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Abstract. This paper presents a novel method to solve unconstrained
continuous optimization problems. The proposed method is called SVP
(simplex variables partitioning). The SVP method uses three main pro-
cesses to solve large scale optimization problems. The first process is a
variable partitioning process which helps our method to achieve high per-
formance with large scale and high dimensional optimization problems.
The second process is an exploration process which generates a trail so-
lution around a current iterate solution by applying the Nelder-Mead
method in a random selected partitions. The last process is an intensifi-
cation process which applies a local search method in order to refine the
the best solution so far. The SVP method starts with a random initial
solution, then it is divided into partitions. In order to generate a trail
solution, the simplex Nelder-Mead method is applied in each partition
by exploring neighborhood regions around a current iterate solution. Fi-
nally the intensification process is used to accelerate the convergence in
the final stage. The performance of the SVP method is tested by using
38 benchmark functions and is compared with 2 scatter search methods
from the literature. The results show that the SVP method is promising
and producing good solutions with low computational costs comparing
to other competing methods.

1 Introduction

Nelder and Mead devised a local search method for finding the local minimum
of a function of several variables, the method is called the Nelder-Mead method
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[13]. The method is one of the most popular derivative-free nonlinear optimiza-
tion methods. A simplex is a triangle, for function of two variables and the
method is a pattern search that compares function values at the three vertices
of a triangle. The worst vertex is rejected and replaced with a new vertex. A new
triangle is formed and the search is continued. The process generates a sequence
of triangles for which the function values at the vertices get smaller and smaller.
The size of the triangles is reduced and the coordinates of the minimum point
are found. The algorithm is stated using the term simplex (a generalized triangle
in N dimensions) and will find the minimum of a function of N variables. Four
scaler parameter must be specified to define a complete Nelder-Mead method;
coefficients of reflection ρ, ρ > 0, expansion χ, χ > 1, contraction γ, 0 < γ < 1
and shrinkage σ, 0 < σ < 1 as shown in Figure 1. The Nelder-Mead algorithm
steps are described in Algorithm 1 and all its parameters are defined in Table
1. In this paper, we proposed a new method based on the simplex Nelder-Mead
method. The proposed method is called SVP (simplex variable partitioning).
The main goal of the SVP method is construct an efficient method to solve un-
constrained large scale optimization problems. SVP starts with a random initial
solution, the iterate solution is divided into pre-specified number of partition. In
order to generate a trail solution around the iterate solution the Nelder-Mead
method has been applied in a random selected partitions. The trail solution
with the best objective function is always accepted. In the final stage a local
search method is applied in order to accelerate the search instead of letting the
algorithm running for several iterations without much significant improvement
of the objective function values. The SVP method is compared with 2 main
scatter search methods by using 38 benchmark functions with different proper-
ties (uni-model, multi-model, shifted, rotated). The numerical results show that
SVP method is a promising method and faster than other methods. The rest of
the paper is organized as follows. The next section survey the related work on
high dimension and large scale optimization problems. Section 3 describes the
proposed SVP method. The performance of the SVP method and its numerical
results are reported in Sections 4, 5. The conclusion of this paper is summarized
in Section 6.

2 Related Work

Many researches have been attracted to apply their works to solve the global
optimization problems, this problems can expressed as follows.

Minimize f(x)

Subject to l ≤ x ≤ u, (1)

where f(x) is a nonlinear function, x = (x1, . . . , xn) is a vector of continuous
and bounded variables, x, l, u ∈ �n.

Although the efficiency of there works when applied with lower and middle
dimensional problems e.g D < 100, they suffer from the curse of dimensionality
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when applied to large scale and high dimensional problems. Some efforts have
been done to overcome this problem. The quality of any proposed method to
solve the large scale and optimization problem is the capability of performing
the wide exploration and the deep exploration processes. These two processes
have been invoked in many works through different strategies, see for instances
[3], [6], [7], [12]. These two processes have been considered in the SVP method
through three strategies as follows. The dimension reduction process which the
search space can be divided into smaller partitions. The exploration process
where the trail solutions are generated around the iterate solution. In the variable
neighborhood search [14], the search space is treated as nested zones and each
one is searched through iterative solutions [1], [10]. Finally the intensification
process by applying a local search method with the elite solution obtained from
the pervious stage [4], [5], [7]. Invoking these strategies together in the SVP
method is the main difference between it and other related methods existing in
the literature.

Table 1. Parameters used in Algorithm 1

Parameters Definitions

xr Reflection point
xe Expansion point
xoc Outside contraction point
xic Inside contraction point
ρ Coefficients of reflection
χ Coefficients of expansion
γ Coefficients of contraction
σ Coefficients of shrinkage

3 The Proposed SVP Method

In this section a proposed method is presented for solving large scale optimization
problems. The proposed method is called SVP (simplex variable partitioning).
SVP starts with a random initial solution and consists of n variables. The solu-
tion is divided into η partitions, each partition contains ξ variables (if the number
of variables n is not a multiple of ξ, a limited number of dummy variables my
be add to the last partition). At a fixed number of iteration (SVP inner loop),
a random partition is selected, and a trail solution is generated by applying the
simplex Nelder-Mead method in the selected partition. The overall trail solution
is accepted if it’s objective function value is better than the previous solution.
Otherwise the trial solution is rejected. The scenario is repeated until the ter-
mination criteria satisfied (SVP outer loop). In order to refine the best solution,
SVP method applies a local search method as final intensification process. The
definitions of the used parameters in SVP method is reported in Table 2. In the
next subsections we give more descriptions of SVP method.
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Algorithm 1. The Nelder-Mead method
1. Set xi denote the list of vertex in the current simplex, i = 1, . . . , n+ 1.
2. Order Order and re-label the n+ 1 vertices from lowest function value f(x1) to highest
function value f(xn+1) so that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1).
3. Reflect. Compute the reflection point xr by
xr = x̄+ ρ(x̄− x(n+1)),
where x̄ is the centroid of the n best points,
x̄ =

∑
(xi/n), i = 1, . . . , n.

if f(x1) ≤ f(xr) < f(xn) then
replace xn+1 with the reflected point xr .
go to Step 7.

end if
4. Expand.
if f(xr) < f(x1) then

Compute the expansion point xe by xe = x̄+ χ(xr − x̄).
end if
if f(xe) < f(xr) then

replace xn+1 with xe and go to Step 7.
else

replace xn+1 with xr and go to Step 7.
end if
5. Contract.
if f(xr) ≥ f(xn) then

perform a contraction between x̄ and the better of xn+1 and xr.
end if
Outside contract.
if f(xn) ≤ f(xr) < f(xn+1) then

Calculate xoc = x̄+ γ(xr − x̄).
if f(xoc) ≤ f(xr) then

replace xn+1 with xoc

go to Step 7.
else

go to Step 6.
end if

end if
Inside contract.
if f(xr) ≥ f(x(n+1) then

Calculate xic = x̄+ γ(xn+1 − x̄).
end if
if f(xic) ≥ f(x(n+1) then

replace xn+1 with xic

go to Step 7.
else

go to Step 6.
end if
6. Shrink. Evaluate the n new vertices
x′ = x1 + σ(xi − x1), i = 2, . . . , n+ 1.
Replace the vertices x2, . . . , xn+1 with the new vertices x′

2, . . . , x
′
n+1.

7. Stopping Condition. Order and re-label the vertices of the new simplex as
x1, x2, . . . , xn+1 such that f(x1) ≤ f(x2) ≤ . . . ≤ f(xn+1).
if f(xn+1)− f(x1) < ε then

stop, where ε > 0 is a small predetermined tolerance.
else

go to Step 3.
end if
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Fig. 1. Nelder-Mead search strategy in two dimensions

Table 2. Parameters used in Algorithm 2

Parameters Definitions

n No. of variables
ξ Partition size
η No. of partitions
φ Random selected partition
x0 Initial solution
x′ Best trail solution

Maxitr Maximum number of iterations
Nelite No. of best solution for intensification

3.1 Variable Partitioning and Trail Solutions Generating

SVP method starts with an iterate solution which divided into η small partitions,
where η = n/ξ. Searching the partitioned subspaces is controlled by applying the
search in a limited number of subspaces in the current iteration. This allows the
SVP method to intensify the search process in each iteration. However, choosing
different subspaces in consequent iterations maintains the search diversity. More-
over, searching a limited number of subspaces prevents SVP from wandering in
the search space especially in high dimensional spaces. The variable partitioning
process with ξ = 4 is shown in Figure 2. At a fixed number of iterations (SVP
inner loop), a random partitions are selected in order to generate a trail solutions
by applying the Nelder-Mead method in each selected partition φ as shown in
Algorithm 1. If the overall trail solution objective function is better the previ-
ous solution, then the trail solution is selected to become the current solution.
The operation of generating new trail solutions is repeated until stoping criteria
satisfied (SVP outer loop).
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Fig. 2. Variable partitioning

3.2 The Description of the SVP Method

The SVP method scenario is described as follows. SVP starts with a random
initial solution x0. The solution is divided into η partitions, where η = n/ξ. In
order to generate a trail solutions, SVP method uses two type of iterations as
follows.

– SVP inner loop
SVP uses a given number of iterations in order to generate a trail solutions
by applying the simplex Nelder-Mead method as shown in Algorithm 1 in a
random selected partitions. The number of the selected partitions is depend
on the number of the applied iterations in the inner loop. The higher the
number of the applied iterations, the higher the value of the cost function.

– SVP outer loop
The main termination criterion in SVP is the number of the external loop
which is the maximum number of iterations. The number of the best overall
solutions is depends on the value of the external iterations.

Finally a local search method is applied as a final intensification process in order
to refine the best solution Nelite which is obtained in the previous search stage.
The structure of the SVP method with the formal detailed description is given
in Algorithm 2, all variables of Algorithm 2 and it’s definitions are reported in
Table 2.

4 Numerical Experiments

In order to test the efficiency of the proposed SVP method and present the
comparison results between it and other competing methods. SVP uses three
sets of instances, LM-HG1, LM-HG2, CEC05 instances. The LM-HG1 instances
consist of 10 uni-model and shifted functions, these functions have been used by
Hvttum and Glover [9]. The LM-HG2 instances consist of 16 multi-model and
shifted functions, these functions are based on functions in Laguna and Marti
[11]. The CEC05 instances consist of 12 multi-model function based on classical
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Algorithm 2. The proposed SVP method

Generate an initial solution x0 randomly.
Set initial values for ξ, η, Maxitr, Nelite.
Set x = x0.
repeat

I := 0. 	 Counter for inner loop.
K := 0. 	 Counter for outer loop.
repeat

Divide the solution x into η partitions,
where η = n/ξ.
Pick a random partition φ from η partitions of x.
Apply Nelder-Mead Algorithm into the selected
partition φ, as shown in Algorithm 1 .
Generate neighborhood trail solutions around x.
I := I + 1.

until I ≤ η.
Set x′ equal to the best trial solution.
if f(x′) ≤ f(x) then

x = x′. 	 Accept the trial solution.
end if
K := K + 1.

until K ≤ Maxitr. 	 Stoping criteria satisfied.
Apply local search method starting from Nelite on the best solution in the previous
stage. 	 Intensification search.

function after applying some modifications (shifted, rotated, biased and added),
these instances are described in detail in Suganthan [15]. The objective function
values of all sets of instances are known. All details about the three mentioned
sets of instances are described in [8]. The names and main feature of LM-HG1,
LM-HG2, CEC05 functions are summarized in Table 4, Table 5 and Table 10,
respectively. The SVP method was programmed in MATLAP. The results of the
SVP method and the other competing benchmark methods are averaged over 10
runs. The parameter setting of the SVP method are reported in Table 3. The
numerical results of all LM-HG1 instances are reported in Tables 6 - 8 where
the numerical results of LM-HG2 and CEC05 instances are reported in Table 9,
Table 11 respectively.

Table 3. Parameter setting

Parameters Values

ξ 4
η n/ξ
Maxitr n/4
Nelite 1
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Table 4. LM-HG1 test functions

f Function name f Function name f Function name

f1 Branin f5 Zakharov f9 Stair-Ros
f2 Booth f6 Trid f10 Stair-LogAbs
f3 Matyas f7 Sum Squares
f4 Rosenbrock f8 Sphere

Table 5. LM-HG2 test functions

g Function name g Function name g Function name g Function name

g1 B2 g5 Beale g9 Perm(o.5) g13 Powell
g2 Easom g6 SixH.C.Back g10 Perm(10) g14 Dixon&Price
g3 Gold.&Price g7 Schhwefel g11 Rastrigin g15 Levy
g4 Shubert g8 Colville g12 Griewank g16 Ackley

4.1 Performance Analysis

In this subsection we analyze the performance of the SVP method as follows.

The Efficiency of Variables Partitioning. We compared the SVP method
with variable partitioning process, with the basic simplex Nelder-Mead method
(BSNM) in order to check the efficiency of variable partitioning process. The
same parameters and termination criteria are used in both methods. The results
are shown in Figure 3. In Figure 3, the dotted line represents the results of the
basic simplex Nelder-Mead method, the solid line represents the results of the
SVP method. Two functions f3, f7 are selected with dimensions 512, 1000 by
plotting the number of iterations versus the function values. Figure 3 shows that
the function values are rapidly decreases as the number of generations increases
for the SVP method results than those of the basic simplex Nelder-Mead method.
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Fig. 3. Basic simplex Nelder-Mead algorithm Vs. SVP algorithm
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The Performance of Final Intensification. The SVP method uses the MAT-
LAB function “fminunc” as a local search method in the final intensification pro-
cess. The final intensification can accelerate the convergence in the final stage
instead of letting the algorithm running for several iterations without much
significant improvement of the objective function values as shown in Figure 4.
Figure 4 represents the general performance of the SVP method and the ef-
fect of the final intensification by selecting two functions f2, g12 with different
properties and plotting the values of objective functions versus the number of
iterations. Figure 4 shows that the objective values are decreases as the number
of function iterations increases. The behavior in the final intensification phase is
represented in Figure 4 by dotted lines, in which a rapid decrease of the function
values during the last stage is clearly observed.
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Fig. 4. The effects of final intensification process

The Performance of the Final Local Search Method. The performance
of the SVP method without applying the last final intensification process on
two functions f1, f8 with dimensions 512, 1000 is shown in Figure 5. Figure
5 represents the number of iterations versus the function values. The function
values in Figure 5 are rapidly decreased and reached to its objective values
without applying the final intensification process. We can conclude from Figure
5 that the MATLAB function “fminunc” is not doing the majority work of the
SVP method.

4.2 The Proposed SVP Method and the Other Competing Methods

The SVP method is compared with two scatter search methods, whereas the
two scatter methods were recently developed by [9] for solving high dimensional
problems. The first scatter search method is called scatter search with random-
ized subset combination (SSR), where the second scatter search method is called
scatter search with clustering subset combination (SSC). Also we compare our
SVP method with a combination between the main two scatter search methods
and six direct search methods. The SVP method uses the same termination cri-
teria such as the gap between a heuristic solution x and the optimal solution
x∗ is | f(x) − f(x∗) |< ε, where ε = 10−8, the other termination criterion is
the maximum number of function evaluation is 50,000. The main local search
methods are listed as follows.
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Fig. 5. The performance of the SVP method without applying final local search method

– NM Nelder-Mead simplex methods
– MDS Multi-directional search
– CS Coordinate search method
– HJ Hook and Jeeves method
– SW Solis and Wet’s algorithm
– ROS Rosenbrock’s algorithm

The description of these methods are reported in [8].

Comparison Results on LM-HG1 Instances. The SVP method was tested
on the LM-HG1 instances in Havattum and Glover [9]. The dimensions of func-
tions are 16, 32, 64, 128, 256 and 512. Each execution is repeated 10 times with
different initial solutions. All tested methods have the same maximum number
of function evaluations (50,000). We report the largest dimension n for which
the method successfully found the optimal solution in all 10 runs. The compar-
ison results between the SVP method and the other methods for all LM-HG1
instances are reported in Table 6. The best results are highlighted in bold. Table
6 shows that the SVP method outperforms in most of all functions except f9.
Also we can reach to the global minimum of these instances for n > 512 by
increasing the number of function evaluation values as shown in Table 8. In case
of at least one run fails to reach to the global minimum of the function, the ratio
of successful run is recorded in parentheses.

Table 6 shows the comparison results between the SVP method and two scat-
ter search methods. Now we evaluate the SVP method with the combined scatter
search (SS) method and the direct search method as a improvement methods
(IM). In addition to the combined SS method with the improvement direct search
methods, there are extra two methods. SS method which is the scatter search
function without improvement methods and STS method which is a hybrid scat-
ter tabu search method. All details of STS method are reported in [2]. Table 7
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Table 6. Largest successful dimension for SVP and other improvement methods on
the LM-HG1 instances

f SSR SSC SVP

f1 512 512 512
f2 512 512 512
f3 256 256 512
f4 32 64 64
f5 32 32 64
f6 16 16 128
f7 512 512 512
f8 512 512 512
f9 32 64 32
f10 512 512 512

Table 7. Largest successful dimension for the SVP method and the other combined
SS with the improvement methods on the LM-HG1 instances

f SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR SVP

f1 2 16 4 4 8 8 16 16 16 16 512
f2 2 8 4 4 16 128 8 128 128 128 512
f3 2 16 8 4 32 128 32 256 256 256 512
f4 0 4 2 2 2 4 4 4 4 2 64
f5 2 8 4 4 8 16 8 16 8 8 32
f6 2 8 4 4 8 32 8 16 16 16 32
f7 2 16 4 4 16 32 32 32 32 32 512
f8 2 32 4 4 64 32 64 32 32 32 512
f9 0 4 2 2 2 4 2 2 4 2 32
f10 0 4 0 0 0 128 2 128 256 256 512

Table 8. Function Evaluations (feval) of the SVP method with 1000 Dimension

f f1 f2 f3 f4 f5 f6 f7 f8 f9 f10
feval 112,949 70,802 61,357 (0.0) (0.0) 545,698 196,552 56,253 (0.0) 203,485

shows that the SVP method is outperforms all combined scatter search with the
improvement methods and the hybrid scatter tabu search method in all LM-HG1
instances.

Comparison Results on LM-HG2 Instances. Now we test the performance
of the SVP method with the multi-model functions in LM-HG2 sets. The com-
mitting methods is the same methods in Table 7. The terminations criteria is
the same as in the LM-HG1 functions. The results in Table 9 show that the per-
formance of the SVP method in the LM-HG2 is better then the other competing
methods, although the functions in LM-HG2 seem to be more difficult and only
smaller dimensions can be solved as seen in functions g2, g8, g9, g10, g11, g16.
The best results are highlighted in bold.
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Table 9. Largest successful dimension for the SVP method and the other combined
SS and improvement methods on the LM-HG2 functions

g SS STS SS+NM SS+MDS SS+SW SS+HJ SS+ROS SS+CS SS+SSC SS+SSR SVP

g1 0 2 2 2 4 8 4 16 16 32 32
g2 0 2 2 2 2 2 4 2 4 4 4
g3 0 8 2 2 4 8 8 8 8 8 16
g4 0 8 0 2 4 8 2 2 2 2 16
g5 2 8 4 4 4 8 16 16 8 16 16
g6 2 16 2 4 16 32 16 32 64 64 64
g7 0 8 2 2 2 4 0 2 2 2 128
g8 0 4 0 0 4 8 4 8 8 4 4
g9 2 4 2 2 2 2 2 2 2 2 4
g10 0 4 2 2 4 4 4 4 4 4 8
g11 0 16 0 0 2 4 2 2 2 2 4
g12 0 0 0 0 0 2 2 2 0 32 256
g13 4 16 4 4 16 64 16 64 128 128 256
g14 2 8 2 2 8 8 8 8 16 16 32
g15 2 256 4 4 16 128 128 512 128 64 64
g16 0 8 0 0 0 32 8 32 32 32 4

5 CEC05 Benchmark Test Instances

In order to evaluate the proposed SVP method, a new set of a modified bench-
mark functions with various properties provided by CEC2005 special session
[15] are used in this section. Most of these functions are the shifted, rotated,
expanded, and combined variants of the classical functions. These modifica-
tions make them to be more hard, and resistant to simple search. We used
12 functions h1-h12 as shown in Table 10. Specifically, these functions span a
diverse set of problem features, including multi-modality, ruggedness, noise in
fitness, ill-conditioning, non-separabilty, interdependence(rotation), and high-
dimensionality. Most of these functions are based on classical benchmark func-
tions such as Rosenbrocks, Rastrigins, Swefels, Griwank and Ackleys function.
The applied maximum evaluation function value as a termination criterion is
increased to 100,000. Table 11 shows the CEC2005 functions h1 - h12 with its
objective function values for 10-100 dimensions. The exact global minimum is
highlighted in bold. Results in Table 11 show that the SVP method obtains the
exact global minimum of functions h1 and h2 at 100 dimension, where obtained
the exact global minimum for function h7, h12 at 80 dimension and for func-
tion h6, h10 the exact global minimum at 40, 20 dimensions respectively. For
functions h3, h4, h5, h8, h11 the SVP method fails to obtain the exact global
minimum for any dimension and the obtained function values of these functions
are reported in Table 11.
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Table 10. CEC05 benchmark test functions

h Function name Bounds Global minimum

h1 Shifted Sphere [-100,100] -450
h2 Shifted Schwefel’s 1.2 [-100,100] -450
h3 Shifted rotated high conditioned elliptic [-100,100] -450
h4 Shifted Schwefel’s 1.2 with noise in fitness [-100,100] -450
h5 Schwefel’s 2.6 with global optimum on bounds [-100,100] -310
h6 Shifted Rosenbrock’s [-100,100] 390
h7 Shifted rotated Griewank’s without bounds [0,600] -180
h8 Shifted rotated Ackley’s with global optimum on bounds [-32,32] -140
h9 Shifted Rastrigin’s [-5,5] -330
h10 Shifted rotated Rastrigin’s [-5,5] -330
h11 Shifted rotated Weierstrass [-0.5,0.5] 90
h12 Schwefel’s 2.13 [-100,100] -460

Table 11. Mean number of function values with 10∼ 100 dimensions

h 10 20 30 40 50 60 70 80 90 100

h1 -450 -450 -450 -450 -450 -450 -450 -450 -450 -450
h2 -450 -450 -450 -450 -450 -450 -450 -450 -450 -450
h3 9235.12 6432.56 5429.27 4312.7 7134.2 5426.3 3458.45 4869.57 6778.24 4879.125
h4 7143.61 52,848.2 72,582.4 86,931 315,056 370,425 416,241 504,957 565,784 590,668
h5 194,431 201,456 293,84 312,58 614,58 640,15 714,26 785.12 798,147 812,58
h6 390 390 390 390 465.23 485.45 486.78 512.56 540.25 545.13
h7 -180 -180 -180 -180 -180 -180 -180 -180 -179.993 -179.78
h8 -120 -120 -120 -120 -120 -120 -119.99 -119.98 -119.99 -119.98
h9 -330 -330 -330 -330 512.716 643.05 714.95 740.12 815.56 845.89
h10 -330 -330 -237.47 -215.45 112.48 145.26 242.23 361.68 412.25 415.23
h11 101.56 120.731 123.908 126.56 131.25 152.36 158.69 162.54 165.98 167.57
h12 -460 -460 -460 -460 -460 -460 -460 -460 -457.15 -441.25

6 Conclusion

In this paper, the simplex Nelder-Mead method which is called SVP (simplex
variable partitioning) has been proposed to solve large scale optimization prob-
lems. The use of variable partitioning process assists effectively the SVP method
to achieve promising performance specially with high dimensional test functions.
Moreover, applying the Nelder-Mead method in different partitions helps the
SVP method to achieve a wide exploration and a deep exploitation before stop-
ping the search by generating a trail solution around the iterate solution. Finally
the intensification process has been inlaid in the SVP method to accelerate the
search process. The numerical experiments on 38 test benchmark functions with
different properties have been presented to show the efficiency of the proposed
SVP method. The comparison with other competing methods indicate that the
SVP method is promising and it is cheaper than other methods.
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