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Abstract. A grid computing environment is a parallel and distributed system that
brings together various computing capacities to solve large computation prob-
lems. Task scheduling is a critical issue for grid computing, which maps tasks
onto a parallel and distributed system for achieving good performance in terms
of minimizing the overall execution time. This paper presents a genetic algorithm
to solve this problem for improving the existing genetic algorithm with two main
ideas: a new initialization strategy is introduced to generate the first population
of chromosomes and the good characteristics of found solutions are preserved for
new generations. Our proposed algorithm is implemented and evaluated using a
set of well-known applications in our specific-defined system environment. The
experimental results show that the proposed algorithm outperforms other algo-
rithms within several parameter settings.

1 Introduction

In past few years, grid computing systems and applications become popular [3]], due to
a rapid development of many-core. A grid computing environment is a parallel and dis-
tributed system that brings together various computing capacities to solve large compu-
tation problems. In grid environments, task scheduling, which plays an important role,
divides a larger job into smaller tasks and maps tasks onto a parallel and distributed sys-
tem [[146]. The goal of a task scheduling is typically to schedule all the tasks on a given
number of available processors so as to minimize the overall length of time required to
execute the whole program.

A parallel and distributed computing system may be homogeneous [10] or hetero-
geneous systems [ZU11413]]. A homogeneous system means that the processors are the
same performance in processing capabilities. On the other hand, heterogeneous systems
have different processing capabilities in the target system. In general, the processors
are connected by an interconnection network, which is either fully-connected [11/13]
or partially-connected [2]. In the fully-connected network every processor can commu-
nicate with each other, whereas data can be transferred to some specified processors
in a partially-connected network. Besides, the task duplication issue [10] was also dis-
cussed to reduce the communication time by duplicating some tasks on more than one
processor to eliminate communication cost. To avoid increasing energy consumption,
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here we consider the target system which is the fully-connected heterogeneous systems
without task duplication.

The genetic algorithm (GA), first proposed by Holland [5]], provides a popular so-
lution for application problems [4/9]. GAs have been shown that outperforms several
algorithms in the task scheduling problem, which simply define the search space to be
the solution space in which each point is denoted by a number string, called a chro-
mosome. Based on these solutions, three operators which are selection, crossover, and
mutation, are employed to transform a population of chromosomes to better solutions it-
eratively. In order to keep the good features from the previous generation, the crossover
operator exchanges the information from two chromosomes chosen randomly, and the
mutation operator alters one bit of a chromosome.

In this paper, we proposed a genetic algorithm for task scheduling on a grid com-
puting system, called TSGA. In general, GA approaches directly initialize the first pop-
ulation by some uniform random process. TSGA develops a new initialization policy,
which divides the search space into specific patterns in order to accelerate the con-
vergence of solutions. To solve the task scheduling problem, a chromosome usually
contains a mapping part and an order part to indicate the corresponding computer and
the executing order. In the standard GA, when crossover and mutation operators are
applied, both of the mapping part and the order part will be changed, which brings that
the parents’ characteristics cannot be kept in the next generation. Inspired by the idea
of eugenics, TSGA presents new operators for crossover and mutation to preserve good
features from the previous generation.

The remainder of the paper is organized as follow. In the next section, we provide the
problem definition. The proposed genetic scheduling algorithm is presented in Section
3. We describe our experimental results in Section 4. Finally, conclusions are drawn in
Section 5.

2 Problem Definition

Task scheduling is mapping smaller tasks to multiprocessors. Tasks with data prece-
dence are modeled by a Directed Acyclic Graph (DAG) [13]]. The main idea of DAG
scheduling is minimizing the makespan which is the overall execution time for all tasks.

2.1 DAG Modeling

A DAG G = (V,E) is depicted in Fig. 1(a), where V is a set of N nodes and E is a
set of M directed edges. For the problem of task scheduling, V represents the set of
tasks and each task contains a sequence of instructions that should be completed in a
particular order. Let w; ; be the computation time to finish a particular task #; € V on
the processor P;, detailed in Fig. 1(b). Each edge ¢;; € E in the DAG indicates the
precedence constraint that task #; should complete its execution before task ¢; starts. Let
¢;,j denote the communication cost needed to transport the data between task #; and task
tj, which is the weight on an edge e¢; ;. If #; and ¢; is assigned to the same processor, the
communication cost c; ; is zero.

The source node of an edge is called a predecessor of that node. Similarly, the des-
tination node emerged from a node is called a successor of that node. In Fig. 1(a), ; is
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the predecessor of 1, 3, 14, and 5. On the other hand, 1,, #3, 74, and #5 are the successor
of #1. In a graph, a node with no parent is called an entry node, and a node with no child
is called an exit node. If a node #; is scheduled to a processor P;, the start-time and the
finish-time of 1; are denoted by ST (1;, P;) and FT (t;, P;), respectively.
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Fig. 1. An example of (a) DAG, (b) the computation cost matrix, and (c) an example of scheduling

2.2 Makespan

After all tasks are scheduled onto parallel processors, considering a particular task #; on
the processor P}, the start-time ST (¢;, P;) can be defined as

ST(Ii,Pj) = max{RTj,DAT(ti,Pj)},

where DAT (t;, P;) is the data arrival time of task #; at the processor P;, which is the
time when all the needed data have been transmitted. On the other hand, DAT (t;, P;) is
defined as
DAT(I,‘,P]‘) = max {(FT(l‘k,Pj) +Ck,i)}7
tyEpred(t;)

where pred(t;) denotes the set of immediate predecessor tasks of the task #;. Since
FT(l‘k,Pj) = Wk, j +ST(l‘k,Pj)

and
RT;= max {FT(i.P;)},
tyEexe(Pj)
where exe(P;) is the set containing tasks which executes on the processor P;, the overall
schedule length of the entire program is the largest finish time among all tasks and can
be expressed as
makespan = rtnea‘}{FT(ti,Pj)}.

Fig. 1(c) demonstrates a scheduling for the graph described in Fig. 1(a). The makespan
of this scheduling is 23.
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3 Proposed Method

In this section, we introduce TSGA algorithm in detail, including the encoded and de-
coded representations and five important operators.

3.1 The Representation of Solutions

The representation of a chromosome is given in Fig. 2, which is divided into a mapping
part (Sy7) and an order part (Sp). We use integer arrays to store Sy and Sp and the size
of arrays is equal to the number of tasks. If Sy[i] is j and So[i] is k, it means that a task
t is executed on the processor P;.

According to the chromosome represented in Fig. 2, the solution of a DAG in Fig.
1(a) can be scheduled in Fig. 1(c). First, we assign tasks into the mapping processor
according to the index of Sy;. Tasks 14, t7, and tg are scheduled on processor P;. Tasks 73,
and ts are executed on processor P,. Tasks t1, 1, t5, and t9 are assigned to the processor
P;. Following the order in Sp, we schedule #4, f7, and fg in the order of 14, 3, t7 in P;.
For P,, t3 is executed before 5. Tasks t1, 1, tg, and t9 are taken in the order of ¢y, 15, t¢,
t9 in P3. Finally, we should count the wait time for communicating, if two dependent
tasks are scheduled on a different processor.

TSGA defines the fitness function in order to measure the quality of solutions. The
purpose of the scheduling problem is minimizing the makespan. Thus, the fitness func-
tion is defined as the makespan.

The mapping part (Sy) The order part (So)
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Fig. 2. A representation of chromosome

3.2 TSGA

An algorithmic flowchart of TSGA is given in Fig. 3. If the number of generation is not
smaller than the maximum generation G, TSGA will output the best solution.

Initialization. As shown in Algorithm 1, TSGA initializes the first population that
consists of encoded chromosomes. Each chromosome is composed of the processor
assignment and the execution order. Instead of using the random strategy to give the
processor assignment, we devise a new method dividing the search space into specific
patterns equally. The search space is divided into log, n subspaces, where n is the num-
ber of processors. Since the best scheduling solution may occupy either few processors
or most processors in different cases, we give some patterns with a different number of
processors in order to explore the solution space in different aspects.
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Fig. 3. TSGA flowchart

Crossover Map Operator. As shown in Fig. 4(a), the crossover map operator is used
for changing the mapping processor of two chromosomes. The crossover map operator
chooses two chromosomes S and T from the population and an integer / between 1 and
N randomly. TSGA keeps the processor assignment which is located on the left of /.
For the processors on the right of 7, we exchange the processors of S and 7 which are
assigned to execute the same task. The processor assignments of tasks 7s, 7, and t9 are
exchanging directly, since those tasks are occupied in the same place in both chromo-
somes. On the other hand, tasks 77 and fg are located at different places in these two
chromosomes, so they are scheduled to the processor in which they are assigned to an-
other chromosome, and TSGA exchanges the processor assignments. The chromosome
S"” and T” are generated by the crossover map operator in SGA.

Crossover Order Operator. The crossover order operator is practiced to the second
part of the chromosome. In Fig. 4(b), after choosing two chromosomes S and 7', TSGA
chooses a crossover point I between 1 and N. Then, Step 1 copies the left portion of / in
S and T to the new chromosome S’ and T”, respectively. In order to complete the right
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Algorithm 1. Initialization operator(C,n, DAG)
Require: C: population set; n: the number of processors
Ensure: C

1: d +logyn {Divide chromosomes into d groups}

2: for group =1 to d do
3:  fori=1to population size/d do
4. Su « choose a processor for each task from {1,2;... ,Zd}
5: So + an executed order according to a topological ordering
6: S Sy ® SO
7: C + CU{S}
8:  end for
9: end for
10: return C
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Fig. 4. An example of (a) the crossover map operator and (b) the crossover order operator

segment of I, the crossover order operator carries tasks into " according to the order in
T. Step 2 uses the same rules in step 1 to generate the second offspring 7”. Note that
the processor assignment should be adjusting to corresponding to the original processor
assignment. The chromosome S” is created by the crossover order operator in SGA.
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Fig. 5. An example of (a) the mutation map operator and (b) the mutation order operator

Table 1. Parameter settings used in the experiment

Population size  Generation size  Crossover rate  Mutation rate Selection operator
400 1000 0.8 0.2 Binariesry tournament

Mutation Map Operator. The mutation map operator is used for the mapping section
of the chromosome, shown in Fig. 5(a). Like the crossover operator, choosing a ran-
dom number I between 1 to N is essential. Then, the mutation map operator changes
the processor in which the chosen task So[/] is executed to another processor chosen
randomly.

Mutation Order Operator. The mutation order operator is applied to the second part
of the chromosome. We select an index Iy from 1 to N randomly, which decides a task
So[lo] to will be mutated. We create an empty set cand which would contain indexes of
tasks that can be inserted. I; and I, are the index of the first related task of task So[lo]
on the left and right of I, respectively. For the index i between I; + 1 and Iy, if DAT of
Soli] is larger than DAT of So[lo], task So[lp] should be executed before task Spli], since
task So[lo] can be executed early. For the index i between Iy and I, — 1, if DAT of Soi]
is smaller than DAT of Sp[lp], task So[i] should be executed before task So[lp], since
task So[i] can be executed early. We add tasks which meets those conditions to the set
cand. If cand is empty, we fill cand with indexes between /1 + 1 and I, — 1. We select
an index Iy from cand randomly, and move task So[lp] to the location Iy. Finally, we
adjust the processor assignment to correspond with the original processor assignment,
for the same reason mentioned in the crossover order operator. Fig. 5(b) demonstrates
the mutation order operator.
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4 Experimental Results

This paper considers five well-known applications, Gauss-Jordan elimination (GJ) [[14],
the fast Fourier transformation (FFT) [[L1], Robot control, Sparse matrix solver, and
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Fig. 6. Experimental results with varying parameters
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SPEC fpppp are regared as the benchmark in the problem. Robot control, Sparse matrix
solver, and SPEC fpppp are taken from a Standard Task Graph (STG) archive [15]. GJ,
FFT, Robot control, Sparse matrix solver, and SPEC fpppp have 300, 223, 88, 96, and
334 tasks, and 552, 382, 131, 67, and 1145 edges, respectively. Each application has
various features depending on different settings as below.

1) The number of processors (P):
SETp = {4,8,16}

2) The range percentage of computation costs on processors ():
SETy ={0.1,0.25,0.5,0.75,1.0}

3) The communication to computation ratio (CCR):
SETccr = {0.25,0.5,1.0,2.0,4.0}

To evaluate our proposed algorithms, we have implemented them using an AMD
FX(tm)-8120 eight-core processor (3.10 GHz) using C++ language. Generally speak-
ing, the excellent solution of various problems would be generated by various parame-
ters for a specific algorithm. However, we use the same parameter values listed in Table
1, to show the performance in terms of makespan in this paper.

The performance of TSGA is compared with four algorithms, CPGA [10], SGA,
GVNS [13], and HEFT [[11]]. For each data configuration of five DAGs, the average of
makespan obtained over 10 runs is computed for CPGA, SGA, GVNS, and TSGA. On
the other hand, HEFT is run only once, since it is a deterministic algorithm.

The experimental results of five DAGs with P fixed to 16 and varying 3 value are
given in Fig. 6, which presents histograms in a table way. Column 1 indicates that a
specific application was tested. The parameter CCR is recorded in the row 1, if the CCR
value is changing. Every application, shown in each row, was tested with different CCR
value and varying f3 value. Each column contains five applications with fixed CCR value.
For instance, the result of testing FFT with CCR = 4 and varying 3 value is given in the
row 3 and column 4, and so on. Note that, the vertical coordinate shows the makespan.

5 Conclusion

In this paper, we presented a genetic algorithm for task scheduling, called TSGA, to
solve the problem of task scheduling on parallel and distributed computing systems
by improving the standard genetic algorithm by increasing the convergence speed and
preserving the good features of previous generation. To demonstrate the TSGA per-
formance, we introduced new genetic operators in TSGA. The initialization operator
divides the search space into specific patterns so that we can save much time to explore
the whole search space. The crossover map operator and the mutation map operator
help us to find more suitable processor assignments and the crossover order operator
and the mutation order operator provide us with more efficient execution order. For
some cases with high CCR values, TSGA schedules tasks to occupy fewer processors
to reduce the communication time. For some cases with small  values, TSGA assigns
tasks to occupy the processors which have higher processing capability to minimize the
execution time. The experimental results show that the proposed algorithm outperforms
other algorithms within several parameter settings.
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