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An Algorithm for Bayesian Network

Structure Learning Based on Simulated

Annealing with Adaptive Selection Operator

Ao Lin, Bing Xiao, and Yi Zhu

Abstract In order to solve the problems that the intelligence algorithm falls into

the local optimum easily and has a slow convergence in Bayesian networks

(BN) structure learning, an algorithm based on adaptive selection operator with

simulated annealing is proposed. This chapter conducts the adaptive selection rule

in combination with conditional independence tests of BN nodes to guide the

generation of neighbor. In order to better compare the adaptive effect, an algorithm

based on selection operator with simulated annealing (SOSA) is proposed; at the

same time 15 data sets in the three typical networks are accessed as learning

samples. The results of the Bayesian Dirichlet (BD) score, Hamming distance

(HD), and evolution time of the network after learning show that it has the quicker

convergence and it searches the optimal solution more easily compared with

simulated annealing (SA) and SOSA.

60.1 Introduction

As a graph model, BNs is an effective tool to deal with the uncertain problems in

modeling and analysis, which is widely applied in many domains. Meanwhile, the

learning problem of BNs is an important part of BN study. BN learning includes BN

structural learning and parameter learning. Structure learning is needed to disclose

the qualitative and the quantitative relationship between variables to light at the

same time, while the BN structure learning is proved to be NP hard. Therefore,

studying the BN structure learning problems is more challengeable and meaningful.
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In the investigation of BN structure learning, there are two classes of methods to

deal with the structure learning problems [1]: The method of independence analysis

and the method of score searching. The former determines whether there is border

between the corresponding points or not by examining the conditional indepen-

dence and dependence between variables, thereby establishing the skeleton of BN

structure and orienting the border to get the BN structure. The latter is the method of

score searching. For the network search space is of great extent generally, some BN

structure learning adopts heuristic greedy algorithm, which tends to lead to the local

optimum in the learning outcomes.

Nowadays, some researchers adopt the method of intelligence evolution to avoid

the shortage of the heuristic algorithm [2, 3]. The SA algorithm is just the intelli-

gence algorithm which is applied therein firstly, which is proved to be successful

[4]. In contrast with the typical methods, it has a persistent evolution. In fact,

examining the dependence and the independence between variables can reveal

the variables’ relational information which is camouflaged in data. Using this

information can guide the evolution of the intelligence algorithm, thereby achieving

the target of rapid convergence. ASOSA algorithm for the BN structure learning is

proposed in this chapter.

60.2 BN Structure Learning

As a pictorial model that represents the joint probability distributions between

variables, BNs include two parts: directed acyclic graph (DAG) and BN parameters.

BN joint probability distributions can be decomposed as following through the

independence relationship between variables contained in BN structure:

p X1; � � �;Xnð Þ ¼
Yn

i¼1

p Xi

��Pai,G
� �

(60.1)

wherein Pai refers to the father node of the variable Xi in BN structure (G). BN

structure learning refers to obtaining the network structure which matches the

sample data fitting best by analyzing a variety of samples, which is the focus of

this chapter.

The method based on conditional independence test is efficient. But in certain

cases, the conditional independence test order (the variables’ number of the condi-

tional set is the number of the conditional independence test orders) increases

exponentially with respect to the number of the variables.

This chapter adopts the mutual information and conditional mutual information in

the conditional independence test. I(Xi; Xj) expresses the mutual information between

variables Xi and Xj. According to the information theory, I(Xi; Xj) is
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I Xi;Xj

� � ¼ I Xj;Xi

� � ¼
X

Xi,Xj

p Xi;Xj

� �
log

p Xi;Xj

� �

p Xið Þp Xj

� � (60.2)

The mutual information is nonnegative. The more variables Xi and Xj incline to

independence, the more I(Xi; Xj) approaches 0.

The method based on score searching is another method of the BN structure

learning; this method defines grading function S for each candidate network.

Generally, S is posterior probability of the network. When assuming that BNs

have equal a priori probability, the comparison of the posterior probability S of

different BN structures is the comparison of the structure likelihood p(DjG). Cooper

and Herskovits provided the calculating procedure of the structure likelihood:

p D
��G

� � ¼
Yn

i¼1

Yqi

j¼1

Γ αij
� �

Γ αij þ Nij

� �
Yri

k¼1

Γ αijk þ Nijk

� �

Γ αijk
� � (60.3)

wherein Γ is gamma function, Nijk is the number of cases in the dataset in which the

parents of Xi are in state j and Xi itself is in state k, and qi and ri are the number of the

parents of Xi and Xi in its own state separately. αij and αijk are the Dirichlet prior

distributions. Equation (60.3) is also the famous Bayesian Dirichlet (BD) score

function; the greater the structure score, the better the network structure.

60.3 Adaptive Selection Operator

The traditional SA algorithm of BN structure learning gets the neighbor by ran-

domly selecting add, delete, or reverse the directed edges. This kind of operation is

purposeless and ineffective. The zero-order independence information of the BN

nodes can characterize the relationship between nodes substantially. So the infor-

mation can be used to guide the generation of neighbor. The main thought is

constructing the initial selection matrix with the nodes’ zero-order information in

the independence test. With the conducting of the annealing, effect of selection

matrix is weakened gradually and selection matrix will not change any more when

it meets certain conditions.

The selection matrix can be classified into the dependence selection matrix and

the independence selection matrix which are applied to the addition and the deletion

of the BN edges, respectively.

The selection matrix can be gained in two steps:

Step 1: Initialization. Set the coefficient of renovation k (k > 1). Calculate the

mutual information of the two different random variable C0
ij ¼ I(Xi; Xj),

i ¼ 1 � � � m � 1, and j ¼ i + 1 � � � m; m is the number of the BN nodes.

The matrix C0 is the initial dependence selection matrix; the independence

selection matrix and the dependence selection matrix have the opposite
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effects. In order to ensure the nonnegativity of the probability, D0
ij ¼ �

C0
ij + max(C0

ij) , i ¼ 1 � � � m � 1, j ¼ i + 1 � � � m. D0 is the initial inde-

pendence selection matrix.

Step 2: Updating. p ¼ p + 1. Cp
ij ¼ (Cp�1

ij )1/k, Dp
ij ¼ (Dp�1

ij )1/k, p � 1 when it

meets the conditions; Cp
ij ¼ Cp�1

ij , Dp
ij ¼ Dp�1

ij , p � 1 when it does not

meet the conditions.

In order to keep the selectivity of the selection matrix, the maximum of the

number of updating can be set.

60.4 ASOSA Algorithm

For the SA algorithm of BN structure learning, the initialized network structure is

empty. It looks for the better network locally through the operation such as

randomly adding, deleting the edge, and converting the edge’s direction. Lower

the temperature gradually to look for the locally optimal network, until the suspense

condition is reached. Adaptive selection operator with simulated annealing

(ASOSA) algorithm has the same main body frame as the SA algorithm, but it

uses the selection probability of the selection matrix instead of the random selection

to operate the edges. The algorithm proposed in this chapter is presented in

Algorithm 1.

The marking criterion of the algorithm based on ASOSA adopts the BD score.

For SA algorithm seeking for the minimum, the score results should maintain the

negative value only. The condition of the step 13 and 14 refers to ΔS � 0, and the

updating time does not reach the maximal time λ.
In order to compare the effectiveness of the ASOSA algorithm, an algorithm

based on selection operator with simulated annealing (SOSA) is designed the

selection matrix of which will not change in the annealing process.

60.5 Experimentation

The standard way of assessing the effectiveness of a learning algorithm is to draw

samples from a known BN, apply the algorithm on the artificial data, and to

compare the learned structure with the original one [3]. This chapter chooses

three typical networks in different domains for the experiment: Asia network [5]

(8 variables, 8 edges), insurance network [6] (27 variables, 52 edges), and alarm

network [7] (37 variables, 49 edges). For the three experimental networks, datasets

with 100, 200, 500, 1,000, and 5,000 samples were generated separately by apply-

ing Gibbs sampling.
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Algorithm 1: ASOSA algorithm

Input: Set of learning data

Output: Bayesian network

1. Set the initial temperature T0.
2. Set the minimum temperature Tend.
3. ν ¼ 0.99;//The descent velocity of temperature.

4. β ¼ 20;//The maximal time of the outside loop.

5. σ ¼ 20;//The maximal time of the inside loop.

6. Calculate the mutual information between any two variables to get C0.

7. D0 ¼ � C0 + max(C0).

8. k ¼ 1.1;//Coefficient of renovation.

9. λ ¼ 15;//The maximal updating time of the selection matrix.

10. G ¼ empty graph;//The candidate graph is initialized into empty graph.

11. T ¼ T0.
12. Repeat

13. If the conditions are met, update the selection matrix C and D; end.

14. If the conditions are not met, do not update the selection matrix; end.

15. For σ times do.

16. Add one edge and reduce one edge to G, according to the selection matrix

C and D, and reverse the direction of one of the directed edges in G

randomly.

17. Calculate the score difference ΔS coming from the three operations above.

18. If ΔS > 0 or e(ΔS/T ) > rand(0,1) then apply these actions to G; end.

19. End.

20. T ¼ T � ν.
21. Until the maximal time of the loop or T > Tend is obtained.
22. Return G.

60.5.1 Qualitative Analysis of Algorithms

Table 60.1 shows the BD score statistics to the learning results of the 15 experi-

mental datasets from the three experimental networks by three algorithms

(SA, SOSA, and ASOSA).

Hamming distance (HD) is an available approach to describe the difference

between the network G after learning and the original network G0. HD is the sum of

excessive edge, deleted edge, and reversed edge. Table 60.2 shows the statistic

results of the three different algorithms from the three different samples. It can be

found from the statistic results of the HD that the performance of ASOSA is optimal

and the posterior is SOSA.
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60.5.2 Constringent Analysis of Algorithms

The runtime of algorithm can be the leading indicator to measure the algorithm

efficiency, but the final results of the different algorithms are different. For conve-

nience in comparison, take the time consumption of the BD final score of the SA

Table 60.1 BD score for the learned structure (normalized for correct network score)

Sample Method

Sample size

Avg.100 200 500 1,000 5,000

Asia SA 1.008 1.010 1.009 1.004 1.004 1.007

SOSA 0.994 0.995 0.997 1.000 1.000 0.997

ASOSA 0.994 0.995 0.997 0.999 1.000 0.997

TRUE 1.000 1.000 1.000 1.000 1.000 1.000

Empty 1.271 1.384 1.333 1.336 1.322 1.329

Insurance SA 0.876 0.932 0.970 0.990 1.003 0.954

SOSA 0.889 0.916 0.965 0.982 1.000 0.950

ASOSA 0.886 0.927 0.964 0.982 0.998 0.951

TRUE 1.000 1.000 1.000 1.000 1.000 1.000

Empty 1.109 1.251 1.403 1.492 1.588 1.369

Alarm SA 0.994 1.009 1.006 1.005 1.005 1.004

SOSA 0.997 1.004 1.002 1.004 1.007 1.003

ASOSA 0.990 1.003 0.996 0.999 1.000 0.998

TRUE 1.000 1.000 1.000 1.000 1.000 1.000

Empty 1.571 1.682 1.768 1.836 1.888 1.749

Table 60.2 HD for the

learned structure
Sample Method

Sample size

Avg.100 200 500 1,000 5,000

Asia SA 15 15 15 8 13 13.2

SOSA 5 7 3 0 2 3.4

ASOSA 5 3 3 2 2 3.0

Insurance SA 53 43 31 37 22 37.2

SOSA 49 29 25 24 23 30.0

ASOSA 40 25 22 24 22 26.6

Alarm SA 45 34 33 21 26 31.8

SOSA 33 31 21 16 21 24.4

ASOSA 25 20 18 13 15 18.2

Since the operation platforms of the algorithms are at variance,

the scores should be normalized for the correct network score. As

BD score is subtractive, the lower the normalized score, the better

the network structure

It can be found from the learning results of the three networks that

the normalized score of the SA algorithm is higher than the other

two improved algorithms except the 100 samples of the insurance

and alarm network learning, and the score of SOSA and ASOSA

are superior to SA algorithm. In the learning, the score of ASOSA

is no higher than SOSA in each group or on an average
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algorithm calculated by SOSA and ASOSA as the comparison object, and the result

is normalized with the computation time of the SA, as shown in Table 60.3.

It can be found from the comparison of the runtime of the algorithms that the

time of ASOSA is smaller than the other two algorithms, but there is little differ-

ence in SOSA and ASOSA.

In order to better compare the convergence of the algorithms, the performance

process of the Asia network learning results from 500 samples which is obtained by

ASOSA and SA is recorded. The cross axle is time, and the axis of ordinates is the

BD score result normalized for the correct network score as shown in Fig. 60.1.

It can be found from the figure above that ASOSA converges rapidly. The

searching directivity of the initial algorithm is conspicuous. The final convergence

result is in the low level. The convergence process of the traditional SA is slow, and

the final convergence result is worse than that of ASOSA.

60.6 Conclusion

This chapter introduces the ASOSA algorithm for BN structure learning, which

fuses the independence analysis method and the score searching method of the BN

structure learning, by the agency of the searching optimal network of the simulated

annealing intelligence algorithm. The comparison of learning in three different

Table 60.3 Runtime

(normalized for SA)
Sample Method

Sample size

Avg.100 200 500 1,000 5,000

Asia SA 1.30 1.15 1.26 1.00 1.15 1.30

SOSA 0.22 0.26 0.52 0.37 0.30 0.22

ASOSA 0.19 0.19 0.33 0.26 0.15 0.19

Insurance SA 1.15 1.00 1.10 1.13 1.47 1.17

SOSA 1.04 0.63 0.55 0.67 0.71 0.72

ASOSA 1.06 0.63 0.58 0.52 0.64 0.69

Alarm SA 1.15 1.00 1.07 1.10 1.48 1.16

SOSA 0.85 0.67 0.70 0.78 0.78 0.76

ASOSA 0.62 0.55 0.60 0.72 0.78 0.65

Fig. 60.1 (a and b) The performance record of ASOSA and SA
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samples from multi-aspect is among the algorithms ASOSA, SOSA, and SA. The

result shows that the ASOSA is superior to SOSA and SA in the learning accuracy

and the time consumption.
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