
Multiplier System in the Tile Assembly Model

with Reduced Tileset-Size

Xiwen Fang and Xuejia Lai�

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
lai-xj@cs.sjtu.edu.cn

Abstract. Previously a 28-tile multiplier system which computes the
product of two numbers was proposed by Brun. However the tileset-size
is not optimal. In this paper we prove that multiplication can be car-
ried out using less tile types while maintaining the same time efficiency:
we propose two new tile assembly systems, both can deterministically
compute A ∗ B for given A and B in constant time. Our first system
requires 24 computational tile types while our second system requires 16
tile types, which achieve smaller constants than Brun’s 28-tile multiplier
system.

Keywords: tile assembly model, DNA computing, multiplier,
tileset-size.

1 Introduction

1.1 Background and Related Work

Since Adleman’s pioneering research which shows DNA could be used to solve
Hamiltonian path problem [1], many researchers have explored the ability of bio-
logical molecules to perform computation [2,3,4]. The theory of tile self-assembly
model which was developed by Winfree and Rothemund [5,6,7] provides a useful
framework to study the self-assembly of DNA. This model has received much
attention over the past few years. Researchers have demonstrated DNA imple-
mentations of several tile systems: Barish et al. [8] have demonstrated DNA im-
plementations of copying and counting; Rothemund et al. [9] have demonstrated
DNA implementation of xor tile system. Several systems solving satisfiability
problem are also proposed [10,11,12].

The efficiency of a tile asssembly system involves two factors: the tileset-size
and the assembly time. In [13], Brun proposed a multiplier system that computes
the product of two numbers, which requires 28 distinct computational tile types
besides the tiles constructing the seed configuration. The computation can be
carried out in time linear in the input size. However, the tileset-size of Brun’s
system is not optimal, i.e. multiplier system can be implemented using less tile
types.

� Corresponding author.

A. Abraham et al. (eds.), Innovations in Bio-inspired Computing and Applications, 95

Advances in Intelligent Systems and Computing 237,

DOI: 10.1007/978-3-319-01781-5_9, c© Springer International Publishing Switzerland 2014

96 X. Fang and X. Lai

In this paper we present two new multiplier systems which achieve smaller
constants for the multiplication problem than the previous 28-tile multiplier
system proposed by Brun, while maintaining the same time efficiency. In our
first system, we show that multiplication can be carried out using 24 tile types
instead of 28 tiles types, then we propose a second multiplier system and show
that the tileset-size can be further reduced to 16.

The remaining of this paper is organized as follow: in section 1.2 we briefly
introduce the concept of tile assembly model to assist the reader. In section 1.3
we introduce the corresponding algorithms. Several subsystems are discussed in
section 2. In section 3 we present two new multiplier systems and compare our
system with existing system[13] in terms of tileset-size and assembly time. Our
contributions are summarized in section 4.

1.2 Tile-Assembly Model

To assist the reader, in this section we briefly introduce the concept of tile
assembly model. We refer to Σ as a finite alphabet of symbols called binding
domains. We assume null ∈ Σ. Each tile has a binding domain on its north, east,
south and west side. We represent the set of directions as D = {N,E, S,W}.

A tile over a set of binding domains is a 4-tuple. For a tile t, for 〈δN , δE , δS ,
δW 〉∈ Σ4, we will refer to bdd(t) as the binding domain of tile t on d ’s side.

A strength function g : Σ × Σ → N denotes the strength of the binding
domains. g is commutative and ∀δ ∈ Σ, g(δ, null) = 0. Let T be a set of tiles
containing empty. A tile system S is a triple< T, g, ε >. ε ∈ N is the temperature.
A tile can attach to a configuration only in empty positions if and only if the
total strength of the appropriate binding domains on the tiles in neighboring
positions meets or exceeds the temperature ε.

Given a set of tiles Γ , a seed configuration S′ : Z2 → Γ and S =< T, g, ε >,
configurations could be produced by S on S′. If no more attachment is possible,
then we have the final configuration.

The reader may refer to [5,6,7] for more discussion of the concept of tile
assembly model.

Let || be a special binding domain which connects the tiles constructing seed
configuration. To simplify the discussion, for all of the systems involved in this
paper, we define the strength funcion g as follow:

∀δ ∈ Σ, g(δ, null) = 0; g(||, ||) = 2; ∀δ ∈ Σ, δ �= ||, g(δ, δ) = 1. (1)

1.3 Preliminary Algorithms

Intuitively, a multiplier system could be implemented by combining subsystems
which compute f(x) = 2x and f(x, y) = 2x+ y respectively.

Given nA-bit binary integer A and nB-bit binary integer B. We denote by

Ai and Bi the ith digit of A and B. A =
nA−1∑

i=0

2iAi, B =
nB−1∑

i=0

2iBi. We use

Algorithm 1 to compute A ∗B.

Multiplier System in the Tile Assembly Model with Reduced Tileset-Size 97

Input: nA-bit binary integer A , nB-bit binary integer B (nB ≥ 2)
Output: S = A ∗ B

1 i← nB − 2.
2 S ← A
3 while i ≥ 0 do
4 if (Bi = 0) then
5 S ← 2S
6 end
7 else
8 S ← 2S + A
9 end

10 i← i− 1

11 end

Algorithm 1. Given binary integers A and B, compute A ∗B

2 Subsystems of Multiplier System

Our multiplier system is a combination of several subsystems. In this section we
will define these subsystems respectively.

To simplify the definition of the seed configuration, for nA-bit integer A, we
denote by Ai(0 ≤ i ≤ nA − 1) the ith digit of A. We also define Ai(nA ≤ i ≤
n − 1, n > nA) as follow: we pad the nA-bit binary integer A with n-nA 0-bits

and denote these 0-bits by Ai(nA ≤ i ≤ n − 1). Thus A =
n−1∑

i=0

2iAi. The same

definition holds for any other input variables in this paper.

2.1 Shifter Tile System

In this section we propose an 8-computational-tile system for computing f(A,B)
= (2A,B).

 0,0

 0,0

s,0s,0

 0,1

 0,1

s,0s,0

 1,0

 0,0

s,0s,1

 1,1

 0,1

s,0s,1

 0,0

 1,0

s,1s,0

 0,1

 1,1

s,1s,0

 1,0

 1,0

s,1s,1

 1,1

 1,1

s,1s,1

(a) (b)

 a,b

 a’,b

s,a’s,a

Fig. 1. Shifter tile system

Let ΣS ={(0, 0), (0, 1), (1, 0), (1, 1), (s, 0), (s, 1)}, and Ts be a set of tiles over
ΣS defined as follow:

Ts = {〈(a′, b), (s, a′), (a, b), (s, a)〉|a, b, a′ ∈ {0, 1}}. (2)

98 X. Fang and X. Lai

Fig.1(a) shows the concept behind the system which includes variable a, b, a′.
All of the tiles has two input sides (south and east) and two output sides (north
and west), for input a′ on the east side, we output the same value on the north
side; for input a on the south side, we output the same value on the west side.
We have a, b, a′ ∈ {0, 1}, thus there are 8 tiles in the system (Fig.1(b)).

Let Γ = {α0β0 = 〈(0, 0), ||, null, ||〉, α0β1 = 〈(0, 1), ||, null, ||〉, α1β0 =
〈(1, 0), ||, null, ||〉, α1β1 = 〈(1, 1), ||, null, ||〉, αβbound = 〈(0, 0), ||, null, null〉,
γ0 = 〈||, null, null, ||〉} γ1 = 〈null, null, ||, (s, 0)〉}. Let Ai, Bi ∈ {0, 1}, n ≥
max(nA, nB) + 1. Let the seed configuration S : Z2 → Γ be such that

⎧
⎪⎨

⎪⎩

S(1, 1) = γ1;S(1, 0) = γ0;

∀i = 0, 1, . . . , n− 2 : S(−i, 0) = αAiβBi ;S(−n+ 1, 0) = αβbound;

For all other (x, y) ∈ Z
2, S(x, y) = empty.

(3)

Theorem 1. Let εS = 2. Given a seed configuration S encoding A and B and
the strength function g as defined in (3) and (1), the system SS =< TS , g, εS >
computes the function f(A,B) = (2A,B).

2.2 Adder Tile System

In this section we propose a 8-tile system computing f(A,B) = (A+B,B).

a,b

v,b

 cc’

 0,0

 0,0

 00

 0,1

 1,1

 00

 1,0

 1,0

 00

 1,1

 0,1

 01

 0,0

 1,0

 10

 0,1

 0,1

 11

 1,0

 0,0

 11

 1,1

 1,1

 11

(b)(a)

Fig. 2. Adder tile system (a)The tile has two input sides(south and east) and two
output sides (north and west). The south side contains the value of the current bit of
A and B; the east side is the carry bit. (b) There are 8 tiles in the system.

Fig. 2(a) shows the concept of this system which include variable a, b, c. For
given i, on the input sides, the variable a and b representAi and Bi; the variable c
represents the corresponding carry bit. We have V = A+B. On the output sides,
v represents Vi and c′ represents the next carry bit. Let a, b, c, c′, v ∈ {0, 1}. There
are three variables a, b, c on the input sides, thus there are 8 tiles in the system.
According to addition rule, we define two functions fv(a, b, c) and fc′(a, b, c)
which computes v and c′ respectively:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if(a+ b+ c = 0), fv(a, b, c) = 0, fc′(a, b, c) = 0;

if(a+ b+ c = 1), fv(a, b, c) = 1, fc′(a, b, c) = 0;

if(a+ b+ c = 2), fv(a, b, c) = 0, fc′(a, b, c) = 1;

if(a+ b+ c = 3), fv(a, b, c) = 1, fc′(a, b, c) = 1.

(4)

Multiplier System in the Tile Assembly Model with Reduced Tileset-Size 99

Let Σ+ = {(0, 0), (0, 1), (1, 0), (1, 1), 0, 1}. We have v = fv(a, b, c), c
′ =

fc′(a, b, c). Let T+ be a set of tiles over Σ+ defined as follow:

T+ = {〈(v, b), c, (a, b), c′〉} (5)

Fig.2(b) shows all of the eight tiles.
Let the seed configuration S be defined as it is in (3) except that γ1 =

〈null, null, ||, 0〉.
Theorem 2. Let ε+ = 2, g defined in (1), Σ+defined as above, and T+ be a set
of tiles over Σ+ as defined in (5). Given a seed configuration S encoding A and
B which is defined above, the system S+ =< T+, g, ε+ > computes the function
f(A,B) = (A+B,B)

2.3 Shifter-Adder Tile System

In this section we propose a 16-computational-tile system computing f(A,B) =
(2A+B,B). Fig. 3(a) shows the concept behind the tile system. For given i, on
the input sides, the variable a and b represent Ai and Bi; a

′ represents Ai−1;
the variable c represents the corresponding carry bit. Let V = 2A + B, thus
for each bit we compute Ai−1 +Bi. On the output sides, v represents Vi and c′

represents the next carry bit. Let a, b, c, a′, c′, v ∈ {0, 1}, we denote the function
which computes v and c′ by fv(a

′, b, c) and fc′(a
′, b, c) respectively. According

to the addition rule, the functions fv and fc′ are defined as follow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

if(a′ + b+ c = 0), fv(a
′, b, c) = 0, fc′(a

′, b, c) = 0;

if(a′ + b+ c = 1), fv(a
′, b, c) = 1, fc′(a

′, b, c) = 0;

if(a′ + b+ c = 2), fv(a
′, b, c) = 0, fc′(a

′, b, c) = 1;

if(a′ + b+ c = 3), fv(a
′, b, c) = 1, fc′(a

′, b, c) = 1.

(6)

Let ΣS+ = {(0, 0), (0, 1), (1, 0), (1, 1)}. We have v = fv(a
′, b, c) and c′ =

fc′(a
′, b, c). Let TS+ be a set of tiles over ΣS+ defined as follow:

T+ = {〈(v, b), (c, a′), (a, b), (c′, a)〉} (7)

The input sides involve 4 variables, i.e. a, b, a′,c, thus there are 16 tiles in this
system(Fig. 3(b)). Let the seed configuration S be defined as it is in (3) except
that γ1 = 〈null, null, ||, (0, 0)〉.
Theorem 3. Let εS+ = 2, g defined in (1), Given a seed configuration S encod-
ing A and B as above, the system SS+ =< TS+, g, εS+ > computes the function
f(A,B) = (2A+B,B)

Fig. 4(a) shows a sample seed configuration which encodes A = 01010112, B =
01000112. Fig. 4(b) shows a sample execution of SS+ on the seed configuration.
We could read the result from the top row of the final configuration, i.e. 2A+B =
11110012.

100 X. Fang and X. Lai

 0,0

 0,0

0,00,0

 0,1

 1,1

0,00,0

 1,0

 0,0

 0,00,1

 1,1

 1,1

 0,00,1

 0,0

 1,0

 1,00,0

 0,1

 0,1

1,01,0

 1,0

 1,0

 1,00,1

 1,1

 0,1

 1,01,1

(b)(a)

a,b

v,b

c,a’c’,a

 0,0

 1,0

0,10,0

 0,1

 0,1

0,11,0

 1,0

 1,0

 0,10,1

 1,1

 0,1

 0,11,1

 0,0

 0,0

 1,11,0

 0,1

 1,1

1,11,0

 1,0

 0,0

 1,11,1

 1,1

 1,1

 1,11,1

Fig. 3. Shifter-Adder tile system (a) The tile has two input sides(south and east) and
two output sides (north and west). The south side contains the value of the current bit
of A and B; the east side contains the value of the former bit of A and the carry bit.
(b) There are 16 tiles in the system.

0,0 1,1 0,0 1,0 0,0 1,1 1,1
0,0

(a) (b)

1,0 1,1 1,0 1,0 0,0 0,1 1,1
 0,0 0,1 0,0 0,1 1,0 1,1 0,1 0,0

0,0 1,1 0,0 1,0 0,0 1,1 1,1
|| || || || || || |||| || || || || || ||

|| ||

Fig. 4. (a) seed configuration: A = 01010112 , B = 01000112 .(b) The top row reads the
solution: 2A+B = 11110012 .

3 Multiplier Tile System

3.1 Multiplier Tile System: Version 1

We use subsystems SS and SS+ to build the multiplier system. All of the tiles
have two input sides(south and east) and two output sides (north and west).

The method of establishing the seed-configuration is described as follow: We
use the two sides of the L-configuration to encode inputs. One of the input
number, i.e. A, is encoded on the bottom row. On the same row there are also nB

extra tiles representing 0 in the most significant bit places because the product
of the nA-bit number A and the nB-bit number B may be as large as nA + nB

bits.
Let n = nA + nB. Let Σ× = {(0, 0), (0, 1), (1, 0), (1, 1), (s, 0), (s, 1)}.
Let Γ = { α0 = 〈(0, 0), ||, null, ||〉, α1 = 〈(1, 1), ||, null, ||〉, αbound =

〈(0, 0), ||, null, null〉, β0 = 〈||, null, ||, (s, 0)〉, β1 = 〈||, null, ||, (0, 0)〉, βbound0 =
〈null, null, ||, (s, 0)〉, βbound1 = 〈null, null, ||, (0, 0)〉, γ0 = 〈||, null, null, ||〉}. Let
the seed configuration S : Z2 → Γ be such that

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

S(1, 0) = γ0

∀i = 0, 1, . . . , n− 2 : S(−i, 0) = αAi ;S(−n+ 1, 0) = αbound

∀i, 1 ≤ i ≤ nB − 2, S(1, nB − i− 1) = βBi ;S(1, nB − 1) = βboundB0

For all other (x, y) ∈ Z
2, S(x, y) = empty.

(8)

Multiplier System in the Tile Assembly Model with Reduced Tileset-Size 101

The seed configuration is of length nA + nB + 1 and height nB.

Theorem 4. Let ε× = 2, g defined in (1), and T× = TS ∪ TS+. Given a seed
configuration encoding A and B which is defined in (8), the system S× =<
T×, g×, ε× > outputs (A ∗B,A).

Proof. We have T× = TS ∪ TS+. Let bdE,W (TS) = {bdE(t), bdW (t)|t ∈ TS},
bdE,W (TS+) ={bdE(t),bdW (t)| t ∈ TS+} . These two sets are disjoint, thus SS

and SS+ work together without interfering.
For each tile t(t ∈ T×), bdS(t) has two bits. Let bdSl(t) be the first bit

and bdSr(t) be the second bit. Let bdS(F (i)) = (bdS lF (i), bdSrF (i)). Let

bdSl(F (i)) =
n−1∑

j=0

2j ∗ bdSl(F (−j, i)), bdSr(F (i)) =
n−1∑

j=0

2j ∗ bdSr(F (−j, i))). The
definition also holds for bdN l(t), bdNr(t), bdN (F (i)) , bdN l(F (i)) and bdNr(F (i)).

Let bk =
nB−1∑

i=nB−k

Bi ∗ 2i−nB+k. Thus B = bnB , BnB−1 = b1 = 1, 2 ∗BnB−1 +

BnB−2 = b2. We are going to prove that given the seed configuration S encoding
A and B which is defined in(8), for 1 ≤ i ≤ nB − 1, bdN (F (i)) = (A ∗ bi+1, A):

i) For i = 1, we have bdS(F (1)) = bdN (F (0)) = (A,A).
If BnB−2 = 0, i.e. BnB−i−1 = 0,b2 = 102, then bdW (F (1, 1)) = (s, 0);
If BnB−2 = 1, i.e. BnB−i−1 = 1, b2 = 112, then bdW (F (1, 1)) = (0, 0) .
Thus according to Theorem 2 and Theorem 4, if BnB−2 = 0 , we have

bdN (F (1)) = (2A,A) = (A ∗ b2, A) ; if BnB−2 = 1, we have bdN (F (1)) =
(2A+A,A) = (A ∗ b2, A).

Thus bdN(F (i)) = (A ∗ bi+1, A) holds for i = 1.
ii) Assume bdN (F (i)) = (A ∗ bi+1, A) holds for i = k− 1, i.e. bdN (F (k− 1)) =

(A ∗ bk, A) .
For i = k, if b(k+1)0

= BnB−k−1 = 0, then bdW (F (1, i)) = (s, 0); If b(k+1)0
=

BnB−k−1 = 1, then bdW (F (1, i)) = (0, 0) .
Thus according to Theorem 2 and Theorem 4, if b(k+1)0

= BnB−k−1 = 0 ,
we have bdN (F (k)) = (2bdN l(F (k − 1)), A) = (2 ∗ A ∗ bk, A) = (A ∗ bk+1, A) ;
if b(k+1)0

= BnB−k−1 = 1, we have bdN(F (k)) = (2bdN l(F (k − 1)) + A,A) =
(2 ∗ (A ∗ bk) +A,A) = (A ∗ bk+1, A).

iii) Therefore bdN (F (i)) = (A ∗ bi+1, A) holds for 1 ≤ i ≤ k. Let k = nB − 1,
we have bdN(F (nB − 1)) = (A ∗ bnB , A) = (A ∗B,A).

Thus we proved that given the seed configuration encoding A and B, the
system outputs (A ∗B,A). �

Fig. 5(a) shows a sample seed configuration which encodes A = 10012, B =
10112: A is encoded on the bottom row with 4 extra 0 tiles in the most significant
bit place. We encode B from BnB−2 to B0. B3 is the most significant bit, and
in the seed configuration we discard this bit. B2 = 0, S(1, 1) = β0; B1 = 1,
S(1, 2) = β1; B0 = 1, S(1, 3) = βbound1. Fig. 5(b) shows a sample execution of
the multiplier system on the seed configuration and the product could be read
from the top row of the final configuration, i.e. 10012 ∗ 10112 = 11000112.

102 X. Fang and X. Lai

1 0 0 1

1

1

0
0,0 0,0 0,0 0,0 1,1 0,0 0,0 1,1

s,0

0,0

0,0 3

2

1

0

 -7 -6 -5 -4 -3 -2 -1 0 1

1

1

0

3

2

1

0

s,0 s,0 s,0 s,0 s,1 s,0 s,0 s,1 s,0

0,0 0,0 0,0 1,0 0,1 0,0 1,0 0,1

0,0 0,0 1,0 0,0 1,1 1,0 0,0 1,1

0,0 1,0 1,0 0,0 0,1 0,0 1,0 1,1
0,0 0,0 0,1 1,0 1,1 0,1 0,0 0,1 0,0

0,0 0,0 0,0 0,1 0,0 0,0 0,1 0,0 0,0

1 0 0 1

(a) (b)

0,0 0,0 0,0 0,0 1,1 0,0 0,0 1,1

 -7 -6 -5 -4 -3 -2 -1 0 1

(B0=1)

(B1=1)

(B2=0)

|| || || || || || || ||

||

||

||

|| || || || || || || ||

||

||

||

Fig. 5. Given a sample input of A = 10012, B = 10112 , with A on bottom row and B
on the right most column. (b) 10012 ∗ 10112 = 11000112 .

3.2 Multiplier Tile System: Version 2

In this section we combine the shifter system SS and the adder system S+ to
create another simplifier multiplier system which computes f(A,B) = (A∗B,A)
and uses only 16 tiles.

We discuss how to establish the seed configuration for this system:
Let Γ = { α0 = 〈(0, 0), ||, null, ||〉, α1 = 〈(1, 1), ||, null, ||〉, αbound = 〈(0, 0), ||,

null, null〉, β0 = 〈||, null, ||, (s, 0)〉, β1 = 〈||, null, ||, 0〉, βbound0 = 〈null, null, ||,
(s, 0)〉, βbound1 = 〈null, null, ||, 0〉, γ0 = 〈||, null, null, ||〉}. Let n = nA + nB. Let
the seed configuration S : Z2 → Γ be such that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(1, 0) = γ0

∀i = 0, 1, . . . , n− 2, S(−i, 0) = αAi ;S(−n+ 1, 0) = αbound

j ← 1; k← nB − 2;

while(k ≥ 1){
if(Bk = 0){S(1, j) = β0; j ← j + 1; }
else{S(1, j) = β0;S(1, j + 1) = β1; j ← j + 2; }
k← k − 1; }
if(B0 = 0), S(1, j) = βbound0

else{S(1, j) = βbound0;S(1, j + 1) = βbound1; }
For all other (x, y) ∈ Z

2, S(x, y) = empty.

(9)

Theorem 5. Let ε×2 = 2, g defined in (1), and T×2 = TS ∪ T+. Given a
seed configuration encoding A and B as defined in (9), the system S×2 =<
T×2, g×2, ε×2 > outputs (A ∗B,A).

Proof. According to the establishment of the seed configuration, in this system
we carry out the shift-addition in two steps: we shift the first input number by
one bit, and then we add the second input number. Comparing with the first
multiplier system presented in section 3.1, although the shift-addition is carried
out in two steps, which takes two rows in the configuration, the algorithms of
these two systems are just identical. Thus the correctness of this system follows
directly from Theorem 4. �

Multiplier System in the Tile Assembly Model with Reduced Tileset-Size 103

3.3 Discussion

Lemma 6. (Multiplier Assembly Time Lemma). For all A ≥ 1, B ≥ 2, the
assembly time of the final configuration F produced by S× or S×2 on S that
encodes A and B and pads A with nB 0-tiles is Θ(nA + nB).

Proof. For both of the two systems, the length of the final configuration is nA+
nB, the height is Θ(nB). According to Lemma 2.3 in[13], the assembly time of
the final configuration F produced by S× or S×2 on S that encodes A and B
and pads A with nB 0-tiles is Θ(nA + nB). �
We use l and h to represent the length and the height of the final configuration.

For the first system, we use 24 distinct tile types. The final configuration is of
height nB. We reduce the tileset-size of the system to 16 in our second system.
However the height of the final configuration is increased. The value of h depends
on the number of 1-bits in B. Suppose there are x 1-bits in B, i.e. we have nB−x
0-bits in B. Each 1-bit(except the MSB 1-bit) takes two rows in the configuration
while each 0-bit takes one row, thus h = 1+ (nB − x) + 2(x− 1) = nB + x− 1.
We have 1 ≤ x ≤ nB,thus nB ≤ h ≤ 2nB − 1.

Along with Brun’s scheme[13], we make comparison of these three systems
in Table 1. We could see that the tileset-size of our second system is the least;
however the height of the final configuration might be increased, depending on
the number of 1-bits in B. The height of the final configuration of our first system
is the least; the tileset-size is also less than Bruns. All of these three systems
share the same assembly time, i.e. Θ(nA + nB).

While consider performing multiplication, one chould make a choice between
these systems according to the actual demand. Intuitively, our first system could
be choosed if one hopes to construct the seed configuration in a simpler way, while
the second system is beneficial for those who want to perform multiplication with
tile types as less as possible.

Table 1. Comparing the efficiency of multiplier systems

Scheme version 1 version 2 Brun

Tileset-size 24 16 28
Assembly time Θ(nA + nB) Θ(nA + nB) Θ(nA + nB)
l nA + nB + 1 nA + nB + 1 nA + nB + 1
h nB nB ≤ h ≤ 2nB − 1 nB + 1

4 Conclusion

In this paper we present two multiplication systems which compute A ∗ B for
given A and B in constant time. Our first system is constructed using subsystems
SS and SS+, which requiring 24 computational tile types; Further improvement

104 X. Fang and X. Lai

is achieved in our second system: using subsystems SS , S+ and a different seed
configuration, we show that multiplier system could be implemented using only
16 tile types. As a result, we achieved reduced tileset-size compared with that
of Brun’s 28-tile multiplier system.

Acknowledgements. This work was supported by the National Natural Sci-
ence Foundation of China (No. 61272440, No. 61073149), Research Fund for
the Doctoral Program of Higher Education of China (20090073110027), State
Key Laboratory of ASIC & System (11KF0020), Key Lab of Information Net-
work Security, Ministry of Public Security (C11603) and Scholarship Award for
Excellent Doctoral Student granted by Ministry of Education.

References

1. Adleman, L.: Molecular computation of solutions to combinatorial problems. Sci-
ence 266(5187), 1021–1024 (1994)

2. Lipton, R.: Using dna to solve np-complete problems. Science 268(4) (1995)
3. Liu, Q., Wang, L., Frutos, A., Condon, A., Corn, R., Smith, L., et al.: Dna com-

puting on surfaces. Nature 403(6766), 175–179 (2000)
4. Ouyang, Q., Kaplan, P., Liu, S., Libchaber, A.: Dna solution of the maximal clique

problem. Science 278(5337), 446–449 (1997)
5. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled

squares. In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory
of Computing, pp. 459–468. ACM (2000)

6. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute
of Technology (1998)

7. Winfree, E., Liu, F., Wenzler, L., Seeman, N., et al.: Design and self-assembly of
two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)

8. Barish, R., Rothemund, P., Winfree, E.: Two computational primitives for algo-
rithmic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)

9. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sier-
pinski triangles. PLoS Biology 2(12), e424 (2004)

10. Brun, Y.: Solving np-complete problems in the tile assembly model. Theoretical
Computer Science 395(1), 31–46 (2008)

11. Brun, Y.: Improving efficiency of 3-SAT-solving tile systems. In: Sakakibara, Y.,
Mi, Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 1–12. Springer, Heidelberg (2011)

12. Lagoudakis, M., LaBean, T.: 2-d dna self-assembly for satisfiability. In: DNA Based
Computers V, vol. 54, pp. 141–154 (2000)

13. Brun, Y.: Arithmetic computation in the tile assembly model: Addition and mul-
tiplication. Theoretical Computer Science 378(1), 17–31 (2007)

	Multiplier System in the Tile Assembly Model with Reduced Tileset-Size
	1 Introduction
	1.1 Background and Related Work
	1.2 Tile-Assembly Model
	1.3 Preliminary Algorithms

	2 Subsystems of Multiplier System
	2.1 Shifter Tile System
	2.2 Adder Tile System
	2.3 Shifter-Adder Tile System

	3 Multiplier Tile System
	3.1 Multiplier Tile System: Version 1
	3.2 Multiplier Tile System: Version 2
	3.3 Discussion

	4 Conclusion
	References

