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1 Addis Ababa University
Addis Ababa Institute of Technology

School of Mechanical and Industrial Engineering
Addis Ababa, Ethiopia

{eshetie ethio,danielkitaw}@yahoo.com
2 Faculty of Electrical Engineering and Computer Science
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Abstract. In this study, Stochastic VRPwith Real Simultaneous Pickup
and Delivery (SVRPSPD) is attempted the first time and fitted to a
public transportation system in Anbessa City Bus Service Enterprise
(ACBSE), Addis Ababa, Ethiopia. It is modeled and fitted with real data
obtained from the enterprise. Due to its complexity, large instances of
VRP and/or SVRPSPD are hard to solve using exact methods. Instead,
various heuristic and metaheuristic algorithms are used to find feasible
VRP solutions. In this work the Differential Evolution (DE) is used to
optimize bus routes of ACBSE. The findings of the study shows that, DE
algorithm is stable and able to reduce the estimated number of vehicles
significantly. As compared to the traditional and exact algorithms it has
exhibited better used fitness function.

Keywords: vehicle routing problem, pickup and delivery, machine learn-
ing, differential evolution, real-world application.

1 Introduction

The problem of designing a minimum cost set of routes to serve a collection
of customers with a fleet of vehicles is a fundamental challenge in the field of
logistics, distribution and transportation [1]. This is because transportation and
distribution contribute approximately 20% to the total costs of a product [2]. The
task of designing delivery or pickup routes to service customers in the transport
and supply chain is known in the literature as a Vehicle Routing Problem [1]. It
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was the first time proposed by [3] under the title “Truck dispatching problem”
with the objective to design optimum routing of a fleet of gasoline delivery trucks
between a bulk terminal and a large number of service stations supplied by the
terminal. Often the context is that of delivering goods located at a central depot
to customers who have placed orders for such goods, but the area of application
of VRP is also versatile and are used in many areas in real world life.

This paper is trying to develop a VRP model that addresses the stochastic
nature of passengers’ pickup and delivery services in Anbessa City Bus Ser-
vice Enterprise (ACBSE), Addis Ababa, Ethiopia. ACBSE is a urban public
bus transport enterprise which provides a public transport service in the city
of Addis Ababa, Ethiopia. The model developed is called Stochastic VRP with
Real Simultaneous Pickup and Delivery (SVRPSPD). It is the first of its kind
in the literature of VRP due to the fact that it considered stochastic pickup and
delivery of commuters’, and both the pickup and delivery services are also per-
formed simultaneously during the transportation services. The SVRPSPD model
is simulated and solved using Differential Evolution with real data collected from
ACBSE.

2 Literature Review

In general, VRPs are represented in a graph theory. The general model is defined
as: let G = (V,A) be a directed or asymmetric graph where V = {0, ...n} is a set
of vertices representing cities with depot located at vertex 0, and A is the set
of arcs. With every arc (i, j), i �= j is associated a non-negative distance matrix
C = (cij). In some context, cij can be interpreted as a travel cost or as a travel
time [4]. When C is symmetrical, it is often convenient to replace A by a set
E of undirected edges, the graph being called symmetric or undirected graph.
In many practical cases, the cost or the distance matrix satisfies the triangular
inequality such that cik + ckj ≥ cij , ∀i,j,k ∈ V [5]. The general or classical VRP
consists of designing a set of at most K delivery or collection routes such that
each route starts and ends at the depot, each customer is visited exactly once by
exactly one vehicle, the total demand of each route does not exceed the vehicle
capacity and the total routing cost is minimized [5].

Moreover, because of the complexity and the practical relevance of VRPs, vast
literature is devoted to the Bus Scheduling Problem (BSP) and many optimiza-
tion models have been proposed [6]. The models tried to achieve several near
optimal solutions with a reasonable amount of computational effort [1]. Various
extensions for the Vehicle Schedule Problem (VSP) or VRP with different addi-
tional requirements were also covered in the literature over the last fifty years [5].
Among others the existence of one depot [7] or more than one depot [8], a hetero-
geneous fleet with multiple vehicle types [7] the permission of variable departure
times of trips, VRP with Stochastic Demand (VRPSD) [1,9,10] is also one of
the major variants of VRP in the literature and the VRP with incapacitated
vehicle [11,12,10] are the very few examples in the VRP literature.

The basic version of VRP, Stochastic VRP (SVRP) and/or VRP with stochas-
tic Customer Demand (VRPSD), which are stated above are either a pure pickup
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or a pure delivery problems [13,14]. The pure pickup or pure delivery types
of VRP has been extensively studied in the literature with many application
areas [15].

The VRP with delivery and pickup (VRPDP) is also a well studied in the
literature but with the assumption of deterministic demand or with modifications
of as classical VRP models separately for the pickup and for the delivery [16]. As
it is evident in [17] and the surveying of [18], the problem can be divided into two
independent CVRPs [16]; one for the delivery (linehaul) customers and one for
the pickup (backhaul) customers, such that some vehicles would be designated
to linehaul customers and others to backhaul customers.

A similar models and approach was also studied VRPSDP by [19] with consid-
eration of first delivery and then followed by pickup service but named as simul-
taneous delivery and pickup VRP problem [20,21,22]. This assumption is more
clearly illustrated by [18] and [19] with a symbol representation and mathemati-
cal model. The model illustrated first with symbols � as delivery and second with
symbols � as pickup along each route [19]. Where as in the work of [18,20,21,23]
it considered P as a set of backhauls or pickup vertices, P = {1, . . . , n} and D
as a set of linehauls or delivery vertices, D = {n + 1, . . . , n + ñ}. As it can be
seen from this consideration, the assumption is that, in VRPSPD all delivered
goods must be originated from the depot and served to n nodes ( {1, . . . , n} )
and all pickup goods must be transported back to the depot {n+ 1, . . . , n+ ñ}
or even viceversa.

A real simultaneous delivery and pick up with deterministic demand was noted
on the work of [24,25,26] bust with deterministic demand. In addition to this
drawback, previous works on VRPSDP has also limitation on the consideration of
demand. In other work of the same authors [27], studied simultaneous pickup and
delivery service but deliveries are supplied from a single depot at the beginning
of the service followed by pickup loads to be taken to the same depot at the
conclusion of the service.

2.1 Differential Evolution

The DE is a versatile and easy to use stochastic evolutionary optimization al-
gorithm [28]. It is a population-based optimizer that evolves a population of
real encoded vectors representing the solutions to given problem. The DE was
introduced by Storn and Price in 1995 [29,30] and it quickly became a popular
alternative to the more traditional types of evolutionary algorithms. It evolves
a population of candidate solutions by iterative modification of candidate solu-
tions by the application of the differential mutation and crossover [28]. In each
iteration, so called trial vectors are created from current population by the differ-
ential mutation and further modified by various types of crossover operator. At
the end, the trial vectors compete with existing candidate solutions for survival
in the population.

The DE Algorithm. The DE starts with an initial population of N real-valued
vectors. The vectors are initialized with real values either randomly or so, that
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they are evenly spread over the problem space. The latter initialization leads to
better results of the optimization [28].

During the optimization, the DE generates new vectors that are scaled per-
turbations of existing population vectors. The algorithm perturbs selected base
vectors with the scaled difference of two (or more) other population vectors in
order to produce the trial vectors. The trial vectors compete with members of
the current population with the same index called the target vectors. If a trial
vector represents a better solution than the corresponding target vector, it takes
its place in the population [28].

There are two most significant parameters of the DE [28]. The scaling factor
F ∈ [0,∞] controls the rate at which the population evolves and the crossover
probability C ∈ [0, 1] determines the ratio of bits that are transferred to the trial
vector from its opponent. The size of the population and the choice of operators
are another important parameters of the optimization process.

The basic operations of the classic DE can be summarized using the following
formulas [28]: the random initialization of the ith vector with N parameters is
defined by

xi[j] = rand(bLj , b
U
j ), j ∈ {0, . . . , N − 1} (1)

where bLj is the lower bound of jth parameter, bUj is the upper bound of jth
parameter and rand(a, b) is a function generating a random number from the
range [a, b]. A simple form of the differential mutation is given by

vti = vr1 + F (vr2 − vr3) (2)

where F is the scaling factor and vr1, vr2 and vr3 are three random vectors from
the population. The vector vr1 is the base vector, vr2 and vr3 are the difference
vectors, and the ith vector in the population is the target vector. It is required
that i �= r1 �= r2 �= r3. The uniform crossover that combines the target vector
with the trial vector is given by

l = rand(0, N − 1) (3)

vti [m] =

{
vti [m] if (rand(0, 1) < C) or m = l

xi[m]
(4)

for each m ∈ {1, . . . , N}. The uniform crossover replaces with probability 1−C
the parameters in vti by the parameters from the target vector xi.

There are also many other modifications to the classic DE. Mostly, they differ
in the implementation of particular DE steps such as the initialization strat-
egy, the vector selection, the type of differential mutation, the recombination
operator, and control parameter selection and usage [28].

Recent Applications of DE to the Vehicle Routing Problem. Large VRP
instances are due to the NP-hardness of the problem hard to solve using exact
methods. Instead, various heuristic and metaheuristic algorithms are employed
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to find approximate VRP solutions in reasonable time [31,32]. A categorized
bibliography of different metaheuristic methods applied to VRP variants can be
found in [32].

The DE has proved to be an excellent method for both, continuous and dis-
crete optimization problems. This section provides a short overview of recent
applications of DE to different variants of the VRP published in 2012. Hou et al.
introduced in [33] a new discrete differential evolution algorithm for stochastic
vehicle routing problems with simultaneous pickups and deliveries. The proposed
algorithm used natural (integer) encoding with the symbol 0 as sub-route separa-
tor and fitness function incorporating routing objective and constraints. Besides
the traditional DE operators, new bitwise mutation was proposed. The algorithm
also utilized an additional revise operator to eliminate illegal chromosomes that
might have been created during the evolution. The experiments conducted by
the authors have shown that the proposed algorithm delivers better solutions
and converges faster than other DE-based and GA-based VRP solvers.

Liu et al. [34] used a memetic differential evolution algorithm to solve vehicle
routing problem with time windows. The algorithm used a real-valued source
space and discrete solution space. A source vector was translated into an solution
vector by modifications of the source vector (e.g. insertion of sub-route separator
’0’ in feasible locations) and optimized by three local search algorithms. The
fitness of the best routing found by the local searches was called generalized
fitness of the source vector. The experiments performed by the authors have
shown that the proposed modifications improve the quality of solutions found
by the DE and that the new algorithm is especially suitable for solving VRP
instances with clustered locations.

Xu and Wen [35] used differential evolution for unidirectional logistics distri-
bution vehicle routing problem with no time windows. The authors approached
the task as an multi-objective optimization problem (although none of the tradi-
tional multi-objective DE variants was used) and established an encoding scheme
that mapped the real-valued candidate vector to a routing of K vehicles.

3 Model Formulation

The presented model is the first of its kind considering VRP with real simul-
taneous pickup and delivery at each bus stop where the pickup and delivery
demand at each bus stop is treated as stochastic and random. The presented
model assumes:

1. The number of passengers expected to be picked up and dropped is uncertain,
but follows a poisson probability distribution.

2. The cumulative number of passengers picked up along the route will not
exceed the vehicle capacity. Moreover, split delivery is not allowed.

3. The fleet consists of homogeneous vehicles with limited capacity operating
from a single depot.

4. Each vehicle can be used repeatedly within the planning horizon.
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The mathematical model for SVRP which considered a simultaneous pickup
and delivery techniques is formulated as a mixed integer LP problem. Consider
a fleet of K vehicles with k = {1, 2, . . . ,K} with identical vehicle capacity of Q
serving a set of passengers with demand (to be picked or dropped) in passenger’s
location V \{0}; v0 = depot, each passenger must be completely served by a single
vehicle. Each vehicle starts from the depot v0 and picks and/or drops passengers
on each visited node vi except the depot. Moreover, the first node v1 is treated as
pickup-only node and the last node before the depot vn is treated as drop-only
node.

Suppose a vehicle starts from the depot v0 and travels along a certain path un-
til it reaches node vn. Along the path (v1, v2, . . . , vn), the vehicle will pick and/or
drop passengers up to the last node vn. The cumulative number of passengers
picked by vehicle k denoted as Cp and the cumulative number of passengers
dropped along the path vn (v1, v2, . . . , vn) denoted as Cd are given by:

Cp(Vn) =
∑

i∈V (0,Vn)

pi (5)

Cd(Vn) =
∑

i∈V (0,Vn)

di (6)

where pi is the number of passengers picked up at node i and di is the number
of passengers dropped at the same node i. At the depot, Cp = Cd = 0 and the
vehicle capacity equals to Q. The path becomes infeasible if the cumulative load
exceeds the vehicle capacity Q, that is when: Cd ≥ Q and Cp ≥ Q.

Each feasible route will be formed when: Cd(vn) ≤ Q and Cd(vn+1) ≥ Q and
Cp(vn) ≤ Q and Cp(vn+1) ≥ Q. The other consideration checks whether the net
load of a bus for any consecutive nodes will not exceed the bus capacity after
the bus visiting node vn. Let the net load picked is Lp(vn) it is computed as
Lp(vn) = Cp(vn) + Lp(vn−1)− Cd(vn).

The solution will be feasible if a vehicle served all the demand (for pick up
or drop off) at each node along the path or route without exceeding its capac-
ity. That is the net load in transit between any consecutive nodes or vertices
should not exceed the vehicle capacity (Lp(vn) ≤ Q). The objective is to deter-
mine a route for each vehicles that serve a set of nodes (vi) so that the total
distance traveled is minimized. To formulate the model of SVRP with simulta-
neous pickup and delivery as Mixed Integer LP problem, the following notations
and definitions are used:

V is set of nodes or vertices V = {v0, v1, v2, . . . , vn} treated as bus stops; v0 = depot
A is set of arcs (i, j) ∈ A
K is number of vehicles k = {1, 2, . . . ,K}
cij is the distance traversing from node i to node j
pi is the number of passengers (demand) to be picked at node i, which is a random

non-negative integer
di is the number of passengers (serviced) to be dropped at node i which is a random

non-negative integer
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Q is the vehicle capacity
n is total number of nodes or vertices or bus stops included in the model

Decision Variables

yk
i is the cumulative number of passengers picked by vehicle k when leaving from node

i.
zki is the number of passengers remaining in vehicle k when leaving from node i.
xk
ij = 1 if vehicle k travels from node i to node j; 0 otherwise

Then the general model is represented as follows:

Minimize
K∑

k=1

n∑

i=0

n∑

j=0

cijx
k
ij (7)

Subject to
n∑

j=1

xk
0j ≤ 1; (8)

n∑

i=0

xk
ij = 1; (9)

n∑

i=0

xk
ij −

n∑

i=0

xk
ji = 0; (10)

zki + yk
i ≤ Q; (11)

(zki − dj − zkj )x
k
ij = 0; (12)

(yk
i + pj − yk

j )x
k
ij = 0; (13)

zk0 = yk
0 = 0; (14)

zki ≥ 0; (15)

yk
i ≥ 0; (16)

xk
ij ∈ {0, 1}; (17)

∀k = 1, . . . ,K and i, j = 1, . . . , n (18)

The decision variables are given above and equation 7 is the objective function
to be minimized. Equation 8 ensures that each vehicle is used at most once,
equation 9 indicates that each node has to be visited exactly by one vehicle,
equation 10 shows that the same vehicle arrives and departs from each node
it serves, 11 ensures that the load on vehicle k when departing from node i is
always less than the vehicle capacity. Equation (12) and eq. (13) are the transit
load constraint, which indicate that when arc (i, j) is traversed by vehicle k, the
number of passengers to be dropped by the vehicle has to be decreased by dj
while the number of passengers picked-up has to be increased by pj . 14 ensures
that the remaining and the cumulative number of passengers when a vehicle
k departs from the depot is always zero; indicates that the vehicle is empty
and available with full capacity. Constraints 15 and 16 are a non-integer and
non-negative sign restriction and the last equation 17 is an restriction on the
non-negative integer value.
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4 Model Input Parameters

To run and evaluate the model, different input parameters that have to be sub-
stituted to the model are required. These inputs are either collected or gener-
ated/computed. The from-to-distance, the demand realization probability, the
demand distributions are computed or generated whereas the longitude and lat-
itude value for each location point vi is collected from the Google Earth. Each
of them are briefly explained and presented in section 4.1 and 4.2

4.1 From-to-Distance

Origin-destination of 59 locational points that depart and end from Merkato
Terminal (lat. 9◦1’50”N and long. 38◦44’15”E), are used in the model validation.
The origin-destination points are modified in such a way that they can fit to the
model but without losing its information. The from-to-distance computational
input parameters of each location i is computed by taking the longitude and
latitude location of each point using Great Circle distance formula that considers
the circular nature of earth.

Table 1. From-to-distance matrix (Cij)

vij 1 2 3 4 5 6 7 8 . . . 57 58 59
1 0 8 17 7 7 8 1 1 . . . 17 20 19
2 8 0 11 7 2 8 9 7 . . . 22 14 23
3 17 11 0 11 13 10 18 15 . . . 33 20 21
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
. . . . . . . . . . . . . . .
58 20 14 20 21 14 22 21 20 . . . 27 0 37
59 19 23 21 15 24 15 20 18 . . . 34 37 0

Each cij is defined as the distance from i to j, which can be directly considered
as the cost associate to transport passenger demand including depot 1. Further,
it assumes that the distance is symmetric, cij = cji, and cii = 0. The sample
output is shown in Table 1.

4.2 Stochastic Passengers Demand

The other input parameter is the number of passengers picked up and dropped
off at each location point called passengers demand. The passengers’ demand
collected in 10 routes of ACBSE are used to fit the demand behavior of passengers
in the remaining routes. The snap shot of the demand distribution of passengers
picked and dropped along the 10 selected routes were used to fit the demand
distribution of the remaining location points.

The volumes of passengers picked up at each vertex V are integer-valued
random variables with known probability distributions denoted by vector p̃(i) ∈
Z[36]. In the demand based modeling individual demands are estimated by using
parameter γ = {0, 1}, which determines the risk preferences [14].
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Therefore, the demand used for computing the solutions is evaluated using
p̂ = γpmin

i + (1− γ)pmax
i . Finally, for convenience of notation, it can be defined

that p(0) = p(0) = 0. Similarly, d̂ is also computed using the same formula. γ = 0
clearly implies the risk averse (risk free) case where failure can never occur, while
γ = 1 is the other extreme, which is risk seeking. Moreover, γ = 0.5 corresponds
to computing solutions with the expected demand. According to the simulation
run, the demand distribution of the number passengers picked up and delivered
for some nodal points are given below in Table 2.

Table 2. Sample demand distribution and location data

vi
Location(decimal) Expected Pas-

sengers

Longi. Lati. p̂i d̂i

1 38.8 9.16 na na
2 38.9 9.1 8 4
3 38.9 8.94 9 3
. . . . .
. . . . .
58 39.0 9.13 9 4
59 38.8 9.04 10 3

5 Differential Evolution for SVRPSPD

The version of VRP considered in this work can be seen as a combinatorial
optimization problem. The goal of the optimization is to find a set of routes con-
necting selected locations (bus stops) so that each location is visited by a vehicle
exactly once, each route starts and terminates in a special location (depot), con-
sidered constraints are satisfied, and selected objective function is minimized. In
this work we represent a set of routes as a permutation of considered locations
(without the depot) and separate each sub-route by a special sub-route separator
similarly as e.g. in [31].

The DE proposed in this work uses permutation-based VRP representation,
automatically selects the number of vehicles when an upper bound is given, and
avoids the creation of illegal candidate solutions.

Encoding. There is a variety of possible encoding schemes for modelling permu-
tations for populational metaheuristic algorithms [37]. The DE uses real-encoded
candidate solutions so a modified version of the random key (RK) encoding [38]
was chosen. An RK encoded permutation is represented as a string of real num-
bers (random keys), whose position changes after sorting correspond to the per-
mutation gene. The advantage of RK encoding is that it is at a large extent prone
to creation of illegal solutions in course of the artificial evolution (e.g. by the
crossover operator in Genetic Algorithms). The drawbacks of the RK encoding
include computational complexity as it is necessary to perform a sorting of the
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random keys every time the candidate solution is decoded. Moreover, RK encod-
ing translates a discrete combinatorial optimization problem into a real-valued
optimization problem with a larger continuous search space.

The routing of a maximum of k buses for n locations (without the depot)
is encoded as x = (x1, x2, . . . xk+n−1), xi ∈ R. Routing R is from the encoded
vector x created according to Algorithm 1. During the decoding process, k − 1
largest values of x are interpreted as route separators. The remaining values are
used as random keys and translated into permutation of n locations π. The values
of π are split into k routes, each of which starts in the depot and terminates
in the depot. Empty routes can be created when the vector x contains two or
more route separators next to each other. The set of non-empty routes defines
the routing R.

1 Sort candidate vector: xs = sort(x);
2 Use the k − 1 largest values of x as route separators: xsep = xs

n−1;

3 Create key vector k and vector with route sizes s:
4 route size = 0;
5 for i ∈ {0, . . . , k + n − 1} do
6 if xi > xsep then
7 Append route size to s;
8 route size = 0;

9 else
10 Append xi to k;
11 route size = route size + 1;

12 end

13 end

14 Translate key vector k to permutation π;

15 index = 0;
16 for i ∈ {0, . . . , k} do
17 if si > 0 then
18 for j ∈ {0, . . . , si} do
19 Append location πindex to route i;
20 index = index + 1;

21 end
22 Add i to routing R;

23 end

24 end

Algorithm 1. Decoding of routing R

Fitness Function. Fitness function used in this work is based on covered
distance, number of routes, and penalty for bus capacity violation.

fit(R) =

∑
r∈R dist(r)

|R| (19)

where dist(r) is distance of route r. A penalty is applied (route distance is
artificially decreased) when the capacity of the bus is depleted. |R| represents
the number of routes in R.
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5.1 Experiments

The proposed algorithm was implemented in C++ and used to optimize rout-
ings of the ACBSE company. The DE was executed with population size 100,
maximum number of vehicles 20, bus capacity 70, number of generations 1000,
and parameters F = 0.9 and C = 0.4 respectively. The parameter values were
set on the basis of initial experiments and algorithm tuning. The optimization
was repeated 30 times due to the stochastic nature of the algorithm.

The results of the optimization were: average number of routes 5.433, mini-
mum number of routes 5 and maximum number of routes 7. The fitness values in
each generation of the 30 independent runs of the algorithm are shown in fig. 1.
The results show that the algorithm is stable and able to reduce the estimated
number of vehicles significantly. Moreover, the solutions found in the DE algo-
rithm are better (in terms of used fitness function) than a traditional savings
algorithm for the VRP [15].

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0.009

 0  200  400  600  800  1000

fit
(R

)

generation

Fig. 1. The evolution of fitness function

6 Conclusions

This work introduced a new variety of VRP, Stochastic VRP with real Simulta-
neous Pickup and Delivery and used it to describe the situation of a real-world
transportation company operating in Addis Ababa, Ethiopia. A new metaheuris-
tic model based on the Differential Evolution was proposed to optimize vehicle
routing in ACBSE network. The DE encoded set of tours as a permutation and
automatically minimized the number of buses from an initial upper estimate.
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In contrast to a number of previous metaheuristic algorithms, all solutions gen-
erated by the proposed algorithm are valid routings through the set of bus stops
and computational resources were not wasted on processing of invalid solutions.
However, solutions that violate constraints such as bus capacity can be still
obtained in course of the evolution.

The routing found by the algorithm was compared to a VRP solution obtained
by a traditional (savings) VRP algorithm and it was found better with regard
to the used fitness function. The results presented in this study are promis-
ing and metaheuristic solvers with various permutation-based representations of
candidate solutions [37] will be investigated in the future.
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