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Abstract. The production of renewable energy sources is unstable, influenced a 
weather frame. Photovoltaic power plant output is primarily dependent on the 
solar illuminance of a locality, which is possible to predict according to meteo-
rological forecasts (Aladin). Wind charger power output is induced mainly by a 
current wind speed, which depends on several weather standings. Presented 
time-series neural network models can define incomputable functions of power 
output or quantities, which direct influence it. Differential polynomial neural 
network is a new neural network type, which makes use of data relations, not 
only absolute interval values of variables as artificial neural networks do. Its 
output is formed by a sum of fractional derivative terms, which substitute a 
general differential equation, defining a system model. In the case of time-series 
data application an ordinary differential equation is created with time deriva-
tives. Recurrent neural network proved to form simple solid time-series models, 
which can replace the ordinary differential equation description. 

Keywords: power plant output, solar illuminance, wind charger, differential 
polynomial neural network, recurrent neural network. 

1 Introduction 

Power production estimations of renewable sources are necessary as the supplies are 
very variable [7]. The electrical energy accumulation is an ambitious problem to 
solve, there is better to consume it direct by customers. A following day output pro-
duction is a sufficient estimation used by the electrical network operator [8]. The 
photovoltaic power plant (PVP) or wind charger supply of electricity is difficult to 
predict using deterministic methods as weather conditions can change from day to day 
or within short time periods. Hence the power output model should be updated to take 
into account a dynamic character of applied meteorological variables. Neural net-
works are able to deal with some problems, which other method solutions fail. They 
can define simple and reliable models, which exact solution is problematic. Recurrent 
neural network (RNN) is often used to define models of time-series data applications, 
which is possible to describe by ordinary differential equations. It applies as inputs 
also its neuron outputs from a previous time estimate. Analogous to other common 
neural network solutions, there is not possible to get specifications of RNN models in 
the form of a math description. The model appears to the users as a “black box”.  
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m – number of variablesX(x1, x2, ... , xm )       A(a1, a2, ... , am), ... -  vectors of parameters 

 

Differential polynomial neural network (D-PNN) is a new neural network type, 
which results from the GMDH (Group Method of Data Handling) polynomial neural 
network (PNN), created by a Ukrainian scientist Aleksey Ivakhnenko in 1968, when 
the back-propagation technique was not known yet. General connection between input 
and output variables is possible to express by the Volterra functional series, a discrete 
analogue of which is Kolmogorov-Gabor polynomial (1). This polynomial can ap-
proximate any stationary random sequence of observations and can be computed by 
either adaptive methods or system of Gaussian normal equations [5]. GMDH decom-
poses the complexity of a process into many simpler relationships each described by 
low order polynomials (2) for every pair of the input values. Typical GMDH network 
maps a vector input x to a scalar output y, which is an estimate of the true function 
f(x) = yt. 

y = a0 + a1xi + a2xj + a3xixj + a4xi
2 + a5xj

2    (2) 

 
D-PNN combines the PNN functionality with some math techniques of differential 

equation (DE) solutions. Its models are a boundary of neural network and exact com-
putational techniques. D-PNN forms and resolves an unknown general DE description 
of a searched function approximation. A DE is substituted producing sum of fraction-
al polynomial derivative terms, forming a system model of dependent variables. In 
contrast with the ANN functionality, each neuron can direct take part in the total net-
work output calculation, which is generated by the sum of active neuron output val-
ues. Its function approximation is based on any dependent data relations.  

2 Modeling and Forecasting of Energy Production 

The potential benefits of having energy production predictability are obvious useful in 
automatic power dispatch, load scheduling and energy control. The chance to forecast 
the energy production up to 24 hours can become of the utmost importance in deci-
sion-making processes, with particular reference to grid connected photovoltaic 
plants. Several approaches to forecasting load, wind speed or solar irradiation can be 
found. They can include neural network regression methods (Auto-Regressive Mov-
ing Average Model) and time series analysis models (Nonlinear Autoregressive with 
Exogenous Input). However most of the existing methodologies show some draw-
backs such as high average accuracy error and dependence on the particular design of 
the PVP. Variability of weather, in particular solar irradiation, is maybe the main 
difficulty faced by PVP operators so that good forecasting tools are required for the 
appropriate integration of renewable energy into the power system. Neural networks 
are able to model the nonlinear nature of dynamic processes, reproduce an empirical, 
possibly nonlinear, relationship between some inputs and one or more outputs.  
They are applied for such purpose regarding to its approximation capability of any 
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continuous nonlinear function with arbitrary accuracy that offer an effective alterna-
tive to more traditional statistical techniques [3]. Measurements of environmental 
parameters are generally provided in the form of time series which are suitable to use 
artificial neural networks with tapped delay lines. Regarding the training window 
width, the typical way to provide data for solar energy climatology has monthly,  
annual or 10-days granularity. Several solar parameters might be considered e.g. 
clearness, visibility index, cloud coverage and sunshine duration however the solar 
radiation is the most important parameter in the prediction and modeling of renewable 
PVP energy systems [2]. 

The wind speed model can apply 2 different inputs: lagged values of the average or 
maximum wind speed. The wind energy and speed change are not continual through-
out the entire year, for this reason might be used the wind velocity meteorological 
maps providing regional assessments and interpretations. The difficulty in predicting 
this meteorological parameter arises from the fact that it is a result of the complex 
interactions among large-scale forcing mechanisms of pressure and temperature dif-
ferences, local characteristics of the surface, etc. Wind energy is strong especially 
during winter, in the period with the highest demand.  End-users recognize the contri-
bution of wind prediction for a secure and economic operation of the power system. 
The power models should take into account technical parameters, i.e. hub height, 
turbine type, etc. Wind energy is possible to forecast using neuro-fuzzy, cognitive 
mapping or other soft computing techniques [1]. 

3 General Differential Equation Composition 

The basic idea of the D-PNN is to compose and substitute a general sum partial diffe-
rential equation (3), which is not known in advance and can describe a system of de-
pendent variables, with a sum of fractional relative multi-parametric polynomial  
derivative terms (4). 
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u = f(x1, x2,, … , xn) – searched function of all input variables 
a, B(b1, b2,, ..., bn), C(c11, c12, ,... ) – polynomial parameters 

 
Partial DE terms are formed according to the adapted integral analogues method, 

which is a part of similarity model analysis. It replaces mathematical operators and 
symbols of a DE by ratio of corresponding values. Derivatives are replaced by their 
integral analogues, i.e. derivative operators are removed and simultaneously with all 
operators are replaced by similarly or proportion signs in equations to form dimen-
sionless groups of variables [4].  
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n – combination degree of  a complete polynomial of n-variables 
m – combination degree of denominator variables 
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The fractional polynomials (4) define partial relations of n-input variables. The 
numerator of a DE term (4) is a polynomial of all n-input variables and partly defines 
an unknown function u of eq. (3). The denominator is a derivative part, which in-
cludes an incomplete polynomial of the competent combination variable(s). The root 
function of numerator takes the polynomial into competent combination degree to get 
the dimensionless values [4]. In a case of time-series data application an ordinary 
differential equation is formed with only time derivatives. The partial DE (3) might 
become form of (5). 
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f(t, x) – function of time t and independent input variables x(x1, x2, ... , xm) 
 
Blocks of the D-PNN (Fig.1.) consist of derivative neurons, one for each fractional 

polynomial derivative combination, so each neuron is considered a summation DE 
term (4). Each block contains a single output polynomial (2), without derivative part. 
Neurons do not affect the block output but participate direct in the total network out-
put sum calculation of a DE composition. Each block has 1 and neuron 2 vectors of 
adjustable parameters a, resp. a, b.  

 

Fig. 1. D-PNN block of basic and compound neurons 

In the case of 2 input variables the 2nd odder partial DE can be expressed in the 
form (6), which involve all derivative terms of variables applied by the GMDH poly-
nomial (2). D-PNN processes these 2-combination square polynomials of blocks and 
neurons, which form competent DE terms of eq. (5). Each block so include 5 basic 
neurons of derivatives x1, x2, x1x2, x1

2, x2
2 of the 2nd order partial DE (6), which is most 

often used to model physical or natural systems.  
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where F(x1, x2, u, p, q, r, s, t) is a function of 8 variables 
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Block output 

Polynomial 

   +            +                 Neurons (4) 
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4 Differential Polynomial Neural Network 

Multi-layered networks forms composite polynomial functions (Fig.2.). Compound 
terms (CT), i.e. derivatives in respect to variables of previous layers, are calculated 
according to the composite function partial derivation rules (7)(8). They are formed 
by products of partial derivatives of external and internal functions. 

 
F(x1, x2, … , xn) = f(y1, y2, … , ym) = f(φ1(X), φ2(X),..., φm(X))    (7) 
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Fig. 2. 3-variable multi-layered D-PNN with 2-variable combination blocks 

Thus blocks of the 2nd and following hidden layers are additionally extended with 
compound terms (neurons), which form composite derivatives utilizing outputs and 
inputs of back connected previous layer blocks. The 1st block of the last (3rd) hidden 
layer forms neurons e.g. (9)(10)(11) [9]. 
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The square (12) and combination (13) derivative terms are also calculated accord-

ing to the composite function derivation rules. 
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The best-fit neuron selection is the initial phase of the DE composition, which may 

apply a proper genetic algorithm (GA). Parameters of polynomials might be adjusted 
by means of difference evolution algorithm (EA), supplied with sufficient random 
mutations. The parameter optimization is performed simultaneously with the GA term 
combination search, which may result in a quantity of local or global error solutions. 
There would be welcome to apply an adequate gradient descent method too, which 
parameter updates result from partial derivatives of polynomial DE terms in respect 
with the single parameters [6]. The number of network hidden layers coincides with a 
total amount of input variables. 
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Only some of all potential combination DE terms (neurons) may participate  

in the DE composition, in despite of they have an adjustable term weight (wi).  
D-PNN’s total output Y is the sum of all active neuron outputs, divided by their 
amount k (14).  
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The root mean square error (RMSE) method (15) was applied for the polynomial 

parameter optimization and neuron combination selection. D-PNN is trained  
only with a small set of input-output data samples likewise the GMDH algorithm  
does [6].  
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5 Power Plant Output Model Experiments 

D-PNN and RNN (Fig.7.) apply time-dependent series of the solar illuminance 3 va-
riables to estimate a power plant output at the end-time (3rd) variable. Both networks 
were trained with previous 1 or 2 day 10-minute data series (i.e. samples), which pro-
vide the solar illuminance and corresponding power output values in the same loca-
tion (Ostrava). Fig.3.-Fig.6. show the comparison of normalized power plant output 
day estimations, following the illuminance values. Both networks produce very simi-
lar results, despite their functionalities differs essentially. The power model outcome 
graph curves of Fig.5c. are nearly identical goings. 

 

 

Fig. 3. RMSED-PNN = 0.0151, RMSERNN = 0.0184 

 

Fig. 4. RMSED-PNN = 0.0258, RMSERNN = 0.0275 
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 (a) 

 (b) 

 (c) 

Fig. 5. a-c. RMSED-PNN = 0.0242(a), 0.00694(b), 0.00369(c); RMSERNN = 0.0234(a), 
0.00747(b), 0.00374(c) 
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Fig. 6. RMSED-PNN = 0.0415, RMSERNN = 0.0440 

 

Fig. 7. Recurrent neural network 

6 Wind Speed Model Experiments 

The wind speed induces mainly a wind charger power output. There is usually availa-
ble only its very rough forecast in a location. It could be modeled with reference to 
other weather variables forecasts, as meteorological predictions of this very complex 
dynamic system are sophisticated and not any time faithful, using simple neural  
network models. The fittest variables, which wind speed depends on, seem to be tem-
perature, relative humidity and sea level pressure. The D-PNN and RNN models 
(Fig.8a-c.) apply 3 time-series of 3 state variables of 1 site locality, i.e. 9 input vector  
variables totally. Both networks were trained with previous 1 or 2 day hourly data 
series (24 or 48 hours, i.e. data samples), which are free online available [10]. 
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 (a) 

 (b) 

 (c) 

Fig. 8. a-c. RMSED-PNN = 4.287(a), 2.665(b), 3.576(c); RMSERNN = 4.493(a), 3.188(b), 4.116(c) 
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7 Conclusion 

The study compares 2 neural network models, which results are very similar, despite 
the fact their operating principles differs by far. This comparison indicates, both me-
thod outcomes are of a very good level, extracting from the provided input data a 
maximum of useful information. Both networks update the models daily, to respect a 
dynamic character of applied meteorological variables. D-PNN is a new neural net-
work type, which function approximation is based on generalized data relations. Its 
relative data processing is contrary to the common soft-computing method approach, 
which applications are subjected to a fixed interval of absolute values. Its operating 
principle differs by far from other common neural network techniques. 
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