
Chapter 3
Stability Analysis

Abstract The focus of this chapter is the stability analysis of axially moving mate-
rials. There are many similarities with classical stability analysis of structures, like
the buckling of beams and plates. However, the axial motion introduces the effects of
inertia, bringing out many challenges that are discussed in this chapter. The chapter
is divided as follows. In the first section, we will look into the history of stability
investigations, concentrating on moving materials and especially on the extensive
studies performed in this field during the last century. In the second section, we
will introduce linear stability analysis using Bolotin’s concept of dynamical stability.
Finally, in the last three sections, dynamic and static stability analyses will be applied
to moving membranes and plates.

3.1 Historical View of Stability Investigations

Stability analysis comes with a long tradition. The steady-state stability of parabolic
shapes partially immersed in a homogeneous medium was analyzed in the two-part
book On Floating Bodies by Archimedes of Syracuse. The book, originally dating
from the third century BCE, can be thought of as the oldest surviving work on stability
analysis; its probable application was shipbuilding (Russo 2004).

The present form of static stability analysis, which will be applied in this book,
was originally developed by Euler (1766), for a differential equation describing the
bending of a beam. The dynamic stability analysis for linear elastic systems, which
extends Euler’s method, is due to Bolotin (1963). According to Mote and Wickert
(1991), the instability behaviour of some axially moving materials is mathemati-
cally analogous to the buckling of a compressed column, enabling the use of these
techniques.

In the following, we will limit the scope of our consideration to moving materials.
The first investigation in this area was performed by Skutch (1897) being published
originally in German. The first English-language paper on the topic was published
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half a century later by Sack (1954). Both of these studies discussed the vibrations
of a travelling string. Interest in the field then arose quickly. In a short study a few
years later, by Archibald and Emslie (1958), two ways to derive the travelling string
equation were presented. The first analytical solution to the travelling string problem
concerned the free vibrations. It was obtained by Swope and Ames (1963), using a
coordinate transform approach.

The dynamic and stability considerations discussed here were first reviewed in
the article by Mote (1972). Natural frequencies are commonly analyzed together
with the stability. The effects of axial motion of the web on its frequency spectrum
and eigenfunctions were investigated in the papers by Archibald and Emslie (1958)
and by Simpson (1973). It was shown that the natural frequency of each mode
decreases when the transport speed increases, and that the travelling string and beam
both experience divergence instability at a sufficiently high speed. However, in the
case of the string, this result was recently contrasted by Wang et al. (2005), who
showed using Hamiltonian mechanics that the ideal string remains stable at any
speed. Travelling beams have been further analyzed by Parker (1998) in his study
on gyroscopic continua, and by Kong and Parker (2004), where an approximate
analytical expression was derived for the eigenfrequencies of a moving beam with
small flexural stiffness.

Response predictions have been made for particular cases where the excitation
assumes special forms, such as harmonic support motion (Miranker 1960) or a con-
stant transverse point force (Chonan 1986). Arbitrary excitations and initial condi-
tions were analyzed with the help of modal analysis and a Green’s function method in
the article by Wickert and Mote (1990). As a result, the critical speeds for travelling
strings and beams were explicitly determined.

The loss of stability was studied with an application of dynamic and static
approaches in the article by Wickert (1992). It was shown by means of numerical
analysis that in all cases instability occurs when the frequency is zero and the critical
velocity coincides with the corresponding velocity obtained from static analysis.

Two-dimensional studies have also been performed from the 1990s onwards.
For example, Lin and Mote (1995) studied an axially moving membrane in a 2D
formulation, predicting the equilibrium displacement and stress distributions under
transverse loading. In the article by Shin et al. (2005), out-of-plane vibrations of
an axially moving membrane were studied. They also found by numerical analysis
that for a membrane with no-friction boundary conditions in the lateral direction
along the rollers, the membrane remains dynamically stable until the critical speed,
at which static instability occurs, is reached. Lin and Mote (1996) extended their
study, predicting a wrinkling instability and the corresponding wrinkled shape of a
web with small flexural stiffness. Lin (1997) continued the studies of stability.

It was realized early on that the vibration problem for an axially moving continuum
is not the conventional one. Because of the longitudinal continuity of the material, the
equation of motion for transverse vibration will contain additional terms, representing
a Coriolis force and a centripetal force acting on the material. As a consequence, the
resonant frequencies will be dependent on the longitudinal velocity of the axially
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moving continuum, as was noted by Archibald and Emslie (1958), as well as Swope
and Ames (1963), Simpson (1973), and Mujumdar and Douglas (1976).

In the 1980s, it was discovered that another important factor affecting the stability
of the axially moving continuum, especially if the material itself is lightweight, is the
interaction between the moving continuum and the surrounding medium (Pramila
1986). The interaction between the travelling continuum and the surrounding air
is known to influence the critical velocity (Pramila 1986; Frondelius et al. 2006)
and the dynamical response (Kulachenko et al. 2007b), possibly also affecting the
divergence (buckling) shape. The mentioned studies concentrate on paper making,
but the same phenomenon is encountered also in other applications. For example,
in a paper by Hosaka and Crandall (1992), the vibrations of an elastic disc rotating
above an air film were investigated.

The simplest approach to taking into account the fluid–structure interaction is to
assume potential flow; that is, the surrounding air is assumed to be incompressible and
inviscid, and the flow is assumed to be irrotational (like in e.g. Niemi and Pramila
1986). Experimental studies and some theoretical estimations (see, e.g., Pramila
1986) indicate that in the case of normal vibration, comparison of experimental and
theoretical results shows that predictions based on the potential flow theory are within
about 10 % of the measured results. To solve the external hydrodynamic problem,
and to find the reaction of the surrounding medium, the finite element method has
been used (e.g. Niemi and Pramila 1986).

A closely related problem is the response of stationary material to a surrounding
axial flow. It has been noted Païdoussis (2008) that this problem, in turn, is related
to the canonical problem of the fluid-conveying pipe. However, the case of material
surrounded by axial flow is more complicated than the case of the pipe, due to the
nonlocal nature of the aerodynamic reaction. The problems of slender structures in
axial flow have been studied extensively, and are summarized in the two-volume
book by Païdoussis (1998, 2004).

Returning to moving materials, the dynamical properties of moving plates have
been studied by Shen et al. (1995) and by Shin et al. (2005), and the properties of
a moving paper web have been studied in the two-part article by Kulachenko et al.
(2007a,b). Critical regimes and other problems of stability analysis have been studied
by Wang (2003) and Sygulski (2007).

Results that axially moving beams experience divergence instability at a suffi-
ciently high beam velocity have been obtained also for beams interacting with exter-
nal media; see, e.g., Chang and Moretti (1991), and Banichuk et al. (2010b, 2011b);
Jeronen (2011). The same authors have extended the study in Banichuk et al. (2010a,
2011a), for a two-dimensional model of the web, considered as a moving plate under
homogeneous tension but without external media. These studies have been further
extended in Banichuk et al. (2013) and Tuovinen (2011) to the case with a linear
non-homogeneous tension distribution (see also Chap. 4).

The mechanical behavior of a paper web under a non-failure condition is ade-
quately described by the model of an elastic orthotropic plate. The rigidity coeffi-
cients of the plate model that describe the tension and bending of the paper sheet
have been estimated for various types of paper in many publications. See, for
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example, the articles by Göttsching and Baumgarten (1976), by Thorpe (1981), by
Skowronski and Robertson (1985) and by Seo (1999). The deformation properties of
a sheet of paper under tensile stress or strain are used in simulation of axial movement
of a paper web. In particular, these properties are important for the modeling of the
instability of the web.

In a recent article by Hatami et al. (2009), the free vibration of a moving orthotropic
rectangular plate was studied at sub- and supercritical speeds, and its flutter and
divergence instabilities at supercritical speeds. The study is limited to simply sup-
ported boundary conditions at all edges. For the solution of equations of orthotropic
moving material, many necessary fundamentals can be found in the book by
Marynowski (2008).

The free vibrations of stationary orthotropic rectangular plates have been exten-
sively studied. The classical reference work in this area is the book by Gorman (1982).
More recently, Biancolini et al. (2005) included in their study all combinations of sim-
ply supported and clamped boundary conditions on the edges. Xing and Liu (2009)
obtained exact solutions for the free vibrations of stationary rectangular orthotropic
plates. They considered three combinations of simply supported (S) and clamped
(C) boundary conditions: SSCC, SCCC, and CCCC. Kshirsagar and Bhaskar (2008)
studied vibrations and buckling of loaded stationary orthotropic plates. They found
critical loads of buckling for all combinations of boundary conditions S, C, and F.

Recently, attention has turned toward the material model, which is also an impor-
tant factor in the stability behaviour of a moving material. Industrial materials often
have viscoelastic characteristics (see, e.g., Fung et al. 1997), and consequently, vis-
coelastic moving materials have been recently studied widely. In paper making, wet
paper webs are highly viscous, and therefore, viscoelasticity should be taken into
account in the models (see, e.g., Alava and Niskanen 2006). Also plasticity is known
to occur (see, e.g., Erkkilä et al. 2013); however that topic is beyond the scope of the
present book.

First studies on transverse vibration of viscoelastic material traveling between
two fixed supports were done by Fung et al. (1997), using a string model. Extending
the work, they studied the material damping effect in Fung et al. (1998).

Several studies on travelling viscoelastic materials, concerning strings and beams,
have been performed during the last decade. Chen and Zhao (2005) represented
a modified finite difference method to simplify a non-linear model of an axially
moving viscoelastic string. They studied the free transverse vibrations of elastic and
viscoelastic strings numerically.

Oh et al. (2004) and Lee and Oh (2005) studied critical speeds, eigenvalues,
and natural modes of axially moving viscoelastic beams using the spectral element
model. They analyzed dynamic behavior of axially moving viscoelastic beams using
modal analysis, performed a detailed eigenfrequency analysis, and reported that
viscoelasticity did not affect the critical velocity of the beam.

Marynowski and Kapitaniak (2002) compared two different internal damping
models in modeling of moving viscoelastic (non-linear) beams. For the linearized
Kelvin–Voigt model, it was found that the beam exhibits divergent instability at some
critical speed. In the case of non-linear BÃŒrgers model, the critical speed decreased
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when the internal damping was increased, and the beam was found to experience the
first instability in the form of flutter.

A few studies on transverse vibrations of axially moving viscoelastic plates have
also been done. Very recently, Yang et al. (2012) studied vibrations, bifurcation and
chaos of axially moving viscoelastic plates using finite differences and a non-linear
model for transverse displacements. They concentrated on bifurcations and chaos,
but also studied the dynamic characteristics of a linearised elastic model with the
help of eigenfrequency analysis.

A particular question about whether one should use the material time derivative or
the partial time derivative in the viscoelastic constitutive relations for moving materi-
als, has recently been discussed especially in the case of the widely used Kelvin–Voigt
material model. Mockensturm and Guo (2005) suggested that the material derivative
should be used. They studied non-linear vibrations and dynamic response of axially
moving viscoelastic strings, and found significant discrepancy in the frequencies
at which non-trivial limit cycles exist, comparing the models with the partial time
derivative to those with the material time derivative.

Recently, the material derivative has been used in most of the studies con-
cerning axially moving viscoelastic beams (see e.g. the papers by Chen et al.
2008, Chen and Ding 2010, Chen and Wang 2009, and Ding and Chen 2008).
Kurki and Lehtinen (2009) suggested, independently, that the material derivative in
the constitutive relations should be used in their study concerning the in-plane dis-
placement field of a traveling viscoelastic plate. Some more studies specifically about
viscoelastic moving materials will be introduced in Chap. 5.

3.2 Linear Stability Analysis

The most straightforward and efficient way to study stability is to use linear stability
analysis. It is well-known that the normal vibrations of an elastic linear system are
time-harmonic (this is noted by e.g., Xing and Liu 2009). For the stability analysis
of all such systems described by partial differential equation models, it is standard
to use the time-harmonic trial function

w(x, t) = exp(st) W (x) , (3.1)

where s is complex, W (x) is an unknown eigenmode to be determined and x is a
scalar or a vector depending on the dimensionality of the problem. This removes
the time dependence from the partial differential equation, making it sufficient to
solve a (pseudo-)steady-state problem including the unknown scalar s, the allowed
values of which are determined implicitly by the boundary conditions and problem
parameters. The resulting equation will be a partial differential equation in space,
but polynomial with respect to s.

The trial function (3.1) produces a complex-valued solution w(x, t). The space
component W (x) is typically real-valued for stationary materials, and complex-valued
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for moving materials. It is easy to see that in the case of linear partial differential
equations with real-valued coefficients, the real and imaginary components of w(x, t)
will also be solutions of the original problem. Let L be a linear differential operator.
For example, for the real part, we have

Re (L(w)) = Re [L( Re (w) + i Im (w) )]

= Re [L(Re (w)) + i L(Im (w))] (3.2)

= L(Re (w)) ,

where the last equality holds only if the coefficients of L are real. The same
observation holds for the imaginary part. Thus, both Re w(x, t) and Im w(x, t)
are real-valued solutions of the original problem.

However, for moving materials, the real and imaginary components of W (x) are
typically not solutions of the auxiliary steady-state problem: using the trial function
(3.1), only the full complex-valued solution W (x) is valid for the auxiliary problem.
It is only the complete solution w(x, t) whose real and imaginary components satisfy
the original problem separately. For an example of this, the properties stated here
can be easily verified for the analytical free vibration solution given in Sect. 2.1.1 for
the constant-coefficient travelling string. The reason is, of course, that the stability
exponent s is complex.

The allowed values of the stability exponent s completely characterize the free
vibrations of the elastic linear system under consideration. Consider the problem
parameters fixed. If Re s ≤ 0 for all solutions (s, W ), the system is stable and
undergoes time-harmonic vibration. If Re s < 0 for one or more solutions (s, W ),
these solutions also contain a damping component. If Re s > 0 for at least one
solution (s, W ), the system is unstable (Bolotin 1963).

Fig. 3.1 Behaviour of the stability exponent s for the two different instability types in the classi-
fication due to Bolotin (1963). The arrows show the motion of the eigenvalues s j as the problem
parameter V0 is increased quasistatically. In the left picture, the symbols are drawn off the axes for
legibility reasons only; s2 ∈ R for all V0. In the right picture, the real part is initially negative. In
both cases, the eigenvalues merge at the collision point, and then immediately separate
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Based on the trial function (3.1) we can make the distinction of static versus
dynamic instability, depending on whether Im s = 0 in the critical state. This
classification is due to Bolotin (1963). The concepts are illustrated in Fig. 3.1.

Roughly speaking, the critical state can be defined as follows. We begin in some
initially stable state of the system. For axially travelling materials, the initial state
is usually taken as axial velocity V0 = 0. We then start increasing the problem
parameter of interest, call it p, quasistatically. After a while, the parameter p has
reached a value p0. If there exists at least one solution (s, W ) such that Re s > 0
for all p = p0 + ε with arbitrarily small ε > 0, but Re s ≤ 0 for all solutions s
for p = p0 − ε, the value p0 is called the critical parameter value. It is the point of
transition from stable to unstable behaviour.

Assume we have found a critical parameter value p = p0. If Im s = 0 just
above the critical value, p = p0 + ε, the complex-valued exp in (3.1) simplifies to
a real-valued exp, and the displacement will grow exponentially with time. This is
called static instability or divergence (Fig. 3.1, left). This corresponds to s passing
through the origin of the complex plane, and thus the critical states for this kind of
instability can be found by a steady-state analysis (see Bolotin 1963, or consider
(3.1) for s = 0).

Often the existence of a nontrivial steady-state solution is taken as indication of an
instability, and e.g. the buckling analysis of travelling panels and plates is based on
this idea. However, in their analysis of the travelling ideal string, Wang et al. (2005)
caution that steady-state solutions may exist without indicating an instability, if the
eigenfunctions remain linearly independent at the critical parameter value. Thus, we
may conclude that a static instability can only arise from a steady state, but in a
rigorous analysis, the existence of a steady state should be taken only as a necessary
condition for static instability, not a sufficient one.

If Im s �= 0 for p = p0 + ε, the complex-valued exp in (3.1) becomes a product
of a real-valued exp and a harmonic component, e.g. sin, cos or a linear combination
of these. In this case, the displacement will exhibit exponentially growing vibrations
with time (see Fig. 3.1, right). This is called dynamic instability or flutter. This should
not be confused with the engineering use of the term flutter to describe also stable
vibrations.

Linear perturbation analysis around the critical parameter value is one method
that can be used to confirm that the critical state indeed indicates an instability for
p = p0 + ε (see e.g. the analysis of Parker 1998, for the moving beam). Another
method is to compute the complex eigenfrequencies of the system, based on the trial
function (3.1), for a range of parameter values [p0 − ε, p0 + ε].

In the case of stability analysis of linear partial differential equations, it is evident
from the linear superposition property that solution components which obviously
always stay bounded may be discarded without further consideration. Thus, linear
stability analysis can be focused on the solution components for which the bound-
edness of the long-term behaviour, under various different values for the problem
parameters, is nontrivial.

Finally, it should be noted that for the investigation of small vibrations of elastic
systems, linearized models are often used. If system enters an unstable state, the
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small displacement assumption eventually breaks, possibly very quickly. From that
point on, the model no longer describes the physics of the situation being analyzed.
It is generally agreed that linearized small-displacement models are sufficient up to
the first instability (see e.g. Païdoussis 2005).

3.3 Dynamic Analysis of Moving Membranes and Plates

From experimental studies and some theoretical estimations, it is known that
mechanical instability of a travelling paper web can arise at some critical velocities,
and that the instability may occur in either dynamic, i.e. flutter, or static, i.e. diver-
gence, forms. These critical velocities are of both theoretical and practical interest,
as they set an upper limit for the running speed of paper machines, and consequently,
for the rate of paper production that can be achieved. Some previous investigations
show that for an axially moving elastic paper web under a homogeneous tension
profile along the rollers and certain other conditions, the value of divergence speed
V div

0 is smaller than the value of flutter speed V fl
0 , and hence the critical instability

will be of the divergence type.
In this section, the focus is on how to analyze the dynamic problem of stability.

We will follow the method described by Bolotin (1963). Recall the equation of small
transverse vibrations of the travelling plate subjected to homogeneous tension, (2.12).
We represent it as follows:

∂2w

∂t2 + 2V0
∂2w

∂x∂t
+

(
V 2

0 − C2
) ∂2w

∂x2 + D0

m
L0(w) = 0 , C =

√
T0

m
, (3.3)

where w = w(x, t) is the transverse displacement, and the orthotropic bending
operator is

L0(w) = D1

D0

∂4w

∂x4 + 2D3

D0

∂4w

∂x2∂y2 + D2

D0

∂4w

∂y4 . (3.4)

Here D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already introduced as (2.18), Sect. 2.1.3 (or see Timoshenko and
Woinowsky-Krieger 1959, Chap. 11). The Ci j are the elastic moduli, (2.19). The
quantity D0 is a normalization constant, for which we have chosen the value
D0 = D1.

The boundary value problem consisting of (3.3)–(3.4) with the boundary con-
ditions (2.20)–(2.22) is homogeneous and invariant with respect to the symmetry
operation y → −y and, consequently, all solutions of the problem are either sym-
metric or antisymmetric functions of y, i.e.
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w(x, y, t) = w(x,−y, t) or w(x, y, t) = −w(x,−y, t) . (3.5)

In the following analysis, however, this symmetry property is not necessary.
Using the time-harmonic trial function (3.1), we can represent the solution of our

dynamic boundary-value problem (3.3)–(3.4), (2.20)–(2.22) as

w(x, y, t) = W (x, y)eiωt = W (x, y)est , (3.6)

where ω is the angular frequency of small transverse vibrations and s = iω is
the stability exponent. As presented in the previous section, Sect. 3.2, if s is purely
imaginary and consequently ω is real, the membrane or plate performs harmonic
vibrations of a small amplitude and its motion can be considered stable. If, for some
values of the problem parameters, the real part of the stability exponent becomes
positive, the transverse vibrations grow exponentially and consequently the behaviour
is unstable (See Fig. 3.1, left).

3.3.1 Dynamic Stability of Membranes

Classical approach for modelling of moving materials is to apply the model of a
travelling membrane. In the case of a membrane, efficient analytical methods are
usually available. We begin the analysis of the moving membrane by defining the
corresponding eigenvalue problem. Homogeneous tension is applied at the bound-
aries x = 0 and x = �. In order to investigate the dynamic behavior, we insert
the representation (3.6) into (3.3). Since the case of a membrane is considered, we
omit the bending rigidity terms from (3.3), i.e., (D0/m)L0(w) = 0. We obtain the
following equation for small time-harmonic vibrations of the travelling membrane:

s2W + 2sV0
∂W

∂x
+

(
V 2

0 − C2
) ∂2W

∂x2 = 0 , (3.7)

with zero displacement boundary conditions

(W )x=0, � = 0 , −b ≤ y ≤ b . (3.8)

We will see that the choice of boundary conditions in the y direction, on the edges
{0 ≤ x ≤ �, y = ±b}, does not matter in the following analysis.

We multiply (3.7) by W and perform integration over the domain

� ≡
{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

(3.9)

to obtain
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s2
∫

�

W 2 d� + 2sV0

∫

�

W
∂W

∂x
d� +

(
V 2

0 − C2
) ∫

�

W
∂2W

∂x2 d� = 0 . (3.10)

It is worth noting that the problem (3.10) is a special case of the variational form
of the original eigenvalue problem (3.7). In (3.10), we only test against W itself,
not against an arbitrary test function. However, any solution of the original problem
(3.7) is also a solution of (3.10). Hence, the eigenvalues of problem (3.10) include
the eigenvalues of problem (3.7), i.e. we may get additional solutions. As we are
interested in the behavior of the eigenvalues of problem (3.7), it is sufficient to notice
that if all the eigenvalues of problem (3.10) have similar behaviour with each other,
then the eigenvalues of (3.7) have the same behaviour.

The second and third integrals in (3.10) are evaluated with integration by parts
and the boundary conditions (3.8):

∫

�

W
∂W

∂x
d� =

∫ b

−b

∫ �

0
W

∂W

∂x
dx dy

=
∫ b

−b

[
W 2(�, y)

2
− W 2(0, y)

2

]
dy

= 0 , (3.11)

and ∫

�

W
∂2W

∂x2 d� = −
∫

�

(
∂W

∂x

)2

d� . (3.12)

Using (3.10)–(3.12) and performing elementary transformations, we obtain the fol-
lowing expression for the stability exponent:

s2 =
(

V 2
0 − C2

)
∫

�

(
∂W

∂x

)2

d�

∫

�

W 2 d�

. (3.13)

If s becomes zero, we have a steady state solution (divergence) with frequency ω = 0
at the velocity V0 = V div

0 . From (3.13), the value of this divergence velocity is found
as

V div
0 = C =

√
T0

m
=

√
hu0

m�
E1 , (3.14)

where in the last form, (2.40) from Sect. 2.2 has been used. Here u0 is a prescribed
displacement at x = �.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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3.3.2 Dynamic Analysis of Small Transverse Vibrations
and Elastic Stability of Isotropic Plates

To investigate the dynamic behaviour of the plate, we insert, following the membrane
case, representation (3.6) into (3.3). As the object is a plate, the bending rigidities
cannot be omitted. Therefore, for small time-harmonic vibrations of the travelling
plate subjected to homogeneous tension, we have the equation

s2W + 2sV0
∂W

∂x
+ (V 2

0 − C2)
∂2W

∂x2 + D

m
�2W = 0 . (3.15)

Boundary conditions for the plate problem are

(W )x=0,� = 0 ,

(
∂2W

∂x2

)

x=0,�

= 0 , −b ≤ y ≤ b , (3.16)

(
∂2W

∂y2 + β1
∂2W

∂x2

)

y=±b
= 0 , 0 ≤ x ≤ � , (3.17)

(
∂3W

∂y3 + β2
∂3W

∂x2∂y

)

y=±b
= 0 , 0 ≤ x ≤ � . (3.18)

For an orthotropic plate, we have

β1 = ν12 ,

β2 = ν12+4 G12

E2
(1 − ν12ν21) . (3.19)

As was noted in Sect. 2.1.3, in the case of an isotropic plate, the parameters above
become simplified as

β1 = ν and β2 = 2 − ν , (3.20)

by setting ν12 = ν21 = ν, E1 = E2 = E , G12 = G, and using the isotropic
shear modulus relation G = E/(2 (1 + ν)). Then, factoring 1 − ν12ν21 = 1 − ν2 =
(1 + ν)(1 − ν) and simplifying reduces (3.19) into (3.20).

Proceeding similarly as in the membrane case, we multiply (3.15) by W and
perform integration over the domain � to obtain

s2
∫

�

W 2 d� + 2sV0

∫

�

W
∂W

∂x
d� + (V 2

0 − C2)

∫

�

W
∂2W

∂x2 d�

+ D

m

∫

�

W�2W d� = 0 . (3.21)



34 3 Stability Analysis

The same argument holds for the variational form as in the membrane case.
Equation (3.21) can be seen as an eigenvalue problem for the pair (s, W ) with the
parameter V0, producing a spectrum of complex eigenfrequencies s and eigenmodes
W for the chosen value of V0. Alternatively, (3.21) can be viewed as an eigenvalue
problem for the pair (V0, W ) with the parameter s, when s is fixed to any such value
that at least one complex eigenfrequency exists for at least one choice of V0. For
other choices of s, this second eigenvalue problem has no solution.

Previously, we have noted the Eqs. (3.11) and (3.12) for the membrane. By using
Green’s 2nd identity, the last integral in (3.21) can be transformed into

∫

�

W�2W d� =
∫

�

(�W )2 d� +
∫




(
W

∂

∂n
�W − �W

∂W

∂n

)
d
 , (3.22)

where n is the exterior unit normal to the boundary 
 of the domain �. We divide
the boundary 
 into four parts (see Fig. 3.2):


− = {0 ≤ x ≤ �, y = −b}, 
r = {x = �, −b ≤ y ≤ b} ,


+ = {0 ≤ x ≤ �, y = b}, 
� = {x = 0, −b ≤ y ≤ b} .

Admitting counterclockwise integration along 
, we have

I =
∫




(
W

∂

∂n
�W − �W

∂W

∂n

)
d
 = I− + Ir + I+ + I� . (3.23)

Here

Fig. 3.2 Division of the boundary 
 for the investigated contour integral
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Ir = I� = 0 , (3.24)

I− =
∫


−

(
W

∂

∂n
�W − �W

∂W

∂n

)
d


= −
∫ �

0

(
W

∂

∂y
�W − �W

∂W

∂y

)

y=−b
dx , (3.25)

I+ =
∫


+

(
W

∂

∂n
�W − �W

∂W

∂n

)
d


= −
∫ 0

�

(
W

∂

∂y
�W − �W

∂W

∂y

)

y=b
dx

=
∫ �

0

(
W

∂

∂y
�W − �W

∂W

∂y

)

y=b
dx . (3.26)

where we have used the relations

d
 = dx,
∂

∂n
= − ∂

∂y
for (x, y) ∈ 
− , (3.27)

d
 = −dx,
∂

∂n
= ∂

∂y
for (x, y) ∈ 
+ , (3.28)

and
W = �W = 0 for (x, y) ∈ 
� + 
r . (3.29)

We obtain

I = I− + I+ =
∫ �

0

(
Q(W, W )y=b − Q(W, W )y=−b

)
dx , (3.30)

where

Q(w, v) ≡ v
∂

∂y
�w − �w

∂v

∂y
. (3.31)

with the arbitrary functions v and w. Using the boundary conditions for an isotropic
plate, (3.17) and (3.18), we find that

Q(W, W ) =
W

∂3W

∂y3(
2 − ν

1 − ν

) +
∂W

∂y

∂2W

∂y2(
ν

1 − ν

) , at y = ±b . (3.32)

We can see from (3.32) that the function Q is antisymmetric with respect to the
transformation y → −y for symmetric and antisymmetric functions W , and conse-
quently,
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Q(W, W )y=b = −Q(W, W )y=−b . (3.33)

We observe that

I = 2
∫ �

0
Q(W, W )y=b dx . (3.34)

From (3.22) and (3.34), we obtain

∫

�

W�2W d� =
∫

�

(�W )2 d� + 2
∫ �

0
Q(W, W )y=b dx , (3.35)

and, furthermore

ω2 = −s2

=
(C2 − V 2

0 )

∫

�

(
∂W

∂x

)2

d� + D

m

(∫

�

(�W )2 d� + 2
∫ �

0
Qy=b dx

)

∫

�

W 2 d�

.

(3.36)

We can now observe from representation (3.36) the following equation for the
divergence mode (buckling mode):

(
V div

0

)2 = C2 + D

m

∫

�

(�W )2d� + 2
∫ �

0
Qy=b dx

∫

�

(
∂W

∂x

)2

d�

. (3.37)

In particular, it follows from (3.37) that when the bending rigidity D is negligible,
the critical velocity is the same as for the axially travelling string (see, e.g., Chang
and Moretti 1991). From the result further above, see (3.14), we see that the same
value for the critical velocity also applies to ideal membranes. For a membrane,
the divergence velocity does not depend on W . Thus, any combination of modes
may occur at the critical velocity for the special case of an ideal membrane under
homogeneous tension. These observations generalize the analogous results for a
cylindrical deformation, i.e. a flat panel model of an ideal membrane (see Banichuk
et al. 2010b).

3.4 Divergence Instability of Isotropic Plates

Next we will consider the buckling problem of an axially moving isotropic plate. In
many practical cases, this is a reasonable simplification. For divergence instability
of axially moving orthotropic plates, see Sect. 3.5.
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3.4.1 Eigenvalue Problem

In this section, we will study the divergence (static instability) of a travelling isotropic
plate subjected to homogeneous tension. The problem is formulated as an eigenvalue
problem of the partial differential equation

(
mV 2

0 − T0

) ∂2W

∂x2 + D

(
∂4W

∂x4 + 2
∂4W

∂x2∂y2 + ∂4W

∂y4

)
= 0 (3.38)

with the boundary conditions (3.16)–(3.18) and (3.20) (Sect. 3.3.2). We will study
static (i.e. divergence) instability, and therefore time-dependent terms are excluded
from (3.3). In order to determine the minimal eigenvalue

λ = γ 2 = �2

π2 D

(
mV 2

0 − T0

)
(3.39)

of the problem (3.16)–(3.18), (3.38), and the corresponding eigenfunction W =
W (x, y), we apply the following representation:

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
, (3.40)

where f (y/b) is an unknown function. It follows from (3.40) that the desired buck-
ling mode (steady-state solution) W satisfies the boundary condition (3.16). The
half-sine shape of the solution in the longitudinal direction is well-known (see, e.g.,
the article by Lin 1997). Using the dimensionless quantities

η = y

b
, μ = �

πb
, (3.41)

and the relations (3.17)–(3.18) (Sect. 3.3.2) and (3.38)–(3.41), we obtain the follow-
ing eigenvalue problem for the unknown function f (η):

μ4 d4 f

dη4 − 2μ2 d2 f

dη2 + (1 − λ) f = 0 , −1 < η < 1 , (3.42)

μ2 d2 f

dη2 − ν f = 0 , η = ±1 , (3.43)

μ2 d3 f

dη3 − (2 − ν)
d f

dη
= 0 , η = ±1 , (3.44)

where (3.43)–(3.44) represent the free-of-traction boundary conditions.



38 3 Stability Analysis

3.4.2 Analytical Solution

In this section, we will present the solution process of the eigenvalue problem (3.42)–
(3.44). We consider the problem as a spectral boundary value problem. The problem
is invariant with respect to the symmetry operation η → −η, and consequently, all
its eigenfunctions can be classified as

f s(η) = f s(−η), f a(η) = − f a(−η), 0 ≤ η ≤ 1 . (3.45)

Here f s and f a are symmetric and antisymmetric (skew-symmetric) with respect to
the x axis (η = 0). When γ ≤ 1, a divergence mode symmetric with respect to the
x axis can be presented in the form

W = f s (η) sin
(πx

�

)
(3.46)

where

f s (η) = As cosh

(
κ+η

μ

)
+ Bs cosh

(
κ−η

μ

)
(3.47)

and
κ+ = √

1 + γ , κ− = √
1 − γ . (3.48)

The function f s (η) is a symmetric solution of (3.42), and As and Bs are arbitrary
constants. At first, we concentrate on the symmetric case and return to the antisym-
metric case later.

Using the relations (3.43)–(3.47), we can derive the linear algebraic equations for
determining the constants As and Bs:

As
(
κ2+ − ν

)
cosh

(
κ+
μ

)
+ Bs

(
κ2− − ν

)
cosh

(
κ−
μ

)
= 0 , (3.49)

−Asκ+
(
κ2− − ν

)
sinh

(
κ+
μ

)
− Bsκ−

(
κ2+ − ν

)
sinh

(
κ−
μ

)
= 0 . (3.50)

The condition for a non-trivial solution to exist in the form (3.46)–(3.48) is that the
determinant of the system (3.49)–(3.50) must vanish. This is seen by observing that
(3.49)–(3.50) is a homogeneous system of linear equations in As, Bs:

[
K11 K12
K21 K22

] [
As

Bs

]
=

[
0
0

]
, (3.51)

where the coefficients Ki j are given by the obvious identifications. From linear
algebra, it is known that a non-trivial solution satisfying (3.51) can only exist if the
matrix K is singular. Hence its determinant must be zero.

This zero determinant condition leads to the transcendental equation
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κ−
(
κ2+ − ν

)2
cosh

(
κ+
μ

)
sinh

(
κ−
μ

)
−

κ+
(
κ2− − ν

)2
sinh

(
κ+
μ

)
cosh

(
κ−
μ

)
= 0 , (3.52)

which determines the eigenvalues
λ = γ 2 (3.53)

implicitly. Equation (3.52) can be transformed into a more convenient form,

Φ (γ,μ) − Ψ (γ, ν) = 0 , (3.54)

where we have defined

Φ (γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
(3.55)

and

Ψ (γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 . (3.56)

Let us consider the modes of buckling which are antisymmetric about the x axis:

W = f a (η) sin
(πx

�

)
, (3.57)

where

f a(η) = Aa sinh

(
κ+η

μ

)
+ Ba sinh

(
κ−η

μ

)
(3.58)

for γ ≤ 1. The values κ+ and κ− are defined by the expressions (3.48). Using the
expression (3.58) for f a and the boundary conditions on the free edges of the plate
(3.43)–(3.44), we obtain the following transcendental equation for determining the
quantity γ :

Φ (γ,μ) − 1

Ψ (γ, ν)
= 0 . (3.59)

In (3.59), Φ (γ,μ) and Ψ (γ, ν) are again defined by the formulas (3.55) and (3.56).
In the segment 0 < γ ≤ 1 being considered, the equation has two roots,

γ = γ1 → γ0 < γ1 < 1 (3.60)

and
γ = γ2 → γ2 = 1 , (3.61)
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for arbitrary values of the Poisson ratio ν and the geometric parameter μ. By using
(3.60)–(3.61) and some properties described in the next section, it is possible to
determine that

γ∗ < γ1 < γ2 , (3.62)

where γ∗ is the minimal eigenvalue for the symmetric case. Thus, the critical buckling
mode is symmetric with respect to the x axis, and corresponds to γ = γ∗, i.e., to the
solution of (3.54). Hence we will limit our consideration to the symmetric case.

We have obtained an equation determining the minimal eigenvalue γ∗, (3.54).
By relation (3.39), the corresponding critical velocity of the travelling band is then
represented as

(V div
0 )2 = T0

m
+ γ 2∗

m

(
π2 D

�2

)
. (3.63)

In order to obtain the corresponding eigenmode, either As or Bs can be solved from
either of the equations (3.49)–(3.50), and the other one (either Bs or As, respec-
tively) can be chosen arbitrarily; it is the free coefficient of the eigenvalue problem.
Finally, inserting the obtained γ∗, As and Bs into (3.46–3.47) gives the eigenmode
corresponding to the eigenvalue γ∗.

One of As or Bs is left free, because the zero determinant condition holds at
the value of γ = γ∗ that is a solution of (3.54). Hence, at γ = γ∗, the equations
(3.49)–(3.50) become linearly dependent, providing only one condition.

3.4.3 Properties of Analytical Solution

In this section we investigate the properties of the functions Φ (γ,μ) and Ψ (γ, ν),
expressed by (3.55)–(3.56), when 0 ≤ γ ≤ 1. Their schematic illustration is pre-
sented in Fig. 3.3. As γ increases from zero to unity, the function Φ (γ,μ) decreases
continuously and monotonically from 1 to 0, i.e.

1 ≥ Φ (γ,μ) ≥ 0,
∂Φ(γ, μ)

∂γ
< 0, 0 ≤ γ ≤ 1 (3.64)

and

Φ (0, μ) =
(

tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)

γ=0
= 1 (3.65)

Φ (1, μ) =
(

tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)

γ=1
= 0 . (3.66)
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Fig. 3.3 Behavior of functions Φ and Ψ with respect to the parameter γ in the isotropic case. The
presentation is qualitative

The proof of the monotonical decrease of function Φ is performed in Sect. 3.5.5,
where we investigate the solution of the orthotropic problem. The same property for
the present isotropic problem follows as a special case.

The function Ψ (γ, ν) decreases from 1 to 0 in the interval 0 < γ < 1 − ν,

1 > Ψ (γ, ν) > 0,
∂Ψ (γ, ν)

∂γ
< 0, 0 < γ < 1 − ν , (3.67)

and at the ends of this interval, we have

Ψ (0, ν) =
[√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]

γ=0

= 1 , (3.68)

Ψ (1 − ν, ν) =
[√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]

γ=1−ν

= 0 . (3.69)

The function Ψ increases monotonically in the interval 1 − ν < γ < 1, increasing
without limit as γ → 1, i.e.

0 < Ψ (γ, ν) < ∞,
∂Ψ (γ, ν)

∂γ
> 0, 1 − ν < γ < 1 (3.70)

and
lim
γ→1

Ψ (γ, ν) = ∞ . (3.71)

The limit (3.71) will be shown in Sect. 3.5.5.
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Plots of the function Φ(γ,μ) when the geometric aspect ratio �/2b = 0.1, 1, and
10 are shown in Fig. 3.4 at the top. The functions Ψ (γ, ν) when ν = 0.2, 0.3 and 0.5
are shown in the same figure, at the bottom.

The value of γ = γ0, for which

Ψ (γ0, ν) = 1 , γ0 ∈ [1 − ν, 1] (3.72)

is of special interest. At this point it holds that

Φ − Ψ = Φ − 1

Ψ
at γ = γ0 ,

and hence the functions defined by the left-hand sides of (3.54) and (3.59) will cross
at the value γ = γ0.

The value γ0 is found by inserting (3.56) into (3.72), squaring both sides for
convenience (we know that γ0 > 0, so no information is lost), and solving for γ0.
We obtain

γ 2
0 = (1 − ν)(3ν − 1 + 2

√
1 − 2ν(1 − ν)) . (3.73)

The other solutions are all negative and can thus be discarded. When examined as a
function of ν, the expression γ0(ν) has zeros at ν = −3 and ν = 1, and a maximum
at ν = 0, with the value γ0 = 1. For any other value of ν, we have γ0 < 1.

If we restrict the Poisson ratio ν into the physically admissible range for isotropic
materials, ν ∈ (−1, 0.5), then the value of γ0, as given by (3.73), turns out to be close
to unity. The minimal values are encountered at the ends of the range. At ν = −1
we have γ0 ≈ 0.944, and at ν = 0.5, γ0 ≈ 0.957.

Let us consider the limiting cases in terms of the band geometry. First, if we have
a long and narrow band span, � � b, the geometric parameter μ becomes large, and
the arguments of tanh and coth in (3.55) become small. In such a case, we can use the
following Taylor series expansions of the hyperbolic trigonometrics around α = 0
(here α is an arbitrary parameter):

tanh α = α − 1

3
α3 + 2

15
α5 + . . . ,

coth α = 1

α
+ 1

3
α − 1

45
α3 + . . . . (3.74)

Retaining only the first term in each of (3.74), and applying to (3.55), we obtain the
approximate expression

Φ =
√

1 − γ

1 + γ
(for large μ) . (3.75)

Using (3.75) and (3.56) in (3.54), we find the solution
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Fig. 3.4 Plots of Φ (top) and Ψ (bottom) for different values of the parameters �/2b and ν. Note
the horizontal scale
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λe = γ 2
e = 1 − ν2 . (3.76)

This solution corresponds to a narrow strip simply supported at its ends. It leads to
the Euler value of the force for stability loss (buckling),

P = Pe = λe
π2 D

�2 = π2 E I

�2 , (3.77)

where

P = mV 2
0 − T0 , D = Eh3

12(1 − ν2)
, I = h3

12
. (3.78)

Furthermore, consider the Taylor expansion of cosh α around α = 0 (here also α is
an arbitrary parameter):

cosh α = 1 + 1

2
α2 + 1

24
α4 + . . . .

Retaining only the first term, we have a constant value. Looking at (3.47), which
determines the corresponding mode of stability loss, we see that for large μ, the
dependence on η thus vanishes, making the mode cylindrical.

With regard to both the critical load and the mode, we see that the case of a long,
narrow strip corresponds to the classical one-dimensional case.

At the other extreme, for a very wide band for which b � �, we have μ → 0. In
this case, we can use the limits

lim
α→∞ tanh α = 1 ,

lim
α→∞ coth α = 1 , (3.79)

leading to
lim

μ→0+Φ(γ,μ) = 1 . (3.80)

Using (3.80) and (3.56) in (3.54), we obtain the equation Ψ (γ, ν) = 1 at the limit
μ → 0. Its solution is γ = γ0, given by (3.73) above. Thus, if ν �= 0, it holds for the
wide band that

γ∗ → γ0 �= 1 for μ → 0 , (3.81)

which differs from the classical one-dimensional value γe = √
1 − ν2 given by

(3.76). Numerically, it is seen that γ0 ≥ γe for all ν ∈ (−1, 0.5), where the equality
holds only at ν = 0. Thus, the minimal eigenvalue in the limit of a wide band is
almost always higher than the minimal eigenvalue of the classical one-dimensional
case.
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It also turns out that the corresponding mode of stability loss from (3.46)–(3.48)
is not cylindrical. It is therefore seen that the case of a wide band does not reduce to
the classical one-dimensional case.

For naturally occurring materials, for which ν ≥ 0, the largest difference between
the critical parameter γ∗, which leads to the loss of stability of an infinitely wide band,
and the corresponding value obtained assuming a distribution of the deflections in
the form of cylindrical surface, occurs when ν = 0.5, i.e., in the case of an absolutely
incompressible material. For auxetic materials, for whichν < 0, the largest difference
occurs at the lower limit of the range, i.e. ν = −1.

It follows from the above treatment and the properties of the functions Φ(γ,μ)

and Ψ (γ, ν) that the roots γ = γ∗ of (3.54) lie in the interval

γe ≤ γ∗ ≤ γ0 (3.82)

for all 0 < μ < ∞. This is the property that is needed to complete the analysis of
(3.62).

Some numerical examples of the divergence velocities, V div
0 , defined in (3.63),

and the corresponding buckling modes will be given. The used values of physical
parameters are given in Table 3.1. These parameters represent typical values of paper
material and conditions of paper making.

Figure 3.5 shows some examples of the critical buckling modes (divergence
modes), calculated with the help of relations in (3.46)–(3.48), (3.49) and (3.54)–
(3.56), for different values of the aspect ratio �/(2b). We see a localisation phenom-
enon: most of the displacement in the buckling mode occurs near the free edges. This
effect becomes more pronounced as the width of the plate increases with respect to
its length.

Table 3.2 presents some example values of critical velocities V div
0 of an axially

moving isotropic plate. The row with ν = 0.3 corresponds to the plots in Fig. 3.5.

3.5 Divergence Instability of Orthotropic Plates

The ratio of Young’s moduli, i.e. the degree of orthotropicity, defines the properties of
the actual paper product, affecting its behaviour. Different degrees of orthotropicity
are desired for different applications. Using an orthotropic material model, we can
bring the analysis closer to the real life situation that is being modelled.

In this section, we will extend the results from Sect. 3.4 into the case of orthotropic
materials.

Table 3.1 Physical
parameters used in the
numerical examples

T0 m h E

500 N/m 0.08 kg/m2 10−4 m 109 N/m2
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Fig. 3.5 Critical buckling modes (divergence modes) of an axially moving isotropic plate. Local-
ization of deflections in the vicinity of the free boundaries can be seen, with the effect growing
stronger as the aspect ratio �/2b is decreased. (Reproduced from Banichuk et al. 2010a)

Table 3.2 Critical velocities, i.e. divergence velocities V div
0 (m/s) of an axially moving isotropic

plate for selected values of Poisson ratio ν and the span length �

ν � (m)
10 1 0.1 0.01

0.1 79.0569 79.0570 79.0635 79.7110
0.3 79.0569 79.0570 79.0640 79.7659
0.5 79.0569 79.0570 79.0652 79.8824
The width of the plate is 2b = 1 m in all cases. The other physical parameters used
are given in Table 3.1. (Banichuk et al. 2010a)

3.5.1 Eigenvalue Problem

The problem is formulated similarly to the isotropic eigenvalue problem, but now
describing the divergence (static instability) of the travelling orthotropic plate sub-
jected to homogeneous tension. We have the partial differential equation
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(
mV 2

0 − T0

) ∂2W

∂x2 + D0L0(W ) = 0 , (3.83)

with the boundary conditions (3.16)–(3.18); see Sect. 3.3.2. Here the bending oper-
ator L0(W ) is

L0(W ) = D1

D0

∂4W

∂x4 + 2D3

D0

∂4W

∂x2∂y2 + D2

D0

∂4W

∂y4 , (3.84)

where the coefficients D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already introduced as (2.18), Sect. 2.1.3 (or see Timoshenko and
Woinowsky-Krieger 1959, Chap. 11). The Ci j are the elastic moduli, (2.19). In (3.83)
and (3.84), the coefficient D0 is an arbitrary constant, which is convenient to take as
D0 = D1.

We wish to determine the minimal eigenvalue,

λ = γ 2 = �2

π2 D0

(
mV 2

0 − T0

)
, (3.85)

of the problem (3.16)–(3.18) and (3.83)–(3.84). For the corresponding eigenfunction
W = W (x, y), we apply the same representation as before,

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
. (3.86)

As was noted, the fact that the solution is a half-sine in the longitudinal direction is
well-known in the isotropic case. It can be shown that the same form is applicable
for the orthotropic plate. Again, what remains to be determined is the unknown
cross-section f (y/b).

It follows from (3.86) that the desired buckling form W (steady-state solution)
satisfies the boundary condition (3.16). Using the dimensionless quantities (same as
before in Sect. 3.4)

η = y

b
, μ = �

πb
, (3.87)

and the relations (3.17)–(3.18) and (3.83)–(3.86), we obtain the following eigenvalue
problem for the unknown function f (η):

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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μ4 H2
d4 f

dη4 − 2μ2 H3
d2 f

dη2 + (H1 − λ) f = 0 , −1 < η < 1 , (3.88)

μ2 d2 f

dη2 − β1 f = 0 , η = ±1 , (3.89)

μ2 d3 f

dη3 − β2
d f

dη
= 0 , η = ±1 , (3.90)

where H1,H2 and H3 are dimensionless bending rigidities, defined by

H1 = D1

D0
, H2 = D2

D0
, H3 = D3

D0
, (3.91)

and D0 is the characteristic bending rigidity, which is an arbitrary constant. In this
book, we will use the choice D0 = D1, which will be convenient in the calculations
to follow. The parameters β1 and β2 are given by (3.19). Equations (3.89)–(3.90)
represent the free-of-traction boundary conditions.

3.5.2 Non-Negativeness of Eigenvalues

To show that the eigenvalues λ of the problem (3.88)–(3.90) are non-negative, one
can proceed by using general ideas from Chen et al. (1998), who proved a similar
result for an isotropic stationary plate. Let us denote

L1( f ) = μ4 H2
d4 f

dη4 − 2 μ2 H3
d2 f

dη2 + H1 f . (3.92)

We introduce the bilinear form a ( f, g) that corresponds to the strain energy of a
plate (see e.g. Timoshenko and Woinowsky-Krieger 1959),

a ( f, g) =
∫ 1

−1

[
H1 f ḡ − μ2 B1 f

d2 ḡ

dη2 − μ2 B1
d2 f

dη2 ḡ

+ μ4 H2
d2 f

dη2

d2 ḡ

dη2 + 4μ2 B2
d f

dη

dḡ

dη

]
dη , (3.93)

where
B1 + 2 B2 = H3 , (3.94)

and ḡ denotes the complex conjugate of g. Performing integration by parts on the
bilinear form (3.93), we obtain
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a ( f, g) =
∫ 1

−1

[
μ4 H2

d4 f

dη4 − 2 μ2 H3
d2 f

dη2 + H1 f

]
ḡ dη . (3.95)

Thus, the form a( f, g) can alternatively be defined as

a ( f, g) = (L1 ( f ) , g) , (3.96)

where the inner product (· , · ) is

(u, v) =
∫ 1

−1
u v̄ dη , (3.97)

for arbitrary functions u and v. The operator L1( f ) is self-adjoint, and the form
a( f, g) induces a positive semidefinite norm a( f, f ):

a( f, f ) =
∫ 1

−1

[
H1

∥∥∥∥ f − μ2ν21
d2 f

dη2

∥∥∥∥
2

+ μ4 H2(1 − ν12ν21)

∥∥∥∥
d2 f

dη2

∥∥∥∥
2

(3.98)

+ 4 μ2 B2

∥∥∥∥
d f

dη

∥∥∥∥
2 ]

dη ≥ 0 .

This implies that the eigenvalues of L1( f ) are nonnegative. That is,

λ ≥ 0 (3.99)

for all eigenvalues λ of the problem (3.88)–(3.90), which governs the cross-sectional
eigenfunctions f (y) and the corresponding eigenvalues of the buckled, travelling
orthotropic plate.

3.5.3 Analytical Solution

The general solutions of the ordinary differential equation (3.88) have the form

f = Aepη , p = κ

μ
, (3.100)

where A is an arbitrary constant and κ is a solution of the following biquadratic
algebraic characteristic equation:

H2κ
4 − 2H3κ

2 + (H1 − λ) = 0 . (3.101)

The solution can be written as
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κ2± = H3

H2

(
1 ±

√
1 − H2(H1 − λ)

H2
3

)
= H3

H2

(
1 ±

√
1 − H2(1 − λ)

H2
3

)
, (3.102)

where the upper, and respectively the lower, signs correspond to each other. In the
last form on the right, we have used the choice D0 = D1, which leads to H1 = 1.

Let us consider the range of λ where the solution is real-valued. The numbers κ2±
are real-valued if the expression under the square root in (3.102) is nonnegative. This
implies the following lower limit for λ:

λm ≡ 1 − H2
3

H2
< λ , (3.103)

corresponding to a real-valued eigenfunction f . Note that in the case λ = λm, the
solution of (3.101) is

κ = ±
√

H3

H2
, (3.104)

where both solutions are double roots.
Furthermore, if we require not only κ2±, but also κ± to be real-valued, the whole

parenthetical expression in (3.102) must then be nonnegative. This gives us an upper
limit for λ:

λ ≤ 1 ≡ λmax . (3.105)

Equation (3.105) holds regardless of the values of the problem parameters.
For the lower limit given by (3.103), it holds that

λm ≤ 0 when G12 ≥ GH , (3.106)

where G12 is the in-plane shear modulus of the orthotropic material (which is con-
sidered an independent material parameter), and GH is the geometric average shear
modulus. The quantity GH is given by (2.25), repeated here for convenience:

GH ≡
√

E1 E2

2
(
1 + √

ν12ν21
) . (3.107)

By (3.99) and (3.103)–(3.105), in the case that (3.106) holds, we may seek the
lowest eigenvalue in the range 0 ≤ λ ≤ 1, as was done in the isotropic case in
Sect. 3.4.

On the other hand, one can find examples of measurements of G12 for paper
materials, which indicate G12 < GH. See, e.g., the articles of Mann et al. (1980),
Seo (1999), Yokoyama and Nakai (2007), and Bonnin et al. (2000). For such a
material,

λm > 0 when G12 < GH . (3.108)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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This will produce complex solutions κ± and complex eigenfunctions if λ is between
zero and λm. In practice however, it has been numerically observed (from (3.115),
presented further below) that this interval contains no solutions. Thus, in this case
the search for the lowest eigenvalue can be performed in the range λm ≤ λ ≤ 1.

These considerations motivate the definition

λmin ≡ max (λm, 0) , (3.109)

enabling us to define the relevant range for solutions as

λmin ≤ λ ≤ λmax (3.110)

regardless of the value of the shear modulus G12. The quantities λm and λmax are
defined by (3.103) and (3.105), respectively.

From (3.100) and (3.102) in the case that λ �= λm, we obtain that the general
solution can be represented in the form

f (η) = A1e
+κ+η

μ + A2e
−κ+η

μ + A3e
+κ−η

μ + A4e
−κ−η

μ (3.111)

with unknown constants A1, A2, A3 and A4.
The eigenvalue boundary value problem (3.88)–(3.90) is invariant under the sym-

metry operation η → −η, and consequently the eigenforms can be classified into
functions that are symmetric ( f s) or antisymmetric ( f a) with respect to the origin.
Using the relations (3.88)–(3.90) and (3.111), we obtain a general representation for
the function f s(η) and linear algebraic equations for determining the constants As

and Bs:

f s(η) = As cosh
κ+η

μ
+ Bs cosh

κ−η

μ
, (3.112)

As
(
κ2+ − β1

)
cosh

κ+
μ

+ Bs
(
κ2− − β1

)
cosh

κ−
μ

= 0 , (3.113)

Asκ+
(
κ2+ − β2

)
sinh

κ+
μ

+ Bsκ−
(
κ2− − β2

)
sinh

κ−
μ

= 0 , (3.114)

where As and Bs are unknown constants. Due to the symmetry (or antisymmetry)
of the solution f , we have only two independent unknown constants, instead of the
four in the general representation (3.111), where the symmetry considerations had
not yet been applied.

Proceeding in the same manner as in the isotropic case of Sect. 3.4.2, the condi-
tions for a non-trivial solution to exist in the form of (3.112)–(3.114) reduce to the
requirement that the determinant of the homogeneous linear system (3.113)–(3.114)
vanishes.

Again, at the solution point, the zero determinant condition leads to the linear
dependence of the equations (3.113)–(3.114), providing only one independent con-



52 3 Stability Analysis

dition. Thus, we may solve either of (3.113)–(3.114) for either As or Bs, and choose
the other (free) coefficient arbitrarily.

After rearrangement, the zero determinant condition can be expressed in the con-
venient form

Φ(γ,μ, ν12, E1, E2, G12) − Ψ (γ, ν12, E1, E2, G12) = 0 , (3.115)

where

Φ(γ,μ, ν12, E1, E2, G12) = tanh
κ−
μ

coth
κ+
μ

, (3.116)

Ψ (γ, ν12, E1, E2, G12) = κ+(κ2+ − β2)(κ
2− − β1)

κ−(κ2+ − β1)(κ
2− − β2)

, (3.117)

and

κ+ = κ+(γ, ν12, E1, E2, G12) , κ− = κ−(γ, ν12, E1, E2, G12) . (3.118)

The obtained transcendental equation (3.115) can be used to determine the eigenval-
ues

λ = γ 2 (3.119)

corresponding to symmetric eigenfunctions with different values of the parameters
μ, ν12, E1, E2 and G12.

In the definitions of Φ and Ψ , (3.116)–(3.117), there is no dependence on the
parameter ν21, because it depends on ν12, E1 and E2 via the compatibility relation
(2.36). The independent parameters in Φ and Ψ can be chosen also in a different
way, by choosing any combination of exactly three parameters out of E1, E2, ν12
and ν21. Relation (2.36) can then be used to eliminate the remaining parameter.

Similarly, using the relations (3.89) and (3.90), we can obtain a representation for
antisymmetric eigenfunctions f a(η), the equation for determining the corresponding
constants Aa and Ba, and the transcendental equation

Φ − 1

Ψ
= 0 , (3.120)

where Φ and Ψ are the functions defined in (3.116)–(3.117). These equations can be
used for determining the eigenvalues corresponding to antisymmetric eigenforms.
The representations differ from (3.112)–(3.114) through the replacements

cosh → sinh and sinh → cosh . (3.121)

Again, it turns out that the minimal antisymmetric eigenvalue is higher than the
minimal symmetric one, so we will only consider the symmetric case.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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In the special case that λ = λm, the characteristic equation (3.101) has two double
roots (3.104), and then, the general solution has the form

f (η) = A1e
+κη

μ + A2e
−κη

μ + A3ηe
+κη

μ + A4ηe
−κη

μ .

In this case, the symmetric solution has the form

f s(η) = As cosh
κη

μ
+ Bsη sinh

κη

μ
. (3.122)

For this solution, we will also have a zero determinant condition (different from
(3.115) and (3.120)) but for a fixed κ . It can be calculated that the determinant
condition does not hold for (3.122) with the boundary conditions (3.89)–(3.90), and
thus, there is no symmetric solution of the form (3.122), and we will have no solution
when λ = λm. The antisymmetric case can be explored in a similar manner.

Similar remarks about finalizing the solution apply as in Sect. 3.4.2. Once (3.115)
has been solved, obtaining the minimal symmetric eigenvalue γ∗, the corresponding
critical velocity of the travelling orthotropic plate can be found from (3.85). The
critical velocity is

(V div
0 )2 = T0

m
+ γ 2∗

m

(
π2 D0

�2

)
. (3.123)

Then, in order to obtain the corresponding eigenmode, we can solve for either As

or Bs, picking either of the equations (3.113)–(3.114). Recall that the equations are
linearly dependent at the solution point γ = γ∗, so it does not matter which one is
used. The other coefficient (either Bs or As, respectively) is then the free coefficient
of the eigenvalue problem, and can be assigned an arbitrary value. Finally, inserting
the obtained γ∗, As and Bs into (3.86), (3.102) and (3.112) gives the eigenmode
corresponding to the eigenvalue γ∗.

3.5.4 Properties of Analytical Solution

In this section, we will investigate the properties of the functions Φ and Ψ , when λ

is in the range λm ≤ λ ≤ 1, where λm is given by (3.103).
Unlike in the isotropic case described in Sect. 3.4.3, the decoupling between the

geometric and material parameters is very minimal. The function Ψ does not depend
on the aspect ratio μ (plate geometry), but both Φ and Ψ depend on all independent
material parameters (ν12, E1, E2 and G12).
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We start our examination by noting that (by direct calculation)

Φ(λm) = 1 , (3.124)

Ψ (λm) = 1 , (3.125)

and

Φ(1) = 0 , (3.126)

regardless of the problem parameters. We defer the evaluation of

lim
λ→λmax

Ψ (λ) (3.127)

to Sect. 3.5.5. Although it is trivial to see that Ψ has a singularity there, because
κ− → 0+ as λ → λmax, in order to deduce the sign of the singularity we need to
know the sign of each of the terms in (3.117).

Let us assume the values of ν12, E1, E2 and G12 to be given and that they corre-
spond to some orthotropic material. The qualitative behavior of the functions Φ and
Ψ is illustrated in Fig. 3.6. Recall that the corresponding isotropic case was illustrated
further above, Fig. 3.3 in Sect. 3.4.

The range for γ , which is defined in (3.85), is obtained by taking the square root
of each side of the inequality in (3.110). Note that the x axis in Fig. 3.3 starts at

Fig. 3.6 Behaviour of Φ and Ψ in the orthotropic case, as a function of γ , when the parameters
D1, D2, D3, μ, β1 and β2 are fixed. This is a qualitative drawing illustrating the case G12 ≤ GH
(for which γmin = γm). The main difference between this figure and Fig. 3.3 is that on the x axis,
the functions begin at γmin instead of 0, and the location of the zero of the function Ψ is γz instead
of 1 − ν. (Reproduced from Banichuk et al. 2011a)
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Fig. 3.7 Behaviour of functions Φ and Ψ for some orthotropic materials, at different aspect ratios
�/2b and different values for the in-plane shear modulus G12. For all cases, the other material
parameters are E1 = 6.8 GPa, E2 = 3.4 GPa and ν12 = 0.2, ν21 = 0.1. Note that only Φ depends
on the aspect ratio. Upper left G12 = 0.85 GH (note the scale for γ ). Upper right G12 = GH.
Lower left G12 = 1.15 GH, where GH is the geometric average shear modulus (3.107). The range
of γ is γmin ≤ γ ≤ γmax, based on (3.85) and (3.110), and evaluated separately for each subfigure.
Observe that for the lower right subfigure, γmin = 0 > γm, causing the qualitative behaviour of
the functions to differ from the other cases where γmin = γm. (Reproduced from Banichuk et al.
2011a)

γmin. In the isotropic case, we had γmin = 0, which does not hold in general for the
orthotropic case.

Figure 3.7 shows some examples of Φ and Ψ plotted for some orthotropic materi-
als. As discussed above, only Φ depends on the aspect ratio �/2b. We see that the case
G12 = GH behaves like the isotropic case, as expected (compare with Sect. 3.4.3).
When the value of G12 deviates from the geometric average shear modulus (3.107),
it is seen that when G12 < GH, the curvature of Φ becomes more pronounced, espe-
cially for a large aspect ratio. If G12 > GH, the value of both functions at γ = γmin
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decreases (because then γmin = 0 > γm), again especially for a large aspect ratio in
the case of Φ.

When γ increases from γm to γmax, the function Φ(γ,μ) decreases continuously
and monotonically from 1 to 0, i.e.

1 ≥ Φ(γ,μ) ≥ 0 ,
∂Φ(γ, μ)

∂γ
< 0 , γm ≤ γ ≤ γmax . (3.128)

The critical values of the function Φ in that interval are

Φ(γm, μ) =
(

tanh
κ−
μ

coth
κ+
μ

)

γ=γm

= 1 (3.129)

and

Φ(γmax, μ) =
(

tanh
κ−
μ

coth
κ+
μ

)

γ=γmax

= 0 . (3.130)

The function Ψ (γ ) decreases monotonically from 1 to 0 in the interval γm < γ < γz:

1 > Ψ (γ ) > 0 ,
∂Ψ (γ )

∂γ
< 0 . (3.131)

The values of the function Ψ at the ends of the interval are

Ψ (γm) = 1 (3.132)

and
Ψ (γz) = 0 . (3.133)

The function Ψ increases monotonically in the interval γz < γ < γmax, increasing
without limit when γ → γmax:

0 < Ψ (γ ) < ∞ ,
∂Ψ (γ )

∂γ
> 0 , (3.134)

Thus at the ends of the interval, the values of Ψ are

Ψ (γz) = 0 ,

and
lim

γ→γmax
Ψ (γ ) = ∞ .

The function touches zero at the point

γz =
√

β2
j H2 − 2β j H3 + H1 , (3.135)
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where j = 1, 2. It will be shown below that γz is unique. Thus either choice for j
results in the same value for γz.

Because
0 ≤ Φ ≤ 1 for all γmin ≤ γ ≤ γmax (3.136)

the symmetric solution in (3.115) is only possible in the range where Ψ ≤ 1. Like-
wise, the antisymmetric solution in (3.120) is only possible in the range where

1

Ψ
≤ 1 i.e. Ψ ≥ 1 . (3.137)

Again, at the point γ = γ0 for which Ψ = 1, it also holds that 1/Ψ = 1, and thus at
this point we have

Φ − Ψ = Φ − 1

Ψ
at γ = γ0 . (3.138)

That is, the functions defined by the left-hand sides of (3.115) and (3.120) will cross
at the value γ = γ0.

Equation (3.131), combined with the consideration in the previous paragraph,
implies that the eigenvalue γ∗ corresponding to the symmetric solution is always
lower than the eigenvalues γ1 and γ2 corresponding to the antisymmetric solution.
Additionally, since

Φ(γmax, μ) = 0 and lim
γ→γmax

Ψ (γ ) = ∞ , (3.139)

we see that the second antisymmetric eigenvalue must be γ2 = γmax. For the various
values of γ defined above, we thus have the ordering

γm ≤ γmin < γz < γ∗ < γ0 < γ1 < γ2 = γmax . (3.140)

An analytical expression for γ0 can be found by using the definitions (3.116)–
(3.117), and solving Ψ 2(γ ) = 1 for γ . Again, since we know that γ0 > 0, no
information is lost by squaring. Let us define the auxiliary expression

α ≡
√

8 β1 H2 H3 + (
β1

2 − 6 β1 β2 + β2
2
)

H2
2 , (3.141)

where the β j are the coefficients that appear in the boundary conditions (3.89)–(3.90).
For their expressions in terms of the material parameters, see (3.19).

For the root γ0 that interests us, the following expression holds:

γ 2
0 = 1

2

(
(β2 − β1) α + 2 H1 −

(
β1

2 − 4 β1 β2 + β2
2
)

H2 − 4 β1 H3

)
.

(3.142)
Next we will look into some detailed properties of the functions Φ and Ψ ,

which appear in the minimal symmetric eigenvalue equation for the orthotropic



58 3 Stability Analysis

case, (3.115). Then, to finish the orthotropic problem, we will show some numerical
examples.

3.5.5 Analysis of Solution Properties

Let us show that the transcendental part Φ is monotonically decreasing in the open
interval (λm, λmax). First, we define

g(λ) ≡
√

1 − H2(H1 − λ)

H2
3

, (3.143)

i.e. the square root expression in κ2± in (3.102). We see that g(λm) = 0 and g(λmax) =
1. Between these extreme values, g(λ) increases monotonously as λ increases.

We write (3.102) in the form

κ2± = 1

d H3

(
1 ± √

1 − d (1 − λ)
)

, (3.144)

where we have defined the auxiliary constant

d ≡ H2/H2
3 .

Differentiating (3.144), we have

∂(κ2±)

∂λ
= ±1

2H3
√

1 − d(1 − λ)
, (3.145)

where the upper and lower signs correspond to each other. Note that the square root
expression in the denominator is g(λ) defined by (3.143), and as discussed above, it
takes values in the range (0, 1) as λ ∈ (λm, λmax), and especially, is positive in our
range of interest. Thus, (3.145) is always positive for κ2+ and always negative for κ2−.

On the other hand, by the rules of differentiation,

∂(κ2±)

∂λ
= 2κ±

∂κ±
∂λ

, (3.146)

and thus
∂κ±
∂λ

= ∂(κ2±)

∂λ
/2κ± . (3.147)

Noting that κ± > 0, we can conclude that the signs match:
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sign
∂κ±
∂λ

= sign
∂(κ2±)

∂λ
. (3.148)

In the special case of λ = λmax, we have κ− = 0, rendering the right-hand side of
(3.147) singular, but this point is not in our open interval. Now we turn our attention
to the transcendental function Φ. Differentiating (3.116) with respect to λ, we have

∂Φ

∂λ
= ∂

∂λ

(
tanh

κ−
μ

)
coth

κ+
μ

+
(

tanh
κ−
μ

)
∂

∂λ

(
coth

κ+
μ

)
=

1

cosh2 κ−
μ

· 1

μ
· ∂κ−

∂λ
coth

κ+
μ

+ tanh
κ−
μ

(
− 1

sinh2 κ+
μ

)
· 1

μ
· ∂κ+

∂λ
. (3.149)

In the first term on the right-hand side,

∂κ−
∂λ

< 0 , (3.150)

by (3.145) and (3.148), while the other factors are all positive, and in the second
term,

− 1

sinh2 κ+
μ

< 0 , (3.151)

while all other factors are positive. Thus, both terms on the right side are negative
and we conclude that

∂Φ

∂λ
< 0 for all λ ∈ (λm, λmax) . (3.152)

Consider now the algebraic function Ψ . We will show the following properties:

1. The function Ψ has exactly one zero at λz.
2. The function Ψ has exactly one singularity, which is located at λ = λmax, and

its sign is positive:
lim

λ→λmax
Ψ (λ) = +∞ .

3. If the root λz ∈ (λm, λmax), then the function Ψ is monotonically decreasing
in the interval λ ∈ (λm, λz), and monotonically increasing in the interval λ ∈
(λz, λmax).

Again, we begin with (3.102). The coefficient in front of the expression can be
written as

H3

H2
= D3

D2
= ν12 + 2

G12

E2
(1 − ν12ν21) . (3.153)

By defining the constants
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A ≡ H3

H2
= ν12 + 2

G12

E2
(1 − ν12ν21) , B ≡ 2

G12

E2
(1 − ν12ν21) , (3.154)

we see that
β1 = A − B , β2 = A + B . (3.155)

Using (3.154) and (3.143), the definition (3.102) reduces to a more convenient form,

κ2± = A(1 ± g(λ)) . (3.156)

Inserting (3.155) and (3.156) into the definition (3.117), we have

Ψ =
√

A(1 + g(λ))(A g(λ) − B)2

√
A(1 − g(λ))(A g(λ) + B)2

. (3.157)

All factors in the representation (3.157) are always positive, except the second one
in the numerator. Thus, the function can only have one zero, which is located at such
λz that

A g(λz) − B = 0 . (3.158)

The first result is therefore established.
To show the second result, we note that there is exactly one singularity, caused

by the first term in the denominator as g(λ) → 1, i.e. as λ → λmax. The function
Ψ is continuous outside its singularities. Furthermore, from (3.157), we have that
Ψ ≥ 0 for all λ for which the function is nonsingular. Because Ψ is continuous, the
singularity must have a positive sign.

To prove the last result we consider the derivative of the function Ψ with regard
to λ. Consider the case where

λz ∈ (λm, λmax) . (3.159)

Before we proceed, a motivation of (3.159) may be in order. If ν12 = 0, by (3.154)
we then have A = B. Using (3.158), this leads to g(λz) = 1, and further by (3.143),
to λz = 1 = λmax. To see this, observe that Ψ (λmax) becomes nonsingular if A = B,
by considering the limit of (3.157) as g(λ) → 1−. When A = B, the second term in
the numerator can be rewritten as (Ag(λ) − B)2 = (B − Ag(λ))2 = A2(1 − g(λ))2

and hence, by cancelling the common factor
√

A(1 − g(λ)), we are left with [A(1 −
g(λ))]3/2 in the numerator. Thus, for the special case A = B, we have Ψ (λmax) = 0.

If the case λz = λmax is allowed to occur, then by the below argument (which
works also for this case almost as-is), we will find that Ψ monotonically decreases
in the whole open interval λ ∈ (λm, λmax). In such a case, we can no longer be sure
that there will exist a point λ = λ∗ in (λm, λmax) satisfying Φ(λ∗) = Ψ (λ∗), since
both functions then are monotonically decreasing in the whole open interval. Hence,
if λz = λmax is allowed, we cannot say anything about whether a solution of (3.115)
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will exist in our interval. Thus, we will limit our consideration to the case ν12 > 0
(ensuring A > B), which holds for nearly all naturally occurring materials.

We obtain from (3.157), by direct calculation, that

∂Ψ

∂λ
(3.160)

= ∂g

∂λ

(B − A g(λ))

(B + A g(λ))3

√
A(1 − g(λ))√
A(1 + g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)

(1 − g(λ)2)
.

Because all other terms are positive, we have for the sign of the derivative the
expression

sign
∂Ψ

∂λ
= sign

[
(B − A g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)]
. (3.161)

Because g(λ) is monotonically increasing and therefore ∂g/∂λ > 0, and the zero of
the function Ψ is located at A g(λz) = B, we see that

sign [A g(λ) − B] = sign [λ − λz] , (3.162)

i.e. the sign of the expression A g(λ) − B corresponds to whether λ is smaller or
larger than λz.

We can write the expression on the right-hand side of (3.161) as

(B − A g(λ))
[
(B − A g(λ)) (B + A g(λ)) + 4 A B

(
g(λ)2 − 1

)]
. (3.163)

If
B − A g(λ) < 0 i.e. λ > λz , (3.164)

the expression in the parentheses at right is negative. The last term is always negative
because g(λ) < 1. In this case we have

∂Ψ

∂λ
|λ>λz > 0 . (3.165)

The other case
B − A g(λ) > 0 i.e. λ < λz , (3.166)

is trickier because then the expression in the parentheses at right in (3.163) will have
one positive and one negative term. However, we see that the expression represents
a parabola with the variable g(λ), having zeroes at

g±
0 ≡ ±

√
4AB − B2

4AB − A2 . (3.167)
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Because g(λ) > 0, we may discard the negative solution g−
0 in (3.167). The expres-

sion is negative until g(λ) becomes larger than the positive solution g+
0 .

The last question remaining is whether this solution lies within our range. Con-
sider the square root expression on the right-hand side of (3.167). We subtract the
denominator from the numerator, looking again at the definitions (3.154), and recall
that we required ν12 > 0:

(4AB − B2) − (4AB − A2) = A2 − B2 > 0 ,

i.e. we find that the numerator is always larger than the denominator. Thus g+
0 > 1

and the parabola remains negative in our entire range. The total sign is negative and
thus

∂Ψ

∂λ
|λ<λz < 0 ,

which was to be shown.
We will illustrate the critical divergence velocities and the corresponding buckling

modes (divergence modes) of axially moving orthotropic plates by giving some

Table 3.3 Physical
parameters used in the
numerical examples

T0 m h

500 N/m 0.08 kg/m2 10−4 m
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Fig. 3.8 Slices of buckling modes for different Young modulus ratios. Slices of the buckling modes
at x = �/2 are shown. The ratio between the plate length and the plate width is �/(2b) = 0.01.
The Young modulus in the x direction is E1 = 5 GPa and the Poisson ratio ν12 is 0.2. The Poisson
ratio ν21 is calculated from relation (2.36). For the shear modulus, the geometric average GH from
(2.25) is used. (Reproduced from Banichuk et al. 2011a)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Fig. 3.9 Buckling modes for
three different in-plane shear
moduli. The ratio between
the plate length and the plate
width is �/(2b) = 0.01. Top
G12 = 0.7GH; Middle G12 =
GH; Bottom G12 = 1.3GH,
where G12 is the in-plane
shear modulus and GH is
the geometric average shear
modulus, (3.107). The Young
moduli are E1 = 6.8 GPa
and E2 = 3.4 GPa, and the
Poisson ratio ν12 is 0.2. The
Poisson ratio ν21 is calculated
from relation (2.36), leading
to ν21 = 0.1. (Reproduced
from Banichuk et al. 2011a)
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Table 3.4 Critical velocities V div
0 (m/s) of an axially moving orthotropic plate for different values

of in-plane shear modulus G12 and the ratio between the plate length and the plate width �/(2b)

�/(2b) G12

0.7GH ≈ 1.47 GPa GH ≈ 2.11 GPa 1.3GH ≈ 2.74 GPa

0.01 83.4456 m/s 83.4461 m/s 83.4463 m/s
0.1 79.1020 m/s 79.1020 m/s 79.1020 m/s
1 79.0574 m/s 79.0574 m/s 79.0574 m/s
GH is the geometric average shear modulus, (3.107). The Young moduli are E1 =
6.8 GPa and E2 = 3.4 GPa, and the Poisson ratios ν12 is 0.2 and ν21 = 0.1

numerical examples. The physical parameters used are varied with the examples. The
mass per unit area m, the value of homogeneous tension T0 and the plate thickness
h are kept constant, and the used values for them are given in Table 3.3.

In Fig. 3.8, slices of buckling modes at x = �/2 are presented for four different
Young modulus ratios E1/E2. We observe that the Young modulus ratio affects the
localisation of the buckling mode: the smaller the ratio is, the more the shape is
localised near the edges.

The degree of localisation represents the variation of the displacement in the width
(y) direction. Relative localisation is high, when most of the displacement occurs
near the free edges. The problem parameters affecting the degree of localisation are
the aspect ratio �/(2b) (as was seen in Sect. 3.4.3), the Young modulus ratio E1/E2,
the Poisson ratio ν12, and the in-plane shear modulus G12.

In Fig. 3.9, we see three examples of complete buckling shapes for different values
of the shear modulus G12. The buckling shapes depend significantly on the in-plane
shear modulus G12. The figure also shows that if the ratio G12/GH is increased, then
the degree of localisation decreases.

In Table 3.4, the values of critical velocities, defined in (3.123), are given for some
selected values of the in-plane shear modulus G12 and the aspect ratio �/(2b). The
row �/(2b) = 0.01 corresponds to the buckling modes in Fig. 3.9. The effect of the
increased in-plane shear modulus is that the value of the critical velocity slightly
increases.
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