
Modular Algorithm in Tile Self-assembly Model

Xiwen Fang and Xuejia Lai�

Department of Computer Science and Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
lai-xj@cs.sjtu.edu.cn

Abstract. In this paper we propose a system computing A mod B for
given nA-bit binary integer A and nB-bit binary integer B, which is the
first system directly solving the modulus problem in tile assembly model.
The worst-case assembly time of our system is Θ(nA(nA −nB)) and the
best-case assembly time is Θ(nA).

Although the pre-existing division system which computes A/B can
also be used to compute A mod B, the assembly time of this system is
not ideal in some cases. Compared with the pre-existing division system,
we achieved improved time complexity in our system. Our advantage is
more significant if nA is much greater than nB .

Keywords: tile assembly model, DNA computing, modulus problem,
assembly time.

1 Introduction

1.1 Background and Related Work

The tile assembly model theory [1,2] provides a useful framework to study the
self-assembly of DNA. Researchers have demonstrated DNA implementations of
several tile systems: Barish et al. [3] have demonstrated DNA implementations
of copying and counting; Rothemund et al. [4] have demonstrated DNA imple-
mentation of xor tile system. Several systems solving satisfiability problem are
also proposed [5,6].

The efficiency of a tile assembly system involves two factors: the tileset-size
and the assembly time. In [7], a division system which computes A/B for given
nA-bit binary integer A and nB-bit binary integer B was proposed. The assembly
time is always Θ(nA(nA−nB)). The system can also be used to compute A mod
B by computing the remainder of A/B. However, the time complexity of this
system is not ideal in some cases:

Assume we have A = 1100000012, B = 112, we can get the result of A mod B
by computing A − B ∗ 100000002. Such expression can be computed using tile
assembly system which requires linear time. Our goal in this paper is to construct
a system which directly solves the modulus problem, thus the assembly time can
be improved.

� Corresponding author.

A. Abraham et al. (eds.), Innovations in Bio-inspired Computing and Applications, 133

Advances in Intelligent Systems and Computing 237,

DOI: 10.1007/978-3-319-01781-5_13, c© Springer International Publishing Switzerland 2014

134 X. Fang and X. Lai

The remaining of this paper is organized as follow: in section 1.2 we briefly
introduce the concept of tile assembly model to assist the reader. In section 1.3
we introduce the corresponding algorithms. Several subsystems are discussed
in section 2. In section 3 we present a system solving modulus problem and
compare our system with existing system [7] in terms of time complexity. Our
contributions are summarized in section 4.

1.2 Tile-Assembly Model

To assist the reader, in this section we briefly introduce the concept of tile
assembly model. We refer to Σ as a finite alphabet of symbols called binding
domains. We assume null ∈ Σ. Each tile has a binding domain on its north, east,
south and west side. We represent the set of directions as D = {N,E, S,W}.

A tile over a set of binding domains is a 4-tuple. For a tile t, for 〈δN , δE , δS ,
δW 〉∈ Σ4, we will refer to bdd(t) as the binding domain of tile t on d ’s side.

A strength function g : Σ × Σ → N denotes the strength of the binding
domains. g is commutative and ∀δ ∈ Σ, g(δ, null) = 0. Let T be a set of tiles
containing empty. A tile system S is a triple< T, g, ε >. ε ∈ N is the temperature.
A tile can attach to a configuration only in empty positions if and only if the
total strength of the appropriate binding domains on the tiles in neighbouring
positions meets or exceeds the temperature ε.

Given a set of tiles Γ , a seed configuration S′ : Z2 → Γ and S =< T, g, ε >,
configurations could be produced by S on S′. If no more attachment is possible,
then we have the final configuration.

The reader may refer to [1,2,8] for more discussion of the concept of tile
assembly model.

1.3 Preliminary Algorithms

To illustrate the basic idea of the modular tile system, we introduce Algorithm
1 which computes A mod B without proof. According to the algorithm, a sub-
system which is able to compare two numbers and a subsystem which performs
subtraction according to the compare result are required.

Given nA-bit binary integer A and nB-bit binary integer B. We denote by Ai

and Bi the ith digit of A and B. A =
nA−1∑

i=0

2iAi, B =
nB−1∑

i=0

2iBi.

Let A ≥ B. In order to analysis the assembly time of our modular system
in later sections, we define the best-case of Algorithm 1 as follow: for the first
time we compute A−B ∗ 2nA−nB , we get the difference and the difference is less
than B, i.e. for the best-case the loop body will be executed only once. A typical
example is A = B ∗ 2m + C, C < B. In this case we have A−B ∗ 2nA−nB < B,
thus the loop body will be executed only once.

We define the worst-case as follow: each time we perform the subtraction, the
length of A is decreased only by 1. Let Q = A/B, the loop body will be executed
repeatedly nQ times. A typical example is A = 2nA − 1, B = 2nB−1. The loop
body will be executed repeatedly nA − nB + 1 times.

Modular Algorithm in Tile Self-assembly Model 135

Input: A , B
Output: S = A mod B

1 while A ≥ B do
2 if A ≥ B ∗ 2nA−nB then
3 A = A−B ∗ 2nA−nB .
4 end
5 else
6 A = A−B ∗ 2nA−nB−1

7 end

8 end
9 S = A

10 return S

Algorithm 1. Modular arithmetic

2 Subsystems of Modular System

2.1 Connector System

Fig. 1 shows the tile set of the connector system that will encode the modulus
B and connect B to the configuration encoding A. This system will also be
used to connect the extended-subtractor system and the shift-comparer system,
which will be discussed in later sections. The tile set consists of two parts: the
9-computational-tile set(Fig. 1(a)) and the 3(nB − 1) + 1-inputting-tile set(Fig.
1(b)). The inputting tile set includes < (1, 1), connB − 1, 1, pre > which encodes
the most significant bit(MSB) of B and connects it to the MSB of A. For the
remaining bits of B, according to the inputs on the west side and south side, the
encoding rule is shown in Fig. 1(b).

 pre pre pre

0

0,0

pre con

1

1,1

coni coni-1

0

0,Bi-1

coni coni-1

1

1,Bi-1

con0 post

0

0,0

con0 post

1

1,0

post post

0

0,0

*mL

CL

0<i<=nB-1

(b)

post

*mR

CR

coni

*mR

CR3

0<i<=nB-1 0<i<=nB-1

con0

*mR

 CR2

post post

1

1,0

(a)

pre

*mR

 CR3

nB-1

Fig. 1. The tiles have two input sides(south and west) and two output sides (north
and east). (a) the computational tile set (b) the inputting tile set.

136 X. Fang and X. Lai

Let Σcon ={||, pre, post, ∗mL, ∗mR,CL,CR,CR2, CR3, 0, 1, (0, 0), (0, 1),
(1, 0), (1, 1)}∪{coni|0 ≤ i ≤ nB − 1} , the strength function gcon is defined
as follow:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀δ ∈ Σcon, gcon(σ, null) = 0

gcon(CL,CL) = 2; gcon(∗mL, ∗mL) = 2; gcon(||, ||) = 2

∀σ ∈ Σcon\{null, ∗mL,CL}, gcon(σ, σ) = 1

∀σ, σ′ ∈ Σcon\{null}, ifσ �= σ′, thengcon(σ, σ′) = 0

(1)

Let Ai, Bi ∈ {0, 1}, n ≥ nA. Let Γ = {α0 = 〈0, ||, null, ||〉, α1 = 〈1, ||, null, ||〉,
γh = 〈∗mL, ||, null, null〉, γt = 〈∗mR,null, null, ||〉}. Let the seed configuration
S : Z2 → Γ be such that

⎧
⎪⎨

⎪⎩

S(1, 0) = γt;S(−n, 0) = γh

∀i = 0, 1, . . . , n− 1 : S(−i, 0) = αAi

For all other (x, y) ∈ Z
2, S(x, y) = empty.

(2)

Lemma 1. Let εcon = 2, and Tcon be a set of tiles over Σcon(Fig. 1). Given a
seed configuration encoding A which is defined in(2), Scon =< Tcon, gcon, εcon >
connects B with A:

– If nA > nB, pads B with nA−nB 0-bits in the least significant bit place and
n−nA 0-bits in the most significant bit place, outputs the identifiers CL and
CR;

– If nA = nB, pads B with n − nB 0-bits in the most significant bit place,
outputs the identifiers CL and CR2;

– If nA < nB, pads B with n − nA 0-bits in the most significant bit place,
outputs the identifiers CL and CR3

Let A = 11010102,B = 10112, n = 8. Fig. 2(a) shows the tile system encoding
B = 10112. Fig. 2(b) shows the seed configuration which encodes A and pads it
with one 0-tile. Scon connects the modulus B with A. Fig. 2(c) shows the example
execution of Scon on the seed configuration. In this case, we have nA > nB, thus
the final configuration outputs (011010102,010110002) and the identifiers CL
and CR.

pre con3

1

1,1

con3 con2

0

0,0

con3 con2

1

1,0

con3

*mR

CR3

con2 con1

0

0,1

con2 con1

1

1,1

con1

*mR

CR3

con1 con0

0

0,1

con1 con0

1

1,1

con1

*mR

CR3

B2=0

B1=1 B0=1

B3=1

(a)

(b)

*mL 0 1 1 0 1 0 1 0 *mR

CL 0,0 1,1 1,0 0,1 1,1 0,0 1,0 0,0 CR

 pre pre con3 con2 con1 con0 post post post

*mL 0 1 1 0 1 0 1 0 *mR

 || || || || || || || || ||

 || || || || || || || || ||

(c)

Fig. 2. (a) Inputting tile set encoding B = 10112 (b) seed configuration encoding
A = 11010102 (c) Scon connects B with A

Modular Algorithm in Tile Self-assembly Model 137

2.2 Shift-Comparer System

In this section we present a system with two jobs: to compare A with B and to
perform right-shift on B. Fig. 3(a) shows the concepts behind the tiles in TC ,
which have two input sides (west and south) and two output sides(north and
east). The concepts includes variables a, b, c, r, r′. We have a, b, c ∈ {0, 1} and
r, r′ ∈ {>,=, <}. The input sides includes variables a, b, c, r, thus there are 24
tiles(Fig. 3 (c)). The rule of comparing A with B is shown in Fig. 3 (b). We
compare Ai with Bi(i = n− 1, n− 2, ..., 0). The assumption A = B holds until
we find Ai �= Bi: if Ai ≥ Bi, then we have A ≥ B; else if Ai < Bi, we have
A < B(Fig. 3(b)). Fig. 3(d) shows the corresponding boundary tiles.

=c =b

a,b

a,c

=c >b

a,b

a,c

=c <b

a,b

a,c

>c >b

a,b

a,c

<c <b

a,b

a,c

(if a=b) if(a>b)

if(a<b)

=0 =0

0,0

0,0

=0 =1

1,1

1,0

=1 =0

0,0

0,1

=1 =1

1,1

1,1

=0 <1

0,1

0,0

=0 >0

1,0

1,0

=1 <1

0,1

0,1

=1 >0

1,0

1,1

>0 >0

0,0

0,0

>0 >1

1,1

1,0

>1 >0

0,0

0,1

>1 >1

1,1

1,1

>0 >1

0,1

0,0

>0 >0

1,0

1,0

>1 >1

0,1

0,1

>1 >0

1,0

1,1

<0 <0

0,0

0,0

<0 <1

1,1

1,0

<1 <0

0,0

0,1

<1 <1

1,1

1,1

<0 <1

0,1

0,0

<0 <0

1,0

1,0

<1 <1

0,1

0,1

<1 <0

1,0

1,1

(a)

(c)

r c r’b

a,b

a,c

(b)

 =0

CL

#

(d)

 >0 =0 =1

CR2 CR2 CR2

 >1 <0 <1

CR2 CR2 CR2

 >0 >1 =0

CR3 CR3 CR3 CR3

 =1 <0 <1

CR3 CR3

 >0 >1 =0

CR CR CR CR

 =1 <0 <1

CR CR

=0 =0 =1 >0 >1 >1 >0 >0 >0

0,0 1,0 1,1 0,0 1,1 0,1 1,0 0,0 >=0

 0,0 1,1 1,0 0,1 1,1 0,0 1,0 0,0 CR

(e)

CL CL

#

(f)

 0,0 1,1 1,0 0,1 1,1 0,0 1,0 0,0 CR

 || || || || || || || || || || || || || || || || || ||

Fig. 3. (a) concepts behind the comparer system (b) rules of comparing A and B
(c) computational tiles (d) boundary tiles (e) A = 11010102 and B = 10110002 . (f)A ≥
B, B0 = 0. F outputs (11010102 ,1011002) and the boundary flags (#, >= 0).

Let ΣC = {||, (0, 0), (0, 1), (1, 0), (1, 1), = 0,= 1, < 0, < 1, > 0, > 1, >= 0, >=
1, CL,CR, CR2, CR3, F , # }. Let n ≥ max(nA, nB). Let Γ = {α0β0 = 〈(0, 0),
||, null, ||〉, α0β1 = 〈(0, 1), ||, null, ||〉, α1β0 = 〈(1, 0), ||, null, ||〉, α1β1 = 〈(1, 1),
||, null, ||〉, γh = 〈CL, ||, null, null〉,γt1 = 〈CR, null, null, ||〉}, γt2 = 〈CR2,
null, null, ||〉, γt3 = 〈CR3, null, null, ||〉}. The strength function gC is defined
as follow:

138 X. Fang and X. Lai

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀σ ∈ ΣC , gC(σ, null) = 0

gC(CL,CL) = 2; gC(>= 0, >= 0) = 2

gC(>= 1, >= 1) = 2; gC(<,<) = 2; gC(||, ||) = 2

∀σ ∈ Σ′
C\{null, CL,>= 0, >= 1, <, ||}, g′C(σ, σ) = 1

∀σ, σ′ ∈ Σ′
C\{null}, σ �= σ′, gC(σ, σ′) = 0

(3)

Let n ≥ max(nA, nB). Let the seed configuration S : Z2 → Γ be such that

⎧
⎪⎨

⎪⎩

S(1, 0) = γt, γt ∈ {γt1, γt2, γt3};S(−n, 0) = γh

∀i = 0, 1, . . . , n− 1 : S(−i, 0) = αAiβBi

For all other (x, y) ∈ Z
2, S(x, y) = empty.

(4)

Let TC be a set of tiles over ΣC as described in Fig. 3(c,d). We have |TC | = 43.

Lemma 2. Let εC = 2, gC defined as above. Given a seed configuration encod-
ing A and B which is defined in (4), the system SC =< TC , gC , εC > produces
the final configuration F :
I) bdN (F (1,−n)) =‘#’. S′

C performs a right-shift on B: ∀0 ≤ i ≤ n − 1,
bdN (F (1,−i)) = (Ai, Bi+1).
II) For seed configurations with different boundary flags, S′

C outputs different
information in the position (1,1):

– S(1, 0) = γt1 : If A ≥ B, bdN (F (1, 1)) =‘>= B0’; else bdN(F (1, 1)) =‘<’.
– S(1, 0) = γt2 : If A ≥ B, bdN (F (1, 1)) =‘>= B0’; else bdN(F (1, 1)) =‘F ’.

– S(1, 0) = γt3 : bdN (F (1, 1)) =‘F ’.

Fig. 3(e) shows a sample seed configuration S that encodes A = 11010102
and B = 10110002. Fig. 3 (f) shows an example execution of Sc on the seed
configuration and the top row reads the right-shift solution of B, i.e. 1011002;
the rightmost boundary flag ‘>= 0’ indicates that A ≥ B and the initial LSB of
B is 0.

2.3 Extended Subtractor System

In this section we propose a extended subsystem that performs subtraction and
shift-subtraction. The concepts behind the system are showed in Fig. 4(a). The
concepts include variables a, b, c, b′, c′, and s. each of which can take on as values
the elements of the set {0, 1}. The tiles have two input sides (east, south) and
two output sides (west, north). For the subset that performs subtraction, on the
input sides there are 3 variables, thus there are 8 tile types in this system; for the
subset that performs shifter-subtraction, on the input sides there are 4 variables,
thus there are 16 actual tile types in this system. Therefore in this system we
have totally 24 tile types(Fig. 4(b)). Fig. 4(c) shows 5 extra boundary tiles.

Modular Algorithm in Tile Self-assembly Model 139

*mR

s-,0,0

>=0

-,0

<

 s

s-,c’,b s-, c,b’

a,b

 s

-,c’ -, c

a,b

 0

s-,0,0 s-, 0,0

0,0

 1

s-,1,0 s-, 0,1

0,0

 1

s-,1,0 s-, 1,0

0,0

 0

s-,1,0 s-, 1,1

0,0

 1

s-,0,0 s-, 0,0

1,0

 0

s-,0,0 s-, 0,1

1,0

 0

s-,0,0 s-, 1,0

1,0

 1

s-,1,0 s-, 1,1

1,0

 0

s-,0,1 s-, 0,0

0,1

 1

s-,1,1 s-, 0,1

0,1

 1

s-,1,1 s-, 1,0

0,1

 0

s-,1,1 s-, 1,1

0,1

 1

s-,0,1 s-, 0,0

1,1

 0

s-,0,1 s-, 0,1

1,1

 0

s-,0,1 s-, 1,0

1,1

 1

s-,1,1 s-, 1,1

1,1

if(a-c-b’=0) s=0,c’=0
if(a-c-b’=1) s=1,c’=0
if(a-c-b’=-1) s=1,c’=1
if(a-c-b’=-2) s=0,c’=1

if(a-c-b=0) s=0,c’=0
if(a-c-b=1) s=1,c’=0
if(a-c-b=-1) s=1,c’=1
if(a-c-b=-2) s=0,c’=1

 0

-,0 -, 0

0,0

 1

-,1 -, 0

0,1

 1

-,0 -, 0

1,0

 0

-,0 -, 0

1,1

 1

-,1 -, 1

0,0

 0

-,1 -, 1

0,1

 0

-,0 -, 1

1,0

 1

-,1 -, 1

1,1

*mL

 -, 0

#

*mL

 s-,0,0

#

(a)

(b) (c)

*mR

*mR

s-,0,1

>=1

(e)

#

*mL 0 0 0 1 0 0 1 0 *mR

 S-,0,0 S-,0,0 S-,0,1 S-,1,0 S-,0,1 S-,0,1 S-,0,0 S-,0,0 S-,0,0

0,0 1,0 1,1 0,0 1,1 0,1 1,0 0,0 >=0

(d)

0,0 1,0 1,1 0,0 1,1 0,1 1,0 0,0 >=0

 || || || || || || || || || || || || || || || || || ||

Fig. 4. (a) the concept behind the system computing f(A,B) = A−B and f(A,B) =
A − 2B − t (b) the 24-computational-tile types (c) the 5-boundary-tile types (d)A =
11010102 and B = 1011002 (e)A− 2 ∗B = 100102

Let Σ− = {||, (0, 0), (0, 1), (1, 0), (1, 1), (−, 0), (−, 1), 0,1, (s−, 0, 0), (s−, 0, 1),
(s−, 1, 0), (s−, 1, 1), #, >= 0, >= 1, <,∗mL, ∗mR}, the strength function g−
is defined as follow:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∀σ ∈ Σ−, g−(σ, null) = 0

g−(∗mL, ∗mL) = 2; g−(>= 0, >= 0) = 2

g−(>= 1, >= 1) = 2; g−(<,<) = 2; g−(||, ||) = 2

∀σ ∈ Σ−\{null, ∗ml,>= 0, >= 1, <, ||}, g−(σ, σ) = 1

∀σ, σ′ ∈ Σ−\{null}, ifσ �= σ′, theng−(σ, σ′) = 0

(5)

Let n ≥ max(nA, nB), A ≥ B. Let Γ = {α0β0 = 〈(0, 0), ||, null, ||〉, α0β1 =
〈(0, 1), ||, null, ||〉, α1β0 = 〈(1, 0), ||, null, ||〉, α1β1 = 〈(1, 1), ||, null, ||〉, γh = 〈#,
||, null, null〉, γt1 = 〈>= 0, null, null, ||〉, γt2 = 〈>= 1, null, null, ||〉, γt3 = 〈<,
null, null, ||〉}. Let the seed configuration S : Z2 → Γ be such that

⎧
⎪⎨

⎪⎩

S(1, 0) = γt, γt ∈ {γt1, γt2, γt3};S(−n, 0) = γh

∀i = 0, 1, .., n− 1 : S(−i, 0) = αAiβBi

For all other (x, y) ∈ Z
2, S(x, y) = empty.

(6)

Lemma 3. Let ε− = 2, let Σ−, g− defined as above, and T− be a set of tiles
over Σ− (see Fig. 4(b,c)). Given a seed configuration encoding A and B which
is defined in (6), the system S− =< T−, g−, ε− > computes different functions:

140 X. Fang and X. Lai

– S(1, 0) = γt1 : S− computes the function f(A,B) = A− 2B
– S(1, 0) = γt2 : S− computes the function f(A,B) = A− 2B − 1
– S(1, 0) = γt3 : S− computes the function f(A,B) = A−B

Fig. 4(d) shows a sample seed configuration encoding A = 11010102 and B =
1011002. There is an identifier ‘ >= 0′ which indicates A−2B will be calculated.
Fig. 4(e) shows an example execution: the top row displays the solution A−2B =
100102.

3 Modular System

3.1 Definition and Sample Execution

Let the seed configuration be defined as it is in (2). Let ΣM = Σcon ∪ΣC ∪Σ−.
Let the strength function gM be such that gM agrees with gcon, gC , g− on their
respective domains.

Theorem 4. Let εM = 2. Let ΣM and gM defined as above. Let Tcon be the
connector system defined in section 2.1 which contains an inputting set en-
coding B. Let TM = Tcon ∪ TC ∪ T−. Given a seed configuration encoding A
which is defined in (2), the system SM =< TM , gM , εM > computes the function
f(A,B) = A mod B.

Due to limitations of space, we are not able to give the proof in detail. A brief
explanation of Theorem 4 is given as follow:

According to Lemma 1, Lemma 2 and Lemma 3, SC could be executed on
the final configuration of Scon, Scon could be executed on the seed configuration
of SM and the final configuration of S−, and S− could be executed on the final
configuration of SC . Thus at the very beginning, Scon will be executed. Then
SC will be executed according to the output of Scon, which is (A, B ∗ 2nA−nB).

According to Algorithm 1, the intuition behind the modular system computing
A mod B is that comparing A with B:

– If A < B, then A itself is the solution;
– Else if A ≥ B ∗ 2nA−nB , SC outputs the binding domain ‘>= B0’ which

indicates the comparison result; later S− will calculate A = A−B ∗ 2nA−nB ;
– Else if A < B ∗ 2nA−nB , SC outputs the binding domain ‘<’, and S− will

calculate A = A−B ∗ 2nA−nB−1.

Then for A with the updated value, A mod B will be computed again.The pro-
cess will be repeated until we have A < B. The system outputs A as the final
solution.

Fig. 5 shows an example execution of SM with A = 11010102 and B =
10112. The seed configuration encoding A = 11010102 is shown in Fig. 5(a).
The modulus B = 10112, nB = 4, thus B3 = 1, B2 = 0, B1 = 1 and B0 = 1.
Fig. 5(b) shows the corresponding inputting tile set encoding B = 10112. Fig.
5(c) shows the final configuration FM . On the north side of row 8, SC outputs
(1112, 102) and the final identifier ‘F ’, which indicates 1112 is the solution, i.e.
11010102 mod 10112 = 1112.

Modular Algorithm in Tile Self-assembly Model 141

pre con3

1

1,1

0

0,0

1

1,0

*mR

CR3

B3=1

B2=0

B1=1

B0=1

0

0,1

1

1,1

*mR

CR3

(b)

*mL 0 1 1 0 1 0 1 0 *mR

CL 0,0 1,1 1,0 0,1 1,1 0,0 1,0 0,0 CR

=0 =0 =1 >0 >1 >1 >0 >0 >0

0,0 1,0 1,1 0,0 1,1 0,1 1,0 0,0 >=0

*mL 0 0 0 1 0 0 1 0 *mR

 s-,0,0 s-,0,0 s-,0,1 s-,1,0 s-,0,1 s-,0,1 s-,0,0 s-,0,0 s-,0,0

CL 0,0 0,0 0,0 1,1 0,0 0,1 1,1 0,0 CR

 =0 =0 =0 =0 =1 =0 <1 <1 <0

0,0 0,0 0,0 1,0 0,1 0,0 1,1 0,1 <

*mL 0 0 0 0 0 1 1 1 *mR

CL 0,0 0,0 0,0 0,0 0,0 1,1 1,0 1,1 CR3

 pre pre pre pre pre pre con3 con2 con1

 pre pre pre pre con3 con2 con1 con0 post

 pre pre con3 con2 con1 con0 post post post

 -,0 -,0 -,0 -,0 -,1 -,1 -,1 -,1 -,0

 =0 =0 =0 =0 =0 =0 =1 >0 >1

0,0 0,0 0,0 0,0 0,0 1,0 1,1 1,0 F

*mL 0 1 1 0 1 0 1 0 *mR

(a)

(c)
-8 -7 -6 -5 -4 -3 -2 -1 0 1

8

7

6

5

4

3

2

1

0

con3 con2 con3

con2 con1 con2 con1 con2

0

0,1

1

1,1

*mR

CR3
con1 con0 con1 con0 con1

con3 con2

 || || || || || || || || ||

 || || || || || || || || ||

Fig. 5. (a) a sample seed configuration S that encodes A = 11010102 , nA = 7, n = 8.
(b) the inputting tile set encoding the modulus B = 10112 (c) the modular system
performs the computation 11010102 mod 10112 and produces a final configuration FM

on S. Along the top row FM encodes the solution, i.e. 000001112 .

3.2 Discussion

Lemma 5. (Modular Assembly Time Lemma). Given the seed configuration de-
fined in (2) which is of length n. For all A, B, if n and nA have the same or-
der of magnitude, the worst-case assembly time of SM computing A mod B is
Θ(nA(nA − nB)) and the best-case assembly time is Θ(nA).

Although the division system proposed in [7] which computes A/B can also be
used to compute A mod B, our scheme enjoys advantage in aspect of assembly
time: the overall assembly time of our scheme is less than that of scheme[7]. In
[7], to compute the remainder, the assembly time is always identical to that of
the worst-case in our scheme. Assume we have A = 1100000012, B = 112, B

′ =
1100000002, i.e. B padded with seven 0-bits. To compute the remainder of A/B,
in [7] it costs seven cycles to reduce the length of B′ until it is identical to nB;
while in our scheme, such operation is not required. The fact thatA−B′ is exactly
the final solution of A mod B could be verified directly after A−B′ is computed.
Thus to compute A mod B, A > B, in our scheme, the best-case assembly time
is Θ(nA) while in [7] the assembly time is always Θ(nA ∗ (nA − nB)), which is
identical to our worst-case assembly time. Our advantage is more significant if
nA is much greater than nB.

Lemma 6. (Modular Tile-set Size Lemma). To compute A mod B, TM requires
81 computational tile types and 3nB − 2 inputting tile types.

142 X. Fang and X. Lai

4 Conclusion

In this paper we present a modular system which computes A mod B for given
A and B. The system requires 81 computational tiles and 3nB − 2 inputting
tile types. Compared with pre-existing division system computing A/B whose
assembly time is always Θ(nA(nA − nB)), the worst-case assembly time of our
system is Θ(nA(nA − nB)) and the best-case assembly time is Θ(nA), which is
an improvement on time complexity.

As the tile assembly model is a highly distributed parallelism model of com-
putation, taking advantage of parallelism, more complicated system involving
modulus problem could be constructed. We leave this as future work.

Acknowledgements. This work was supported by the National Natural Sci-
ence Foundation of China (No. 61272440, No. 61073149), Research Fund for
the Doctoral Program of Higher Education of China (20090073110027), State
Key Laboratory of ASIC & System (11KF0020), Key Lab of Information Net-
work Security, Ministry of Public Security (C11603) and Scholarship Award for
Excellent Doctoral Student granted by Ministry of Education.

References

1. Rothemund, P., Winfree, E.: The program-size complexity of self-assembled squares.
In: Proceedings of the Thirty-Second Annual ACM Symposium on Theory of Com-
puting, pp. 459–468. ACM (2000)

2. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of
Technology (1998)

3. Barish, R., Rothemund, P., Winfree, E.: Two computational primitives for algorith-
mic self-assembly: Copying and counting. Nano Letters 5(12), 2586–2592 (2005)

4. Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sier-
pinski triangles. PLoS Biology 2(12), e424 (2004)

5. Brun, Y.: Solving np-complete problems in the tile assembly model. Theoretical
Computer Science 395(1), 31–46 (2008)

6. Brun, Y.: Improving efficiency of 3-SAT-solving tile systems. In: Sakakibara, Y., Mi,
Y. (eds.) DNA 16 2010. LNCS, vol. 6518, pp. 1–12. Springer, Heidelberg (2011)

7. Zhang, X., Wang, Y., Chen, Z., Xu, J., Cui, G.: Arithmetic computation using self-
assembly of dna tiles: subtraction and division. Progress in Natural Science 19(3),
377–388 (2009)

8. Winfree, E., Liu, F., Wenzler, L., Seeman, N., et al.: Design and self-assembly of
two-dimensional dna crystals. Nature 394(6693), 539–544 (1998)

	Modular Algorithm in Tile Self-assembly Model
	1 Introduction
	1.1 Background and Related Work
	1.2 Tile-Assembly Model
	1.3 Preliminary Algorithms

	2 Subsystems of Modular System
	2.1 Connector System
	2.2 Shift-Comparer System
	2.3 Extended Subtractor System

	3 Modular System
	3.1 Definition and Sample Execution
	3.2 Discussion

	4 Conclusion
	References

