤ ψ2(p) ∀p ∈ Vh}. (2.19)

Let Πh be the nodal interpolation operator for the P2 Lagrange finite
element space. Then Πh maps H2(Ω) ∩ H1

0 (Ω) into Vh and K into Kh.
Therefore Kh is a nonempty closed convex subset of Vh. Moreover the
bilinear form Ah(·, ·) is symmetric positive definite by (2.15). Hence the
discrete problem (2.18) has a unique solution ȳh ∈ Kh characterized by the
discrete variational inequality:

Ah(ȳh, yh − ȳh) ≥ (f, yh − ȳh) ∀yh ∈ Kh. (2.20)
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Let ΠT be the nodal interpolation operator for the P2 Lagrange finite
element on a triangle T . We have a standard local interpolation error
estimate [20, 35]

2∑
m=0

hm−2
T |ζ −ΠT ζ|Hm(T ) � hsT |ζ|H2+s(T ) (2.21)

for all ζ ∈ H2+s(T ), T ∈ Th and s ∈ [0, 1].
The following lemma provides global interpolation error estimates for

the solution ȳ of (1.7)/(1.9).
Lemma 2.1. There exists a positive constant C independent of h such

that

‖ȳ −Πhȳ‖h ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since the estimate for a quasi-uniform Th is standard (cf. [21]),
we will focus on a graded Th. Let T I

h be the set of triangles in Th that do
not touch any corner of Ω and T C

h = Th \ T I

h = ∪1≤�≤LT C

h,�, where T C

h,� is
the set of the triangles that touch the corner p�.

Since ȳT ∈ H3(T ) for T ∈ T I

h (cf. Appendix A), we have, by (2.21),

∑
T∈T I

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) (2.22)

�
∑
T∈T I

h

(
Φ−2(cT )h

2
T

)
Φ2(cT )|ȳ|2H3(T )

where the function Φ is defined in (2.3).
It follows from (2.2), (2.3), (2.22), and (A.7) that

∑
T∈T I

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2. (2.23)

Let T ∈ T C

h,� be a triangle that touches a corner p�. Then ȳ ∈ H2+α�(T )
(cf. Appendix A) and we have, by (2.21),

2∑
m=0

hm−2
T |ȳ −Πhȳ|Hm(T ) � hα�

T |ȳ|H2+α� (T ) ∀T ∈ T C

h,�. (2.24)

It follows from (2.5) and (2.24) that

∑
T∈T C

h

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) (2.25)
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=

L∑
�=1

∑
T∈T C

h,�

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2.

Combining (2.23) and (2.25), we find

∑
T∈Th

2∑
m=0

h
2(m−2)
T |ȳ −Πhȳ|2Hm(T ) � h2. (2.26)

By the trace theorem with scaling, (2.6b) and (2.26), we also have

∑
e∈Ei

h

|e|−1‖[[∂(ȳ −Πhȳ)/∂n]]‖2L2(e)
(2.27)

�
∑
T∈Th

(
h−2
T |ȳ −Πhȳ|2H1(T ) + |ȳ −Πhȳ|2H2(T )

)
� h2.

The lemma for a graded Th follows from (2.13), (2.16), (2.26), and
(2.27).

3. An Intermediate Obstacle Problem. As mentioned in Sect. 1,
the difficulties due to the lack of H4

loc(Ω) regularity can be bypassed if
the convergence analysis does not rely on the complementarity form of the
variational inequality (1.9). We can accomplish this by introducing the
following intermediate obstacle problem:

Find ȳ∗h = argmin
y∗
h∈K∗

h

[
1

2
A(y∗h, y∗h)− (f, y∗h)

]
, (3.1)

where

K∗
h = {v ∈ H2(Ω) ∩H1

0 (Ω) : ψ1(p) ≤ v(p) ≤ ψ2(p) ∀p ∈ Vh}. (3.2)

By the standard theory (3.1) has a unique solution ȳ∗h characterized by the
variational inequality

A(ȳ∗h, y∗h − ȳ∗h) ≥ (f, y∗h − ȳ∗h) ∀y∗h ∈ K∗
h. (3.3)

Note that, on the one hand, ȳ∗h ∈ H2(Ω) ∩H1
0 (Ω) minimizes the same

functional as ȳ but on the larger set K∗
h ⊃ K, and, on the other hand, ȳ∗h

shares the same pointwise constraints as ȳh. Thus the intermediate obstacle
problem connects the continuous obstacle problem (1.7) and the discrete
obstacle problem (2.18). We will carry out the convergence analysis using
(1.9), (2.20), and (3.3), but not their complementarity forms.
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3.1. Relation Between ȳ and ȳ∗h. Using the fact that H2(Ω) is
compactly embedded in C(Ω̄), it was shown in [25] that there exist two
nonnegative functions φ1, φ2 ∈ C∞

0 (Ω) and a positive number h0 such that
for any h ≤ h0 we can find two positive numbers δh,1 and δh,2 with the
following properties:

ŷh := ȳ∗h + δh,1φ1 − δh,2φ2 ∈ K and δh,i � h2. (3.4)

Note that we can treat ȳ as an internal approximation of ȳ∗h since
K ⊂ K∗

h. It then follows from (3.4) and a standard result [3] that

‖ȳ∗h − ȳ‖H2(Ω) �
[
inf
y∈K
‖ȳ∗h − y‖H2(Ω)

] 1
2

� ‖ȳ∗h − ŷh‖
1
2

H2(Ω) � h. (3.5)

Remark 3.1. Even though the results in [25] are obtained for clamped
Kirchhoff plates on convex polygonal domains, these results are also valid
for general boundary conditions and general polygonal domains because they
are interior results that only require the following ingredients: (i) The set
K∗

h is a closed convex subset of H2(Ω). (ii) The constraints and the bound-
ary conditions are separated. (iii) The obstacle functions ψ1, ψ2 and the
solution ȳ belong to C2(Ω).

3.2. Connection Between Kh and K∗
h. We can connect Kh and

K∗
h by an enriching operator Eh that maps Vh into H2(Ω) ∩ H1

0 (Ω). By
construction Eh is a linear operator that preserves the nodal values at the
vertices of Th, i.e.,

(Ehv)(p) = v(p) ∀p ∈ Vh, v ∈ Vh, (3.6)

which, in view of (2.19) and (3.2), implies

EhKh ⊂ K∗
h. (3.7)

Moreover we have (cf. the notation in Sect. 2.1),

2∑
m=0

h2mT |v − Ehv|2Hm(T ) (3.8)

� h4T

⎛
⎜⎝ ∑

T ′∈TT

|v|2H2(T ′) +
∑

e∈Ei
VT

|e|−1‖[[∂v/∂n]]‖2L2(e)

⎞
⎟⎠

for any v ∈ Vh and T ∈ Th, and

2∑
m=0

hm−2
T |ζ − EhΠhζ|Hm(T ) � hsT |ζ|H2+s(ST ) (3.9)
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for all ζ ∈ H2+s(ST ), T ∈ Th and s ∈ [0, 1]. The construction of Eh, which
is similar to the constructions of the enriching operators in [16, 21] under
different boundary conditions, is given in Appendix B, where we also derive
the estimates (3.8) and (3.9).

The estimate (3.8) implies

∑
T∈Th

h
2(m−2)
T |v − Ehv|2Hm(T ) � ‖v‖2h ∀ v ∈ Vh, (3.10)

and in particular,

|Ehv|H2(Ω) � ‖v‖h ∀ v ∈ Vh. (3.11)

Combining (2.7a), (2.8a), (3.10) and the trace theorem with scaling, we
also have
∑
e∈Eh

|e|−1‖{{∂(v − Ehv)/∂ne}}‖2L2(e)
� ‖v‖2h ∀ v ∈ Vh. (3.12)

Finally the quasi-local estimate (3.9) implies the following result for
the solution ȳ of (1.7). We omit the proof due to its similarity with the
proof of Lemma 2.1.

Lemma 3.1. There exists a positive constant C independent of h such
that

‖ȳ − EhΠhȳ‖L2(Ω) + h|ȳ − EhΠhȳ|H1(Ω) + h2|ȳ − EhΠhȳ|H2(Ω) ≤ Ch2+τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

4. Preliminary Estimates. In this section we derive some prelimi-
nary estimates that are useful for the convergence analysis in Sect. 5. We
begin by stating the following integration by parts formula that holds for
v, w ∈ Vh:

∑
T∈Th

∫
T

D2v : D2(w − Ehw)dx

=
∑
T∈Th

∫
∂T

[(
∂2v

∂n2

)(
∂(w − Ehw)

∂n

)

+

(
∂2v

∂n∂t

)(
∂(w − Ehw)

∂t

)]
ds (4.1)

= −
∑
e∈Eh

∫
e

[[
∂2v

∂n2
e

]]{{
∂(w − Ehw)

∂ne

}}
ds

−
∑
e∈Ei

h

∫
e

{{
∂2v

∂n2

}}[[
∂(w − Ehw)

∂n

]]
ds.
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Note that v ∈ P2(T ) and hence on any edge e of T ∈ Th we have

∫
e

(
∂2vT
∂n∂t

)(
∂(wT − Ehw)

∂t

)
ds =

(
∂2vT
∂n∂t

)∫
e

∂(wT − Ehw)

∂t
ds = 0

because of (3.6).
Next we derive a basic estimate for ȳ − ȳh, where ȳ (resp. ȳh) is the

solution of (1.7)/(1.9) [resp. (2.18)/(2.20)].
Lemma 4.1. There exists a positive constant C independent of h such

that

‖ȳ− ȳh‖2h ≤ 2‖ȳ−Πhȳ‖2h +C
[
Ah(Πhȳ,Πhȳ− ȳh)− (f,Πhȳ− ȳh)

]
. (4.2)

Proof. Since Πhȳ ∈ Kh, we deduce from (2.15) and (2.20) that

‖ȳ − ȳh‖2h ≤ 2‖ȳ −Πhȳ‖2h + 2‖Πhȳ − ȳh‖2h
≤ 2‖ȳ −Πhȳ‖2h + CAh(Πhȳ − ȳh,Πhȳ − ȳh)
≤ 2‖ȳ −Πhȳ‖2h + C

[
Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)

]
.

In view of Lemmas 2.1 and 4.1, we can complete the error analysis
by bounding the second term on the right-hand side of (4.2). This will be
carried out in Sect. 5 after we have developed several technical lemmas in
the remaining part of this section.

Lemma 4.2. There exists a positive constant C independent of h such
that

∑
e∈Eh

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

≤ Ch2τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. We will split the estimate into two cases. Let ER

h = {e ∈ Eh :
e is not an edge of any triangle that touches a corner of Ω where the
angle is strictly greater than π/2} and ES

h = Eh \ ER

h . Note that the num-
ber of edges in ES

h is bounded by a constant determined by the minimum
angle of Th.

Since away from the corners of Ω where the angles are strictly greater
than π/2 the function ȳ belongs to H3 and ∂2ȳ/∂n2 = Δȳ vanishes on ∂Ω
(cf. Appendix A), we have, by (2.7b), (2.21) and the trace theorem with
scaling,

∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

=
∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ − ȳ)/∂n2

e]]
∥∥2
L2(e)

�
∑
e∈ER

h

∑
T∈Te

(h2TΦ
−2(cT ))Φ

2(cT )|ȳ|2H3(T ),
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where the function Φ is defined in (2.3). It then follows from (2.1)–(2.3)
and (A.7) that

∑
e∈ER

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

� h2τ , (4.3)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
Let e ∈ ES

h be an edge of a triangle that touches a corner p� of Ω where
the angle ω� ∈ (π/2, π). It follows from scaling that

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

�
∑
T∈Te

|Πhȳ|2H2(T )

�
∑
T∈Te

(
|Πhȳ − ȳ|2H2(T ) + |ȳ|2H2(T )

)
.

Let T ∈ Te. Since ȳ ∈ H2+α�(T ) (cf. Appendix A), we have

|Πhȳ − ȳ|H2(T ) � |ȳ|H2+α� (T )h
α�

T .

Moreover we have

|ȳ|H2(T ) ≈
∑
|μ|=2

‖∂μȳ‖L2(T )

=
∑
|μ|=2

‖Ψ−1
(
Ψ(∂μȳ)

)
‖L2(T ) � hα�

T

∑
|μ|=2

‖Ψ(∂μȳ)‖L2(T ),

where Ψ is define in (A.9). Therefore it follows from (2.1), (2.5), Remark 2.1
and (A.8) that

∑
e∈ES

h

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

� h2τ , (4.4)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
The lemma follows from (4.3) and (4.4).
Lemma 4.3. There exists a positive constant C independent of h such

that
∣∣∣∣ah(Πhȳ,Πhȳ − ȳh)−

∫
Ω

D2ȳ : D2Eh(Πhȳ − ȳh) dx
∣∣∣∣ (4.5)

≤ Chτ‖Πhȳ − ȳh‖h,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since both [[∂Eh(Πhȳ− ȳh)/∂n]] and [[∂ȳ/∂n]] equal 0, we have,
from (2.9),
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ah(Πhȳ,Πhȳ − ȳh)

=
∑
T∈Th

∫
T

D2ȳ : D2Eh(Πhȳ − ȳh)dx

+
∑
T∈Th

∫
T

D2(Πhȳ − ȳ) : D2Eh(Πhȳ − ȳh)dx

+
∑
T∈Th

∫
T

D2(Πhȳ) : D
2
[
(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

]
dx

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ)

∂n2

}}[[
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂n

]]
ds (4.6)

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ − ȳh)

∂n2

}}[[
∂(Πhȳ − ȳ)

∂n

]]
ds

+
∑
e∈Ei

h

σ

|e|

∫
e

[[
∂(Πhȳ − ȳ)

∂n

]][[
∂(Πhȳ − ȳh)

∂n

]]
ds,

and we can use (2.6), (2.13), Lemma 2.1, (3.11) and scaling to estimate the
second, fifth, and sixth terms on the right-hand side of (4.6) as follows:

∣∣∣∣∣
∑
T∈Th

∫
T

D2(Πhȳ − ȳ) : D2Eh(Πhȳ − ȳh)dx
∣∣∣∣∣

≤
(∑

T∈Th

|Πhȳ − ȳ|2H2(T )

) 1
2

|Eh(Πhȳ − ȳh)|H2(Ω) (4.7)

� hτ‖Πhȳ − ȳh‖h,

∣∣∣∣∣∣
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ − ȳh)

∂n2

}}[[
∂(Πhȳ − ȳ)

∂n

]]
ds

∣∣∣∣∣∣

≤

⎛
⎝∑

e∈Ei
h

|e|‖{{∂2(Πhȳ − ȳh)/∂n2}}‖2L2(e)

⎞
⎠

1
2

×

⎛
⎝∑

e∈Ei
h

1

|e|‖[[∂(Πhȳ − ȳ)/∂n]]‖2L2(e)

⎞
⎠

1
2

(4.8)

�
(∑

T∈Th

|Πhȳ − ȳh|2H2(T )

) 1
2

⎛
⎝∑

e∈Ei
h

1

|e| ‖[[∂(Πhȳ − ȳ)/∂n]]‖2L2(e)

⎞
⎠

1
2

� hτ‖Πhȳ − ȳh‖h,
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∣∣∣∣∣∣
∑
e∈Ei

h

σ

|e|

∫
e

[[
∂(Πhȳ − ȳ)

∂n

]][[
∂(Πhȳ − ȳh)

∂n

]]
ds

∣∣∣∣∣∣

�

⎛
⎝∑

e∈Ei
h

1

|e| ‖ [[∂(Πhȳ − ȳ)/∂n ]] ‖2L2(e)

⎞
⎠

1
2

(4.9)

×

⎛
⎝∑

e∈Ei
h

1

|e|‖ [[∂(Πhȳ − ȳh)/∂n ]] ‖2L2(e)

⎞
⎠

1
2

� hτ‖Πhȳ − ȳh‖h.

Now we use (3.12), the integration by parts formula (4.1) together
with Lemma 4.2 to estimate the sum of the third and fourth terms on the
right-hand side of (4.6) by

∑
T∈Th

∫
T

D2(Πhȳ) : D
2
[
(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

]
dx

+
∑
e∈Ei

h

∫
e

{{
∂2(Πhȳ)

∂n2

}}[[
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂n

]]
ds

= −
∑
e∈Eh

∫
e

[[
∂2(Πhȳ)

∂n2
e

]]{{
∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]

∂ne

}}
ds (4.10)

≤
(∑

e∈Eh

|e|
∥∥[[∂2(Πhȳ)/∂n

2
e

]]∥∥2
L2(e)

) 1
2

×
(∑

e∈Eh

1

|e|
∥∥{{∂[(Πhȳ − ȳh)− Eh(Πhȳ − ȳh)]/∂ne}}

∥∥2
L2(e)

) 1
2

� hτ‖Πhȳ − ȳh‖h.

The lemma follows from (4.6)–(4.10).
Lemma 4.4. There exists a positive constant C independent of h such

that

A(ȳ, EhΠhȳ − ȳ) ≤ Ch1+τ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Since Δȳ ∈ H1
0 (Ω) (cf. Appendix A), we have, by (1.5) and

Lemma 3.1,
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∫
Ω

D2ȳ : D2(EhΠhȳ − ȳ) dx =

∫
Ω

(Δȳ)
(
Δ(EhΠhȳ − ȳ)

)
dx

= −
∫
Ω

∇(Δȳ) · ∇(EhΠhȳ − ȳ) dx (4.11)

� |EhΠhȳ − ȳ|H1(Ω) � h1+τ .

Moreover Lemma 3.1 also implies

(ȳ, EhΠhȳ − ȳ) � h2+τ . (4.12)

The lemma follows from (1.8), (4.11), and (4.12).

5. Convergence Analysis. In this section we complete the error
analysis by finding a bound for the second term on the right-hand side of
(4.2). We will show that

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh) � h2τ + hτ‖Πhȳ − ȳh‖h, (5.1)

where τ = α if Th is quasi-uniform and τ = 1 if Th satisfies (2.2)–(2.4).
But first we use (5.1) to establish the main result of this paper.

Theorem 5.1. There exists a positive constant C independent of h
such that

‖ȳ − ȳh‖h ≤ Chτ , (5.2)

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. It follows from Lemma 2.1, (4.2), (5.1), and the inequality of
arithmetic and geometric means that

‖ȳ − ȳh‖2h ≤ C
(
h2τ + hτ‖Πhȳ − ȳh‖h

)

≤ C
(
h2τ + hτ‖ȳ − ȳh‖h

)
≤ Ch2τ +

1

2
‖ȳ − ȳh‖2h,

which implies (5.2).

The following lemma reduces the derivation of (5.1) to an estimate at
the continuous level.

Lemma 5.1. There exists a positive constant C independent of h such
that

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)
≤ Chτ‖Πhȳ − ȳh‖h +A

(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f, Eh(Πhȳ − ȳh)

)
,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).
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Proof. From (1.8) and (2.12) we have

Ah(Πhȳ,Πhȳ − ȳh)− (f,Πhȳ − ȳh)

= β

[
ah(Πhȳ,Πhȳ − ȳh)−

∫
Ω

(
D2ȳ : D2Eh(Πhȳ − ȳh)

)
dx

]

+ γ
[
(Πhȳ,Πhȳ − ȳh)−

(
ȳ, Eh(Πhȳ − ȳh)

)]
−
(
f, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

)
(5.3)

+A
(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f, Eh(Πhȳ − ȳh)

)
,

and we can bound the second and third terms on the right-hand side of
(5.3) as follows:

(Πhȳ,Πhȳ − ȳh)−
(
ȳ, Eh(Πhȳ − ȳh)

)
= (Πhȳ − ȳ,Πhȳ − ȳh) +

(
ȳ, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)

)
(5.4)

� h2‖Πhȳ − ȳh‖h

by (2.21) and (3.10); and

∣∣(f, (Πhȳ − ȳh)− Eh(Πhȳ − ȳh)
)∣∣ � h2‖Πhȳ − ȳh‖h (5.5)

by (3.10).
The lemma follows from Lemma 4.3 and (5.3)–(5.5).
In view of Lemma 5.1, it only remains to show that

A
(
ȳ, Eh(Πhȳ − ȳh)

)
−
(
f, Eh(Πhȳ − ȳh)

)
� h2τ + hτ‖Πhȳ − ȳh‖h. (5.6)

We will use the relation A ≤. B to streamline the derivation of (5.6), where

A ≤. B means that A−B � h2τ + hτ‖Πhȳ − ȳh‖h.

The estimate (5.6) can then be written as

A
(
ȳ, Eh(Πhȳ − ȳh)

) ≤.
(
f, Eh(Πhȳ − ȳh)

)
. (5.7)

It follows from (1.9), (3.3), (3.4), (3.7), and Lemma 4.4 that

A
(
ȳ, Eh(Πhȳ − ȳh)

)
= A(ȳ, EhΠhȳ − ȳ) +A(ȳ, ȳ − Ehȳh)

≤. A(ȳ, ȳ − Ehȳh)

= A(ȳ, ȳ − ŷh) +A(ȳ, ŷh − Ehȳh)

≤ (f, ȳ − ŷh) +A(ȳ, ȳ∗h − Ehȳh) +A(ȳ, δh,1φ1 − δh,2φ2) (5.8)

≤
. (f, ȳ − ŷh) +A(ȳ, ȳ∗h − Ehȳh)

= (f, ȳ − ŷh) +A(ȳ∗h, ȳ∗h − Ehȳh) +A(ȳ − ȳ∗h, ȳ∗h − Ehȳh)

≤ (f, ȳ − ŷh) + (f, ȳ∗h − Ehȳh) +A(ȳ − ȳ∗h, ȳ∗h − Ehȳh)

≤. (f, ȳ − Ehȳh) +A(ȳ − ȳ∗h, ȳ∗h − Ehȳh).
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Moreover we have

(f, ȳ − Ehȳh) =
(
f, Eh(Πhȳ − ȳh)

)
+ (f, ȳ − EhΠhȳ) (5.9)

≤
.
(
f, Eh(Πhȳ − ȳh)

)

by Lemma 3.1, and

A(ȳ − ȳ∗h, ȳ∗h − Ehȳh)

= A(ȳ − ȳ∗h, ȳ∗h − ȳ) +A(ȳ − ȳ∗h, ȳ − Ehȳh) (5.10)

≤ A(ȳ − ȳ∗h, ȳ − EhΠhȳ) +A
(
ȳ − ȳ∗h, Eh(Πhȳ − ȳh)

)
≤. 0

by (3.5), (3.11), and Lemma 3.1. The relation (5.7) then follows from
(5.8)–(5.10). Therefore we have established (5.6) and hence (5.1).

The following corollary is an immediate consequence of (2.17) and
Theorem 5.1.

Corollary 5.1. There exists a positive constant C independent of h
such that

|ȳ − ȳh|H1(Ω) ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Since the energy norm ‖ · ‖h is an H2-like norm, we can also deduce
an L∞ norm error estimate from Theorem 5.1. The proof of the follow-
ing theorem, which is based on Lemmas 2.1, 3.1, Theorem 5.1, standard
inverse estimates and the Sobolev inequality, is identical to the proof of
Theorem 4.1 in [23] and thus omitted.

Theorem 5.2. There exists a positive constant C independent of h
such that

‖ȳ − ȳh‖L∞(Ω) ≤ Chτ ,

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Remark 5.1. Since the norms ‖ ·‖L∞(Ω) and | · |H1(Ω) are weaker than
the energy norm ‖ · ‖h, the order of convergence in these norms should be
higher than the order of convergence in ‖ · ‖h. This is confirmed by the
numerical results in Sect. 6. Therefore the estimates for ‖ȳ − ȳh‖L∞(Ω)

and |ȳ − ȳh|H1(Ω) in Corollary 5.1 and Theorem 5.2 are not sharp.
For the optimal control problem defined by (1.1)–(1.3), we can take

the approximation for the optimal control ū to be the function ūh ∈ Vh
defined by

∫
Ω

∇ȳh · ∇v dx =

∫
Ω

ūhv dx ∀ v ∈ Vh. (5.11)
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Theorem 5.3. There exists a positive constant C independent of h
such that

‖ū− ūh‖L2(Ω) ≤ Chτ , (5.12)

where τ = α if Th is quasi-uniform and τ = 1 if Th is graded according to
(2.2)–(2.4).

Proof. Let Qh : L2(Ω) −→ Vh be the orthogonal projection. From
(1.2) we have

∫
Ω

∇ȳ · ∇v dx =

∫
Ω

ūv dx =

∫
Ω

(Qhū)v dx ∀ v ∈ Vh. (5.13)

Let v ∈ Vh be arbitrary. Using integration by parts, the Cauchy–
Schwarz inequality, scaling, (2.7b), (2.13), and Theorem 5.1, we find

∫
Ω

∇(ȳ − ȳh) · ∇v dx

= −
∑
e∈Ei

h

∫
e

[[∂(ȳ − ȳh)/∂n]]v ds−
∑
T∈Th

∫
T

[Δ(ȳ − ȳh)]v dx

≤

⎛
⎝∑

e∈Ei
h

|e|−1‖[[∂(ȳ − ȳh)/∂n]]‖2L2(e)

⎞
⎠

1
2
⎛
⎝∑

e∈Ei
h

|e|‖v‖2L2(e)

⎞
⎠

1
2

+

(∑
T∈Th

|ȳ − ȳh|2H2(T )

) 1
2

‖v‖L2(Ω)

� ‖ȳ − ȳh‖h‖v‖L2(Ω) � hτ‖v‖L2(Ω).

It then follows from (5.11), (5.13) and duality that

‖Qhū− ūh‖L2(Ω)

= sup
v∈Vh\{0}

(∫
Ω

(Qhū− ūh)v dx
)
/‖v‖L2(Ω) (5.14)

= sup
v∈Vh\{0}

(∫
Ω

∇(ȳ − ȳh) · ∇v dx
)
/‖v‖L2(Ω) � hτ .

Furthermore, we have, by a standard interpolation error estimate [61],

‖Qhū− ū‖L2(Ω) � |ū|H1(Ω)h. (5.15)

The estimate (5.12) follows from (5.14) and (5.15).
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Remark 5.2. One can also take the piecewise constant function ūh =
−Δhȳh to be an approximation of the optimal control ū, where Δh is the
piecewise Laplacian with respect to Th. The estimate (5.12) then immedi-
ately follows from (2.13) and Theorem 5.1. But numerical results indicate
that the approximation of ū defined by (5.11) is a better choice.

Remark 5.3. By tracing the constants in all the estimates (including
(3.4)) one can show (using (A.7), (A.8), and (A.10)) that the constant C in
Theorem 5.1, Corollary 5.1, Theorem 5.2, and Theorem 5.3 is of the form

C

⎛
⎝‖f‖L2(Ω) +

2∑
i=1

‖ψi‖W 2∞(K) + |Δȳ|H1(Ω) +
∑
|μ|=3

‖Φ(∂μȳ)‖L2(Ω)

+
∑
|μ|=2

‖Ψ(∂μȳ)‖L2(Ω) + ‖ȳ‖W 2∞(K)

⎞
⎠ ,

where Φ (resp. Ψ) is defined in (2.3) (resp. (A.9)), K ⊂⊂ Ω is a compact
neighborhood of the contact set where (ȳ−ψ1)(ȳ−ψ2) = 0, and the positive
constant C depends only on Ω and the shape regularity of Th.

6. Numerical Results. In this section we present several numerical
examples for the obstacle problem (1.7) with ψ1(x) = −∞. The com-
putational domain for the first four examples is the square (−0.5, 0.5) ×
(−0.5, 0.5). The discrete problems are defined on uniform triangulations Tj
with mesh parameter hj = 2−j (= the length of the horizontal and vertical
edges) for 1 ≤ j ≤ 8, and the penalty parameter σ is chosen to be 5 which
ensures the coercivity of the discrete bilinear form on uniform meshes. The
solutions of the discrete problems are denoted by ȳj (1 ≤ j ≤ 8), which are
obtained by a primal–dual active set algorithm [4, 47].
Example 1. In this example we validate our numerical scheme by solving
(1.7)/(1.9) with a known solution. We begin with the obstacle problem on
the disc {x : |x| < 2} with γ = 0, β = 1, f = 0 and ψ2(x) =

1
2 |x|2− 1. This

problem can be solved analytically because of rotational symmetry and the
exact solution is given by

y†(x) =

{
C1|x|2 ln |x|+ C2|x|2 + C3 ln |x|+ C4 |x| > r0
1
2 |x|2 − 1 |x| � r0

, (6.1)

where r0 = 0.31078820 . . . , C1 = −0.26855864 . . . , C2 = 0.45470930 . . . ,
C3 = −0.02593989 . . ., and C4 = −1.05625438 . . . .

Let ȳ be the restriction of y† to Ω = (−0.5, 0.5)2. Then we have

ȳ = argmin
y∈K̃

[
1

2

∫
Ω

(D2y : D2y)dx−
∫
∂Ω

(
∂2y†
∂n2

)(
∂y

∂n

)
ds

]
, (6.2)

where n is the unit outer normal on ∂Ω and

K̃ = {v ∈ H2(Ω) : v − y† ∈ H1
0 (Ω) and v ≤ ψ2 in Ω},
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i.e., ȳ is the solution of an obstacle problem for a simply supported plate
with nonhomogeneous boundary conditions.

As in the case of clamped plates [23], our results for simply supported
plates with homogeneous boundary conditions (Theorems 5.1 and 5.2) can
be extended to the nonhomogeneous case. Let Ṽh be the P2 Lagrange finite
element space associated with the triangulation Th. The discrete problem
for (6.2) is to find

ȳh = argmin
yh∈K̃h

⎡
⎣1
2
ah(yh, yh)−

∑
e∈Eb

h

∫
e

(
∂2y†
∂n2

)(
∂yh
∂n

)
ds

⎤
⎦ , (6.3)

where

K̃h = {v ∈ Ṽh : v −Πhy† ∈ H1
0 (Ω) and v(p) ≤ ψ2(p) ∀ p ∈ Vh}.

Let ȳj be the solution of (6.3) for the jth level triangulation and Πj be
the Lagrange nodal interpolation operator for the jth level finite element
space Vj . We evaluate the error ej = Πj ȳ − ȳj in the energy norm ‖ · ‖hj

and in the �∞ norm ‖ · ‖∞ defined by

‖ej‖∞ = max
p∈Nj

|ej(p)|,

where Nj is the set of the vertices and midpoints of Tj . We also compute
the order of convergence in these norms by the formulas

ln(‖ej−1‖hj−1/‖ej‖hj )/ ln 2 and ln(‖ej−1‖∞/‖ej‖∞)/ ln 2.

The numerical results are presented in Table 1. The order of convergence
in the energy norm is observed to be 1.5, which is better than the order
of 1 predicted by Theorem 5.1. This is likely due to the fact that ȳ is
actually a C∞ function on Ω away from the circle with radius r0 and
therefore superconvergence occurs since we use uniform triangulations. We
also observe that the order of convergence in the �∞ norm is close to 2,
better than the order of 1 predicted by Theorem 5.2.

We plot the discrete coincidence sets I7 and I8 in Fig. 1, where

Ij = {p ∈ Nj : ȳj(p) ≥ ψ2(p)− ‖ej‖∞}.

The black circle represents the exact free boundary F = {x ∈ Ω : |x| = r0}
(cf. (6.1)). It is evident that the discrete coincidence sets (resp. free bound-
aries) are converging to the exact coincidence set (resp. free boundary).

The second set of examples are optimal control problems with state
constraints that come from [6, 55]. The value of γ is taken to be 1. Since
the exact solutions are not known, we take ẽȳ,j = ȳj−1 − ȳj and evaluate
‖ẽȳ,j‖hj (the error of the state in the energy norm), |ẽȳ,j |H1 (the error of



118 S.C. Brenner, L.-Y. Sung and Y. Zhang

Table 1

Energy and l∞ errors for Example 1

j ‖ej‖hj/‖ȳ8‖h8 Order ‖ej‖∞ Order
1 2.1840×10−1 7.0940×10−3

2 6.8348×10−2 1.68 5.9691×10−4 3.57
3 3.1394×10−2 1.12 5.7224×10−4 0.06
4 9.8571×10−3 1.67 1.1579×10−4 2.31
5 3.8462×10−3 1.36 3.5461×10−5 1.71
6 1.4533×10−3 1.40 1.0669×10−5 1.73
7 5.4157×10−4 1.42 3.3085×10−6 1.69
8 1.9884×10−4 1.45 8.9654×10−7 1.88

Fig. 1. Discrete coincidence sets I7 (left) and I8 (right) for Example 1

the state in the H1(Ω) seminorm), and ‖ẽȳ,j‖∞ (the error of the state in
the l∞ norm) defined by

‖ẽȳ,j‖∞ = max
p∈Nj

|ẽȳ,j(p)|.

The approximations of the optimal control in these examples are given by
the piecewise quadratic functions ūj ∈ Vj defined by (5.11). We take ẽū,j =
ūj−1−ūj and evaluate ‖ẽū,j‖L2 (the error of the control in the L2(Ω) norm).
The orders of convergence in these examples are generated by the formulas

ln(‖ẽȳ,j−1‖/‖ẽȳ,j‖)/ ln(2) and ln(‖ẽū,j−1‖/‖ẽū,j‖)/ ln(2).

Example 2. In this example we take yd(x) = 10(sin(2π(x1 +0.5))+ (x2+
0.5)), ψ2(x) = 0.01 and β = 0.1. The errors for the approximations of the
state and the control are reported in Tables 2 and 3. The discrete state ȳ8
and control ū8 are depicted in Fig. 2.
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Table 2

Energy and �∞ state errors for Example 2

j ‖ẽȳ,j‖hj/‖ȳ8‖h8 Order ‖ẽȳ,j‖∞ Order

1 3.3661×100 1.1842×10−1

2 1.9062×100 0.82 3.9252×10−2 1.59
3 7.4142×10−1 1.36 6.5358×10−3 2.59
4 4.4582×10−1 0.73 2.0856×10−3 1.66
5 2.2066×10−1 1.01 6.2389×10−4 1.74
6 1.0916×10−1 1.02 1.8209×10−4 1.78
7 5.4174×10−2 1.01 4.5582×10−5 2.00
8 2.7011×10−2 1.00 1.1677×10−5 1.96

Table 3

H1 state errors and L2 control errors for Example 2

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2/‖ū8‖L2 Order

1 4.9436×100 3.6418×100
2 1.9541×100 1.34 2.1388×100 0.77
3 3.6305×10−1 2.43 7.9054×10−1 1.44
4 1.1593×10−1 1.65 3.3568×10−1 1.24
5 3.4745×10−2 1.74 1.2506×10−1 1.42
6 9.7768×10−3 1.83 4.0060×10−2 1.64
7 2.5550×10−3 1.94 1.3141×10−2 1.61
8 6.4538×10−4 1.99 4.4595×10−3 1.56

Fig. 2. Discrete state ȳ8 (left) and control ū8 (right) for Example 2

Example 3. In this example we take yd(x) = sin(2π(x1 + 0.5)(x2 + 0.5)),
ψ2(x) = 0.1 and β = 10−3. The errors for the approximations of the state
and the control are given in Tables 4 and 5. Figure 3 contains the plots for
the discrete state ȳ8 and the discrete control ū8.
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Table 4

Energy and �∞ state errors for Example 3

j ‖ẽȳ,j‖hj/‖ȳ8‖h8 Order ‖ẽȳ,j‖∞ Order

1 2.6968×100 6.3179×10−1

2 1.2439×100 1.12 1.2247×10−1 2.37
3 6.7643×10−1 0.88 3.7137×10−2 1.72
4 3.4552×10−1 0.97 7.2368×10−3 2.36
5 1.7485×10−1 0.98 2.5667×10−3 1.50
6 8.6434×10−2 1.01 7.3986×10−4 1.79
7 4.2673×10−2 1.02 1.9661×10−4 1.91
8 2.1230×10−2 1.01 4.9541×10−5 1.99

Table 5

H1 state errors and L2 control errors for Example 3

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2/‖ū8‖L2 Order

1 3.2873×100 2.6748×100
2 1.1542×100 1.51 1.5626×100 0.78
3 3.3936×10−1 1.77 9.4478×10−1 0.73
4 9.2061×10−2 1.88 3.5294×10−1 1.42
5 2.6639×10−2 1.79 1.2171×10−1 1.54
6 7.2818×10−3 1.87 4.1983×10−2 1.54
7 1.8560×10−3 1.97 1.3128×10−2 1.68
8 4.6711×10−4 1.99 4.4419×10−3 1.56

Fig. 3. Discrete state ȳ8 (left) and control ū8 (right) for Example 3

Example 4. In this example we take yd(x) = sin(4π(x1+0.5)(x2+0.5))+
1.5, ψ2(x) = 1 and β = 10−4. The errors for the approximations in the
state and the control are presented in Tables 6 and 7. The plots of the
discrete state ȳ8 and the discrete control ū8 are given in Fig. 4.
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Table 6

Energy and �∞ state errors for Example 4

j ‖ẽȳ,j‖hj/‖ȳ8‖h8 Order ‖ẽȳ,j‖∞ Order

1 8.6145×10−1 1.9915×100
2 7.0373×10−1 0.29 1.3112×100 0.60
3 3.6102×10−1 0.96 3.7238×10−1 1.82
4 2.3689×10−1 0.61 8.4619×10−2 2.14
5 1.1894×10−1 0.99 1.6099×10−2 2.39
6 5.9093×10−2 1.01 5.6989×10−3 1.50
7 2.9179×10−2 1.02 1.5619×10−3 1.87
8 1.4505×10−2 1.01 3.4243×10−4 2.19

Table 7

H1 state errors and L2 control errors for Example 4

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2/‖ū8‖L2 Order

1 1.3273×100 1.2796×100
2 8.1485×10−1 0.70 1.2466×100 0.04
3 2.9527×10−1 1.46 8.4385×10−1 0.56
4 1.0283×10−1 1.52 4.0479×10−1 1.06
5 3.3447×10−2 1.62 1.6078×10−1 1.33
6 8.4522×10−3 1.98 5.3193×10−2 1.60
7 2.2334×10−3 1.92 1.7536×10−2 1.60
8 5.5791×10−4 2.00 5.7008×10−3 1.62

Fig. 4. Discrete state ȳ8 (left) and control ū8 (right) for Example 4

The numerical results in Tables 2–7 confirm the error estimate for
‖ȳ− ȳh‖h in Theorem 5.1, since the index of elliptic regularity α = 1 for a
rectangular domain. On the other hand, the order of convergence for ȳh is
2 for both the �∞ norm and the H1(Ω) seminorm, which is better than the
first order convergence predicted by Theorem 5.2 and Corollary 5.1; and
the order of convergence for ūh is around 1.5, which is also better than the
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first order convergence predicted by Theorem 5.3. The plots of the state
and control in Figs. 2–4 also agree with the ones reported in [6, 55].

Example 5. In this example we take Ω to be the pentagonal domain
obtained from the square (−0.5, 0.5)2 by deleting the triangle with vertices
(0.5, 0), (0.5, 0.5) and (0, 0.5). We use the same data as Example 3, i.e.,
ψ2(x) = 0.1, yd(x) = sin(2π(x1 +0.5)(x2+0.5)), β = 10−3 and γ = 1. The
mesh parameter for the jth level uniform triangulation Tj is hj = 2−(j+1).
The errors for the approximate state ȳj and approximate control ūj are
presented in Tables 8 and 9. Since the index of elliptic regularity α for
the pentagonal domain can be taken to be any number less than 1/3 (cf.
Remark 2.1), the results in Tables 8 and 9 agree with Theorems 5.1 and
5.3. However, for this example the magnitude of the l∞ error of the state
seems to be O(h2α) and the magnitude of the H1(Ω) error of the state
seems to be O(h).

We also plot the discrete state ȳ8 and control ū8 in Fig. 5. The singular
nature of ȳ near the corners at (0.5, 0) and (0, 0.5) can be observed in the
plot of ū6.

Table 8

Energy and �∞ state errors for Example 5

j ‖ẽȳ,j‖hj/‖ȳ8‖h8 Order ‖ẽȳ,j‖∞ Order

1 1.2749×100 1.2541×10−1

2 7.3054×10−1 0.80 3.7113×10−2 1.76
3 3.6072×10−1 1.02 4.6868×10−3 2.99
4 1.9576×10−1 0.88 1.3685×10−3 1.78
5 1.1763×10−1 0.73 3.4423×10−4 1.99
6 7.8971×10−2 0.57 1.4986×10−4 1.20
7 5.7723×10−2 0.45 7.7115×10−5 0.96
8 4.4159×10−2 0.39 4.6283×10−5 0.74

Table 9

H1 state errors and L2 control errors for Example 5

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2/‖ū8‖L2 Order

1 1.1561×100 1.7291×100
2 3.4840×10−1 1.73 1.0841×100 0.67
3 8.2785×10−2 2.07 3.9368×10−1 1.46
4 2.2172×10−2 1.90 1.3651×10−1 1.53
5 6.5259×10−3 1.76 5.3314×10−2 1.36
6 2.1309×10−3 1.61 2.5368×10−2 1.07
7 8.7597×10−4 1.28 1.7158×10−2 0.56
8 4.5704×10−4 0.94 1.3122×10−2 0.39
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Fig. 5. Discrete state ȳ8 (left) and control ū8 (right) for Example 5

Table 10

Energy and �∞ state errors for Example 6

j ‖ẽȳ,j‖hj/‖ȳ7‖h7 Order ‖ẽȳ,j‖∞ Order

1 5.1533×10−1 2.1625×10−2

2 3.4325×10−1 0.59 8.5234×10−3 1.34
3 1.9843×10−1 0.79 3.9322×10−3 1.12
4 1.0957×10−1 0.86 1.5313×10−3 1.36
5 6.0125×10−2 0.87 6.2314×10−4 1.30
6 3.2836×10−2 0.87 2.2180×10−4 1.49
7 1.7795×10−2 0.88 7.5681×10−5 1.55

Example 6. In this example we solve the same problem in Example 5 on
graded meshes obtained from a uniform triangulation T0 of the pentagonal
domain by the refinement process in [10] (cf. Fig. 6), and we take the
penalty parameter σ to be 20.

The errors of the approximate state ȳj and approximate control ūj are
reported in Tables 10 and 11. It is observed that the order of convergence
for the state in the energy norm and for the control in the L2(Ω) norm is
about 1, which agrees with Theorems 5.1 and 5.3. On the other hand, the
order of convergence for the state in the �∞ norm and the H1(Ω) seminorm
is about 1.5, which is better than the order of convergence predicted by
Theorem 5.2 and Corollary 5.1.

The discrete state ȳ7 and control ū3 are depicted in Fig. 7. By compar-
ing Figs. 5 and 7 we see that the graphs of the optimal states computed by
a uniform mesh and a graded mesh are very similar. But the graph of the
optimal control computed by graded meshes exhibited a more pronounced
singular behavior near the corners (0, 0.5) and (0.5, 0) since the triangles at
these corners are much smaller than the corresponding ones in a uniform
mesh.



124 S.C. Brenner, L.-Y. Sung and Y. Zhang

Table 11

H1 state errors and L2 control errors for Example 6

j |ẽȳ,j |H1/|ȳ8|H1 Order ‖ẽū,j‖L2/‖ū8‖L2 Order

1 2.2461×10−1 4.7166×10−1

2 1.0985×10−1 1.03 2.9528×10−1 0.68
3 4.5006×10−2 1.29 1.5324×10−1 0.95
4 1.5012×10−2 1.58 7.7635×10−2 0.98
5 5.7283×10−3 1.39 4.0842×10−2 0.93
6 1.9491×10−3 1.56 2.1646×10−2 0.92
7 6.6083×10−4 1.56 1.1353×10−2 0.93

Fig. 6. Triangulation T0 (left) and T1 (right) for the pentagonal domain

7. Concluding Remarks. In this paper we have only considered
the optimal control problem (1.1)–(1.3) on convex polygonal domains.
It is possible to treat this problem on general polygonal domains, in
which case the space H2(Ω) ∩ H1

0 (Ω) will be replaced by the space
{v ∈ H1

0 (Ω) : Δv ∈ L2(Ω)} that has been thoroughly analyzed in [45, 46]
and the discretization will involve singular functions.

The three-dimensional version of (1.1)–(1.3) can also be solved as
fourth order variational inequalities by finite element methods. For smooth
domains, a straightforward extension of the approach in [15, 23–25] and this

paper will lead to O(h
1
2 ) errors for the state in the energy norm and the

control in the L2(Ω) norm, similar to the error estimates in [37, 56]. Again
we expect the convergence of the state in the H1(Ω) norm and the L∞(Ω)
norm to be of higher order.

These and other topics, such as the solution of optimal control prob-
lems with both state and control constraints as fourth order variational
inequalities are subjects of ongoing investigations.
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Fig. 7. Discrete state ȳ7 (left) and control ū3 (right) for Example 6
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APPENDIX

A. Elliptic Regularity for Simply Supported Plates. In this
appendix we summarize elliptic regularity results for the biharmonic equa-
tion on convex polygonal domains with the boundary conditions of simply
supported plates and also discuss related results for the solution ȳ of the
obstacle problem (1.7). We will focus on the H3 regularity (or lack thereof)
for the solution since ȳ ∈ H3

loc(Ω).
Let Ω be a convex polygonal domain with corners p1, . . . , pL and ω�

be the interior angle of Ω at p�. Let g ∈ L2(Ω) and z ∈ H2(Ω) ∩ H1
0 (Ω)

satisfy

∫
Ω

D2z : D2v dx =

∫
Ω

gv dx ∀ v ∈ H2(Ω) ∩H1
0 (Ω). (A.1)

It follows from (A.1) that w = −Δz ∈ L2(Ω) has the following properties:
(i) w is an H2 function away from the corners of Ω, (ii) w vanishes on
∂Ω \ {p1, . . . , pL}. These two conditions then imply that

w = −Δz belongs to H2(Ω) ∩H1
0 (Ω) (A.2)

and that z also satisfies∫
Ω

∇z · ∇v dx =

∫
Ω

wv dx ∀ v ∈ H1
0 (Ω).

Thus we can deduce the elliptic regularity of z from the elliptic regularity
theory for the Laplace operator [36, 45, 58].

First of all,

z is an H4 function away from the corners of Ω, (A.3)
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which also follows directly from (A.1). Secondly we have

z ∈ H3(N�) if ω� ≤ π/2, (A.4)

where N� ⊂ Ω is a neighborhood of p�. Finally, at a corner p� where
ω� > π/2, we have

z − κ�ϕ� ∈ H3(N�), (A.5)

where N� ⊂ Ω is a neighborhood of p�, κ� is a constant (generalized stress
intensity factor), and the singular function ϕ� is defined by

ϕ� = r
π/ω�

� sin
(
(π/ω�)θ�

)
. (A.6)

Here (r�, θ�) are the polar coordinates at p� such that the two edges of Ω
emanating from p� are given by θ� = 0 and θ� = ω�. Note that ϕ� is a
harmonic function and ϕ� ∈ H1+(π/ω�)−ε(N�) for any ε > 0.

Now we turn to the solution ȳ of (1.7)/(1.9). Since the constraints in
(1.3) are not active near ∂Ω because of (1.4b), we have

∫
Ω

[
β
(
D2(ρ1ȳ) : D

2w
)]
dx =

∫
Ω

β
[
D2(ρ1ȳ) : D

2
(
(1− ρ2)w

)]
dx

+

∫
Ω

ρ2(f − γȳ)w dx

for all w ∈ H2(Ω) ∩ H1
0 (Ω), where ρ1 = ρ2 = 1 near ∂Ω, ρ1 = 1 on the

support of ρ2, and the support of ρ1 is disjoint from the active set where
ȳ(x) = ψ1(x) or ψ2(x). Note that standard interior elliptic regularity [62,
Sect. 20] implies

∫
Ω

[
D2(ρ1ȳ) : D

2
(
(1− ρ2)w

)]
dx =

∫
Ω

(1 − ρ2)[Δ2(ρ1ȳ)]w dx,

where (1− ρ2)Δ2(ρ1ȳ) ∈ L2(Ω).
Therefore z = ρ1ȳ satisfies (A.1) with g = ρ2(f − γȳ)/β + (1 −

ρ2)Δ
2(ρ1ȳ) ∈ L2(Ω). Combining (A.2)–(A.6) and the fact that ȳ ∈

H3
loc(Ω), we can draw the following conclusions about ȳ.
• The function Δȳ belongs to H1

0 (Ω). Therefore ū = −Δȳ belongs
to H1

0 (Ω) for the optimal control problem (1.1)–(1.3).
• Let α� be chosen according to (2.4). Then ȳ ∈ H2+α�(N�), where
N� (⊂ Ω) is a neighborhood of p�. Globally we have ȳ ∈ H2+α(Ω)
where α = min1≤�≤L α�.
• We can write ȳ = ȳS + ȳR, where ȳR ∈ H3(Ω) ∩ H1

0 (Ω), ΔȳR ∈
H1

0 (Ω) and ȳS have the following properties.
– ȳS is an H3 function away from the corners of Ω where the

angles are > π/2.
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– ȳS is a multiple of ϕ� in a neighborhood N� of a corner p�
where ω� > π/2.

– ΔȳS belongs to H1
0 (Ω).

• Since r1−α�

� (∂μϕ�) ∈ L2(N�) for |μ| = 3, we have Φ(∂μȳS) ∈ L2(Ω)
for |μ| = 3 and hence

Φ(∂μȳ) ∈ L2(Ω) for |μ| = 3, (A.7)

where the function Φ is defined by (2.3).
• Since r−α�

� (∂μϕ�) ∈ L2(N�) for |μ| = 2, we have Ψ(∂μȳS) ∈ L2(Ω)
for |μ| = 2 and hence

Ψ(∂μȳ) ∈ L2(Ω) for |μ| = 2, (A.8)

where the function Ψ is defined by

Ψ(x) =

L∏
�=1

|p� − x|−α� . (A.9)

Finally we note that (cf. [36, Theorem AA.3 and Theorem AA.7])

|ȳ|H2+α(Ω) ≤ CΩ

∑
|μ|=3

‖Φ(∂μȳ)‖L2(Ω). (A.10)

B. An Enriching Operator. In this appendix we construct the en-
riching operator introduced in Sect. 3.2. Such operators have played an
important role in the design and analysis of fast solvers for nonconforming
finite element methods [11, 12, 22, 26].

Let Ṽh ⊂ H1(Ω) be the P2 Lagrange finite element space associated
with Th and W̃h ⊂ H2(Ω) be the P6 Argyris finite element space [2] associ-
ated with Th. The degrees of freedom of w ∈ W̃h (cf. Fig. 8) consist of the
values of the derivatives of w up to second order at the vertices of Th, the
values of w at the midpoints of the edges of Th and at the centers of the
triangles of Th, and the values of the normal derivative of w at two nodes
on each edge in Eh.

The enriching operator Eh : Ṽh −→ W̃h is defined by averaging as
follows (cf. Sect. 2.1 for the notation).

(i) Let N be a degree of freedom associated with an interior node p.
We define

N(Ehv) =
1

|Tp|
∑
T∈Tp

N(vT ).

(ii) Let N be a degree of freedom involving the normal derivative as-
sociated with a boundary node interior to an edge e ∈ Ebh. We
define

N(Ehv) = N(vTe).
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Fig. 8. Degrees of freedom for the P6 Argyris finite element

(iii) Let p be a boundary node which is not a corner of Ω such that p
is the common endpoint of two edges e1, e2 ∈ Ebh. For any degree
of freedom N associated with p, we define

N(Ehv) =
1

2

[
N(vTe1

) +N(vTe2
)
]
.

(iv) Let p be a corner of Ω. Then p is the common endpoint of e1, e2 ∈
Ebh. Let tj (resp. nj) be a unit tangent (resp. normal) of ej . We
define

(Ehv)(p) = v(p),

(∂(Ehv)/∂tj)(p) = (∂vTej
/∂tj)(p) for j = 1, 2,

(∂2(Ehv)/∂t
2
j)(p) = (∂2vTej

/∂t2j)(p) for j = 1, 2,

(∂2(Ehv)/∂t1∂n1)(p) = (∂2vTe1
/∂t1∂n1)(p).

Remark B.1. We can also replace the last equation in (iv) by

(∂2(Ehv)/∂t2∂n2)(p) = (∂2vTe2
/∂t2∂n2)(p).

Since v is continuous at the vertices, the relation (3.6) follows imme-
diately from (i), (iii), and (iv). It is also easy to check that

Ehv ∈Wh = W̃h ∩H1
0 (Ω) ⊂ H2(Ω) ∩H1

0 (Ω) if v ∈ Vh = Ṽh ∩H1
0 (Ω).

We now turn to the derivations of (3.8) and (3.9). Let T ∈ Th be
arbitrary. Since v = Ehv at the vertices and the center of T , we have, by
scaling,
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‖v − Ehv‖2L2(T ) � h4T

⎛
⎝∑

p∈VT

|∇(v − Ehv)(p)|2

+
∑

p∈NT

∣∣∣∣∂(v − Ehv)

∂n
(p)

∣∣∣∣
2

+
∑
p∈VT

h2T |D2(v − Ehv)(p)|2
⎞
⎠ (B.1)

for all v ∈ Ṽh, where NT is the set of the six nodes on ∂T associated with
the degrees of freedom of the P6 Argyris finite element that involve the
normal derivative (cf. Fig. 8).

Let p ∈ VT be interior to Ω. Since the tangential derivative of v−Ehv
is continuous across element boundaries, we have, by the definition of Eh

and a standard inverse estimate,

|∇(v − Ehv)(p)|2 =

∣∣∣∣∣
1

|Tp|
∑

T ′∈Tp

(∇vT (p)−∇vT ′(p))

∣∣∣∣∣
2

(B.2)

�
∑
e∈Ei

p

|e|−1‖ [[∂v/∂n ]] ‖2L2(e)

where E ip is the set of the edges in E ih sharing p as a common endpoint.
Similarly, we have

|D2(v − Ehv)(p)|2 =

∣∣∣∣∣
1

|Tp|
∑

T ′∈Tp

D2(vT − vT ′)(p)

∣∣∣∣∣
2

(B.3)

�
∑

T ′∈Tp

h−2
T ′ |v|2H2(T ′).

The estimates (B.2) and (B.3) are also valid for p ∈ ∂Ω by similar argu-
ments.

Now we consider p ∈ NT . If p is a boundary node, then
∣∣(∂(v −

Ehv)/∂n)(p)
∣∣ = 0 by the definition of Eh. Otherwise we have, by a stan-

dard inverse estimate,

|∂(v − Ehv)/∂n(p)|2 � |e|−1‖ [[∂v/∂n ]] ‖2L2(e)
(B.4)

for some e ∈ E ih.
Combining (B.1)–(B.4), we obtain the estimate (3.8) for m = 0, which

then implies the estimates for m = 1 and 2 through standard inverse esti-
mates.

For the operator Eh ◦ Πh, first we observe that it is a bounded linear
operator from H2+s(ST ) into H2(T ) because of (2.21) and (3.8). Further-
more, by construction, EhΠhζ = ζ on T if ζ ∈ P2(ST ). Hence the estimate
(3.9) follows from the Bramble–Hilbert lemma (cf. [9, 38]).
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A LOCAL TIMESTEPPING RUNGE–KUTTA
DISCONTINUOUS GALERKIN METHOD FOR
HURRICANE STORM SURGE MODELING

CLINT DAWSON∗

Abstract. In this paper, we describe a local timestepping (LTS) approach within
the Runge–Kutta discontinuous Galerkin (RKDG) method, and the application of this
method to the modeling of hurricane storm surge. Modeling storm surge requires the
numerical solution of the shallow water equations with wind and atmospheric pressure
forcing, over complex domains which include wet and dry regions. The RKDG method
is well suited for these applications; however, well-resolved simulations of storm surge
can require highly graded meshes, which can lead to severe global CFL constraints. The
LTS approach allows for elements to use timesteps which approximately satisfy only
local CFL conditions. We describe a fully parallel implementation of the LTS method
within an RKDG shallow water simulator, developed by the author and collaborators
over a period of several years. We demonstrate that, for a specific hurricane, namely
Hurricane Ike, the LTS method can reduce parallel run-times by nearly a factor of two
with no degradation in accuracy.

Key words. Local timestepping, Multirate methods, Shallow water equations,
Runge–Kutta discontinuous Galerkin methods, Hurricane storm surge

AMS(MOS) subject classifications.

1. Introduction. In this paper, we continue our investigation of lo-
cal timestepping (LTS) methods for Runge–Kutta discontinuous Galerkin
(RKDG) discretizations of conservation laws. We are specifically inter-
ested in these methods for the numerical solution of shallow water systems
in the coastal ocean. The application of RKDG methods to the shallow
water equations has been extensively described in a series of papers by the
author and collaborators; see [4, 8, 15–17, 23]. In particular, the method
has been shown to be robust for a wide variety of flows in coastal seas, from
tidal flows to more extreme flows such as hurricane-driven storm surge. Ex-
tensive verification and validation work has been performed, and the result
is a robust shallow water simulator based on the RKDG formulation.

One of the remaining research issues with the RKDG method is the
efficiency question. It has been debated in the literature that DG meth-
ods in general are inefficient, due to the fact that compared to standard
continuous Galerkin methods, they have far more degrees of freedom, at
least on the same computational mesh. Another issue with RKDG meth-
ods are the timestep constraints due to the CFL condition. For coastal
ocean applications, the meshes are often highly graded in the continental
shelf, near-shore, and coastal inland regions. Mesh elements may vary in
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size from several square kilometers to O(100) square meters. Furthermore,
the eigenvalues of the system may also vary by orders of magnitude over
the domain. Thus, enforcing a global CFL timestep constraint based on
satisfying a highly localized CFL condition can lead to inefficiencies in the
timestepping in RKDG methods, and in explicit methods in general.

LTS is one way to deal with this problem. In LTS, the timestep size
varies on each element and is determined by a local CFL condition. Such
methods have been previously derived and applied to conservation laws by
a number of authors [6, 7, 14, 19, 20]. This procedure is also similar to mul-
tirate methods and adaptive mesh refinement (AMR) methods. The AMR
method used in the GeoClaw software [2, 3] uses forward Euler timestep-
ping with timesteps dictated by local CFL constraints on each refinement
patch. The fluxes at the interfaces between levels are conserved in the
same way described here, and as described in [19]. The multirate methods
described in [5] for conservation laws are shown to preserve second order
accuracy and the TVD property.

In previous work [9, 21], we developed and applied an LTS method
within the framework of a second order RKDG method and applied the
method to the solution of the shallow water equations. In [21], the accuracy
of the method was examined and comparisons with RKDG solutions with
no LTS were given for some relatively small-scale model problems. In
[9], we extended the LTS method to large-scale coastal flow applications.
These applications require large domains, highly unstructured meshes, and
can involve simulation of phenomena over several days. Thus, efficient
simulation requires the use of parallel computing. The extension of LTS
methodologies to distributed memory parallel computers is nontrivial, as
we discuss in more detail below.

The rest of this paper is arranged as follows. In the next section, we
outline the shallow water equations, the RKDG method and discuss the
implementation of the LTS method in a parallel computing environment.
In Sect. 3, we provide results for LTS in a highly challenging application,
the modeling of hurricane storm surge, focusing in particular on Hurricane
Ike (2008).

2. The Shallow Water Equations. The shallow water equations
(SWE) are based on the three-dimensional Reynold’s averaged Navier–
Stokes equations for a Newtonian fluid. Averaging these equations over the
vertical depth of the waterH and applying kinematic and no-flow boundary
conditions at the top and the bottom gives rise to the conservative form of
the SWE:

∂H

∂t
+ Sp

∂(uH)

∂x
+
∂(vH)

∂y
= 0, (2.1)

∂(uH)

∂t
+ Sp

∂
(
u2H + 1

2gH
2
)

∂x
+
∂(uvH)

∂y
= gSpH

∂η

∂x
+ (τξx − τηx ) + Fx,

(2.2)
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∂(vH)

∂t
+
∂
(
v2H + 1

2gH
2
)

∂y
+ Sp

∂(uvH)

∂x
= gH

∂η

∂y
+ (τξy − τηy ) + Fy,

(2.3)

where u and v are depth-average velocities, ξ is the water elevation rel-
ative to the geoid, η = H − ξ is the bathymetry relative to the geoid,
g is gravitational acceleration, {τξx,y, τηx,y} are the surface (wind) and bed
(bottom friction) stresses, respectively, and Fx,y accounts for other exter-
nal forces, such as Coriolis force and tidal potential. The function Sp(y)
is a spherical correction factor which transforms the SWE in spherical
coordinates φ, λ to Cartesian coordinates x, y using an orthogonal cylin-
drical projection; see [8]. To arrive at these equations, a number of as-
sumptions have been made; (1) the vertical acceleration of a fluid par-
ticle is small in comparison with the acceleration of gravity, (2) shear
stresses due to the vertical velocity are small, and (3) the horizontal shear
terms, {∂2u/∂x2, ∂2u/∂y2, ∂2v/∂x2, ∂2v/∂y2} are small compared to ver-
tical shears, {∂2u/∂z2, ∂2v/∂z2}.

For closure, the bed stress terms must be parameterized via the depth-
averaged velocities. The bed stress is often approximated by linear or
quadratic functions of the velocities; however, we have used a hybrid form
proposed by Westerink et al. [22] which varies the bottom-friction coeffi-
cient with the water column depth:

τηx = uH

(
Cf

√
u2 + v2

H

)
, τηy = vH

(
Cf

√
u2 + v2

H

)
, (2.4)

where,

Cf = Cfmin

(
1 +

(
Hbreak

H

)fθ)fγ/fθ
. (2.5)

This formulation applies a depth-dependent, Manning-type friction law
below the break depth (Hbreak) and a standard Chezy friction law when the
depth is greater than the break depth. For the applications below, Cfmin

is allowed to vary, since the bed surfaces change.
The wind surface stress is computed by a standard quadratic drag law.

Define

τξx = Cdρair|W|Wx, (2.6)

τξy = Cdρair|W|Wy . (2.7)

Here W = (Wx,Wy) is the wind speed sampled at a 10m height over
a 15-min time period and ρair is the air density. The drag coefficient is
defined by Garratt’s drag formula [10]:

Cd = (0.75 + 0.06|W|) ∗ 10−3. (2.8)

We also remark that the wind surface stress is capped so that its magnitude
is never greater than 0.002.
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3. Numerical Methods.

3.1. The Discontinuous Galerkin Finite Element Method. Re-
write the SWE as a hyperbolic system with a source term:

∂w

∂t
+∇ · F(w) = s. (3.1)

To formulate the semi-discrete DG method for (3.1), the physical do-
main, Ω, is first partitioned into non-overlapping finite elements, Ki for
i = 1, 2, . . .N . If P k(Ki) is defined as the space of polynomials of degree
≤ k over element i, the DG method can be formulated as seeking a piece-
wise smooth approximation wh |Ki∈ P k(Ki), obtained by multiplying (3.1)
by a test function vh, and integrating by parts:∫

Ki

∂wh

∂t
vh dx−

∫
Ki

F(wh)·∇vh dx+
∫
∂Ki

F̂·nivh ds =

∫
Ki

svh dx. (3.2)

Here F̂(wh,−, wh,+) is an approximation to the normal flux at the ele-
ment boundaries given discontinuous left and right states wh,− and wh,+,
respectively, and ni is the unit outward normal to ∂Ki. Many different
numerical fluxes F̂ have been proposed in the literature. For the results
presented here, the local Lax-Friedrichs flux is used.

Expanding the solution wh in terms of its degrees of freedom, (3.1)
can be written as system of ODEs:

M
dw̃

dt
= b. (3.3)

3.2. Runge–Kutta Time Discretization. For time integration,
the system of equations

dw̃

dt
= Lh(w̃) ≡M−1 b, (3.4)

is discretized in time using an explicit, strong stability preserving (SSP)
Runge–Kutta scheme. For linear basis functions in space, we use a second
order SSP Runge–Kutta scheme. Given a timestep Δt, and tn = nΔt,
n = 0, 1, . . ., the method is defined as

w̃0 = w̃(tn),

w̃l = w̃l−1 +ΔtLh(w̃
l−1), for l = 1, 2

w̃(tn+1) = 1
2 (w̃

0 + w̃2).
(3.5)

Other aspects of the DG implementation, such as slope limiting and wetting
and drying, which are more specific to the shallow water application, are
described in [21] and the references therein. Therefore we will not repeat
them here except to say that in the numerical results below, we use a
vertex-based slope limiter (the Bell–Dawson–Shubin limiter) as described
in [1, 18], and the wetting and drying algorithm described in [4].
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3.3. Local Timestepping (LTS). From here on, we will restrict
our attention to piecewise linear approximations and second-order SSP
Runge–Kutta timestepping. The LTS method that we employ is described
in [9, 21], it is based on a simple modification of the second order SSP
Runge–Kutta method described above, to allow for different timesteps in
different regions, and to conserve mass.

To describe the method, consider the 1D (one space dimension plus
time) scenario shown in Fig. 1. Here we have highlighted three elements,
denoted byKj, j = i−1, i, i+1, whereKj = [xj−1/2, xj+1/2]. ElementKi−1

has the smallest timestep, which we label ΔT1. Element Ki has timestep
ΔT2 = 2ΔT1 and element Ki+1 has the largest timestep ΔT3 = 2ΔT2. We
focus on computing the solution in elements Ki−1 and Ki, given a global
solution at time tn. Let w0

h = wh(t
n) and w0,l

h = wh(t
n + lΔT1). On Ki−1,

we take two Euler steps:

∫
Ki−1

wk,l
h vhdx =

∫
Ki−1

wk−1,l
h vhdx

−ΔT1
[
F̂
(
wk−1,l

h,− , w0
h,+

) ∣∣∣xi−1/2
− F̂
(
wk−1,l

h,− , wk−1,l
h,+

)∣∣∣
xi−3/2

]

+ΔT1

∫
Ki−1

[
F
(
wk−1,l

h

)
v′h(x) + svh

]
dx, (3.6)

for k = 1, 2. Then define

w0,l+1
h =

1

2

[
w0,l

h + w2,l
h

]
.

We repeat this step for l = 0, 1 until we arrive at a solution w0,2
h = wh(t

n+
2ΔT1) on element Ki−1. Note that we have kept the right state at xi−1/2

fixed at the old time level during the calculation.
Now moving to element Ki, we again take two Euler steps:

∫
Ki

wk
hvhdx =

∫
Ki

wk−1
h vhdx

−ΔT2
{
F̂
(
wk−1

h,− , w
0
h,+

) ∣∣∣
xi+1/2

−1

2

[
F̂
(
wk−1,0

h,− , w0
h,+

) ∣∣∣
xi−1/2

+ F̂
(
wk−1,1

h,− , w0
h,+

) ∣∣∣
xi−1/2

]}

+ΔT2

∫
Ki−1

[
F
(
wk−1

h

)
v′h(x) + svh

]
dx. (3.7)

for k = 1, 2. Then on Ki:

wh(t
n +ΔT2) =

1

2

[
w0

h + w2
h

]
.
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Note that the sum of all the fluxes at the interface xi−1/2 between Ki−1

and Ki is zero, insuring that we have global conservation of mass at the
discrete time levels tn, tn+1, . . ..

Fig. 1. Example of LTS on three elements with three different local timesteps in
one space dimension

Next we go back to Ki−1 and compute the solution up to time tn+1,
using the same procedure outlined above. Then we compute the solution
on Ki up to time tn+1, and finally the solution on Ki+1 is computed.

3.4. Implementation and Parallelization. The LTS method de-
scribed above can be generalized under the assumption that neighboring
elements are assumed to have timesteps which differ by some integer M .
We assume that each element K is placed into a timestepping group or
level, where level 1 will denote the elements with the smallest timestep,
level 2 the next smallest, and so forth. The total number of levels is de-
noted by N̄ .

We first calculate a local CFL timestep. On each element K, we
compute the local timestep

ΔtK = α
h̄K
λK

(3.8)

where α is a CFL parameter which is O(1), typically α = 1/
√
2, h̄K is the

minimum distance between the centroid of the element and the midpoint
of the edges of K, and λK is an estimate of the maximum eigenvalue
of the Jacobian associated with the normal flux F̂. As above, let ΔTl,
l = 1, . . . , N̄ denote timesteps associated with each timestepping level,
where MΔTl = ΔTl+1. We assume that

ΔT1 ≤ min
K

ΔtK .

Then element K is placed into timestep group l if

ΔTl ≤ ΔtK < ΔTl+1. (3.9)
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If ΔtK ≥ ΔTN̄ , then element K is placed into level N̄ . The element
timesteps are then reset, thus if element K is in group l, then ΔtK ← ΔTl.

For large-scale applications of interest, solutions cannot be computed
in serial due to memory and CPU limitations, therefore parallel comput-
ing is necessary. We have implemented the LTS method in parallel with
our shallow water model. The parallelization approach is based on domain
decomposition, where the domain is first decomposed using the METIS
software library [11, 12]. METIS divides the domain into overlapping sub-
domains with “ghost” regions based on a graph-partition of the nodes that
make up the finite element mesh. In our implementation, the ghost re-
gion consists of elements which are shared by neighboring processors. MPI
is used to pass solution information defined on the ghost elements to the
neighboring processor. METIS attempts to divide the domain to balance
the work-load among processors, to preserve locality of the elements and
nodes within the subdomain and to minimize the “surface-to-volume” ratio;
that is, to keep the ratio of ghost nodes to resident nodes low in order to re-
duce the communications overhead. For improved load balancing, METIS
allows the user to weight nodes in the finite element mesh using an estimate
of the “work” related to the node; for example, by estimating the maximum
amount of work performed in elements which are attached to the node.

For a fixed global timestep, the parallelization of the DG method is
quite straightforward. Each element has the same amount of work and takes
the same timestep, and parallelization is achieved by each subdomain com-
municating with neighboring subdomains at the end of each Runge–Kutta
timestep. The communication remains constant throughout the simulation.
For LTS, the situation is much more complicated.

First, there is the question of load balancing. To march from time
tn to time tn+1, the amount of work per element depends on the local
timestep. We have attempted to address this in METIS by weighting each
node by a factor which depends on the local timesteps associated with
elements attached to the node. This factor is determined by the number
of sub-cycling steps required for the element with the smallest timestep to
go from time tn to time tn+1.

Second, there is the question of the timing of interprocessor commu-
nication. For example, consider the 1-D example in Fig. 1. There are
N̄ = 3 timestepping levels with M = 2. Element Ki−1 is on level 1, with
the smallest timestep, element Ki is on level 2, and Ki+1 is on level 3.
Now assume element Ki−1 is on processor 0 (PE0), and Ki and Ki+1 are
on the neighboring processor 1 (PE1), with elements Ki−1 and Ki in the
ghost region. Both processors PE0 and PE1 compute the solution on these
two elements, but element Ki−1 is “owned” by PE0 while element Ki is
“owned” by PE1. For the solution to be computed correctly in the ghost
region, information in element Ki−1 must be passed from PE0 to PE1 at
each level 1 timestep, and the information in element Ki must be passed
from PE1 to PE0 at all level 2 timesteps.
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In general, each timestepping level must communicate information
with neighboring processors which share elements on the same level, if these
elements are within the ghost region. Therefore, we have implemented a
message-passing construct which is level-dependent. This may reduce par-
allel efficiency in the sense of strong scalability, since not all subdomains
may have the same number of elements on each level, in fact some subdo-
mains may have no elements on a given timestepping level. Or, subdomains
may have elements within a level but none in the ghost region, while other
subdomains may have many elements within a certain level in the ghost
region, and thus require message-passing. One could try to address this
problem by attempting to evenly divide the elements on each level among
the processors; however, this approach would most likely destroy locality
and result in a large number of isolated elements on each processor.

In summary, determining an optimal parallel strategy for LTS is com-
plicated by several factors; however, as we will see in the results section
below, LTS can still lead to an efficient and accurate approach in parallel
as it does in serial.

4. Applications to the SWE. The eigenvalues of the normal flux
for the SWE (with Sp = 1) are

λ1,2 = unx + vny ±
√
gH, λ3 = unx + vny. (4.1)

In shallow water simulations, one typically initializes the simulation by
assuming a “cold-start”; i.e., water elevations are initially constant and
water velocity is zero. Thus the largest eigenvalue initially is

√
gH, and

the local timesteps are computed by

ΔtK = α
hK√
gHK

(4.2)

where HK is the average water depth over the element. As the simulation
progresses, the local timesteps may need to be adjusted based on the water
velocity. In many cases

√
gH >> |unx + vny| and the local timesteps can

be fixed during the computation. For more challenging applications, for
example, modeling hurricane storm surges, this is not the case. Therefore,
at certain intervals during the computation, we may recompute the local
timesteps by

ΔtK = α
hK
λK

(4.3)

where λK = |uK |+
√
gHK . Here |uK | is the magnitude of the cell average

of velocity over the element K. The elements are then redistributed among
the levels on each processor. That is, the number of levels N̄ and the ratio
M is left fixed, but elements are allowed to move between levels, depending
on ΔtK .
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4.1. Hurricane Ike Storm Surge Hindcast. In this section, we
describe the application of LTS to a severe storm surge event, namely
Hurricane Ike, which struck the upper Texas and Louisiana coasts in 2008.

The track of Ike is seen in Fig. 2. The storm progressed through
the Western North Atlantic, through the Caribbean Sea making landfall
in Cuba, and moved across the Gulf of Mexico, finally making a second
landfall at Galveston, TX in the early morning of September 13, 2008. By
this time, Ike had high category 2 winds but had an unusually large wind
field and produced a category 4 storm surge in an area east of Houston,
TX. In [8], we compared results computed using the RKDG method with no
LTS to data taken from another model, namely the Advanced Circulation
or ADCIRC code, which was used to study Hurricane Ike in [13]. Here
we focus on computing results from this same study using no LTS and
LTS (with a slight difference that we ignore eddy viscosity in the SWE,
which is required to keep the ADCIRC model stable). The purpose of this
exercise is to investigate the performance of the parallel DG code with LTS
in this complex scenario and compare to results generated using the RKDG
method described in [8] which did not use LTS.

Fig. 2. Track of Hurricane Ike, taken from http://www.wunderground.com

The domain used in these simulations is the Western North Atlantic
Ocean, Gulf of Mexico and Caribbean Sea, see Fig. 3. Here we also include
most sections of the coast which are less than 50 feet above sea level, since
these regions could be wetted in a storm event. The contours in the figure
represent bathymetry measured in meters. In Fig. 4, we zoom in on the
Galveston Bay region, the narrow channel in the figure is the Houston Ship
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Fig. 3. Western North Atlantic/Texas domain with bathymetry (m)

Fig. 4. Galveston bay with bathymetry (m)



A Local Timestepping RKDG Method 143

Channel, which connects the Port of Houston to the Gulf of Mexico. The
land regions shown in the figure are also included in the computational
domain.

We present results of simulations of a 10-day period during the storm,
beginning at 12:00p.m. on September 5, 2008 and progressing through
12:00p.m. on September 15, 2008. Hurricane winds were generated after
the event by a data assimilated parametric wind model and were obtained
from Ocean Weather, Inc.; see [13] for more details. The finite element
mesh for these simulations consisted of 6,633,623 elements and 3,331,560
nodes, with most elements located in the Louisiana–Texas inland regions
and continental shelf. The mesh is highly graded, with element areas on the
order of several square kilometers in the deeper oceanic basins, transitioning
to element areas on the order of 2,000m2 in the coastal regions of Texas
and Louisiana. For simulations with no LTS, a global timestep of 0.5 s was
used throughout the simulation. This was close to the minimum timestep
computed using the CFL criteria (3.8) with velocity of zero.

An initial check of the local CFL constraints on each element revealed
that only a small fraction of elements required the minimum CFL timestep
of 0.5 s. The vast majority of elements had a local CFL timestep of 2 s
or greater. The initial local CFL calculation revealed that 46,327 ele-
ments were in level 1 with a timestep of 0.5 s, 953,602 elements were in
level 2 with a timestep of 1 s, and the remaining 5,633,694 elements could
take a timestep of 2 s or larger. After testing several LTS scenarios, the
most efficient was to use only three timestepping levels (N̄ = 3) and with
M̄ = 2. The local CFL constraints were recomputed every 500 timesteps,
and elements were redistributed among levels if needed; however, during
the course of the simulation, only about 100,000 elements changed their
timestep, mostly migrating from level 3 to level 2.

We ran simulations on the Ranger parallel computer at the Texas
Advanced Computing Center∗with 4,096 processing cores.

To compare the results of the LTS approach described above with no
LTS, we look at two types of results, contours of maximum water elevation
and hydrographs. The maximum water surface elevation is computed as

ηmax(x, y) = max
0≤t≤T

η(x, y, t).

This quantity is of interest since it indicates where storm surge had the
most impact over the course of the simulation. In Figs. 5 and 6, we compare
the maximum water levels for no LTS and LTS over the impact area (the
upper Texas coast extending to southeastern Louisiana). We also computed
the difference between the two solutions in Fig. 7. Overall the agreement
between the two solutions is remarkably close. There are a few small differ-
ences in the solutions in some isolated elements, primarily in regions which

∗The Ranger system is comprised of 3,936 16-way SMP compute nodes providing
15,744 AMD Opteron processors for a total of 62,976 compute cores, 123 TB of total
memory and 1.7 PB of raw global disk space. It has a theoretical peak performance
of 579 TFLOPS. All Ranger nodes are interconnected using InfiniBand technology in a
full-CLOS topology providing a 1GB/sec point-to-point bandwidth.
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Fig. 5. Maximum water surface elevation in meters for Hurricane Ike hindcast, no
LTS

Fig. 6. Maximum water surface elevation in meters for Hurricane Ike hindcast with
LTS

experience wetting and drying. These differences are most likely due to
sensitivities in the wetting and drying algorithm used in the code.

We also compare hydrographs of solutions at three locations along the
upper Texas coast, where actual instruments were deployed just before the
storm, as described in [13]. These measurement locations are labeled as X,
Y, and Z in Fig. 8 and are in the region of maximum storm surge. The
LTS and no LTS solutions are plotted together in Fig. 9, where we observe
that the solutions are virtually identical.

Finally, we remark on the CPU time of the simulations. The overall
wall clock time for the 10-day simulation for no LTS was 1,058min, and
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Fig. 7. Difference between LTS and no LTS

Fig. 8. Measurement locations X, Y, and Z

622min with LTS, representing a 41% decrease in wall clock time. While
one might expect an even more dramatic decrease in wall clock time is
possible, one must take into account the sequential nature of the local
timestepping approach and the effect that this has on parallel efficiency.
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Fig. 9. Comparison of hydrographs for Hurricane Ike at measurement locations X,
Y, and Z (a) Station X. (b) Station Y. (c) Station Z

5. Conclusion. In this paper, the LTS approach first described in
[21] has been applied to a large-scale application in coastal ocean modeling,
namely hurricane storm surge. The LTS method has proven to be robust
and accurate even in these extreme events.
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AN OVERVIEW OF THE DISCONTINUOUS PETROV
GALERKIN METHOD
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Abstract. We discuss our current understanding of the discontinuous Petrov
Galerkin (DPG) Method with Optimal Test Functions and provide a literature review
on the subject.
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1. Introduction. The adventure with the discontinuous Petrov
Galerkin (DPG) method started in Spring 2009. Analyzing spectral
methods for the simplest 1D convection problem, we realized that the
choice of test function v = u leading to the standard DG method was far
from an optimal one in terms of implied stability properties [23]. The main
breakthrough came with a realization that the use of ultraweak variational
formulation and discontinuous test functions allowed for the computation
of (approximate) optimal test functions [25]. After reporting the excit-
ing results in a Mafelap plenary talk, in June 2009, we had learned that
we owned neither the concept of the ultraweak formulation nor even the
name—the DPG method. Both were introduced several years earlier by
the Italian colleagues [4, 5, 12, 13].∗

But the concept of computing the optimal test functions on the fly was
new, and we pursued a numerical implementation of hp-adaptivity quickly
in [27] demonstrating the superior stability properties of the new method.

We devoted a considerable amount of our time and resources to the
DPG research in the next three years. As it usually happens, our un-
derstanding did not grow in a systematic “monotone” mode and, hence,
attempting to follow the DPG work in a chronological order would rather
be confusing. Instead we present a review of the main concepts behind
the DPG methodology as we understand them today: minimization of
residuals in dual norms in Sect. 2, use of discontinuous test functions in
Sect. 3, ultraweak variational formulations in Sect. 4, selection of optimal
test norm for singular perturbation problems in Sect. 5, and the important
interpretation of the DPG method as a localization of the PG method with
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global optimal test functions in Sect. 6. We conclude with an outline of
our current work in Sect. 7.

The work on the DPG methodology has barely begun and we hope
that more colleagues will get interested in the subject and join us in this
endeavor.

2. DPG Is a Minimum Residual Method. DPG methods, like
least squares methods, belong to the class of minimum residual methods.
We start with a (linear) variational problem,

{
u ∈ U

b(u, v) = l(v) ∀v ∈ V .
(2.1)

Here U is a trial space and V is a test space. We shall assume that both U
and V are Hilbert spaces, b is a sesquilinear (bilinear in the real case) and
continuous form on U × V , and l is an antilinear (linear) continuous form
on V , i.e. an element of the dual space V ′. It is well known that every such
form b(u, v) generates two linear operators, B : U → V ′, B′ : V → U ′,

b(u, v) = 〈Bu, v〉V ′×V , b(u, v) = 〈B′v, u〉U ′×U u ∈ U, v ∈ V . (2.2)

As every Hilbert spaces is reflexive, i.e. it is isomorphic and isometric with
its bidual, the two maps are actually conjugates of each other. The abstract
variational problem (2.1) is equivalent to the operator equation:

Bu = l . (2.3)

One might argue that the nature of variational problems lies in the fact
that the corresponding operator takes values in a dual space.

Banach Closed Range Theorem†states that the following four condi-
tions are equivalent to each other:

B has closed range,
B′ has closed range,

B|N (B)⊥ is bounded below,
B′|N (B′)⊥ is bounded below.

Thus, at the expense of replacing U with the orthogonal complement of
N (B), and V with the orthogonal complement of N (B′), we can assume
that both B and B′ are bounded from below,

‖Bu‖V ′ ≥ γ‖u‖U ∀u ∈ U, ‖B′v‖U ′ ≥ γ‖v‖V ∀v ∈ V . (2.4)

Notice that the constant γ = ‖B−1‖ = ‖(B′)−1‖ is the same for both
operators.

†See [44], p. 205, and [39], Thm. 5.18.2.
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Let Uh ⊂ U be now a finite-dimensional approximate trial space. The
minimum residual method seeks a solution uh ∈ Uh that minimizes the
corresponding residual:

uh = arg min wh∈Uh
J(wh), J(wh) :=

1

2
‖Bwh − l‖2V ′ . (2.5)

Of course, we have squared the norm of the residual and placed the half
in front of it for elegance only. The use of the dual norm is a must, the
operator takes values in the dual space V ′. Problem (2.5) is equivalent to
the minimization of the quadratic functional:

1

2
(Buh, Buh)V ′ − Re(Buh, l)V ′ (2.6)

where (·, ·)V ′ denotes the inner product in the dual space V ′. Indeed,
boundedess from below of B implies that the sesquilinear form:

(Buh, Bwh)V ′

is U -coercive. Consequently, the minimum residual method can be classi-
fied as the classical Ritz method that experiences no preasymptotic behav-
ior and delivers the best approximation error in the energy norm:

‖u‖E := ‖Bu‖V ′ = sup
v �=0

|〈Bu, v〉|
‖v‖V

= sup
v �=0

|b(u, v)|
‖v‖V

. (2.7)

The dual norm, induced by the norm in test space,‡

‖l‖V ′ = sup
v �=0

|l(v)|
‖v‖V

= sup
‖v‖V ≤1

|l(v)| = sup
‖v‖V =1

|l(v)| , (2.8)

is not available analytically, unless we are dealing with the L2-norm (possi-
bly with a weight). We cannot thus compute directly with the dual norm.
Coming to the rescue is the Riesz operator for the test space:

RV : V � v → (v, ·) ∈ V ′ , (2.9)

which is an isometric isomorphism. At the expense of introducing the
inverse of the Riesz operator, we can now trade the dual norm for the test
norm and reformulate the minimum residual method (2.5) in a new form,

uh = arg min wh∈Uh
wh ∈ Uh (2.10)

Computing the Gâteaux derivative of the quadratic functional,

〈δJ(uh); δuh〉 = Re (R−1
V (Buh − l), R−1

V Bδuh)V , (2.11)

‡For Hilbert space, the supremum is attained and can be replaced with maximum.
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we arrive at the linear problem equivalent§to minimization problem (2.10):

{
uh ∈ Uh(
R−1

V (Buh − l) , R−1
V Bδuh

)
V
= 0 ∀δuh ∈ Uh .

(2.12)

There are two ways to proceed now.
Petrov–Galerkin Method with Optimal Test Functions. We introduce

the trial-to-test operator:

T : Uh → V, T := R−1
V B , (2.13)

with the corresponding range Vh := Uh identified as the optimal test func-
tion space. The linear problem (2.12) reduces to:

(
R−1

V (Buh − l) , vh
)
V
= 0 ∀vh ∈ Vh := TUh . (2.14)

Recalling the definition of Riesz operator, we can rewrite it in the varia-
tional form:

{
uh ∈ Uh

b(uh, vh) = l(vh) ∀vh ∈ Vh
(2.15)

The minimum residual method is thus equivalent to a Petrov–Galerkin
method with the optimal test functions. Computation of the optimal test
functions involves inverting the Riesz operator,

{
vδuh

∈ V

(vδuh
, δv)V = b(δuh, δv) ∀δv ∈ V ,

(2.16)

and, unfortunately, it requires the solution of another boundary-value prob-
lem. Consequently, we have not got any practical method yet.

Being a minimum residual method,¶the PG method (2.15) delivers a
hermitian, positive-definite stiffness matrix. Indeed, utilizing (2.16), we
get:

b(uh, vδuh
) = (vuh

, vδuh
)V = (vδuh

, vuh
)V = b(δuh, vuh

) . (2.17)

The energy norm of the Galerkin error equals the residual and can be
computed without knowing the exact solution,

‖uh − u‖E = ‖B(uh − u)‖V ′ = ‖Buh − l‖V ′ = ‖R−1
V (Buh − l)‖V . (2.18)

§Functional I(δuh) := (R−1
V (Buh − l), R−1

V Bδuh)V is antilinear. Real part of an
antilinear functional vanishes if and only if the whole functional vanishes. This follows
from the fact that, for any antilinear functional I(v), Im I(v) = Re I(iv).

¶One might say, a generalized least squares method.
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We shall call ψ := R−1
V (Buh − l) the error representation function.

Computing ψ involves solving the same variational problem as for the
optimal test functions but with the residual on the right-hand side,

{
ψ ∈ V

(ψ, δv)V = b(uh, δv)− l(δv) ∀δv ∈ V .
(2.19)

Thus, the method comes with a “built-in” a-posteriori error estimation
or, more precisely, a-posteriori error evaluation. Of course, all of these
nice properties will be available if we come up with a practical method of
inverting the Riesz operator.

A Mixed Formulation. Another way to proceed was proposed by
Dahmen et al. in [20, 21]. Instead of identifying the second argument
in (2.12) as the optimal test function, we identify the first argument as the
error representation function,

(ψ,R−1
V Bδuh)V = 0 ∀δuh . (2.20)

Taking out the Riesz operator and combining it with the definition of ψ,
we obtain a saddle-point problem:

⎧⎪⎨
⎪⎩

ψ ∈ V, uh ∈ Uh

(ψ, δv)V − b(uh, δv) = −l(δv) ∀δv ∈ V
b(δuh, ψ) = 0 ∀δuh ∈ Uh .

(2.21)

In this unconventional saddle-point problem, the approximate solution uh
comes from a finite-dimensional trial space and plays the role of the La-
grange multiplier for the error representation function.

Remark 2.1. The PG scheme with optimal test functions was pro-
posed in [23, 25]. It is perhaps interesting that we had arrived at the con-
cept of optimal test functions from a completely different angle. Babuška’s
theorem [1] assures that the discrete stability and approximability imply
convergence. More precisely, if M := ‖b‖ is the continuity constant for
the form b(u, v) and the form satisfies the discrete inf-sup condition with
constant γh,

sup
vh∈Vh

|b(uh, vh)|
‖vh‖V

≥ γh‖uh‖U , (2.22)

then the Galerkin error satisfies the estimate,

‖uh − u‖U ≤
M

γh
inf

wh∈Uh

‖wh − u‖U . (2.23)

The idea of optimal testing relies on employing test functions that realize
the supremum (maximum) in the discrete inf-sup condition (2.22). For
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a class of simple convection problems discussed in [23], such optimal test
functions can be determined analytically. With such optimal test functions,
the Petrov–Galerkin method inherits automatically the stability from the
continuous level, i.e.

γh ≥ γ , (2.24)

where γ is the infinite-dimensional inf-sup constant. This holds for any
possible trial space U . If we use the energy norm (2.7) in place of original
norm ‖ · ‖U , both the corresponding continuity and inf-sup constants are
equal one, M = γ = 1. Babuška’s estimate (2.23) implies then,

‖uh − u‖E ≤
M

γh
‖wh − u‖E ≤

M

γ
‖wh − u‖E = ‖wh − u‖E ∀wh ∈ Uh .

(2.25)
Thus we have arrived at the minimum residual method. The moral of
the story is that the minimum residual method is the most stable Petrov–
Galerkin method we can come up with.

Remark 2.2. The most well-known minimum residual approach is the
Least Squares Method, see the monograph of Bochev and Gunzburger [3].
Least squares are based on a strong operator setting with operator values in
the L2-space, and minimization of the L2-residual. For the L2 test space,
Riesz operator reduces to an identity and there is no need for determining
optimal test functions. The concept of minimizing the residual in dual
norms is also not new, see, e.g., [6]. The novelty of the DPG method lies
in the idea of computing the optimal test functions on the fly, made possible
by use of broken test spaces and ultraweak variational formulation discussed
in the next two sections, see also also Remark 3.2.

3. Broken Test Spaces. As we have learned in Sect. 2, the Petrov
Galerkin scheme with Optimal Test Functions requires inversion of the
Riesz operator. With test norms involving standard exact sequence energy
spaces, i.e. the use of H1, H(curl) and H(div) inner products, inversion
of the Riesz operator is equivalent to the solution of a separate boundary
value problem. This would make the PG scheme unfeasible. Critical for
the practicality of the method is the use of broken energy spaces typical
for discontinuous Galerkin (DG) methods. Given a mesh Th consisting of
elements K, the corresponding broken energy spaces are defined as follows,

H1(Ωh) := {u ∈ L2(Ω) : u|K ∈ H1(K) ∀K ∈ Th},

H(curl,Ωh) := {E ∈ (L2(Ω)n : E|K ∈ H(curl,K) ∀K ∈ Th},

H(div,Ωh) := {v ∈ (L2(Ω)n : v|K ∈ H(div,K) ∀K ∈ Th}.

(3.1)
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The corresponding (standard) inner products are defined elementwise,

(u, δu)H1(Ωh) :=
∑

K(u|K , δu|K)H1(K),

(E, δE)H(curl,Ωh) :=
∑

K(E|K , δE|K)H(curl,K),

(v, δv)H(div,Ωh) :=
∑

K(v|K , δv|K)H(div,K).

(3.2)

While the definition of the broken energy spaces is unique, we use frequently
other (equivalent) inner products defined on them. Inner products (3.2) are
examples of localizable inner products, i.e. each element contribution de-
fines an inner product on the corresponding element energy space. Not
every standard energy inner product is localizable. For instance, the stan-
dard H1

0 (Ω) product:

(u, δu)H1
0 (Ω) =

∫
Ω

∇u∇δu =
∑
K

∫
K

∇u∇δu , (3.3)

is an inner product onH1
0 (Ω) but it is not longer definite on the correspond-

ing broken energy space. Indeed, for an element K that is not adjacent to
the boundary of Ω,

∫
K
|u|2 = 0 implies only that u is a constant on K but

not necessarily zero.
The main point in using the broken energy test spaces and localizable

test norms is that the corresponding inversion of the Riesz operator local-
izes, i.e. it is done elementwise. Problem (2.16) decouples into independent
element problems‖:{

vδuh
∈ V (K)

(vδuh
, δv)V (K) = bK(δuh, δv) ∀δv ∈ V (K) .

(3.4)

Here bK is the element contribution to the global sesquilinear form, and
the left-hand side of the equation is the element contribution to the global
test inner product. Function δuh = (δuh)|K denotes the restriction of a
trial basis function to element K (element trial shape function), and V (K)
stands for the element test space.

Problem (3.4) is still infinite dimensional and it is equivalent to a
boundary-value problem with Neumann (natural) boundary conditions.
Except for simple problems (like advection with constant velocity vector
[23]), we can only solve it approximately. As the inner product is hermitian
and positive definite, the standard Bubnov–Galerkin method is a natural
choice. We introduce an approximate element test space Ṽ (K) ⊂ V (K)
and seek approximate optimal test functions,{

ṽδuh
∈ Ṽ (K)

(ṽδuh
, δ̃v)V (K) = bK(δuh, δ̃v) ∀δ̃v ∈ Ṽ (K) .

(3.5)

‖Note that the local problems are well defined by the assumption that the test norm
is localizable.
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This leads to the approximate trial-to-test operator:

T̃ : Uh � δuh → ṽδuh
∈ Ṽ (K) , (3.6)

and the corresponding approximate optimal test space:

Ṽh := T̃Uh . (3.7)

The ultimate, practical DPG method, is obtained by replacing in (2.15) the
optimal test functions with their approximate counterparts,

{
uh ∈ Uh

b(uh, ṽh) = l(vh) ∀ṽh ∈ Ṽh .
(3.8)

In practice, the approximate test space Ṽh is obtained by raising locally the
polynomial order of approximation. Roughly speaking, if the trial space
involves polynomials of order p, we use polynomials of order p + Δp for
approximating the optimal test functions. Typically, Δp = 2. We might say
that we are using the p-method for approximating element problem (3.5).

Example: Poisson Problem. We shall use the simplest example of the
Poisson equation with Dirichlet boundary condition to illustrate the main
points made so far. We seek u ∈ H1(Ω) that satisfies the boundary-value
problem:

{
−Δu = f in Ω

u = u0 on Γ := ∂Ω
(3.9)

where f ∈ L2(Ω), u0 ∈ H1/2(Ω) are given data.
Let Th be a FE mesh. Take an element K, multiply both sides of

Eq. (3.9)1 with a test function v, integrate over element K, and integrate
the left-hand side by parts, to obtain:

∫
K

∇u∇v −
∫
∂K

∂u

∂n
v =

∫
K

f v . (3.10)

Summing up over all elements K, we get:

∑
K

∫
K

∇u∇v −
∑
K

∫
∂K

∂u

∂n
v =
∑
K

∫
K

f v . (3.11)

The second term on the left-hand side represents jump terms and, for
regular solution u, can be rewritten by summing up over all edges (faces)
e in the mesh,

∑
K

∫
∂K

∂u

∂n
v =
∑
e

∂u

∂ne
[v] . (3.12)



An Overview of the DPG Method 157

Here ne is a predefined unit normal for edge e and [v] represents the jump
term:

[v](x) :=

{
v if e ⊂ Γ
lim
ε→0

(v(x + εne)− v(x− εne)) otherwise . (3.13)

We have several choices now.
1. Assume that test functions are globally conforming and vanish on

Γ, v ∈ H1
0 (Ω). All boundary terms vanish and we arrive at the

classical variational formulation:

⎧⎨
⎩

u ∈ H1(Ω), u = u0 on Γ∫
Ω

∇u∇v =

∫
Ω

f v ∀v ∈ H1
0 (Ω) .

(3.14)

2. We may assume that the test functions are globally conforming
but do not necessarily vanish on Γ (we “do test” on Γ). The jump
terms vanish but we are left with the normal derivative term on
the domain boundary Γ:

∫
Ω

∇u∇v −
∫
Γ

∂u

∂n
v =

∫
Ω

f v . (3.15)

For u ∈ H1(Ω), the normal derivative (the flux) is not well defined
and we identify it as a new, separate unknown (placing the hat
symbol over the normal derivative). The right energy setting is as
follows:

⎧⎪⎨
⎪⎩

u ∈ H1(Ω), u = u0 on Γ, ∂̂u
∂n ∈ H−1/2(Γ)∫

Ω

∇u∇v −
∫
Γ

∂̂u

∂n
v =

∫
Ω

f v ∀v ∈ H1(Ω) .
(3.16)

3. We test with discontinuous test functions, i.e. v ∈ H1(Ωh). The
jump terms remain. We introduce a new unknown, the flux

∂̂u

∂n
∈ H−1/2(Γh) , (3.17)

that lives not only on Γ but the whole mesh skeleton:

Γh =
⋃
K

∂K (3.18)

and, for regular solutions, coincides with the normal derivative of
u. Space H−1/2(Γh), introduced in [24], is identified as the space of
traces of functions from H(div,Ω) to skeleton Γh, equipped with
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the minimum energy extension norm. The ultimate variational
formulation looks as follows:

⎧⎪⎪⎨
⎪⎪⎩

u ∈ H1(Ω), u = u0 on Γ, ∂̂u
∂n ∈ H−1/2(Γh)∫

Ω

∇u∇v −
∑
K

∫
∂K

∂̂u

∂n
v =

∫
Ω

f v ∀v ∈ H1(Ωh) .
(3.19)

One can show that the last two problems are well posed [28].

With the discontinuous test functions, we can pursue now the idea of
optimal testing. The price paid for the localization is the introduction of
new unknown: the flux. The unknown solution is a group variable consist-

ing of the original unknown u, and the flux ∂̂u
∂n . A typical discretization

uses standardH1-conforming elements for u, and traces of Raviart–Thomas
H(div,Ω)-conforming elements on mesh skeleton Γh for the flux. For in-
stance, for 2D quadrilateral elements, the standard choice would be the
isoparametric Pp ⊗Pp element for u, and the discontinuous Pp−1 element
(with the Piola pull back map) for the flux. The lowest order elements use
bilinear vertex shape functions for u and piecewise constant functions for
the flux.

Let u be an H1-conforming trial basis function. For each element K
in the support of u, we solve for the optimal test function vu,

⎧⎨
⎩

vu ∈ H1(K)∫
K

∇vu ∇δv + vu δv =

∫
K

∇u∇δv ∀δv ∈ H1(K) .
(3.20)

If u is discretized with Pp ⊗ Pp element, the corresponding optimal
test function is approximated with Pp+Δp ⊗ Pp+Δp element (in practice,
Δp = 2).

The support of vu coincides with the support of u. If u is a vertex
shape function, the corresponding optimal test function vu will span over
all elements sharing the vertex, if u represents an edge basis function, the
support of vu will include all elements sharing the edge, etc. In particular,
if u is an element bubble, so is the corresponding test function vu. Note
though that, contrary to the continuous basis function u, the corresponding
optimal test function (exact or approximate) vu is discontinuous.

Similarly, let g = ge be a discontinuous flux function that lives on an
edge (face in 3D) e. For each element K adjacent to the edge e, we solve
for the optimal test function vg,

⎧⎨
⎩

vg ∈ H1(K)∫
K

∇vg ∇δv + vg δv = −
∫
∂K

g sgnK δv ∀δv ∈ H1(K) ,
(3.21)
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with

sgnK =

{
1 if nK = ne

−1 if nK = −ne
(3.22)

where ne is the predefined edge normal and nK is the outward normal for
element K.

The support of vg will span over all elements sharing the edge. We use
the same Pp+Δp ⊗ Pp+Δp element to compute the approximate optimal
test function.

Remark 3.1. It is important to notice that the DPG method does
not destroy the classical logical flow of finite elements. In a classical PG
FE method, we enter an element with sesquilinear (stiffness) and antilin-
ear (load) forms, and two sets of approximating functions: trial and test
shape functions. We integrate then for the element stiffness matrix and
load vector that are returned to a global direct or iterative solver. In the
DPG method, we enter an element with trial shape functions and test inner
product. We compute then the approximate optimal test (shape) functions
and proceed with the computation of corresponding element matrices. The
“on the fly” computation of approximate optimal test functions takes place
in the element routine and it does not affect the rest of the code.

Remark 3.2. With the use of the enriched approximate test space, the
logic is actually much simpler. We enter element K with the following
forms: sesquilinear stiffness form bK(u, v), antilinear load lK(v) form, and
sesquilinear (v, δv)K test inner product form. We have two sets of shape
functions: trial shape functions ei and enriched space basis functions êj.
We compute the following matrices:

Kki := bK(ei, êk) “extended” element stiffness matrix,

lk := lK(êk) “extended” element load vector,

Gkl := (êk, êl)V Gram test matrix .

(3.23)

We invert (factorize) the Gram matrix and compute the ultimate element
stiffness matrix and load vector using the simple formulas:

G−1
kl KkiK̄lj , G−1

kl lkK̄lj . (3.24)

For the L2 test inner product, we obtain the standard least squares method.
The DPG method can thus be viewed as a preconditioned least squares
method.

Convergence of the DPG method with exact optimal test functions is
analyzed in [28]. We will discuss convergence analysis in context of general
ultraweak variational formulations in more detail in Sect. 4. The effect of
using the approximate optimal test functions was studied in [33].

The development of the DPG method was not motivated with the
solution of simple elliptic problems like the Poisson equation for which
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the standard Bubnov Galerkin method works just fine, and we do not
necessarily advocate the use of DPG method for such problems. The price
paid for the localization is high. If we neglect the cost of all local degrees-of-
freedom (static condensation), in the standard H1-conforming FE method
we solve for traces of u on the mesh skeleton Γh. In the DPG method,
we solve for both traces and fluxes, so the number of unknowns essentially
doubles.

On the positive side, remember that the DPG method comes with
a “built-in” a-posteriori error evaluator. Once the solution has been de-
termined, a calc copy of the element routine is used to evaluate the (ap-
proximate) error representation function, and the corresponding element
contribution to the global residual. With the use of adaptivity, the addi-
tional cost of solving for fluxes becomes less significant. The idea of using
broken spaces and approximate inverse Riesz operators was used a long
time ago in context of implicit a-posteriori error estimation, see, e.g., [38].

4. Ultraweak Variational Formulations. Whereas the localiza-
tion requires only the test functions to be discontinuous, it is also desirable
to work with a variational setting in which the trial functions are discon-
tinuous as well. We shall first present such a formulation and only then
discuss its advantages. As in the theory of Schwartz’s distributions, the
idea behind the ultraweak variational formulation is to move all derivatives
to test functions.

We return to our model Poisson problem and rewrite it in terms of a
system of first order equations:

{
σ −∇u = 0

divσ = −f . (4.1)

We will discuss first a global formulation. We multiply the two equations
with globally conforming test functions τ ∈ H(div,Ω), v ∈ H1(Ω), integrate
over domain Ω, and integrate by parts to obtain:

⎧⎪⎪⎨
⎪⎪⎩

∫
Ω

σ · τ +
∫
Ω

u divτ −
∫
Γ

u v = 0

−
∫
Ω

σ ∇v +
∫
Γ

σn v = −
∫
Ω

f v .

(4.2)

With no derivatives left on solution u, σ, the natural energy space for both
components of the solution is the L2 space: σ ∈ (L2(Ω)2, u ∈ L2(Ω). With
such functional setting for the solution, the trace u and flux t := σn are not
well defined and we declare them to be independent, additional unknowns
û ∈ H1/2(Γ) and t̂ = σ̂n ∈ H−1/2(Γ). Additionally, with Dirichlet bound-
ary condition imposed on the whole boundary, the trace û is known from
the boundary condition. We can substitute u0 for û and move it to the
right-hand side. This leads to the final formulation in the form:
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{
(u, σ, t̂ ) ∈ L2(Ω)× (L2(Ω))2 ×H−1/2(Γ)

(u, divτ) + (σ, τ −∇v) + 〈t̂, v〉 = −(f, v) + 〈u0, v〉
(4.3)

for all v ∈ H1(Ω), τ ∈ H(div,Ω), where (·, ·) stands for the L2(Ω)-product
and 〈·, ·〉 for the duality pairing in H−1/2(Γ)×H1/2(Γ).

The bilinear form:

b((u, σ, t̂), (v, τ)) := (u, divτ) + (σ, τ −∇v) + 〈t̂, v〉 (4.4)

generates two operators: the ultraweak operator B defining the problem
and its conjugate, strong version of the same operator (the problem is self-
adjoint):

H1(Ω)×H(div,Ω) � (v, τ ) → (τ −∇v,divτ, v|Γ) ∈ (L2(Ω))2 × L2(Ω)×H
1
2 (Γ) .
(4.5)

The ultraweak variational formulation can now be repeated in the DPG
setting. Given a mesh Th consisting of elements K, we repeat step (4.2)
over every element K,

⎧⎪⎪⎨
⎪⎪⎩

∫
K

σ · τ +
∫
K

u divτ −
∫
Γ

u v = 0 τ ∈ H(div,K)

−
∫
K

σ ∇v +
∫
Γ

σn v = −
∫
K

f v v ∈ H1(K) .
(4.6)

Next we sum up over all elements to obtain:

∑
K

⎧⎨
⎩
∫
K

u divτ +

∫
K

σ (τ−∇v)−
∫
∂K

u v+

∫
∂K

σn︸︷︷︸
=:t

v

⎫⎬
⎭ = −

∑
K

∫
K

fv .

(4.7)
As in the global ultraweak formulation, we introduce additional unknowns:
trace û ∈ H1/2(Γh) and flux t̂ ∈ H−1/2(Γh). Both are defined not only on
domain boundary Γ but the whole mesh skeleton Γh. Spaces H

1/2(Γh) and
H−1/2(Γh) are defined as traces of functions from H1(Ω) and H(div,Ω)
(see [24, 40] for a detailed discussion) and equipped with minimum energy
extension norms:

‖û‖H1/2(Γh) := inf
{
‖u‖H1(Ω) : u ∈ H1(Ω), u|Γh

= û
}
,

‖t̂‖H−1/2(Γh) := inf
{
‖σ‖H(div,Ω) : σ ∈ H(div,Ω), (σn)|Γh

= t̂
}
.

(4.8)

The unknown trace û is represented as a sum of a lift of the known boundary
data ũ0 to the mesh skeleton Γh, and unknown component û that vanishes
on Γ (watch for the overloaded symbol),

û := ũ0 + û . (4.9)
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More precisely, the unknown component comes from the space of traces of
H1

0 (Ω), denoted H̃
1/2(Γ0

h), where Γ
0
h := Γh−Γ stands for the interior mesh

skeleton.
The ultimate DPG ultraweak variational formulation reads as follows:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(u, σ, û, t̂) ∈ L2(Ω)× (L2(Ω))2 × H̃1/2(Γ0
h)×H−1/2(Γh)

(u, divhτ) + (σ, τ −∇hv)− 〈û, [τn]〉+ 〈t̂, [v]〉︸ ︷︷ ︸
=:b((u,σ,û,t̂),(v,τ))

= −(f, v) + 〈ũ0, v〉

∀v ∈ H1(Ωh), τ ∈ H(div,Ωh) .
(4.10)

Above, the test functions come from the broken test spaces H1(Ωh), τ ∈
H(div,Ωh), the duality pairings extend over Γ0

h and Γh, respectively, and
the grad and div operators in the first two terms are understood elementwise
as indicated by index h. Similarly to the global ultraweak formulation,
the conjugate operator generated by the bilinear form b corresponds to a
strong version of the operator applied elementwise and accompanied by
interface conditions across interelement boundaries expressing continuity
of v and τn,

H1(Ωh)×H(div,Ωh) � (v, τ ) → (divh, τ −∇hv, [v], [τn]) ∈ L2(Ω)

×(L2(Ω))2 ×ΠKH
1
2 (∂K)×ΠKH− 1

2 (∂K) .
(4.11)

Note that the jump terms have to be understood globally, i.e.,

〈û, [τn]〉 :=
∑

K〈û, τn〉∂K
〈t̂, [v]〉 :=

∑
K〈t̂, v〉∂K .

(4.12)

The DPG ultraweak formulation (4.10) provides a natural setting for the
PG method with optimal test functions. The test functions are discon-
tinuous enabling local computation of approximate optimal test functions.
Solution consists of several components: the original unknown u, the (con-
tinuous) flux σ, traces û, and fluxes t̂. At a first glance, it looks like the
formulation based on the first order system is much more expensive than
the one based on the second order equation discussed in Sect. 3. Actually,
it is not. The L2-variables u, σ are discretized with discontinuous elements
and can be statically condensed out. After the condensation, we solve a
global problem for traces û and fluxes t̂ whose cost is identical to the one
discussed in the previous section. Thus, if we disregard the cost of lo-
cal computations (that are trivially parallelizable), the two methods are
essentially equally expensive.

Abstract Setting. The DPG ultraweak variational formulation dis-
cussed above has been applied to and analyzed for a number of different
problems: convection-diffusion [24], linear elasticity [7], and linear acous-
tics [26]. In the latter, we began to see the emerging general abstract
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setting. We further formulated it and applied to Stokes problem in [40].
We shall attempt now to outline the main points of the study in [40].

The starting point is an operator representing a system of first order
differential equations:

(L2(Ω))N ⊃ HA(Ω) � u→ Au ∈ (L2(Ω))N . (4.13)

Here N denotes the total number of scalar unknowns, and the domain of
the operator is the graph space equipped with the graph norm:

‖u‖2HA
= ‖u‖2 + ‖Au‖2 (4.14)

where, as usual, ‖ · ‖ denotes the L2-norm.

Integration by parts leads to the introduction of the formal L2-adjoint
and a sesquilinear form representing boundary terms:

(Au, v) = (u,A∗v) + c(trAu, trA∗v) (4.15)

Here v comes from the graph space for the formal adjoint:

HA∗(Ω) := {v ∈ (L2(Ω))N : A∗v ∈ (L2(Ω))N} , (4.16)

equipped with a graph norm. We assume that we have at our disposal
trace operators along with trace spaces for both energy spaces:

trA : HA(Ω) � u → trAu = û ∈ ĤA(Γ)

trA∗ : HA∗(Ω) � v → trA∗v = v̂ ∈ ĤA∗(Γ),
(4.17)

and that c(û, v̂) is a definite sesquilinear form. For the Poisson problem,
we have (watch for overloaded symbols):
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u := (u, σ), v = (v, τ ) ,

Au = A(u, σ) = (σ −∇u,divσ), A∗ = A,

HA(Ω) = H1(Ω)×H(div,Ω), HA∗(Ω) = HA(Ω), trA∗ = trA,

ĤA(Γ) = H
1
2 (Γ)×H− 1

2 (Γ), trAu = (u, σn), ĤA∗(Γ) = ĤA(Γ),

c(û, v̂) = c((u, σn), (v, τn)) = 〈u, τn〉
H

1
2 (Γ)×H

− 1
2 (Γ)

+ 〈σn, v〉
H

− 1
2 (Γ)×H

1
2 (Γ)

.

(4.18)

Let C be a boundary operator generated by the boundary sesquilinear form:

C : ĤA(Γ)→ (ĤA∗(Γ))′, 〈Cû, v̂〉 = c(û, v̂). (4.19)

We assume that C can be split into two operators,

C = C1 + C2, (4.20)

in such a way that operators A and A∗ restricted to spaces corresponding
to homogeneous boundary conditions:

U0 := {u ∈ HA(Ω) : C1u = 0} ,
V0 := {v ∈ HA∗(Ω) : C′

2v = 0} , (4.21)

are L2-adjoint. According to Banach Closed Range Theorem, the following
four conditions are equivalent to each other:

A|U0 has a closed range,
A∗|V0 has a closed range,

A|U0 is bounded below in the orthogonal component of its null space
N (A|U0 ),

A∗|V0 is bounded below in the orthogonal component of its null space
N (A∗|V0).

For simplicity, we assume that both A|U0 and A∗|V0 are injective. Conse-
quently, both operators are bounded below with the same constant γ,

‖Au‖ ≥ γ‖u‖ ∀u ∈ U0 and ‖A∗v‖ ≥ γ‖v‖ ∀v ∈ V0 . (4.22)

Operator split (4.20) implies a split of the trace space ĤA,

ĤA = X1 ⊕X2, X1 = N (C2), X2 = N (C1) . (4.23)

For the Poisson problem,

C1(u, σn) = u, C2(u, σn) = σn, C′
2(v, τn) = v, U0 = V0 , (4.24)

i.e. the operator A|U0 is self-adjoint. The trace space split is very simple:

X1 = H1/2(Γ)× {0} ∼ H1/2(Γ), X2 = {0} ×H−1/2(Γ) ∼ H−1/2(Γ) .
(4.25)
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We are finally ready to write down the abstract ultraweak variational for-
mulation for the boundary-value problem:

Au = f, C1u = g (4.26)

Assuming that g ∈ R(C1), we have,⎧⎪⎨
⎪⎩

u ∈ L2(Ω), û2 ∈ X2

(u,A∗v)+ < û2, C
′
2trA∗v >︸ ︷︷ ︸

=:b((u,û2),v)

= (f, v)− < g, trA∗v > ∀v ∈ HA∗(Ω) .

(4.27)
It has been proved in [24, 40] that problem (4.27) is well posed with an
inf-sup constant of order∗∗γ. The conjugate operator corresponding to form
b((u, û2), v) is the strong operator:

HA∗(Ω) � v → (A∗v, C′
2trA∗v) ∈ (L2(Ω))N × ĤA∗(Γ) . (4.28)

We refer also to [40] for the abstract DPG ultraweak variational for-
mulation. As for the Poisson problem, the unknowns include additionally
the (abstract) trace variable û defined on the whole interior mesh skeleton.
Notice that the abstract notion of “trace” includes equivalents of both trace
and flux for the Poisson problem.

There are two main points about the results presented in [40], gener-
alizing the earlier results for particular problems in [7, 24, 26]. First of all,
we prove that, under the assumptions outlined above, the DPG ultraweak
variational formulation is well posed with a mesh independent inf-sup con-
stant of order γ. Mesh independence is critical for h-convergence and it
is not obvious at all as, with h mesh refinements, the skeleton grows and
there are “more” traces (and fluxes). The second important observation
is that the inf-sup constant is of order γ. If, for a singular perturbation
problem involving a parameter, γ is independent of the parameter, then
this uniform stability automatically carries over to the DPG ultraweak
variational formulation. As the PG method with optimal test functions
inherits the inf-sup constant from the continuous level,††our DPG method
is automatically uniformly stable, i.e. the approximation error is bounded
by the best approximation error times a stability constant independent of
the perturbation parameter. Using the abstract notation we have:

(
‖u− uh‖2 + ‖û− ûh‖2

)1/2 ≤ C inf
(wh,ŵh)

(
‖u− wh‖2 + ‖û− ŵh‖2

)1/2
.

(4.29)
The abstract trace û incorporates both all (abstract) traces on the interior
skeleton and the unknown traces on boundary Γ. The minimum exten-
sion energy norm used to measure traces is mesh dependent but the field

∗∗Under the assumption that the traces spaces are equipped with minimum energy
extension norms.

††Neglecting the error due to the approximation of optimal test functions.



166 Leszek Demkowicz and Jay Gopalakrishnan

variables u are measured in mesh-independent L2-norm. Two particular
cases are of interest: convection-dominated diffusion and linear acoustics.
For linear acoustics, under appropriate regularity assumptions on the do-
main Ω, constant γ is independent of wave number k [26]. For convection-
dominated diffusion with specific boundary conditions and assumptions on
the advection vector, constant γ is independent of diffusion parameter ε.
For both classes of problems, the uniform stability result (4.29) should be
approached with care (for different reasons). The issue of robustness for
singular perturbation problems will be discussed in Sect. 5.

For additional studies of DPG method based on the test graph norm,
see [36, 37] (convection-dominated diffusion) and [11, 35] (thin walled struc-
tures), [30] (2D cloaking problems). A relation between various versions of
DPG and DG methods was studied in [10].

For a related study on well-posedness of DPG formulations for general
Friedrichs’ systems, see [9].

Accounting for Approximation of Optimal Test Functions. A general
theory for taking into account the approximation of optimal test functions
was put forth in [33]. Let Ṽ be the enriched approximate test space in which
the optimal test functions are approximated. Suppose we can identify a
Fortin-like operator,

Π : V → Ṽ ‖Πv‖ ≤ C‖v‖ , (4.30)

that satisfies the orthogonality property:

b((uh, ûh), v −Πv) = (uh, A
∗(v −Πv)) + 〈ûh, (v −Πv))〉 = 0 ∀uh, ûh .

(4.31)
We have then:

sup
v∈V

|b((uh, ûh), v)|
‖v‖ = sup

v∈V

[
|b((uh, ûh), v −Πv)|

‖v‖ +
|b((uh, ûh),Πv)|

‖v‖

]

= sup
v∈V

|b((uh, ûh), P iv)|
‖v‖

‖Πv‖
‖v‖ ≤ C sup

v∈Ṽ

|b((uh, ûh), v)|
‖v‖

= C sup
vh∈Vh

|b((uh, ûh), vh)|
‖vh‖

(4.32)
where the last equality follows from the fact that the approximate optimal
test functions realize the supremum in the enriched space. Thus, at the
expense of the additional C stability factor, the practical DPG method
preserves the optimal stability. For examples of such Fortin operators for
Poisson and elasticity problems, see [33]. In practice, the orthogonality
condition (4.31) serves as a defining property for such operators. The
Fortin operators constructed in [33] are defined for arbitrary polynomial
order p, but the estimates of constant C are p-dependent. The results
provide thus a basis for h-convergence analysis only.
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Remark 4.1. Common variational formulations are based on a partial
relaxation only. Consider, for example, a system of linear elasticity equa-
tions consisting of equilibrium equations and Cauchy strain-displacement
relations combined with Hooke’s law, formulated in terms of displacements
and stresses. We can choose to relax, i.e. integrate by parts, the equilib-
rium equations. Satisfying the remaining equations in the strong, pointwise
(almost everywhere) sense, we can eliminate the unknown stresses and we
arrive at the classical Principle of Virtual Work. If we keep the equilibrium
equations in the strong form and relax the geometrical relations, we arrive
at the mixed formulation. This time, the displacements cannot be elimi-
nated unless we consider the time-harmonic case with nonzero frequency.
In the “ultraweak” formulation, both sets of equations are relaxed i.e., in
the spirit of Schwartz’s distributions, all derivatives are passed to test func-
tions. Besides the name and the general idea of a maximal relaxation, a
relation with the ultraweak variational formulation of Després and Cessenat
[14], and a subsequent work of Monk, Buffa, Huttunen, Perugia, Hiptmair
and others, is rather loose.

5. Robustness. By now, the reader should realize that the DPG
method is more a methodology than a single method. One can combine
the method with different variational formulations and, most importantly,
one can compute with different test norms. For each test norm, we get
a different version of the method. For “standard” problems and formu-
lation based on the first order systems, the adjoint operator graph norm
is a natural choice. For singular perturbation problems, where we strive
for uniform (with respect to the perturbation parameter) approximation
properties, the so-called robustness, the optimal choice of the test norm is
much more difficult.

The very definition of what we mean by a robust method for a singular
perturbation problem is shaky. Rather than attempting to develop a gen-
eral theory, we will focus in this section on an important model problem:
convection-dominated diffusion. The “confusion” problem, as we call it,
is an important stepping stone for compressible and incompressible fluid
dynamics. To fix ideas, we shall consider a model problem illustrated in
Fig. 1. We shall start right away with the first order system setting. The
problem of interest is:

{
1
εσ −∇u = 0

div(σ − βu) = −f (5.1)

where ε is the diffusion parameter and β = β(x) ≈ O(1) is a prescribed
advection field. We shall consider two types of boundary conditions:

σn − βnu = −βnu0 on Γin := {x ∈ Γ : βn(x) < 0}
u = 0 on Γout := {x ∈ Γ : βn(x) ≥ 0} . (5.2)
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Fig. 1. A model convection-dominated diffusion problem

Here σn = σn and βn = βn represent normal components of flux σ and
advection field β. The first boundary condition (BC) imposed on Γ rep-
resents an attempt at bringing from infinity condition u = u0 where u0 is
a prescribed value. In presence of small diffusion ε, flux σ is expected to
be small and the BC should approximate well the desired condition. The
second BC is the main BC of interest as it produces a strong boundary
layer on the outflow part of Γ.

Proceeding along lines discussed in Sect. 4, we obtain the following
DPG ultraweak variational formulation for the problem:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

u ∈ L2(Ω), σ ∈ (L2(Ω))2, û ∈ H̃1/2(Γh), t̂ ∈ H̃−1/2(Γh)

(u, divhτ + β∇hv) +

(

σ,
1

ε
τ −∇hv

)

− 〈û, τn〉+ 〈t̂, v〉
︸ ︷︷ ︸

=:b((u,σ,û,t̂),(v,τ))

= −(f, v) + 〈β̃nu0, v〉

∀v ∈ H1(Ωh), τ ∈ H(div,Ωh)
(5.3)

where t = σn − βnu. Remember that all skeleton terms are global. Thus
H̃1/2(Γh) are traces of functions from H1(Ω), vanishing on Γout, and
H̃−1/2(Γh) are traces of functions from H(div,Ω) with (normal) trace

vanishing on Γin. Finally, β̃nu0 is an extension of βnu0 to the whole
skeleton Γh.

If possible, we would like to have a robust behavior of L2-error of
the original unknown u. In other words, for a given mesh, we would like
‖u− uh‖ to be of the same order uniformly in ε→ 0. The request is not so
unreasonable, one can show that the L2-norm of the solution u is bounded
by the data f, u0 uniformly in ε. This happens despite the fact that the
solution develops a boundary layer on Γout which steepens up with ε→ 0,
the L2-norm is simply insensitive to the developing boundary layer.
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The critical question is:
How to define the test norm ?

The ideal DPG method delivers then the best approximation error in
the energy norm (2.7). So one might want to solve an inverse problem:
determine a test norm for which the corresponding energy norm coincides
with the original norm used for the solution. This question can actually be
answered at the abstract level. If both operators B and B′ corresponding
to the original sesquilinear form are injective, the ideal test norm is ob-
tained by switching the role of spaces in the inf-sup condition (see [45] and
Remark 5.2 below):

‖v‖V := sup
u∈U,u�=0

|b(u, v)|
‖u‖U

. (5.4)

The particular advantage of the ultraweak formulation (4.27) is that we
can compute the ideal test norm explicitly:

‖v‖2V = ‖A∗v‖2 +
(

sup
û2∈X2

|〈û2, C′
2trA∗v〉|

‖û2‖ĤA

)2
. (5.5)

For the model Poisson problem, we simply get:

‖(v, τ)‖2V = ‖τ −∇v‖2 + ‖div τ‖2 + ‖v|Γ‖2H1/2(Γ) . (5.6)

The norm is very close to the adjoint operator graph norm used in our well-
posedness analysis which prompted us to call in [26, 45] the graph norm a
quasi-optimal test norm.

Remark 5.1. A sesquilinear form b(u, v), u ∈ U, v ∈ V is called a
duality pairing if

‖u‖U = sup
v∈V,v �=0

|b(u, v)|
‖v‖V

and ‖v‖V = sup
u∈U,u�=0

|b(u, v)|
‖u‖U

. (5.7)

A class of problems with explicitly known norms ‖ · ‖U , ‖ · ‖V for which the
corresponding sesquilinear form is a duality pairing, was studied in [8].

We shall discuss now shortly a more general approach to the problem
of determining an optimal test norm for singular perturbation problems
that was proposed in [29]. Let us assume that we have found an optimal
test norm ‖ · ‖V . Consider a very special test function (v, τ) which, when
substituted into the bilinear form (5.3) delivers the L2-norm of solution u.
This is obtained by requesting the conditions:

divhτ + β∇hv = u

1
ε τ −∇hv = 0

〈û, τn〉 = 0 ∀û

〈t̂, v〉 = 0 ∀t̂ .

(5.8)
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The last two conditions imply that the test function (v, τ) must be glob-
ally conforming, v ∈ H1(Ω), τ ∈ H(div,Ω), and satisfy the homogeneous
boundary conditions for the adjoint operator. This implies that the dif-
ferential operators in the first two conditions can be understood globally.
Simply, the test function (v, τ) solves the continuous adjoint problem with
homogeneous BCs:

⎧⎪⎨
⎪⎩

v ∈ H1(Ω), τ ∈ H(div,Ω)
1
ε τ −∇v = 0, divτ + β∇v = u

τn = 0 on Γin, v = 0 on Γout.

(5.9)

Notice that, contrary to the actual confusion problem, solution (v, τ) does
not develop††a strong boundary layer on Γin, the outflow boundary for the
adjoint problem.

We get:

‖u‖2 = b((u, σ, û, t̂), (v, τ)) ≤ sup
(v,τ)

|b((u, σ, û, t̂), (v, τ))|
‖(v, τ)‖V︸ ︷︷ ︸

‖(u,σ,û,t̂)‖E

‖(v, τ)‖V . (5.10)

Thus, if the test norm has been selected in such a way that the solution
of the adjoint problem (5.9) can be bounded by the data u robustly, i.e.
uniformly in ε :

‖(v, τ)‖ � ‖u‖ , (5.11)

the L2-norm of the solution u is bounded robustly by the energy norm,

‖u‖ � ‖(u, σ, û, t̂)‖E . (5.12)

As the DPG method delivers the best approximation error in the energy
norm, we obtain:

‖u− uh‖ � ‖(u− uh, σ − σh, û− ûh, t̂− t̂h)‖E (5.13)

≤ inf
(uh,σh,τuh,t̂h)

‖(u− uh, σ − σh, û− ûh, t̂− t̂h)‖E
︸ ︷︷ ︸

best approximation error in energy norm

.

The design of an optimal test norm leads thus to the stability analysis of
the adjoint problem. Condition (5.12) is only necessary for the robustness.
If the solution of the adjoint problem cannot be bounded in the test norm
robustly by ‖u‖, the robust estimate above is gone and the whole game is
lost.

††Actually, BC τn = 0 does produce a very weak boundary layer, hard to observe even
with very accurate adaptive simulations, see [42].
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The following stability estimates for the adjoint problem (5.9) have
been proved in [18] (under some assumptions on advection β):

‖β · ∇v‖, ε1/2‖∇v‖, ‖v‖, 1
ε
‖β · τ‖, 1

ε1/2
‖τ‖, ‖div τ‖2 � ‖u‖ . (5.14)

The terms on the left are our “Lego blocks” to construct a test norm. In
particular, the use of the graph norm:

‖(v, τ)‖2V = ‖1
ε
τ −∇v‖2 + ‖div v + β · ∇v‖2 + ‖v‖2 + ‖τ‖2 (5.15)

is admissible. The main trouble with the graph norm and other possible
test norms is that they inherit the main trouble of the original problem—
optimal test functions may develop a boundary layer and, therefore, one
may not be able to resolve them using the simple enrichment strategy. With
unresolved optimal test functions, we cannot claim anymore the robust
lower bound (5.14). In other words, our “Lego play” has to take into
account another factor:

The optimal test functions should be easy to resolve.
The following mesh-dependent test norm has been studied extensively in
[18]:

‖(v, τ)‖2V = ‖β · ∇v‖2 + ε‖∇‖2 + ‖Cv v‖2 + ‖div τ‖2 + ‖Cτ τ‖2 (5.16)

with

Cv|K = min

{√
ε

|K| , 1
}

and Cτ |K = min

{
1√
ε
,

1√
|K‖

}
(5.17)

where |K| denotes the element area. The zero order terms have been se-
lected in such a way that they do not dominate the diffusion terms. Con-
trary to the graph norm, components v and τ have been separated, so the
inversion of the Riesz operator can be done componentwise. The use of
mesh-dependent zero order terms allows to employ the optimal powers of
ε for small elements. Every time, we use suboptimal powers of ε in the
construction of the test norm, we pay a price for that in the best approxi-
mation error estimate. With the mesh-dependent terms, we regain at least
the optimality for small elements which appear in boundary layers and
other places of high gradients. We refer once again to [18] for an extensive
analysis and numerical experiments.

Finally, it is perhaps interesting to mention that, for general boundary
conditions, it is impossible to avoid strong boundary layers in the solution of
the adjoint problem. Robust estimates analogous to (5.16) are still possible
but they employ weighted L2-norms.§§The weighted test norms have been

§§Intuitively speaking, the weights are selected in such a way that they “kill” the effect
of the boundary layers.
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discovered in a purely experimental way in [27] and rediscovered through
the theoretical analysis in [29].

An alternative to the presented philosophy is to work with the graph
norm but employ special means (Shishkin meshes) to resolve the optimal
test functions with boundary layers, see [36, 37].

Remark 5.2 (Connecting old dots. . . ). A general approach for con-
trolling convergence in a desired norm through the choice of optimal test
functions was proposed a long time ago in [31, 32]. The idea is very simple.
Let ‖ · ‖U be a trial norm in which we want the PG method to be optimal.
Define optimal test functions vh ∈ V as follows:

{
vh ∈ V
b(Δu, vh) = (Δu, δuh)U ∀Δu ∈ U (5.18)

where (·, ·)U is the inner product corresponding to norm in U . The Galerkin
orthogonality condition,

b(u− uh, vh) = 0 ∀vh , (5.19)

translates then [use Δu := u− uh in (5.18)] into the corresponding orthog-
onality condition in terms of the inner product,

(u− uh, δuh)U = 0 ∀δuh ∈ Uh . (5.20)

This implies that the PG scheme coincides with the orthogonal projection
in the trial norm.

The optimal test space is given here by a different trial-to-test operator

Uh � δuh → (B′)−1RUδuh ∈ V (5.21)

implied by the conjugate B′ and Riesz operator RU for trial space U .
For operators (5.21) and (2.13) to coincide, we need:

(B′)−1RU = R−1
V B ⇐⇒ RV = BR−1

U B′ . (5.22)

This implies the test norm:

‖v‖2V = (v, v)V = 〈RV v, v〉V ′×V = 〈BR−1
U v, v〉V ′×V (5.23)

= 〈B′v,R−1
U B′v〉U ′×U = (R−1

U B′v,R−1
U B′v)U

= ‖R−1
U B′v‖2U = ‖B′‖2U ′ ,

which coincides with norm (5.4).
Note also that the ideal test norm is not readily available unless we can

invert the Riesz operator RU explicitly. This is the case of the L2-norm
used in the ultraweak formulations but it is not available if the U -norm
includes derivatives. This may be considered to be an additional advantage
of the ultraweak formulations.
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6. Global Optimal Test Functions. In this section we discuss an
alternate interpretation of the DPG method based on the concept of global
optimal test functions.

Suppose that we pursue the PG method with optimal test functions
for the global ultraweak variational formulation (4.27). In other words,
for each trial function (uh, û2,h), we determine the corresponding globally
optimal test functions by solving the global problem:

{
v ∈ HA∗(Ω)

(v, δv)V = (uh, A
∗δv) + 〈û2,h, C′

2trA
∗δv〉 ∀δv ∈ HA∗(Ω) .

(6.1)

The relation between the DPG (local) approximate optimal test functions
and the global optimal test functions is quite revealing.

In order to study a relation between the approximate local and global
test functions, we will resort to the following abstract notation for the
sesquilinear form:

b((w, ŵ), v) = b0(w, v) + 〈〈ŵ, v〉〉. (6.2)

By w above we mean the group unknown corresponding to the ultra-weak
formulation with globally conforming test functions (6.1). It consists of field
variable u ∈ L2(Ω) and the unknown part û2 of trace on Γ. The second
variable ŵ denotes the unknown abstract trace defined on the internal
skeleton only. For conforming test functions, the second term vanishes.

Let Wp, Ŵp be now appropriate discrete spaces for the two sets of
variables, and let Vr(Ωh) denote the enriched approximate broken test space
(r = p+Δp) used to determine the practical trial-to-test operator:

{
T r(w, ŵ) ∈ Vr(Ωh)

(T r(w, ŵ), δv)V = b((w, ŵ), δv) ∀δv ∈ Vr(Ωh) .
(6.3)

The local optimal test space of the practical DPG method is

V p
r (Ωh) := T r(Wp × Ŵp) . (6.4)

To study its relation with a weakly conforming approximate test space,
define

Ṽr(Ωh) := {v ∈ Vr(Ωh) : 〈〈ŵp, v〉〉 = 0 ∀ŵ ∈ Ŵp} . (6.5)

Then, let T̃ rw in Ṽr(Ωh) be defined by

(T̃ rw, δv)V = b0(w, δv) ∀δv ∈ Ṽr(Ωh) . (6.6)

The weakly conforming global optimal test space is defined by

Ṽ p
r (Ωh) := T̃ r(Wp) . (6.7)

We have (comp. also [27]).
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Proposition 6.1.

Ṽ p
r (Ωh) ⊂ V r

p (Ωh) . (6.8)

Proof. Since V p
r (Ωh) ⊂ Vr(Ωh), we have Vr(Ωh) = V p

r (Ωh) + V ⊥
r (Ωh)

where V ⊥
r (Ωh) is the V -orthogonal component of V p

r (Ωh) in Vr(Ωh).
Let ṽ = T̃ rwp. Since ṽ is in Vr(Ωh), we can apply the decomposition

above to get

ṽ = vp + ṽ⊥, vp ∈ V p
r (Ωh), ṽ

⊥ ∈ V ⊥
r (Ωh) . (6.9)

Since ṽ⊥ is V -orthogonal to V p
r (Ωh), for every ŵp ∈ Ŵp, we have

0 = (T r(0, ŵp), ṽ
⊥)V = b((0, ŵp), ṽ

⊥) = 〈〈ŵp, ṽ
⊥〉〉 , (6.10)

hence ṽ⊥ ∈ Ṽr(Ωh). Therefore, we may substitute ṽ⊥ for v in (6.6) to get

(T̃ rwp, ṽ
⊥)V = b0(wp, ṽ

⊥) . (6.11)

Now, the right-hand side above must vanish because

b0(wp, ṽ
⊥) = ((wp, 0), ṽ

⊥) = (T r(wp, 0), ṽ
⊥)V = 0 . (6.12)

Therefore, 0 = (T̃ rwp, ṽ
⊥)V = (ṽ, ṽ⊥)V = ‖ṽ⊥‖V . Returning to (6.9), we

find that ṽ = vp ∈ V p
r (Ωh), thus finishing the proof.

Now consider two DPG methods corresponding to the two test spaces
defined previously. The first is the standard practical DPG method that
defines wp ∈ Wp and ŵp ∈ Ŵp satisfying

b((wp, ŵp), v) = l(v) ∀v ∈ V p
r (Ωh) . (6.13)

The second is the DPG method with the weakly conforming globally opti-
mal test space, which finds w̃p ∈ Wp satisfying

b0(w̃p, ṽ) = l(ṽ) ∀ṽ ∈ Ṽ p
r (Ωh) (6.14)

Proposition 6.2. If both methods are uniquely solvable, then

wp = w̃p . (6.15)

Proof. By virtue of Proposition 6.1, we can substitute any ṽ ∈ Ṽ p
r (Ωh)

into (6.13), which then immediately reduces to (6.14).
The moral of the story is that the actual DPG method may be inter-

preted simply as a localization of the corresponding global PG methodology.
This fact has a number of important implications.

The most important one is the fact that we do not have to resolve the
element local DPG optimal test functions but only element restrictions of
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global optimal test functions. For instance, if we insist on using the graph
norm for the confusion problem discussed in Sect. 5, the global optimal
test functions do not form (strong) boundary layers. If we trade the flux
BC for the BC on u, the global optimal test functions do develop a strong
layer on the inflow boundary. Consequently, if we can resolve (by whatever
means) optimal test functions adjacent to the inflow boundary (and use
the standard enriched spaces with Δp = 2 elsewhere), we observe a robust
behavior of the method. On the contrary, if we go after the DPG (local)
optimal test functions, we need to resolve boundary layers within each
element. For concrete examples illustrating the discussion, see [15].

From the analysis point of view, it looks like one can deemphasize
convergence of traces (and fluxes) and focus on studying the convergence
of the field variables only. In particular, a discretization of traces with
discontinuous elements is non-conforming form the point of view of the
DPG method (traces live in H1/2 space) but it is perfectly OK from the
point of view of the global PG method and non-conforming discretization
of optimal test functions.

As the approximation of optimal test functions in non-conforming,
one has to account for both approximation and consistency errors. For
1D problems, weak conformity is equivalent to conformity and there is no
consistency error. The DPG method delivers optimal convergence in the
L2-error. This explains, in particular, why the 1D DPG method for linear
acoustics is pollution-free [45].

7. Generalizations and Conclusions. The DPG method is a min-
imum residual method minimizing the residual in a dual norm. It gen-
eralizes the classical least squares approach based on L2-residuals. The
general philosophy is straightforward—we minimize the residual in hope of
the corresponding error (measured in a desired norm) converging to zero
as well. It is thus clear from the very beginning that the choice of the norm
used to measure the residual is critical. We need what Wolfgang Dahmen
calls “the right mapping property.” This leads to the task of selecting the
right test norm. The issue is especially critical for singular perturbation
problems.

In the paper, we attempted to review the main ideas behind the DPG
method and review our and our collaborators’ work in the last three and a
half years, since the inception of the main idea of computing (approximate)
optimal test functions on the fly [23, 25]. Despite several success stories,
the method is still in its infancy. We hope that this overview will help to
propagate an interest in the DPG methodology.

We will finish the paper with a few additional comments on current
work and open research problems.

Adaptivity. Once the resolution of optimal test functions is secured,
the DPG methods guarantee stability for any well-posed linear problem
and any discretization, in particular hp elements. This promises superior
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convergence rates for problems with singular solutions and boundary layers.
The method comes with a built-in error evaluator. We have made the point
of using higher order elements, h- and hp-adaptive meshes in most of our
papers to demonstrate that the method remains stable and delivers optimal
approximation properties for arbitrary hp meshes. Whereas the element
contributions to the global residual serve as perfect element error indicators,
the subject of automatic hp-adaptivity remains completely open. In all our
examples of hp-adaptivity, we have used so far simple marking strategies
only.

DPG for Nonlinear Problems. The idea of minimizing the dual residual
can be extended to nonlinear problems. This was first pursued in [34]. If
operator B in (2.10) is nonlinear, the corresponding formula (2.11) for the
first Gâteaux derivative must be modified:

〈δJ(uh); δuh〉 = Re (R−1
V (Buh − l)︸ ︷︷ ︸

=:rh

, R−1
V B′(uh; δuh))V . (7.1)

Above, B′(uh; δuh) denotes the first derivative of operator B at uh in the
direction of δuh, and rh is the residual.

The second derivative (Hessian) consists of two terms:

〈δ2J(uh); δuh,Δuh〉 = Re
[
(R−1

V (B′(uh; Δuh)), R
−1
V B′(uh; δuh))V (7.2)

+(R−1
V rh, R

−1
V B′′(uh; δuh,Δuh))V

]
.

The trial-to-test operator depends now upon uh:

vδuh
= T (uh)δuh = R−1

V B′(uh; δuh) . (7.3)

Introducing the optimal test functions into the formulas, we obtain:

〈δJ(uh); δuh〉 = Re [b(uh, T (uh)δuh)− l(T (uh)δuh)]

〈δ2J(uh); δuh,Δuh〉 = Re [(T (uh)Δuh, T (uh)δuh)V

+〈B′′(uh; δuh,Δuh), R
−1
V rh〉
]
.

(7.4)

With the elementwise inversion of the Riesz operator, we can compute not
only the gradient but also the hessian of the residual and use it to solve
the nonlinear minimum residual problem. Note that the formula for the
hessian assumes that the test inner product is fixed. In practice, an optimal
inner product depends upon the first derivative and it also evolves with uh.

For preliminary attempts to apply the DPG method to nonlinear prob-
lems, see also [16].

Element Conservation Properties. In general, the DPG method does
not assure element conservation properties. For problems involving con-
servation laws, enforcement of conservation properties is deemed desirable.
For instance, in the convection-dominated diffusion, the second equation
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in (5.1) represents a conservation law. The element conservation prop-
erty translates into the requirement that the test space includes functions
(v, τ) = (1K , 0), where 1K denotes indicator function for element K. There
is no reason why, in general, the optimal test space should include such
functions.

It was though also noticed by the MIT colleagues [34] that it is rela-
tively easy to enforce the element conservation property. The main idea is
to turn the residual minimization problem (2.10) into a constrained mini-
mization problem. We form the Lagrangian:

L(uh, λK) :=
1

2
‖R−1

V (Buh−l)‖2V−
∑
K

Re [b(uh, λK(1K , 0))− l(λK(1K , 0))]

(7.5)
and seek its stationary points. We arrive at the mixed problem:
⎧⎨
⎩

b(uh, T δuh)−
∑
K

λKb(δuh, (1K , 0)) = l(Tδuh) ∀δuh

b(uh, (1K , 0)) = l((1K , 0)) ∀K .
(7.6)

Thus, at the expense of introducing an extra scalar unknown per element for
each conserved quantity, the minimum residual approach allows naturally
for enforcing conservation laws at the element level, a critical property in
CFD simulations. We refer to [17] for additional details.

Preconditioning. Numerical tests indicate that the DPG method based
on the ultraweak formulation delivers stiffness matrices with same condition
numbers as conforming finite elements. The work on preconditioners and
iterative solvers for the DPG method is in its infancy, see [2] for the only
results we are aware of at this point.

Maxwell Problems. For an application of DPG methodology to a 2D
Maxwell cloaking problem, see [30]. A theoretical groundwork for the
3D DPG Maxwell method has recently been laid down by Wieners and
Wohlmut [43].

Implementation of DPG Method. We conclude with a short discussion
on implementational issues.

The DPG method is definitely more expensive than standard, conform-
ing finite elements or hybridizible DG elements [19]. Even if we disregard
element interior degrees-of-freedom (d.o.f.) (“bubbles”), the number of
d.o.f. is of the same order as for mixed and standard DG methods, i.e. it
is doubled. On top of it, the element computations are essentially more ex-
pensive. The extra computational cost is balanced with the extraordinary
stability properties and the possibility of controling the norm in which we
converge through the selection of test norm. This is a unique property that
distinguishes DPG from other methods.

The method comes with a built-in a posteriori error evaluator. A
routine evaluating the residual error for an element is a calc copy of the
element routine. Anyone who had to implement even a simple, explicit
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a-posteriori error estimate will appreciate this point. The methodology
provides thus a very natural framework for adaptive methods including
hp-adaptivity.

The main difficulty in implementing the DPG method comes from the
fact that it is a hybrid FE method. As the field variables are discretized
with L2-conforming elements, trace variables with traces of H1-conforming
elements, and flux variables with traces ofH(div)-conforming elements, the
DPG method is naturally implementable within any framework supporting
the exact sequence elements. Solution of Maxwell problems in 3D will re-
quire traces of H(curl)-conforming elements as well. Two implementations
of this type have been built at ICES and are available for interested par-
ties: a parallel implementation built on top of Sandia’s Trilinos [41], and
a workstation Fortran 90 version based on our earlier work on hp methods
[22].

As we have tried to convince the reader in Remark 3.2, with the en-
riched spaces approach to the computation of optimal test functions, im-
plementation of the element routine is rather straightforward. Otherwise,
the rest of the code (assembling, interfacing with solvers, graphical post-
processing, etc.) uses the standard FE technology.
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Abstract. This note presents some recent results regarding the approximation of
the linear radiative transfer equation using discontinuous Galerkin methods. The locking
effect occurring in the diffusion limit with the upwind numerical flux is investigated and
a correction technique is proposed.
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1. Introduction. The linear radiative transfer equation describes the
processes by which particles (photons, neutrons, . . . ) interact with a back-
ground medium. Such processes play a crucial role in stellar atmospheres,
nuclear reactor analysis, and shielding applications. The Discontinuous
Galerkin (DG) finite element technique has been introduced by Reed and
Hill [16] and Lesaint and Raviart [13] in the early 1970s to specifically solve
this equation. It has been observed in the literature that the DG approxi-
mation with the upwind flux locks when the physical medium is optically
thick. In this case the width of the medium is many mean free paths and
the interaction processes are scattering-dominated. In the present paper
we adopt the terminology of Babuška and Suri [3]: a numerical scheme
for the approximation of a parameter-dependent problem is said to exhibit
locking if the accuracy of the approximations deteriorates as the parameter
tends to a limiting value. A robust numerical scheme for the problem is
one that is essentially uniformly convergent for all values of the parameter.
The objective of this paper is to review the influence of the definition of
the numerical flux of the DG method when the medium is optically thick.

The paper is organized as follows. Section 2 introduces notation and
recalls the SN transport equation. Section 3 describes the discrete formu-
lation which is obtained when applying a discontinuous Galerkin technique
to the SN equations. The origin of the locking phenomenon occurring when
the DG method is equipped with the upwind flux in identified in Sect. 4.
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A modified numerical flux is analyzed in Sect. 5. Numerical results illus-
trating the performance of the modified numerical flux are presented at the
end of this section.

2. Formulation of the Problem and SN Discretization. We re-
call in this section the transport equation and we provide some notations
for angular discretization. To keep the discussion simple, we limit ourselves
to the one-group discrete-ordinates equations; these equations model one-
group neutron transport and grey radiative transfer.

2.1. The Transport Equation. Let D be the spatial domain in R
d

(with d = 1, 2, 3), ∂D be the boundary of D, n be the outward unit normal
vector on ∂D, and S2 be the unit sphere in R

3. The set of propagation
directions S is defined as S2 for d = 3 and as the projection of S2 onto R

d

when d = 1, 2. For instance, S is the unit disk if d = 2 and S is the unit
segment [−1,+1] if d = 1. Denoting meas(S) the measure of S, we have
meas(S) = 4π if d = 3, meas(S) = π if d = 2, and meas(S) = 2 if d = 1.
This convention, which is common in the radiation transport community,
means that radiation is accounted for as a three-dimensional effect even in
lower dimensional geometries. The transport of particles is then modeled
by the linear Boltzmann equation:

Ω·∇Ψ(Ω,x) + σt(x)Ψ(Ω,x) − σs(x)Ψ(x) = q(x), ∀(Ω,x) ∈ S×D,
(2.1a)

where Ψ = 1
4π

∫
S Ψ(Ω,x) dμ(Ω) is the scalar flux and the boundary condi-

tions are

Ψ(Ω,x) = Ψinc(Ω,x), ∀(Ω,x) ∈ S×∂D, Ω·n(x) < 0. (2.1b)

where n is the outward unit normal vector on ∂D. The measure dμ(Ω) is

such that dμ(Ω) = dΩ if d = 3, dμ(Ω) = 2(1 − |Ω|2)− 1
2 dΩ if d = 2 and

dμ(Ω) = 2π|Ω|(1−|Ω|2)− 1
2 dΩ if d = 1, where dΩ is the Lebesgue measure

over the unit sphere in R
3 or the Lebesgue measure in R

d if d = 1, 2. For
simplicity, we have assumed that the scattering and the extraneous sources
are isotropic; this assumption does not affect the conclusions of the analysis.
The dependent variable is the angular flux Ψ(Ω,x), and the independent
variables (Ω,x) span S×D. The given data are the extraneous source
term q(x), the incoming boundary radiation Ψinc(Ω,x), the scattering cross
section σs(x), and the absorption cross section σa(x) := σt(x)− σs(x).

2.2. The SN Discretization. A traditional way to approximate the
Eq. (2.1a) consists of dealing with S and D separately. In this paper
the approximation with respect to the angles is done by using the so-called
SN -method. The SN , or discrete-ordinates, version of (2.1a) is obtained by
solving the transport equation along discrete directions (or ordinates) and
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by replacing the integrals over the unit sphere S by quadratures. In the rest
of the paper we assume that we have at hand a quadrature rule {(Ωj , ωj),
j = 1, . . . , nΩ}

1

4π

∫
S
f(Ω,x) dμ(Ω) ≈

nΩ∑
j=1

ωjf(Ωj ,x), (2.2)

satisfying the following properties:
nΩ∑
j=1

ωj = 1,

nΩ∑
j=1

ωjΩj = 0, (2.3)

∀a, b ∈ R
3,

nΩ∑
j=1

ωj(Ωj ·a)(Ωj ·b) =
1

3
a·b, (2.4)

∃c0 > 0, ∀nΩ, cn :=
∑

Ωj ·n<0

ωj|Ωj ·n| ≥ c0. (2.5)

Although it is a standard result that 1
4π

∫
Ω∈S2,Ω·n<0 |Ω·n| dΩ = 1

4 for any
unit vector n, this equality may not exactly hold for any numerical quadra-
ture at hand. However, reasonable sets of quadrature rules are such that
this limit value is approached as the number of directions in the quadrature
increases ( lim

nΩ→∞
cn = 1

4 ). In any case the hypothesis (2.5) holds when-

ever one can find d linearly independent vectors among the quadrature
points Ωj .

The SN method consists of replacing the angular flux Ψ(Ω,x) by a
discrete angular flux ψ(x) = (ψ1(x), ψ2(x), . . . , ψnΩ(x)), and to convert the
integro-differential equation (2.1) over S×D into a system of nΩ coupled
partial differential equations over D for all the directions j as follows :

Ωj ·∇ψj(x) + σt(x)ψj(x) − σs(x)ψ(x) = q(x), in D, (2.6a)

with the inflow boundary condition

ψj(x) = Ψinc
j (x), ∀x ∈ ∂D with Ωj ·n(x) < 0. (2.6b)

The discrete scalar flux is defined by:

ψ(x) =

nΩ∑
j=1

ωjψj(x). (2.7)

The discrete angular flux ψ is said to be isotropic when ψj = ψ, for all
j ∈ {1, . . . , nΩ}. In order to simplify the notation in subsequent sections, we
introduce the discrete current vector J(ψ), also known as the first angular
moment of ψ, as follows:

J(ψ) =

nΩ∑
j=1

ωjψj(x)Ωj . (2.8)

Note that J(ψ) = 0 whenever ψ is isotropic.
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2.3. Diffusion Limit. We say that the medium is optically thick
when it takes many mean free paths for particles to cross the domain.
In order to better understand the behavior of the solutions of the linear
Boltzmann equation in this regime, we rescale the equation under the as-
sumption that the ratio between the mean free path between two scattering
events and the characteristic size (diameter) of the domain goes to zero. A
measure of this ratio is given by

ε =
1

σs diam(D) . (2.9)

This parameter is well known to characterize the diffusivity of the problem,
see, for instance, Larsen et al. [12] and Dautray and Lions [5, Chap. XXI].
We assume throughout this section that σs is constant over the domain to
simplify the analysis. Then, we assume the following behaviors

σs = ε−1σ̃s, σa = εσ̃a, q = εq̃, (2.10)

where the tilde quantities are independent of ε [note in particular that
σ̃s = 1/diam(D)]. As ε goes to zero, the scattering and total cross sections
take large values and the absorption cross section becomes small, rendering
the configuration optically thick and diffusive.

Using (2.10), the scaled version of the transport equation (2.1) becomes

Ω·∇Ψ(Ω,x) +

(
σ̃s
ε

+ εσ̃a

)
Ψ(Ω,x)− σ̃s

ε
Ψ(x) = εq̃(x). (2.11)

It is now well understood (see, e.g., Chandrasekhar [4], Larsen et al. [12],
and Dautray and Lions [5, Chap. XXI]) that limε→0 Ψ(Ω,x) = limε→0

Ψ(x)=ϕ(x), where the scalar flux ϕ satisfies the diffusion problem

−∇·
(

1

3σ̃s
∇ϕ
)
+ σ̃aϕ = q̃, (2.12a)

ϕ(x) =
1

2π

∫
Ω∈S2,Ω·n(x)<0

W (|Ω·n(x)|)Ψinc(Ω,x) dΩ, ∀x ∈ ∂D,

(2.12b)

whereW (μ) =
√
3
2 μH(μ) is defined in terms of Chandrasekhar’sH-function

for isotropic scattering in a conservative medium (see Malvagi and Pomran-
ing [14] for the asymptotic analysis and Chandrasekhar [4] for details on the
H-function). It is shown in Malvagi and Pomraning [14] that limε→0 Ψ = ϕ,
and the convergence is not uniform unless the incident flux is isotropic.

It is remarkable that under the assumptions made for the angu-
lar quadrature, the diffusion limit of the solution to the semi-discrete
problem (2.6) (discrete-ordinate transport equation) has the same limit
properties, i.e.,

lim
ε→0

ψj(x) = lim
ε→0

ψ(x) = ϕ(x), ∀j ∈ {1, . . . , nΩ}. (2.13)
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The goal of the present paper is to determine when the above property
holds when space is approximated using discontinuous Galerkin methods.

3. DG Discretization. We now proceed with the spatial discretiza-
tion of the SN transport equation using DG finite elements.

3.1. The Mesh. Let Th be a subdivision of D into disjoint (open)
cells K such that the closure of D is equal to ∪K∈Th

K. The meshes are
assumed to be affine to avoid unnecessary technicalities; i.e., D is assumed
to be a polyhedron. The diameter of K ∈ Th is denoted by hK , and we set
h = maxK∈Th

hK . We suppose that we have at hand a family of meshes
{Th} and that this family is uniformly shape-regular. We also assume that
the mesh is quasi-uniform; i.e., there is c > 0 so that

c h ≤ hK ≤ h ∀K ∈ Th. (3.1)

This hypothesis is used when invoking inverse inequalities. It could be
avoided by localizing the inverse estimate arguments, but we shall refrain
from doing so to steer clear of unnecessary technicalities.

We denote Fi
h the set of interior faces (also called interfaces); each face

F ∈ F
i
h is the intersection of the boundaries of two mesh cells. We assign

a normal vector n for each face F ∈ F
i
h. While the choice of the normal

vector is arbitrary for interior faces, all the weak formulations considered
below are independent of this choice and thus well defined. The set of faces
on the domain boundary, ∂D, is denoted F

b
h. The set of interfaces and

boundary faces is denoted Fh = F
i
h ∪ F

b
h.

3.2. The Discontinuous Galerkin Setting. We define a discon-
tinuous approximation space for the scalar flux based on the mesh Th as
follows:

Vh =
{
v ∈ L2(D)

∣∣ ∀K ∈ Th, v|K ∈ PK ,
}
, (3.2)

where, denoting Pk the set of polynomials of degree at most k, the finite-
dimensional space PK is assumed to contain Pk, i.e.,

Pk ⊂ PK , ∀K ∈ Th. (3.3)

The discrete space for the angular flux, Wh, simply consists of copies of Vh
for each of the discrete ordinates:

Wh = (Vh)
nΩ . (3.4)

We finally introduce the spaces with zero boundary conditions

V0,h =
{
v ∈ Vh
∣∣ v|∂D = 0

}
, W0,h =

(
V0,h
)nΩ

. (3.5)
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3.3. The DG Weak Formulation. The DG formulation of the
problem (2.6) consists of seeking ψ ∈ Wh so that the following holds for
all cells K ∈ Th, for all test functions vj ∈ Vh supported on K, and for all
direction j ∈ {1, . . . , nΩ}:

∫
K

(
−ψjΩj ·∇vj + (σs + σa)ψjvj − σsψvj

)
dx

+

∫
∂K

F̂j(x)·nvj dx =

∫
K

qvj dx. (3.6)

where the numerical flux∗F̂j has yet to be defined. The purpose of the

numerical flux F̂j(x)·n is to approximate the quantity ψjΩj ·n at the mesh
interfaces since this quantity is double-valued due to the discontinuous na-
ture of the approximation. The above system is obtained by (i) multiplying
the SN equations for direction j with test function vj , (ii) integrating the
results by parts, and (iii) replacing the two-valued function ψjΩj ·n by the

numerical flux F̂j ·n.
3.4. Jumps and Averages. Due to the discontinuous nature of the

spatial approximation, functions v ∈ Vh are double-valued on interior faces.
let F ∈ F

i
h be an interior face separating two mesh cells, K1 and K2. The

mean value and jump of a function v ∈ Vh across F are defined as follows:

{{v}} = 1
2 (v1 + v2), [[v]] = v1 − v2, (3.7)

where v1 := v|K1 and v2 := v|K2 are the restrictions of v on the mesh
cells K1 and K2, respectively. Obviously, {{v}} does not depend on the
numbering of the cells K1 and K2, but the jump does (there is a sign
change when exchanging the cells K1 and K2). However, since the weak
bilinear forms (to be defined further below) contain the product of two
jumps, the orientation of the unit normal vector does not matter. Let n1

and n2 be the unit normal vectors on F pointing towards K2 and K1,
respectively. The mean value of quantities containing a normal vector is
actually a jump since

{{vn}} = 1
2 (v1n1 + v2n2) =

1
2 (v1 − v2)n1 = 1

2 (v2 − v1)n2.

For any v in Vh and any interior face F ∈ F
i
h, we introduce the so-called

upwind and downwind values of v at x ∈ F , v↑(x) and v↓(x), respectively,
as follows:

∗The term “flux” is used in two different contexts. In the radiation transport context,
we use the terms “angular flux” and “scalar flux.” In the DG context, we use the
notion of “numerical flux.” These two notions are unfortunately unrelated but commonly
employed in the radiation transport and DG literature, respectively. To avoid confusion,
we always try to use the proper adjective in this paper.
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v↑(x) =

{
v1(x), if Ω·n1(x) ≥ 0

v2(x), if Ω·n1(x) < 0,

v↓(x) =

{
v2(x) if Ω·n1(x) ≥ 0

v1(x) if Ω·n1(x) < 0.
(3.8)

Observing that the following holds for any positive number (γ ≥ 0 ):

Ω·n1{{v}}+ 1
2γ|Ω·n1|[[v]] = Ω·n1

(
v↑(x) + 1

2 (γ − 1)(v↑(x) − v↓(x))
)
,
(3.9)

we obtain that

Ω·n1{{v}}+
γ

2
|Ω·n1|[[v]] =

{
Ω·n1v

↑(x) if γ = 1,

Ω·n1{{v}} if γ = 0.
(3.10)

The so-called upwind DG numerical flux is obtained with (3.9) by using
γ = 1, and the centered numerical flux is obtained by using γ = 0. The
representation (3.9) gives an easy way to construct numerical fluxes by
modifying the coefficient γ.

4. The Upwind Approximation. In the radiative transfer litera-

ture it is common to replace F̂j(x) in (3.6) by the upwind flux

F̂j ·n = Ωj ·nψ↑
j (x). (4.1)

We focus in this section on the consequences of this choice. We show in
particular that it leads to locking in the diffusive regime for some families
of approximation spaces.

4.1. Locking in the Diffusion Regime. It has been observed in the
literature that the DG approximation (3.6) equipped with the upwind flux
locks when the medium is optically thick. For instance, it is pointed out in
Larsen [8, 9] that the so-called step scheme, a finite volume scheme (i.e., a
piecewise constant DG scheme) with standard upwind, locks in the diffusion
limit. A modification of the “step scheme” depending upon the total mean
free path was proposed in Larsen [8] to correct the locking of the method
in the diffusion limit, but this required modifying the streaming term and
abandoning particle balance. Several other variations of the “step scheme”
have been analyzed in Larsen et al. [12]: it was shown that the “Lund–
Wilson” and the “Castor” variants of the step scheme yielded cell-edge
angular fluxes that lock in the diffusion limit, and that the auxiliary rela-
tions linking the outgoing edge angular flux to the cell-average angular flux
employ a multiplicative factor that depends on the mesh cell optical thick-
ness in the direction traveled. Furthermore, the cell-edge fluxes for these
schemes cannot reproduce the infinite medium solution. A “new” scheme
was proposed in Larsen et al. [12] but was subsequently dismissed due its
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poor behavior at the boundaries. For many years, the diamond-difference
scheme was found to be the best performing finite-difference scheme, even
though its cell-edge fluxes lock in the thick diffusion limit. In Larsen and
Morel [11], most of the previous schemes have been set aside in favor of
the Linear Discontinuous finite element scheme (the piecewise linear DG
technique with standard upwinding).

Adams [1] analyzed multi-dimensional DG approximations and showed
that some schemes lock in the diffusion limit because the upwind method
forces the scalar flux, and thus the angular flux, to be continuous across
mesh cells. This observation is essential to understand what happens.

4.2. Convergence Analysis. In the rest of the paper we adopt the
scaling defined in (2.10) and consider the rescaled transport equation (2.11).

The analysis of Adams [1] have been confirmed in Guermond and Kan-
schat [7], where the equivalence of the limit problem to a mixed discretiza-
tion for the Laplacian was proved and the nature of the boundary layers
was discussed. To better formulate the conclusions from Guermond and
Kanschat [7], we introduce the subspace of Vh composed of the functions
that are continuous:

Ch = Vh ∩ C0(D), (4.2)

and we define m(x) := 1
π

∫
Ω·n(x)<0Ψ

inc(Ω,x)|Ω·n(x)| dΩ. The first key

result is the following:
Lemma 4.1. Assume that m is the trace of a function in Ch. Then

the solution of (3.6) with the upwind flux (4.1) is such that

lim
ε→0

ψj ∈ Ch, ∀j ∈ {0, . . . , nΩ}. (4.3)

Remark 4.1. An immediate consequence of this result is that while
piecewise constant approximation is admissible for solving the transport
problem (2.1a) (or (2.11)), the continuity condition (4.3) forces the dif-
fusion limit solution to be globally constant. This leads to locking, i.e.,
limε→0 ψj does not converge to ϕ when using DG0 with the upwind flux,
unless ϕ is constant.

Let us further assume that the following approximation properties hold
for all φ ∈ H l(D) and all l ∈ [1, 2]:

inf
vh∈Ch,0

‖φ− vh‖Hp(D) ≤ chl−p‖φ‖Hl(D), ∀p ∈ [0, 1], (4.4)

inf
vh∈Ch,0

(
‖φ− vh‖L2(∂D)+h‖∂n(φ− vh)‖L2(∂D)

)
≤ chl− 1

2 ‖φ‖Hl(D). (4.5)

The following result is then proved in Guermond and Kanschat [7]:
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Theorem 4.1. Assume that Ψinc is isotropic and smooth enough and
that (4.4) and (4.5) hold. Then the solution of (3.6) with the upwind flux
(4.1) converges in H1(D) to ϕ, solution of (2.12a) and (2.12b), and the
following error estimate holds:

‖ lim
ε→0

ψj −ϕ‖H1(D) ≤ c inf
vh∈Ch,0

‖ϕ− vh‖H1(D), ∀j ∈ {0, . . . , nΩ}. (4.6)

The critical assumption here is (4.4), which requires the spaces Ch to
be rich enough so as to have reasonable approximation properties. This is
a condition on the mesh family {Th}h>0 and the associated discrete space
family {Vh}h>0. More precisely (4.4) holds if the following two conditions
are satisfied:

(i) The meshes are conforming; i.e., each face of a cell is either the face
of a neighboring cell or at the boundary. This condition can be weakened
to accommodate for local refinement, and in this case each face of any cell
may be a subset of a face of its neighbor.

(ii) The polynomial spaces on each cell must allow continuity across
interfaces of neighboring cells without loosing approximation properties.
This is usually achieved by using multidimensional polynomial spaces Pk

of total order k ≥ 1 for triangles and tetrahedra or mapped tensor product
spaces Qk of order k ≥ 1 in each coordinate direction on quadrilaterals and
hexahedra.

Remark 4.2. For instance, condition (ii) is violated if piecewise con-
stant elements are used.

Remark 4.3. Conditions (i) and (ii) have been identified in Adams [1]
and termed “locality” and “surface-matching” properties. We think though
that the condition (4.4) gives a complementary rational to that given in
Adams [1]. Lists of admissible and nonadmissible finite elements are given
in Tables I and II in Adams [1].

When the incoming flux at the boundary is not isotropic some
boundary layer effect occur as mentioned in Adams [1] and Larsen and
Keller [10]. To formulate a precise result we introduce the function
M(x) := 1

4π

∫
Ω·n(x)<0 Ψ

inc(Ω,x)|Ω·n(x)|Ω dΩ.

Theorem 4.2. Assume that M(x)·n is the trace of a function in Ch

and (4.4) and (4.5) hold. Then the solution of (3.6) with the upwind flux
(4.1) converges to a limit ψlim in Hs(D) for all s ∈ [0, 12 ) and

‖ lim
ε→0

ψj − ψlim‖L2(D) ≤ c h
s
3 , ∀s ∈ [0, 12 ), ∀j ∈ {0, . . . , nΩ} (4.7)

That the above convergence occurs in a space Hs(D) with s < 1
2 is

the signature of boundary layer effects developing at the boundary when
the incoming flux is not isotropic.

5. Robust DG Approximation. The asymptotic analysis in Adams
[1] and Guermond and Kanschat [7] suggests that the problem could be al-
leviated by modifying the upwind numerical flux. As pointed out in Ayuso
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and Marini [2], Ern and Guermond [6], the upwind numerical flux is only
one particular choice among many for stabilization. By making the amount
of stabilization dependent on the scattering cross section so that the amount
of upwinding decreases as the scattering cross section increases, it is shown
in Ragusa et al. [15] that locking can indeed be avoided in the thick diffusive
limit.

5.1. Modified Numerical Flux. The new numerical flux proposed
by Ragusa et al. [15] is based on (3.9). Before giving its expression we
define the following stabilization parameters

γ(x) =
γ0

max(γ0, σs(x) diamD)
, δ(x) = δ0

1− γ(x)
γ(x)

, (5.1)

where the parameters γ0 > 0, δ0 > 0 are assumed to be of order one. The
rationale for these definitions is as follows: γ tends to 0 in the diffusive
limit, whereas γ converges 1 in the optically thin regions.

The following definition for the numerical flux across the interface
F ∈ F

i
h from K1 to K2 is proposed in Ragusa et al. [15]:

F̂j(x)·n1 = Ωj ·n1{{ψj}}+
γ(x)

2
|Ωj ·n1|[[ψj ]] +

δ(x)

2
{{J(ψ)·n}}Ωj·n1. (5.2)

We use the standard upwind definition of the numerical flux for any bound-
ary face F ∈ F b

h:

F̂j(x)·n =

{
Ωj ·nΨinc

j if Ωj ·n(x) < 0

Ωj ·nψj otherwise.
(5.3)

Note that the definition of γ(x) is such that, on the one hand, γ → 0
when the ratio of the scattering mean free path to the diameter of the
domain is small (i.e., σs(x)D is large); on the other hand, γ is bounded
away from zero when the mean free path is a non-negligible fraction of
the diameter of the domain (the γ0 constant assures that γ(x) → 1 when
σs(x)D is small. The parameter δ is designed so that it goes to zero when
γ → 1 and behaves like 1/γ when γ → 0. This behavior is dictated from
the forthcoming asymptotic analysis. The intuitive motivations for the
first and second terms in (5.2) are the expressions (3.9) and (3.10). The
standard upwind numerical flux is obtained by setting γ = 1, which also
implies δ = 0. The justification for the third term {{J(ψ)·n}}Ωj·n1 comes
from the asymptotic analysis; this term turns out to be necessary for the
limit problem to be well posed.

5.2. Convergence Analysis. In the rest of this section we assume
that Ψinc = 0 and we refer the reader to [7] for the handling of inhomo-
geneous Dirichlet boundary conditions. The main result from [15] is the
following:
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Proposition 1. Let ψ ∈ Wh be the solution to the SN -DG prob-
lem (3.6) equipped with the numerical flux (5.2). Then ψ converges to an
isotropic function ϕ ∈ V0,h as ε → 0. Furthermore, there is a vector field
J ∈ (Vh)

d so that the pair (ϕ,J) solves the following DG system for all
v ∈ V0,h and all L ∈ (Vh)

d:

∑
K∈Th

∫
K

(∇·J+ σ̃aϕ) v dx

+
∑
F∈F

i
h

∫
F

(
cnF

γ0
2
[[ϕ]][[v]] − 2{{J·n}}{{v}}

)
dx =

∫
D
q̃ v dx,

∑
K∈Th

∫
K

(
1

3
∇ϕ+ σ̃sJ

)
·Ldx

+
∑
F∈F

i
h

∫
F

(
−2

3
{{ϕn}}{{L}}+ δ0

3γ0
{{J·n}}{{L·n}}

)
dx = 0,

(5.4)

where cnF :=
∑

Ωj ·nF≤0 ωj |Ωj ·nF | is bounded away from zero uniformly

with respect to F ∈ F
i
h, h, and nΩ.

The above result may seem obscure, but the limit problem (5.4) coin-
cides exactly with the method from Ern and Guermond [6] (see Sect. 5.3
therein) that has been proposed to solve the limit problem (2.12a) and
(2.12b) in mixed form:

∇·J+ σ̃aϕ = q̃ (5.5a)

1

3
∇ϕ+ σ̃sJ = 0 (5.5b)

ϕ|∂D = 0. (5.5c)

The theoretical convergence analysis from Ern and Guermond [6] implies
that (5.4) is a consistent and convergent approximation of (2.12a) and
(2.12b). That is, the discrete transport formulation (3.6) with the nu-
merical flux (5.2) is robust and yields a convergent approximation of the
diffusion equation as ε goes to zero.

5.3. Numerical Experiments. We finish this paper by numerically
illustrating the above method. We solve the problem of local energy equi-
librium in the domain D = (−1, 1)2×R with zero incoming flux,

Ω·∇ψ(Ω, x) + 1

ε

(
ψ(Ω, x) − ψ(x)

)
=
ε

3

π2

4

2∏
i=1

cos
(
πxi

2

)
.

The solution is independent of x3. We study the limit of DG approxima-
tions using the upwind flux (4.1) and the modified flux (5.2) as ε→ 0. The

solution to the diffusion limit is ϕ(x) =
∏d

i=1 cos
(
πxi

2

)
, with d = 2.
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Fig. 1. Comparison of the solutions with upwind and modified flux with quad-
rangular P1 finite elements, respectively. As the scattering cross section increases, the
upwind flux solution locks, while the other converges to the correct diffusion limit (a)
ε = 1. (b) ε = 2−6. (c) ε = 2−10. (d) ε = 2−14

We use piecewise linear polynomials in space, and we choose γ and δ as
in (5.1) with γ0 = 4 and δ0 = 1. The results computed on a quadrangular
mesh composed of 64 cells are shown in Fig. 1 for ε = 1, 2−6, 2−10, and 2−14.
We observe that the solution obtained with the upwind flux locks when
ε→ 0, whereas the solution computed with the modified flux converges to
the correct diffusion limit as expected.
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ERROR CONTROL FOR DISCONTINUOUS GALERKIN
METHODS FOR FIRST ORDER HYPERBOLIC PROBLEMS

EMMANUIL H. GEORGOULIS∗, EDWARD HALL† , AND CHARALAMBOS

MAKRIDAKIS‡

Abstract. An a posteriori error bound for a first order linear hyperbolic problem,
with constant advection coefficient, discretized by the discontinuous Galerkin method
is presented. The bound is derived using a suitable reconstruction framework, but
it is essentially of residual-type. For simplicity, the special case of the mesh having
one characteristic face per element is the focus of discussion, although some comments
on possible extensions to general meshes are given. Numerical experiments verify the
reliability and the efficiency of the estimator.

Key words. A posteriori error bounds, Discontinous Galerkin method, Hyperbolic
problem

1. Introduction. Discontinuous Galerkin (dG) methods for
advection problems have gained considerable popularity in the litera-
ture since their introduction in 1971 by Reed and Hill [32] (see, e.g.,
[5, 8, 11, 13–15, 19], the volume [12] and the references therein.) The a
priori error for the dG method has been considered in [5, 22, 26, 29, 33].
In [31], it was shown numerically that the dG method suffers from slightly
suboptimal rates of convergence with respect to the mesh parameter when
the error is measured in the L2-norm. Optimal error bounds in the L2-norm
for various classes of structured meshes have been shown in [9, 10, 33].
Recently, Burman [6] proposed an a posteriori bound for the case of con-
stant elements under a saturation assumption. Other works dealing with
error control of various types for first order hyperbolic problems include
[2, 3, 24, 34]. Overall, it seems that this rather interesting problem requires
further study.

A posteriori error bounds for dG methods for elliptic problems have
been considered in [4, 7, 17, 18, 21, 27, 28]. Such bounds are based on
suitable recoveries/post-processing theoretical tools of the dG solution.

In this short note, we present some recent results regarding the a pos-
teriori error analysis of the classical dG method of Reed and Hill [32] for a
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scalar first order linear hyperbolic problem. For simplicity, the special case
of a two-dimensional computational domain with constant advection fields
is considered. We first consider triangular meshes having one characteristic
face per element, where the analysis is simpler. The analysis will be ex-
tended to the general case in a forthcoming work; here, we briefly discuss
the main ideas for this case also.

The rest of this work is structured as follows. In Sect. 2, we describe
the model problem considered, along with its discretization by the discon-
tinuous Galerkin method. Section 3 is devoted to the derivation of energy
norm a posteriori bounds for the discontinuous Galerkin method, under
the assumption of a mesh containing one characteristic face per element.
A brief discussion on relaxing the characteristic face assumption is given
in Sect. 4. We conclude with some numerical experiments in Sect. 5.

2. The Problem and Its Discretization. We start by assuming
the notion of a Sobolev space W k

p (ω), based on the Lebesgue space Lp(ω),

for some open domain ω ⊂ R
d, d = 1, 2 (for more on Sobolev spaces, see,

e.g., [1]). We shall also denote the Hilbertian Sobolev spaces by Hk(ω) :=
W k

2 (ω).
In Ω ⊂ R

2, we consider the first order Cauchy problem

L0u ≡ b · ∇u+ cu = f in Ω, (2.1)

u = g on ∂−Ω, (2.2)

where

∂−Ω := {x ∈ ∂Ω : b(x) · n(x) < 0}

is the inflow part of the domain boundary ∂Ω, b := (b1, b2) ∈ R
2 and

g ∈ L2(∂−Ω).
We assume further that there exists a positive constant γ0 such that

c(x)− 1

2
∇ · b(x) ≥ γ0 for almost every x ∈ Ω, (2.3)

and we define c0 := (c− 1/2∇ · b)1/2.

The discontinuous Galerkin method. We consider a mesh T of the
domain Ω into shape-regular triangular elements T ∈ T . We define

∂−T := {x ∈ ∂T : b(x) · n(x) < 0}, ∂+T := {x ∈ ∂T : b(x) · n(x) > 0},
∂0T := {x ∈ ∂T : b(x) · n(x) = 0}

for each element T ; we call these the inflow, outflow and characteristic
parts of ∂T , respectively. Note that for each element T ∈ T , at least one
face is inflow and one is outflow; ∂0T can, in general, be of one-dimensional
Lebesgue measure zero.
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For T ∈ T , and a (possibly discontinuous) element-wise smooth func-
tion v, we consider the upwind jump across the inflow boundary ∂−T , by

"v#(x) := lim
t→0+

(
u(x+ tb)− u(x− tb)

)
,

for almost all x ∈ ∂−T , when ∂−T ⊂ Γint, and by "v#(x) := v(x) for almost
all x ∈ ∂−T , when ∂−T ⊂ ∂−Ω. Let also Γ := ∪T∈T ∂T be the skeleton
of the mesh (i.e., the union of all one-dimensional element faces). Let also
Γint := Γ\∂Ω, so that Γ = ∂Ω ∪ Γint.

We define the discontinuous Galerkin finite element space by

Sh := {wh ∈ L2(Ω) : wh|T ∈ Pp(T ), T ∈ T },

with Pp(T ) denoting the space of polynomials of total degree p on T .
We also define the space S := Gb + Sh, where

Gb := {w ∈ L2(Ω) : b · ∇w ∈ L2(Ω)},

is the graph space of the PDE (2.1) [16, 25].
We require some more notation to describe the method. Let u ∈ S;

then, for every element T ∈ T , we denote by u+T the trace of u on ∂T taken
from within the element T (interior trace). We also define the exterior
trace u−T of u ∈ S for almost all x ∈ ∂−T \∂−Ω to be the interior trace
u+T ′ of u on the element(s) T ′ that share the edges contained in ∂−T \∂−Ω
of the boundary of element T . Then, the jump of u across ∂−T \∂−Ω is
defined by

"u#T := u+T − u
−
T ;

the subscripts will be suppressed when no confusion is likely to occur.
Setting

B(u, v) :=
∑
T∈T

∫
T

(L0u)v dx−
∑
T∈T

∫
∂−T∩∂−Ω

(b · n)u+v+ ds

−
∑
T∈T

∫
∂−T\∂−Ω

(b · n)"u#v+ ds, (2.4)

l(v) :=
∑
T∈T

∫
T

fv dx−
∑
T∈T

∫
∂−T∩∂−Ω

(b · n)gv+ ds,

the discontinuous Galerkin method for the problem (2.1) then reads:

Find uh ∈ Sh such that B(uh, vh) = l(vh) ∀vh ∈ Sh. (2.5)

A natural error notion is the energy norm defined by

|‖w|‖ :=
(
‖c0w‖2Ω +

1

2
‖β"w#‖2Γint

+
1

2
‖βw+‖2∂Ω

)1/2
,
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where β(x) :=
√
|b(x) · n(x)|, with n on ∂T denoting the outward normal

to ∂T . The choice of the above energy norm is related to the coercivity of
the bilinear form B(·, ·). Indeed, we have

|‖w|‖2 = B(w,w), (2.6)

for all w ∈ S (see, e.g., [23] for details). Standard error analysis [5, 22, 26,
29, 33] yields the a priori error bound

|‖u− uh|‖ ≤ Chmin{p+1,r}−1/2|u|Hr(Ω), (2.7)

for p ≥ 0 and r ≥ 1. In general, we do not observe improved rate of
convergence in the (weaker) L2-norm (see, e.g., [31]). Optimal L2-bounds
have been shown for a variety of structured meshes [9, 10, 33].

3. A Posteriori Error Bounds. We begin by assuming that one face
per element is characteristic, i.e., there is one face e per element T ∈ T such
that e = ∂0T , (resulting to b ·n = 0 for that face). Our analysis is based on
the introduction of an intermediate function, which we call reconstruction
in the spirit of [30]. The definition of this function, and hence our analysis,
is simpler when one face per element is characteristic. The more involved
general case is briefly discussed in the next section.

We begin by defining the reconstruction space S̃h by

S̃h := {wh ∈ C(Ω̄\ ∪T∈T ∂0T ) : wh|T ∈ Pp+1(T )}. (3.1)

Definition 3.1. We define the reconstruction û|T ∈ Pp+1(T ) element-
wise by the relations
∫
T

b · ∇û vh dx =

∫
T

b · ∇uh vh dx−
∫
∂−T

(b · n)"uh#v+h ds, (3.2)

for all vh ∈ Sh and we set

πpû = u−h (3.3)

on the unique inflow face, where πp is the L2-projection onto the element
face. Finally, we require that û is continuous at the “inflow” element vertex
(i.e., the only vertex that is not on the boundary of the characteristic face)
with

û(x−) = (card{e : e ∩ ∂+T $= ∅})−1
∑

e:e∩∂+T �=∅
uh(x−)|e, (3.4)

with card being the cardinality of a set. Here, the face e is assumed not
to contain its zero-dimensional boundary. Also, we define û : Ω→ R to be
the function equal to the reconstruction û on each T ∈ T .

Remark 3.1. The construction of the nodal values takes into account
only the value down-wind, so it is local by nature.
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Lemma 3.1. û ∈ S̃h and it is well defined.
Proof. As û is continuous on the inflow element vertices by construc-

tion, it will suffice to show that the remaining p faces degrees of freedom
coincide across each element face. The conditions πpû = u−h on the inflow
face will imply the result if πpû = u+h on the (unique) outflow face.

The reconstruction relation (3.2) implies

−
∫
T

b·∇vh (û−uh) dx+
∫
∂T

(b·n)(πpû−u+h )v
+
h ds = −

∫
∂−T

(b·n)"uh#v+h ds,

(3.5)
which, in turn gives

−
∫
T

b · ∇vh (û− uh) dx+

∫
∂+T

(b · n)(πpû− u+h )v
+
h ds = 0, (3.6)

using the conditions πpû = u−h . Upon considering vh ∈ Sh such that
b · ∇vh = 0 on T , we deduce

∫
∂+T

(b · n)(πpû− u+h )v
+
h ds = 0,

which, readily implies πpû = u+h on the outflow face, as the outflow face is
not characteristic. The proof that the reconstruction is well defined (i.e.,
uniquely determined, given uh) is given in detail in [20].

Lemma 3.2 ([20]). We have

‖û− uh‖ ≤ C‖
√
(b · n)h[uh]‖Γ− , and ‖û− uh‖Γ− ,≤ C‖

√
(b · n)[uh]‖Γ− ,

We are now ready to show an a posteriori bound in the energy norm
for the dG method.

Theorem 3.1. Let u be the solution of (2.1), uh its approximation by
the dG method (2.5) and let û as in Definition 3.1. Then, we have the
following bound

|‖u− uh|‖2 ≤C‖
√
b · n[uh]‖2Γ− + C

∑
T∈T

(
‖β(g − u+h )‖2∂−T∩∂−Ω

+ ‖f − cuh −Πp(f − cuh)‖2T
)
.

(3.7)

with Πp : L2(Ω) → R denoting the (local) orthogonal L2-projection onto
Sh, where C > 0 is independent of uh, u, û, h and T .
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Proof. Let ρ := u− û. We have, respectively,

∑
T∈T

∫
T

(b · ∇ρ+ c(u− uh)) ρ dx

=
∑
T∈T

∫
T

(f − cuh) ρ dx−
∑
T∈T

∫
T

b · ∇ûΠpρ dx

−
∑
T∈T

∫
T

cuh (ρ−Πpρ) dx

=
∑
T∈T

∫
T

(
(f − cuh)−Πp(f − cuh)

)
ρ dx,

(3.8)

from (3.2), with Πp : L2(Ω) → R denoting the orthogonal L2-projection
onto Sh. This implies

|‖ρ|‖2 =
∑
T∈T

∫
T

(b · ∇ρ+ cρ) ρ dx

=
∑
T∈T

∫
T

(
(f − cuh)−Πp(f − cuh)

)
ρ dx−

∑
T∈T

∫
T

c(û − uh) ρ dx.

(3.9)
The result already follows by Cauchy–Schwarz inequality, the triangle

inequality and the previous lemma.

4. The General Case. We continue by assuming that no element
face is characteristic, i.e.,

|b(x) · n(x)| > 0 for all x ∈ ∂τ, T ∈ T . (4.1)

Note that (4.1) implies that for each element T ∈ T , either one or two
whole faces are contained in ∂−T .

The reconstruction space S̃h is now of higher order, defined by

S̃h := {wh ∈ C(Ω̄) : wh|T ∈ Pp+2(T )}. (4.2)

The reconstruction can be defined along the same lines as before, but
its construction is more involved.

Definition 4.1. We define the reconstruction û|T ∈ Pp+2(T ) element-
wise by the relations

∫
T

b · ∇û vh dx =

∫
T

b · ∇uh vh dx−
∫
∂−T

(b · n)"uh#v+h ds, (4.3)

for all vh ∈ Sh and we set

πpû = u−h (4.4)
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on each inflow face (with u−h = g on ∂−Ω), if the element T has two inflow
boundary faces, where πp is the L2-projection onto the element face, or
πpû = u−h and

πpû = u+h (4.5)

on the unique inflow and one of the two outflow faces, if the element T has
two outflow faces. Finally, we require that û is continuous at the element
vertices with

û(xi) = (card{e : e ∩ ∂+T $= ∅})−1
∑

e:e∩∂+T �=∅
uh(xi)|e, (4.6)

with xi, i = 1, . . . , d + 1 denoting the vertices of T , e ⊂ ∂T a (generic)
element face and card being the cardinality of a set. Here, the face e is
assumed not to contain its zero-dimensional boundary. Also, we define
û : Ω→ R to be the function equal to the reconstruction û on each T ∈ T .

Using this reconstruction, one can show the following a posteriori
bound [20].

Theorem 4.1. Let u be the solution of (2.1), uh its approximation by
the dG method (2.5) and let û as in Definition 3.1. Then, we have the
following bound

|‖u− uh|‖2 ≤C‖
√
b · n[uh]‖2Γ− + C

∑
T∈T

(
‖β(g − u+h )‖2∂−T∩∂−Ω

+ ‖f − b · ∇û− cuh −Πp(f − b · ∇û− cuh)‖2T
)
.

(4.7)

where C > 0 is independent of uh, u, û, h and T .
5. Numerical Experiments. We present some numerical experi-

ments whereby the a posteriori bound (3.7) is used within a mesh-adaptive
algorithm. In all experiments we use a fixed fraction refinement strategy
with 25% refinement and 0% coarsening. After each step of the adaptive
strategy a green refinement is carried out to ensure no hanging nodes are
present in the resultant mesh.

Example 1. In this example, we consider a problem with rough solu-
tion, constant advection field, whereby the elements in the mesh have each
a characteristic face. In particular, we consider the Cauchy problem (2.1),
(2.2) in Ω = [0, 1]2, b = (1, 1)T and c = 1. In this case the boundary
condition g and right-hand side f are chosen so that the exact solution is
u = tanh(100(x+ y − 0.5)) which has an internal layer centred on the line
y = −x + 0.5. Experiments begin on an initial uniform grid comprising
128 right angled triangles with positive slope so that every element (except
those formed by a green refinement) has an edge which is characteristic
(Figs. 1 and 2; Table 1).
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Fig. 1. Example 1. (a) Solution, (b) mesh after seven refinement steps
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Table 1

Example 1. Error convergence and effectivities

DOF |‖u− uh‖| Error indicator Effectivity
384 1.2996 20.795 16.00
783 4.5209E−1 13.158 29.11
1,413 3.6374E−1 8.8324 24.28
2,778 2.6582E−1 4.3646 16.42
6,093 1.3230E−1 1.2117 9.16
13,035 5.1778E−2 0.3.4670E−1 6.70
25,578 3.7128E−2 1.6754E−1 4.51
46,116 1.8479E−2 8.3647E−2 4.53
88,827 1.4568E−2 4.4617E−2 3.06
155,433 6.6246E−3 2.4235E−2 3.66
279,162 5.8329E−3 1.4263E−2 2.45
500,859 2.6474E−3 8.0287E−3 3.03

Example 2. We consider the same problem as in Example 1, except
b = (−1, 1)T , but again g and f are chosen so that the exact solution is
u = tanh(100(x+y−0.5)). The same initial mesh is used from Example 1,
so that no elements have edges which are characteristic (Figs. 3 and 4;
Table 2).

Example 3. In our final example, we let r = (x2 + y2)1/2, θ =
tan−1(y/x) and consider the Cauchy problem (2.1), (2.2) in Ω = [0, 1]2, b =
(−r sin(θ),
r cos(θ))T and c = er. g and f are chosen so that the exact solution
is given by tanh(200(r − 0.75)) (Figs. 5 and 6; Table 3).

Fig. 3. Example 2. (a) Solution, (b) mesh after six refinement steps
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Fig. 4. Example 2. Error convergence

Table 2

Example 2. Error convergence and effectivities

DOF |‖u− uh‖| Error indicator Effectivity
384 3.6771E−1 3.9094E−1 1.06
864 2.7572E−1 2.9408E−1 1.07
2,019 1.9688E−1 2.1425E−1 1.09
4,785 1.3058E−1 1.4728E−1 1.13
10,923 7.7532E−2 9.2398E−2 1.19
28,797 3.9397E−2 5.0271E−2 1.28
75,450 1.6817E−2 2.2800E−2 1.36
191,673 6.3610E−3 8.8995E−3 1.40
491,598 2.5283E−3 3.5585E−3 1.41
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VIRTUAL ELEMENT AND DISCONTINUOUS GALERKIN
METHODS

F. BREZZI∗ AND L. D. MARINI†

Abstract. Virtual element methods (VEM) are the latest evolution of the Mimetic
Finite Difference Method and can be considered to be more close to the Finite Ele-
ment approach. They combine the ductility of mimetic finite differences for dealing
with rather weird element geometries with the simplicity of implementation of Finite
Elements. Moreover, they make it possible to construct quite easily high-order and
high-regularity approximations (and in this respect they represent a significant improve-
ment with respect to both FE and MFD methods). In the present paper we show that,
on the other hand, they can also be used to construct DG-type approximations, although
numerical tests should be done to compare the behavior of DG-VEM versus DG-FEM.

Key words. Discontinuous Galerkin, Virtual elements, Mimetic finite differences

AMS(MOS) subject classifications. 65N30, 65N12, 65G99, 76R99

1. Introduction. The aim of this paper is to present a possible way to
introduce the virtual element method (VEM) in the discontinuous Galerkin
(DG) framework. From several points of view VEM can be considered as
the natural extension of Finite Element Methods to more general geome-
tries and continuity requirements. Apparently, their extension to the Dis-
continuous Galerkin world could be seen as useless, as DG methods can
already deal with rather general geometries. However, in a certain number
of their applications there is some need of a conforming interpolant that
for general geometries or for higher order continuity (as for plate problems,
among others) will not be easily available within the usual DG framework.
Here, however, to start with, we will deal with the simplest possible case,
that is the discretization of the Poisson problem in two dimensions. The
idea is to start understanding what are the most convenient ways to deal
with Discontinuous Virtual Elements. We shall see that a direct application
of the DG technology cannot be done, but some simple variants are avail-
able that still ensure uniqueness, stability, and convergence with optimal
error bounds.

As a first step we will recall the basic concepts of VEM. This will be
done with some details, taking into account that the introduction of VEM is
quite recent, and we cannot expect many readers to be familiar with them.
In the next section we will present the basic assumptions (on the element
geometry, on the discrete spaces) and recall an abstract convergence result.
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Then we will recall the general way to construct the discrete bilinear form,
in Sect. 3, and the discrete right-hand side, in Sect. 4. In Sect. 5 we will
recall the classical instruments and concepts of DG formulations (in a much
less detailed way, this time). The novelty of the paper will appear in
Sect. 6, where VEM will be adapted to DG formulations, and in Sect. 7
where optimal error bounds will be proved.

Throughout the paper, we will follow the usual notation for Sobolev
spaces and norms (see, e.g., [6]). In particular, for an open bounded do-
main D, we will use | · |s,D and ‖ · ‖s,D to denote seminorm and norm,
respectively, in the Sobolev space Hs(D), while (·, ·)0,D will denote the
L2(D) inner product. Often the subscript will be omitted when D is the
computational domain Ω. For a nonnegative integer k, the space of poly-
nomials of degree less than or equal to k will be denoted by Pk. Following
a common convention, we will also use P−1 := {0}.

Finally, C will be a generic constant independent of the decomposition
that could change from an occurrence to the other.

2. Basic Assumptions and an Abstract Convergence Result.
We first recall the general idea of continuous VEM, underlying the simi-
larities with classical Finite Element Methods (we refer to [3] for a more
detailed presentation).

For this we consider, as usual, the simplest possible problem: find
u ∈ V ≡ H1

0 (Ω) such that −Δu = f . Written in variational form, the
problem becomes

find u ∈ V ≡ H1
0 (Ω) such that a(u, v) = (f, v) ∀v ∈ V, (2.1)

where (as usual):

a(u, v) :=

∫
Ω

∇u · ∇v dx, (f, v) =

∫
Ω

f v dx. (2.2)

Let Th be a decomposition of Ω into polygons of almost arbitrary shape
(see, as an example, Fig. 1). On Th we make the following assumptions

H1 There exists an integer N and a positive real number ζ such that for
every h and for every K ∈ Th:

• The number of edges of K is ≤ N ,
• The ratio between the shortest edge and the diameter hK of K is
bigger than ζ, and
• K is star-shaped with respect to every point of a ball of radius
ζhK .

Remark 2.1. We point out that from assumption H1 we can easily
deduce that there exists an s∗ > 3/2, depending on ζ, such that for every
smooth g on ∂K and for every smooth f in K the solution ϕ of the problem
Δϕ = f in K with ϕ = g on ∂K belongs to Hs∗(K).

Next, we fix an integer k ≥ 1 (that will be our order of accuracy) and
define for each K ∈ Th
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Fig. 1. Example of a Voronoi tessellation

V K
k := {v : v|e ∈ Pk(e) ∀ edge e of K,Δv ∈ Pk−2(K)}, (2.3)

where we recall that Pk denotes the space of polynomials of degree ≤ k,
and P−1 := {0}.

Denoting by NV the number of vertices of K (obviously equal, as well,
to the number of edges), the dimension of V K

k will clearly be

NK := NV +NV ∗ (k − 1) +
k(k − 1)

2
= NV ∗ k + k(k − 1)

2

An element v of V K
k can be identified by

(a) The values of v at the vertices;

(b) The moments

∫
e

v pk−2 ds on each edge e, k ≥ 2;

(c) The moments

∫
K

v pk−2 dx, k ≥ 2.

Theorem 2.1. For every k ≥ 1 the set of degrees of freedom (a)–(c)
are unisolvent for the space V K

k .
Proof. The number of degrees of freedom (a)–(c) equals the dimension

of V K
k . Hence we have only to check that every v ∈ V K

k having the d.o.f.’s
equal to zero is identically zero. For this we first observe that if the degrees
of freedom (a) and (b) are equal to zero, then v = 0 on ∂K. Remember
that v, being in V K

k , has Δv in Pk−2. Hence, if the d.o.f. (c) are equal to
0, we have
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Fig. 2. Example of d.o.f. for k = 1 (left), and k = 2 (right)

0 =

∫
K

(−Δv)v dx = |v|21,K

implying that v ≡ 0.
For later use, it will be, however, more convenient to define the degrees

of freedom in a more precise way. For this, for a geometric object O ⊂
R

d (as an edge, a face, a d-dimensional domain, etc.) we define first its
barycenter xO and its diameter dO. Then we consider, for every integer
r ≥ 0, the setMr(O) of all monomials, in R

d, of the type

Mr(O) :=
{ (x − xO)

α

d
|α|
O

}
for |α| ≤ r, (2.4)

where for the multi-integer α ∈ N
d we followed the usual notation

(x1, . . . , xd)
α ≡ xα1

1 · x
α2

2 · · · x
αd

d and |α| =
d∑

i=1

αi.

Now we can make precise the actual degrees of freedom that we want to
use in V K

k :

• The values of v at the vertices;

and for k ≥ 2

• The moments

∫
e

vmk−2 ds/|e|, mk−2 ∈Mk−2(e), on each edge e,

• The moments

∫
K

vmk−2 dx/|K|, mk−2 ∈ Mk−2(K).

Figure 2 shows an example of d.o.f for the cases k = 1 and k = 2.

For each h and for each k we then define the VEM space as

Vh := {v ∈ V : v|K ∈ V K
k ∀K ∈ Th}. (2.5)

Following [3], we need now to define an element fh ∈ V ′
h, and a bilinear

form ah(·, ·) from Vh × Vh to R satisfying the following assumptions:
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H2 • k-consistency: for all h, and for all K in Th

∀p ∈ Pk, ∀vh ∈ Vh aKh (p, vh) = aK(p, vh). (2.6)

• Stability: ∃ twopositive constants α∗ and α∗, independent of h and
of K, such that

∀vh ∈ Vh α∗ a
K(vh, vh) ≤ aKh (vh, vh) ≤ α∗ aK(vh, vh). (2.7)

In (2.6) and (2.7) aK(·, ·) denotes the restriction of the bilinear form
a(·, ·) defined in (2.2) to the element K. We point out that, due to the
symmetry of a(·, ·), (2.7) implies as well continuity:

aKh (vh, wh) ≤
(
aKh (vh, vh)

)1/2(
aKh (wh, wh)

)1/2

≤ α∗ (aK(vh, vh))
1/2(aK(wh, wh))

1/2 ≤ α∗ |vh|1,K |wh|1,K .
(2.8)

Then, the approximate problem is, as usual,

find uh ∈ Vh such that ah(uh, vh) = 〈fh, vh〉 ∀vh ∈ Vh. (2.9)

The following convergence result is proved in [3].
Theorem 2.2. Under Assumptions H2, the discrete problem (2.9) has

a unique solution uh. Moreover, for every approximation uI of u in Vh,
and for every approximation uπ of u that is piecewise in Pk, we have

‖u− uh‖V ≤ C
(
‖u− uI‖V + ‖u− uπ‖h,V + ‖f − fh‖V ′

h

)
,

where C is a constant independent of h and

‖f − fh‖V ′
h
:= sup

vh∈Vh

〈f − fh, vh〉
‖vh‖V

.

3. Construction of the Bilinear Form ah(uh, vh). First of all, we
observe that the local degrees of freedom allow us to compute exactly
aK(p, v) for any p ∈ Pk(K) and for any v ∈ V K

k . Indeed, observe first
that the value of each function v ∈ Vh at the boundary of each element is
known (it is a polynomial!), even when the value inside the element is not.
Then consider the following integration by parts

aK(p, v) =

∫
K

∇p · ∇vdx = −
∫
K

Δp vdx+

∫
∂K

∂p

∂n
vds, (3.1)

and observe that since Δp ∈ Pk−2(K) and ∂p/∂n ∈ Pk−1(e) for all e ⊂ ∂K,
the last two integrals can be computed exactly knowing only the degrees
of freedom associated with v (and without necessarily knowing v in the
interior of K).
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This allows us to define (and compute!) the (projection) operator
ΠK

k : V K
k −→ Pk(K) ⊂ V K

k as follows: for all v ∈ V K
k we define ΠK

k v as
the solution of⎧⎪⎨

⎪⎩
(∇ΠK

k v,∇q)0,K = (∇v,∇q)0,K ∀q ∈ Pk(K)∫
∂K

ΠK
k v ds =

∫
∂K

v ds.
(3.2)

We note that (3.2) clearly implies

ΠK
k q = q, ∀q ∈ Pk(K), (3.3)

since the first equation in (3.2) tells us that q and ΠK
k q have the same

gradient, and the second equation takes care of the constant part.
At this point, we observe that choosing aKh (u, v) = aK(ΠK

k u,Π
K
k v)

would easily ensure property (2.6). However this choice would not, in
general, satisfy (2.7). Therefore we need to add a term able to ensure
(2.7). Let then SK(u, v) be a symmetric positive definite bilinear form (to
be chosen) that verifies

c∗a
K(v, v) ≤ SK(v, v) ≤ c∗aK(v, v) ∀v ∈ V K

k with ΠK
k v = 0 (3.4)

for some positive constants c∗, c
∗ independent of K and hK . Then we set

aKh (u, v) = aK(ΠK
k u,Π

K
k v) + SK(u −ΠK

k u, v −ΠK
k v) ∀u, v ∈ V K

k . (3.5)

Theorem 3.1. The bilinear form (3.5) satisfies the consistency prop-
erty (2.6) and the stability property (2.7).

Proof. Property (2.6) follows immediately from (3.3) and (3.2): for
p ∈ Pk(K) (3.3) implies SK(p−ΠK

k p, v−ΠK
k v) = 0. Hence, for all v ∈ V K

k ,
using (3.5) and (3.2), we have

aKh (p, v) = aK(ΠK
k p,Π

K
k v) = aK(p, v). (3.6)

Then we observe first that, since aKh (v−ΠK
k v,Π

K
k v) ≡ 0 for all v, we easily

have

aKh (v, v) = aKh (ΠK
k v,Π

K
k v) + aKh (v −ΠK

k v, v −ΠK
k v) ∀v ∈ V K

k . (3.7)

Property (2.7) now follows from (3.4) and (3.7) with α∗ := max{1, c∗} and
α∗ := min{1, c∗}: indeed for all v ∈ V K

k

aKh (v, v) ≤ aK(ΠK
k v,Π

K
k v) + c∗aK(v −ΠK

k v, v −ΠK
k v)

≤ max{1, c∗}
(
aK(ΠK

k v,Π
K
k v) + aK(v −ΠK

k v, v −ΠK
k v)
)

= α∗aK(v, v),

and similarly

aKh (v, v) ≥ min{1, c∗}
(
aK(ΠK

k v,Π
K
k v) + aK(v −ΠK

k v, v −ΠK
k v)
)

= α∗a
K(v, v).
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3.1. Choice of SK . In general, the choice of the bilinear form SK

would depend on the problem and on the degrees of freedom. From (3.4) it
is clear that SK must scale like aK(·, ·) on the kernel of ΠK

k . Denoting by
χi, i = 1, . . . , NK the ith d.o.f. in V K

k , and choosing then the canonical
basis ϕ1, . . . , ϕNK as

χi(ϕj) = δij , i, j = 1, 2, . . . ,NK , (3.8)

the local stiffness matrix is given by

aKh (ϕi, ϕj) = aK(ΠK
k ϕi,Π

K
k ϕj) + SK(ϕi −ΠK

k ϕi, ϕj −ΠK
k ϕj). (3.9)

In the present case it is easy to check that, on a “reasonable” polygon (like
the ones that satisfy assumptions H1) we have aK(ϕi, ϕi) � 1. Hence, a
possible choice for SK is simply

SK(ϕi −ΠK
k ϕi, ϕj −ΠK

k ϕj) =

NK∑
r=1

χr(ϕi −ΠK
k ϕi)χr(ϕj −ΠK

k ϕj). (3.10)

Remark 3.1. This explains why, in defining the d.o.f. in V K
k , we

used, instead of the more usual Pk, the set Mk. With the latter choice all
the d.o.f. scale like 1, and this allows to choose SK as simple as in (3.10).

4. Construction of the Right-Hand Side. We consider first the
case k ≥ 2, and define fh on each element K as the L2(K)-projection of f
onto the space Pk−2, that is,

fh = PK
k−2f on each K ∈ Th.

Consequently, the associated right-hand side

〈fh, vh〉 =
∑

K∈Th

∫
K

fh vh dx ≡
∑

K∈Th

∫
K

(PK
k−2f) vh dx

=
∑

K∈Th

∫
K

f (PK
k−2vh) dx

can be exactly computed using the degrees of freedom for Vh that represent
the internal moments. Then, standard L2-orthogonality and approximation
estimates on star-shaped domains yield
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〈fh, vh〉 − (f, vh) =
∑

K∈Th

∫
K

(PK
k−2f − f) vh dx

=
∑

K∈Th

∫
K

(PK
k−2f − f)(vh − PK

0 vh) dx

≤ C
∑

K∈Th

hk−1
K |f |k−1,K hK |vh|1,K

≤ C hk
( ∑

K∈Th

|f |2k−1,K

)1/2
|vh|1,

(4.1)

and thus,

‖f − fh‖V ′ ≤ Chk
( ∑

K∈Th

|f |2k−1,K

)1/2
. (4.2)

For the case k = 1 we can first, on each element K, define vh as

vh :=
1

|∂K|

∫
∂K

vh ds

and then define

〈fh, vh〉 :=
∑

K∈Th

∫
K

f vh dx

to obtain

〈fh, vh〉 − (f, vh) =
∑

K∈Th

(f, vh − vh)0,K ≤ C h‖f‖0,Ω |vh|1,Ω.

5. Basic Concepts of DG Methods. The extension of what we
have presented in the previous sections to DG is almost straightforward.
The first difference is, obviously, in the definition of the space Vh, which is
now made of discontinuous functions. Let VDG be such a space:

VDG := {v ∈ L2(Ω) : v|K ∈ V K
k ∀K ∈ Th}, (5.1)

where the local spaces V K
k are still defined as in (2.3). We recall the

definition of jumps and averages for scalar and vector-valued functions
(v, τ , respectively) on an edge e common to two elements K1, K2 (see [2]):

{v} =v
1 + v2

2
, [[ v ]] = v1n1 + v2n2

{τ} =τ 1 + τ 2

2
, [[ τ ]] = τ 1 · n1 + τ 2 · n2,

where n1, n2 are the outward normal unit vectors to K1, K2. On a bound-
ary edge we only need [[ v ]] = vn and {τ} = τ .
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We also define, for every t ≥ 0, the space Ht(Th) :=
∏

K Ht(K) of
piecewise regular functions. We recall from Remark 2.1 that

VDG ⊂ Hs∗(Th) (5.2)

for some s∗ > 3/2 depending on the value of ζ. Then for v, w ∈ Hs∗(Th)
we set

(∇v,∇w)h =
∑
K

∫
K

∇v · ∇w dx, 〈{∇v}, [[w ]]〉 =
∑
e

∫
e

{∇v} · [[w ]] ds

〈[[ v ]], [[w ]]〉 =
∑
e

1

he

∫
e

[[ v ]] · [[w ]] ds, ‖[[ v ]]‖20,∂K =
∑

e⊂∂K

1

he

∫
e

|[[ v ]]|2 ds.

For v ∈ H2(Th) we define

‖v‖22,DG =
∑

K∈Th

(
‖∇v‖20,K + h2K |∇v|21,K

)
+ 〈[[ v ]], [[ v ]]〉. (5.3)

We remark that, for functions vh that are piecewise polynomials, by the
usual inverse inequality we have

‖vh‖22,DG � ‖vh‖21,DG :=
∑

K∈Th

‖∇vh‖20,K + 〈[[ vh ]], [[ vh ]]〉. (5.4)

We also set, for functions v, w ∈ H1(Th)

ã(v, w) :=
∑

K∈Th

aK(v, w) =
∑

K∈Th

∫
K

∇v · ∇w dx.

We observe that the solution u of (2.1) verifies [[∇u ]] = 0 so that,
integrating by parts on each element and recalling that f = −Δu, we have

ã(u, v)− 〈{∇u}, [[ v ]]〉 = (f, v) ∀v ∈ VDG. (5.5)

On the other hand, the solution u of (2.1) obviously verifies [[u ]] = 0
as well, so that adding terms that are identically zero for [[u ]] = 0 we also
have, for every v ∈ VDG and for every real numbers δ and γ:

ã(u, v)−〈{∇u}, [[ v ]]〉− δ〈{∇v}, [[u ]]〉+ γ〈[[u ]], [[ v ]]〉 = (f, v). (5.6)

In what follows (as usual for DG methods) we will actually consider
only the values δ = 1, δ = −1 and δ = 0, while γ will be assumed to be
positive and represents the usual penalty parameter.
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6. Discontinuous VEM. All this will help us in constructing the
discrete problem. To start with, for every K ∈ Th we consider again
the operator ΠK

k defined in (3.2), and assume that SK is a bilinear form
satisfying the stability property (3.4), that we recall here to avoid confusion
with the new notation:

c∗(∇v,∇v)0,K ≤ SK(v, v) ≤ c∗(∇v,∇v)0,K ∀v ∈ V K
k with ΠK

k v = 0.
(6.1)

We set, for v, w ∈ Hs∗(Th),

ãh(v, w) :=
∑

K∈Th

ãKh (v, w)

ãKh (v, w) =(∇ΠK
k v,∇ΠK

k w)0,K + SK(v −ΠK
k v, w −ΠK

k w).

(6.2)

Theorem 6.1. The bilinear form (6.2) satisfies the consistency prop-
erty (2.6) and the stability property (2.7).

Proof. The proof is exactly the same of Theorem 3.1 and gives (in the
new notation)

ãKh (p, v) = aK(p, v) ∀p ∈ Pk(K), ∀v ∈ (VDG)|K , (6.3)

α∗a
K(v, v) ≤ ãKh (v, v) ≤ α∗aK(v, v) ∀v ∈ (VDG)|K . (6.4)

Finally, for w, v ∈ H1(Th) we define the discrete bilinear form as

Bh(w, v) := ãh(w, v)−〈{∇Πkw}, [[ v ]]〉−δ〈{∇Πkv}, [[w ]]〉+γ〈[[w ]], [[ v ]]〉.
(6.5)

In (6.5) δ is, as already said, a parameter to include different DG-schemes.
Precisely, for δ = 1 we have the Virtual Element analogue of the SIPG
(see [1, 10]), for δ = −1 the analogue of the NIPG (see [8]), and for δ = 0
the analogue of the IIPG [7, 9]. On the other hand, as we already said, γ
is a stabilization parameter that will be assumed to be big enough, as usual
for DG methods. We also point out that, with an abuse of notation, in
(6.5) we denoted by Πk the operator which, on each element K, coincides
with ΠK

k .
Theorem 6.2. There exist positive constants Ms and C, independent

of h, such that:

Bh(v, v) ≥Ms‖v‖21,DG v ∈ VDG, (6.6)

ãh(v, w) + 〈[[ v ]], [[w ]]〉 ≤ C‖v‖1,DG‖w‖1,DG v, w ∈ VDG, (6.7)

〈{∇v}, [[w ]]〉 ≤ C‖v‖2,DG‖w‖1,DG v ∈ H2(Th), w ∈ H1(Th). (6.8)

Proof. Following the typical analysis of DG methods (see also [5] in
this book) we recall that, using the trace inequality

‖v‖20,∂K ≤ C
(
�−1‖v‖20,K + �|v|21,K

)
,
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(� being a characteristic length of K, for instance its diameter) we imme-
diately deduce (6.8). We also notice that, if v is a piecewise polynomial,
then (6.8) becomes

〈{∇v}, [[w ]]〉 ≤ C‖v‖1,DG‖w‖1,DG, v p.w. polynomial, w ∈ H1(Th), (6.9)

thanks to (5.4). Inequality (6.7) is an immediate consequence of (6.4).
Finally, from (6.4), (6.9) and Cauchy–Scharwz inequality we deduce (6.6)
for γ big enough.

We are now ready to define the discrete problem as follows.{
Find uh ∈ VDG such that

Bh(uh, vh) = 〈fh, vh〉 ∀vh ∈ VDG.
(6.10)

7. Convergence of DG-VEM. We have the following convergence
result.

Theorem 7.1. Under Assumptions H2, for γ big enough and for δ =
0, 1,−1 the discrete problem (6.10) has a unique solution uh. Moreover,
for every approximation uI of u in VDG and for every approximation uπ of
u that is piecewise in Pk, we have

‖u− uh‖1,DG ≤ C
(
‖u− uI‖1,DG + ‖u− uπ‖2,DG + ‖f − fh‖V ′

1,DG

)
, (7.1)

where C is a constant independent of h.
Proof. Stability (6.6) implies that problem (6.10) has a unique solution

uh ∈ VDG, and

‖uh‖1,DG ≤
‖f‖0
Ms

.

In order to prove (7.1), set ηh := uh−uI . From (6.6), and then using (6.10)
and (6.5), we have:

Ms ‖ηh‖21,DG ≤Bh(ηh, ηh) = Bh(uh, ηh)−Bh(uI , ηh)

=
(
〈fh, ηh〉 − ãh(uI , ηh) + 〈{∇ΠkuI}, [[ ηh ]]〉

)

+
(
δ〈{∇Πkηh}, [[uI ]]〉 − γ < [[uI ]], [[ ηh ]]

)
=: I + II.

(7.2)

Adding and subtracting uπ, and then using (6.3) we have:

I =〈fh, ηh〉 −
∑
K

(
ãKh (uI − uπ, ηh) + ãKh (uπ, ηh)

)

+ 〈{∇ΠK
k (uI − uπ)}, [[ ηh ]]〉+ 〈{∇ΠK

k uπ}, [[ ηh ]]〉

=〈fh, ηh〉 −
∑
K

(
ãKh (uI − uπ, ηh) + aK(uπ, ηh)

)

+ 〈{∇ΠK
k (uI − uπ)}, [[ ηh ]]〉+ 〈{∇ΠK

k uπ}, [[ ηh ]]〉.

(7.3)
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Then we add the term ã(u, ηh) − 〈{∇u}, [[ ηh ]]〉 − (f, ηh) that, thanks to
(5.5), is equal to zero, and in the last term we remember that, thanks to
(3.3), ΠK

k uπ = uπ. We obtain

I =〈fh, ηh〉 −
∑
K

(
ãKh (uI − uπ, ηh) + aK(uπ, ηh)

)

+ ã(u, ηh)− 〈{∇u}, [[ ηh ]]〉 − (f, ηh)

+ 〈{∇ΠK
k (uI − uπ)}, [[ ηh ]]〉 + 〈{∇uπ}[[ ηh ]]〉,

(7.4)

that rearranging terms we write as

I =〈fh, ηh〉 − (f, ηh)−
∑
K

(
ãKh (uI − uπ, ηh) + aK(uπ − u, ηh)

)

+ 〈{∇ΠK
k (uI − uπ)}, [[ ηh ]]〉+ 〈{∇(uπ − u)}, [[ ηh ]]〉.

(7.5)

Using (6.9) and (6.8) in (7.5) we have then

|I| ≤ C
(
‖f − fh‖V ′

1,DG
+ ‖uI − uπ‖1,DG + ‖uπ − u‖2,DG

)
‖ηh‖1,DG. (7.6)

On the other hand, recalling first that [[u ]] = 0, and then using (5.4) we
have

|II| =
∣∣∣δ〈{∇Πkηh}, [[uI − u ]]〉 − γ < [[uI − u ]], [[ ηh ]]

∣∣∣
≤ C ‖u− uI‖1,DG‖ηh‖1,DG.

(7.7)

Using (7.6) and (7.7) in (7.2) we have then

‖ηh‖1,DG ≤ C
(
‖f − fh‖V ′

1,DG
+ ‖u− uI‖1,DG + ‖uπ − u‖2,DG

)
, (7.8)

and estimate (7.1) follows by triangle inequality.
According to the classical Scott–Dupont theory (see, e.g., [4]) we have

the following result.
Proposition 7.1. Assume that Assumption H1 is satisfied. Then

there exists a constant C, depending only on k and ζ, such that for every
w ∈ Hk+1(K) there exist a wπ ∈ Pk(K), and a wI ∈ V K

k such that

|w − wπ |r,K ≤ C hk+1−r
K |w|k+1,K 0 ≤ r ≤ k + 1,

|w − wI |r,K ≤ C hk+1−r
K |w|k+1,K r = 0, 1.

(7.9)

This, together with (4.2), inserted in (7.1) gives the optimal estimate

‖u− uh‖1,DG ≤ C hk|u|k+1,Ω.
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A DG APPROACH TO HIGHER ORDER ALE
FORMULATIONS IN TIME

ANDREA BONITO∗, IRENE KYZA† , AND RICARDO H. NOCHETTO‡

Abstract. We review recent results (Bonito et al., SIAM J. Numer. Anal., to
appear; Bonito et al., Numer. Math., to appear; Bonito et al., in preparation) on time-
discrete discontinuous Galerkin (dG) methods for advection-diffusion model problems
defined on deformable domains and written on the arbitrary Lagrangian Eulerian (ALE)
framework. ALE formulations deal with PDEs on deformable domains upon extending
the domain velocity from the boundary into the bulk with the purpose of keeping mesh
regularity. We describe the construction of higher order in time numerical schemes
enjoying stability properties independent of the arbitrary extension chosen. Our ap-
proach is based on the validity of Reynolds’ identity for dG methods which generalize
to higher order schemes the geometric conservation law (GCL) condition. Stability, a
priori and a posteriori error analyses are briefly discussed and illustrated by insightful
numerical experiments.

Key words. ALE formulations, Moving domains, Domain velocity, Material deriva-
tive, Discrete Reynolds’ identities, dG-methods in time, Stability, Geometric conserva-
tion law

AMS(MOS) subject classifications. 65M12, 65M15, 65M50, 65M60.

1. Introduction. Problems governed by partial differential equations
(PDEs) on deformable domains Ωt ⊂ R

d, which change in time 0 ≤ t ≤
T < ∞, are of fundamental importance in science and engineering, espe-
cially for space dimensions d ≥ 2. A typical example is fluid structure
interaction problems. They are of particular relevance in the design of
many engineering systems, (e.g., aircrafts and bridges) as well as to the
analysis of several biological phenomena (e.g., blood flow in arteries).

However, the mathematical understanding of such methods is still pre-
carious even when the deformation of the boundary ∂Ωt of Ωt is prescribed
a priori and thus known, instead of more realistic free boundary problems.
One obstacle encountered when dealing numerically with such problems
is the possibility of excessive mesh distortion. The arbitrary Lagrangian
Eulerian (ALE) approach, introduced in [16, 26, 27], is a way to overcome
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this difficulty. Its main idea is that the mesh boundary is deformed accord-
ing to the prescribed boundary velocity w, but an arbitrary, yet adequate
extension is used to perform the bulk deformation. The extension of w
from ∂Ωt to Ωt can be performed using various techniques such as solving
for a suitable boundary value problem with Dirichlet boundary condition
w; see [19, 22, 32, 35] and the references therein. This extension induces a
map At : Ω0 → Ωt, the so-called ALE map, with the key property that

w(x, t) =
d

dt
At(y), x = At(y).

The ALE velocity w is unrelated to the advection coefficient b inherent to
the underlying system and is mostly dictated by the geometric principle
of preserving mesh regularity. In contrast, the pure Lagrangian approach
consists of mesh deformation velocities given by w = b, whereas w = 0
corresponds to the pure Eulerian approach. In the latter case, Ωt = Ω0 for
all t ∈ [0, T ], and thus the domain does not change in time. Hence, the ALE
is a generalization of both the Lagrangian and the Eulerian approaches.

This paper is a review of our recent results [8–10] on the design, sta-
bility, and error control of higher order in time ALE formulations for a
linear advection-diffusion model problem defined on time-dependent do-
mains based on the discontinuous Galerkin (dG) approach. In particular,
we discuss higher order in time, unconditionally stable numerical meth-
ods within the ALE framework, which seems to be lacking in the current
literature. In the current paper, we intend to:
• Introduce the major difficulties caused by ALE formulations on de-
formable domains.
• Emphasize the key ideas leading to unconditionally stable higher order
in time ALE formulations and point out the importance of such schemes
for efficient error control.
• Compare our results with the existing literature and highlight the novel
aspects of our analysis.
As already pointed out by other authors (see, e.g., [5, 20–22, 31]),

time-discretization is the main obstruction for the design of uncondition-
ally stable higher order ALE-schemes. This is why we examine in [8–10],
and review here, the critical issue of time-discrete schemes without space
discretization. This prevents additional technicalities in dealing with new
tools developed to handle the domain motion. In addition, it guarantees
that no unnecessary CFL type restrictions are required by our techniques.

However, we note that understanding the effect of the finite element
discretization in space is an important problem. Extending our analysis
to fully discrete schemes is not straightforward, yet plausible as the re-
quired regularity on the ALE map in space in our time-discrete approach
is compatible with a C0 finite element framework.

1.1. The ALE Formulation. As in [5, 7, 20–22, 31], we consider
the following time-dependent diffusion-advection model problem defined
on moving domains:
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⎧⎪⎨
⎪⎩
∂tu+∇x · (bu)− μΔxu = f x ∈ Ωt, t ∈ [0, T ]

u(x, t) = 0 x ∈ ∂Ωt, t ∈ [0, T ]

u(x, 0) = u0(x) x ∈ Ω0,

(1.1)

where μ > 0 is a constant diffusion parameter, b is a (divergence-free)
convective velocity, f is a forcing term, and u0 is the initial condition.

In order to rewrite (1.1) in the ALE framework, we consider for t = 0,
Ω0 as the reference domain assumed to have Lipschitz boundary ∂Ω0, and
let Ωt ⊂ R

d be the corresponding moving domain at time t ∈ (0, T ]. Let
{At}t∈[0,T ] be a family of maps with A0 = Id the identity map, such that
Ωt = At(Ω0), t ∈ [0, T ]. In other words, for t ∈ [0, T ], each y from the
reference domain Ω0 is mapped through At to the corresponding x ∈ Ωt,
i.e., the map At is given by:

At : Ω0 ⊆ R
d → Ωt ⊆ R

d, x(y, t) = At(y).

We frequently regard At as a space-time function A(y, t) := At(y), and we
refer to y ∈ Ω0 as the ALE coordinate and x = x(y, t) as the spatial or
Eulerian coordinate. Hereafter, we say that {At}t∈[0,T ] is a family of ALE
maps if the following two conditions are satisfied [10]:
• Regularity: A(·, ·) ∈W1

∞
(
(0, T );W1

∞(Ω0)
)
;

• Injectivity: there exists a constant λ > 0 such that for all t ∈ [0, T ],

‖At(y1)−At(y2)‖ ≥ λ‖y1 − y2‖, ∀y1, y2 ∈ Ω0, (1.2)

for some norm ‖ · ‖ in R
d. The regularity assumption implies that At is

Lipschitz continuous, whereas the combination with injectivity assumption
gives that At : Ω0 → Ωt is invertible with Lipschitz inverse, i.e., At is
bi-Lipschitz and thus a homeomorphism. This implies that v := v̂ ◦ A−1

t ∈
H1

0 (Ωt) if and only if v̂ ∈ H1
0 (Ω0), [21, Proposition 1].

Using these notations, problem (1.1) is defined in the space-time do-
main:

QT :=
{
(x, t) ∈ R

d × R : t ∈ [0, T ], x = At(y), y ∈ Ω0

}
.

The ALE velocity ŵ : Ω0 × [0, T ]→ R
d in the ALE frame is given by

ŵ(y, t) := ∂tx(y, t),

and we indicate by w : QT → R
d the corresponding function on the Eule-

rian frame. We use ∂t to denote the usual weak partial derivative in time
holding the space variable x constant. Given a function g : QT → R, we de-
note by Dtg the ALE time-derivative, namely the time-derivative keeping
the ALE coordinate y fixed:

(Dtg)(x, t) := (∂tg)(At(y), t).

The derivation of the ALE formulation of (1.1) is based on the next lemma,
proved in [10].



226 Andrea Bonito, Irene Kyza, and Ricardo H. Nochetto

Lemma 1.1 (Leibnitz formula in W 1
1 (QT )). Let g ∈ W 1

1 (QT ) and
{At}t∈[0,T ] be a family of ALE maps. Then, Dtg ∈ L1(QT ) and

Dtg = ∂tg +w · ∇xg. (1.3)

Leibnitz formula (1.3) relates the usual time-derivative to the correspond-
ing ALE time-derivative through the ALE velocity w and it is a justifica-
tion of the chain rule for weak ALE time-derivatives. Using (1.3), (1.1) is
equivalently written in the ALE framework as follows:

⎧⎪⎨
⎪⎩
Dtu+ (b−w) · ∇xu− μΔxu = f in QT ,

u = 0 on ∂QT ,

u(·, 0) = u0 in Ω0.

(1.4)

Before setting problem (1.4) in its variational form, we introduce some
further notation. For any domain D of Rm, m = d or d + 1, we denote
by W �

r (D) the standard Sobolev spaces with integrability 1 ≤ r ≤ ∞ and
differentiability 0 ≤ � < ∞. We use the notation Lr(D) when � = 0
and H�(D) when r = 2 and � ≥ 1. With H1

0 (D) we denote the subspace
of H1(D) consisting of functions with vanishing trace and equipped with
the norm ‖∇xυ‖L2(D); we denote its dual by H−1(D). We indicate with
〈·, ·〉D both the H1

0 −H−1 duality pairing and the L2-inner product in D,
depending on the context. Spaces of vector-valued functions are written
in boldface. For Y = W �

r , � ≥ 0, 1 ≤ r ≤ ∞, H1
0 , or H

−1, we define the
spaces

L2(Y ;QT ) :=
{
v : QT → R :

∫ T

0

‖v(t)‖2Y (Ωt)
dt <∞

}
.

We define accordingly the spaces C(Y ;QT ) of continuous functions with
values in Y , and set

L∞(div;QT ) := {c : QT → R
d :

ess supt∈(0,T )

(
‖c(t)‖L∞(Ωt) + ‖∇x · c(t)‖L∞(Ωt)

)
<∞}.

To simplify the notation we omit writing the dependency in QT when there
is no confusion.

A non-conservative weak ALE formulation for problem (1.4) reads as
follows: seek u ∈ L2(H1

0 ; QT ) ∩ H1(L2;QT ) satisfying u(·, 0) = u0 and
such that for all υ ∈ L2(H1

0 ) and τ, t ∈ [0, T ] with τ < t,

∫ t

τ

〈Dtu, υ〉Ωs ds+

∫ t

τ

〈(b −w) · ∇xu, υ〉Ωs ds

+

∫ t

τ

〈(∇x · b)u, υ〉Ωs ds+ μ

∫ t

τ

〈∇xu,∇xυ〉Ωs ds =

∫ t

τ

〈f, υ〉Ωs ds.

(1.5)
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It is known that (1.5) admits a unique solution, provided that u0 ∈ H1
0 (Ω0),

f ∈ L2(QT ) and b ∈ L∞(div;QT ), [10]. This regularity on the data of the
problem guarantees that u ∈ H1(QT ) ⊂ C(L2;QT ), which implies the
further regularity Δxu, Dtu ∈ L2(QT ); cf. [10].

A conservative weak formulation for (1.4) can be obtained using
Reynolds’ identities, which can be regarded as weak versions of Reynolds’
Transport Theorem [10].

Lemma 1.2 (Reynolds’ identities). Let {At}t∈[0,T ] be a family of ALE
maps. For any υ ∈ W 1

1 (QT ) there holds

d

dt

∫
Ωt

υ dx =

∫
Ωt

(Dtυ + υ∇x ·w) dx. (1.6)

In particular, for w, υ ∈ H1(QT ) we have

d

dt

∫
Ωt

υw dx =

∫
Ωt

w(Dtυ + υ∇x ·w) dx +

∫
Ωt

υDtw dx. (1.7)

As we shall see in the sequel, and is thoroughly discussed in [9, 10],
Reynolds’ identities (1.6), (1.7) play a significant role in the stability and
error analysis of dG schemes for (1.4).

Inserting (1.7) into (1.5) gives the conservative weak formulation for
problem (1.1):

〈u(t), υ(t)〉Ωt +

∫ t

τ

〈∇x ·
[
(b−w)u

]
, υ〉Ωs ds+ μ

∫ t

τ

〈∇xu,∇xυ〉Ωs ds

−
∫ t

τ

〈u,Dtυ〉Ωs ds = 〈u(τ), υ(τ)〉Ωτ +

∫ t

τ

〈f, υ〉Ωs ds, ∀υ ∈ H1
0 (QT ).

(1.8)
It is clear that non-conservative and conservative weak formulations (1.5)
and (1.8) are equivalent at the continuous level. Moreover, setting υ = u
in either (1.5) or (1.8), it is possible to prove the following stability result
for the PDE (1.1) [10, 21]:

‖u(t)‖2L2(Ωt)
+ μ

∫ t

τ

‖∇xu(s)‖2L2(Ωs)
ds

≤ ‖u(τ)‖2L2(Ωτ )
+

1

μ

∫ t

τ

‖f(s)‖2H−1(Ωs)
ds,

(1.9)

for 0 ≤ τ ≤ t ≤ T . Note that in particular, estimate (1.9) does not involve
any constants depending on the particular choice of the ALE map At and
exhibits monotone behavior of the norm ‖u(t)‖L2(Ωt) provided f ≡ 0. This
is expected, as the original problem (1.1) is independent of the family of
the ALE maps. However, this property is not guaranteed anymore after
time discretization. In fact, at the discrete level, the arbitrary extension
of the ALE map, not only may influence and pollute the stability of the



228 Andrea Bonito, Irene Kyza, and Ricardo H. Nochetto

corresponding discrete scheme, but it may also lead to schemes where con-
servative and non-conservative formulations are no longer equivalent. We
discuss this further in the sequel.

We say that a numerical method for problem (1.4) is ALE-free stable
with respect to the energy norm if it reproduces (1.9); otherwise, if (1.9)
is valid with a constant multiplying the right-hand side that depends on
At, we say that the method is ALE stable. In both cases, we say that the
method is stable. ALE-free stable schemes are most desirable for problem
(1.4) because they enjoy the same stability properties as the continuous
problem.

1.2. Existing Literature. Second order ALE methods for advection-
dominated diffusion problems on moving domains are discussed in the lit-
erature for finite difference and finite volume schemes [14, 17–19]. A nu-
merical scheme is said to satisfy the GCL if it is able to reproduce exactly
a constant solution. GCL was introduced in [17, 24, 36] for finite volume
schemes as a minimum criterion for unconditional stability. However, the
GCL is not a necessary condition for numerical schemes to be ALE-free sta-
ble. For example, Geuzaine et al. [23] propose second order finite volume
ALE schemes which enjoy the same stability properties as the continuous
problem without satisfying the GCL.

On the other hand, the only provable ALE-free stable scheme for (1.4)
based on finite element (FE) discretization in space, and without time-step
constraints (unconditional stability), is the backward Euler method [7, 20–
22, 31]. In particular, Formaggia and Nobile [21] consider a conservative
backward Euler FE scheme for (1.4) which satisfies the GCL and prove that
this scheme is ALE-free stable. Moreover, they study a non-conservative
backward Euler FE scheme for (1.4) that fails to satisfy the GCL [21].
This method is not equivalent to the corresponding conservative scheme
and it turns out that its stability estimate requires a time-step restriction
depending on the ALE map. In addition, the derivation of the stability
estimate relies on a Gronwall-type argument which entails constants de-
pending exponentially on the L∞-norm of the domain velocity w. This
does not reflect the stability properties of the continuous problem (1.4).
A priori error analysis for the backward Euler FE methods is provided by
Gastaldi [22], Boffi and Gastaldi [7], Nobile [31], and Badia and Codina [5].

Besides first order schemes, there are also second order FE schemes
based on the Crank–Nicolson method and the backward differentiation for-
mula (BDF) method of second order; see Formaggia and Nobile [20], Boffi
and Gastaldi [7], and Badia and Codina [5]. One consequence of these stud-
ies is that the GCL condition is not sufficient to guarantee an ALE-free
stable scheme, and similar stability issues as for the non-conservative back-
ward Euler FE scheme are observed. In fact, numerical simulations show
that the monotonicity of ‖u(t)‖L2(Ωt) does not hold at the discrete level
[20]. At a theoretical level, this effect appears when the ALE velocity w is
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treated as an extra advection for the method. Hence, the stability bound
requires a Gronwall-type argument which yields time-step constraints and
stability constants depending on the ALE map. This is despite the fact
that (1.9) is insensitive to w.

The generalization of the GCL condition proposed in our recent work
[9, 10] is a sufficient condition to guarantee ALE-free stable schemes (in-
dependent of the accuracy of the method). In fact, we propose a class of
ALE-free schemes of any desired accuracy based on dG methods in time.
These seem to be the first schemes having this property.

At this point, we also mention the work by Mackenzie and Mekwi [29],
who propose an adaptive θ-method time integrator and prove it is ALE-free
stable. However, the statement about asymptotic second order accuracy
hinges on heuristics. This method chooses the parameter θ in each time-
step, depending on the domain velocity w, so as to satisfy the GCL.

Moreover, it is worth mentioning that this discussion is about a priori
error analysis. We are unaware of any a posteriori error estimates for ALE
methods.

1.3. A dG Approach. As already alluded to in the previous sub-
section, the existing FE methods and their analysis share the following
common features (1.4):
• All weak formulations have test functions with vanishing material deriva-
tive, which seems not adequate when the space and time are tangled
together.
• All time discretizations are defined pointwise, which makes it difficult, if
not impossible, to reproduce at the discrete level the subtle cancellations
leading to the stability estimate (1.9).
• For second order schemes, the discrete stability is obtained via a discrete
Gronwall-type argument, which does not reflect the stability properties
of the continuous problem.
• Despite the fact that the role of the GCL for stability and accuracy is
not clear, for FE schemes the GCL is closely related to quadrature in
time; in fact, for test functions with vanishing material derivative, the
GCL is equivalent to a discrete version of Reynolds’ identity (1.7).
In view of these observations, we realize that the main obstruction in

the design of ALE-free stable schemes is the discretization in time. Hence,
we consider in [8–10] time-discrete schemes based on dG methods of any
order. The reasons for this specific choice are:
• The backward Euler method, the only known ALE-free stable method,
is a dG method.
• dG methods couple time and space in a natural variational way and allow
for test functions with nonvanishing material derivative. As we shall see
in the sequel, the variational structure of the methods suggests a class
of ALE-free stable schemes of any order in time [10].



230 Andrea Bonito, Irene Kyza, and Ricardo H. Nochetto

• dG methods are suitable for time and space adaptivity. In this context,
adaptivity is an essential tool for capturing disparate space and time
scales efficiently and to cope with the nonlinear interaction between the
approximation of the moving domain and the approximation of the so-
lution to (1.1) (defined on the approximate domain).

In [10], we propose dG methods of any order for problems defined
on time-dependent domains and the ALE framework, and we study their
stability properties. We also derive practical algorithms by enforcing ap-
propriate quadrature in time. The first family of these algorithms are
the so-called Reynolds’ methods and correspond to quadratures that keep
valid the Reynolds’ identity at the discrete level. It can be shown that, for
piecewise polynomial in time ALE maps, Reynolds’ methods are ALE-free
stable and lead to optimal order error bounds (both a priori and a poste-
riori), without any time-step restrictions. The second family of methods is
the well-known Runge–Kutta–Radau (RKR) methods that result from dG
methods of order q + 1 by approximating integrals in time by the Radau
quadrature with q+1 nodes. These methods are also ALE-free stable, but
subject to an ALE-time-step constraint (conditional stability). We per-
form an a priori error analysis for these methods in [9] and an a posteriori
error analysis in [8]. Our work extends the analysis of dG methods of any
order for non-moving domains [37, Chap. 12] to time-dependent domains
within the ALE framework. We also refer to [25] for the implementation of
first-order dG methods in the context of fluid–structure interactions. dG
methods have been considered earlier by Chrysafinos and Walkington in
[15] within a pure Lagrangian approach for advection-dominated diffusion
problems but with a purpose distinct from ours. More precisely, in our ap-
proach, the ALE velocity w does not play the role of an advective velocity,
while in the approach of Chrysafinos and Walkington, the ALE velocity
w is designed to compensate for large advections b, and thus is chosen to
satisfy w ≈ b. For more details on a comparison between [15] and our
work, we refer to [10].

In this paper we review the results of [8–10] about stability and error
analysis of dG methods for ALE formulations. The main contributions of
[10] regarding stability are as follows:

• Propositions of dG methods of any order in time with exact integration
for problems defined on time-dependent domains and the ALE frame-
work. These methods lead to ALE-free stability at the nodes t = tn
(nodal stability) and ALE stability for all t ∈ [0, T ] (global stability),
both without time-step constraints (unconditional stability).
• Generalization of GCL to higher order in time ALE schemes. The vari-
ational structure of the dG methods allow us to impose appropriate
quadrature in time that lead to a discrete Reynolds’ identity for piece-
wise polynomial ALE maps in time. The chosen quadrature leads to the
practical Reynolds’ methods for which we show ALE-free nodal stability
and ALE global stability, both without time-step constraints.
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• Stability study of dG methods with Radau quadrature, which is the
natural quadrature for problems defined on time-independent domains.
For these methods, we prove ALE-free nodal stability and ALE global
stability, both with an ALE time-constraint, but for any ALE map with
piecewise W 2

∞ regularity in time and global W 1
∞ in space ALE maps.

The main contributions of [8, 9] related to error control are the
following:

• Introduction of a novel ALE projection and study of its properties. The
ALE projection extends the usual dG projection to time-dependent do-
mains and the ALE framework. It is one of the main ingredients in the
a priori error analysis.
• Introduction of a novel dG reconstruction in the ALE framework and
study of its properties. This reconstruction is a generalization of the dG
reconstruction in [30], proposed by Makridakis and Nochetto for time-
independent domains. It is one of the main ingredients leading to optimal
order a posteriori error bounds.
• Proof of optimal order a priori error estimates for dG of any degree with
exact integration and Reynolds’ quadrature, the latter provided that the
ALE map is a continuous piecewise polynomial in time. These estimates
are valid without time-step restrictions. In addition, we prove optimal
order a priori error estimates for dG with Radau quadrature, but under a
mild time-step restriction depending on μ and At. The first a priori error
bounds for dG-type methods applied to (1.1) were derived by Jamet [28],
but without imposing any quadrature in the involved integrals, and thus
leading to non-practical algorithms.
• Proof of optimal order a posteriori error estimates for dG of any order
with exact integration and for Reynolds’ methods, the latter provided
that At is a continuous piecewise polynomial in time. These estimates
are valid without any time-step restrictions and are obtained using the
same stability PDE techniques as for the continuous problem through
the dG reconstruction on the ALE framework. As already mentioned,
there seems to be no a-posteriori error estimates available in the current
literature for problems defined on moving domains.
• Piecewise polynomial approximation of the ALE map. Given the domain
velocity w at the boundary ∂Ωt, we approximate w on the boundary by
a piecewise polynomial of degree q (to match with the dG accuracy) in
the case of Reynolds’ methods. We reconstruct a perturbed ALE map Ãt

by time integration and suitable extension inside the domain. Then, we
obtain optimal order error bounds by invoking a PDE perturbation ar-
gument in which we evaluate the additional geometrical error committed
by the approximation of the ALE map.

As discussed in [10, Sect. 6], our results can be extended to problems
(1.1) with advections with nonvanishing divergence. This is a proto-
type problem for the practically more interesting and theoretically more
challenging Navier–Stokes equations on time-dependent domains. Some
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preliminary estimates for these equations and the Crank–Nicolson FE
method that satisfies the GCL have been derived by Nobile in [31]. In [34],
Quarteroni and Formaggia use the same method in simulations of their
model of the cardiovascular system, based on Navier–Stokes equations on
moving domains.

1.4. Organization of the Paper. The paper is organized as follows.
In Sect. 2 we review results from [8–10] regarding the stability and the
error analysis for dG methods in time of any order q ≥ 0 for problem (1.4)
and assuming exact integration in time. In Sect. 3 we consider practical
algorithms that are obtained from the dG methods by applying Reynolds’
quadrature, and we discuss the relation between Reynolds’ quadrature and
the GCL. Finally, Sect. 4 is devoted to RKR methods. We present, without
proofs, the main results of [9, 10] on stability and a priori error analysis,
and we explain the importance of RKR methods.

2. Discontinuous Galerkin Method in Time: Exact Integra-
tion. In this section, we review some recent results from [9, 10] related
to the stability and a priori error analysis for dG methods for problem
(1.5) [or (1.8)] defined on time-dependent domains. We also report with-
out proofs the main results of the a posteriori error analysis developed in
[8]. We discuss exact integration in time and we emphasize the main ideas
and the key ingredients leading to efficient (in terms of stability) practical
algorithms.

2.1. The dG Method and Stability. The time discretization of
(1.5) or (1.8) starts with a partition 0 =: t0 < t1 < · · · < tN =: T of
[0, T ]. For 0 ≤ n ≤ N − 1, we let In := (tn, tn+1] and kn := tn+1 − tn
be the subintervals and variable time-steps, respectively. We also let k :=
max

0≤n≤N−1
kn and

Qn := {(x, t) ∈ QT : t ∈ In}.

For q ≥ 0, the discrete space Vq associated with the dG method in time of
order q + 1 is [10]

Vq := {V : QT → R : V |In =

q∑
j=0

ϕjt
j where ϕj ∈ L2(H1

0 )

with Dtϕj = 0, 0 ≤ j ≤ q}.
(2.1)

Note that the definition of the discrete space (2.1) is a natural generaliza-
tion of the corresponding dG space for problems defined on moving domains
and written on the ALE framework. Indeed, when the domain does not
undergo deformations, i.e., At = Id is the identity map for all t ∈ [0, T ],
Vq is reduced to the standard dG space [1, 37]. Moreover, the definition of
Vq ensures that whenever V ∈ Vq is considered on the reference domain,
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V̂ (y, t) := V
(
At(y), t

)
, V̂ is piecewise polynomial of degree at most q with

coefficients in H1
0 . In the dG analysis it is customary to consider the space

Vq(In) := {V : Qn → R : V =W |Qn , W ∈ Vq}, 0 ≤ n ≤ N − 1,

consisting of restrictions to Qn of functions in Vq.
The dG approximation U to u via the non-conservative ALE formula-

tion is defined as follows [10]: seek U ∈ Vq such that

U(·, 0) = u0 in Ω0, (2.2)

and for 0 ≤ n ≤ N − 1,

∫
In

〈DtU, V 〉Ωt dt+ 〈U(t+n )− U(tn), V (t+n )〉Ωtn

+

∫
In

〈(b−w) · ∇xU, V 〉Ωt dt+ μ

∫
In

〈∇xU,∇xV 〉Ωt dt

=

∫
In

〈f, V 〉Ωt dt, ∀V ∈ Vq(In).

(2.3)

Similarly, the conservative dG formulation based on (1.8) reads as [10]

〈U(tn+1), V (tn+1)〉Ωtn+1
− 〈U(tn), V (t+n )〉Ωtn

+

∫
In

〈∇x ·
(
(b−w)U

)
, V 〉Ωt dt+ μ

∫
In

〈∇xU,∇xV 〉Ωt dt

−
∫
In

〈U,DtV 〉Ωt dt =

∫
In

〈f, V 〉Ωt dt, ∀V ∈ Vq(In).

(2.4)

We emphasize that the above choice of discrete space Vq, containing (time)
discrete functions with nonvanishing material derivative, implies that the
non-conservative formulation (2.3) and the conservative formulation (2.4)
remain equivalent at the discrete level as well, and any q ≥ 0 [10]. In
contrast to most pointwise methods, we also note that the dG method pro-
duces approximations defined in the deformable domain Ωt for all times
t ∈ [0, T ]. The latter consistency on the domain in which the dG approx-
imation is defined is critical for the stability analysis, as first observed by
Pironneau et al. [33]. In particular, defining the dG method as in (2.3)
or (2.4) provides the same coupling between time and space present at the
continuous level, thereby giving rise to desirable stability properties for
the time-discrete methods, [10]. Finally, as in the definition of the discrete
space, we have that both (2.3) and (2.4) reduce to the standard dG method
in time when the domain does not change.

The well posedness of the approximation U ∈ Vq is not straightforward
as in the cases of time-independent domains. The coupling of time and
space in the definition of the dG method on deformable domains forces
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us to consider (2.3) [or (2.4)] as a time-space problem. On the contrary,
for the corresponding case of non-moving domains, proving the existence
of the time discrete dG approximation is equivalent to the existence of
the solution of an elliptic problem with homogeneous Dirichlet boundary
conditions. We refer to [10, Proposition 3.1] for details on the existence of
U ∈ Vq satisfying (2.2) and (2.3) [or (2.2)–(2.4)]. We would like to mention
though that the key relation for the proof is the discrete Reynolds’ identity

∫
In

(
〈DtV, V 〉Ωt − 〈w · ∇xV, V 〉Ωt

)
dt

=
1

2
‖V (tn+1)‖2L2(Ωtn+1

) −
1

2
‖V (t+n )‖2L2(Ωtn ),

(2.5)

valid for every V ∈ Vq(In) [10, Lemma 3.1]. This estimate is instrumental
to prove the following:

Theorem 2.1 (Nodal stability with exact integration [10]). The dG
solution U ∈ Vq satisfies for 0 ≤ m < n ≤ N :

‖U(tn)‖2L2(Ωtn ) +
n−1∑
j=m

‖U(t+j )− U(tj)‖2L2(Ωtj
) + μ

∫ tn

tm

‖∇xU(t)‖2L2(Ωt)
dt

≤ ‖U(tm)‖2L2(Ωtm ) +
1

μ

∫ tn

tm

‖f(t)‖2H−1(Ωt)
dt.

(2.6)
The stability estimate (2.6) is the discrete version of (1.9). In par-

ticular, it is free from any constants depending on the ALE map, and for
f ≡ 0 and m = n− 1, it implies the discrete monotonicity property of the
L2-norm:

‖U(tn)‖L2(Ωtn ) ≤ ‖U(tn−1)‖L2(Ωtn−1
), 1 ≤ n ≤ N.

This property, also valid for the continuous problem, was not observed in
[5, 7, 20].

In the remaining stability analysis of [10] and the error analyses of
[8, 9] with exact integration, there appear constants depending explicitly
on ∇yAt, the space differential of the ALE map. These constants are of
the form

An ∼ ‖∇yAtn→t‖L∞(In;L∞(Ωtn ))‖(∇yAtn→t)
−1‖L∞(In;L∞(Ωtn ))

and

Bn ∼ ‖∇yAtn→t‖W1∞(In;L∞(Ωtn )),

0 ≤ n ≤ N . Here, we do not give precise definitions of An, Bn, but rather
point out the required regularity on the ALE map, when An or Bn appear
in the estimates. The regularity assumptions on the family of the ALE map
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ensures that the determinant det JAt of the Jacobian matrix JAt := ∇yAt

is positive and bounded away from 0 and ∞, uniformly for t ∈ [0, T ],
[10]. Thus, An, Bn are well defined and bounded. It is to be emphasized
that An, Bn = O(1) are local and do not involve exponentials of either
geometric quantities or T ; refer to [10] for details. In the rest of the paper
we use the notation � to indicate absolute constants depending only on
the polynomial degree q, the space dimension d as well as constants arising
due to the application of the Poincaré inequality.

Next, we state the stability result for ‖U(t)‖L2(Ωt) for every t ∈ [0, T ].
Theorem 2.2 (Global stability with exact integration [10]). Let f ∈

L2(QT ) and {At}t∈[0,T ] be a family of ALE maps. Then, the dG approxi-
mation U ∈ Vq satisfies for 0 ≤ n ≤ N :

sup
t∈[0,tn]

‖U(t)‖2L2(Ωt)
� max

0≤j≤n−1

{
Aj(1 + Fjkj)

}

×
(
‖U(0)‖2L2(Ω0)

+
1

μ

∫ tn

0

‖f(t)‖2H−1(Ωt)
dt
)

+ max
0≤j≤n−1

Ajkj

∫
Ij

‖f(t)‖2L2(Ωt)
dt,

(2.7)

with

Fj := Bj +
‖b−w‖2L∞(Qj)

μ
0 ≤ j ≤ n. (2.8)

As in the case of non-moving domains [37], to prove an estimate of
the form (2.7), we first need to derive a relation between the discrete ap-
proximation U and its material derivative DtU . This is possible for the dG
approximation in deformable domains as well, because U ∈ Vq is a piece-
wise polynomial of degree at most q when viewed on the reference domain.
Therefore, finite-dimensional arguments, such as inverse inequalities, [13,
Chap. 4, Lemma 4.5.3], can be applied to relate U with DtU. For details
on the proof of Theorem 2.2, we refer to [10]. The stability estimate (2.7)
is valid for any choice of the time-steps kn. However, in contrast to the
nodal stability estimate (2.6), estimate (2.7) involves ALE constants. In
fact, the global estimate (2.7) suggests that the monotonicity property of
‖U(t)‖L2(Ωt) does not hold for all t ∈ [0, T ], but only at the breakpoints
tn. This fact is also observed numerically and is reported in Fig. 1.

2.2. The ALE Projection. Since u does not belong in general to Vq,
the derivation of optimal a priori error estimates is achieved by introducing
an adequate projection Pu ∈ Vq of u. Then, the error e := u − U is
decomposed as e := ρ+Θwith ρ := u−Pu and Θ := Pu−U ∈ Vq. Selecting
Pu so that ρ has optimal decay in targeted norms (see Proposition 2.2), the
a priori error analysis boils down to proving optimal order a priori error
estimates for Θ ∈ Vq. This is achieved using the stability results of the
previous section. We now define Pu.
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Fig. 1. Evolution of ‖U(tn)‖L2(Ωtn ) (left) and maxt∈In ‖U(t)‖L2(Ωt)
(right) for

q = 0 with 28 uniform time-steps (top) and q = 1, 2, 3 with, respectively, 27, 26, 25

uniform time-steps (bottom). The space discretization is fine enough not to influence
the time discretization. The reference domain is Ω0 := (0, 1) × (0, 1), the time interval
is [0, 0.4], the diffusivity is μ = 0.01, the domain velocity w is the L2-projection over
piecewise polynomials of degree q of the time-derivative of the map (y, t) �→ y(2 −
cos(20π t)), with y ∈ Ω0, t ∈ (0, 0.4), and the forcing is f = 0 [21]. The ALE map At is
obtained by integrating w in each time interval In, thereby enforcing continuity at the
nodes. All schemes display monotone ‖U(t)‖L2(Ωt)

when restricted to the breakpoints

t = tn, as predicted by Theorems 2.1 and 3.1 below, the backward Euler scheme (q = 0)
being much more dissipative than the others (q > 0). Oscillations of the ALE map
destroy this monotonicity property over the whole time interval, thereby corroborating
Theorems 2.2 and 3.2.

Definition 2.1 (ALE projection [9]). For q > 0, the ALE projection
Pu ∈ Vq of u ∈ C(H1

0 ;QT ) is defined as follows:

Pu(·, 0) = u(0), in Ω0, (2.9)

and for 0 ≤ n ≤ N − 1,

Pu(·, tn+1) = u(·, tn+1), in Ωtn+1 (2.10)

and ∫
In

〈Pu− u, V 〉Ωt dt = 0, ∀V ∈ Vq−1(In), (2.11)

while for q = 0, the latter condition is void.
We refer to Pu as the “ALE projection” of u since, according to (2.11),

it is an L2-type projection over the space-time strip Qn and therefore
defined through the ALE map At. More precisely, considering Ωtn+1 ,
0 ≤ n ≤ N − 1 as the reference domain and associating with every
function g : QT → R the function ĝ : Ωtn+1 × [0, T ] → R defined by
ĝ(y, t) := g

(
Atn+1→t(y), t

)
, (2.11) is equivalent to

∫
In

〈(P̂ u− û) detJAtn+1→t , V̂ 〉Ωtn+1
= 0, ∀V̂ ∈ V̂q−1(In), (2.12)
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with

V̂q(In) :=
{
V̂ : V ∈ Vq(In)

}
. (2.13)

Equality (2.12) reveals that the operator P is not a pure time operator,
as for fixed domains, but it rather depends on the particular family of the
ALE maps. Alternatively, we could replace Ωt by Ωtn (or Ωtn+1) in (2.11):

∫
In

〈(P̂ u− û), V̂ 〉Ωtn
= 0, ∀V̂ ∈ V̂q−1(In).

In this case, P would be a projection purely in time and the interaction
between space and time be avoided. However, the choice of (2.9)–(2.11) is
the only one that leads to the following property.

Lemma 2.1 (Key property of P [9]). For 0 ≤ n ≤ N , the error ρ :=
u− Pu satisfies∫

In

〈Dtρ, V 〉Ωt dt+ 〈ρ(t+n )− ρ(tn), V (t+n )〉Ωtn

+

∫
In

〈ρ∇x ·w, V 〉Ωt dt = 0, ∀V ∈ Vq(In).
(2.14)

The proof of (2.14) is based on Reynolds’ identity (1.7), as well as the
definition (2.9)–(2.11) of P . At this point, we emphasize that the orthogo-
nality property (2.14) is essential for the a priori error analysis, as it allows
the cancelation of the term Dtρ, which is not expected to be of optimal or-
der of accuracy, as well as the cancelation of the discontinuities ρ(t+n )−ρ(tn)
for which an optimal order a priori error bounds are not evident. An or-
thogonality property similar to (2.14) is used in cases of time-independent
domains and the corresponding dG projection, [1, 37]. Actually, having at
hand (2.14), the a priori error bounds for the numerical scheme (2.3) can
be obtained following the same steps as for non-moving domains. In that
respect, the definition of the ALE projection P is a natural generalization
of the corresponding dG projection in time-independent domains; cf. e.g.,
[1, 37].

We next prove the well posedness of the ALE projection. The proof
of uniqueness is rather easy. Indeed, if V1, V2 ∈ Vq satisfy (2.10), then
V1 − V2 = (tn+1 − t)V with V ∈ Vq−1(In); this in conjunction with (2.11)
leads to V ≡ 0, or, V1 ≡ V2. However, the proof of the existence is technical
and requires additional regularity on the ALE map. In contrast to time-
independent domains, the condition u ∈ C(H1

0 ;Qn) does not imply in
general that (Pu)(t) ∈ H1

0 (Ωt) for all t ∈ In. As we have shown in [9,
Remark 3.1], if the spatial regularity of At is only W1

∞, then the H1
0 -

norm of (Pu)(t) may blow-up for some t ∈ In. The space-time tangling is
responsible once again for this difficulty and is a natural consequence of
the movement of the domain in time. The ALE projection is not a pure
time projection and inherits such an entanglement.
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A sufficient condition on the ALE map that guarantees the existence
of a Pu ∈ Vq, whenever u ∈ C(H1

0 ;QT ), is the following:

Atn+1→t ∈ L∞(In;W2
∞(Ωtn+1)

)
, 0 ≤ n ≤ N − 1. (2.15)

Let Wq and Wq(In) be defined as Vq and Vq(In), respectively, with the
difference that H1

0 is replaced by L2. Then, the existence of the ALE
projection can be established using the next auxiliary lemma:

Lemma 2.2. Let pn : R→ R be a nonzero and nonnegative polynomial
over In of degree s, s ≤ q. Then, for all wn ∈ C(L2;Qn) there exists a
unique Wn ∈ Wq−s(In) such that

∫
In

pn(t)〈Wn(t), V (t)〉Ωt dt =

∫
In

〈wn(t), V (t)〉Ωt dt, (2.16)

for all V ∈ Wq−s(In). If, in addition, the family of ALE maps satisfies
(2.15) and wn ∈ C(H1

0 ; Qn), then Wn ∈ Vq−s(In).
Proof. The proof follows the lines of Proposition 3.1 in [9]. More

precisely, for the proof of the first assertion, we take Ωtn+1 , 0 ≤ n ≤ N − 1,

as the reference domain, and we let Ŵq(In) :=
{
Ŵ :W ∈ Wq(In)

}
. Then,

since pn is a nonnegative polynomial of degree s ≤ q, Ŵq−s(In) is a Hilbert

space, with respect to the inner product (·, ·)n : [Ŵq−s(In)]
2 → R, defined

as:

(Ŵ , V̂ )n :=

∫
In

pn(t)〈Ŵ detJAtn+1→t , V̂ 〉Ωtn+1
, ∀Ŵ , V̂ ∈ Ŵq−s(In).

The assumption wn ∈ C(L2;Qn) implies that ŵn ∈ C
(
In;L

2(Ωtn+1)
)
.

Hence, by Riesz representation Theorem, there exists a unique Ŵn ∈
Ŵq−s(In) such that

(Ŵn, V )n =

∫
In

〈ŵn detJAtn+1→t , V̂ 〉Ωtn+1
, ∀V̂ ∈ Ŵq−s(In). (2.17)

Since (2.17) is equivalent to (2.16), we deduce that there exists a unique
Wn ∈ Wq−s(In) satisfying (2.16).

For the proof of the second claim, we write Ŵn =
∑q−s

j=0 Ŵn,j(tn+1−t)j

with Ŵn,j ∈ L2(Ωtn+1), 0 ≤ j ≤ q − s, because Ŵn ∈ Ŵq−s. Next, we
rewrite (2.17) as
∫
Ωtn+1

υ

∫
In

(
pn(t)Ŵn − ŵn

)
(tn+1 − t)i detJAtn+1→tdt dy = 0,

for all υ ∈ L2(Ωtn+1) and 0 ≤ i ≤ q − s. For a.e. y ∈ Ωtn+1 , the above

equation is equivalent to the algebraic system for Ŵn := (Ŵn,j)
q−s
j=0 :

An(y)Ŵn(y) = ŵn(y),
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with matrix

An(y)i,j :=

∫
In

pn(t)(tn+1 − t)(i−1)+(j−1) detJAtn+1→t(y, t) dt

and right-hand side

ŵn(y)i :=

∫
In

ŵn(y, t)(tn+1 − t)i−1 detJAtn+1→t(y, t) dt,

for 1 ≤ i, j ≤ q − s + 1. The additional regularity (2.15) of At yields that
An is Lipschitz continuous and invertible, and that A−1

n is also Lipschitz
(see Step 4 in the proof of [9, Proposition 3.1]), Therefore, using that

ŵn ∈ H1
0(Ωtn+1), we conclude that Ŵn = A−1

n ŵn ∈ H1
0(Ωtn+1). This,

completes the proof of the second claim.
Using Lemma 2.2 we deduce:
Proposition 2.1 (Existence of the ALE projection [9]). Let At satisfy

(2.15). Then, for every u ∈ C(H1
0 ;QT ) there exists a unique Pu ∈ Vq

satisfying (2.9)–(2.11).
Proof. Finding Pu ∈ Vq satisfying (2.9)–(2.11) is equivalent to finding

Wn ∈ Vq−1(In), 0 ≤ n ≤ N − 1, such that∫
In

(tn+1 − t)〈Wn(t), V (t)〉Ωt dt

=

∫
In

〈u(t)− u(At→tn+1(·), tn+1), V (t)〉Ωt dt, ∀V ∈ Vq−1(In).

The asserted claim of the proposition follows immediately from Lemma 2.2
with pn(t) := tn+1 − t, s := 1 and wn := u − u(At→tn+1(·), tn+1) ∈
C(H1

0 ;Qn).
We finish the subsection by stating, without proof, the approximation

and stability properties of Pu. The proof of the next proposition is based
on comparing the ALE projection with the standard dG projection [1, 37];
details can be found in [9].

Proposition 2.2 (Approximation properties and stability of the ALE
projection [9]). Let Pu be the ALE projection defined in (2.9)–(2.11). If
the family of ALE maps satisfies (2.15), then, for t ∈ In, we have

‖(u− Pu)(t)‖2L2(Ωt)
≤ Cnk

2j+1
n

∫
In

‖Dj+1
t u(t)‖2L2(Ωt)

dt, (2.18)

‖∇x(u− Pu)(t)‖2L2(Ωt)
≤ Dnk

2j+1
n

×
∫
In

(
‖Dj+1

t u(t)‖2L2(Ωt)
+ ‖∇xD

j+1
t u(t)‖2L2(Ωt)

)
dt,

(2.19)

for 0 ≤ n ≤ N−1 and 0 ≤ j ≤ q, where Cn depends on An and Dn depends
on An and Mn := ‖Atn→t‖

L∞
(
In;W2∞(Ωtn )

). In addition, the following

stability bounds are valid for P :
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∫
In

‖Dj
tPu(t)‖2L2(Ωt)

dt � Cn

∫
In

‖Dj
tu(t)‖2L2(Ωt)

dt. (2.20)

2.3. A Priori Error Analysis. We briefly present now, without
proofs, the main results of [9] for the numerical method (2.3) assuming
exact integration in time.

As already mentioned in the previous subsection, to obtain an optimal
order a priori error bound, we split the error e = u − U = ρ + Θ. The
interpolation error ρ = u − Pu is estimated a priori through the approx-
imation properties (2.18) and (2.19). On the other hand, because of the
key property (2.14), Θ = Pu− U ∈ Vq satisfies:∫

In

〈DtΘ, V 〉Ωt dt+ 〈Θ(t+n )−Θ(tn), V (t+n )〉Ωtn

+

∫
In

〈(b−w) · ∇xΘ, V 〉Ωt dt+ μ

∫
In

〈∇xΘ,∇xV 〉Ωt dt

=

∫
In

〈ρ(b−w)− μ∇xρ,∇xV 〉Ωt dt, ∀V ∈ Vq(In),

(2.21)

and an optimal order a priori error bound can be established for Θ by
applying the stability result (2.6) to (2.21).

Theorem 2.3 (A priori error estimate for dG in time-dependent do-
mains [9]). If the family of the ALE maps satisfies (2.15), then the following
estimate holds:

max
0≤n≤N

‖(u− U)(tn)‖2L2(Ωtn ) + μ

∫ T

0

‖∇x(u − U)(t)‖2L2(Ωt)
dt

≤ 1

μ

N−1∑
n=0

Cnk
2q+2
n sup

t∈In

‖(b−w)(t)‖2L∞(Ωt)

∫
In

‖Dq+1
t u(t)‖2L2(Ωt)

dt

+ μ
N−1∑
n=0

Dnk
2q+2
n

∫
In

(
‖Dq+1

t u(t)‖2L2(Ωt)
+ ‖∇xD

q+1
t u(t)‖2L2(Ωt)

)
dt,

with u the solution of (1.4) and U the dG solution of (2.3), and where
Cn, Dn, 0 ≤ n ≤ N − 1, are constants proportional to those in (2.18) and
(2.19).

2.4. The ALE Reconstruction. For the a posteriori error analysis,
we follow the reconstruction technique proposed by Akrivis et al. in [2–
4, 30] for time discrete schemes on time-independent domains. The main
idea is to introduce a continuous approximation UR ∈ Vq+1 of the dG
approximation U of (2.3), called the reconstruction of U , with the following
properties:
• UR(tn) = U(tn), 0 ≤ n ≤ N.
• UR satisfies a perturbation of the original problem (1.4).
• UR − U is of optimal order of accuracy.
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Then, the error e = u − U splits into u − UR and UR − U and the final
a posteriori error bound is obtained using the stability properties of the
continuous equation (1.4).

Following [30], one of the key points to derive a posteriori error esti-
mations is the definition of an appropriate reconstruction of the discrete
solution U . Extending the work presented in [30] to moving domains relies
mainly on the principle that integration by parts is replaced by Reynolds’
identity (1.7). In particular, the reconstruction UR ∈ Vq+1 of U is defined
as follows: For 0 ≤ n ≤ N − 1,

UR(t
+
n ) = U(tn) in Ωtn (2.22)

and ∫
In

〈DtUR, V 〉Ωt dt+

∫
In

〈UR∇x ·w, V 〉Ωt dt

=

∫
In

〈DtU, V 〉Ωt dt+

∫
In

〈U∇x ·w, V 〉Ωt dt

+ 〈U(t+n )− U(tn), V (t+n )〉Ωtn
, ∀V ∈ Vq(In).

(2.23)

Using Lemma 2.2, it is possible to prove that the reconstruction UR, defined
through (2.22)–(2.23) is well defined, provided that the family of the ALE
maps {At}t∈[0,T ] satisfies (2.15). The detailed proof of the well posedness
of UR, as well as its properties, is discussed in [8].

2.5. A Posteriori Error Analysis. The function UR is instrumental
to derive the following bound.

Theorem 2.4 (A posteriori error estimate for dG in time-dependent
domains [8]). Let UR denote the reconstruction of U defined in (2.22) and
(2.23). If the family of ALE maps satisfies (2.15), then the following a
posteriori error estimate holds true:

max
0≤t≤T

{
‖(u− UR)(t)‖2L2(Ωt)

+ μ

∫ t

0

[
‖∇x(u− U)(s)‖2L2(Ωs)

+
1

2
‖∇x(u − UR)(s)‖2L2(Ωs)

]
ds

}

≤ μ
∫ T

0

‖∇x(U − UR)(s)‖2L2(Ωs)
ds

+
4

μ

∫ t

0

‖E(s)‖2H−1(Ωs)
ds+

4

μ

∫ T

0

‖(f −Πqf)(s)‖2H−1(Ωs)
ds

(2.24)

with

E :=∇x ·
[
(b−w)(U − UR)

]
+
[
UR∇x ·w −Πq(UR∇x ·w)

]
+
[
∇x ·
[(
b−w)U

]
−Πq

(
∇x ·
[
(b−w)U

])]
+ μ
[
Πq(ΔxU)−ΔxU

]
,

and Πq : L2(L2;QT )→Wq an L2-type projection.
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We omit giving the precise definition of Πq, as well as the proof of The-
orem 2.4, and we refer to [8] for details. We emphasize though that estimate
(2.24) is of the same form as the corresponding one in time-independent do-
mains. The additional terms, appearing in the error indicator E , reflect the
geometry of the problem. Note also that because time and space are tangled
together, the term Πq(ΔxU)−ΔxU does not vanish for moving domains,
which creates additional difficulties from computational point of view; this
issue is discussed in [8]. In addition, in contrast to time-independent do-
mains, for 0 ≤ n ≤ N−1, the difference UR−U in Qn, cannot be expressed
in terms of the jump estimators

Jn(x, t) := U
(
Atn ◦ A−1

t (x), t+n
)
− U
(
Atn ◦ A−1

t (x), tn
)
, (x, t) ∈ Qn,

for q > 0. More precisely, for time-independent domains, it can be proven
that [30]

(UR − U)(x, t) :=
t− tn
kn

Jn(x, t), (x, t) ∈ Qn. (2.25)

This is not true for deformable domains due to the tangling of space and
time, except for q = 0. It can be proven though, [8], that the difference
UR − U in the L2(L2;Qn) and L2(H1

0 ;Qn) can be bounded above by the
L2(L2;Qn) and L

2(H1
0 ;Qn) norm of the jump estimator Jn multiplied by

local constants depending on the ALE map. This is something also ob-
served numerically, as depicted in Fig. 2. Finally, we mention that the
a priori error estimate of Theorem 2.3 implies the optimal decay of the
left-hand side of (2.24).

2.6. Numerical Experiment. We now check the optimal decay of
the proposed a posteriori error estimator. The initial domain is the unit
square, Ω0 := (−1, 1)× (−1, 1), and it is deformed according to the ALE
map At(y) := y(1+ 1

2 T11(t)) for t ∈ (0, 99), where Tn(t) := cos(n arccos(t))
is the nth Chebychev polynomial of first kind. We set μ = 1.0 and the
exact solution is manufactured to be u(x, t) := exp(x1 t) sin(x2 t) with
x := (x1, x2) ∈ Ωt. We consider a naive time adaptivity consisting in the
following steps (Dörfler strategy):
• We start with a subdivision of 8 uniform intervals of the time interval
(0, 0.99) and compute the space time dG solution.

• We compute the error estimator provided in Theorem 2.4 with the ex-
ception of the term involving Πq(ΔxU)−ΔxU, as it is not directly imple-
mentable with continuous finite element in space (see above discussion).
For later reference we call the resulting quantity the total estimator.

• Using this error estimate, we select a smaller subset of time intervals
responsible for 10% of the total error estimation.

• We bisect these intervals into two equal parts and repeat the process
with this new subdivision of (0, 0.99).
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Figure 2 displays the errors in the �∞(L2) and the L2(H1)-norms to-
gether with the computed total estimator and the total jump estimator(∑N−1

i=0

∫
In
(‖Jn(t)‖2L2(Ωt)

+ ‖∇xJn(t)‖2L2(Ωt)
) dt
)1/2

, all against the num-

ber of time-steps used for the computation for different schemes (q =
0, 1, 2, 3). The space discretization is chosen not to influence the error.
The computational rate of convergence is roughly q+1 in each case, hence
optimal, as depicted in Fig. 2.

We also point out that the adaptive algorithm refines systematically
at the end of the interval where the motion is more oscillatory. Figure 3
depicts the Chebyshev polynomial used for the domain evolution together
with the subdivision chosen by the algorithm at different refinement cycles
for q = 2.

2.7. Comparison of a Priori and a Posteriori Analyses. We
now explain that the a priori and a posteriori analyses are dual versions of
one another:
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Fig. 2. Errors in the dG approximation together with the total and jump a poste-
riori estimators are depicted for q = 0 (top left), q = 1 (top right), q = 2 (bottom left)
and q = 3 (bottom right). The sequence of time-steps is determined using the adaptive
strategy described above. The reference domain is Ω0 := (−1, 1) × (−1, 1) and it is
deformed according to the ALE map At(y) := y(1 + 1

2
T11(t)) for t ∈ (0, 0.99), where

Tn(t) := cos(n arccos(t)) is the nth Chebychev polynomial of first kind. The discretiza-
tion in space is chosen sufficiently fine, not to influence the time discretization error. All
quantities exhibit an approximate decay of O(N−(q+1)).
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Fig. 3. Subdivision of the time interval during the adaptive procedure (from bottom
to top) for q = 2. Initially eight intervals are considered and the algorithm select for
refinement the smallest amount of intervals contributing for 10% of the total estimator.
The Chebychev polynomial used for the domain deformation is plotted in bold line for
comparison.

• A priori error analysis
• Find Pu ∈ Vq, the ALE projection of u, such that u − Pu is of
optimal order of accuracy in L∞(L2) and L∞(H1

0 ).
• Use the stability of the numerical method (2.3) to bound Pu − U
a priori, because Pu − U ∈ Vq satisfies an error equation at the
discrete level.
• Estimate the error u− U via u− Pu and Pu− U .

• A posteriori error analysis
• Find UR ∈ Vq+1, the reconstruction of U , such that UR − U is of
optimal order of accuracy in L∞(L2) and L∞(H1

0 ).
• Use the stability of the continuous PDE (1.4) to bound u − UR a
posteriori, because u − UR ∈ C(H1

0 ) satisfies an error equation at
the continuous level.
• Estimate the error u− U via UR − U and u− UR.

A priori analysis A posteriori analysis

Vq C(H1
0 )

Pu UR

Pu− U u− UR
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3. Practical Algorithms: Reynolds’ Methods. In the previous
section, we reviewed the results of [8–10] related to dG methods of any
order in time within the ALE framework. These methods enjoy the same
stability properties as the continuous problem (1.4) and lead to optimal or-
der a priori and a posteriori error bounds. However, the proposed methods
are not practical since to implement them we need to employ appropriate
quadrature in time. This raises the following questions:

Does there exist a quadrature in time that when applied to the nu-
merical scheme (2.3) (or equivalently to (2.4)) leads to similar sta-
bility properties and error bounds as those of the previous section?
If so, how to construct such a quadrature?

The key observation for quadrature is to preserve the Reynolds’ iden-
tity (2.5) [10]. This is possible, provided the ALE map is a continuous
piecewise polynomial in time. The associated quadrature is then called
Reynolds’ quadrature.

In the sequel, we briefly present stability results and a priori error
estimates of [9, 10] for Reynolds’ methods and polynomial in time ALE
maps. At the end of the section, we describe how we handle cases of non-
polynomial ALE maps.

3.1. Reynolds’ Quadrature and Stability. We assume that the
ALE map is a continuous piecewise polynomial of degree≤ q′ in time. Since
the key ingredient for the validity of the stability estimate (2.6) is Reynolds’
identity (2.5), we use quadratures in time of sufficiently high order to keep
(2.5) valid. We refer to such quadratures as Reynolds’ quadratures chosen
so that for t ∈ In, 0 ≤ n ≤ N − 1, the integrals∫

Ωt

DtVW dx,

∫
Ωt

(∇x ·w)VW dx, (3.1)

appearing in (2.5) are computed exactly for V,W ∈ Vq(In). As shown in
[10], the integrals in (3.1) are polynomials of degree

p := 2q + dq′ − 1 (3.2)

in time if q′ ≥ 1. If q′ = 0, the second term in (3.1) vanishes and the
first term is a polynomial degree p in time, provided q ≥ 1, and vanishes
otherwise. Taking into account these observations, we propose the following
definition of Reynolds’ quadratures:

Definition 3.1 (Reynolds’ quadrature [10]). We say that a quadra-
ture Q on (0, 1] with positive weights ωj and nodes τj , j = 0, 1, . . . , r, is a
Reynolds’ quadrature if it is exact for polynomials of degree p defined in
(3.2). The corresponding quadrature in In = (tn, tn+1], 0 ≤ n ≤ N − 1,
is denoted by Qn and the corresponding weights {ωn,j}rj=0 and quadrature
points {tn,j}rj=0 in In = (tn, tn+1] are given by

ωn,j = knωj, tn,j = tn + knτj , 0 ≤ j ≤ r.
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Applying a Reynolds’ quadrature to (2.5) we obtain the discrete
Reynolds’ identity [10, Lemma 4.2]

1

2
‖V (tn+1)‖2L2(Ωtn+1

) −
1

2
‖V (t+n )‖2L2(Ωtn )

= Qn

(
〈DtV −w · ∇xV, V 〉Ωt

)
.

(3.3)

For q = 0, (3.3) is the geometric conservation law (GCL) appearing in
[7, 20–22, 31]. In that respect, (3.3) may be regarded as a generalization
of the GCL to higher order dG methods q > 0 and test functions with
nonvanishing material derivative.

In addition, applying a Reynolds’ quadrature to the non-conservative
dG formulation (2.3), we get

Qn

(
〈DtU, V 〉Ωt

)
+ 〈U(t+n )− U(tn), V (t+n )〉Ωtn

+Qn

(
〈(b−w) · ∇xU, V 〉Ωt

)
+ μQn

(
〈∇xU,∇xV 〉Ωt

)
= Qn

(
〈f, V 〉Ωt

)
, ∀V ∈ Vq(In),

(3.4)

whereas the conservative dG formulation (2.4) can be written as

〈U(tn+1), V (tn+1)〉Ωtn+1
− 〈U(tn), V (t+n )〉Ωtn

+Qn

(
〈∇x ·
(
(b−w)U

)
, V 〉Ωt

)
+ μQn(〈∇xU,∇xV 〉Ωt)

−Qn(〈U,DtV 〉Ωt) = Qn(〈f, V 〉Ωt), ∀V ∈ Vq(In).
(3.5)

If Qn is the Reynolds’ quadrature, then we can prove that the non-
conservative and conservative formulations (3.4) and (3.5) are equivalent.
Moreover, for q = 0 and the mid-point integration rule, (3.5) reduces to
the unconditionally stable backward Euler method proposed by Formaggia
and Nobile in [20]. We refer to [10] for a detail discussion of these topics,
as well as the proof of the next stability result [compare estimate (3.6)
below with estimate (2.6)].

Theorem 3.1 (Nodal stability with Reynolds’ quadrature [10]). Let
f ∈ C(H−1;QT )∩L2(QT ) and the ALE map At be a continuous piecewise
polynomial in time of degree q′. Let U ∈ Vq be the solution of problem (3.4)
or (3.5), together with (2.2), using a Reynolds’ quadrature Qn over In. If
0 ≤ m < n ≤ N , then

‖U(tn)‖2L2(Ωtn ) +
n−1∑
j=m

‖U(t+j )− U(tj)‖2L2(Ωtj
)

+ μ

n−1∑
j=m

Qj(‖∇xU(t)‖2L2(Ωt)
)

≤ ‖U(tm)‖2L2(Ωtm ) +
1

μ

n−1∑
j=m

Qj(‖f(t)‖2H−1(Ωt)
).

(3.6)
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Theorem 3.1 provides an unconditional stability estimate of the dis-
crete L2(H1)-norm. A similar estimate for the continuous L2(H1)-norm
can be obtained using the equivalence of the discrete and continuous norms
in conjunction with (3.6) [10, Lemma 4.3, Theorem 4.2]. The stability esti-
mate in the continuous energy norm is needed for the derivation of optimal
order a priori error bounds for the numerical scheme (3.4) or (3.5).

Finally, following similar arguments as for the proof of Theorem 2.2
and accounting for the quadrature error for the terms that are not inte-
grated exactly in (3.4) or (3.5), it is possible to derive a stability estimate
in the whole time interval In [10, Theorem 4.3].

Theorem 3.2 (Global stability with Reynolds’ quadrature [10]). Let
f ∈ C(L2) and the ALE map At be a continuous piecewise polynomial of
degree q′. Then the solution U ∈ Vq of either (3.4) or (3.5), together with
(2.2), satisfies for 1 ≤ n ≤ N, the following stability result

sup
t∈[0,tn]

‖U(t)‖2L2(Ωt)
� max

0≤j≤n−1
{Aj(1 + kjFj)}

×
(
‖U(0)‖2L2(Ω0)

+
1

μ

n−1∑
j=0

Qj(||f(t)||2H−1(Ωt)
)
)

+ max
0≤j≤n−1

kjAjQj

(
‖f(t)‖2L2(Ωt)

)
,

(3.7)
where Fj is defined in (2.8).

Note that estimate (3.7) is the discrete analogue (in terms of quadra-
ture) of estimate (2.7).

3.2. Error Analysis for Polynomial ALE Maps. Since the sta-
bility estimate (3.6) is valid for a Reynolds’ quadrature, we expect to be
able to prove optimal order a priori error estimates with the aid of the
ALE projection Pu (see Definition 2.1), provided that the ALE map is a
continuous piecewise polynomial of degree q′ in time.

Indeed, in this case, the error Θ = Pu− U satisfies the equation

Qn(〈DtΘ, V 〉Ωt) + 〈Θ(t+n )−Θ(tn), V (t+n )〉Ωtn

+Qn(〈(b−w) · ∇xΘ, V 〉Ωt) + μQn(〈∇xΘ,∇xV 〉Ωt)

= Qn(〈(b−w)ρ,∇xV 〉Ωt)− μQn(〈∇xρ,∇xV 〉Ωt)

+ En(〈(b −w)u,∇xV 〉Ωt)− μEn(〈∇xu,∇xV 〉Ωt) + En(〈f, V 〉Ωt),
(3.8)

for all V ∈ Vq(In) and where En(·) :=
∫
In
·−Qn(·) denotes the quadrature

error over In. Equation (3.8) is similar to the error equation (2.21), except
that
∫
In

is replaced by Qn and the last three terms on the right-hand side
reflect the effect of quadrature.
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The quadrature error that appears on the right-hand side of (3.8) has
to be of order q+1 (the order of the dG method). To achieve this, we need
Reynolds’ quadrature satisfying

q ≤ r ≤ p− q. (3.9)

We point out that Reynolds’ quadrature satisfying (3.9) do exist. For
example, we could use r + 1 Radau or Gauss quadrature points with r =

q + [dq
′

2 ], where [·] denotes the integer part [9, Sect. 2].
We next state a result analogous to Theorem 2.3, corresponding to

Reynolds’ quadratures and piecewise polynomial ALE maps.
Theorem 3.3 (A priori error estimate with Reynolds’ quadrature [9]).

Let the ALE map At be a piecewise polynomial in time of degree q′ and
satisfy (2.15). Let U be the solution of (2.2)–(3.4) with Qn a Reynolds’
quadrature satisfying (3.9). Then the following a priori error estimate holds

max
0≤n≤N

‖(u− U)(tn)‖2L2(Ωtn )

+
μ

2

N−1∑
n=0

Qn(‖∇x(u− U)(t)‖2L2(Ωt)
) ≤

5∑
i=1

E2i ,
(3.10)

with

E21 :=
1

μ

N−1∑
n=0

Cnk
2q+2
n sup

t∈In

‖(b−w)(t)‖2L∞(Ωt)

∫
In

‖Dq+1
t u(t)‖2L2(Ωt)

dt

E22 :=
μ

2

N−1∑
n=0

Dnk
2q+2
n

∫
In

(
‖Dq+1

t u(t)‖2L2(Ωt)
+ ‖∇xD

q+1
t u(t)‖2L2(Ωt)

)
dt

E23 :=
1

μ

N−1∑
n=0

Gn,q+1k
2q+2
n

q+1∑
i=0

∫
In

‖Dq
t

(
(b−w)u

)
(t)‖2L2(Ωt)

dt

E24 := μ

N−1∑
n=0

Gn,j+1k
2j+2
n

j+1∑
i=0

∫
In

‖∇xD
i
tu(t)‖2L2(Ωt)

dt

E25 :=
1

μ

N−1∑
n=0

Gn,q+1k
2q+2
n

q+1∑
i=0

∫
In

‖Di
tf(t)‖2H−1(Ωt)

dt,

and constants Cn, Dn, 0 ≤ n ≤ N − 1, proportional to those in (2.18) and
(2.19), respectively, and

Gn,q+1 := AnBn,q+1, Bn,q+1 := ‖∇yAtn→t‖W q+1
∞ (In;L∞(Ωtn )). (3.11)

Note that estimate (3.10) holds for any choice of the time-steps kn
(unconditional a priori error bound). Also, as discussed in the previous
subsection, it can be proven that the continuous and discrete energy norms
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are equivalent. Thus, an a priori error estimate similar to (3.10) can be
derived for the continuous energy norm as well.

The derivation of optimal order a posteriori error estimates is a very in-
teresting and nontrivial question. Despite the fact that the definition (2.22)
and (2.23) of the reconstruction remains the same for Reynolds’ methods,
the analysis is not a direct generalization of the dG methods with exact
integration in time. Since the main error analysis is performed at the con-
tinuous level instead of the discrete, several projections must be used to
handle the terms that are not integrated exactly in (3.4). It turns out
that they are not pure time-projections, as it happens for the ALE pro-
jection and the reconstruction, which adds additional technical difficulties
and makes the analysis tedious. It is, however, possible to prove rigorously
optimal order a posteriori error bounds for dG methods with Reynolds’
quadrature.

3.3. Non-polynomial ALE Maps. The previous subsection was de-
voted to stability and error analysis for practical Reynolds’ algorithms for
problem (1.4) written on the ALE framework, but under the assumption
that the ALE map is continuous piecewise polynomial in time. Since this
is not always realistic, the following question arises:

How to apply the previous analysis to non-polynomial in time ALE
maps?

The answer to this question is briefly discussed below and details are
given in [9, Sect. 5].

We approximate the domain velocity ŵ in the ALE frame by Ŵ using
a piecewise polynomial in time of order q, i.e., Ŵ ∈ V̂q(In). This creates

a new family {Ãt}t∈[0,T ] of ALE maps that corresponds to Ŵ and defined

by Ã0 = Id and for 0 ≤ n ≤ N − 1,

Ãt(y) = Ãtn(y) +

∫ t

tn

Ŵ(y, s) ds, x̃(y, t) := Ãt(y). (3.12)

For every t ∈ [0, T ], Ŵ also creates a perturbed domain Ω̃t = Ãt(Ω0).

Since Ŵ is a piecewise polynomial in time of degree q, the definition (3.12)
of Ãt implies that Ãt is a continuous piecewise polynomial in time of degree
q + 1.

The idea is to define the discrete dG space and the dG method with
Reynolds’ quadrature with solution Ũ with respect to the perturbed domain
Ω̃t (and the perturbed ALE map Ãt). Since the solution u of (1.4) is defined
in Ωt and Ũ in Ω̃t, which are different but close domains, the key point
of the analysis is to write u with respect to Ãt and denote it ũ. Then,
it is possible to prove, using a perturbation argument, that ũ satisfies an
equation of the form (1.4) with a defect of optimal order of accuracy. The
defect includes geometric quantities, due to the approximation of Ωt by Ω̃t.
Enforcing the geometrical defect to be of optimal order of accuracy in time,
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entails approximating ŵ by a piecewise polynomial of degree q. Finally,
proceeding as in the previous subsection, an a priori error estimate similar
to (3.10) is derived in [9]. As expected, the upper bound contains additional
error terms due to the domain approximation. The computational rates of
convergence depicted in Fig. 4 corroborate theory.
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Fig. 4. Error in the �∞(L2)-norm against the number N of uniform time-steps
is depicted for q = 0, 1, 2, 3. The reference domain is Ω0 := (−1, 1) × (−1, 1) and it
is deformed according to the ALE map At(y) := y(1 + 1

2
T11(t)) for t ∈ (0, 0.99),

where Tn(t) := cos(n arccos(t)) is the nth Chebychev polynomial of first kind. We set
μ = 1.0 and the exact solution is manufactured to be u(x, t) := exp(x1 t) sin(x2 t) with

x := (x1, x2) ∈ Ωt. We take Ŵ to be the L2-projection of the ALE velocity ŵ onto

V̂q and compute Ãt according to (3.12). Over each interval In, a Reynolds’ quadrature
based on q+1+[d(q+1))/2] Radau points is used, cf. (3.9). The discretization in space is
chosen sufficiently fine not to influence the time discretization error. All schemes exhibit
the optimal O(N−(q+1)) order of convergence.

4. Practical Algorithms: Runge–Kutta–Radau Methods. In
the previous section, we used Reynolds’ quadrature to approximate the
integrals in time, appearing in dG method (2.3) [or (2.4)]. Using such
quadratures leads to unconditional stability and a priori error bounds.
However, Reynolds’ quadratures are dimensional dependent and become
computationally more intensive for higher dimensions. Indeed, a Reynolds’
quadrature integrates exactly polynomials of degree p = 2q+dq′−1, where
q′ is the degree of the polynomial ALE map [see (3.2)].

4.1. Runge–Kutta–Radau Methods. We now review the results
of [9, 10] related to RKR methods, which in the ALE framework can be
obtained from (2.3) by applying the Radau quadrature with q + 1 nodes.
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Such a quadrature is enough for dG methods to be unconditionally sta-
ble when the domain is not moving and give optimal order a priori error
estimates [37, Chap. 12]. Notice that q + 1 Radau nodes integrate exactly
polynomials of degree ≤ 2q, which compares favorably with p in (3.2) for
q′ ≥ 1. Moreover, if the domain does not move (q′ = 0), then Reynolds’
quadrature is exact for polynomials of degree p = 2q − 1 which can be
realized with q + 1 Radau nodes.

As discussed in [10], the use of the Radau quadrature with q+1 nodes
leads to stable practical numerical methods, subject to a mild constraint
on the time-steps depending on the ALE map (conditional stability). In
[9], we were also able to prove that RKR methods on the ALE framework
lead to optimal order a priori error bounds, but under the same time-step
restriction as for the stability. The reason for this time-step constraint
is the violation of Reynolds’ identity when using q + 1 Radau quadrature
points for the approximation of the integrals in (2.5). However, it is to be
emphasized that the time-step restriction is not a CFL condition, as the
considered numerical schemes are only discrete in time, i.e., the space is
continuous. Despite the fact that RKRmethods in the ALE framework lead
to conditional stability, these methods have some advantages in comparison
with Reynolds’ methods. Inevitably, a natural question arises:

Which family of methods is more appropriate for problems defined
on time-dependent domains and the ALE framework: Reynolds’ or
RKR methods?’

Reynolds’ methods are more appropriate when dealing with highly os-
cillatory ALE maps, because they lead to ALE-free stable schemes. On the
contrary, the minimal complexity of RKR methods makes them more ap-
propriate in cases of non-oscillatory maps, when the time-step requirement
is less restrictive and in practice unnoticeable.

We continue now with a brief description, without proofs, of the main
results of [9, 10] regarding the analysis of RKR methods in the ALE frame-
work. Our analysis is, in some sense, related to the one by Badia and
Codina [5], who proposed first and second order accurate BDF schemes in
the ALE framework for time-dependent domains. Their schemes do not
satisfy the GCL and are stable and optimally accurate under a time-step
constraint similar to ours.

Let ωj and τj , 0 ≤ j ≤ q, be the weights and nodes, respectively, for
the Radau quadrature rule Qq in (0, 1] and let {ωn,j}qj=0 and {τn,j}qj=0 be
those for In, 0 ≤ n ≤ N − 1. Using such a quadrature in (2.3), say Qq

n, the
RKR method in the non-conservative ALE framework reads as:

Qq
n(〈DtU, V 〉Ωt) + 〈U(t+n )− U(tn), V (t+n )〉Ωtn

+Qq
n(〈(b−w) · ∇xU, V 〉Ωt) + μQq

n(〈∇xU,∇xV 〉Ωt)

= Qq
n(〈f, V 〉Ωt), ∀V ∈ Vq(In),

(4.1)
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with U(·, 0) = u0 in Ω0. We point out that for RKR methods, conserva-
tive and non-conservative formulations are no longer equivalent. This is
because, in contrast to Reynolds’ quadrature Qn, Radau quadrature Qq

n

does not integrate exactly the terms appearing in Reynolds’ identity (2.5).
Nevertheless, similar stability results and a priori error bounds are valid
for both RKR methods.

To compensate for the extra variational crime, introduced due to the
violation of Reynolds’ identity, we need to impose an extra local-time reg-
ularity condition on the family of the ALE maps {At}t∈[0,T ]:

Bn,2 := ‖DAtn→t‖W2∞(In;L∞(Ωtn )) <∞. (4.2)

Using similar arguments as in the proof of Theorem 3.1 and the
Bramble–Hilbert Theorem to bound the quadrature error of the terms ap-
pearing in Reynolds’ identity, it is possible to prove the following theorem:

Theorem 4.1 (Conditional nodal stability for RKR [10]). Let f ∈
C(H−1;QT ) ∩ L2(QT ) and (4.2) be valid. If

An(1 +Bn,2)kn � μ, ∀ 0 ≤ n < N, (4.3)

then the solution U ∈ Vq of problem (2.2) and (4.1) satisfies, for 0 ≤ m <
n ≤ N ,

‖U(tn)‖2L2(Ωtn ) +

n−1∑
j=m

‖U(t+j )− U(tj)‖2L2(Ωtj
)

+ μ

n−1∑
j=m

Qj(‖∇xU(t)‖2Ωtj
)

≤ ‖U(tm)‖2L2(Ωtm ) +
2

μ

n−1∑
j=m

Qj(‖f(t)‖2H−1(Ωt)
).

(4.4)

Figure 5 documents the behavior of ‖U(tn)‖L2(Ωtn ) for RKR methods
of order 0 ≤ q ≤ 3 and the same oscillatory case of [21], already displayed
in Fig. 1.

The numerical experiments depicted in Fig. 5 illustrate that for f ≡ 0,
the monotonicity of ‖U(tn)‖L2(Ωtn ) is retained for q = 0 provided that the
time-step constraint (4.3) is enforced. However, in this particular example,
it seems that the case q > 0 does not require any time-step constraints to
exhibit the monotone behavior.

Global stability in the whole time-interval In is also valid for RKR
methods, as it happens for dG methods with exact integration and
Reynolds’ quadrature, provided that the time-steps are chosen so that
(4.3) is satisfied.

Regarding the a priori error analysis, the error Θ = Pu − U satisfies
an equation similar to (3.8) with the additional quadrature error terms
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Fig. 5. Evolution of ‖U(tn)‖L2(Ωtn ) for q = 0 with 28 uniform time-steps (top-

left), for q = 1, 2, 3 with 27, 26, 25 uniform time-steps, respectively (bottom-left), and
for q = 0 with 28 (upper curve) and 210 (lower curve) uniform time-steps (right). The
space discretization is fine enough not to influence the time discretization. The reference
domain is Ω0 := (0, 1) × (0, 1), the time interval is [0, 0.4], the diffusivity is μ = 0.01,
the domain velocity w is the L2-projection over piecewise polynomials of degree q of
the time-derivative of the map (y, t) �→ y(2 − cos(20π t)), with y ∈ Ω0, t ∈ (0, 0.4),
and the forcing is f = 0. The ALE map At is obtained by integrating w in each
time interval In, enforcing continuity at the nodes. Monotonicity of ‖U(tn)‖L2(Ωtn )

for q = 0 is sensitive to the time-step size (conditional stability), a property of RKR
methods proved in Theorem 4.1 for all q ≥ 0 (see right). Stability of higher order RKR
methods (q > 0) is less sensitive to the time-steps (bottom-left).

En(〈DtPu, V 〉Ωt) and En(∇x · wPu, V 〉Ωt). These terms arise because
RKR methods violate Reynolds’ identity. Estimating these quadrature
errors leads to derivatives Di

tPu for 0 ≤ i ≤ q + 1, which are handled via
the stability bounds in (2.20) for the ALE projection Pu. Thus, proceeding
as in the proof of Theorem 3.3, and using the stability estimate (4.4), we
managed in [9] to prove the following:

Theorem 4.2 (A priori error estimate for RKR methods [9]). Let
U ∈ Vq be the solution of (4.1) with q + 1 Radau quadrature points and
let At satisfy (4.2). If the time-steps satisfy (4.3), then the following error
estimate for u− U is valid:

max
0≤n≤N

‖(u− U)(tn)‖2L2(Ωtn ) +
μ

2

N−1∑
n=0

Qn

(
‖∇x(u− U)(t)‖2L2(Ωt)

)

≤ E(u, f,At,b) +
1

μ

N−1∑
n=0

CnGn,q+1k
2q+2
n

×
q+1∑
i=0

∫
In

(
1 + ‖Dq+1−i

t ∇xw(t)‖2L∞(Ωt)

)
‖Di

tu(t)‖2L2(Ωt)
dt,

(4.5)

where E(u, f,At,b) denotes the right-hand side of (3.10) (with proportion-
ality constants), Pu is the ALE projection defined in (2.10)–(2.11) and
Cn, Gn,q+1 are as in (2.18) and (3.11), respectively.
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Fig. 6. The error max0≤n≤N ‖(u− U)(tn)‖2L2(Ωtn )
versus the number of uniform

time-steps N is depicted for q = 0, 1, 2, 3. The reference domain is Ω0 := (−1, 1)×(−1, 1)
and it is deformed according to the ALE map At(y) := y(1+ 1

2
T11(t)) for t ∈ (0, 0.99),

where Tn(t) := cos(n arccos(t)) is the nth Chebychev polynomial of first kind. We set
μ = 1.0 and the exact solution is manufactured to be u(x, t) := exp(x1 t) sin(x2 t) with

x := (x1, x2) ∈ Ωt. We take Ŵ to be the L2-projection of the ALE velocity ŵ onto

V̂q and compute Ãt according to (3.12). Over each interval In, a quadrature based on
q + 1 Radau points is used. The discretization in space is chosen not to influence the
time discretization error. As predicted by estimate (4.5), all schemes exhibit the optimal
O(N−(q+1)) order of convergence.

Figure 6 displays an optimal rate of convergence q+1 for RKR meth-
ods with 0 ≤ q ≤ 3 and the same experiment as in Fig. 4, for Reynolds’
quadrature.

4.2. Implicit-Explicit Runge–Kutta (IERK) Method. Finally,
we mention that similar stability and a priori error estimates can be estab-
lished for the IERK method of first order:

〈(Un+1 − Un) + kn
(
(b−w)(tn) · ∇xUn+1

)
, V 〉Ωtn

+ μkn〈∇xUn+1,∇xV 〉Ωtn
= kn〈f(tn), V 〉Ωtn

, ∀V ∈ V0(In),
(4.6)

where Un+1 := U(Atn→tn+1(·), tn+1) for U ∈ V0(In). Method (4.6) can
be obtained by approximation of the integrals in (2.3) with the left-side
rectangle quadrature. Despite the fact that (4.6) is not an RKR method,
the error analysis for RKR methods in the ALE framework is applicable
to (4.6) as well [10]. This method is natural for free-boundary problems,
[6, 11, 12], because it is implicit with respect to the approximation U ,
but explicit with respect to the moving domain. The latter is beneficial
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whenever we do not know in advance Ωtn+1 at step n, while the implicit
nature of the method in U helps avoiding any CFL condition. Rigor-
ous error analysis for the IERK method (4.6) appears for the first time
in [10].

We conclude with an application of IERK to fluid–membrane inter-
action due to Bonito et al. [12]. The deformable domain Ωt contains an
incompressible fluid governed by the Navier–Stokes equation

ρDtv − divΣ(v, p) = 0 in Ωt,

div v = 0 in Ωt,
(4.7)

where v is the fluid velocity, p is its pressure, Σ(v, p) = −pI + μD(v) is
the Cauchy stress tensor, D(v) = 1

2 (∇v +∇vT ) is the symmetric part of
the gradient, and μ is the viscosity. The membrane ∂Ωt is governed by the
Canham–Helfrich energy

J(∂Ωt) =
1

2

∫
∂Ωt

H2 + λ

(∫
∂Ωt

1−
∫
∂Ω0

1

)
, (4.8)

where H stands for the mean curvature of ∂Ωt and λ is the Lagrange
multiplier enforcing area conservation. The fluid and membrane interact
through the boundary condition, which represents a balance of forces at
the interface ∂Ωt:

Σν = κ δJ(∂Ωt), (4.9)

where κ is the membrane bending rigidity coefficient and δJ(∂Ωt) is the
variational (or shape) derivative. The latter obeys the expression

δJ(∂Ωt) =
(
Δ∂ΩtH +

1

2
H3 − 2KH + λHν

)
ν, (4.10)

where Δ∂Ωt is the Laplace–Beltrami operator on ∂Ωt and K is the Gaus-
sian curvature of ∂Ωt. It is important to notice that δJ(∂Ωt) is a vector
field perpendicular to ∂Ωt because ν is the unit normal to ∂Ωt. The dis-
cretization of (4.7)–(4.10) consists of Taylor–Hood finite elements coupled
with IERK. Figure 7 displays the complex behavior of the fluid membrane
and quite noticeable inertial effects.
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Fig. 7. Evolution of a fluid membrane with initial axisymmetric ellipsoidal shape
of aspect ratio 5×5×1 and final shape similar to a red blood cell. Each frame shows the
membrane mesh and a symmetry cut along a big axis. The fluid flow is quite complex,
creating first a bump in the middle and next moving towards the circumference and
producing a depression in the center with flat pinching profile. The inertial effects are
due to unrealistic physical parameters.
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Lausanne, 2001.

[32] L.A. Ortega and G. Scovazzi. A geometrically-conservative, synchronized, flux-
corrected remap for arbitrary Lagrangian-Eulerian computations with nodal
finite elements. J. Comput. Phys., 230(17):6709–6741, 2011.

[33] O. Pironneau, J. Liou, and T. Tezduyar. Characteristic-Galerkin and
Galerkin/least-squares space-time formulations for the advection-diffusion
equations with time-dependent domains. Comput. Methods Appl. Mech.
Engrg., 100(1):117–141, 1992.



258 Andrea Bonito, Irene Kyza, and Ricardo H. Nochetto

[34] A. Quarteroni and L. Formaggia. Mathematical modelling and numerical simula-
tion of the cardiovascular system, volume XII of Handb. Numer. Anal. North-
Holland, Amsterdam, 2004.

[35] A. Quarteroni, M. Tuveri, and A. Veneziani. Computational vascular fluid
dynamics: problems, models and methods. Comput. Visual. Sci., 2(4):163–
197, 2000.

[36] P.D. Thomas and C.K. Lombard. The geometric conservation law–a link between
finite-difference and finite–volume methods for flow computation on moving
grids. AIAA Paper 78–1208, 1978.

[37] V. Thomée. Galerkin finite element methods for parabolic problems, volume 25
of Springer Series in Computational Mathematics. Springer-Verlag, Berlin,
second edition, 2006.



DISCONTINUOUS FINITE ELEMENT METHODS
FOR COUPLED SURFACE–SUBSURFACE FLOW

AND TRANSPORT PROBLEMS

BEATRICE RIVIERE∗

Abstract. A numerical method is proposed to solve the coupled flow and transport
problems in adjacent surface and subsurface regions. The flow problem is characterized
by the Navier–Stokes (or Stokes) equations coupled by Darcy equations. In the subsur-
face, the diffusion coefficient of the transport equation depends on the velocity field in a
nonlinear manner. The interior penalty discontinuous Galerkin method is used for the
spatial discretization, and the backward Euler technique for the time integration. Con-
vergence of the scheme is theoretically derived. Numerical examples show the robustness
of the method for heterogeneous and fractured porous media.

Key words. Navier–Stokes, Darcy, Transport, Discontinuous Galerkin, Heteroge-
neous media, Convergence, Multinumerics

AMS(MOS) subject classifications. 65M60, 76S05, 76D05

1. Introduction. The study of a coupled flow and transport system
in adjacent surface and subsurface regions is of interest for the environmen-
tal problem of contaminated aquifers through rivers. The flow in the surface
region is characterized by the steady-state Navier–Stokes (or Stokes) equa-
tions whereas the flow in the subsurface region is characterized by Darcy’s
law. The concentration of the contaminant satisfies a transport equation
coupled to the flow problem in the following sense: the flow velocity ap-
pears in both the diffusion and the convection terms of the concentration
equation. This type of multiphysics couplings is also of importance in the
industrial filtration processes [20].
This paper follows a series of papers on the coupled surface/subsurface
flows by the author. In [6–8, 10, 11, 18], the flow problem coupling Navier–
Stokes equations with Darcy equations was analyzed theoretically for dif-
ferent interface conditions and discretized by finite element methods and
discontinuous Galerkin methods. The usual interface conditions include
the Beavers–Joseph–Saffman law [4, 26], the continuity of normal compo-
nent of velocity, and the balance of forces across the interface.
A weak formulation of the coupling of surface/subsurface flow with trans-
port was analyzed in [9]. The main objective of this paper is to propose a
robust numerical scheme for approximating the weak solution. We ass-
ume a one-way coupling, i.e. the velocity field obtained from solving
the surface/subsurface flow problem becomes input data for the trans-
port problem. The multiphysics problem is approximated by the discon-
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tinuous Galerkin (DG) method. Because of its flexibility and local mass
conservation property, the DG method is a well-suited method for modeling
flow in heterogeneous porous media. The transport problem is solved by
an improved discontinuous Galerkin method that upwinds the numerical
fluxes in the subsurface region [24]. In this case, one does not need to use
slope limiters.
The coupled surface/subsurface flow problem has recently gained a lot of
interest in the scientific community. Most of the published literature cov-
ers the coupling of Stokes and Darcy equations (see, for instance, [14–
16, 21, 23]). The published literature is very sparse on the coupling of
Stokes–Darcy-transport problem. In [28], a mixed method is proposed for
the coupled Stokes/Darcy equations and a local discontinuous Galerkin
method [13] is used for the transport problem.
The outline of the paper is as follows. The next section introduces the
model problem and its weak formulation. In Sect. 3, the numerical scheme
is defined and error estimates are obtained. Numerical examples are shown
in Sect. 4. Conclusions follow.

2. Model Problem. For simplicity we assume that the surface region
is contained in a domain Ω1 ⊂ R

2 and the subsurface region in a domain
Ω2 ⊂ R

2. The results in Sect. 3 are valid for three-dimensional domains
as well. Let ui and pi denote the fluid velocity and pressure in Ωi, for
i = 1, 2. Let τ12 and n12 be a unit tangential vector and a unit normal
vector at the interface Γ12 = ∂Ω1 ∩ ∂Ω2. The vector n12 is assumed to
be outward of Ω1. The surface/subsurface flow is characterized by the
following Navier–Stokes equations coupled with the Darcy equations, and
appropriate interface conditions.

−∇ · (2μD(u1)) +∇p1 + u1 · ∇u1 = f1, ∇ · u1 = 0, in Ω1,(2.1)

u2 = −K

μ
(∇p2 − ρg), ∇ · u2 = f2, in Ω2,(2.2)

u1 · n12 = u2 · n12, on Γ12,(2.3)

GK−1/2u1 · τ12 = −2μD(u1)n12 · τ12, on Γ12,(2.4)

(−2μD(u1)n12) · n12 + p1 = p2, on Γ12.(2.5)

Let u denote the velocity field over the whole domain, namely u|Ωi = ui.
The concentration c of one species transported in the domain Ω = Ω1 ∪Ω2

over the time interval (0, T ) satisfies the following equation

∂

∂t
(ϕc)−∇ · (F (u)∇c − cu) = f, in (0, T )× Ω. (2.6)

We remark that if the nonlinear term u1 · ∇u1 is removed from the mom-
entum equation in (2.1), the resulting problem is a coupled Stokes–Darcy
flow with transport, and (2.1) is replaced by:

−∇ · (2μD(u1)) +∇p1 = f1, ∇ · u1 = 0, in Ω1.



Discontinuous Galerkin for Coupled Flow and Transport 261

Throughout the paper, we will point out the simplifications obtained if the
Stokes equations are used instead of the Navier–Stokes equations in the free
flow region. Define Γi = ∂Ωi\Γ12 and denote by n the unit outward normal
to ∂Ω. The system of equations is completed by boundary conditions and
an initial condition for the concentration.

u1 = 0, on Γ1,u2 · n = U , on Γ2, (2.7)

F (u)∇c · n− cu · n = −Cu · n, on (0, T )× {x ∈ ∂Ω : U(x) < 0}, (2.8)

F (u)∇c · n = 0, on (0, T )× {x ∈ ∂Ω : U(x) ≥ 0}, (2.9)

c = c0, in {0} × Ω. (2.10)

We now describe the coefficients that appear in the equations above.
• The fluid kinematic viscosity μ and fluid density ρ are positive
constants. The vector of gravitational acceleration is denoted by
g.
• The rate of strain matrix is symmetric and defined by D(u) =
0.5(∇u+ (∇u)T ).
• The vector function f1 and scalar functions f2 and f represent the
source/sink terms.
• The permeability matrix K is symmetric positive definite and
bounded above and below: there exist k > 0, k̄ > 0 such that

∀ξ ∈ R
2, kξ · ξ ≤ ξ ·Kξ ≤ k̄ξ · ξ.

• The coefficient G that appears in the Beavers–Joseph–Saffman in-
terface condition (2.4) is a positive constant. It is obtained experi-
mentally and depends on the properties of the fluid and the porous
medium.
• The coefficient ϕ is a positive constant bounded by one. Restricted
to Ω2, the value of ϕ corresponds to the porosity of the subsurface.
By convention, the coefficient ϕ is simply equal to one in Ω1.
• The coefficient F (u) is a diffusion/dispersion matrix. In Ω1, it is
simply equal to dmI, where dm is a positive constant, and I is the
identity matrix. In the porous region Ω2, the matrix F (u) depends
on the velocity in the following manner:

F (u) = (αT ‖u‖+ dm)I + (αl − αt)
uuT

‖u‖ .

The coefficient dm > 0 is the molecular diffusivity constant, αl ≥ 0
and αt ≥ 0 are the longitudinal and transverse dispersivities and
‖ · ‖ denotes the Euclidean norm. One can show (see, for instance,
[27]) that F is Lipschitz and that there exist α > 0,M > 0 such
that

F (w)ψ · ψ ≥ αψ · ψ, ‖F (w)‖ ≤M(1 + ‖w‖). (2.11)
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In addition, we assume that there is F̄ > 0 such that

‖F (w)‖ ≤ F̄ . (2.12)

• The boundary flux U belongs to L2(Γ2). The data f2 and U must
satisfy the compatibility condition∫

Γ2

U =

∫
Ω2

f2.

• The function C ≥ 0 is the prescribed concentration on the inflow
boundary. It is assumed to be bounded. For any function z, we
denote z+ = max(0, z) and z− = max(0,−z). Extending U to zero
on Γ1, we can rewrite the boundary conditions (2.8) and (2.9) as

F (u)∇c · n+ c(u · n)− = CU− on (0, T )× ∂Ω. (2.13)

• The initial concentration c0 is nonnegative and bounded.
We will solve for the unknowns (u1, p1, p2, c). We note that the Darcy

velocity u2 can be obtained from the Darcy pressure p2 via the first equa-
tion in (2.2). For any domain O, the standard notation for Lk(O) spaces
and Sobolev spaces Hk(O) is used. The L2 inner-product of two functions
is denoted by (·, ·)O . LetH1

0,Γ1
(Ω1) denote the space of functions in H

1(Ω1)

whose trace vanishes on Γ1. The dual space of H
1(Ω) is denoted by H1(Ω)′

and the duality pairing is 〈·, ·〉(H1(Ω)′,H1(Ω)).
A weak solution to the problem (2.1)–(2.7) with (2.10) and (2.13) is the

quadruple (u1, p1, p2, c) that belongs to H
1
0,Γ1

(Ω1)
2 × L2(Ω1)×H1(Ω2) ×

(L2(0, T ;H1(Ω))∩L∞((0, T )×Ω)) satisfying for all v1 ∈ H1
0,Γ1

(Ω1)
2, q1 ∈

L2(Ω1), q2 ∈ H1(Ω2):

2μ(D(u1),D(v1))Ω1+(u1 · ∇u1,v1)Ω1+

(
K

μ
∇p2,∇q2

)
Ω2

−(∇ · v1, p1)Ω1

+(p2,v1 · n12)Γ12+G(K
−1/2u1 · τ12,v1 · τ12)Γ12−(u1 · n12, q2)Γ12

+(∇ · u1, q1)Ω1=(f1,v1)Ω1+

(
f2+

K

μ
ρg, q2

)
Ω2−(U , q2)Γ2 , (2.14)

and for all z ∈ L2(0, T ;H1(Ω))

∫ T

0

〈ϕ∂c
∂t
, z〉(H1(Ω)′,H1(Ω))dt−

∫ T

0

(cu,∇z)Ωdt+
∫ T

0

(F (u)∇c,∇z)Ωdt

+

∫ T

0

((cU+ − CU−), z)∂Ωdt =

∫ T

0

(f, z)Ωdt. (2.15)

with t → c(t, ·) ∈ C0([0, T ]; (H1(Ω))
′
), t → ∂c

∂t (t, ·) ∈ L2(0, T ; (H1(Ω))
′
)

and

c(0, ·) = c0(·) a.e. in Ω. (2.16)
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Because only Neumann boundary conditions hold for the flow problem, the
additional constraint

∫
Ω2
p2 = 0 is imposed. Existence of a weak solution

can be derived by combining results from [2, 18, 22]. We state the result
below.

Theorem 2.1. Assume that f1 ∈ L2(Ω1)
2, f2 ≥ 0, f2 ∈ L2(Ω2)

and f ≥ 0, f ∈ L1(0, T ;L∞(Ω)) ∩ L2(0, T ;L2(Ω)). There exists a con-
stant M̃ > 0 such that if

μ2 > M̃(‖f1‖2L2(Ω1)
+ μ‖f2‖2L2(Ω2)

+ μ‖U‖2L2(Γ2)
+ ‖g‖2L2(Ω2)

) (2.17)

then there exists a weak solution (u1, p1, p2, c) to the weak problem (2.14)–
(2.16).

Remark 2.1. If the Stokes equations are used, existence of the weak
solution is unconditional, i.e. there is no need to assume a small data con-
dition like (2.17). The same result holds true if the Navier–Stokes equations
are used and the interface condition (2.5) is replaced by

(−2μD(u1)n12) · n12 + p1 +
1

2
u1 · u1 = p2.

In this case, the coupled flow model is numerically discussed in [10]. We
also note that existence of a weak solution of a more general coupled flow
and transport problem is shown in [9].

In the next section, we define a numerical approximation of the weak
problem.

3. Numerical Discretization. Let Eh be a regular family of trian-
gulations of Ω (see [12]) and let h denote the maximum diameter of the
triangles. We assume that the interface Γ12 is a finite union of triangle
edges. Therefore, the restriction of Eh to Ωi is also a regular family of
triangulations of Ωi; we denote it by Ehi and impose that the two meshes
Ehi coincide at the interface Γ12. This restriction simplifies the analysis,
but it can be relaxed.

For i = 1, 2, let Γh
i denote the set of edges of Ehi interior to Ωi and

let Γh = Γh
1 ∪ Γh

2 . To each edge e of Eh we associate once and for all a
unit normal vector ne. For the edges in Γh

i , this can be done by ordering
the triangles of Ehi and orienting the normal in the direction of increasing
numbers. For e ∈ Γ12, we set ne = n12, i.e. ne is the exterior normal to
Ω1. For a boundary edge e ∈ Γi, ne coincides with the outward normal
vector n to ∂Ω. If ne points from the element E1 to the element E2, the
jump [·] and average {·} of a function φ are given by:

[φ] = φ|E1 − φ|E2 , {φ} = 1

2
φ|E1 +

1

2
φ|E2 .

By convention, for a boundary edge on Γi, the jump and average are defined
to be equal to the trace of the function on that edge. The length of an edge
e is denoted by |e|.
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3.1. Numerical Approximation of Flow Problem. Let Xh
1 , Q

h
1 ,

Qh
2 be finite dimensional subspaces to be defined later. Formally, the

discrete weak formulation of (2.1)–(2.5) can be written as: find Uh
1 ∈

Xh
1 , P

h
1 ∈ Qh

1 , P
h
2 ∈ Qh

2 such that

∀vh
1 ∈Xh

1 , ∀qh2 ∈ Qh
2 , aNS(U

h
1 ,v

h
1 ) + bNS(v

h
1 , P

h
1 ) + cNS(U

h
1 ;U

h
1 ,v

h
1 )

+ aD(P
h
2 , q

h
2 ) + γ(Uh

1 , P
h
2 ;v

h
1 , q

h
2 ) = �(vh

1 , q
h
2 ),

∀qh1 ∈ Qh
1 , bNS(U

h
1 , q

h
1 ) = 0,∫

Ω2

P h
2 = 0,

where aNS, bNS, cNS, aD are discretizations of the operators −∇· (2μD(u)),
∇p, u · ∇u, and −∇ · ((K/μ)∇p), respectively. These forms depend on
the choice of the numerical method. Since the discrete problem is steady-
state and nonlinear, Picard iterations are computed with an initial zero
Navier–Stokes velocity.

Denote by Uh the resulting velocity field of the coupled Navier–Stokes
and Darcy equations. The velocity Uh is defined in Ω by:

Uh =

{
Uh

1 , in Ω1

−K
μ (∇P h

2 − ρg), in Ω2.
(3.1)

The form γ couples the two different physical flows through the interface
Γ12.

γ(Uh
1 , P

h
2 ;v

h
1 , q

h
2 ) = (P h

2 ,v
h
1 · n12)Γ12 +G(K−1/2Uh

1 · τ12,vh
1 · τ12)Γ12

−(Uh
1 · n12, q

h
2 )Γ12 . (3.2)

The form � is defined as:

�(vh
1 , q

h
2 ) = (f1,v

h
1 )Ω1 +

(
f2 +

K

μ
ρg, qh2

)
Ω2

+ (U , qh2 )Γ2 .

We remark that if the Stokes equations are used instead of the Navier–
Stokes equations, the numerical scheme remains the same with the choice
cNS = 0. One can use various discretizations in either subdomains. We
choose to present the discontinuous Galerkin (DG) method. In what follows
we give a description of the linear forms aNS, aD, bNS, cNS.

3.1.1. DG Scheme. The primal DG method is applied to both the
Navier–Stokes equations and the Darcy equations. The penalty parameter
is denoted by σ > 0 and the symmetrizing parameter by ε. The parameter
ε takes the values −1 or +1, which corresponds to either the symmetric
interior penalty Galerkin (SIPG) method or the non-symmetric interior
penalty Galerkin (NIPG) method [3, 25, 29]. We can allow for different
values of σ for each edge, and for different values of ε for the forms aNS
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and aD. To simplify the text, we assume that σ and ε are fixed constants
for both forms. Let k1, k2 be positive integers, each greater than or equal
to one. In that case the finite dimensional spaces are

Xh
1 = {vh ∈ L2(Ω1)

2 : vh|E ∈ (Pk1(E))2 , ∀E ∈ Eh1 },
Qh

1 = {qh ∈ L2(Ω1) : qh|E ∈ Pk1−1(E), ∀E ∈ Eh1 },
Qh

2 = {qh ∈ L2(Ω2) : qh|E ∈ Pk2(E), ∀E ∈ Eh2 },
where Pk is the space of polynomials of total degree less than or equal to
k and the forms are:

aNS(wh,vh) = 2μ
∑
E∈Eh

1

(D(wh),D(vh))E − 2μ
∑

e∈Γh
1∪Γ1

({D(wh)ne}, [vh])e

+ 2εμ
∑

e∈Γh
1∪Γ1

({D(vh)ne}, [wh])e + μ
∑

e∈Γh
1∪Γ1

σ

|e|([w], [v])e,

(3.3)

bNS(vh, q
h
1 ) = −

∑
E∈Eh

1

(qh1 ,∇ · vh)E +
∑

e∈Γh
1∪Γ1

({qh1 }, [vh] · ne)e, (3.4)

aD(z
h
2 , q

h
2 ) =
∑
E∈Eh

2

(
K

μ
∇zh2 ,∇qh2

)
E

−
∑
e∈Γh

2

({
K

μ
∇zh2 · ne

}
, [qh2 ]

)
e

+ ε
∑
e∈Γh

2

({
K

μ
∇qh2 · ne

}
, [zh2 ]

)
e

+
∑
e∈Γh

2

σ

|e|([z
h
2 ], [q

h
2 ])e.

(3.5)

The DG discretization of the nonlinear term u · ∇u has been studied ex-
tensively, for instance, in [19]. For this, we introduce additional notation.
For an element E ∈ Eh, let N (E) denote the neighboring element sharing
part of ∂E. When the side of E belongs to ∂Ω, then N (E) is not defined,
and by convention we set vh|N (E) = 0 for any function vh ∈ Xh

1 . We also
denote by nE the unit outward normal to E. The inflow boundary of E
with respect to a function zh ∈ Xh

1 is defined by

∂E−(zh) = {x ∈ ∂E : {zh(x)} · nE < 0}.
We are now ready to define the form cNS.

cNS(zh;vh,wh) =
∑
E∈Eh

1

(zh · ∇vh,wh)E +
1

2

∑
E∈Eh

1

(∇ · zh,vh ·wh)E

− 1

2

∑
e∈Γh

1∪Γ1

([zh] · ne, {vh ·wh})e

+
∑
E∈Eh

1

({zh} · nE(vh|E − vh|N (E)),wh|E)∂E−(zh)\Γ12
.

(3.6)
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The norms associated with the discrete spaces are:

‖v‖Xh
1
=

⎛
⎝∑

E∈Eh
1

‖D(v)‖2L2(E) +
∑

e∈Γh
1∪Γ1

|e|−1‖[v]‖2L2(e)

⎞
⎠

1/2

,

‖q‖Qh
1
= ‖q‖L2(Ω1),

‖q‖Qh
2
=

⎛
⎝∑

E∈Eh
2

∥∥∥∥K
1/2

μ1/2
∇q
∥∥∥∥
2

L2(E)

+
∑
e∈Γh

2

|e|−1‖[q]‖2L2(e)

⎞
⎠

1/2

.

3.1.2. Error Analysis. The DG method was analyzed in [18] for
different boundary conditions for the Darcy pressure. It is a simple tech-
nicality to redo the analysis for the case of Neumann boundary condition.
Existence and uniqueness of the numerical solution (Uh

1 , P
h
1 , P

h
2 ) are ob-

tained under small data condition similar to (2.17). Convergence rates are
optimal. More precisely, there is a constant M independent of h such that

‖u1 −Uh
1 ‖Xh

1
+ ‖p1 − P h

1 ‖Qh
1
+ ‖p2 − P h

2 ‖Qh
2
≤M(hk1 + hk2). (3.7)

Using (3.1) and the fact that ‖ · ‖L2(Ω1) ≤ M‖ · ‖Xh
1
(see [19]), we obtain

an error bound of the velocity field in the L2-norm.

‖u−Uh‖L2(Ω) ≤M(hk1 + hk2). (3.8)

As a consequence, using a trace theorem, an inverse inequality, and the
Lagrange interpolant of u, we have

∀e ∈ Γh, ‖u−Uh‖L2(e) ≤M(hk1−1/2 + hk2−1/2). (3.9)

One can also show that the velocity Uh is bounded in the L2 norm by the
data: there is a constant M > 0 independent of h, but dependent on the
data μ, ‖f1‖L2(Ω1), ‖f2‖L2(Ω2) and ‖U‖L2(∂Ω), such that

‖Uh‖L2(Ω) ≤M. (3.10)

Remark 3.1. If the Stokes equations are used instead of the Navier–
Stokes equations, existence and uniqueness of the numerical solution is
unconditional. Error bounds such as (3.7) are valid.

3.2. Numerical Approximation of Transport Problem. Equa-
tion (2.6) is discretized by a combined backward Euler and DG method.
Let Δt be a positive time step and let tj = jΔt denote the time at the jth
step. Let Qh denote the space of discontinuous piecewise polynomials of
degree r. The approximation of the initial concentration is obtained by an
L2 projection:

∀qh ∈ Qh, (Ch
0 , qh)Ω = (c0, qh)Ω.
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For any j ≥ 0, the approximation Ch
j+1 of the concentration c at time tj+1

is defined by the following discrete variational problem.

∀qh ∈ Qh, ϕ

(
Ch

j+1 − Ch
j

Δt
, qh

)

Ω

+ aT (U
h;Ch

j+1, qh)

+dT (U
h;Ch

j+1, qh) = LT (t
j+1; qh), (3.11)

where the bilinear form aT is a DG discretization of the operator −∇ ·
(F (u)∇c) and the bilinear form dT is a DG discretization of the operator

∇ · (uc). Before defining these forms, we introduce the upwind value q↑h of
a function qh in Qh with respect to the velocity field Uh, defined by (3.1).
Let e be an edge shared by the elements E1 and E2 and assume the unit
normal vector ne points outward of E1.

q↑h =

{
qh|E1 if {Uh} · ne > 0,
qh|E2 if {Uh} · ne ≤ 0.

The penalty parameter is denoted by σ. The symmetrization parameter
is denoted by ε ∈ {−1, 1}. The forms aT , dT , LT are given below for any
θh, qh in Qh:

aT (U
h; θh, qh) =

∑
E∈Eh

(F (Uh)∇θh,∇qh)E +
∑
e∈Γh

|e|−1(σ[θh], [qh])e

−
∑
e∈Γh

((F (Uh)∇θh · ne)
↑, [qh])e

+ε
∑
e∈Γh

((F (Uh)∇qh · ne)
↑, [θh])e +

∑
e∈∂Ω

(θh,U+qh)e,

dT (U
h; θh, qh) = −

∑
E∈Eh

(θhU
h,∇qh)E +

∑
e∈Γh

(θ↑h{Uh · ne}, [qh])e,

LT (t
j+1; qh) =

∫
Ω

f(tj+1)qh +

∫
∂Ω

C(tj+1)U−qh.

This scheme uses an improved DG method in which the diffusive fluxes
are upwinded whereas in the standard DG method the diffusive fluxes are
averaged. The improved method is more robust and does not require the
use of slope limiters even in the case of degenerate diffusion coefficients
[24]. The space Qh is equipped with the following semi-norm:

|qh|Qh
=

⎛
⎝∑

E∈Eh

‖∇qh‖2L2(E) +
∑
e∈Γh

|e|−1‖σ1/2[qh]‖2L2(e)

⎞
⎠ .

We now recall the coercivity property of the form aT : there is a constant
κ > 0 such that

∀qh ∈ Qh, aT (U
h; qh, qh) ≥ κ|qh|2Qh

+ ‖(U+)1/2qh‖2L2(∂Ω). (3.12)
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This is straightforward for the NIPG method (ε = 1) and in that case the
constant κ = min(1, α) where α is the lower bound for F (u). For the SIPG
method (ε = −1), we use the fact that the matrix F (Uh) is bounded above
and the coercivity is obtained if the penalty parameter is large enough.

We will use the following inverse inequality. There is a constantM > 0
independent of h such that

∀qh ∈ Qh, ∀E ∈ Eh, ‖qh‖L∞(E) ≤Mh−1‖qh‖L2(E). (3.13)

3.2.1. Existence and Uniqueness of Concentration. As the sys-
tem is linear, it suffices to show uniqueness. Clearly the initial concentra-
tion is uniquely defined. Fix j ≥ 0. Let θh = Cj+1

h − C̃j+1
h be the difference

of two solutions of (3.11). The function θh satisfies
ϕ

Δt
‖θh‖2L2(Ω) + aT (U

h; θh, θh) + dT (U
h; θh, θh) = 0.

Next, we use the coercivity (3.12) of aT :
ϕ

Δt
‖θh‖2L2(Ω) + κ|θh|2Qh

≤ |dT (Uh; θh, θh)|.

The first term in dT (U
h; θh, θh) is bounded using Cauchy–Schwarz’s in-

equality, Young’s inequality, the inverse inequality (3.13) and the bound
(3.10).∣∣∣∣∣∣
∑
E∈Eh

(θhU
h,∇θh)E

∣∣∣∣∣∣ ≤
∑
E∈Eh

‖θh‖L∞(E)‖Uh‖L2(E)‖∇θh‖L2(E)

≤Mh−1
∑
E∈Eh

‖θh‖L2(E)‖Uh‖L2(E)‖∇θh‖L2(E)

≤MMh−1
∑
E∈Eh

‖θh‖L2(E)‖∇θh‖L2(E)

≤ M2M
2

κh2
‖θh‖2L2(Ω) +

κ

4

∑
E∈Eh

‖∇θh‖2L2(E).

The second term in dT (U
h; θh, θh) is bounded similarly, but here we take

advantage of the penalty term:
∣∣∣∣∣∣
∑
e∈Γh

(θ↑h{Uh · ne}, [θh])e

∣∣∣∣∣∣
≤M
∑
e∈Γh

|e|−1/2‖σ1/2[θh]‖L2(e)h
1/2‖θ↑h‖L∞(e)‖{Uh · ne}‖L2(e)

≤M
∑
e∈Γh

|e|−1/2‖σ1/2[θh]‖L2(e)h
1/2h−1‖θh‖L2(E12

e )‖{Uh · ne}‖L2(e)

≤M
∑
e∈Γh

|e|−1/2‖σ1/2[θh]‖L2(e)h
1/2h−1‖θh‖L2(E12

e )h
−1/2‖Uh‖L2(E12

e ).
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In the bound above we have used the inverse inequality ‖Uh‖L2(e) ≤
Mh−1/2‖Uh‖L2(E). We also defined the union of the elements who share
the edge e by E12

e . Next, we use the bound on the discrete velocity (3.10)
and we obtain by Young’s inequality:∣∣∣∣∣∣
∑
e∈Γh

(θ↑h{Uh · ne}, [θh])e

∣∣∣∣∣∣≤
M2M

2

h2κ
‖θh‖2L2(Ω)+

κ

4

∑
e∈Γh

|e|−1‖σ1/2[θh]‖2L2(e).

Therefore we have(
ϕ

Δt
− 2M2M

2

κh2

)
‖θh‖2L2(Ω) +

3κ

4
|θh|2Qh

≤ 0.

We conclude that θh = 0 if the time step satisfies the following condition:

Δt <
κh2ϕ

2M2M
2 .

We summarize our result below.
Lemma 3.1. There is a constant M0 > 0 such that if Δt < M0h

2,
there is a unique solution to the scheme (3.11).

3.2.2. Error Analysis. We decompose the error at each time step
into an approximation error η and a numerical error ξ. Let c̃ ∈ Qh ∩ C(Ω)
be an approximation of c in the sense that the following approximation
bounds [5] hold:

‖c(tj)− c̃(tj)‖L2(Ω) ≤Mhr+1‖c(tj)‖Hr+1(Ω),

‖∇(c(tj)− c̃(tj))‖L2(Ω) ≤Mhr‖c(tj)‖Hr+1(Ω),

‖c(tj)− c̃(tj)‖L∞(Ω) ≤Mhr+1‖c(tj)‖Hr+1(Ω),

‖∇(c(tj)− c̃(tj))‖L∞(Ω) ≤Mhr‖c(tj)‖Hr+1(Ω).

We write

Cj
h − c(tj) = ηj − ξj , ηj = Cj

h − c̃(tj), ξj = c(tj)− c̃(tj).

Theorem 3.1. Under the assumption of Lemma 3.1 and the ad-
ditional regularity assumptions c ∈ L2(0, T ;Hr+1(Ω)) ∩ W 1,∞(Ω), ct ∈
L2(0, T ;Hr(Ω)), and c0 ∈ Hr(Ω), there is a constant M independent of
h and Δt such that for all m ≥ 1, and for Δt small enough, we have the
error bound

‖ηm‖2Ω+κΔt
m∑
j=1

|ηj |2Qh
+Δt

m∑
j=1

‖|U|1/2ηj‖2∂Ω ≤M(h2r+h2k1+h2k2+Δt2).
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Proof. The error equation becomes

∀qh ∈ Qh,

(
ϕ
ηj+1 − ηj

Δt
, qh

)
Ω

+ aT (U
h; ηj+1, qh) + dT (u; η

j+1, qh)

=

(
ϕ
∂ξ

∂t
(tj+1), qh

)
Ω

+

(
ϕ
∂c̃

∂t
(tj+1)− ϕc̃

j+1 − c̃j
Δt

, qh

)
Ω

+dT (u −Uh; ηj+1, qh) + aT (U
h; ξj+1, qh) + dT (U

h; ξj+1, qh)

+dT (u −Uh; c(tj+1), qh) + aT (u; c(t
j+1), qh)− aT (Uh; c(tj+1), qh).

We take qh = ηj+1 and we use the coercivity (3.12) of aT :

ϕ

2Δt
(‖ηj+1‖2L2(Ω) − ‖ηj‖2L2(Ω)) + κ|ηj+1|2Qh

+ dT (u; η
j+1, ηj+1)

+‖(U+)1/2ηj+1‖2L2(∂Ω)≤
∣∣∣∣
(
∂ξ

∂t
(tj+1), ηj+1

)
Ω

∣∣∣∣+|dT (u−Uh; ηj+1, ηj+1)|

+

∣∣∣∣
(
∂c̃

∂t
(tj+1)− c̃j+1 − c̃j

Δt
, ηj+1

)
Ω

∣∣∣∣+ |aT (Uh; ξj+1, ηj+1)|

+|dT (Uh; ξj+1, ηj+1)|+ |dT (u−Uh; c(tj+1), ηj+1)|
+|aT (u; c(tj+1), ηj+1)− aT (Uh; c(tj+1), ηj+1)|. (3.14)

Since the weak solution satisfies ∇ · u|Ω1 = 0 and ∇ · u|Ω2 = f2 ≥ 0, we
use integration by parts and obtain:

dT (u; η
j+1, ηj+1) + ‖(U+)1/2ηj+1‖2L2(∂Ω) =

1

2
(U+, (ηj+1)2)∂Ω

+
1

2
(U−, (ηj+1)2)∂Ω.

We now bound the first and second terms in the right-hand side of (3.14),
by the approximation properties, under the regularity assumption for the
exact solution c.∣∣∣∣

(
∂ξ

∂t
(tj+1), ηj+1

)
Ω

∣∣∣∣ ≤ ‖ηj+1‖2L2(Ω) +Mh2r
∥∥∥∥∂c∂t (tj+1)

∥∥∥∥
2

Hr(Ω)

,

and
∣∣∣∣
(
∂c̃

∂t
(tj+1)− c̃j+1 − c̃j

Δt
, ηj+1

)
Ω

∣∣∣∣ ≤ ‖ηj+1‖2L2(Ω) +
Δt

12

∫ tj+1

tj

∥∥∥∥∂
2c̃

∂t2

∥∥∥∥
2

L2(Ω)

.

We now bound the dT terms. Using standard techniques and inequality
(3.13), we obtain

dT (u−Uh; ηj+1, ηj+1) ≤Mh−1‖ηj+1‖L2(Ω)‖u−Uh‖L2(Ω)|ηj+1|Qh
.

Using the velocity bound (3.8) and the fact that k1 ≥ 1, k2 ≥ 1, we have

dT (u −Uh; ηj+1, ηj+1) ≤ κ

8
|ηj+1|2Qh

+M‖ηj+1‖2L2(Ω).
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Similarly, using (3.10), we have

dT (U
h; ξj+1, ηj+1) ≤M‖ξj+1‖L∞(Ω)‖Uh‖L2(Ω)|ηj+1|Qh

≤M‖ξj+1‖L∞(Ω)|ηj+1|Qh
.

and using (3.8), (3.9) and the boundedness of the weak solution, we have

dT (u−Uh; c(tj+1), ηj+1)≤M‖c(tj+1)‖L∞(Ω)|ηj+1|Qh⎛
⎜⎝‖u−Uh‖L2(Ω)+

⎛
⎝∑

e∈Γh

|e|‖u−Uh‖2L2(e)

⎞
⎠

1/2
⎞
⎟⎠

≤κ
8
|ηj+1|2Qh

+M(h2k1+h2k2).

Ω1

0.25

Ω2

Fig. 1. Domain with step interface

The diffusive term aT (U
h; ξj+1, ηj+1) is bounded using standard tech-

niques.

aT (U
h; ξj+1, ηj+1) ≤ κ

8
|ηj+1|2Qh

+
1

8
‖(U+)1/2ηj+1‖2L2(∂Ω)

+Mh2r‖c(tj+1)‖2Hr+1(Ω).

To bound the remaining diffusive terms, we use the boundedness of c, the
Lipschitz continuity of F and the bounds (3.8) and (3.9).

aT (u; c(t
j+1), ηj+1)−aT (Uh; c(tj+1), ηj+1) ≤ κ

8
|ηj+1|2Qh

+M(h2k1 +h2k2).

We can now conclude by combining all bounds, summing over the time
steps, and using Gronwall’s inequality.

4. Numerical Examples. In this section, we show that our scheme
is robust under different physical conditions (faults, discontinuous perme-
ability field). In all the numerical examples, the fluid viscosity is equal to
1, and the Beavers–Joseph–Saffman constant G is equal to 0.1. Meshes are
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PRES

750
650
550
450
350
250
150
50

VELO

0.38
0.32
0.26
0.2
0.14
0.08
0.02

Fig. 2. Step interface problem: pressure contours (left) and velocity norm and
streamlines (right)

generated using Gmsh [17], visualization is done using Tecplot [1] and the
simulations are done using software developed by the author. The linear
systems are solved by a sparse direct solver. Uniqueness of the pressure is
obtained by imposing a Dirichlet boundary condition on part of the sub-
surface boundary.

4.1. Step Interface. In the first example, the rectangular domain
Ω = (0, 2) × (0, 1.25) is partitioned into two subdomains by a polygonal
interface with three successive uniform steps (see Fig. 1). For the flow
problem, the Stokes equations are solved in Ω1 and the Darcy equations
in Ω2.

The permeability of Ω2 is K = 10−4I. Zero Dirichlet boundary condi-
tions are imposed on the bottom horizontal side of Ω2 and zero Neumann
boundary conditions on the remainder of Ω2 \ Γ12. The Stokes velocity on
Γ1 is set equal to (−3(y−1.25)(y−0.5), 0), which means the velocity profile
is parabolic along the vertical side of Γ1. The pressure contours and Eu-
clidean norm of velocity contours with streamlines are shown in Fig. 2. The
DG scheme is used with ε = 1, σ = 0.1 and k1 = k2 = 2. The mesh contains
5, 760 triangles of varying size so that the triangles in the neighborhood of
the interface are the smallest. We now describe the characteristics of the
transport problem for this example. The coefficients are: ϕ = 0.2, αl = 1,
αt = 0.1, c0 = C = 0, dm = 10−3 in Ω2, dm = 5 × 10−3 in Ω1. In this
example, we simulate the leakage of a contaminant in the surface by the
source function:

f(t, x, y) =

{
1, t < 1, and ((x − 0.2)2 + (y − 0.85)2)1/2 ≤ 0.15
0, otherwise.

Concentration contours at the time t = 1 where the plume reaches its
maximum peak are shown in Fig. 3 (left). At this time, the contaminant
has just reached the interface. Concentration contours at later times are
shown on Fig. 3 (right) and Fig. 4. Once the contaminant penetrates the
subsurface it is transported downwards and exits the domain via the bottom
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horizontal boundary. The numerical approximation of the concentration
is obtained with the DG method with ε = 1, r = 1, σ = 0.1 and Δt =
2.5× 10−3.
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Fig. 3. Concentration contours at t = 1 (left) and t = 1.5 (right)

CONC1
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

CONC1
0.45
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0

Fig. 4. Concentration contours at t = 2.5 (left) and t = 4 (right)

Fig. 5. Nonuniform permeability problem

4.2. Nonuniform Permeability Field. In this second example, the
permeability of the subsurface takes random values between 10−7I and
3.8 × 10−5I. The domain is Ω = (0, 12) × (0, 6) and the interface is a
horizontal line containing two steps of opposite direction. Figure 5 shows
the domain and the permeability distribution.

First for the flow problem, we impose a parabolic velocity profile on
the left vertical boundary of Ω1 and a similar profile on the right vertical
boundary of Ω1 but with a smaller magnitude. Zero Neumann boundary
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conditions are imposed on the Darcy pressure for the vertical boundaries
of Ω2 and Dirichlet pressure is prescribed on bottom horizontal boundary.
The Dirichlet values are given below:

∀y ≥ 4, u1(0, y) =

(
1

4
(y−4)(8−y), 0

)
, u1(12, y) =

(
3

16
(y−4)(8−y), 0

)
,

∀0 ≤ x ≤ 12, u1(x, 6) = (1, 0), p2(x, 0) = 105.

The Navier–Stokes equations are solved in Ω1 and the Darcy equations
in Ω2. The mesh contains 562 triangles in the surface and 625 triangles
in the subsurface. The DG method with parameters σ = 1, ε = 1, k1 =
k2 = 2 is used. The Picard iterations for the flow problem converge after
nine iterations, with a set tolerance of 10−7. Figure 6 shows the pressure
contours and the velocity field. Since the exact solution is unknown, we
compute the differences between the solutions obtained on two successive
meshes (i.e., of size h and h/2). We obtain a rate ofO(h0.4) for theH1 norm
of the Navier–Stokes velocity and O(h0.4) for the H1 norm of the Darcy
pressure. These rates confirm convergence of the scheme for solutions with
low regularity.

Second for the transport problem, the concentration is prescribed on
the inflow boundary (C = 1). The initial concentration is zero. The other
parameters defining the problem are: r = 1, ϕ = 0.2, αl = 0.1, αt = 0.01,
dm = 10−4 in Ω2, dm = 10−2 in Ω1. Discontinuous piecewise linear approx-
imation of the concentration is computed with the following parameters:
σ = ε = r = 1. Figures 7–9 present the concentration contours at succes-
sive times. We observe that the contaminant sweeps the surface region very
fast, then percolates down the subsurface at a slower rate. This is expected
as the velocity in the subsurface is much smaller than the velocity in the
surface. We also note that the contaminant is transported downwards in
the subsurface in a nonuniform way. This is explained by the discontinuous
distribution of the permeability field.

PRES
1.20E+05
1.18E+05
1.16E+05
1.14E+05
1.12E+05
1.10E+05
1.08E+05
1.06E+05
1.04E+05
1.02E+05

Fig. 6. Nonuniform permeability problem: pressure contours and velocity field
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Fig. 7. Concentration at different times: t1 = 0.5 (left) and t2 = 3 (right)
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Fig. 8. Concentration at different times: t3 = 8 (left) and t4 = 13 (right)
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Fig. 9. Concentration at different times: t5 = 18 (left) and t6 = 20 (right)

4.3. Fractured Subsurface. In this example, the porous medium
contains three horizontal layers of varying permeability that are intersected
by two slanted faults (Ω = (0, 12) × (0, 6)). The permeability matrix is
equal to 10−4I, 10−9I, 10−5I, 10−7I in the faults, the top layer, the middle
layer, and the bottom layer, respectively (see Fig. 10). Boundary conditions
for the flow problem are the same as in the previous example (Sect. 4.2).
Figure 11 shows the pressure contours and the velocity field obtained with
the DG method of first and second order, which yields 8, 707 and 17, 679
degrees of freedom, respectively. The pressure follows a vertical gradient,
and thus the velocity in the middle layer (denoted by B in Fig. 10) remains
small.

Next we describe the parameters chosen for the transport problem.
The coefficients are: ϕ = 0.2, αl = 0.1, αt = 0.01, C = 0, dm = 10−4 in
Ω2, dm = 10−2 in Ω1. As in the first example, we simulate the leakage of
a contaminant in the surface. The initial concentration is equal to one in
a localized region in the surface, and zero elsewhere. In addition, there is
a temporary source of contaminant (for t ≤ t∗, with t∗ = 3) defined by:
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Ω1

A
A
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B

C
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B

D D

Fig. 10. Domain for surface coupled with fractured subsurface. Permeability value
is 10−9 in A region, 10−5 in B region, 10−7 in C region, and 10−4 in D region (slanted
fractures)
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Fig. 11. Fractured subsurface problem: pressure and velocity field obtained with
the DG method of order one (left figure) and order two (right figure)

f(t, x, y) =

{
0.5, t < 3, and ((x− 2.0)2 + (y − 5.1)2)1/2 ≤ 0.5
0, otherwise.

As in the previous example, we obtain the numerical approximation of
the concentration by the DG method with parameters r = ε = σ = 1. In
Figs. 12–14, we show the concentration contours at different times. We note
that the mesh used for the transport problem is the same as the one used
in Fig. 11. The overall behavior of the solution is as expected: the contam-
inant is transported faster in the surface region, and some of it penetrates
the subsurface via the slanted fractures. Because of the intermediate value
of the permeability in the middle layer, some of the contaminant appears
in part of region B neighboring the fractures.

5. Conclusions. The coupling of surface/subsurface flow and trans-
port is studied theoretically and numerically by the use of finite element
methods and discontinuous Galerkin methods. It is shown that the DG
scheme is robust and yields accurate solutions for inhomogeneous or frac-
tured subsurface. It would be of interest to study the effects of projection of
the velocity field, if independent meshes are used for the flow and transport
problems.



Discontinuous Galerkin for Coupled Flow and Transport 277

1.00
0.95
0.89
0.84
0.78
0.73
0.67
0.62
0.56
0.51
0.46
0.40
0.35
0.29
0.24
0.18
0.13
0.07
0.02

Fig. 12. Concentration contours at time t1
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Fig. 13. Concentration contours at time t2 = 2t1
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Fig. 14. Concentration contours at time t3 = 5t1
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