
Chapter 8
Some Optimization Problems

Abstract In this chapter, the problems of safety analysis and optimization of a
moving elastic plate travelling between two rollers at a constant axial velocity are
considered. We will use a model of a thin elastic plate subjected to bending and
in-plane tension (distributed membrane forces). We will study transverse buckling
(divergence) of the plate and its brittle and fatigue fracture caused by fatigue crack
growth under cyclic in-plane tension (loading). Our aim is to find the safe ranges of
velocities of an axially moving plate analytically under the constraints of longevity
and stability. In the end of this chapter, the expressions for critical buckling velocity
and the number of cycles before the fracture (longevity of the plate) as a function of
in-plane tension and other problem parameters are used for formulation and we will
study the case as an optimization problem. Our target is to find the optimal in-plane
tension to maximize the performance function of paper production. This problem is
solved analytically and the obtained results are presented as formulae and numerical
tables.

8.1 Optimization of Moving Plates Subjected to Instability
and Fracture

It is known that, in systems with travelling continuum, an increase in tension has
a stabilizing effect but a decrease in tension may lead to a loss of stability. From
the viewpoint of fracture, tension has an opposite effect: high tension may lead to
growing or arising of cracks, and tension low enough then guarantees safe conditions.
In practice, both instability and material fracture may lead to web breaks.

In this section, we will present constraints for the plate velocity and the structural
longevity so that the considered system would perform in a safe manner. By longevity
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Fig. 8.1 Top A plate travelling through a system of supporting rollers, and having an initial crack.
Bottom Examples of cyclic tension. There may be few or many tension cycles per span. (Reproduced
from Banichuk et al. 2013)

or structural longevity, we refer to the number of cycles that the (cracked) material
sustains before fracture failure. We will also construct a productivity function, with
the help of which an optimal value for in-plane tension will be sought.

8.1.1 Optimization Criterion and Constraints

Consider an elastic plate travelling at a constant velocity V0 in the x direction and
being simply supported by a system of rollers located at x = 0, �, 2�, 3�, . . . (Fig.
8.1). A rectangular element Ωi , i = 0, 1, 2, . . . , of the plate

Ωi ≡ {
(x, y) ∈ R

2 | i� < x < (i + 1)� , −b < y < b
}

(8.1)

is considered in a cartesian coordinate system, where � and b are prescribed geomet-
ric parameters. Additionally, assume that the considered plate is represented as an
isotropic elastic plate having constant thickness h, Poisson ratio ν, Young modulus
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E , and bending rigidity D. The plate elements in (8.1) have small initial cracks (Fig.
8.1) of length a with a given upper bound a0, i.e.,

0 < a ≤ a0 , (8.2)

and are subjected to homogeneous tension T , acting in the x direction.
The sides of the plate element (i = 1, 2, 3, . . . )

{ x = i�, −b ≤ y ≤ b } and { x = (i + 1)�, −b ≤ y ≤ b }

are simply supported and the sides

{ y = −b, i� ≤ x ≤ (i + 1)� } and { y = b, i� ≤ x ≤ (i + 1)� }

are free of tractions.
Consider the following scenario, where the plate is moving under cyclic in-plane

tension and fatigue crack growth is realised. Suppose that the plate is subjected to a
cyclic tension T that varies in the given limits

Tmin ≤ T ≤ Tmax ,

where
Tmin = T0 − ΔT , Tmax = T0 + ΔT .

Above, ΔT > 0 is a given parameter such that

T0 − ΔT > 0 and
ΔT

T0
� 1 . (8.3)

For one cycle, the tension increases from T = Tmin up to T = Tmax (the loading
process) and then decreases from T = Tmax to T = Tmin (the unloading process). The
loading and unloading processes are supposed to be quasistatic; dynamical effects
are excluded.

The product of the plate velocity V0 and the process time tf can be considered a
productivity criterion (performance function), i.e.,

J = m0V0tf , m0 = 2bm . (8.4)

Here, m is the mass per unit area of the plate. In (8.4), the velocity V0 is taken from
the safe interval

0 < V0 < V cr
0 ,

where V cr
0 is the critical buckling speed.
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A safe interval for the safe functioning time (number of cycles) is written as

0 < tf < tcr
f or 0 < n < ncr ,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture. For a small cycle time period τ and a big number of cycles n,
we assume that tf ≈ nτ . Note that the critical buckling velocity V cr

0 and the critical
functioning time tcr

f (critical number of cycles ncr) depend on the parameters of the
average in-plane tension T0, and the admissible variance ΔT , i.e

V cr
0 = V cr

0 (T0,ΔT ) ,

tcr
f = tcr

f (T0,ΔT ) ,

ncr = ncr(T0,ΔT ) .

Consequently, the maximum value of the productivity criterion for the given values
T0 and ΔT is evaluated as

J (T0,ΔT ) = m0V cr
0 (T0,ΔT )tcr

f (T0,ΔT )

= m0τ V cr
0 (T0,ΔT )ncr(T0,ΔT ) .

The optimal average (mean) in-plane tension T0 is found by solving the following
optimization problem:

J ∗ = max
T0

J (T0,ΔT ) .

To solve the formulated optimization problem, we will use the explicit analytical
expressions for the values V cr

0 and ncr. The value of T0, giving the maximal production
J ∗, is denoted by T ∗

0 .
To evaluate ncr, let us apply fatigue crack growth theory. Suppose that the plate

contains one initial crack of length a0. The process of fatigue crack growth under
a cyclic tension (loading) can be described by the following equation (Paris and
Erdogan 1963) and initial condition

da

dn
= Cκk

0 ak/2 , (8.5)

where

κ0 = 2β
√

π

h
ΔT .
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The variance ΔK of the stress intensity factor K is determined with the help of the
formulae

ΔK = Kmax − Kmin , Kmax = βσmax
√

πa ,

Kmin = βσmin
√

πa , σmax = Tmax

h
, σmin = Tmin

h
. (8.6)

In (8.5), C and k are material constants. In (8.6), h is the thickness of the plate, n is the
number of cycles, and σmax, Kmax, σmin and Kmin are, respectively, the maximum and
minimum values of the stress σ and the stress intensity factor K in any given loading
cycle. For the considered case, the surface crack geometric factor is β = 1.12.

It follows from (8.5) and that for considered values of the parameter k 	= 2, we
will have

n = A

[
1

a(k−2)/2
0

− 1

a(k−2)/2

]

, (8.7)

where

A = 2

(k − 2)Cκk
0

.

Unstable crack growth is obtained after n = ncr cycles when the critical crack
length acr satisfies the limiting relation

(Kmax)a=acr = KC

or, in another form, we have

β
Tmax

h

√
πacr = KC . (8.8)

The quantities σmax and Tmax (respectively σmin and Tmin) are the maximum (mini-
mum) stresses and tensions in the uncracked plate, where the crack is located. Using
(8.8) and the inequality ΔT/T0 � 1, we obtain

acr = 1

π

(
KCh

βTmax

)2

≈ 1

π

(
KCh

βT0

)2

and, consequently, we will have the following expression for the critical number of
cycles:

ncr = (n)a=acr = A

[
1

a(k−2)/2
0

−
(√

πβT0

KCh

)k−2
]

. (8.9)

From the condition of positiveness of the expression in (8.9), we find the maximum
value of admissible tensions,



218 8 Some Optimization Problems

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T
~

n~c
r

0

k=2.5
k=3
k=4
k=5

Fig. 8.2 Dependence of the normalized critical number of cycles, (8.25), on the dimensionless
average tension, (8.20)

T0 ≤ 1√
πa0

KCh

β
≡ T M

0 . (8.10)

In the special case k = 2, we can find the critical number of cycles to be

ncr = B ln

[
1

πa0

(
KCh

βT0

)2
]

, (8.11)

where

B = 1

Cκ2
0

,

and the tension limit T M
0 is expressed by (8.10).

The dependence of the critical number of cycles ncr on the average tension T0 and
the problem parameter k is shown in Fig. 8.2 using dimensionless quantities that will
be presented below in (8.19) and (8.24).

The critical velocity of static instability (buckling) of the travelling plate, as was
discussed in Sect. 3.4 (see also Banichuk et al. 2010), is given by the following
formula:

(V cr
0 )2 = T0

m
+ γ 2∗

m

π2 D

�2 , (8.12)

where D = Eh3/
[
12 (1 − ν2)

]
, m is the mass per unit area (of the plate), and γ = γ∗

is the root of the equation (see Fig. 3.3)
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Φ(γ,μ) − Ψ (γ, ν) = 0 , (8.13)

where

Φ(γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
,

Ψ (γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 , μ = �

πb
. (8.14)

As is seen from (8.13) and (8.14), the root γ = γ∗ depends on ν and μ, and
does not depend on the other problem parameters including the value of tension
T0. Consequently, the critical instability velocity, defined in (8.12), increases when
tension T0 is increased. However, T0 cannot be increased indefinitely due to initial
damages and other imperfections.

8.1.2 Finding Optimal Solution

The most important factor, for the runnability and stability of moving plates con-
taining initial imperfections, is the applied tension. To find a safe and optimal T0
maximizing the performance function is the problem we will consider in this section.

Let us represent the functional to be optimized, (8.4), as a function of the average
tension T0. By taking into account explicit expressions for ncr, in (8.9), and for V cr

0 ,
in (8.12), and performing necessary algebraic transformations, assuming that k 	= 2,
we will have

J (T0) = m0τ V cr
0 (T0)n

cr(T0)

= J0

[

1 + 1

D

(
�

γ∗π

)2

T0

]1/2 [

1 −
(

β
√

πa0

hKC
T0

)k−2
]

(8.15)

where
J0 = m0τCV0 Cn , (8.16)

and

CV0 = πγ∗
√

D

�
√

m
(8.17)

and

Cn = 2a0

(k − 2)C

(
h

2βΔT
√

πa0

)k

. (8.18)

The performance function J is proportional to the multiplier J0, and consequently,
the optimized tension T0 does not depend on J0.
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For convenience of the following estimations and reduction of characteristic para-
meters, we introduce the dimensionless values

J̃ = J

J0
, (8.19)

T̃0 = T0

T M
0

= β
√

πa0

KCh
T0 , (8.20)

g = KCh

βD
√

πa0

(
�

γ∗π

)2

. (8.21)

The optimized functional and the interval of optimization, in the case when k > 2,
are

J̃ (T̃0) =
(

1 + gT̃0

)1/2 (
1 − T̃ k−2

0

)
, (8.22)

with
0 ≤ T̃0 ≤ 1 . (8.23)

In other words, we consider

J̃ (T̃0) = Ṽ cr
0 (T̃0) ñcr(T̃0)

with

Ṽ cr
0 (T̃0) =

(
1 + gT̃0

)1/2
(8.24)

and
ñcr(T̃0) = 1 − T̃ k−2

0 . (8.25)

In the special case k = 2, we will use the expressions (8.4), (8.11) and (8.12), and
perform algebraic transformations. We will have

J (T0) = m0τ V cr
0 (T0)n

cr(T0)

= J1

[

1 + 1

D

(
�

γ∗π

)2

T0

]1/2

ln

(
hKC

β
√

πa0

1

T0

)

with

J1 = 2m0τπγ∗
√

D

C�
√

m

(
h

2βΔT
√

π

)2

.

Using the dimensionless values J̃ = J/J1 and T̃0, g from (8.19)–(8.21), we find that

J̃ (T̃0) = ln

(
1

T̃0

)(
1 + gT̃0

)1/2
, 0 ≤ T̃0 ≤ 1 . (8.26)
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Table 8.1 Physical parameters used in the numerical examples

Material constants

E ν m GC/ρ (Seth and Page 1974) C
109 N/m2 0.3 0.08 kg/m2 10 Jm/kg 10−14

Geometric constants
� 2b h β

0.1 m 10 m 10−4 m 1.12

It is seen from (8.26) that

0 = ( J̃ )T̃0=1 ≤ J̃ (T̃0) ≤ lim
T̃0→0

( J̃ ) = ∞ , 0 ≤ T̃0 ≤ 1 . (8.27)

Note that (8.27) also holds in the case k < 2, when

J̃ (T̃0) = −
(

1 + gT̃0

)1/2 (
1 − T̃ k−2

0

)

and

J0 = 2m0τπa0γ∗
√

D

(2 − k)C�
√

m

(
h

2βΔT
√

πa0

)k

.

Thus, in the case k ≤ 2, the optimum is T̃0 = 0, which is not a physically meaningful
case, since it corresponds to an extremely low plate velocity. However, for most
materials k ≈ 3 or bigger.

8.1.3 Dependence of Optimal Solution on Problem Parameters

In the following, we will look at some numerical examples. The optimization problem
(8.22)–(8.23) is solved numerically for different values of k: for k = 2.5, k = 3
and k = 3.5. The material parameters are chosen to describe a paper material. The
parameter values used in the examples are given in Table 8.1. Paper fracture toughness
KC is calculated from the fundamental relation GC = K 2

C/E . The variance in tension
is chosen to be small, ΔT = 0.1 N/m. The values of initial crack lengths used in the
examples are a0 = 0.005, 0.01 , 0.05 , 0.1 m. As illustrated in Fig. 8.1, the length
of one cycle is assumed to be 2�. This value is used to approximate the cycle time
period τ by τ = 2�/V cr

0 after the value of V cr
0 is evaluated by the optimization.

In Fig. 8.3, the dimensionless performance function (8.22) is plotted for k =
2.5, 3, 3.5. It is seen that the value of optimal tension T̃ ∗

0 is increased with increas-
ing k.

In Tables 8.2 and 8.3, the results of the nondimensional optimization problem
(8.22)–(8.23) are shown for the considered values of parameters k and a0. In Table 8.2,
the values of the productivity function J̃ at the optimum are shown.
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Fig. 8.3 Performance dependence on tension (dimensionless quantities). The dimensionless para-
meters and functions are presented in (8.19)–(8.22)

Table 8.2 Dependence of the optimum of the performance J̃ on the Paris material constant k and
the initial crack length a0

J̃ ∗ a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 37.4023 31.4527 21.0369 17.6920
k = 3 57.5834 48.4230 32.3862 27.2358
k = 3.5 70.6836 59.4390 39.7532 33.4308

An increase in the length of the initial crack a0 is seen to decrease productivity.
The values of productivity seem to increase when k is increased. However, one must
take into account that also J0, in (8.16)–(8.17), depends on k, which affects the actual
productivity J = J0 J̃ .

In Table 8.3, the optimal values of the dimensionless tension T̃ ∗
0 are shown. It is

seen that the optimal dimensionless tension values slightly decrease when the crack
length is increased.

Since the actual optimal productivity, the actual tension, and the related critical
speed and the critical number of cycles are of interest, these values were found at the
optimum and are shown in Tables 8.4 and 8.5.

Note that several assumptions have been made. First, the Paris constant C = 10−14

is assumed to be independent of k, and both of the values are not measured for paper,
but were chosen to be close to the typical values of some known materials. Secondly,
the cycle time period τ is approximated assuming that one cycle length is 2�, that is,
τ = 2�/V cr

0 .
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Table 8.3 Dependence of optimal dimensionless tension T̃ ∗
0 on the Paris material constant k and

the initial crack length a0

T̃ ∗
0 a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 0.2500 0.2499 0.2499 0.2498
k = 3 0.3333 0.3333 0.3332 0.3332
k = 3.5 0.3968 0.3968 0.3968 0.3967

Table 8.4 Top Dependence of the optimal tension T ∗
0 (N/m) on the Paris material constant k and

the initial crack length a0 (m). Bottom Critical velocity V cr
0 (m/s) at the optimum, depending on the

parameters k and a0

T ∗
0 (N/m) a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 504 356 159 113
k = 3 672 475 212 150
k = 3.5 800 565 253 179

V cr
0 (T ∗

0 ) (m/s) a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 79.352 66.727 44.623 37.523
k = 3 91.628 77.051 51.529 43.332
k = 3.5 99.979 84.073 56.226 47.282

The actual optimal tension T ∗
0 is calculated from (8.19), that is T ∗

0 = T M
0 T̃ ∗

0 . Since
T M

0 depends only on fixed values, and the material parameters in T M
0 are measured

and known for paper materials, the results for the actual optimal tension, shown in
Table 8.4, left, are comparable and quite reliable. The results for the optimal tension
T ∗

0 are also illustrated as a colorsheet in Fig. 8.4.
In Table 8.4, right, the critical velocities corresponding to the optimal values of

tension V cr
0 (T ∗

0 ) are shown. The values of velocities can be calculated directly from
(8.12) using the values in Table 8.4a. As expected, the velocities decrease as a0 is
increased.

The actual optimal number of cycles ncr(T ∗
0 ) and the actual optimal productivity

J ∗ are more difficult to predict, since they depend on the Paris constant C , which is
not known for paper materials. As mentioned above, the same value of C , namely
C = 10−14, is used for all investigated values of k, which might not be reasonable.
Since the value of κ0 defined in (8.5) is large (the numerical value of κ0 is larger than
unity), then κk

0 increases with the increase in k. Keeping C constant, we see from (8.5)
that the crack growth rate may be larger for a large value of k, depending on the value
of ak/2, which is small. This means that the number of cycles may be the smaller the
greater the value of k is, which can also be seen from (6.11): the greater the value of
k, the smaller the value of A. In the results in Table 8.5, top, it can be seen that the
effect of κ0 is large, and the number of cycles at the optimum decreases remarkably
when k is increased. This also results in a decrease in the optimal productivity J ∗,
which is shown in Table 8.5, bottom.

http://dx.doi.org/10.1007/978-3-319-01745-7_6
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Fig. 8.4 A colorsheet showing the dependence of the optimal tension T ∗
0 (N/m) on the parameters

k (Paris material constant) and a0 (initial crack length). Note the logarithmic scale of a0

Table 8.5 Top The number of cycles ncr at the optimum, depending on the parameters k and a0.
Bottom Dependence of the optimum of the performance J (kg) on the Paris material constant k and
the initial crack length a0 (m)

ncr(T ∗
0 ) a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 757,300 636,834 425,943 358,216
k = 3 30,130 21,306 9,529 6,738
k = 3.5 1,348 801 239 142

J ∗ (kg) a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 121,168 101,894 68,151 57,315
k = 3 4,821 3,409 1,525 1,078
k = 3.5 216 128 38 23

Comparing the results in Tables 8.2 and 8.5, top, we therefore make no conclusion
about the effect of k on the actual performance J ∗. The qualitative result of the
decrease in performance J ∗ when a0 is increased is, however, plausible.

8.2 Pareto Optimal Solutions for Good Runnability

In this section, we seek an optimal in-plane tension that maximizes a performance
vector function consisting of the critical velocity, the number of cycles before fracture
and process effectiveness. The considered problem of multiple objectives is called
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a multi-objective optimization (multi-objective programming or multi-criteria opti-
mization) problem. Necessary conditions for the optimality of the maximized vector
function are derived, and the Pareto optimal solutions are found analytically for some
example cases.

As was seen above, optimal magnitude of tension is essential for safe conditions in
systems with axially travelling material. Seeking the optimal tension but having sev-
eral objectives, such as high material longevity, transport velocity and productivity,
we encounter a multi-objective optimization problem. Extensive literature reviews
on multi-objective optimization are provided by White (1990) and Miettinen (1994).
For a historical review of the origin and development of multicriteria optimization,
refer to Stadler (1979). For surveys of concepts and methods of multi-objective opti-
mization, see Chankong and Haimes (1983) and Steuer (1986).

Below, we will derive the multiobjective optimization problem consisting of max-
imizing the critical plate velocity, the longevity (critical number of loading cycles)
and the productivity with respect to the value of in-plane tension. We concentrate
especially on paper making productivity, though the analysis is also applicable to
any other analogous processes.

The obtained objective vector function is transformed into a scalar objective func-
tion using the weighting method. For several important subproblems, the optimal
value of tension is found analytically in the Pareto sense with respect to the other
problem parameters.

8.2.1 Multicriteria Optimization

We consider again an axially moving elastic plate which is travelling between a
system of rollers. See Fig. 8.1.

All the plate elements

Ωi ≡ {
(x, y) ∈ R

2 | i� < x < (i + 1)� , −b < y < b
}
, i = 0, 1, 2, . . .

are subjected to homogeneous (in the y direction) tension T acting in the x direction.
The sides

{ x = i�, −b ≤ y ≤ b } and { x = (i + 1)�, −b ≤ y ≤ b }

are simply supported and the sides

{ y = −b, i� ≤ x ≤ (i + 1)� } and { y = b, i� ≤ x ≤ (i + 1)� }

are free of tractions.
We present a productivity criterion (performance function) with the help of the

plate velocity V0 and the process time tf :
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M = m0V0tf , m0 = 2bm . (8.28)

In (8.28), the velocity V0 is taken from the safe interval

0 < V0 < V cr
0 ,

where V cr
0 is the critical buckling velocity that is also taken as a criterion of the

considered process:
JV ≡ V cr

0 , (8.29)

where V cr
0 is expressed by (8.12).

A safe interval for the safe functioning time (number of cycles) is written as

0 < tf < tcr
f or 0 < n < ncr ,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture.
For a small cycle time period τ and a big number of cycles n, we assume that

tf ≈ nτ .
We will consider the critical number of cycles as a safety function JN, i.e.,

JN ≡ ncr , (8.30)

where ncr is given by (8.9), or (8.11) in the case of k = 2. The productivity criterion
Mcr is also considered as a problem function

JM ≡ Mcr , (8.31)

where Mcr is given by (8.28) with critical parameter values. We have

JM = m0 JVtcr
f = m0τ JV JN . (8.32)

Note that the functions JV, JN and JM defined in (8.29), (8.30) and (8.31) depend
on the value of in-plane average tension T0:

JV = JV(T0) ,

JN = JN(T0) ,

JM = JM(T0) .

Using the limit velocity V0, longevity n and runnability effectiveness M cri-
teria, presented in the previous section, we may consider the following vector
function
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J =
⎧
⎨

⎩

JV(T0)

JN(T0)

JM(T0)

⎫
⎬

⎭
=

⎧
⎨

⎩

V cr
0 (T0)

ncr(T0)

Mcr(T0)

⎫
⎬

⎭
. (8.33)

Now, we formulate the multicriteria (multiobjective) optimization problem. It
is required to determine the optimal value T ∗

0 of in-plane tension T0 that gives a
maximum of the considered vector function, i.e.

J ∗ = J (T ∗
0 ) = max

T0
J (T0) . (8.34)

The values in (8.33) and (8.34) are determined with the help of the corresponding
formulas and relations presented in Sects. 8.1.1 and 8.1.2.

The max operation in (8.34) is considered in the Pareto sense. It is:

T ∗
0 = arg max

T0
J (T0)

if there is no other value T̂0, such that

Ji
(
T̂0

) ≥ Ji
(
T ∗

0

)
, i = V, N, M ,

and the following rigorous inequality is satisfied for at least one component criterion:

J j
(
T̂0

)
> J j

(
T ∗

0

)
.

To solve this multiobjective optimization problem, we apply the weighting
method. We formulate the preference function as a sum of the single objective func-
tionals JV, JN, JM associated with the weighting factors CV, CN, CM:

JC = CV JV + CN JN + CM JM , (8.35)

and we suppose that

CV ≥ 0 , CN ≥ 0 , CM ≥ 0 ,

CV + CN + CM = 1 .

We will consider the multiobjective optimization problem of finding the optimal
in-plane tension T ∗

0 separately for different particular cases.
For convenience of performing the analysis and for reduction of characteristic

parameters, we introduce the following values with tildes

J̃V = JV

J 0
V

, J 0
V =

√
KCh

mβ
√

πa0
,
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J̃N = JN

J 0
N

, J 0
N = 2

(k − 2)Cκk
0 a(k−2)/2

0

, (8.36)

J̃M = JM

J 0
M

, J 0
M = m0τ J 0

V J 0
N ,

and represent the criterion functions as

J̃V = (
T̃0 + d

)1/2
,

J̃N = 1 − T̃0
k−2

, (8.37)

J̃M = J̃V J̃N ,

using the dimensionless values and problem parameters:

T̃0 = β
√

πa0

KCh
T0 , d = γ 2∗ π2 Dβ

√
πa0

l2 KCh
, 0 ≤ T̃0 ≤ 1 . (8.38)

8.2.2 Maximizing Critical Velocity and Safety Criterion

We consider the case of maximization of the velocity criterion J̃V and the safety
criterion J̃N when k = 3. In this case, we have

J̃1 ≡ CV J̃V + CN J̃N ,

CV + CN = 1 . (8.39)

Let us study the solution of (8.39) with respect to the weight CN. Now, the optimiza-
tion problem is (note CV = 1 − CN)

max
0≤T̃0≤1

(1 − CN)(T̃0 + d)1/2 + CN(1 − T̃0) . (8.40)

The object function in (8.40) is concave, so the use of the weighting method is
justifiable for finding the Pareto optimal solutions.

Depending on the value of the weight CN, the optimal value of the dimensionless
tension T̃ ∗

0 , which in this case can be found at the at the zero of the derivative of the
objective function J̃1, is

0 ≤ CN ≤ 1

1 + 2
√

d + 1
: T̃ ∗

0 = 1 ,

1

1 + 2
√

d + 1
< CN <

1

1 + 2
√

d
: T̃ ∗

0 =
(

1 − CN

2CN

)2

− d ,
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Fig. 8.5 The Pareto front (PF)
for the problem of maximizing
the critical velocity J̃V and
safety criterion J̃N. See (8.37)
and (8.41). A schematic figure

PF

1

1 + 2
√

d
≤ CN ≤ 1 : T̃ ∗

0 = 0 .

Consequently, the values of the component functions are found in the following form:

J̃V =
√

T̃ ∗
0 + d = 1 − CN

2CN
,

J̃N = 1 − T̃ ∗
0 = 1 + d −

(
1 − CN

2CN

)2

,

and, for the considered problem of critical velocity and longevity maximization, the
Pareto front (PF) of the optimal solution is given by the equation

J̃N = 1 + d − J̃ 2
V , (8.41)

where
J̃V ∈ [ √

d,
√

1 + d ] .

The Pareto front is represented in Fig. 8.5.

8.2.3 Maximizing Critical Velocity and Process Effectiveness

Consider now another case, where we maximize the critical velocity criterion J̃V and
the process effectiveness criterion J̃M. We discuss again the case with k = 3. In this
case, the weighting method problem is

J̃2 ≡ CV J̃V + CM J̃M ,

CV + CM = 1 ,
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so that we study

max
0≤T̃0≤1

[
CV(T̃0 + d)1/2 + CM(T̃0 + d)1/2(1 − T̃0)

]
. (8.42)

The object function in (8.42) is concave. Now, the extremum condition is

d J̃2

dT̃0
= CV

d J̃V

dT̃0
+ CM

d J̃M

dT̃0

= CV
d J̃V

dT̃0
+ CM

(
J̃N

d J̃V

dT̃0
+ J̃V

d J̃N

dT̃0

)
(8.43)

= 0 .

The solution of the problem is studied with respect to the weight CM (note again
CV = 1 − CM). By (8.43), it is found that the optimal value for the dimensionless
tension T̃ ∗

0 depends on CM as follows:

0 ≤ CM ≤ 1

2d + 3
: T̃ ∗

0 = 1

1

2d + 3
< CM ≤ 1 : T̃ ∗

0 = 1 − 2dCM

3CM
.

For the optimized functionals J̃V and J̃M, we have

J̃ 2
V = 1

3

(
1

CM
+ d

)
,

J̃M = 1

3

(
2d + 3 − 1

CM

)√
1

3

(
1

CM
+ d

)
.

The Pareto front of the problem under consideration is described by the equation

J̃M = (1 + d) J̃V − J̃ 3
V (8.44)

defined on the interval

J̃V ∈
[ √

(1 + d)/3,
√

1 + d

]

and is shown in Fig. 8.6.
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PF

Fig. 8.6 The Pareto front (PF) for the problem of maximizing the critical velocity J̃V and the
criterion of process effectiveness J̃M. See (8.37) and (8.44). A schematic figure

8.2.4 Maximizing Safety and Process Effectiveness

As a third case, we study the maximization of the safety criterion J̃N and the process
effectiveness criterion J̃M when k = 3. We have

J̃3 ≡ CN J̃N + CM J̃M ,

CN + CM = 1 ,

and the optimization problem reads

max
0≤T̃0≤1

[
CN(1 − T̃0) + (1 − CN)(T̃0 + d)1/2(1 − T̃0)

]
. (8.45)

Also the object function J̃3 is concave. We study the problem (8.45) with respect to
the weight CN. Now the optimal value of the dimensionless tension T̃ ∗

0 depends on
CN in the following way:

0 ≤ CN <
1 − 2d

1 − 2d + 2
√

d
: T̃ ∗

0 = 2

9

(
α2 − 3d + 3/2

− α
√

α2 + 3d + 3
)

,

1 − 2d

1 − 2d + 2
√

d
≤ CN ≤ 1 : T̃ ∗

0 = 0 ,

where

α ≡ CN

CM
= CN

1 − CN
. (8.46)
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PF

Fig. 8.7 The Pareto front (PF) for the problem of maximizing the critical number of cycles J̃N and
the criterion of process effectiveness J̃M. See (8.37) and (8.47). A schematic figure

In this case, the Pareto front is given by

J̃M = J̃N

√
1 + d − J̃N , J̃N ∈

[
2

3
(1 + d), 1

]
. (8.47)

See Fig. 8.7.
Finally, note that the maximum of (8.35) in the case CM = 1 and CV = CN = 0

is found above by solving the problems (8.42) and (8.45). Then,

J̃V = √
(1 + d)/3 and J̃N = 2

3
(1 + d) ,

which is also a Pareto optimal solution for the problem (8.40) confirmed by (8.41).

8.2.5 Some Illustrations

In the previous section, the multi-objective optimization problems of maximizing the
critical velocity, maximizing the longevity and maximizing the process effectiveness
were studied, and analytical results were found for some special subproblems.

The obtained analytical results are illustrated numerically in this section. Para-
meter values (material and geometrical) are given in Table 8.6. The paper fracture
toughness is KC = √

GC E . The investigated critical crack length a0 obtains the
values 0.005, 0.01, 0.05 and 0.1 m.

The Pareto fronts (8.41), (8.44) and (8.47) are illustrated in Fig. 8.8 when the
initial crack length is a0 = 0.01 m.

In Fig. 8.9, the optimal values of tension T ∗
0 (N/m) for the problems (8.40), (8.42)

and (8.45) are plotted with respect to the weights (CN, CM and CN, respectively) and
the initial length of the crack a0.

In Fig. 8.9, top, we present the optimal values of tension T ∗
0 when the velocity JV

and the longevity JN are optimized. One may note that the even for a small crack
size (a0 = 0.01), the optimal value of tension is almost zero, when the longevity is
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Table 8.6 Physical parameters used in the numerical examples

Material constants

E ν m GC/ρ (Seth and Page 1974)
109 N/m2 0.3 0.08 kg/m2 10 Jm/kg
Geometric constants
� 2b h β

0.1 m 10 m 10−4 m 1.12

given a large weight (CN > 0.8). Weighting the velocity, the optimal tension obtains
very large values (T ∗

0 ∼ 1400 N/m). In other words, changing the weights radically
changes the optimal result. In this case, it is difficult to decide how to weight the
object functions.

In Fig. 8.9, middle, we weight the velocity function JV against the process effec-
tiveness function JM. In this case, it is noted that the length of the initial crack length
significantly affects the optimal value of tension.

Figure 8.9, bottom, shows the third case, where the longevity JN and the process
effectiveness JM are compared. Also here, it is seen that a0 has an effect on the value
of optimal tension, especially when the process effectiveness is weighted.

Note that the case CM = 1 and CV = CN = 0 is included in both middle and
bottom parts of Fig. 8.9, giving the lowest values for tension in the middle figure and
the highest values in the bottom figure. Analyzing these two subproblems helps us to
make decisions on the weights to be selected. The optimum for process effectiveness
gives some kind of reference value for the desired tension.

With the help of Fig. 8.9, we have chosen some values for the weights CN and
CM. The solutions are collected into Table 8.7.

8.3 Optimization with Uncertainties

In this section, we present a stochastic analysis of axially moving cracked elastic
plates with uncertainties. The study is focused on instability and material fracture,
which are the most serious threats to stable production of a papermachine. On these
phenomena a change in tension magnitude has opposite effects. Increasing the mag-
nitude of tension has a stabilizing effect but it may lead to growing of cracks. We
will present an analysis to find the optimal value of velocity and tension for efficient
product processing.

In last decades, the studies of runnability have been based on a deterministic
approach. However, we know that in practice the values of different parameters are
not known precisely and the process to be modelled usually includes random factors.
At the last section of this book, we would like to raise awareness of this and offer
one relatively simple approach to consider this issue.
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Fig. 8.8 Pareto fronts for
the problems max{ J̃N, J̃V},
max{ J̃M, J̃V}, and
max{ J̃M, J̃N}, respectively,
in the case when the initial
crack length a0 = 0.01 m
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From the application point of view, uncertainty occurs as, e.g., variation of tension,
in space and time, in the press system of a papermachine, and defects on a paper web,
which vary in their location, size, shape and orientation (Björklund and Svedjebrant
2009; Niskanen 2012). Another example is given by strength of paper which was
found to obey the Weibull and Duxbury distributions by Salminen (2003). Accord-
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Fig. 8.9 Dependence of
the optimal tension T0 on
the initial crack length a0
and the weight CN or CM.
(Reproduced from Banichuk
et al. 2013)
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Table 8.7 Dependence of the optimal tension (dimensionless T̃ ∗
0 and dimensional T ∗

0 ) on the
selected weights for the three studied cases. The used initial crack length was a0 = 0.01 m (Banichuk
et al. 2013)

arg max{CN JN + CV JV} arg max{CM JM + CV JV}
CN T̃ ∗

0 T ∗
0 (N/m) CM T̃ ∗

0 T ∗
0 (N/m)

0.4 0.5624 801 0.4 0.8333 1,187
0.5 0.2499 356 0.5 0.6666 950
0.6 0.1110 158 0.6 0.5555 791
0.7 0.0459 65 0.7 0.4761 678
0.8 0.0156 22 0.8 0.4166 594
0.9 0.0030 4 0.9 0.3703 528

1.0 0.3333 475

arg max{CN JN + CM JM}
CN T̃ ∗

0 T ∗
0 (N/m)

0.0 0.3333 475
0.1 0.2932 418
0.2 0.2500 356
0.3 0.2042 291
0.4 0.1571 224
0.5 0.1111 158
0.6 0.0695 99
0.7 0.0364 52
0.8 0.0143 20
0.9 0.0030 4

ing to Uesaka (2004), the majority of web breaks in paper production are caused
by tension variations, combined with strength variations of the paper web. Wathén
(2003) discusses the effect of flaws of paper on web breaks and notes that even a
seemingly perfect paper can fail at very low tensions due to stress concentrations
caused by discontinuities, e.g., cuts and shives, inside the structure. Because of the
stochastic structure of paper, it is difficult to predict occurences of flaws. Therefore
we include uncertainty aspects in the model and study the problem of finding the
optimal velocity from a probabilistic point of view.

There occur a large variety of defects in a paper web during its manufacturing
process, but we concentrate on studying a plate with an initial crack at the edge, which
can be considered the most usual case. Björklund and Svedjebrant (2009) have found
that there is a higher density of defects at the edges of the paper, possibly as a result
of greater variance of the steam box control at the edges. Smith (1995) classifies
edge cracks as edge cuts or nicks that usually extend only a short distance. A fiber
cut in the web or plate is defined as a typically short and straight cut that is located
randomly, and is usually at an approximately right angle at the edge. Smith also lists
several possible reasons for an occurrence of a broken edge, the list including dry
edges, high sheet caliper at the edge, and web overlapping. A fiber cut is caused
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when a pulp fiber or shive that is less compactible than the rest of the web, passes
through a high pressure nip.

In the following, the theoretical treatment is divided into two parts. In the first
part, we assume the moving plate to have an initial crack of random length at the
edge, and we formulate analytical expressions for the optimal tension and velocity
of the plate. In the second study, the magnitude of homogeneous in-plane tension
affecting the plate in the machine direction is assumed to be a random variable, and
we derive a formula for the optimal velocity. In this part, the length of the crack is
assumed to be constant.

The obtained analytical expressions are used for computing the optimal tension
and the corresponding optimal velocity numerically. To do this, we use the log-normal
distribution for the crack length and the in-plane tension is modelled with truncated
normal distribution. The effect of changing the values of distribution parameters is
illustrated. In the case of random crack length we will see that the optimal values
decrease when the expected value and variance of the crack length increase. In the
case of random tension, it is seen that the more the magnitude of tension is dispersed,
the lower is the optimal tension. We will also illustrate the effect of changing the
value of the admissible probabilites in the constraints. It will be seen that the optimal
values increase when the probabilities increase.

8.3.1 Uncertainty in Initial Crack Length

We consider a rectangular elastic plate, which is supported by rollers at both ends
and is moving at a constant velocity V0. Denotation of this domain is the same as in
the previous chapters of this book,

Ω ≡ {
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

, (8.48)

where � and b are prescribed parameters of length and width. The considered domain
Ω is a representation of a thin isotropic elastic plate having constant thickness h,
Poisson ratio ν, Young modulus E , and bending rigidity D = Eh3/

[
12 (1 − ν2)

]
.

The mass of the plate per unit area is denoted by m. We assume that the plate is
subjected to homogeneous tension T0 acting in the x direction. We also assume that
the plate travels in the x direction as usual. The supporting rollers are located at both
ends of the plate, the other edges are free of traction. Schematic setup of the problem
is presented in Fig. 8.10.

Suppose there is an initial crack of mode I (see Fig. 8.11) at the edge of the plate,
and let ξ be a positive valued random variable that describes the length of the crack.
We consider the stress intensity factor (SIF) related to the crack and want to avoid
the stress intensity factor reaching its critical value, known as the critical fracture
toughness, at which the crack begins to propagate.

We formulate an optimization problem using a similar approach as is presented
in the book by Banichuk and Neittaanmäki (2010). We seek the maximal magnitude
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Fig. 8.10 A travelling elastic plate with a crack at the edge

Fig. 8.11 Mode I crack
(opening)

of velocity under the constraint that the probability of fracture is small. Letting
p ∈ (0, 1) denote the probability of fracture that can be accepted, our optimization
problem reads as

max
T0

V cr
0 (T0) , such that (8.49)

P(KI ≥ KIC) ≤ p , (8.50)

where V cr
0 , given by (8.12), is the critical velocity, and KIC is the critical fracture

toughness of the considered material.
For the stress intensity factor we use the expression

KI = α(ξ) T0
√

πξ

h
, (8.51)

where α is a weight function that depends on the geometry of the domain, the ratio
of ξ and b and the ratio of � and b. The formula of α is given, e.g., in Perez (2004),
Laham (1998) and Fett (1999). We assume α to be an increasing positive function of
ξ and, for simplicity, approximate it as a constant function α = 1.12 in this study.

To solve problem (8.49)–(8.50) we are looking for the maximal value of the tension
T0 that satisfies the inequality (8.50) and the equation of stress intensity factor (8.51).
The constraint (8.50) is equal to

P

(
ξ ≥ g−1

(
KICh

T0
√

π

))
≤ p , (8.52)

where g−1 is the inverse function of the function g(ξ) ≡ α(ξ)
√

ξ . The inverse
function exists, since g is strictly increasing due to the assumptions of α. Further,
the inequality above is equal to
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Fξ

(
g−1

(
KCh

T0
√

π

))
≥ 1 − p , (8.53)

where Fξ the cumulative distribution function of ξ. Assuming that ξ has a continuous
density function, the function Fξ is strictly increasing.

Denote
ξC = F−1

ξ (1 − p) . (8.54)

The value ξC is the minimum of the set

{x : Fξ (x) ≥ 1 − p} . (8.55)

Consider another value of crack length ξ∗
C > ξC. For the values of tension TC and

T ∗
C that satisfy

ξC = g−1
(

hKIC

TC
√

π

)
and ξ∗

C = g−1
(

hKIC

T ∗
C
√

π

)
, (8.56)

it holds
TC > T ∗

C . (8.57)

Thus, the maximal value of T0 satisfying (8.50) is found by the equation

P(KI ≥ KIC) = p , (8.58)

and can be expressed as

T max = hKIC

α(F−1
ξ (1 − p))

√
π F−1

ξ (1 − p)

, (8.59)

The solution of the optimization problem (8.49)–(8.50) is

(V0)opt = V cr
0 (T max) , (8.60)

The optimal tension T max and the optimal velocity are computed numerically
presuming a distribution for the crack length. For this, we have chosen the log-normal
distribution. The probability density function of ξ is

fξ (x) = 1

xsl
√

2π
exp

(
− (ln(x/cl))

2

2s2
l

)
, x > 0 , sl > 0 , cl > 0 , (8.61)

and the cumulative distribution function is

Fξ (x) = N

(
ln x − ln cl

sl

)
, (8.62)
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where

N (x) = 1√
2π

∫ x

−∞ exp
(− t2

2

)
dt (8.63)

is the cumulative distribution function of the standard normal distribution.

8.3.2 Uncertainty in Tension

In practice, in a paper machine the tension of the plate is generated by a velocity
difference between rollers. It is very likely, that for mechanical reasons, the tension
practically varies lightly between minimum and maximum values i.e in-plane ten-
sion fluctuates around a given positive constant T0. In this section, we model this
phenomenon by describing the tension as

T ≡ T0 + θ ,

where θ is a random variable that has a cumulative distribution function Fθ . As
before, the plate is assumed to have an initial crack of mode I. The length of the
crack is assumed to be known and equal to a constant:

ξ = a, a > 0 .

In this case, formulation of optimization problem consists of two parts. First, we
seek the maximal value of T0 satisfying

P(KI ≥ KIC) ≤ q1 , where q1 ∈ (0, 1) (8.64)

is the admissible probability of fracture. Secondly, denoting the solution of inequality
(8.64) by T max

0 , we search for the maximal value of velocity V0 under a constraint
for instability:

P
(
V0 > V cr

0 (T max
0 + θ)

) ≤ q2 , where q2 ∈ (0, 1) . (8.65)

Here q2 is the admissible probability of instability.
The stress intensity factor related to the crack satisfies

KI = α(a)
√

πa

h
T = α(a)

√
πa

h
(T0 + θ) . (8.66)

Noticing that

P(KI ≥ KIC) = P

(
θ ≥ hKIC

α(a)
√

πa
− T0

)
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= 1 − Fθ

(
hKIC

α(a)
√

πa
− T0

)
,

the constraint (8.64) is equal to

Fθ

(
hKIC

α(a)
√

πa
− T0

)
≥ 1 − q1 . (8.67)

Denote the maximal value of tension that satisfies the above inequality by T max
0 .

If the function Fθ does not depend on T0, it is seen with similar reasoning as above
that the maximal value of tension that satisfies the inequality above is

T max
0 = KICh

α(a)
√

πa
− F−1

θ (1 − q1) . (8.68)

Furthermore,

P
(
V0 > V cr

0 (T max
0 + θ)

) = P

(
V0 >

√
T max

0 + θ

m
+ γ 2∗

π2 D

ml2

)

= P

(
θ < mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)

= Fθ

(
mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)
,

and we may write the inequality (8.65) as

Fθ

(
mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)
≤ q2 . (8.69)

Let us denote θC = F−1
θ (q2), and consider another value θ∗

C < θC. The two values
of tension variation, θC and θ∗

C, satisfy Fθ (θC) ≤ q2 and Fθ (θ
∗
C) ≤ q2. By noticing

that

V0 =
√

1

m

(
T max

0 + γ 2∗ π2 D

l2 + θC

)
>

√
1

m

(
T max

0 + γ 2∗ π2 D

l2 + θ∗
C

)
≡ V ∗

0 ,

we deduce that the maximal value of V0 satisfying (8.64) and (8.65) is

(V0)opt =
√

1

m

(
T max

0 + γ 2∗ π2 D

l2 + F−1
θ (q2)

)
. (8.70)

We assume θ to obey the truncated normal distribution with scale parameter ct > 0
and location at 0. The minimum and maximum values of the distribution are set as
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Table 8.8 Parameter values
for numerical examples

Parameter Value

ν 0.3
E 109 Pa
m 0.08 kg/m2

h 10−4 m
l 0.1 m
b 5 m
GC/ρ 10 Jm/kg

θmin = −T0 and θmax = T0 .

Hence, the probability function of θ is symmetrical, and expected value E(θ) = 0.
The cumulative distribution function of θ is

Fθ (x; ct, T0) =
N

(
x

ct

)
− N

(−T0

ct

)

1 − 2N

(−T0

ct

) , (8.71)

where N is the cumulative distribution function of the standard normal distribution
as above. In (8.70), we have

Fθ (x) = Fθ (x; ct, T max
0 ) .

In the following, we illustrate numerically the results obtained above. The cho-
sen parameter values are shown in Table 8.8. The paper fracture toughness KIC is
calculated from the equation KIC = √

GC E . The value of the weight function is
approximated by

α
(
F−1

ξ (1 − p)
) = α(a) = 1.12 .

In Figs. 8.12 and 8.13 we illustrate the effect of changing the value of the distrib-
ution parameters and the admissible probability of fracture p on the optimal values,
when the crack length is assumed to obey the log-normal distribution. In Fig. 8.12
the optimal tension and the corresponding optimal velocity are plotted with respect
to the distribution parameters sl and cl of the log-normal distribution. For this, it was
set p = 0.001.

In Fig. 8.13 we illustrate the effect of increasing the value of p from p = 0.001
with some values of the distribution parameters. As is expected, the optimal val-
ues increase when the admissible probability of fracture p is increased. With
smaller value of sl, the change is small. Some of the optimal values are gathered
in Table 8.9.

In Fig. 8.14 we see the optimal tension and the corresponding optimal veloc-
ity plotted with respect to the distribution parameter ct of the truncated normal
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Fig. 8.12 Log-normal distribution. The effect of changing the value of the distribution parameters
sl and cl on the optimal tension and velocity with the admissible probability of fracture p = 0.001

distribution. The optimal values are computed with the initial crack length a = 0.05.
With the considered parameter values the function

Fθ

(
hKIC

α(a)
√

πa
− T0

)
+ q1 − 1 (8.72)

was found to be strictly decrasing with respect to T0. The maximal value of tension
was thus found by solving the equation

Fθ

(
hKIC

α(a)
√

πa
− T0

)
+ q1 − 1 = 0 . (8.73)
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Fig. 8.13 Left The effect of changing the admissible probability of fracture p on the optimal values
of tension and velocity, using a log-normal distribution for the crack length ξ . Right The probability
density function of ξ

Table 8.9 The optimal tension (upper value, N/m) and velocity (lower value, m/s) with respect to
p and the distribution parameters sl and cl, using a log-normal distribution for the crack length

sl cl p
0.001 0.005 0.01

0.1 0.01 1,220.8 1,252.6 1,268.3
123.5 125.1 125.9

0.04 610.4 626.3 634.2
87.4 88.5 89.0

Figure 8.14 shows that the more the tension is dispersed, the lower the optimal
values are. Increasing the admissible probability of fracture or instability increases
the optimal values. When the length of the initial crack increases, the optimal values
decrease.

Some of the optimal values are gathered in Table 8.10.
To conclude, in this section we discussed the problem of finding the optimal

velocity for an axially moving elastic plate with a crack from a probabilistic point of
view. The model was assumed to include randomness, and the optimal velocity was
investigated under the constraint that the probability of fracture is limited. Two cases
were considered separately. First, the length of the crack was modelled as a random
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Fig. 8.14 Optimal tension and velocity, using the truncated normal distribution to model tension
variation. The optimal values are shown with respect to the distribution parameter ct, in all cases
using a constant crack length a = 0.05. Here q1 and q2 are, respectively, the admissible probabilities
of fracture and instability

Table 8.10 Truncated normal distribution. Optimal tensions (upper value, N/m) and velocities
(lower value, m/s) with respect to the probabilities q1 and q2 and the distribution parameter ct. The
crack length a = 0.05

ct q1, q2

0.001 0.005 0.01

10.0 606.3 611.4 613.9
84.8 85.6 85.9

50.0 482.7 508.4 520.9
64.1 68.9 71.1

100.0 337.6 380.1 404.6
21.8 39.2 46.4

variable. Secondly, the in-plane tension was assumed to be a random variable. In the
latter case, we also formulated a constraint for stability.

The optimal velocity was found by first computing the optimal tension for the
plate. Assuming the crack length to be random, we formulated an analytical expres-
sion for the optimal tension. Modelling the crack length with the log-normal distrib-
ution, the effect of changing the admissible probability of fracture was numerically
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illustrated. It was seen that with both of the considered distributions, increasing the
admissible probability of fracture increases the optimal tension and the correspond-
ing optimal velocity.

The optimal velocity was also numerically computed for the log-normal distrib-
ution with different values of distribution parameters. The values were chosen such
that the distributions were close to the presumable crack distribution of the paper
making application.

The optimal tension and the related optimal velocity in the case of random in-
plane tension were obtained, assuming the in-plane tension to obey a truncated normal
distribution. It was seen that the more the tension is dispersed, the lower is the optimal
velocity. Increasing the admissible probability of fracture had the same effect on the
optimal values as in the case of random crack length. Also increasing the admissible
probability of instability increased the optimal values.
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