
Chapter 4
Non-Homogeneous Tension Profile

Abstract In this chapter, we will look at the influence of a skewed tension profile
on the divergence instability of a travelling, thin elastic plate. The travelling plate
is subjected to axial tension at the supports, but the tension distribution along the
supports is not uniform. For the nonuniformity, we will use a linear distribution.
First, we will perform a dynamic analysis of small time-harmonic vibrations, after
which we will concentrate on the divergence instability problem. We will see that a
small inhomogeneity in the applied tension may have a large effect on the divergence
modes, and that inhomogeneity in the tension profile may significantly decrease the
critical velocity of the plate.

4.1 Dynamic Analysis of Axially Moving Plates

Let a rectangular part of the plate

Ω ≡
{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

be travelling at a constant velocity V0 in the x direction between two rollers located
at x = 0 and x = �, where � and b are prescribed parameters. See Fig. 4.1. Let
the considered part of the band be represented as an isotropic elastic plate, having
constant thickness h, Poisson ratio ν, Young modulus E and bending rigidity D. We
will make some notes on the orthotropic case later.

The plate is subjected to in-plane distributed forces

g = g(y) = T0 + T (y) (4.1)

applied at the plate boundaries x = 0 and x = �, acting in the x direction. The
constant T0 > 0 and the function T (y), characterizing non-homogeneous in-plane
tension of the axially moving plate, are considered given. The sides of the plate
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70 4 Non-Homogeneous Tension Profile

Fig. 4.1 Problem setup. A plate travelling at a constant velocity V0 between two rollers placed at
x = 0 and x = �. The tension profile is non-homogeneous and the tension is positive everywhere.
(Reproduced from Banichuk et al. 2013)

{x = 0, −b ≤ y ≤ b} and {x = �, −b ≤ y ≤ b} are simply supported, and the
sides {y = −b, 0 ≤ x ≤ �} and {y = b, 0 ≤ x ≤ �} are free of tractions.

4.2 Transverse Vibrations

The transverse displacement (out-of-plane deflection) of the travelling plate is
described by the deflection function w, which depends on the space coordinates
x and y, and time t . The differential equation for small transverse vibrations has the
form

m

(
∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ V 2

0
∂2w

∂x2

)
= LM (w) − LB (w) , in Ω . (4.2)

The left-hand side in (4.2) contains three terms, respectively representing a local
acceleration, a Coriolis acceleration and a centripetal acceleration. The membrane
operator LM on the right-hand side of Eq. (4.2) is

LM (w) = Txx
∂2w

∂x2 + 2 Txy
∂2w

∂x∂y
+ Tyy

∂2w

∂y2 . (4.3)

The coefficients Txx , Txy , Tyy of the linear operator LM are related to the correspond-
ing in-plane stresses σxx , σxy and σyy by the expressions

Ti j = hσi j .
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The linear bending operator LB is given by the expression

LB (w) = DΔ2w = D

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
(4.4)

in the case of an isotropic elastic plate.
Boundary conditions for the deflection function w, corresponding to the simply

supported boundaries and the free boundaries, can be written in the following form
(see, e.g., Timoshenko and Woinowsky-Krieger 1959)

(w)x=0, � = 0 ,

(
∂2w

∂x2

)

x=0, �

= 0 , −b ≤ y ≤ b , (4.5)

(
∂2w

∂y2 + ν
∂2w

∂x2

)

y=±b
= 0 , 0 ≤ x ≤ � , (4.6)

(
∂3w

∂y3 + (2 − ν)
∂3w

∂x2∂y

)

y=±b
= 0 , 0 ≤ x ≤ �. (4.7)

We represent the in-plane tensions Txx , Txy and Tyy with the help of the Airy
stress function ϒ :

Txx = ∂2ϒ

∂y2 , Tyy = ∂2ϒ

∂x2 , Txy = − ∂2ϒ

∂x∂y
. (4.8)

In this case of an isotropic plate, the Airy stress function ϒ satisfies the biharmonic
equation (see (2.46) of Sect. 2.2)

Δ2ϒ ≡ ∂4ϒ

∂x4 + 2
∂4ϒ

∂x2∂y2 + ∂4ϒ

∂y4 = 0. (4.9)

In what follows, we will concentrate on a linear tension distribution. The bound-
ary conditions for the tension are (2.29) and (2.30) of Sect. 2.2, repeated here for
convenience:

Txx = g(y) , Txy = 0 at x = 0, �, −b ≤ y ≤ b ,

Tyy = 0 , Txy = 0 at y = ±b, 0 ≤ x ≤ �.

The boundary conditions satisfied by ϒ , corresponding to (2.29) and (2.30) are

(
∂2ϒ

∂y2

)

x=0,�

= g(y) ,

(
∂2ϒ

∂x∂y

)

x=0,�

= 0 , −b ≤ y ≤ b , (4.10)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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(
∂2ϒ

∂x2

)

y=±b
= 0 ,

(
∂2ϒ

∂x∂y

)

y=±b
= 0 , 0 ≤ x ≤ �. (4.11)

Recall that the tensions expressed via the stress function ϒ in (4.8) will satisfy the
equilibrium of in-plane tensions for any function ϒ that is smooth enough. The
equilibrium equations are (2.28) of Sect. 2.2, repeated here for convenience:

∂Txx

∂x
+ ∂Txy

∂y
= 0 ,

∂Txy

∂x
+ ∂Tyy

∂y
= 0.

Equation (4.9), which must be solved, expresses the condition of compatibility for
the tensions.

In what follows, we will concentrate on a linear tension distribution, and use the
rigorous solution of the boundary value problem (4.9–4.11) corresponding to the
case that

g(y) = T0 + αy ≡ T0 + T (y). (4.12)

Here α > 0 is a given constant that will be called the tension profile skew parameter.
We have

ϒ(x, y) = T0
y2

2
+ α

y3

6
+ c1x + c2 y + c0, (x, y) ∈ Ω . (4.13)

Here c0, c1 and c2 are arbitrary constants. The corresponding tensions will be

Txx (x, y) = T0 + αy, Txy(x, y) = 0, Tyy(x, y) = 0, (x, y) ∈ Ω . (4.14)

In this case, the dynamic equation takes the form

∂2w

∂t2 + 2 V0
∂2w

∂x∂t
+ (V 2

0 − C2)
∂2w

∂x2 − T (y)

m

∂2w

∂x2

+ D

m

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
= 0, (x, y) ∈ Ω , (4.15)

where

C =
√

T0

m
, and T (y) = αy.

Following the approach of Bolotin (1963), let us represent the solution of the
nonstationary boundary value problem for the partial differential equation (4.15)
with the boundary conditions (4.5–4.7) using the time-harmonic trial function

w(x, y, t) = W (x, y) est , s = iω. (4.16)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Here, ω is the frequency of the small transverse vibrations, and s is the stability
exponent, which is a complex number. As was explained in Sect. 3.2, if s is purely
imaginary, then the plate performs harmonic vibrations with a small amplitude, and
its motion can be considered to be stable. If the real part of s becomes positive, then
the transverse vibrations grow exponentially and, consequently, the behaviour of the
plate is unstable. Using this (complex-valued) representation we will have

s2W + 2sV0
∂W

∂x
+

(
V 2

0 − C2
) ∂2W

∂x2 − T (y)

m

∂2W

∂x2 + D

m
�2W = 0 . (4.17)

The boundary conditions for W follow from (4.5–4.7), by inserting (4.16). We
obtain

(W )x=0,� = 0 ,

(
∂2W

∂x2

)

x=0,�

= 0 , −b ≤ y ≤ b , (4.18)

(
∂2W

∂y2 + ν
∂2W

∂x2

)

y=±b
= 0 , 0 ≤ x ≤ � , (4.19)

(
∂3W

∂y3 + (2 − ν)
∂3W

∂x2∂y

)

y=±b
= 0 , 0 ≤ x ≤ �. (4.20)

Compare (3.16–3.18) and (3.20).
We multiply (4.17) by W and perform integration over the domain Ω to obtain

s2
∫

Ω

W 2 dΩ+2sV0

∫

Ω

W
∂W

∂x
dΩ + (V 2

0 − C2)

∫

Ω

W
∂2W

∂x2 dΩ

− T (y)

m

∫

Ω

W
∂2W

∂x2 dΩ + D

m

∫

Ω

W�2W dΩ = 0. (4.21)

Using the boundary conditions (4.18–4.20) and performing integration by parts, we
find the same result as in (3.11) and (3.12):

∫

Ω

W
∂W

∂x
dΩ =

∫ b

−b

∫ �

0
W

∂W

∂x
dx dy

=
∫ b

−b

[
W 2(�, y)

2
− W 2(0, y)

2

]
dy

= 0 ,

∫

Ω

W
∂2W

∂x2 dΩ = −
∫

Ω

(
∂W

∂x

)2

dΩ.

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
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The non-homogeneous tension-related integral admits the following representation:

∫

Ω

yW
∂2W

∂x2 dΩ = −
∫

Ω

y

(
∂W

∂x

)2

dΩ. (4.22)

We have

s2
∫

Ω

W 2 dΩ + (C2 − V 2
0 )

∫

Ω

(
∂W

∂x

)2

dΩ

+ α

m

∫

Ω

y

(
∂W

∂x

)2

dΩ + D

m

∫

Ω

W�2W dΩ = 0. (4.23)

Two special cases, from which it is possible to draw further conclusions, will
be considered. First, let α = 0 and Txx (x, y) = T0, i.e. one assumes homogeneous
tension. In this case, as it was shown in Sect. 3.3.2, the following relation takes place:

∫

Ω

W �2W dΩ =
∫

Ω

(�W )2 dΩ + 2
∫ �

0
Qy=b dx . (4.24)

Above, the abbreviation

Q = W
∂

∂y
(�W ) − �W

∂W

∂y
(4.25)

has been used. Note that in (4.24) symmetry properties of the original partial dif-
ferential equation were used to obtain this form of the Q integral. Consequently,
one has

ω2 = −s2 =

(C2 − V 2
0 )

∫
Ω

(
∂W
∂x

)2
dΩ + D

m

[∫
Ω (�W )2 dΩ + 2

∫ �

0 Qy=b dx
]

∫
Ω

W 2 dΩ
. (4.26)

At the critical velocity, as can be seen from (4.26), the following relation between
the critical velocity and the divergence mode holds:

(
V div

0

)2 = C2 + D

m

∫
Ω (�W )2 dΩ + 2

∫ �

0 Qy=b dx
∫
Ω

(
∂W
∂x

)2
dΩ

. (4.27)

In order to determine that Qy=b > 0 at this point, one needs to use the solution from
the corresponding static problem, described in the next section for the general case.
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With that observation, we see that all integrals on the right side of (4.27) are positive,
and it holds that (

V div
0

)2
> C2. (4.28)

It follows from (4.27) that if the bending rigidity of the web is negligibly small, then

(
V div

0 mem

)2 = C2 = T0

m
. (4.29)

In the one-dimensional case of axially travelling strings, this is a known result (see,
e.g., Chang and Moretti 1991). From (4.29), we see that the same value of the critical
velocity also applies to ideal membranes. The expression for V div

0 mem, (4.29), does not
depend on W . Thus, for the special case of an ideal membrane under homogeneous
tension, any combination of modes may occur at the critical velocity.

Consider now a second special case, where the bending rigidity of the axially
moving plate is negligibly small, and the in-plane tension in the x direction is positive.
Thus we avoid compression and wrinkling considerations. Illustration can be seen
in Fig. 4.1. We assume that

D = 0 , T0 > α b , (4.30)

where the latter condition comes from the constraints

Txx (x, y) = T0 + α y > 0 and y ≥ −b. (4.31)

In this case, the characteristic parameter s is evaluated as

ω2 = −s2 =
(C2 − V 2

0 )
∫
Ω

(
∂W

∂x

)2

dΩ + α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ

∫
Ω

W 2 dΩ
. (4.32)

If a steady-state solution (divergence) exists, it will occur at velocity

(
V div

0

)2 = C2 + α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ

∫
Ω

(
∂W

∂x

)2

dΩ

. (4.33)

Let us assume that the divergence mode W is a real-valued function. Taking into
account the expression in (4.33), and the fact that y ≥ −b, we can estimate the
divergence velocity (from below) as

(
V div

0

)2 ≥ C2 − αb

m
= T0 − αb

m
. (4.34)
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Fig. 4.2 The definition of αmax . It is the largest skew that retains T (y) ≥ 0 across the whole
domain, avoiding compression and wrinkling

We see from (4.34) that as long as the condition for T0 in (4.30) is fulfilled, we have
(V div

0 )2 ≥ 0, i.e., the value of V div
0 is physically meaningful (Fig. 4.2).

4.3 Solution of Eigenvalue Problem

We will next consider the static instability of the travelling thin plate subjected
to a linearly skewed tension profile. The treatment of the problem follows the same
approach as in Sects. 3.4 and 3.5, where we analyzed the static instability of travelling
isotropic and orthotropic plates under a under the assumption of a homogeneous
tension profile.

4.3.1 Transformation to Ordinary Differential Equation

The stationary eigenvalue problem of elastic instability consists of finding a non-
trivial solution (mode) and the corresponding minimal eigenvalue of the following
boundary-value problem. Consider the steady-state equation, corresponding to s = 0
in the nonstationary problem in (4.17),
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(V 2
0 − C2)

∂2W

∂x2 − T (y)

m

∂2W

∂x2

+ D

m

(
∂4W

∂x4 + 2
∂4W

∂x2∂y2 + ∂4W

∂y4

)
= 0 , (x, y) ∈ Ω. (4.35)

with the boundary conditions for W in (4.18–4.20). From the latter condition in
(4.30), we obtain a constraint for α:

T (y) = αy and α < T0/b. (4.36)

To determine the minimal eigenvalue λ (see (3.39)) of the problem (4.18–4.20)
and (4.35), and the corresponding eigenfunction, we apply the same representation
as before:

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
, (4.37)

where f (y/b) is an unknown function. It follows from (4.37) that the divergence
form (steady-state solution) W satisfies the boundary conditions (4.18).

As before, let us define the dimensionless quantities η and μ, given by (3.41),

η = y

b
, μ = �

πb
, (4.38)

and the eigenvalue λ as per (3.39),

λ = γ 2 = �2

π2 D

(
mV 2

0 − T0

)
. (4.39)

By using the free-of-traction boundary conditions (4.19) and (4.20), the static equa-
tion (4.35) and the definition of W , (4.37), we obtain the following eigenvalue prob-
lem for the unknown function f (η):

μ4 d4 f

dη4 − 2μ2 d2 f

dη2 + (1 − λ + α̃η) f = 0 , −1 < η < 1 , (4.40)

where

α̃ = b�2

π2 D
α = b3μ2

D
α. (4.41)

Equation (4.40) is considered with the boundary conditions

μ2 d2 f

dη2 − ν f = 0 , η = ±1 and (4.42)

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
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μ2 d3 f

dη3 − (2 − ν)
d f

dη
= 0 , η = ±1 , (4.43)

which correspond to the free-of-traction boundary conditions of the original problem.
Equation (4.40) with the boundary conditions (4.42) and (4.43) constitutes a linear

eigenvalue problem for f with polynomial coefficients.
For an orthotropic material, it is possible to use problem (4.40), (4.42–4.43) in

a straightforward way by setting the orthotropic in-plane shear modulus G12 as the
geometric average shear modulus

GH ≡
√

E1 E2

2
(
1 + √

ν12ν21
) ,

and reducing the orthotropic problem into the isotropic one (see Timoshenko and
Woinowsky-Krieger 1959).

Alternatively, if one wishes to keep G12 as an independent material parameter,
which is more accurate for some materials, it is possible to derive the corresponding
eigenvalue problem for the orthotropic plate following the same procedure that was
used above for the isotropic plate (Fig. 4.3). Again, let the axial in-plane tension (4.1)
take the form (4.12). As was noted, the value of α in (4.12) is constrained by (4.36).
We have the following partial differential equation:

(
mV 2

0 − T0

) ∂2W

∂x2 − T (y)

m

∂2W

∂x2 + D0L0(w) = 0 , (4.44)

where the differential operator L0(w) is given by (3.4),

L0(w) = D1

D0

∂4w

∂x4 + 2D3

D0

∂4w

∂x2∂y2 + D2

D0

∂4w

∂y4 ,

and D0 is an arbitrary normalization factor, which is convenient to take as D0 = D1.
The coefficients D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already given as (2.18), Sect. 2.1.3 (or see Timoshenko and Woinowsky-
Krieger 1959, chap. 11). The Ci j are the elastic moduli, (2.19).

The boundary conditions for W are given in (4.18–4.20). However, in the free
edge boundary conditions (4.19) and (4.20), instead of the isotropic free boundary
coefficients ν and 2 − ν, we must now use the orthotropic coefficients β1 and β2
(respectively) defined in (2.23) in the same way as in Sect. 2.1.3 (their definitions are
repeated at the end of this subsection for convenience).

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Fig. 4.3 Top Critical plate
velocity (V0)crit with respect
to the tension profile skew
parameter α and plate half-
width b. Note the logarithmic
scale for b. The plate length
is constant (� = 0.1 m).
Bottom The critical velocity
plotted with respect to the
tension profile skew parameter
(� = 0.1 m, 2 b = 1 m).
(Reproduced from Banichuk
et al. 2013)
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In Sect. 2.2, the in-plane tension field for an orthotropic plate in the case of a
linear tension distribution was solved with the help of the Airy stress function. See
Eqs. (2.50) and (2.51).

To determine the minimal eigenvalue λ (4.39), and the corresponding eigenfunc-
tion, of the problem (4.44) with boundary conditions (4.18–4.20) (modified for the
orthotropic case as explained), we apply the representation (4.37). By using the
dimensionless quantities η and μ in (4.38), the free-of-traction boundary conditions

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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(4.19) and (4.20), with the relations (4.39), (4.44) and (4.37), we obtain the eigenvalue
problem for the orthotropic case:

μ4 H2
d4 f

dη4 − 2μ2 H3
d2 f

dη2 + (H1 − λ − ᾱη) f = 0 , −1 < η < 1 , (4.45)

μ2 d2 f

dη2 − β1 f = 0 , η = ±1 and (4.46)

μ2 d3 f

dη3 − β2
d f

dη
= 0 , η = ±1. (4.47)

In (4.45), the dimensionless tension profile skew parameter is defined as

ᾱ = b�2

π2 D0
α = b3μ2

D0
α (4.48)

and the Hj are the dimensionless bending rigidities defined by (3.91), Sect. 3.5,
repeated here for convenience:

H1 = D1

D0
, H2 = D2

D0
, H3 = D3

D0
.

As before, D0 is the normalization factor for the bending rigidities and can be chosen
arbitrarily. A convenient choice is D0 = D1. In (4.46) and (4.47), the β j are defined
in (2.23) in Sect. 2.1.3, also repeated here for convenience:

β1 = ν12 ,

β2 = ν12 + 4 G12

E2
(1 − ν12ν21) .

Again, we have a linear eigenvalue problem with polynomial coefficients.
For the rest of this chapter, we will concentrate on the isotropic case.

4.3.2 Numerical Analysis

We will proceed with a numerical solution of the eigenvalue problem for the isotropic
elastic plate. Finite differences will be used, with virtual points added to the ends of
the domain to enforce the boundary conditions.

As the considered problem is linear in f , the discretization will lead to a standard
discrete linear eigenvalue problem representing (4.40):

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Af = λf . (4.49)

Equation (4.49) does not yet include the boundary conditions (4.42)–(4.43). Because
the boundary conditions are homogeneous, it is possible to add them to the discrete
system by rewriting the original discrete problem (4.49) as a generalized linear
eigenvalue problem,

Af = λBf , (4.50)

where B is an identity matrix with the first two and last two rows zeroed out. In
(4.50), the first two and the last two rows of A contain discrete representations of the
boundary conditions (4.42)–(4.43).

The details are as follows. Equations (4.40)–(4.43) are to be discretized. The
standard central difference formulas, of second-order asymptotic accuracy, for the
first four derivatives on a uniform grid are

∂ f j

∂η
≈ f j+1 − f j−1

2 (Δη)
, (4.51)

∂2 f j

∂η2 ≈ f j+1 − 2 f j + f j−1

(Δη)2 , (4.52)

∂3 f j

∂η3 ≈ f j+2 − 2 f j+1 + 2 f j−1 − f j−2

2 (Δη)3 , (4.53)

∂4 f j

∂η4 ≈ f j+2 − 4 f j+1 + 6 f j − 4 f j−1 + f j−2

(Δη)4 , (4.54)

where f ≡ f (x) is the function to be differentiated, f j ≡ f (η j ), and Δη is the grid
spacing.

When the derivatives in (4.40) are replaced by the discrete approximations (4.52)
and (4.54) for each grid point η j , we obtain the discrete equation system for the
interior of the domain. The ᾱη term is handled by substituting in the coordinate of
the j th grid point, η j = j (Δη). Then the discrete equations are collected into matrix
form, and the λf term is moved to the right-hand side.

The boundary conditions (4.42)–(4.43) are then handled by adding two virtual
points at each end of the domain. Applying (4.51)–(4.54) to the boundary conditions
produces discrete equations connecting the function values at the virtual points to
those inside the domain.

If we number the points starting at 1 at the first (outermost) virtual point at the
left end of the domain, the final left-hand side matrix becomes

A ≡ A4 + A2 + A0 + L1 + L2 + L3 + L4 ,

where the terms Am correspond to Eq. (4.40), and are given by
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A4 ≡ μ4

(Δη)4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 ≡ − 2μ2

(Δη)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 1 −2 1

. . .
. . .

. . .

1 −2 1 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 0 . . . . . . 0
0 0 ak . . . 0

. . .

0 . . . ak 0 0
0 . . . . . . 0 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where
ak ≡ 1 + ᾱ [−1 + (k − 3) (Δη)]

and k denotes the row number of the matrix A0. The first contribution in A0 is 1 − ᾱ

(on row 3, corresponding to the point at η = −1), and the last is 1 + ᾱ (third last
row, corresponding to η = +1).

Empty entries in the matrices denote zeroes; some zeroes are displayed explicitly
to show more clearly where the nonzero entries belong.

The terms Lm correspond to the boundary conditions (4.42)–(4.43), and are
given by

L1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 μ2/(Δη)2 −2μ2/(Δη)2 − ν μ2/(Δη)2 . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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L2 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ2/[2(Δη)3] χ 0 −χ μ2/[2(Δη)3] 0 . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L3 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . μ2/(Δη)2 −2μ2/(Δη)2 − ν μ2/(Δη)2 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L4 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . −μ2/[2(Δη)3] χ 0 −χ μ2/[2(Δη)3]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where in L2 and L4 we use the notation

χ ≡ μ2/(Δη)3 + (2 − ν)/[2(Δη)].

The matrices L1 and L3 correspond to the boundary condition (4.42) at the left and
right endpoints of the domain, respectively, while L2 and L4 correspond to (4.43).

Finally, the discrete problem (4.50) is completed by defining

B ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 0 . . . . . . 0
0 0 1 . . . 0

. . .

0 . . . 1 0 0
0 . . . . . . 0 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which enforces the homogeneous boundary conditions (4.42)–(4.43), represented by
the first two and last two rows of the discrete equation system.

In order to solve the original problem, we compute the solution of (4.50), dis-
card eigenvalues of infinite magnitude, which result from our way of handling the
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boundary conditions, and then extract the smallest eigenvalue λ and its corresponding
eigenvector f . The first two and last two components of the eigenvector are discarded,
because they represent the function values at virtual points that were generated from
the boundary conditions. Finally, the buckling mode (divergence mode) W (x, y) is
constructed using the equation

W (x, y) = f
(πy

�

)
sin

(πx

�

)
.

Below, numerical results are shown for some practically interesting choices of prob-
lem parameters. The physical parameters used in the examples are presented in
Table 4.1. These parameter values approximately correspond to some paper materi-
als, within the limitations of the isotropic model.

Various values of the Poisson ratio ν and the tension profile skew parameter α̃

are used in the examples. For the Poisson ratio, the values 0, 0.1, 0.3 and 0.5 are
used. The values of α/αmax (or α̃/α̃max) are 0, 10−6, 10−4 and 10−2, where αmax
corresponds to the upper limit imposed by the constraint (4.36), α < T0/b. Note that
α̃max depends on ν, via D. In Table 4.2, critical divergence velocities are presented for
these cases. The analytical solution for α̃ = 0 for the same geometric and material
parameters (see (3.39), (3.54–3.56)) matches the values in the first column of the
table.

The results for the transverse displacement are shown in Figs. 4.4, 4.5 and 4.6. In
each figure, ν is fixed. Figure 4.4 is divided into two parts. Both parts of the figure are
further divided into four subfigures. Each of these four subfigures shows the results for
a different value of the skew parameter α̃. In the upper four subfigures, f (η) is plotted,
showing a slice of the out-of-plane displacement from one free edge to the other at
x = �/2. Tension increases toward positive η. The total out-of-plane displacement
in the whole domain Ω , from Sequation W = f (πy/�) sin (πx/�), is shown in
the lower four subfigures. Note the orientation of the axes. In Figs. 4.5 and 4.6,

Table 4.1 Physical parameters used in the numerical examples.

T0 (tension at y = 0) m � 2b h E

500 N/m 0.08 kg/m2 0.1 m 1 m 10−4 m 109 N/m2

Table 4.2 Critical divergence velocities V div
0 for example cases

ν α̃

0 10−6α̃max 10−4α̃max 10−2α̃max

0 79.0634 79.0634 79.0605 78.6892
0.1 79.0635 79.0635 79.0605 78.6886
0.3 79.0640 79.0640 79.0609 78.6876
0.5 79.0652 79.0652 79.0618 78.6870

Note that α̃max is different for each value of ν (Banichuk et al. 2013)

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
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Fig. 4.4 Out-of-plane displacement of an axially travelling pinned-free plate with dimensions
� = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.3. Tension
profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al. 2013)
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Fig. 4.5 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.
Tension profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al.
2013)

the four subfigures show the slices of the out-of-plane displacement at x = �/2 for
the limit cases ν = 0 and ν = 0.5, in analogous order.

From Figs. 4.3, 4.4, 4.5 and 4.6 and Table 4.2, three conclusions are apparent.
First, it is seen that inhomogeneities in the tension profile may significantly decrease
the critical velocities. Up to a 20 % tension inhomogeneity between the midpoint
and edges causes a decrease in critical velocity of 10 %. It is also seen that a wider
plate is more sensitive to tension inhomogeneities. Secondly, by comparing Figs. 4.4,
4.5 and 4.6, it is observed that materials with a larger Poisson ratio tend to exhibit a
higher degree of sensitivity to inhomogeneities in the tension profile.

Finally, we see that even for the smallest inhomogeneity in the examples (one
part in 106), for the problem parameters considered the buckling mode (divergence
mode) changes completely. Thus, from a practical point of view, although studies of
the homogeneous tension case can predict the critical velocity relatively accurately,
the obtained results indicate that if one wishes to predict the divergence shape, even
a small inhomogeneity in the tension must be accounted for.
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Fig. 4.6 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.5.
Tension profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al.
2013)

The sensitivity to the inhomogeneity is affected also by the tension at midpoint T0.
The higher the tension, the more sensitive the system is to small inhomogeneities. This
effect is shown in Fig. 4.7. The subfigure on the bottom left of this figure corresponds
to the subfigure at the top right of Fig. 4.4. We see that with ν = 0.3, α̃ = 10−6α̃max,
and the values of the other parameters fixed to those given at the beginning of this
section, the sensitivity is very high already at T0 = 500 N/m, which is realistic in the
application of paper production.

It should be noted that as far as geometric parameters are concerned, the divergence
shape is a function of not only the aspect ratio �/2b, but also the overall scale. Even
for the same aspect ratio, scaling � (and also b to keep the same aspect ratio) changes
the divergence shape. This effect occurs even if h is scaled by the same amount
as � and b. Thus, it should be emphasized that the results in Figs. 4.4, 4.5, 4.6 and
4.7 only represent the specific case of plates with the dimensions � × 2b × h =
0.1 m × 1 m × 10−4 m.
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Fig. 4.7 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.3,
tension profile skew parameter α/αmax = 10−6. Midpoint tension T0 = 5, 50,500 and 5,000 N/m.
(Reproduced from Banichuk et al. 2013)
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