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Preface

Mechanics of Moving Materials is currently attracting considerable attention.
Interest in research in the field has grown in connection with the rapid develop-
ment of process industry and precision machinery, especially in the field of paper
making.

Specialized areas of investigation include dynamics and mechanical stability of
traveling elastic materials, failure and reliability analysis, including modern
fracture mechanics, and runnability optimization problems taking into account
factors of uncertainty and incomplete data.

Problems of mechanics of moving materials are not only practical but also
theoretically important. The investigation into new types of mathematical prob-
lems is interesting in itself. It is noteworthy that there are some nonconservative
stability problems, and runnability optimization problems under fracture and sta-
bility constraints with uncertainties in positioning and sizes of initial defects
(cracks), for which there are no systematic techniques of investigation. The most
appropriate approach to tackle the complex problem varies depending on the case.

This monograph is devoted to the exposition of new ways of formulating and
solving problems of mechanics of moving materials. We present some research
results concerning dynamics of travelling elastic strings, membranes, panels, and
plates. We study mechanical stability of axially moving elastic panels, accounting
for the interaction between the structural element and its environment, such as
axial potential flow. Most of the attention in this book is devoted to out-of-plane
dynamics and stability analysis for isotropic and orthotropic traveling elastic and
viscoelastic materials, with and without fluid-structure interaction, using analytical
and numerical approaches. Also such topics as fracture and fatigue are discussed in
the context of moving materials. The last part of the book deals with some run-
nability optimization problems with physical constraints arising from the stability
and fatigue analyses including uncertainties in the parameters. The approach taken
in this monograph is to proceed analytically as far as is reasonable, and only then
finish the investigation numerically.

In this book, we offer a systematic and careful development of many aspects of
mechanics of traveling materials, particularly for panels and plates. Some of the
presented results are new, and some have appeared only in specialized journals or
in conference proceedings. Some aspects of the theory presented here, such as the
semi-analytical treatment of the fluid-structure interaction problem of a traveling
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panel, studies of spectral problems with free boundary singularities, and optimi-
zation of problem parameters under crack growth and instability constraints have
not been considered before to any extent.

Important new results relate to optimization of runnability with a longevity
constraint. Damage accumulation is modeled using the theory of fatigue crack
growth, with the traveling material element subjected to cyclic loading. Uncer-
tainties must be accounted for, because of incompleteness of information con-
cerning initial crack parameters.

This book is addressed to researchers and specialists in the field, providing a
view of mechanics of axially moving materials. It can also be used as literature in
advanced courses on this specific topic. Considering topics related to manufac-
turing and processing, the book can also be applied in industrial mathematics.

We would like to express our graditude to Matti Kurki for many fruitful dis-
cussions and sharing his expertise in understanding the physical phenomena in
paper making. We also express our sincere thanks to Maria Tirronen for collab-
oration in the research and in writing this book; Chap. 8 has been written col-
laboratively with Maria Tirronen. We would like to thank Metso Paper for
providing Figs. 1.1 and 1.2. The research presented in this book was supported by
the Academy of Finland (grant no. 140221), the MASI Tekes Technology Pro-
gramme, and the Jenny and Antti Wihuri Foundation.

Jyväskylä, May 2013 Nikolay Banichuk
Juha Jeronen

Pekka Neittaanmäki
Tytti Saksa

Tero Tuovinen
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Symbols

Aa Constant related to antisymmetric solution (Chap. 3)

Ajn Local acceleration matrix in fluid-structure problem (Chap. 6)

As Constant related to symmetric solution (Chap. 3)

a Length of edge crack (Chaps. 7 and 8)

ajn Fluid-structure interaction matrix analogous to local acceleration in
fluid-structure problem (Chap. 6)

a Linear tension profile slope constant (Chap. 4), see (Eq. 2.51). Unit
a½ � ¼ N

�
m2. Dimensionless problem parameter (Chap. 5), see (Eq. 5.29).

Dimensionless dynamic time scale (Chap. 6), see (Eq. 6.66). Weight
function (Chap. 8), see (Eq. 8.51)

Ba Constant related to antisymmetric solution (Chap. 3)

Bjn Coriolis matrix in fluid-structure problem (Chap. 6)

Bs Constant related to symmetric solution (Chap. 3)

b Half-width of plate; in the width direction, the plate occupies the interval
y 2 �b; b½ �

bjn Fluid-structure interaction matrix analogous to Coriolis acceleration in
fluid-structure problem (Chap. 6)

b Dimensionless bending rigidity of panel (Chap. 6), see (Eq. 6.63). Geo-
metric factor for stress intensity factor (Chaps. 7 and 8), see (Eq. 7.7)

bj (where j ¼ 1; 2) mechanical parameters in free edge boundary conditions
of the plate. See (Eq. 2.23)

C Critical velocity of the travelling ideal string, C ¼
ffiffiffiffiffiffiffiffiffi
T=m

p
. The unit

C½ � ¼ m=s. The quantity C is used as a scaling constant for nondimen-
sionalizing velocities. In Chaps. 7, material constant in Paris law

CM Weighting factor for productivity function JM (Chap. 8), see (Eq. 8.35)

CN Weighting factor for safety function JN (Chap. 8), see (Eq. 8.35)
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CV Weighting factor for critical velocity function JV (Chap. 8), see (Eq.
8.35)

Cij (where i; j ¼ 1; 2; 6) elastic moduli. Note symmetry C12 ¼ C21

Cjn Centripetal matrix in fluid-structure problem (Chap. 6)

c Dimensionless velocity of the panel, c ¼ V0=C

cjn Fluid-structure interaction matrix analogous to centripetal acceleration
in fluid-structure problem (Chap. 6)

cl Probability distribution parameter (Chap. 8), see (Eq. 8.61)

ct Probability distribution parameter (Chap. 8), see (Eq. 8.71)

v Auxiliary function for stream function boundary data (Chap. 6)

D Bending rigidity. For the panel, this is the cylindrical bending rigidity
D ¼ Eh3

�
12 1� v2ð Þð Þ. Unit D½ � ¼ N m

D0 Scaling constant for nondimensionalization of bending rigidity, called
the characteristic bending rigidity. Unit D0½ � ¼ N m

Dj (where j ¼ 1; 2; 3) orthotropic bending rigidity. D1 is related to the axial
direction x, D2 to the cross (width) direction y, and D3 to the coupling
term between the two

Djn Bending matrix in fluid-structure problem (Chap. 6)

DT Parameter of maximum tension variation (Chap. 7)

d Small positive real number (Chap. 5). Dirac delta distribution (Chap. 6)

E Young’s modulus of isotropic plate or panel, E½ � ¼ N
�

m2

E hð Þ Expectation value for the random part of uncertain tension (Chap. 8)

E nð Þ Expectation value for the crack length (Chap. 8)

E1 Young’s modulus of orthotropic plate in axial direction, E1½ � ¼ N
�

m2

E2 Young’s modulus of orthotropic plate in cross (width) direction,
E2½ � ¼ N

�
m2

exx Axial strain component. exx ¼ ou=ox

eyy Width-directional strain component. eyy ¼ ov=oy

g Dimensionless cross-direction coordinate (Chaps. 3 and 4). Viscous
damping coefficient (Chap. 5). A point of the complex plane (Chap. 6)

Fh Cumulative distribution function of tension random variable h (Chap. 8),
see (Eq. 8.71)

Fn Cumulative distribution function of crack length random variable
n (Chap. 8), see (Eq. 8.62)
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f gð Þ Auxiliary function of cross-directional buckling shape (Chaps. 3 and 4)

f nð Þ Auxiliary function (Chap. 6)

fn tð Þ Or fj tð Þ; coefficient function of nth (resp. jth) term in Galerkin series
(Chap. 6)

fn Probability density function of crack length random variable n (Chap. 8)

G Discretized external load (Chap. 6)

G External load function (Chap. 6)

G12 In-plane shear modulus of orthotropic plate, G12½ � ¼ N
�

m2. Unless
otherwise specified, it is taken as an independent material parameter

GC Strain energy release rate (Chaps. 7 and 8)

GH Geometric average shear modulus for orthotropic materials,
GH �

ffiffiffiffiffiffiffiffiffiffi
E1E2
p �

2 1þ ffiffiffiffiffiffiffiffiffiffiffiffi
m12m21
p� �� �

g External force (Chap. 6). Dimensionless parameter (Chap. 8), see (Eq.
8.21)

g nð Þ Auxiliary function (Chap. 8), see (Eq. 8.52) and explanation that follows

g yð Þ Tension profile function (Chap. 4)

g1 xð Þ Initial condition for position (Chap. 6)

g2 xð Þ Initial condition for transverse (out-of-plane) velocity (Chap. 6)

C Domain boundary. In Chap. 6, circulation of flow

c Square root of eigenvalue of static stability problem, k ¼ c2 (Chaps. 3, 4,
7 and 8). Dimensionless problem parameter (Chaps. 5), see (Eq. 5.29).
Dimensionless fluid density (Chap. 6), see (Eq. 6.62). Also, in Chap. 6,
c x; tð Þ is the expression of the airflow boundary condition on the panel
surface

cxy Shear strain. cxy ¼ ou=oyþ ov=ox

Hj (where j ¼ 1; 2; 3) dimensionless bending rigidity. Hj ¼ Dj

�
D0

h Plate or panel thickness, h½ � ¼ m

I Identity matrix

i Imaginary unit, i ¼
ffiffiffiffiffiffiffi
�1
p

. (Unless otherwise specified.)

J Productivity criterion (Chap. 8)

JM Productivity function (Chap. 8), see (Eq. 8.31)

JN Safety function related to critical number of cycles (Chap. 8), see (Eq.
8.30)
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JV Critical velocity function (Chap. 8), see (Eq. 8.29)

K Stress intensity factor (Chaps. 7 and 8)

K Integro-differential operator for fluid-structure interaction (Chap. 6)

KC Fracture toughness (Chaps. 7 and 8)

k In Chap. 7, material constant in Paris law

k yð Þ Tension profile function, specifying axial tension in terms of the plate
width coordinate at the rollers. See (Eq. 2.29)

j� Solution parameter (Chaps. 3, 4, 7 and 8). See (Eq. 3.48) and (3.102)

, Eigenvalue (exact meaning is context-dependent)

L Differential operator of vacuum problem (Chap. 6)

L0 wð Þ Bending operator (see index)

LB wð Þ Bending operator (see index)

LM wð Þ Membrane operator (see index)

‘ Free span length parameter. For the panel and ideal string, the free span
is taken to be x 2 �‘; ‘½ �. For the plate and membrane, the length of the
free span is taken as x 2 0; ‘½ �. Unit ‘½ � ¼ m

K Auxiliary function for defining aerodynamic kernel (Chap. 6), see (Eq.
6.39)

k Eigenvalue (exact meaning is context-dependent)

M Bending moment (Chap. 5)

M Discrete problem matrix, complete (exact meaning is context-dependent)

Mj Discrete problem matrix, block component (exact meaning is context-
dependent)

m For the plate and panel, mass per unit area, ½m� ¼ kg
�

m2. For the ideal
string, m is the mass per unit length, ½m� ¼ kg=m.

ma Added mass (Chap. 6, discussion of added-mass approximation)

l Scaled aspect ratio, l ¼ 1=pð Þ ‘=bð Þ (Chaps. 3, 4, 7 and 8). Poisson ratio
for viscosity (Chap. 5). Auxiliary mean value for added-mass approxi-
mation (Chap. 6)

N Aerodynamic kernel function (Chap. 6), see (Eq. 6.39). Cumulative
distribution function of the standard normal distribution (Chap. 8), see
(Eq. 8.63)

n Unit normal vector

n Cycle number (Chaps. 7 and 8)
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n0 Number of basis functions in discrete approximation (Chap. 6)

nC Critical number of cycles (Chaps. 7 and 8)

m Poisson ratio of isotropic plate or panel

m12 Poisson ratio for orthotropic plate. When stretched along axis 1, m12 is
the contraction factor along axis 2

m21 Poisson ratio for orthotropic plate. When stretched along axis 2, m21 is
the contraction factor along axis 1

X Domain of the governing equation (connected open set in R
d). In

Chaps. 2–4, 7 and 8, the definition is X � x; yð Þ 2 R
2 0\x\‘:j ;

�

�b\y\bg. In Sect. 6.1, X refers to the domain of the flow problem,
X � CnS, where S is the linearized representation of the panel,
S � f 2 C f ¼ xþ iz; �1� x� 1; z ¼ 0jf g. In Sect. 6.2, X refers to the
domain of the dimensionless dynamical equation of the panel,
X � x 2 R �1\x\1jf g

Xi Subdomain between the ith pair of rollers (Chap. 8), defined as
Xi � x; yð Þ 2 R

2 i‘\x\ iþ 1ð Þ‘; �b\y\bj
� �

, where i ¼ 0; 1; 2; . . .

P xð Þ Probability that condition x is true (Chap. 8)

p Pressure of fluid (Chap. 6). Probability of fracture (Chap. 8)

U Transcendental auxiliary function related to analytical solution of static
stability problem (Chaps. 3, 7 and 8). Velocity potential of fluid flow
(Chap. 6)

u Velocity potential of disturbance due to obstacle (Chap. 6)

P Complex velocity potential (Chap. 6)

W Algebraic auxiliary function related to analytical solution of static
stability problem (Chaps. 3, 7 and 8). Stream function of fluid flow
(Chap. 6)

Wn Basis function for Galerkin representation of solution (Chap. 6)

q1 Admissible probability of fracture (Chap. 8)

q2 Admissible probability of instability (Chap. 8)

qf Aerodynamic reaction pressure (see index)

qf Density of surrounding fluid. Unit qf½ � ¼ kg
�

m3

S Linearized surface of panel (Chap. 6)

s Stability exponent in linear stability analysis (see index)

sl Probability distribution parameter (Chap. 8), see (Eq. 8.61)

rxx Axial stress for the plate. Unit rxx½ � ¼ N
�

m2
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rxy Shear stress for the plate. Unit rxy

� 	
¼ N

�
m2

ryy Cross-directional (width-directional) stress for the plate. Unit
ryy

� 	
¼ N

�
m2

T Tension. For the plate and panel, tension is defined in terms of the stress
as T ¼ hr, and the unit is T½ � ¼ N. For the ideal string, T is the axial
tension force, with unit T½ � ¼ N

T0 Constant (homogeneous) tension

TM
0 Maximum admissible tension (Chap. 8)

Txx Axial tension for the plate, Txx ¼ hrxx. Unit Txx½ � ¼ N=m

Txy In-plane shear tension for the plate, Txy ¼ hrxy. Unit Txy

� 	
¼ N=m

Tyy Cross-directional (width-directional) tension for the plate, Tyy ¼ hryy.
Unit Tyy

� 	
¼ N=m

t Time coordinate

t Unit tangent vector (Chap. 6)

tf Total time for process (Chap. 8)

tR Retardation time constant (Chap. 5)

s Scaling constant for nondimensionalization of time coordinate, called
the characteristic time. s½ � ¼ s. In Chap. 8, cycle time period

h Dimensionless fluid velocity, h ¼ v1=C. In Chap. 8, random variable for
uncertain tension

U Displacement field of the panel (Chap. 6)

u Axial (x-directional) displacement. u½ � ¼ m

u Auxiliary discrete vector of unknowns

� Airy stress function see (Eq. 2.42). In Chap. 5, viscous analogue of
bending rigidity

V0 Axial velocity of the plate, panel or string. V0½ � ¼ m=s

Vcr
0 Critical velocity of elastic instability of the travelling plate (Chap. 8), see

(Eq. 8.12)

v Cross-directional (y-directional) displacement. v½ � ¼ m

v1 Free-stream velocity of surrounding fluid. v1½ � ¼ m=s

vf Velocity field of fluid (Chap. 6)

W Transverse (z-directional, out-of-plane) displacement. Used for the space
part of the time-harmonic solution, and for the buckling (divergence)
mode

xvi Symbols
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x Transverse (z-irectional, out-of-plane) displacement, dimensional or
dimensionless depending on context. Unit of dimensional displacement
w½ � ¼ m

w Auxiliary discrete vector of unknowns

x Axial space coordinate in Eulerian (stationary) reference frame

n In Chap. 6, axial space coordinate in Lagrangean (co-moving) reference
frame. Also used as a dummy variable for integration in the same
chapter. In Chap. 8, positive valued random variable describing the crack
length

y Cross-directional (width) space coordinate

y Auxiliary discrete vector of unknowns

z Transverse (out-of-plane) space coordinate

z Auxiliary discrete vector of unknowns

Symbols xvii
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Chapter 1
Introduction

Abstract In this introductory chapter, the idea of moving materials is briefly intro-
duced, and the theoretical framework that will be discussed in this book is linked to
the manufacturing process of paper products. The content and structure of the book
is also presented, outlining the topics handled in each chapter. The main focus of the
book is on dynamics and stability of moving elastic and viscoelastic materials, with
and without fluid-structure interaction, using linear models for out-of-plane behav-
iour in the small displacement regime. However, also such topics as fracture and
fatigue are discussed in the context of moving materials. The last part of the book
deals with some runnability optimization problems with physical constraints arising
from stability and fatigue analyses including uncertainties in the parameters.

1.1 Motivation

The impetus for this book came from the industry where the mechanics of moving
materials is a highly interesting problem. Especially paper production, for which
moving materials are an essential topic, is an important segment of Finnish industry
with a long tradition. When viewed on the global level, paper production is of course
not limited only to Finland, but is a worldwide industry, with for example Canada,
China, Germany, Japan, Russian Federation, United Kingdom, United States, and
Sweden as producers of paper (for a comparison of major paper producers see, e.g.,
Kenny 2006; PricewaterhouseCoopers LLP 2012).

What, then, is a moving material? Stated briefly, in problems of moving materials,
the domain of interest is a stationary control volume, through which the moving
material flows. The material flow can be steady-state or fully dynamic. The moving
material is typically a solid, thus differentiating the topic of moving materials from
fluid mechanics. Nevertheless, from the viewpoint of classical mechanics, moving
materials are more closely related to flowing fluids than to structural mechanics.

N. Banichuk et al., Mechanics of Moving Materials, 1
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2 1 Introduction

Traditional solid objects in motion, such as aeroplane wings or rocket coating
plates, are excluded from moving materials, because they can be analyzed as station-
ary objects in a Lagrangean (co-moving) frame of reference by using the principle
of Galilean relativity. As far as the physics is concerned, a wing moving through
stationary air is equivalent to a stationary wing subjected to oncoming wind.

For moving materials such a change of viewpoint is usually not possible. The
motion of the moving material, as it flows through the control volume of interest,
prohibits convenient treatment in a purely Lagrangean frame of reference as would
be done in classical structural mechanics, because in the Lagrangean frame, the
boundaries of the control volume are in motion. It becomes more convenient to look
at the situation in the Eulerian (stationary) frame, where the material flows, but the
boundaries of the control volume remain stationary.

The overall motion of the material in the Eulerian frame where it is analyzed
changes the nature of the problem, introducing new challenges. As is known, chang-
ing the coordinate system will not change the behaviour of the physical system
under study, but it must be kept in mind that the theory of structural mechanics has
practically always been studied in a Lagrangean frame of reference, and for moving
materials, one needs a different viewpoint. The key factor is the inertia of the moving
material, which gives rise to inertial effects when its motion is viewed in the Eulerian
frame.

Why study the behaviour of moving materials? Practical applications for the
mechanics of moving materials are, e.g., the processing of paper or steel, fabric,
rubber or some other continous material; and looping systems such as band saws,
transmission cables, and conveyor and timing belts. Also tape drives, and if rotating
motion is allowed, optical disc and hard disk drives are possible applications. In this
book, the parameters and material properties have been chosen mainly with paper
production in mind. However, the theory is not anyhow restricted to this area, but
can be utilized for many other similar applications with careful consideration of the
underlying physics.

Looking inside a paper machine, one sees that the paper that is being manufactured
travels as a thin sheet. Viewed close up, this paper web is made of a three-dimensional
web of fibers, but at the macroscopic scale it appears as a uniform sheet. The sheet
is very thin; typical thicknesses vary from 0.1 (office paper) to 1 mm (cardboard).
All paper machines contain open draws, where the paper web momentarily travels
without mechanical support, while it is moving from one supporting roller to another.
In any practical paper machine there is always at least one open draw, in the transfer
from the press nip, which squeezes out most of the water, to the dryer section. Also,
if the dryer section is of the classical heated cylinder type, which has been used for
over a century, an open draw exists between each successive pair of cylinders (see
Karlsson 2000). When a thin sheet of material travels without mechanical support,
it is subject to destabilizing effects such as the centrifugal effect due to inertia of
the axially moving material particles, and aerodynamic reaction forces due to the
surrounding air.

This book deals with the stability of the web, the physical environment overall, and
critical points where the system may fail. The productivity of a paper mill is strongly
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dependent on the efficiency and reliability of the running web. If it is possible to
increase the velocity of the web, production becomes higher and there will be more
paper to sell. Increasing the velocity means also that one must increase tension of the
web, in order to retain mechanical stability. However, increasing the tension in the
web increases the probability of web breaks due to cracks and other defects, which
causes a loss in the total efficiency of the system. One of our targets in this book is
to find an optimal solution for this problem.

1.2 Modelling of Systems with Travelling Continuum

The aim of the research, on which this book is based, has been to create a mathe-
matical model, which simplifies the problems of moving materials sufficiently, while
still providing an understanding of the phenomena, qualitatively and quantitatively.
Concentrating on the specific application of paper production, a major issue, and
a known challenge, has been the fact that measurements inside the paper machine
are either highly expensive, or often impossible. Furthermore, a fully detailed model
of the whole paper machine is not tractable, even using the methods and computing
power available today. It is known that paper is a viscoelastic, nearly plastic material,
and using this material model inside a fluid-structure interaction problem with frac-
ture is too complex for our purpose. From Figs. 1.1 and 1.2, one can get an insight
on the size of paper machines.

Controlling and analyzing paper machines and similar systems and increasing
their productivity are goals, which may be approached by modelling. The most often
used models for systems involving moving materials have been travelling flexible
strings, membranes, beams, and plates. One of the key parameters in safe runnability

Fig. 1.1 The dimensions of a paper machine. The height of the machine is approximately 8 m, the
width 12 m and the length 120 m. Open draws are mainly hidden inside the drying section, located
center left in the photo. (Photo courtesy of Metso Paper)
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Fig. 1.2 A schematic picture
of a paper machine. (Courtesy
of Metso Paper)
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of paper machines is the web velocity. Using small-displacement theory, which lin-
earizes the web behaviour around the trivial equilibrium, we may find such critical
conditions and a critical value for the web velocity, after which the web vibrations
grow without bound.

To study the stability of an axially moving web in detail, we need to include in our
model different possible disturbances, such as inhomogeneities in web tension. This
is important because the occurrence of instability can cause, in particular, tearing the
paper web into two parts, and similarly in other applications, e.g. the breakage of
transmission cables.

The interaction between the travelling material and the surrounding air has been
found to be especially important for applications in paper production, where the
material itself is lightweight, and hence the inertial contribution of the surrounding
air to the acceleration of the material is significant. Low bending rigidity of the
material also contributes to increasing the relative significance of inertial effects,
including those originating in the mechanical interaction with the surrounding fluid.

Including this fluid-structure interaction into the model forms a coupled, multi-
physical model. It is not sufficient to consider only the dynamics of the travelling
material, but the behaviour of the surrounding airflow must be analyzed, too, and its
effects on the material fed back into the structural part of the model. The coupling
changes the dynamics, which, in turn, affects the surrounding flow.

If the moving material loses stability, the most likely result (in the case of brittle
or quasi-brittle materials such as paper) is that it will break into two parts, interrupt-
ing the production process. Such interruptions in paper factories are costly, because
when a break occurs, no production takes place, but energy is wasted on running an
empty machine. Hence, avoiding web breaks is an important practical question in
the design of paper machines. This design, in turn, must take into account the lim-
its created by the fundamental physics of the situation. Thus, fundamental stability
limits must be analyzed.

The rest of this book is divided as follows. In Chap. 2 the linear models of travelling
strings, panels, and plates are introduced. The formation of the in-plane tension fields,
which affect the out-of-plane behaviour, is briefly discussed.

Chapter 3 begins with a look into the history of stability investigations, concen-
trating on moving materials and especially on the extensive studies performed in
this field during the last century. After the historical look, Bolotin’s linear stability
analysis is introduced. Finally, in the main part of the chapter, dynamic and static
stability analyses are applied to moving membranes and plates. Critical velocities
and divergence shapes are determined analytically.

The model is extended in Chap. 4, where a linearly skewed tension profile at the
rollers is accounted for. It is demonstrated for the moving isotropic plate, that a
skewed tension profile affects both the critical velocity and the divergence shape.

In Chap. 5, stability and dynamic behaviour of axially moving viscoelastic pan-
els are discussed, applying the classical modal analysis. A model of a thin panel
combined with Kelvin–Voigt viscoelasticity is used. In the viscoelastic constitutive
relations, the material derivative is used instead of the partial time derivative. For the

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_4
http://dx.doi.org/10.1007/978-3-319-01745-7_5
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partial differential equation describing the out-of-plane displacement of the panel,
which is of fifth order in space, derivation for the fifth boundary condition is given.
In the numerical examples, the behaviour of the eigenfrequencies of the moving
viscoelastic panel is illustrated, with respect to the panel velocity, and also the eigen-
functions corresponding to the critical transport velocities are represented. From the
numerical examples, it can be observed that the instability of the viscoelastic panel
vanishes if the viscosity coefficient is sufficiently high.

Chapter 6 covers the fluid-structure interaction of a moving web with two-
dimensional potential flow, representing the flow of the surrounding air. Using an
exact, analytical functional solution for the pressure difference across the web, the
fluid-structure interaction model is reduced to a single integro-differential equation,
which is then solved numerically. This approach simplifies the analysis considerably.
Considering that added-mass models are classical in this application area, also an
added-mass approximation of the functional solution is derived. However, this is
an added bonus; the main analysis is based on the original model, using the exact
solution of the pressure difference with no added-mass approximation.

Chapter 7 deals with axially moving plates subject to fracture. A model of a thin
elastic plate made of brittle material and having initial cracks is used to describe the
behaviour of the plate under constant tension, non-homogeneous tension and cyclic
tension. As opposed to the other parts of the book, where we consider one span of
the plate or panel, in the case of cyclic tension, we assume the plate to undergo a
system of many consecutive spans. We present safe parameter ranges of transport
velocities and in-plane tensions accounting for constraints arising from both stability
and fracture analyses.

Chapter 8 is continuation for the topics discussed in Chap. 7. In Chap. 8, we discuss
some runnability optimization problems, where the physical constraints arising from
both stability and fracture analyses are considered. Taking into consideration possi-
ble failures arising from a stability loss or material fracture, the chapter deals with
safe conditions and process effectiveness of systems of moving materials. Chapter 8
is divided into three sections. The first section presents the constraints for the plate
velocity and for the safe number of cycles and an objective function for process effec-
tiveness. In the second section, we seek optimal in-plane tension that maximizes a
performance vector function consisting of the number of cycles before fracture,
the critical velocity and process effectiveness. The final section discusses a proba-
bilistic approach for axially moving cracked elastic plates with uncertainties. The
length of an initial crack at the plate edge and the magnitude of homogeneous in-
plane tension are taken as random variables. Analytical expressions are formulated,
and used for computing the optimal tension and the corresponding optimal velocity
numerically.

http://dx.doi.org/10.1007/978-3-319-01745-7_6
http://dx.doi.org/10.1007/978-3-319-01745-7_7
http://dx.doi.org/10.1007/978-3-319-01745-7_8
http://dx.doi.org/10.1007/978-3-319-01745-7_7
http://dx.doi.org/10.1007/978-3-319-01745-7_8
http://dx.doi.org/10.1007/978-3-319-01745-7_8
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Chapter 2
Travelling Strings, Beams, Panels, Membranes
and Plates

Abstract In this chapter, we will introduce in a general manner some of the most
common models for axially travelling materials, which will be used in the rest of the
book. We will introduce the linear models of travelling strings, panels, and plates. It
will be assumed that the material is thin, i.e. its planar dimensions are much larger
than its thickness. We will work in the small displacement regime, that is, with linear
models approximating the behaviour of the system near the trivial equilibrium. As
is well known in the theory of elasticity, this approximation allows for a decoupling
of the in-plane and out-of-plane components in the dynamics of the system. We will
concentrate on small out-of-plane (transverse) vibrations of the material only, as this
is the most relevant aspect of the physics from the viewpoint of dynamical stability,
which will be the focus of later chapters. We will look at both one-dimensional and
two-dimensional models, and consider variants with and without bending rigidity.
The in-plane tension fields, which affect the out-of-plane behaviour, will be consid-
ered at the end of the chapter.

2.1 Out-of-Plane Vibrations

In the following, we will introduce the four most common linear models for small out-
of-plane vibrations of a travelling thin elastic material. These are the travelling string,
panel, membrane and plate. The string and the panel are simple one-dimensional
models, while the membrane and plate models are two-dimensional, accounting for
variations in the displacement along both in-plane axes. The panel and the plate resist
bending, while the string and the membrane can support only tensile loads. For the
membrane and plate, both isotropic and orthotropic variants will be considered. In
later chapters, we will examine dynamical stability predictions from these models.

For the plate model, in this book we focus on rectangular plates with SFSF bound-
ary conditions, where two opposite edges are simply supported (S), and the other
two edges are free of tractions (F). For the panel model, we will use the simply sup-
ported boundary conditions. For an analysis of the travelling plate in the case of SSSS

N. Banichuk et al., Mechanics of Moving Materials, 9
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10 2 Travelling Strings, Beams, Panels, Membranes and Plates

boundary conditions, i.e., simply supported on all sides, see Luo and Hamidzadeh
(2004) and Marynowski (2008).

2.1.1 Travelling Strings

The simplest way to model a moving material experiencing out-of-plane vibrations
is the equation of the travelling string (also known as the threadline equation). The
one-dimensional string representation has been used in many fundamental studies
and it provides a basis for more advanced analysis. Moreover, it turns out that the
behaviour predicted by two-dimensional models of moving materials, when the strip
of material is long and narrow, reduces to the corresponding one-dimensional case.

Let us consider an ideal string, which moves axially at a constant transport velocity
V0 (Fig. 2.1). The transverse (out-of-plane) displacement is described by the func-
tion w = w(x, t). By considering the standard wave equation in the co-moving
coordinates, and using transformations from Lagrange (material) derivatives to Euler
derivatives of transverse displacements,

d2w

dt2 =
(

∂

∂t
+ V0

∂

∂x

) (
∂w

∂t
+ V0

∂w

∂x

)
= ∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ V 2

0
∂2w

∂x2 , (2.1)

we can write the well-known equation for small displacements of an axially travelling
string, describing the motion as it is seen in the Eulerian frame of reference (laboratory
coordinates). See e.g. the classical articles by Skutch (1897); Archibald and Emslie
(1958) and Swope and Ames (1963). Note that the last form of (2.1) assumes that
the axial velocity V0 is constant.

The travelling string equation is

m
∂2w

∂t2 + 2mV0
∂2w

∂x∂t
+

(
mV 2

0 − T
) ∂2w

∂x2 = 0 , (2.2)

Fig. 2.1 Axially moving ideal string, travelling through two pinholes. The pinholes restrict the
displacement at the boundaries to w = 0. The roller symbols indicate the presence of axial motion.
The rollers do not otherwise affect the motion of the string
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where T is the axial tension, having the unit of force, and m is the mass per unit
length. In (2.2), the first three terms come from the second material derivative, and
the term T ∂2w/∂x2 represents the restoring force of the (vertical projection of the)
axial tension.

The customary boundary conditions of the moving string are zero displacement
at the both ends of the string (i.e. zero Dirichlet). This describes the situation where
a string travels through two pinholes, which are fixed to zero height:

w(−�, t) = w(�, t) = 0 . (2.3)

A schematic drawing of the setup is presented in Fig. 2.1.
An analytical free-vibration solution of the problem (2.2), (2.3) was first reported

by Swope and Ames (1963). The complex-valued solution, for nondimensional x ∈
(0, 1) is

w(x, t) = A0 exp

(
∓i

kπ�

Cτ

[(
V 2

0 − C2
) τ 2

�2 t − V0
τ

�
x

])
sin (kπx) , (2.4)

where A0 is an arbitrary amplitude, k = 1, 2, 3, . . . is the mode number, C = √
T/m,

i = √−1, and τ is an arbitrary scaling factor for nondimensionalization of the time
coordinate. For a physically meaningful scaling, one can choose e.g. τ = �/C . The
unit of τ is [τ ] = s. A real-valued solution is obtained by taking either the real or
the imaginary part of (2.4).

The constant C , which appears in the solution (2.4), is the propagation speed of a
transverse pulse (i.e. the group velocity of waves) in a stationary string. It should be
noted that in the moving string, there are two different propagation speeds, C + V0
and C −V0. Waves moving in the direction of the axial motion of the string propagate
at the speed C + V0, while those travelling in the opposite direction propagate at the
speed C − V0. This is a direct consequence of the axial motion. To see this, consider
that in the co-moving coordinates, there is no axial motion. Hence, in that frame of
reference, waves must propagate at the speed C in both directions. Transforming to
the laboratory coordinates leads to the mentioned conclusion.

A systematic derivation of the solution (2.4) is also given in Jeronen (2011), with
an extension into the case where first-order damping terms and a linear reaction term
(elastic foundation of the classical Winkler type) are added to the model.

2.1.2 Travelling Panels

The logical continuation onward from the string model is the travelling panel, for
which nonzero bending rigidity is allowed. In this context, the term panel refers to
a thin sheet, for which it is assumed that there is no variation in the displacement
profile in the width direction (see, e.g., Bisplinghoff and Ashley 1962). It shares
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mathematical similarities with the classical Euler–Bernoulli beam model, although
the physical interpretations are different.

The panel model can be seen as a special case of the plate model, describing the
bending of a plate to a cylindrical surface. It follows from the plate model in the
limit ∂/∂y → 0. In the particular variety discussed here, we consider the dynamic
equilibrium for a travelling plate, in the case where the external axial loading in the
mid-plane of the plate is significant.

The equation of small transverse vibrations of the travelling panel is

m
∂2w

∂t2 + 2mV0
∂2w

∂x∂t
+

(
mV 2

0 − T
) ∂2w

∂x2 + D
∂4w

∂x4 = 0 . (2.5)

See the setup in Fig. 2.2. Compared to the string case, the dimensions of some of
the coefficients are now different. In (2.5), m is the mass of the panel per unit area,
and the axial tension T has the dimension of force per unit length. Each term in (2.5)
represents a pressure, i.e., force per unit area.

A new term D ∂4w/∂x4 has been introduced, when compared to the string
Eq. (2.2). This term represents the reaction force arising from bending resistance. The
quantity D is the bending rigidity from plate theory (Timoshenko and Woinowsky-
Krieger 1959, p. 5; also known as cylindrical rigidity):

D = Eh3

12
(
1 − ν2

) , (2.6)

where E is the Young modulus, h the thickness of the panel, and ν the Poisson ratio.
The form of (2.5) also applies to a travelling beam. In beam theory, instead of the

bending rigidity D, the flexural stiffness E I is used, where E is the Young’s modulus,
and I is the second moment of inertia of the beam cross-section. For the beam, m is
taken as mass per unit length, and T has the dimension of force. For the case of the
beam, the units of these coefficients agree with those in the string equation.

Fig. 2.2 Axially moving panel. The finite thickness depicts bending rigidity. The roller symbols
represent simple supports, with presence of axial motion. The function w(x, t) is the transverse
displacement of the midplane



2.1 Out-of-Plane Vibrations 13

Fig. 2.3 Standard boundary condition types for the panel, illustrated for a stationary panel. Left:
simply supported. Right: clamped

Equation of transverse panel vibrations (2.5) is of the fourth order in x, so four
boundary conditions are needed in total. The simply supported (also known as pinned,
hinged) boundary conditions are

w(−�, t) = w(�, t) = 0 , (2.7)

∂2w

∂x2 (−�, t) = ∂2w

∂x2 (�, t) = 0 . (2.8)

The condition (2.8) arises by requiring that the bending moment at the boundary
points is zero. The simply supported conditions represent a panel (or beam), which
is free to rotate (but supported) at its endpoints. See Fig. 2.3, left.

The clamped (or built-in, abbreviation C) boundary conditions are

w(−�, t) = w(�, t) = 0 , (2.9)

∂w

∂x
(−�, t) = ∂w

∂x
(�, t) = 0 . (2.10)

The condition on ∂w/∂x ensures that the panel leaves each clamped end perfectly
horizontally. The physical situation being modelled by the clamped boundary condi-
tions is usually depicted as having some of the panel (or beam) at its ends extending
into a rigid wall. See Fig. 2.3, right.

2.1.3 Travelling Membranes and Plates

In the previous sections, we briefly introduced the string and panel models for trav-
elling continua. These models neglect variation of out-of-plane displacements in the
width direction, i.e. in the in-plane direction perpendicular to the axial movement
of the material. To obtain a more realistic model of a system where the travelling
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material is wide, one can use the differential equation for small transverse vibrations
of a moving plate.

Consider a rectangular part Ω of a moving plate in the cartesian coordinate system.
Let us define the part Ω as occupying the region

Ω ≡
{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

, (2.11)

where b and � are prescribed geometrical parameters. Figure 2.4 presents the setup.
One can represent the equation for small transverse vibrations of the moving plate

in the following form:

m
d2w

dt2 = LM (w) − LB (w) . (2.12)

Here m is the mass per unit area of the plate. For constant axial velocity V0, the
total acceleration on the left-hand side of (2.12) is expressed as

d2w

dt2 = d

dt

(
∂w

∂t
+ V0

∂w

∂x

)
= ∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ V 2

0
∂2w

∂x2 . (2.13)

The right-hand side in (2.13) contains three terms, representing local accelera-
tion, Coriolis acceleration, and centripetal acceleration, respectively. The membrane
operator LM on the right-hand side of (2.12) is

LM (w) = Txx
∂2w

∂x2 + 2Txy
∂2w

∂x∂y
+ Tyy

∂2w

∂y2 . (2.14)

Fig. 2.4 Axially moving plate. The roller symbols represent simple supports, with presence of axial
motion. The other two plate edges are assumed to be free of tractions
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The coefficients Txx, Txy , and Tyy of the linear operator LM are related to the
corresponding in-plane stresses σxx, σxy and σyy by the expressions

Ti j = hσi j , (2.15)

where h is the thickness of the plate, assumed constant. The linear bending operator
LB is given by the expression

LB (w) = D�2w = D

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
, (2.16)

in the case of an isotropic elastic plate. Here, �2 is the biharmonic operator and
D is the bending rigidity of an isotropic plate (or panel) defined in (2.6). When we
consider the case of an orthotropic plate, the operator LB depends on three constants,
being written as

LB (w) = D1
∂4w

∂x4 + 2D3
∂4w

∂x2∂y2 + D2
∂4w

∂y4 . (2.17)

In the case of a membrane, the bending rigidities are neglected and the entire
operator LB is omitted (LB ≡ 0). In the case of a plate, we have the following
expressions (see, e.g., Timoshenko and Woinowsky-Krieger 1959) for the bending
rigidities in (2.17):

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) , (2.18)

where Ci j are the elastic moduli. These can be expressed in terms of the Young
moduli E1, E2 and Poisson ratios ν12, ν21 as (see, e.g., Kikuchi 1986),

C11 = E1

1 − ν12ν21
, C22 = E2

1 − ν12ν21
,

C12 = ν21 E1

1 − ν12ν21
= ν12 E2

1 − ν12ν21
= C21 ,

C66 = G12 .

(2.19)

In (2.19), E1 is the Young modulus in the x direction, and ν12 is the Poisson ratio
in the xy plane when the stretching is applied in the x direction. Respectively, E2
is the Young modulus in the y direction, and ν21 is the Poisson ratio in the xy plane
when the stretching is applied in y direction. G12 is the shear modulus in the xy plane.

We assume that the deflection function w and its partial derivatives are small,
and that they satisfy the boundary conditions. In the case of an orthotropic plate, the
boundary conditions read
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(w)x=0,� = 0 ,

(
∂2w

∂x2

)
x=0,�

= 0 , − b ≤ y ≤ b , (2.20)

(
∂2w

∂y2 + β1
∂2w

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (2.21)

(
∂3w

∂y3 + β2
∂3w

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ � , (2.22)

representing two opposite edges simply supported and the other two edges free of
tractions.

The mechanical parameters β1 and β2 in the free-edge boundary conditions are
defined as

β1 = ν12 ,

β2 = ν12 + 4 G12

E2
(1 − ν12ν21) .

(2.23)

For the isotropic plate, the mechanical parameters β1 and β2 simplify to

β1 = ν and β2 = 2 − ν . (2.24)

This can be seen by setting ν12 = ν21 = ν, E1 = E2 = E , G12 = G, and
using the isotropic shear modulus relation G = E/(2 (1 + ν)). Then, factoring
1 − ν12ν21 = 1 − ν2 = (1 + ν)(1 − ν) and simplifying reduces (2.23) into (2.24).

In the x direction, we use the simply supported boundary conditions (2.20) for
the sake of simplicity. From a physical point of view, it is an important and non-
trivial question which type boundary conditions to select for the rollers. The simply
supported conditions, however, are a standard choice.

Using the geometric average approximation GH for the shear modulus G12,

GH ≡
√

E1 E2

2
(
1 + √

ν12ν21
) , (2.25)

the equations for the (classical, stationary) orthotropic plate reduce to those of an
isotropic plate. The geometric average shear modulus in (2.25) was introduced by
Huber (1923), generalizing the shear modulus for orthotropic materials.

It is easy to show that the reduction property of GH remains valid for the time-
dependent travelling plate problem as well. Because in the transformations producing
this reduction, coordinate scaling is only required in the y direction (see Timoshenko
and Woinowsky-Krieger 1959, Chap.11), the Coriolis term ∂2w/∂x∂t generated by
the axial motion of the plate does not alter the approach.

In this book, unless otherwise noted, we will assume that G12 is an independent
material parameter. This is motivated by the application point of view, where the shear
modulus generally differs from its geometric average especially for paper materials.
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In the case of a membrane, the boundary condition at the rollers reads

(w)x=0, � = 0 , −b ≤ y ≤ b . (2.26)

On the free edges, classical membrane theory asserts (see e.g. Sagan 1961 and
Weinstock 2008) (

∂w

∂y

)
y=±b

= 0 , 0 ≤ x ≤ � , (2.27)

but this is not the only possible boundary condition. Shin et al. (2005) have used for
zero traction a different condition, which does not contain the transverse displacement
w. We will see below that in our case for a membrane, both choices of the boundary
condition on the free edges are possible.

2.2 In-Plane Tensions

The stability of moving materials is sensitive to the in-plane tensions. The higher
the tension, the larger the region of transport velocities at which the system remains
stable. Next we describe the stationary representation of in-plane forces, i.e. we
assume that the in-plane tensions do not depend on time t . The in-plane tensions Txx,
Txy and Tyy are assumed to satisfy the equilibrium equations (see, e.g., Timoshenko
and Goodier 1951)

∂Txx

∂x
+ ∂Txy

∂y
= 0 ,

∂Txy

∂x
+ ∂Tyy

∂y
= 0 . (2.28)

The in-plane tensions Txx, Txy and Tyy are related to the corresponding stress
tensor components σxx, σxy and σyy by the relation (2.15), i.e.,

Ti j = hσi j .

For a rectangular band of material stretched at opposite ends with no shear, and free
of tractions at the two other edges, the boundary conditions are

Txx = k(y) , Txy = 0 at x = 0 , �, −b ≤ y ≤ b , (2.29)

Tyy = 0 , Txy = 0 at y = ±b, 0 ≤ x ≤ � . (2.30)

Let us begin with a homogeneous tension field, where k(y) degenerates to a con-
stant, T0. Taking into account the behavioral equation of the plane theory of elasticity
and the boundary conditions (2.29) and (2.30), we have for the band considered the
tension field

Txx = T0 , Tyy = Txy = 0 , (x, y) ∈ Ω , (2.31)
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where
Ω ≡

{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

.

For an orthotropic band, the in-plane displacements u, and v, oriented respectively
along the axes x and y, are related to the stresses by means of the generalized Hooke’s
law:

σxx = C11
∂u

∂x
+ C12

∂v

∂y
, (2.32)

σxy = C66

(
∂u

∂y
+ ∂v

∂x

)
and (2.33)

σyy = C21
∂u

∂x
+ C22

∂v

∂y
, (2.34)

where Ci j are the elastic moduli, see (2.19), and we have used the linear strain-
displacement relations

εxx = ∂u

∂x
,

γxy = ∂u

∂y
+ ∂v

∂x
, (2.35)

εyy = ∂v

∂y
.

In the following, we will use the compatibility relation

E1ν21 = E2ν12 , (2.36)

which is implied by the symmetricity of the elastic moduli, i.e. C12 = C21.
It is possible to show that if instead of a prescribed tension T0, we have a prescribed

displacement u0 at x = �, the generated tension field has the same form as the form
given by (2.31).

Using (2.15), (2.28) and (2.32–2.34), we obtain the stress equilibrium equations
in terms of the in-plane displacements u and v:

C11
∂2u

∂x2 + (C12 + C66)
∂2v

∂x∂y
+ C66

∂2u

∂y2 = 0 ,

C22
∂2v

∂y2 + (C12 + C66)
∂2u

∂x∂y
+ C66

∂2v

∂x2 = 0 .

(2.37)
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The boundary conditions in terms of u and v are

∂u

∂y
+ ∂v

∂x
= 0 at x = 0, � , −b ≤ y ≤ b ,

u = 0 at x = 0 , −b ≤ y ≤ b ,

u = u0 at x = � , −b ≤ y ≤ b ,

(2.38)

and (compare with (2.30))

C12
∂u

∂x
+ C22

∂v

∂y
= 0 at y = ±b , 0 ≤ x ≤ � ,

∂u

∂y
+ ∂v

∂x
= 0 at y = ±b , 0 ≤ x ≤ � .

(2.39)

From the equilibrium (2.37) and the boundary conditions (2.38–2.39), the dis-
placement field in the domain Ω is described as

u(x, y) = u0

�
x , v(x, y) = −C12

C22

u0

�
y , (x, y) ∈ Ω .

Inserting these into (2.32–2.34) and using (2.15), we see that the tension field has
the form given by (2.31) with the constant value Txx = T0, where

T0 = h
u0

�

(
C11 − C2

12

C22

)
= h

u0

�
E1 . (2.40)

From (2.19) and (2.36), the last form in (2.40) easily follows. We see that the
only material parameter that affects the homogeneous tension field generated by the
prescribed displacement is the Young modulus in the longitudinal direction. Compare
(2.40) with

T0 = h
u0

�
E (2.41)

for an isotropic material.
For non-homogeneous tension in an isotropic sheet of material, one classical way

to find compatible tensions Txx, Tyy and Txy is via the help of an Airy stress function
Υ . Let us do this for an orthotropic sheet. As in the classical isotropic case, we define
the tensions in terms of second derivatives of the Airy stress function as
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Txx = hσxx = ∂2Υ

∂y2 ,

Tyy = hσyy = ∂2Υ

∂x2 ,

Txy = hσxy = − ∂2Υ

∂x∂y
.

(2.42)

Consider now the inverse relation of the generalized Hooke’s law (2.32–2.34).
We can express it as

εxx = 1

E1
σxx − ν21

E2
σyy ,

γxy = 1

G12
σxy , (2.43)

εyy = 1

E2
σyy − ν12

E1
σxx .

From the linear strain-displacement relations (2.35), it follows that the strain variables
satisfy the strain compatibility equation (see, e.g., Timoshenko and Goodier 1951)

∂2εxx

∂y2 + ∂2εyy

∂x2 − ∂2γxy

∂x∂y
= 0 . (2.44)

By inserting (2.42) and (2.43) into (2.44) (and noting that Ti j = hσi j ), and using
(2.36), we see that for an orthotropic material, the Airy stress function Υ must satisfy
the equation

∂4Υ

∂x4 +
(

E2

G12
− 2ν21

)
∂4Υ

∂x2∂y2 + E2

E1

∂4Υ

∂y4 = 0 . (2.45)

In the isotropic case, by setting E1 = E2 = E , G12 = G, ν21 = ν, and using the
isotropic shear modulus relation G = E/(2(1 + ν)), we observe that (2.45) reduces
to the well-known biharmonic equation

Δ2Υ ≡ ∂4Υ

∂x4 + 2
∂4Υ

∂x2∂y2 + ∂4Υ

∂y4 = 0 (for isotropic material) . (2.46)

For an axially tensioned rectangular band of material, the boundary conditions
satisfied by Υ , corresponding to (2.29) and (2.30), are

(
∂2Υ

∂y2

)
x=0,�

= k(y) ,

(
∂2Υ

∂x∂y

)
x=0,�

= 0 , −b ≤ y ≤ b , (2.47)

(
∂2Υ

∂x2

)
y=±b

= 0 ,

(
∂2Υ

∂x∂y

)
y=±b

= 0 , 0 ≤ x ≤ � . (2.48)
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The tensions expressed via the stress function Υ in (2.42) will satisfy the stress
equilibrium equations (2.28) for any function Υ that is sufficiently smooth. The
problem (2.45), (2.47–2.48), which must be solved, expresses the condition of com-
patibility for the tensions.

Later, in Chap. 4, we will concentrate on a linear tension distribution, and use the
rigorous solution of the boundary value problem (2.45), (2.47–2.48) corresponding
to the case where the tension profile function in (2.29), (2.47) is taken as

k(y) = T0 + αy . (2.49)

Here α > 0 is a given constant, characterizing the skew of the linear tension
profile. We have

Υ (x, y) = T0
y2

2
+ α

y3

6
+ c1x + c2y + c0 , (x, y) ∈ Ω . (2.50)

The corresponding tensions will be

Txx(x, y) = T0 + αy , Txy(x, y) = 0 , Tyy(x, y) = 0 , (2.51)

where (x, y) ∈ Ω , and c0, c1 and c2 are arbitrary constants.
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Chapter 3
Stability Analysis

Abstract The focus of this chapter is the stability analysis of axially moving mate-
rials. There are many similarities with classical stability analysis of structures, like
the buckling of beams and plates. However, the axial motion introduces the effects of
inertia, bringing out many challenges that are discussed in this chapter. The chapter
is divided as follows. In the first section, we will look into the history of stability
investigations, concentrating on moving materials and especially on the extensive
studies performed in this field during the last century. In the second section, we
will introduce linear stability analysis using Bolotin’s concept of dynamical stability.
Finally, in the last three sections, dynamic and static stability analyses will be applied
to moving membranes and plates.

3.1 Historical View of Stability Investigations

Stability analysis comes with a long tradition. The steady-state stability of parabolic
shapes partially immersed in a homogeneous medium was analyzed in the two-part
book On Floating Bodies by Archimedes of Syracuse. The book, originally dating
from the third century BCE, can be thought of as the oldest surviving work on stability
analysis; its probable application was shipbuilding (Russo 2004).

The present form of static stability analysis, which will be applied in this book,
was originally developed by Euler (1766), for a differential equation describing the
bending of a beam. The dynamic stability analysis for linear elastic systems, which
extends Euler’s method, is due to Bolotin (1963). According to Mote and Wickert
(1991), the instability behaviour of some axially moving materials is mathemati-
cally analogous to the buckling of a compressed column, enabling the use of these
techniques.

In the following, we will limit the scope of our consideration to moving materials.
The first investigation in this area was performed by Skutch (1897) being published
originally in German. The first English-language paper on the topic was published

N. Banichuk et al., Mechanics of Moving Materials, 23
Solid Mechanics and Its Applications 207, DOI: 10.1007/978-3-319-01745-7_3,
© Springer International Publishing Switzerland 2014
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half a century later by Sack (1954). Both of these studies discussed the vibrations
of a travelling string. Interest in the field then arose quickly. In a short study a few
years later, by Archibald and Emslie (1958), two ways to derive the travelling string
equation were presented. The first analytical solution to the travelling string problem
concerned the free vibrations. It was obtained by Swope and Ames (1963), using a
coordinate transform approach.

The dynamic and stability considerations discussed here were first reviewed in
the article by Mote (1972). Natural frequencies are commonly analyzed together
with the stability. The effects of axial motion of the web on its frequency spectrum
and eigenfunctions were investigated in the papers by Archibald and Emslie (1958)
and by Simpson (1973). It was shown that the natural frequency of each mode
decreases when the transport speed increases, and that the travelling string and beam
both experience divergence instability at a sufficiently high speed. However, in the
case of the string, this result was recently contrasted by Wang et al. (2005), who
showed using Hamiltonian mechanics that the ideal string remains stable at any
speed. Travelling beams have been further analyzed by Parker (1998) in his study
on gyroscopic continua, and by Kong and Parker (2004), where an approximate
analytical expression was derived for the eigenfrequencies of a moving beam with
small flexural stiffness.

Response predictions have been made for particular cases where the excitation
assumes special forms, such as harmonic support motion (Miranker 1960) or a con-
stant transverse point force (Chonan 1986). Arbitrary excitations and initial condi-
tions were analyzed with the help of modal analysis and a Green’s function method in
the article by Wickert and Mote (1990). As a result, the critical speeds for travelling
strings and beams were explicitly determined.

The loss of stability was studied with an application of dynamic and static
approaches in the article by Wickert (1992). It was shown by means of numerical
analysis that in all cases instability occurs when the frequency is zero and the critical
velocity coincides with the corresponding velocity obtained from static analysis.

Two-dimensional studies have also been performed from the 1990s onwards.
For example, Lin and Mote (1995) studied an axially moving membrane in a 2D
formulation, predicting the equilibrium displacement and stress distributions under
transverse loading. In the article by Shin et al. (2005), out-of-plane vibrations of
an axially moving membrane were studied. They also found by numerical analysis
that for a membrane with no-friction boundary conditions in the lateral direction
along the rollers, the membrane remains dynamically stable until the critical speed,
at which static instability occurs, is reached. Lin and Mote (1996) extended their
study, predicting a wrinkling instability and the corresponding wrinkled shape of a
web with small flexural stiffness. Lin (1997) continued the studies of stability.

It was realized early on that the vibration problem for an axially moving continuum
is not the conventional one. Because of the longitudinal continuity of the material, the
equation of motion for transverse vibration will contain additional terms, representing
a Coriolis force and a centripetal force acting on the material. As a consequence, the
resonant frequencies will be dependent on the longitudinal velocity of the axially
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moving continuum, as was noted by Archibald and Emslie (1958), as well as Swope
and Ames (1963), Simpson (1973), and Mujumdar and Douglas (1976).

In the 1980s, it was discovered that another important factor affecting the stability
of the axially moving continuum, especially if the material itself is lightweight, is the
interaction between the moving continuum and the surrounding medium (Pramila
1986). The interaction between the travelling continuum and the surrounding air
is known to influence the critical velocity (Pramila 1986; Frondelius et al. 2006)
and the dynamical response (Kulachenko et al. 2007b), possibly also affecting the
divergence (buckling) shape. The mentioned studies concentrate on paper making,
but the same phenomenon is encountered also in other applications. For example,
in a paper by Hosaka and Crandall (1992), the vibrations of an elastic disc rotating
above an air film were investigated.

The simplest approach to taking into account the fluid–structure interaction is to
assume potential flow; that is, the surrounding air is assumed to be incompressible and
inviscid, and the flow is assumed to be irrotational (like in e.g. Niemi and Pramila
1986). Experimental studies and some theoretical estimations (see, e.g., Pramila
1986) indicate that in the case of normal vibration, comparison of experimental and
theoretical results shows that predictions based on the potential flow theory are within
about 10 % of the measured results. To solve the external hydrodynamic problem,
and to find the reaction of the surrounding medium, the finite element method has
been used (e.g. Niemi and Pramila 1986).

A closely related problem is the response of stationary material to a surrounding
axial flow. It has been noted Païdoussis (2008) that this problem, in turn, is related
to the canonical problem of the fluid-conveying pipe. However, the case of material
surrounded by axial flow is more complicated than the case of the pipe, due to the
nonlocal nature of the aerodynamic reaction. The problems of slender structures in
axial flow have been studied extensively, and are summarized in the two-volume
book by Païdoussis (1998, 2004).

Returning to moving materials, the dynamical properties of moving plates have
been studied by Shen et al. (1995) and by Shin et al. (2005), and the properties of
a moving paper web have been studied in the two-part article by Kulachenko et al.
(2007a,b). Critical regimes and other problems of stability analysis have been studied
by Wang (2003) and Sygulski (2007).

Results that axially moving beams experience divergence instability at a suffi-
ciently high beam velocity have been obtained also for beams interacting with exter-
nal media; see, e.g., Chang and Moretti (1991), and Banichuk et al. (2010b, 2011b);
Jeronen (2011). The same authors have extended the study in Banichuk et al. (2010a,
2011a), for a two-dimensional model of the web, considered as a moving plate under
homogeneous tension but without external media. These studies have been further
extended in Banichuk et al. (2013) and Tuovinen (2011) to the case with a linear
non-homogeneous tension distribution (see also Chap. 4).

The mechanical behavior of a paper web under a non-failure condition is ade-
quately described by the model of an elastic orthotropic plate. The rigidity coeffi-
cients of the plate model that describe the tension and bending of the paper sheet
have been estimated for various types of paper in many publications. See, for

http://dx.doi.org/10.1007/978-3-319-01745-7_4
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example, the articles by Göttsching and Baumgarten (1976), by Thorpe (1981), by
Skowronski and Robertson (1985) and by Seo (1999). The deformation properties of
a sheet of paper under tensile stress or strain are used in simulation of axial movement
of a paper web. In particular, these properties are important for the modeling of the
instability of the web.

In a recent article by Hatami et al. (2009), the free vibration of a moving orthotropic
rectangular plate was studied at sub- and supercritical speeds, and its flutter and
divergence instabilities at supercritical speeds. The study is limited to simply sup-
ported boundary conditions at all edges. For the solution of equations of orthotropic
moving material, many necessary fundamentals can be found in the book by
Marynowski (2008).

The free vibrations of stationary orthotropic rectangular plates have been exten-
sively studied. The classical reference work in this area is the book by Gorman (1982).
More recently, Biancolini et al. (2005) included in their study all combinations of sim-
ply supported and clamped boundary conditions on the edges. Xing and Liu (2009)
obtained exact solutions for the free vibrations of stationary rectangular orthotropic
plates. They considered three combinations of simply supported (S) and clamped
(C) boundary conditions: SSCC, SCCC, and CCCC. Kshirsagar and Bhaskar (2008)
studied vibrations and buckling of loaded stationary orthotropic plates. They found
critical loads of buckling for all combinations of boundary conditions S, C, and F.

Recently, attention has turned toward the material model, which is also an impor-
tant factor in the stability behaviour of a moving material. Industrial materials often
have viscoelastic characteristics (see, e.g., Fung et al. 1997), and consequently, vis-
coelastic moving materials have been recently studied widely. In paper making, wet
paper webs are highly viscous, and therefore, viscoelasticity should be taken into
account in the models (see, e.g., Alava and Niskanen 2006). Also plasticity is known
to occur (see, e.g., Erkkilä et al. 2013); however that topic is beyond the scope of the
present book.

First studies on transverse vibration of viscoelastic material traveling between
two fixed supports were done by Fung et al. (1997), using a string model. Extending
the work, they studied the material damping effect in Fung et al. (1998).

Several studies on travelling viscoelastic materials, concerning strings and beams,
have been performed during the last decade. Chen and Zhao (2005) represented
a modified finite difference method to simplify a non-linear model of an axially
moving viscoelastic string. They studied the free transverse vibrations of elastic and
viscoelastic strings numerically.

Oh et al. (2004) and Lee and Oh (2005) studied critical speeds, eigenvalues,
and natural modes of axially moving viscoelastic beams using the spectral element
model. They analyzed dynamic behavior of axially moving viscoelastic beams using
modal analysis, performed a detailed eigenfrequency analysis, and reported that
viscoelasticity did not affect the critical velocity of the beam.

Marynowski and Kapitaniak (2002) compared two different internal damping
models in modeling of moving viscoelastic (non-linear) beams. For the linearized
Kelvin–Voigt model, it was found that the beam exhibits divergent instability at some
critical speed. In the case of non-linear BÃŒrgers model, the critical speed decreased
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when the internal damping was increased, and the beam was found to experience the
first instability in the form of flutter.

A few studies on transverse vibrations of axially moving viscoelastic plates have
also been done. Very recently, Yang et al. (2012) studied vibrations, bifurcation and
chaos of axially moving viscoelastic plates using finite differences and a non-linear
model for transverse displacements. They concentrated on bifurcations and chaos,
but also studied the dynamic characteristics of a linearised elastic model with the
help of eigenfrequency analysis.

A particular question about whether one should use the material time derivative or
the partial time derivative in the viscoelastic constitutive relations for moving materi-
als, has recently been discussed especially in the case of the widely used Kelvin–Voigt
material model. Mockensturm and Guo (2005) suggested that the material derivative
should be used. They studied non-linear vibrations and dynamic response of axially
moving viscoelastic strings, and found significant discrepancy in the frequencies
at which non-trivial limit cycles exist, comparing the models with the partial time
derivative to those with the material time derivative.

Recently, the material derivative has been used in most of the studies con-
cerning axially moving viscoelastic beams (see e.g. the papers by Chen et al.
2008, Chen and Ding 2010, Chen and Wang 2009, and Ding and Chen 2008).
Kurki and Lehtinen (2009) suggested, independently, that the material derivative in
the constitutive relations should be used in their study concerning the in-plane dis-
placement field of a traveling viscoelastic plate. Some more studies specifically about
viscoelastic moving materials will be introduced in Chap. 5.

3.2 Linear Stability Analysis

The most straightforward and efficient way to study stability is to use linear stability
analysis. It is well-known that the normal vibrations of an elastic linear system are
time-harmonic (this is noted by e.g., Xing and Liu 2009). For the stability analysis
of all such systems described by partial differential equation models, it is standard
to use the time-harmonic trial function

w(x, t) = exp(st) W (x) , (3.1)

where s is complex, W (x) is an unknown eigenmode to be determined and x is a
scalar or a vector depending on the dimensionality of the problem. This removes
the time dependence from the partial differential equation, making it sufficient to
solve a (pseudo-)steady-state problem including the unknown scalar s, the allowed
values of which are determined implicitly by the boundary conditions and problem
parameters. The resulting equation will be a partial differential equation in space,
but polynomial with respect to s.

The trial function (3.1) produces a complex-valued solution w(x, t). The space
component W (x) is typically real-valued for stationary materials, and complex-valued

http://dx.doi.org/10.1007/978-3-319-01745-7_5


28 3 Stability Analysis

for moving materials. It is easy to see that in the case of linear partial differential
equations with real-valued coefficients, the real and imaginary components of w(x, t)
will also be solutions of the original problem. Let L be a linear differential operator.
For example, for the real part, we have

Re (L(w)) = Re [L( Re (w) + i Im (w) )]

= Re [L(Re (w)) + i L(Im (w))] (3.2)

= L(Re (w)) ,

where the last equality holds only if the coefficients of L are real. The same
observation holds for the imaginary part. Thus, both Re w(x, t) and Im w(x, t)
are real-valued solutions of the original problem.

However, for moving materials, the real and imaginary components of W (x) are
typically not solutions of the auxiliary steady-state problem: using the trial function
(3.1), only the full complex-valued solution W (x) is valid for the auxiliary problem.
It is only the complete solution w(x, t) whose real and imaginary components satisfy
the original problem separately. For an example of this, the properties stated here
can be easily verified for the analytical free vibration solution given in Sect. 2.1.1 for
the constant-coefficient travelling string. The reason is, of course, that the stability
exponent s is complex.

The allowed values of the stability exponent s completely characterize the free
vibrations of the elastic linear system under consideration. Consider the problem
parameters fixed. If Re s ≤ 0 for all solutions (s, W ), the system is stable and
undergoes time-harmonic vibration. If Re s < 0 for one or more solutions (s, W ),
these solutions also contain a damping component. If Re s > 0 for at least one
solution (s, W ), the system is unstable (Bolotin 1963).

Fig. 3.1 Behaviour of the stability exponent s for the two different instability types in the classi-
fication due to Bolotin (1963). The arrows show the motion of the eigenvalues s j as the problem
parameter V0 is increased quasistatically. In the left picture, the symbols are drawn off the axes for
legibility reasons only; s2 ∈ R for all V0. In the right picture, the real part is initially negative. In
both cases, the eigenvalues merge at the collision point, and then immediately separate
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Based on the trial function (3.1) we can make the distinction of static versus
dynamic instability, depending on whether Im s = 0 in the critical state. This
classification is due to Bolotin (1963). The concepts are illustrated in Fig. 3.1.

Roughly speaking, the critical state can be defined as follows. We begin in some
initially stable state of the system. For axially travelling materials, the initial state
is usually taken as axial velocity V0 = 0. We then start increasing the problem
parameter of interest, call it p, quasistatically. After a while, the parameter p has
reached a value p0. If there exists at least one solution (s, W ) such that Re s > 0
for all p = p0 + ε with arbitrarily small ε > 0, but Re s ≤ 0 for all solutions s
for p = p0 − ε, the value p0 is called the critical parameter value. It is the point of
transition from stable to unstable behaviour.

Assume we have found a critical parameter value p = p0. If Im s = 0 just
above the critical value, p = p0 + ε, the complex-valued exp in (3.1) simplifies to
a real-valued exp, and the displacement will grow exponentially with time. This is
called static instability or divergence (Fig. 3.1, left). This corresponds to s passing
through the origin of the complex plane, and thus the critical states for this kind of
instability can be found by a steady-state analysis (see Bolotin 1963, or consider
(3.1) for s = 0).

Often the existence of a nontrivial steady-state solution is taken as indication of an
instability, and e.g. the buckling analysis of travelling panels and plates is based on
this idea. However, in their analysis of the travelling ideal string, Wang et al. (2005)
caution that steady-state solutions may exist without indicating an instability, if the
eigenfunctions remain linearly independent at the critical parameter value. Thus, we
may conclude that a static instability can only arise from a steady state, but in a
rigorous analysis, the existence of a steady state should be taken only as a necessary
condition for static instability, not a sufficient one.

If Im s �= 0 for p = p0 + ε, the complex-valued exp in (3.1) becomes a product
of a real-valued exp and a harmonic component, e.g. sin, cos or a linear combination
of these. In this case, the displacement will exhibit exponentially growing vibrations
with time (see Fig. 3.1, right). This is called dynamic instability or flutter. This should
not be confused with the engineering use of the term flutter to describe also stable
vibrations.

Linear perturbation analysis around the critical parameter value is one method
that can be used to confirm that the critical state indeed indicates an instability for
p = p0 + ε (see e.g. the analysis of Parker 1998, for the moving beam). Another
method is to compute the complex eigenfrequencies of the system, based on the trial
function (3.1), for a range of parameter values [p0 − ε, p0 + ε].

In the case of stability analysis of linear partial differential equations, it is evident
from the linear superposition property that solution components which obviously
always stay bounded may be discarded without further consideration. Thus, linear
stability analysis can be focused on the solution components for which the bound-
edness of the long-term behaviour, under various different values for the problem
parameters, is nontrivial.

Finally, it should be noted that for the investigation of small vibrations of elastic
systems, linearized models are often used. If system enters an unstable state, the
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small displacement assumption eventually breaks, possibly very quickly. From that
point on, the model no longer describes the physics of the situation being analyzed.
It is generally agreed that linearized small-displacement models are sufficient up to
the first instability (see e.g. Païdoussis 2005).

3.3 Dynamic Analysis of Moving Membranes and Plates

From experimental studies and some theoretical estimations, it is known that
mechanical instability of a travelling paper web can arise at some critical velocities,
and that the instability may occur in either dynamic, i.e. flutter, or static, i.e. diver-
gence, forms. These critical velocities are of both theoretical and practical interest,
as they set an upper limit for the running speed of paper machines, and consequently,
for the rate of paper production that can be achieved. Some previous investigations
show that for an axially moving elastic paper web under a homogeneous tension
profile along the rollers and certain other conditions, the value of divergence speed
V div

0 is smaller than the value of flutter speed V fl
0 , and hence the critical instability

will be of the divergence type.
In this section, the focus is on how to analyze the dynamic problem of stability.

We will follow the method described by Bolotin (1963). Recall the equation of small
transverse vibrations of the travelling plate subjected to homogeneous tension, (2.12).
We represent it as follows:

∂2w

∂t2 + 2V0
∂2w

∂x∂t
+

(
V 2

0 − C2
) ∂2w

∂x2 + D0

m
L0(w) = 0 , C =

√
T0

m
, (3.3)

where w = w(x, t) is the transverse displacement, and the orthotropic bending
operator is

L0(w) = D1

D0

∂4w

∂x4 + 2D3

D0

∂4w

∂x2∂y2 + D2

D0

∂4w

∂y4 . (3.4)

Here D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already introduced as (2.18), Sect. 2.1.3 (or see Timoshenko and
Woinowsky-Krieger 1959, Chap. 11). The Ci j are the elastic moduli, (2.19). The
quantity D0 is a normalization constant, for which we have chosen the value
D0 = D1.

The boundary value problem consisting of (3.3)–(3.4) with the boundary con-
ditions (2.20)–(2.22) is homogeneous and invariant with respect to the symmetry
operation y → −y and, consequently, all solutions of the problem are either sym-
metric or antisymmetric functions of y, i.e.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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w(x, y, t) = w(x,−y, t) or w(x, y, t) = −w(x,−y, t) . (3.5)

In the following analysis, however, this symmetry property is not necessary.
Using the time-harmonic trial function (3.1), we can represent the solution of our

dynamic boundary-value problem (3.3)–(3.4), (2.20)–(2.22) as

w(x, y, t) = W (x, y)eiωt = W (x, y)est , (3.6)

where ω is the angular frequency of small transverse vibrations and s = iω is
the stability exponent. As presented in the previous section, Sect. 3.2, if s is purely
imaginary and consequently ω is real, the membrane or plate performs harmonic
vibrations of a small amplitude and its motion can be considered stable. If, for some
values of the problem parameters, the real part of the stability exponent becomes
positive, the transverse vibrations grow exponentially and consequently the behaviour
is unstable (See Fig. 3.1, left).

3.3.1 Dynamic Stability of Membranes

Classical approach for modelling of moving materials is to apply the model of a
travelling membrane. In the case of a membrane, efficient analytical methods are
usually available. We begin the analysis of the moving membrane by defining the
corresponding eigenvalue problem. Homogeneous tension is applied at the bound-
aries x = 0 and x = �. In order to investigate the dynamic behavior, we insert
the representation (3.6) into (3.3). Since the case of a membrane is considered, we
omit the bending rigidity terms from (3.3), i.e., (D0/m)L0(w) = 0. We obtain the
following equation for small time-harmonic vibrations of the travelling membrane:

s2W + 2sV0
∂W

∂x
+

(
V 2

0 − C2
) ∂2W

∂x2 = 0 , (3.7)

with zero displacement boundary conditions

(W )x=0, � = 0 , −b ≤ y ≤ b . (3.8)

We will see that the choice of boundary conditions in the y direction, on the edges
{0 ≤ x ≤ �, y = ±b}, does not matter in the following analysis.

We multiply (3.7) by W and perform integration over the domain

� ≡
{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

(3.9)

to obtain

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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s2
∫

�

W 2 d� + 2sV0

∫
�

W
∂W

∂x
d� +

(
V 2

0 − C2
) ∫

�

W
∂2W

∂x2 d� = 0 . (3.10)

It is worth noting that the problem (3.10) is a special case of the variational form
of the original eigenvalue problem (3.7). In (3.10), we only test against W itself,
not against an arbitrary test function. However, any solution of the original problem
(3.7) is also a solution of (3.10). Hence, the eigenvalues of problem (3.10) include
the eigenvalues of problem (3.7), i.e. we may get additional solutions. As we are
interested in the behavior of the eigenvalues of problem (3.7), it is sufficient to notice
that if all the eigenvalues of problem (3.10) have similar behaviour with each other,
then the eigenvalues of (3.7) have the same behaviour.

The second and third integrals in (3.10) are evaluated with integration by parts
and the boundary conditions (3.8):

∫
�

W
∂W

∂x
d� =

∫ b

−b

∫ �

0
W

∂W

∂x
dx dy

=
∫ b

−b

[
W 2(�, y)

2
− W 2(0, y)

2

]
dy

= 0 , (3.11)

and ∫
�

W
∂2W

∂x2 d� = −
∫

�

(
∂W

∂x

)2

d� . (3.12)

Using (3.10)–(3.12) and performing elementary transformations, we obtain the fol-
lowing expression for the stability exponent:

s2 =
(

V 2
0 − C2

)
∫

�

(
∂W

∂x

)2

d�

∫
�

W 2 d�

. (3.13)

If s becomes zero, we have a steady state solution (divergence) with frequency ω = 0
at the velocity V0 = V div

0 . From (3.13), the value of this divergence velocity is found
as

V div
0 = C =

√
T0

m
=

√
hu0

m�
E1 , (3.14)

where in the last form, (2.40) from Sect. 2.2 has been used. Here u0 is a prescribed
displacement at x = �.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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3.3.2 Dynamic Analysis of Small Transverse Vibrations
and Elastic Stability of Isotropic Plates

To investigate the dynamic behaviour of the plate, we insert, following the membrane
case, representation (3.6) into (3.3). As the object is a plate, the bending rigidities
cannot be omitted. Therefore, for small time-harmonic vibrations of the travelling
plate subjected to homogeneous tension, we have the equation

s2W + 2sV0
∂W

∂x
+ (V 2

0 − C2)
∂2W

∂x2 + D

m
�2W = 0 . (3.15)

Boundary conditions for the plate problem are

(W )x=0,� = 0 ,

(
∂2W

∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (3.16)

(
∂2W

∂y2 + β1
∂2W

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (3.17)

(
∂3W

∂y3 + β2
∂3W

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ � . (3.18)

For an orthotropic plate, we have

β1 = ν12 ,

β2 = ν12+4 G12

E2
(1 − ν12ν21) . (3.19)

As was noted in Sect. 2.1.3, in the case of an isotropic plate, the parameters above
become simplified as

β1 = ν and β2 = 2 − ν , (3.20)

by setting ν12 = ν21 = ν, E1 = E2 = E , G12 = G, and using the isotropic
shear modulus relation G = E/(2 (1 + ν)). Then, factoring 1 − ν12ν21 = 1 − ν2 =
(1 + ν)(1 − ν) and simplifying reduces (3.19) into (3.20).

Proceeding similarly as in the membrane case, we multiply (3.15) by W and
perform integration over the domain � to obtain

s2
∫

�

W 2 d� + 2sV0

∫
�

W
∂W

∂x
d� + (V 2

0 − C2)

∫
�

W
∂2W

∂x2 d�

+ D

m

∫
�

W�2W d� = 0 . (3.21)
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The same argument holds for the variational form as in the membrane case.
Equation (3.21) can be seen as an eigenvalue problem for the pair (s, W ) with the
parameter V0, producing a spectrum of complex eigenfrequencies s and eigenmodes
W for the chosen value of V0. Alternatively, (3.21) can be viewed as an eigenvalue
problem for the pair (V0, W ) with the parameter s, when s is fixed to any such value
that at least one complex eigenfrequency exists for at least one choice of V0. For
other choices of s, this second eigenvalue problem has no solution.

Previously, we have noted the Eqs. (3.11) and (3.12) for the membrane. By using
Green’s 2nd identity, the last integral in (3.21) can be transformed into

∫
�

W�2W d� =
∫

�

(�W )2 d� +
∫




(
W

∂

∂n
�W − �W

∂W

∂n

)
d
 , (3.22)

where n is the exterior unit normal to the boundary 
 of the domain �. We divide
the boundary 
 into four parts (see Fig. 3.2):


− = {0 ≤ x ≤ �, y = −b}, 
r = {x = �, −b ≤ y ≤ b} ,


+ = {0 ≤ x ≤ �, y = b}, 
� = {x = 0, −b ≤ y ≤ b} .

Admitting counterclockwise integration along 
, we have

I =
∫




(
W

∂

∂n
�W − �W

∂W

∂n

)
d
 = I− + Ir + I+ + I� . (3.23)

Here

Fig. 3.2 Division of the boundary 
 for the investigated contour integral
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Ir = I� = 0 , (3.24)

I− =
∫


−

(
W

∂

∂n
�W − �W

∂W

∂n

)
d


= −
∫ �

0

(
W

∂

∂y
�W − �W

∂W

∂y

)
y=−b

dx , (3.25)

I+ =
∫


+

(
W

∂

∂n
�W − �W

∂W

∂n

)
d


= −
∫ 0

�

(
W

∂

∂y
�W − �W

∂W

∂y

)
y=b

dx

=
∫ �

0

(
W

∂

∂y
�W − �W

∂W

∂y

)
y=b

dx . (3.26)

where we have used the relations

d
 = dx,
∂

∂n
= − ∂

∂y
for (x, y) ∈ 
− , (3.27)

d
 = −dx,
∂

∂n
= ∂

∂y
for (x, y) ∈ 
+ , (3.28)

and
W = �W = 0 for (x, y) ∈ 
� + 
r . (3.29)

We obtain

I = I− + I+ =
∫ �

0

(
Q(W, W )y=b − Q(W, W )y=−b

)
dx , (3.30)

where

Q(w, v) ≡ v
∂

∂y
�w − �w

∂v

∂y
. (3.31)

with the arbitrary functions v and w. Using the boundary conditions for an isotropic
plate, (3.17) and (3.18), we find that

Q(W, W ) =
W

∂3W

∂y3(
2 − ν

1 − ν

) +
∂W

∂y

∂2W

∂y2(
ν

1 − ν

) , at y = ±b . (3.32)

We can see from (3.32) that the function Q is antisymmetric with respect to the
transformation y → −y for symmetric and antisymmetric functions W , and conse-
quently,



36 3 Stability Analysis

Q(W, W )y=b = −Q(W, W )y=−b . (3.33)

We observe that

I = 2
∫ �

0
Q(W, W )y=b dx . (3.34)

From (3.22) and (3.34), we obtain

∫
�

W�2W d� =
∫

�

(�W )2 d� + 2
∫ �

0
Q(W, W )y=b dx , (3.35)

and, furthermore

ω2 = −s2

=
(C2 − V 2

0 )

∫
�

(
∂W

∂x

)2

d� + D

m

(∫
�

(�W )2 d� + 2
∫ �

0
Qy=b dx

)
∫

�

W 2 d�

.

(3.36)

We can now observe from representation (3.36) the following equation for the
divergence mode (buckling mode):

(
V div

0

)2 = C2 + D

m

∫
�

(�W )2d� + 2
∫ �

0
Qy=b dx

∫
�

(
∂W

∂x

)2

d�

. (3.37)

In particular, it follows from (3.37) that when the bending rigidity D is negligible,
the critical velocity is the same as for the axially travelling string (see, e.g., Chang
and Moretti 1991). From the result further above, see (3.14), we see that the same
value for the critical velocity also applies to ideal membranes. For a membrane,
the divergence velocity does not depend on W . Thus, any combination of modes
may occur at the critical velocity for the special case of an ideal membrane under
homogeneous tension. These observations generalize the analogous results for a
cylindrical deformation, i.e. a flat panel model of an ideal membrane (see Banichuk
et al. 2010b).

3.4 Divergence Instability of Isotropic Plates

Next we will consider the buckling problem of an axially moving isotropic plate. In
many practical cases, this is a reasonable simplification. For divergence instability
of axially moving orthotropic plates, see Sect. 3.5.
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3.4.1 Eigenvalue Problem

In this section, we will study the divergence (static instability) of a travelling isotropic
plate subjected to homogeneous tension. The problem is formulated as an eigenvalue
problem of the partial differential equation

(
mV 2

0 − T0

) ∂2W

∂x2 + D

(
∂4W

∂x4 + 2
∂4W

∂x2∂y2 + ∂4W

∂y4

)
= 0 (3.38)

with the boundary conditions (3.16)–(3.18) and (3.20) (Sect. 3.3.2). We will study
static (i.e. divergence) instability, and therefore time-dependent terms are excluded
from (3.3). In order to determine the minimal eigenvalue

λ = γ 2 = �2

π2 D

(
mV 2

0 − T0

)
(3.39)

of the problem (3.16)–(3.18), (3.38), and the corresponding eigenfunction W =
W (x, y), we apply the following representation:

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
, (3.40)

where f (y/b) is an unknown function. It follows from (3.40) that the desired buck-
ling mode (steady-state solution) W satisfies the boundary condition (3.16). The
half-sine shape of the solution in the longitudinal direction is well-known (see, e.g.,
the article by Lin 1997). Using the dimensionless quantities

η = y

b
, μ = �

πb
, (3.41)

and the relations (3.17)–(3.18) (Sect. 3.3.2) and (3.38)–(3.41), we obtain the follow-
ing eigenvalue problem for the unknown function f (η):

μ4 d4 f

dη4 − 2μ2 d2 f

dη2 + (1 − λ) f = 0 , −1 < η < 1 , (3.42)

μ2 d2 f

dη2 − ν f = 0 , η = ±1 , (3.43)

μ2 d3 f

dη3 − (2 − ν)
d f

dη
= 0 , η = ±1 , (3.44)

where (3.43)–(3.44) represent the free-of-traction boundary conditions.
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3.4.2 Analytical Solution

In this section, we will present the solution process of the eigenvalue problem (3.42)–
(3.44). We consider the problem as a spectral boundary value problem. The problem
is invariant with respect to the symmetry operation η → −η, and consequently, all
its eigenfunctions can be classified as

f s(η) = f s(−η), f a(η) = − f a(−η), 0 ≤ η ≤ 1 . (3.45)

Here f s and f a are symmetric and antisymmetric (skew-symmetric) with respect to
the x axis (η = 0). When γ ≤ 1, a divergence mode symmetric with respect to the
x axis can be presented in the form

W = f s (η) sin
(πx

�

)
(3.46)

where

f s (η) = As cosh

(
κ+η

μ

)
+ Bs cosh

(
κ−η

μ

)
(3.47)

and
κ+ = √

1 + γ , κ− = √
1 − γ . (3.48)

The function f s (η) is a symmetric solution of (3.42), and As and Bs are arbitrary
constants. At first, we concentrate on the symmetric case and return to the antisym-
metric case later.

Using the relations (3.43)–(3.47), we can derive the linear algebraic equations for
determining the constants As and Bs:

As
(
κ2+ − ν

)
cosh

(
κ+
μ

)
+ Bs

(
κ2− − ν

)
cosh

(
κ−
μ

)
= 0 , (3.49)

−Asκ+
(
κ2− − ν

)
sinh

(
κ+
μ

)
− Bsκ−

(
κ2+ − ν

)
sinh

(
κ−
μ

)
= 0 . (3.50)

The condition for a non-trivial solution to exist in the form (3.46)–(3.48) is that the
determinant of the system (3.49)–(3.50) must vanish. This is seen by observing that
(3.49)–(3.50) is a homogeneous system of linear equations in As, Bs:

[
K11 K12
K21 K22

] [
As

Bs

]
=

[
0
0

]
, (3.51)

where the coefficients Ki j are given by the obvious identifications. From linear
algebra, it is known that a non-trivial solution satisfying (3.51) can only exist if the
matrix K is singular. Hence its determinant must be zero.

This zero determinant condition leads to the transcendental equation
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κ−
(
κ2+ − ν

)2
cosh

(
κ+
μ

)
sinh

(
κ−
μ

)
−

κ+
(
κ2− − ν

)2
sinh

(
κ+
μ

)
cosh

(
κ−
μ

)
= 0 , (3.52)

which determines the eigenvalues
λ = γ 2 (3.53)

implicitly. Equation (3.52) can be transformed into a more convenient form,

Φ (γ,μ) − Ψ (γ, ν) = 0 , (3.54)

where we have defined

Φ (γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
(3.55)

and

Ψ (γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 . (3.56)

Let us consider the modes of buckling which are antisymmetric about the x axis:

W = f a (η) sin
(πx

�

)
, (3.57)

where

f a(η) = Aa sinh

(
κ+η

μ

)
+ Ba sinh

(
κ−η

μ

)
(3.58)

for γ ≤ 1. The values κ+ and κ− are defined by the expressions (3.48). Using the
expression (3.58) for f a and the boundary conditions on the free edges of the plate
(3.43)–(3.44), we obtain the following transcendental equation for determining the
quantity γ :

Φ (γ,μ) − 1

Ψ (γ, ν)
= 0 . (3.59)

In (3.59), Φ (γ,μ) and Ψ (γ, ν) are again defined by the formulas (3.55) and (3.56).
In the segment 0 < γ ≤ 1 being considered, the equation has two roots,

γ = γ1 → γ0 < γ1 < 1 (3.60)

and
γ = γ2 → γ2 = 1 , (3.61)
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for arbitrary values of the Poisson ratio ν and the geometric parameter μ. By using
(3.60)–(3.61) and some properties described in the next section, it is possible to
determine that

γ∗ < γ1 < γ2 , (3.62)

where γ∗ is the minimal eigenvalue for the symmetric case. Thus, the critical buckling
mode is symmetric with respect to the x axis, and corresponds to γ = γ∗, i.e., to the
solution of (3.54). Hence we will limit our consideration to the symmetric case.

We have obtained an equation determining the minimal eigenvalue γ∗, (3.54).
By relation (3.39), the corresponding critical velocity of the travelling band is then
represented as

(V div
0 )2 = T0

m
+ γ 2∗

m

(
π2 D

�2

)
. (3.63)

In order to obtain the corresponding eigenmode, either As or Bs can be solved from
either of the equations (3.49)–(3.50), and the other one (either Bs or As, respec-
tively) can be chosen arbitrarily; it is the free coefficient of the eigenvalue problem.
Finally, inserting the obtained γ∗, As and Bs into (3.46–3.47) gives the eigenmode
corresponding to the eigenvalue γ∗.

One of As or Bs is left free, because the zero determinant condition holds at
the value of γ = γ∗ that is a solution of (3.54). Hence, at γ = γ∗, the equations
(3.49)–(3.50) become linearly dependent, providing only one condition.

3.4.3 Properties of Analytical Solution

In this section we investigate the properties of the functions Φ (γ,μ) and Ψ (γ, ν),
expressed by (3.55)–(3.56), when 0 ≤ γ ≤ 1. Their schematic illustration is pre-
sented in Fig. 3.3. As γ increases from zero to unity, the function Φ (γ,μ) decreases
continuously and monotonically from 1 to 0, i.e.

1 ≥ Φ (γ,μ) ≥ 0,
∂Φ(γ, μ)

∂γ
< 0, 0 ≤ γ ≤ 1 (3.64)

and

Φ (0, μ) =
(

tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)
γ=0

= 1 (3.65)

Φ (1, μ) =
(

tanh

√
1 − γ

μ
coth

√
1 + γ

μ

)
γ=1

= 0 . (3.66)
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Fig. 3.3 Behavior of functions Φ and Ψ with respect to the parameter γ in the isotropic case. The
presentation is qualitative

The proof of the monotonical decrease of function Φ is performed in Sect. 3.5.5,
where we investigate the solution of the orthotropic problem. The same property for
the present isotropic problem follows as a special case.

The function Ψ (γ, ν) decreases from 1 to 0 in the interval 0 < γ < 1 − ν,

1 > Ψ (γ, ν) > 0,
∂Ψ (γ, ν)

∂γ
< 0, 0 < γ < 1 − ν , (3.67)

and at the ends of this interval, we have

Ψ (0, ν) =
[√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]
γ=0

= 1 , (3.68)

Ψ (1 − ν, ν) =
[√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2

]
γ=1−ν

= 0 . (3.69)

The function Ψ increases monotonically in the interval 1 − ν < γ < 1, increasing
without limit as γ → 1, i.e.

0 < Ψ (γ, ν) < ∞,
∂Ψ (γ, ν)

∂γ
> 0, 1 − ν < γ < 1 (3.70)

and
lim
γ→1

Ψ (γ, ν) = ∞ . (3.71)

The limit (3.71) will be shown in Sect. 3.5.5.
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Plots of the function Φ(γ,μ) when the geometric aspect ratio �/2b = 0.1, 1, and
10 are shown in Fig. 3.4 at the top. The functions Ψ (γ, ν) when ν = 0.2, 0.3 and 0.5
are shown in the same figure, at the bottom.

The value of γ = γ0, for which

Ψ (γ0, ν) = 1 , γ0 ∈ [1 − ν, 1] (3.72)

is of special interest. At this point it holds that

Φ − Ψ = Φ − 1

Ψ
at γ = γ0 ,

and hence the functions defined by the left-hand sides of (3.54) and (3.59) will cross
at the value γ = γ0.

The value γ0 is found by inserting (3.56) into (3.72), squaring both sides for
convenience (we know that γ0 > 0, so no information is lost), and solving for γ0.
We obtain

γ 2
0 = (1 − ν)(3ν − 1 + 2

√
1 − 2ν(1 − ν)) . (3.73)

The other solutions are all negative and can thus be discarded. When examined as a
function of ν, the expression γ0(ν) has zeros at ν = −3 and ν = 1, and a maximum
at ν = 0, with the value γ0 = 1. For any other value of ν, we have γ0 < 1.

If we restrict the Poisson ratio ν into the physically admissible range for isotropic
materials, ν ∈ (−1, 0.5), then the value of γ0, as given by (3.73), turns out to be close
to unity. The minimal values are encountered at the ends of the range. At ν = −1
we have γ0 ≈ 0.944, and at ν = 0.5, γ0 ≈ 0.957.

Let us consider the limiting cases in terms of the band geometry. First, if we have
a long and narrow band span, � � b, the geometric parameter μ becomes large, and
the arguments of tanh and coth in (3.55) become small. In such a case, we can use the
following Taylor series expansions of the hyperbolic trigonometrics around α = 0
(here α is an arbitrary parameter):

tanh α = α − 1

3
α3 + 2

15
α5 + . . . ,

coth α = 1

α
+ 1

3
α − 1

45
α3 + . . . . (3.74)

Retaining only the first term in each of (3.74), and applying to (3.55), we obtain the
approximate expression

Φ =
√

1 − γ

1 + γ
(for large μ) . (3.75)

Using (3.75) and (3.56) in (3.54), we find the solution
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Fig. 3.4 Plots of Φ (top) and Ψ (bottom) for different values of the parameters �/2b and ν. Note
the horizontal scale
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λe = γ 2
e = 1 − ν2 . (3.76)

This solution corresponds to a narrow strip simply supported at its ends. It leads to
the Euler value of the force for stability loss (buckling),

P = Pe = λe
π2 D

�2 = π2 E I

�2 , (3.77)

where

P = mV 2
0 − T0 , D = Eh3

12(1 − ν2)
, I = h3

12
. (3.78)

Furthermore, consider the Taylor expansion of cosh α around α = 0 (here also α is
an arbitrary parameter):

cosh α = 1 + 1

2
α2 + 1

24
α4 + . . . .

Retaining only the first term, we have a constant value. Looking at (3.47), which
determines the corresponding mode of stability loss, we see that for large μ, the
dependence on η thus vanishes, making the mode cylindrical.

With regard to both the critical load and the mode, we see that the case of a long,
narrow strip corresponds to the classical one-dimensional case.

At the other extreme, for a very wide band for which b � �, we have μ → 0. In
this case, we can use the limits

lim
α→∞ tanh α = 1 ,

lim
α→∞ coth α = 1 , (3.79)

leading to
lim

μ→0+Φ(γ,μ) = 1 . (3.80)

Using (3.80) and (3.56) in (3.54), we obtain the equation Ψ (γ, ν) = 1 at the limit
μ → 0. Its solution is γ = γ0, given by (3.73) above. Thus, if ν �= 0, it holds for the
wide band that

γ∗ → γ0 �= 1 for μ → 0 , (3.81)

which differs from the classical one-dimensional value γe = √
1 − ν2 given by

(3.76). Numerically, it is seen that γ0 ≥ γe for all ν ∈ (−1, 0.5), where the equality
holds only at ν = 0. Thus, the minimal eigenvalue in the limit of a wide band is
almost always higher than the minimal eigenvalue of the classical one-dimensional
case.
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It also turns out that the corresponding mode of stability loss from (3.46)–(3.48)
is not cylindrical. It is therefore seen that the case of a wide band does not reduce to
the classical one-dimensional case.

For naturally occurring materials, for which ν ≥ 0, the largest difference between
the critical parameter γ∗, which leads to the loss of stability of an infinitely wide band,
and the corresponding value obtained assuming a distribution of the deflections in
the form of cylindrical surface, occurs when ν = 0.5, i.e., in the case of an absolutely
incompressible material. For auxetic materials, for whichν < 0, the largest difference
occurs at the lower limit of the range, i.e. ν = −1.

It follows from the above treatment and the properties of the functions Φ(γ,μ)

and Ψ (γ, ν) that the roots γ = γ∗ of (3.54) lie in the interval

γe ≤ γ∗ ≤ γ0 (3.82)

for all 0 < μ < ∞. This is the property that is needed to complete the analysis of
(3.62).

Some numerical examples of the divergence velocities, V div
0 , defined in (3.63),

and the corresponding buckling modes will be given. The used values of physical
parameters are given in Table 3.1. These parameters represent typical values of paper
material and conditions of paper making.

Figure 3.5 shows some examples of the critical buckling modes (divergence
modes), calculated with the help of relations in (3.46)–(3.48), (3.49) and (3.54)–
(3.56), for different values of the aspect ratio �/(2b). We see a localisation phenom-
enon: most of the displacement in the buckling mode occurs near the free edges. This
effect becomes more pronounced as the width of the plate increases with respect to
its length.

Table 3.2 presents some example values of critical velocities V div
0 of an axially

moving isotropic plate. The row with ν = 0.3 corresponds to the plots in Fig. 3.5.

3.5 Divergence Instability of Orthotropic Plates

The ratio of Young’s moduli, i.e. the degree of orthotropicity, defines the properties of
the actual paper product, affecting its behaviour. Different degrees of orthotropicity
are desired for different applications. Using an orthotropic material model, we can
bring the analysis closer to the real life situation that is being modelled.

In this section, we will extend the results from Sect. 3.4 into the case of orthotropic
materials.

Table 3.1 Physical
parameters used in the
numerical examples

T0 m h E

500 N/m 0.08 kg/m2 10−4 m 109 N/m2
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Fig. 3.5 Critical buckling modes (divergence modes) of an axially moving isotropic plate. Local-
ization of deflections in the vicinity of the free boundaries can be seen, with the effect growing
stronger as the aspect ratio �/2b is decreased. (Reproduced from Banichuk et al. 2010a)

Table 3.2 Critical velocities, i.e. divergence velocities V div
0 (m/s) of an axially moving isotropic

plate for selected values of Poisson ratio ν and the span length �

ν � (m)
10 1 0.1 0.01

0.1 79.0569 79.0570 79.0635 79.7110
0.3 79.0569 79.0570 79.0640 79.7659
0.5 79.0569 79.0570 79.0652 79.8824
The width of the plate is 2b = 1 m in all cases. The other physical parameters used
are given in Table 3.1. (Banichuk et al. 2010a)

3.5.1 Eigenvalue Problem

The problem is formulated similarly to the isotropic eigenvalue problem, but now
describing the divergence (static instability) of the travelling orthotropic plate sub-
jected to homogeneous tension. We have the partial differential equation
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(
mV 2

0 − T0

) ∂2W

∂x2 + D0L0(W ) = 0 , (3.83)

with the boundary conditions (3.16)–(3.18); see Sect. 3.3.2. Here the bending oper-
ator L0(W ) is

L0(W ) = D1

D0

∂4W

∂x4 + 2D3

D0

∂4W

∂x2∂y2 + D2

D0

∂4W

∂y4 , (3.84)

where the coefficients D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already introduced as (2.18), Sect. 2.1.3 (or see Timoshenko and
Woinowsky-Krieger 1959, Chap. 11). The Ci j are the elastic moduli, (2.19). In (3.83)
and (3.84), the coefficient D0 is an arbitrary constant, which is convenient to take as
D0 = D1.

We wish to determine the minimal eigenvalue,

λ = γ 2 = �2

π2 D0

(
mV 2

0 − T0

)
, (3.85)

of the problem (3.16)–(3.18) and (3.83)–(3.84). For the corresponding eigenfunction
W = W (x, y), we apply the same representation as before,

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
. (3.86)

As was noted, the fact that the solution is a half-sine in the longitudinal direction is
well-known in the isotropic case. It can be shown that the same form is applicable
for the orthotropic plate. Again, what remains to be determined is the unknown
cross-section f (y/b).

It follows from (3.86) that the desired buckling form W (steady-state solution)
satisfies the boundary condition (3.16). Using the dimensionless quantities (same as
before in Sect. 3.4)

η = y

b
, μ = �

πb
, (3.87)

and the relations (3.17)–(3.18) and (3.83)–(3.86), we obtain the following eigenvalue
problem for the unknown function f (η):

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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μ4 H2
d4 f

dη4 − 2μ2 H3
d2 f

dη2 + (H1 − λ) f = 0 , −1 < η < 1 , (3.88)

μ2 d2 f

dη2 − β1 f = 0 , η = ±1 , (3.89)

μ2 d3 f

dη3 − β2
d f

dη
= 0 , η = ±1 , (3.90)

where H1,H2 and H3 are dimensionless bending rigidities, defined by

H1 = D1

D0
, H2 = D2

D0
, H3 = D3

D0
, (3.91)

and D0 is the characteristic bending rigidity, which is an arbitrary constant. In this
book, we will use the choice D0 = D1, which will be convenient in the calculations
to follow. The parameters β1 and β2 are given by (3.19). Equations (3.89)–(3.90)
represent the free-of-traction boundary conditions.

3.5.2 Non-Negativeness of Eigenvalues

To show that the eigenvalues λ of the problem (3.88)–(3.90) are non-negative, one
can proceed by using general ideas from Chen et al. (1998), who proved a similar
result for an isotropic stationary plate. Let us denote

L1( f ) = μ4 H2
d4 f

dη4 − 2 μ2 H3
d2 f

dη2 + H1 f . (3.92)

We introduce the bilinear form a ( f, g) that corresponds to the strain energy of a
plate (see e.g. Timoshenko and Woinowsky-Krieger 1959),

a ( f, g) =
∫ 1

−1

[
H1 f ḡ − μ2 B1 f

d2 ḡ

dη2 − μ2 B1
d2 f

dη2 ḡ

+ μ4 H2
d2 f

dη2

d2 ḡ

dη2 + 4μ2 B2
d f

dη

dḡ

dη

]
dη , (3.93)

where
B1 + 2 B2 = H3 , (3.94)

and ḡ denotes the complex conjugate of g. Performing integration by parts on the
bilinear form (3.93), we obtain
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a ( f, g) =
∫ 1

−1

[
μ4 H2

d4 f

dη4 − 2 μ2 H3
d2 f

dη2 + H1 f

]
ḡ dη . (3.95)

Thus, the form a( f, g) can alternatively be defined as

a ( f, g) = (L1 ( f ) , g) , (3.96)

where the inner product (· , · ) is

(u, v) =
∫ 1

−1
u v̄ dη , (3.97)

for arbitrary functions u and v. The operator L1( f ) is self-adjoint, and the form
a( f, g) induces a positive semidefinite norm a( f, f ):

a( f, f ) =
∫ 1

−1

[
H1

∥∥∥∥ f − μ2ν21
d2 f

dη2

∥∥∥∥
2

+ μ4 H2(1 − ν12ν21)

∥∥∥∥d2 f

dη2

∥∥∥∥
2

(3.98)

+ 4 μ2 B2

∥∥∥∥d f

dη

∥∥∥∥
2 ]

dη ≥ 0 .

This implies that the eigenvalues of L1( f ) are nonnegative. That is,

λ ≥ 0 (3.99)

for all eigenvalues λ of the problem (3.88)–(3.90), which governs the cross-sectional
eigenfunctions f (y) and the corresponding eigenvalues of the buckled, travelling
orthotropic plate.

3.5.3 Analytical Solution

The general solutions of the ordinary differential equation (3.88) have the form

f = Aepη , p = κ

μ
, (3.100)

where A is an arbitrary constant and κ is a solution of the following biquadratic
algebraic characteristic equation:

H2κ
4 − 2H3κ

2 + (H1 − λ) = 0 . (3.101)

The solution can be written as
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κ2± = H3

H2

(
1 ±

√
1 − H2(H1 − λ)

H2
3

)
= H3

H2

(
1 ±

√
1 − H2(1 − λ)

H2
3

)
, (3.102)

where the upper, and respectively the lower, signs correspond to each other. In the
last form on the right, we have used the choice D0 = D1, which leads to H1 = 1.

Let us consider the range of λ where the solution is real-valued. The numbers κ2±
are real-valued if the expression under the square root in (3.102) is nonnegative. This
implies the following lower limit for λ:

λm ≡ 1 − H2
3

H2
< λ , (3.103)

corresponding to a real-valued eigenfunction f . Note that in the case λ = λm, the
solution of (3.101) is

κ = ±
√

H3

H2
, (3.104)

where both solutions are double roots.
Furthermore, if we require not only κ2±, but also κ± to be real-valued, the whole

parenthetical expression in (3.102) must then be nonnegative. This gives us an upper
limit for λ:

λ ≤ 1 ≡ λmax . (3.105)

Equation (3.105) holds regardless of the values of the problem parameters.
For the lower limit given by (3.103), it holds that

λm ≤ 0 when G12 ≥ GH , (3.106)

where G12 is the in-plane shear modulus of the orthotropic material (which is con-
sidered an independent material parameter), and GH is the geometric average shear
modulus. The quantity GH is given by (2.25), repeated here for convenience:

GH ≡
√

E1 E2

2
(
1 + √

ν12ν21
) . (3.107)

By (3.99) and (3.103)–(3.105), in the case that (3.106) holds, we may seek the
lowest eigenvalue in the range 0 ≤ λ ≤ 1, as was done in the isotropic case in
Sect. 3.4.

On the other hand, one can find examples of measurements of G12 for paper
materials, which indicate G12 < GH. See, e.g., the articles of Mann et al. (1980),
Seo (1999), Yokoyama and Nakai (2007), and Bonnin et al. (2000). For such a
material,

λm > 0 when G12 < GH . (3.108)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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This will produce complex solutions κ± and complex eigenfunctions if λ is between
zero and λm. In practice however, it has been numerically observed (from (3.115),
presented further below) that this interval contains no solutions. Thus, in this case
the search for the lowest eigenvalue can be performed in the range λm ≤ λ ≤ 1.

These considerations motivate the definition

λmin ≡ max (λm, 0) , (3.109)

enabling us to define the relevant range for solutions as

λmin ≤ λ ≤ λmax (3.110)

regardless of the value of the shear modulus G12. The quantities λm and λmax are
defined by (3.103) and (3.105), respectively.

From (3.100) and (3.102) in the case that λ �= λm, we obtain that the general
solution can be represented in the form

f (η) = A1e
+κ+η

μ + A2e
−κ+η

μ + A3e
+κ−η

μ + A4e
−κ−η

μ (3.111)

with unknown constants A1, A2, A3 and A4.
The eigenvalue boundary value problem (3.88)–(3.90) is invariant under the sym-

metry operation η → −η, and consequently the eigenforms can be classified into
functions that are symmetric ( f s) or antisymmetric ( f a) with respect to the origin.
Using the relations (3.88)–(3.90) and (3.111), we obtain a general representation for
the function f s(η) and linear algebraic equations for determining the constants As

and Bs:

f s(η) = As cosh
κ+η

μ
+ Bs cosh

κ−η

μ
, (3.112)

As
(
κ2+ − β1

)
cosh

κ+
μ

+ Bs
(
κ2− − β1

)
cosh

κ−
μ

= 0 , (3.113)

Asκ+
(
κ2+ − β2

)
sinh

κ+
μ

+ Bsκ−
(
κ2− − β2

)
sinh

κ−
μ

= 0 , (3.114)

where As and Bs are unknown constants. Due to the symmetry (or antisymmetry)
of the solution f , we have only two independent unknown constants, instead of the
four in the general representation (3.111), where the symmetry considerations had
not yet been applied.

Proceeding in the same manner as in the isotropic case of Sect. 3.4.2, the condi-
tions for a non-trivial solution to exist in the form of (3.112)–(3.114) reduce to the
requirement that the determinant of the homogeneous linear system (3.113)–(3.114)
vanishes.

Again, at the solution point, the zero determinant condition leads to the linear
dependence of the equations (3.113)–(3.114), providing only one independent con-
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dition. Thus, we may solve either of (3.113)–(3.114) for either As or Bs, and choose
the other (free) coefficient arbitrarily.

After rearrangement, the zero determinant condition can be expressed in the con-
venient form

Φ(γ,μ, ν12, E1, E2, G12) − Ψ (γ, ν12, E1, E2, G12) = 0 , (3.115)

where

Φ(γ,μ, ν12, E1, E2, G12) = tanh
κ−
μ

coth
κ+
μ

, (3.116)

Ψ (γ, ν12, E1, E2, G12) = κ+(κ2+ − β2)(κ
2− − β1)

κ−(κ2+ − β1)(κ
2− − β2)

, (3.117)

and

κ+ = κ+(γ, ν12, E1, E2, G12) , κ− = κ−(γ, ν12, E1, E2, G12) . (3.118)

The obtained transcendental equation (3.115) can be used to determine the eigenval-
ues

λ = γ 2 (3.119)

corresponding to symmetric eigenfunctions with different values of the parameters
μ, ν12, E1, E2 and G12.

In the definitions of Φ and Ψ , (3.116)–(3.117), there is no dependence on the
parameter ν21, because it depends on ν12, E1 and E2 via the compatibility relation
(2.36). The independent parameters in Φ and Ψ can be chosen also in a different
way, by choosing any combination of exactly three parameters out of E1, E2, ν12
and ν21. Relation (2.36) can then be used to eliminate the remaining parameter.

Similarly, using the relations (3.89) and (3.90), we can obtain a representation for
antisymmetric eigenfunctions f a(η), the equation for determining the corresponding
constants Aa and Ba, and the transcendental equation

Φ − 1

Ψ
= 0 , (3.120)

where Φ and Ψ are the functions defined in (3.116)–(3.117). These equations can be
used for determining the eigenvalues corresponding to antisymmetric eigenforms.
The representations differ from (3.112)–(3.114) through the replacements

cosh → sinh and sinh → cosh . (3.121)

Again, it turns out that the minimal antisymmetric eigenvalue is higher than the
minimal symmetric one, so we will only consider the symmetric case.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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In the special case that λ = λm, the characteristic equation (3.101) has two double
roots (3.104), and then, the general solution has the form

f (η) = A1e
+κη

μ + A2e
−κη

μ + A3ηe
+κη

μ + A4ηe
−κη

μ .

In this case, the symmetric solution has the form

f s(η) = As cosh
κη

μ
+ Bsη sinh

κη

μ
. (3.122)

For this solution, we will also have a zero determinant condition (different from
(3.115) and (3.120)) but for a fixed κ . It can be calculated that the determinant
condition does not hold for (3.122) with the boundary conditions (3.89)–(3.90), and
thus, there is no symmetric solution of the form (3.122), and we will have no solution
when λ = λm. The antisymmetric case can be explored in a similar manner.

Similar remarks about finalizing the solution apply as in Sect. 3.4.2. Once (3.115)
has been solved, obtaining the minimal symmetric eigenvalue γ∗, the corresponding
critical velocity of the travelling orthotropic plate can be found from (3.85). The
critical velocity is

(V div
0 )2 = T0

m
+ γ 2∗

m

(
π2 D0

�2

)
. (3.123)

Then, in order to obtain the corresponding eigenmode, we can solve for either As

or Bs, picking either of the equations (3.113)–(3.114). Recall that the equations are
linearly dependent at the solution point γ = γ∗, so it does not matter which one is
used. The other coefficient (either Bs or As, respectively) is then the free coefficient
of the eigenvalue problem, and can be assigned an arbitrary value. Finally, inserting
the obtained γ∗, As and Bs into (3.86), (3.102) and (3.112) gives the eigenmode
corresponding to the eigenvalue γ∗.

3.5.4 Properties of Analytical Solution

In this section, we will investigate the properties of the functions Φ and Ψ , when λ

is in the range λm ≤ λ ≤ 1, where λm is given by (3.103).
Unlike in the isotropic case described in Sect. 3.4.3, the decoupling between the

geometric and material parameters is very minimal. The function Ψ does not depend
on the aspect ratio μ (plate geometry), but both Φ and Ψ depend on all independent
material parameters (ν12, E1, E2 and G12).
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We start our examination by noting that (by direct calculation)

Φ(λm) = 1 , (3.124)

Ψ (λm) = 1 , (3.125)

and

Φ(1) = 0 , (3.126)

regardless of the problem parameters. We defer the evaluation of

lim
λ→λmax

Ψ (λ) (3.127)

to Sect. 3.5.5. Although it is trivial to see that Ψ has a singularity there, because
κ− → 0+ as λ → λmax, in order to deduce the sign of the singularity we need to
know the sign of each of the terms in (3.117).

Let us assume the values of ν12, E1, E2 and G12 to be given and that they corre-
spond to some orthotropic material. The qualitative behavior of the functions Φ and
Ψ is illustrated in Fig. 3.6. Recall that the corresponding isotropic case was illustrated
further above, Fig. 3.3 in Sect. 3.4.

The range for γ , which is defined in (3.85), is obtained by taking the square root
of each side of the inequality in (3.110). Note that the x axis in Fig. 3.3 starts at

Fig. 3.6 Behaviour of Φ and Ψ in the orthotropic case, as a function of γ , when the parameters
D1, D2, D3, μ, β1 and β2 are fixed. This is a qualitative drawing illustrating the case G12 ≤ GH
(for which γmin = γm). The main difference between this figure and Fig. 3.3 is that on the x axis,
the functions begin at γmin instead of 0, and the location of the zero of the function Ψ is γz instead
of 1 − ν. (Reproduced from Banichuk et al. 2011a)
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Fig. 3.7 Behaviour of functions Φ and Ψ for some orthotropic materials, at different aspect ratios
�/2b and different values for the in-plane shear modulus G12. For all cases, the other material
parameters are E1 = 6.8 GPa, E2 = 3.4 GPa and ν12 = 0.2, ν21 = 0.1. Note that only Φ depends
on the aspect ratio. Upper left G12 = 0.85 GH (note the scale for γ ). Upper right G12 = GH.
Lower left G12 = 1.15 GH, where GH is the geometric average shear modulus (3.107). The range
of γ is γmin ≤ γ ≤ γmax, based on (3.85) and (3.110), and evaluated separately for each subfigure.
Observe that for the lower right subfigure, γmin = 0 > γm, causing the qualitative behaviour of
the functions to differ from the other cases where γmin = γm. (Reproduced from Banichuk et al.
2011a)

γmin. In the isotropic case, we had γmin = 0, which does not hold in general for the
orthotropic case.

Figure 3.7 shows some examples of Φ and Ψ plotted for some orthotropic materi-
als. As discussed above, only Φ depends on the aspect ratio �/2b. We see that the case
G12 = GH behaves like the isotropic case, as expected (compare with Sect. 3.4.3).
When the value of G12 deviates from the geometric average shear modulus (3.107),
it is seen that when G12 < GH, the curvature of Φ becomes more pronounced, espe-
cially for a large aspect ratio. If G12 > GH, the value of both functions at γ = γmin
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decreases (because then γmin = 0 > γm), again especially for a large aspect ratio in
the case of Φ.

When γ increases from γm to γmax, the function Φ(γ,μ) decreases continuously
and monotonically from 1 to 0, i.e.

1 ≥ Φ(γ,μ) ≥ 0 ,
∂Φ(γ, μ)

∂γ
< 0 , γm ≤ γ ≤ γmax . (3.128)

The critical values of the function Φ in that interval are

Φ(γm, μ) =
(

tanh
κ−
μ

coth
κ+
μ

)
γ=γm

= 1 (3.129)

and

Φ(γmax, μ) =
(

tanh
κ−
μ

coth
κ+
μ

)
γ=γmax

= 0 . (3.130)

The function Ψ (γ ) decreases monotonically from 1 to 0 in the interval γm < γ < γz:

1 > Ψ (γ ) > 0 ,
∂Ψ (γ )

∂γ
< 0 . (3.131)

The values of the function Ψ at the ends of the interval are

Ψ (γm) = 1 (3.132)

and
Ψ (γz) = 0 . (3.133)

The function Ψ increases monotonically in the interval γz < γ < γmax, increasing
without limit when γ → γmax:

0 < Ψ (γ ) < ∞ ,
∂Ψ (γ )

∂γ
> 0 , (3.134)

Thus at the ends of the interval, the values of Ψ are

Ψ (γz) = 0 ,

and
lim

γ→γmax
Ψ (γ ) = ∞ .

The function touches zero at the point

γz =
√

β2
j H2 − 2β j H3 + H1 , (3.135)
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where j = 1, 2. It will be shown below that γz is unique. Thus either choice for j
results in the same value for γz.

Because
0 ≤ Φ ≤ 1 for all γmin ≤ γ ≤ γmax (3.136)

the symmetric solution in (3.115) is only possible in the range where Ψ ≤ 1. Like-
wise, the antisymmetric solution in (3.120) is only possible in the range where

1

Ψ
≤ 1 i.e. Ψ ≥ 1 . (3.137)

Again, at the point γ = γ0 for which Ψ = 1, it also holds that 1/Ψ = 1, and thus at
this point we have

Φ − Ψ = Φ − 1

Ψ
at γ = γ0 . (3.138)

That is, the functions defined by the left-hand sides of (3.115) and (3.120) will cross
at the value γ = γ0.

Equation (3.131), combined with the consideration in the previous paragraph,
implies that the eigenvalue γ∗ corresponding to the symmetric solution is always
lower than the eigenvalues γ1 and γ2 corresponding to the antisymmetric solution.
Additionally, since

Φ(γmax, μ) = 0 and lim
γ→γmax

Ψ (γ ) = ∞ , (3.139)

we see that the second antisymmetric eigenvalue must be γ2 = γmax. For the various
values of γ defined above, we thus have the ordering

γm ≤ γmin < γz < γ∗ < γ0 < γ1 < γ2 = γmax . (3.140)

An analytical expression for γ0 can be found by using the definitions (3.116)–
(3.117), and solving Ψ 2(γ ) = 1 for γ . Again, since we know that γ0 > 0, no
information is lost by squaring. Let us define the auxiliary expression

α ≡
√

8 β1 H2 H3 + (
β1

2 − 6 β1 β2 + β2
2
)

H2
2 , (3.141)

where the β j are the coefficients that appear in the boundary conditions (3.89)–(3.90).
For their expressions in terms of the material parameters, see (3.19).

For the root γ0 that interests us, the following expression holds:

γ 2
0 = 1

2

(
(β2 − β1) α + 2 H1 −

(
β1

2 − 4 β1 β2 + β2
2
)

H2 − 4 β1 H3

)
.

(3.142)
Next we will look into some detailed properties of the functions Φ and Ψ ,

which appear in the minimal symmetric eigenvalue equation for the orthotropic
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case, (3.115). Then, to finish the orthotropic problem, we will show some numerical
examples.

3.5.5 Analysis of Solution Properties

Let us show that the transcendental part Φ is monotonically decreasing in the open
interval (λm, λmax). First, we define

g(λ) ≡
√

1 − H2(H1 − λ)

H2
3

, (3.143)

i.e. the square root expression in κ2± in (3.102). We see that g(λm) = 0 and g(λmax) =
1. Between these extreme values, g(λ) increases monotonously as λ increases.

We write (3.102) in the form

κ2± = 1

d H3

(
1 ± √

1 − d (1 − λ)
)

, (3.144)

where we have defined the auxiliary constant

d ≡ H2/H2
3 .

Differentiating (3.144), we have

∂(κ2±)

∂λ
= ±1

2H3
√

1 − d(1 − λ)
, (3.145)

where the upper and lower signs correspond to each other. Note that the square root
expression in the denominator is g(λ) defined by (3.143), and as discussed above, it
takes values in the range (0, 1) as λ ∈ (λm, λmax), and especially, is positive in our
range of interest. Thus, (3.145) is always positive for κ2+ and always negative for κ2−.

On the other hand, by the rules of differentiation,

∂(κ2±)

∂λ
= 2κ±

∂κ±
∂λ

, (3.146)

and thus
∂κ±
∂λ

= ∂(κ2±)

∂λ
/2κ± . (3.147)

Noting that κ± > 0, we can conclude that the signs match:
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sign
∂κ±
∂λ

= sign
∂(κ2±)

∂λ
. (3.148)

In the special case of λ = λmax, we have κ− = 0, rendering the right-hand side of
(3.147) singular, but this point is not in our open interval. Now we turn our attention
to the transcendental function Φ. Differentiating (3.116) with respect to λ, we have

∂Φ

∂λ
= ∂

∂λ

(
tanh

κ−
μ

)
coth

κ+
μ

+
(

tanh
κ−
μ

)
∂

∂λ

(
coth

κ+
μ

)
=

1

cosh2 κ−
μ

· 1

μ
· ∂κ−

∂λ
coth

κ+
μ

+ tanh
κ−
μ

(
− 1

sinh2 κ+
μ

)
· 1

μ
· ∂κ+

∂λ
. (3.149)

In the first term on the right-hand side,

∂κ−
∂λ

< 0 , (3.150)

by (3.145) and (3.148), while the other factors are all positive, and in the second
term,

− 1

sinh2 κ+
μ

< 0 , (3.151)

while all other factors are positive. Thus, both terms on the right side are negative
and we conclude that

∂Φ

∂λ
< 0 for all λ ∈ (λm, λmax) . (3.152)

Consider now the algebraic function Ψ . We will show the following properties:

1. The function Ψ has exactly one zero at λz.
2. The function Ψ has exactly one singularity, which is located at λ = λmax, and

its sign is positive:
lim

λ→λmax
Ψ (λ) = +∞ .

3. If the root λz ∈ (λm, λmax), then the function Ψ is monotonically decreasing
in the interval λ ∈ (λm, λz), and monotonically increasing in the interval λ ∈
(λz, λmax).

Again, we begin with (3.102). The coefficient in front of the expression can be
written as

H3

H2
= D3

D2
= ν12 + 2

G12

E2
(1 − ν12ν21) . (3.153)

By defining the constants
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A ≡ H3

H2
= ν12 + 2

G12

E2
(1 − ν12ν21) , B ≡ 2

G12

E2
(1 − ν12ν21) , (3.154)

we see that
β1 = A − B , β2 = A + B . (3.155)

Using (3.154) and (3.143), the definition (3.102) reduces to a more convenient form,

κ2± = A(1 ± g(λ)) . (3.156)

Inserting (3.155) and (3.156) into the definition (3.117), we have

Ψ =
√

A(1 + g(λ))(A g(λ) − B)2

√
A(1 − g(λ))(A g(λ) + B)2

. (3.157)

All factors in the representation (3.157) are always positive, except the second one
in the numerator. Thus, the function can only have one zero, which is located at such
λz that

A g(λz) − B = 0 . (3.158)

The first result is therefore established.
To show the second result, we note that there is exactly one singularity, caused

by the first term in the denominator as g(λ) → 1, i.e. as λ → λmax. The function
Ψ is continuous outside its singularities. Furthermore, from (3.157), we have that
Ψ ≥ 0 for all λ for which the function is nonsingular. Because Ψ is continuous, the
singularity must have a positive sign.

To prove the last result we consider the derivative of the function Ψ with regard
to λ. Consider the case where

λz ∈ (λm, λmax) . (3.159)

Before we proceed, a motivation of (3.159) may be in order. If ν12 = 0, by (3.154)
we then have A = B. Using (3.158), this leads to g(λz) = 1, and further by (3.143),
to λz = 1 = λmax. To see this, observe that Ψ (λmax) becomes nonsingular if A = B,
by considering the limit of (3.157) as g(λ) → 1−. When A = B, the second term in
the numerator can be rewritten as (Ag(λ) − B)2 = (B − Ag(λ))2 = A2(1 − g(λ))2

and hence, by cancelling the common factor
√

A(1 − g(λ)), we are left with [A(1 −
g(λ))]3/2 in the numerator. Thus, for the special case A = B, we have Ψ (λmax) = 0.

If the case λz = λmax is allowed to occur, then by the below argument (which
works also for this case almost as-is), we will find that Ψ monotonically decreases
in the whole open interval λ ∈ (λm, λmax). In such a case, we can no longer be sure
that there will exist a point λ = λ∗ in (λm, λmax) satisfying Φ(λ∗) = Ψ (λ∗), since
both functions then are monotonically decreasing in the whole open interval. Hence,
if λz = λmax is allowed, we cannot say anything about whether a solution of (3.115)
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will exist in our interval. Thus, we will limit our consideration to the case ν12 > 0
(ensuring A > B), which holds for nearly all naturally occurring materials.

We obtain from (3.157), by direct calculation, that

∂Ψ

∂λ
(3.160)

= ∂g

∂λ

(B − A g(λ))

(B + A g(λ))3

√
A(1 − g(λ))√
A(1 + g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)
(1 − g(λ)2)

.

Because all other terms are positive, we have for the sign of the derivative the
expression

sign
∂Ψ

∂λ
= sign

[
(B − A g(λ))

(
B2 − A2g(λ)2 + 4 A B(g(λ)2 − 1)

)]
. (3.161)

Because g(λ) is monotonically increasing and therefore ∂g/∂λ > 0, and the zero of
the function Ψ is located at A g(λz) = B, we see that

sign [A g(λ) − B] = sign [λ − λz] , (3.162)

i.e. the sign of the expression A g(λ) − B corresponds to whether λ is smaller or
larger than λz.

We can write the expression on the right-hand side of (3.161) as

(B − A g(λ))
[
(B − A g(λ)) (B + A g(λ)) + 4 A B

(
g(λ)2 − 1

)]
. (3.163)

If
B − A g(λ) < 0 i.e. λ > λz , (3.164)

the expression in the parentheses at right is negative. The last term is always negative
because g(λ) < 1. In this case we have

∂Ψ

∂λ
|λ>λz > 0 . (3.165)

The other case
B − A g(λ) > 0 i.e. λ < λz , (3.166)

is trickier because then the expression in the parentheses at right in (3.163) will have
one positive and one negative term. However, we see that the expression represents
a parabola with the variable g(λ), having zeroes at

g±
0 ≡ ±

√
4AB − B2

4AB − A2 . (3.167)
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Because g(λ) > 0, we may discard the negative solution g−
0 in (3.167). The expres-

sion is negative until g(λ) becomes larger than the positive solution g+
0 .

The last question remaining is whether this solution lies within our range. Con-
sider the square root expression on the right-hand side of (3.167). We subtract the
denominator from the numerator, looking again at the definitions (3.154), and recall
that we required ν12 > 0:

(4AB − B2) − (4AB − A2) = A2 − B2 > 0 ,

i.e. we find that the numerator is always larger than the denominator. Thus g+
0 > 1

and the parabola remains negative in our entire range. The total sign is negative and
thus

∂Ψ

∂λ
|λ<λz < 0 ,

which was to be shown.
We will illustrate the critical divergence velocities and the corresponding buckling

modes (divergence modes) of axially moving orthotropic plates by giving some

Table 3.3 Physical
parameters used in the
numerical examples

T0 m h

500 N/m 0.08 kg/m2 10−4 m
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Fig. 3.8 Slices of buckling modes for different Young modulus ratios. Slices of the buckling modes
at x = �/2 are shown. The ratio between the plate length and the plate width is �/(2b) = 0.01.
The Young modulus in the x direction is E1 = 5 GPa and the Poisson ratio ν12 is 0.2. The Poisson
ratio ν21 is calculated from relation (2.36). For the shear modulus, the geometric average GH from
(2.25) is used. (Reproduced from Banichuk et al. 2011a)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Fig. 3.9 Buckling modes for
three different in-plane shear
moduli. The ratio between
the plate length and the plate
width is �/(2b) = 0.01. Top
G12 = 0.7GH; Middle G12 =
GH; Bottom G12 = 1.3GH,
where G12 is the in-plane
shear modulus and GH is
the geometric average shear
modulus, (3.107). The Young
moduli are E1 = 6.8 GPa
and E2 = 3.4 GPa, and the
Poisson ratio ν12 is 0.2. The
Poisson ratio ν21 is calculated
from relation (2.36), leading
to ν21 = 0.1. (Reproduced
from Banichuk et al. 2011a)
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Table 3.4 Critical velocities V div
0 (m/s) of an axially moving orthotropic plate for different values

of in-plane shear modulus G12 and the ratio between the plate length and the plate width �/(2b)

�/(2b) G12

0.7GH ≈ 1.47 GPa GH ≈ 2.11 GPa 1.3GH ≈ 2.74 GPa

0.01 83.4456 m/s 83.4461 m/s 83.4463 m/s
0.1 79.1020 m/s 79.1020 m/s 79.1020 m/s
1 79.0574 m/s 79.0574 m/s 79.0574 m/s
GH is the geometric average shear modulus, (3.107). The Young moduli are E1 =
6.8 GPa and E2 = 3.4 GPa, and the Poisson ratios ν12 is 0.2 and ν21 = 0.1

numerical examples. The physical parameters used are varied with the examples. The
mass per unit area m, the value of homogeneous tension T0 and the plate thickness
h are kept constant, and the used values for them are given in Table 3.3.

In Fig. 3.8, slices of buckling modes at x = �/2 are presented for four different
Young modulus ratios E1/E2. We observe that the Young modulus ratio affects the
localisation of the buckling mode: the smaller the ratio is, the more the shape is
localised near the edges.

The degree of localisation represents the variation of the displacement in the width
(y) direction. Relative localisation is high, when most of the displacement occurs
near the free edges. The problem parameters affecting the degree of localisation are
the aspect ratio �/(2b) (as was seen in Sect. 3.4.3), the Young modulus ratio E1/E2,
the Poisson ratio ν12, and the in-plane shear modulus G12.

In Fig. 3.9, we see three examples of complete buckling shapes for different values
of the shear modulus G12. The buckling shapes depend significantly on the in-plane
shear modulus G12. The figure also shows that if the ratio G12/GH is increased, then
the degree of localisation decreases.

In Table 3.4, the values of critical velocities, defined in (3.123), are given for some
selected values of the in-plane shear modulus G12 and the aspect ratio �/(2b). The
row �/(2b) = 0.01 corresponds to the buckling modes in Fig. 3.9. The effect of the
increased in-plane shear modulus is that the value of the critical velocity slightly
increases.
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Chapter 4
Non-Homogeneous Tension Profile

Abstract In this chapter, we will look at the influence of a skewed tension profile
on the divergence instability of a travelling, thin elastic plate. The travelling plate
is subjected to axial tension at the supports, but the tension distribution along the
supports is not uniform. For the nonuniformity, we will use a linear distribution.
First, we will perform a dynamic analysis of small time-harmonic vibrations, after
which we will concentrate on the divergence instability problem. We will see that a
small inhomogeneity in the applied tension may have a large effect on the divergence
modes, and that inhomogeneity in the tension profile may significantly decrease the
critical velocity of the plate.

4.1 Dynamic Analysis of Axially Moving Plates

Let a rectangular part of the plate

Ω ≡
{
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

be travelling at a constant velocity V0 in the x direction between two rollers located
at x = 0 and x = �, where � and b are prescribed parameters. See Fig. 4.1. Let
the considered part of the band be represented as an isotropic elastic plate, having
constant thickness h, Poisson ratio ν, Young modulus E and bending rigidity D. We
will make some notes on the orthotropic case later.

The plate is subjected to in-plane distributed forces

g = g(y) = T0 + T (y) (4.1)

applied at the plate boundaries x = 0 and x = �, acting in the x direction. The
constant T0 > 0 and the function T (y), characterizing non-homogeneous in-plane
tension of the axially moving plate, are considered given. The sides of the plate
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Fig. 4.1 Problem setup. A plate travelling at a constant velocity V0 between two rollers placed at
x = 0 and x = �. The tension profile is non-homogeneous and the tension is positive everywhere.
(Reproduced from Banichuk et al. 2013)

{x = 0, −b ≤ y ≤ b} and {x = �, −b ≤ y ≤ b} are simply supported, and the
sides {y = −b, 0 ≤ x ≤ �} and {y = b, 0 ≤ x ≤ �} are free of tractions.

4.2 Transverse Vibrations

The transverse displacement (out-of-plane deflection) of the travelling plate is
described by the deflection function w, which depends on the space coordinates
x and y, and time t . The differential equation for small transverse vibrations has the
form

m

(
∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ V 2

0
∂2w

∂x2

)
= LM (w) − LB (w) , in Ω . (4.2)

The left-hand side in (4.2) contains three terms, respectively representing a local
acceleration, a Coriolis acceleration and a centripetal acceleration. The membrane
operator LM on the right-hand side of Eq. (4.2) is

LM (w) = Txx
∂2w

∂x2 + 2 Txy
∂2w

∂x∂y
+ Tyy

∂2w

∂y2 . (4.3)

The coefficients Txx , Txy , Tyy of the linear operator LM are related to the correspond-
ing in-plane stresses σxx , σxy and σyy by the expressions

Ti j = hσi j .
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The linear bending operator LB is given by the expression

LB (w) = DΔ2w = D

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
(4.4)

in the case of an isotropic elastic plate.
Boundary conditions for the deflection function w, corresponding to the simply

supported boundaries and the free boundaries, can be written in the following form
(see, e.g., Timoshenko and Woinowsky-Krieger 1959)

(w)x=0, � = 0 ,

(
∂2w

∂x2

)
x=0, �

= 0 , −b ≤ y ≤ b , (4.5)

(
∂2w

∂y2 + ν
∂2w

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (4.6)

(
∂3w

∂y3 + (2 − ν)
∂3w

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ �. (4.7)

We represent the in-plane tensions Txx , Txy and Tyy with the help of the Airy
stress function ϒ :

Txx = ∂2ϒ

∂y2 , Tyy = ∂2ϒ

∂x2 , Txy = − ∂2ϒ

∂x∂y
. (4.8)

In this case of an isotropic plate, the Airy stress function ϒ satisfies the biharmonic
equation (see (2.46) of Sect. 2.2)

Δ2ϒ ≡ ∂4ϒ

∂x4 + 2
∂4ϒ

∂x2∂y2 + ∂4ϒ

∂y4 = 0. (4.9)

In what follows, we will concentrate on a linear tension distribution. The bound-
ary conditions for the tension are (2.29) and (2.30) of Sect. 2.2, repeated here for
convenience:

Txx = g(y) , Txy = 0 at x = 0, �, −b ≤ y ≤ b ,

Tyy = 0 , Txy = 0 at y = ±b, 0 ≤ x ≤ �.

The boundary conditions satisfied by ϒ , corresponding to (2.29) and (2.30) are

(
∂2ϒ

∂y2

)
x=0,�

= g(y) ,

(
∂2ϒ

∂x∂y

)
x=0,�

= 0 , −b ≤ y ≤ b , (4.10)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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http://dx.doi.org/10.1007/978-3-319-01745-7_2


72 4 Non-Homogeneous Tension Profile

(
∂2ϒ

∂x2

)
y=±b

= 0 ,

(
∂2ϒ

∂x∂y

)
y=±b

= 0 , 0 ≤ x ≤ �. (4.11)

Recall that the tensions expressed via the stress function ϒ in (4.8) will satisfy the
equilibrium of in-plane tensions for any function ϒ that is smooth enough. The
equilibrium equations are (2.28) of Sect. 2.2, repeated here for convenience:

∂Txx

∂x
+ ∂Txy

∂y
= 0 ,

∂Txy

∂x
+ ∂Tyy

∂y
= 0.

Equation (4.9), which must be solved, expresses the condition of compatibility for
the tensions.

In what follows, we will concentrate on a linear tension distribution, and use the
rigorous solution of the boundary value problem (4.9–4.11) corresponding to the
case that

g(y) = T0 + αy ≡ T0 + T (y). (4.12)

Here α > 0 is a given constant that will be called the tension profile skew parameter.
We have

ϒ(x, y) = T0
y2

2
+ α

y3

6
+ c1x + c2 y + c0, (x, y) ∈ Ω . (4.13)

Here c0, c1 and c2 are arbitrary constants. The corresponding tensions will be

Txx (x, y) = T0 + αy, Txy(x, y) = 0, Tyy(x, y) = 0, (x, y) ∈ Ω . (4.14)

In this case, the dynamic equation takes the form

∂2w

∂t2 + 2 V0
∂2w

∂x∂t
+ (V 2

0 − C2)
∂2w

∂x2 − T (y)

m

∂2w

∂x2

+ D

m

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
= 0, (x, y) ∈ Ω , (4.15)

where

C =
√

T0

m
, and T (y) = αy.

Following the approach of Bolotin (1963), let us represent the solution of the
nonstationary boundary value problem for the partial differential equation (4.15)
with the boundary conditions (4.5–4.7) using the time-harmonic trial function

w(x, y, t) = W (x, y) est , s = iω. (4.16)

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Here, ω is the frequency of the small transverse vibrations, and s is the stability
exponent, which is a complex number. As was explained in Sect. 3.2, if s is purely
imaginary, then the plate performs harmonic vibrations with a small amplitude, and
its motion can be considered to be stable. If the real part of s becomes positive, then
the transverse vibrations grow exponentially and, consequently, the behaviour of the
plate is unstable. Using this (complex-valued) representation we will have

s2W + 2sV0
∂W

∂x
+

(
V 2

0 − C2
) ∂2W

∂x2 − T (y)

m

∂2W

∂x2 + D

m
�2W = 0 . (4.17)

The boundary conditions for W follow from (4.5–4.7), by inserting (4.16). We
obtain

(W )x=0,� = 0 ,

(
∂2W

∂x2

)
x=0,�

= 0 , −b ≤ y ≤ b , (4.18)

(
∂2W

∂y2 + ν
∂2W

∂x2

)
y=±b

= 0 , 0 ≤ x ≤ � , (4.19)

(
∂3W

∂y3 + (2 − ν)
∂3W

∂x2∂y

)
y=±b

= 0 , 0 ≤ x ≤ �. (4.20)

Compare (3.16–3.18) and (3.20).
We multiply (4.17) by W and perform integration over the domain Ω to obtain

s2
∫

Ω

W 2 dΩ+2sV0

∫
Ω

W
∂W

∂x
dΩ + (V 2

0 − C2)

∫
Ω

W
∂2W

∂x2 dΩ

− T (y)

m

∫
Ω

W
∂2W

∂x2 dΩ + D

m

∫
Ω

W�2W dΩ = 0. (4.21)

Using the boundary conditions (4.18–4.20) and performing integration by parts, we
find the same result as in (3.11) and (3.12):

∫
Ω

W
∂W

∂x
dΩ =

∫ b

−b

∫ �

0
W

∂W

∂x
dx dy

=
∫ b

−b

[
W 2(�, y)

2
− W 2(0, y)

2

]
dy

= 0 ,

∫
Ω

W
∂2W

∂x2 dΩ = −
∫

Ω

(
∂W

∂x

)2

dΩ.

http://dx.doi.org/10.1007/978-3-319-01745-7_3
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The non-homogeneous tension-related integral admits the following representation:

∫
Ω

yW
∂2W

∂x2 dΩ = −
∫

Ω

y

(
∂W

∂x

)2

dΩ. (4.22)

We have

s2
∫

Ω

W 2 dΩ + (C2 − V 2
0 )

∫
Ω

(
∂W

∂x

)2

dΩ

+ α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ + D

m

∫
Ω

W�2W dΩ = 0. (4.23)

Two special cases, from which it is possible to draw further conclusions, will
be considered. First, let α = 0 and Txx (x, y) = T0, i.e. one assumes homogeneous
tension. In this case, as it was shown in Sect. 3.3.2, the following relation takes place:

∫
Ω

W �2W dΩ =
∫

Ω

(�W )2 dΩ + 2
∫ �

0
Qy=b dx . (4.24)

Above, the abbreviation

Q = W
∂

∂y
(�W ) − �W

∂W

∂y
(4.25)

has been used. Note that in (4.24) symmetry properties of the original partial dif-
ferential equation were used to obtain this form of the Q integral. Consequently,
one has

ω2 = −s2 =

(C2 − V 2
0 )

∫
Ω

(
∂W
∂x

)2
dΩ + D

m

[∫
Ω (�W )2 dΩ + 2

∫ �

0 Qy=b dx
]

∫
Ω

W 2 dΩ
. (4.26)

At the critical velocity, as can be seen from (4.26), the following relation between
the critical velocity and the divergence mode holds:

(
V div

0

)2 = C2 + D

m

∫
Ω (�W )2 dΩ + 2

∫ �

0 Qy=b dx∫
Ω

(
∂W
∂x

)2
dΩ

. (4.27)

In order to determine that Qy=b > 0 at this point, one needs to use the solution from
the corresponding static problem, described in the next section for the general case.
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With that observation, we see that all integrals on the right side of (4.27) are positive,
and it holds that (

V div
0

)2
> C2. (4.28)

It follows from (4.27) that if the bending rigidity of the web is negligibly small, then

(
V div

0 mem

)2 = C2 = T0

m
. (4.29)

In the one-dimensional case of axially travelling strings, this is a known result (see,
e.g., Chang and Moretti 1991). From (4.29), we see that the same value of the critical
velocity also applies to ideal membranes. The expression for V div

0 mem, (4.29), does not
depend on W . Thus, for the special case of an ideal membrane under homogeneous
tension, any combination of modes may occur at the critical velocity.

Consider now a second special case, where the bending rigidity of the axially
moving plate is negligibly small, and the in-plane tension in the x direction is positive.
Thus we avoid compression and wrinkling considerations. Illustration can be seen
in Fig. 4.1. We assume that

D = 0 , T0 > α b , (4.30)

where the latter condition comes from the constraints

Txx (x, y) = T0 + α y > 0 and y ≥ −b. (4.31)

In this case, the characteristic parameter s is evaluated as

ω2 = −s2 =
(C2 − V 2

0 )
∫
Ω

(
∂W

∂x

)2

dΩ + α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ

∫
Ω

W 2 dΩ
. (4.32)

If a steady-state solution (divergence) exists, it will occur at velocity

(
V div

0

)2 = C2 + α

m

∫
Ω

y

(
∂W

∂x

)2

dΩ

∫
Ω

(
∂W

∂x

)2

dΩ

. (4.33)

Let us assume that the divergence mode W is a real-valued function. Taking into
account the expression in (4.33), and the fact that y ≥ −b, we can estimate the
divergence velocity (from below) as

(
V div

0

)2 ≥ C2 − αb

m
= T0 − αb

m
. (4.34)
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Fig. 4.2 The definition of αmax . It is the largest skew that retains T (y) ≥ 0 across the whole
domain, avoiding compression and wrinkling

We see from (4.34) that as long as the condition for T0 in (4.30) is fulfilled, we have
(V div

0 )2 ≥ 0, i.e., the value of V div
0 is physically meaningful (Fig. 4.2).

4.3 Solution of Eigenvalue Problem

We will next consider the static instability of the travelling thin plate subjected
to a linearly skewed tension profile. The treatment of the problem follows the same
approach as in Sects. 3.4 and 3.5, where we analyzed the static instability of travelling
isotropic and orthotropic plates under a under the assumption of a homogeneous
tension profile.

4.3.1 Transformation to Ordinary Differential Equation

The stationary eigenvalue problem of elastic instability consists of finding a non-
trivial solution (mode) and the corresponding minimal eigenvalue of the following
boundary-value problem. Consider the steady-state equation, corresponding to s = 0
in the nonstationary problem in (4.17),
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(V 2
0 − C2)

∂2W

∂x2 − T (y)

m

∂2W

∂x2

+ D

m

(
∂4W

∂x4 + 2
∂4W

∂x2∂y2 + ∂4W

∂y4

)
= 0 , (x, y) ∈ Ω. (4.35)

with the boundary conditions for W in (4.18–4.20). From the latter condition in
(4.30), we obtain a constraint for α:

T (y) = αy and α < T0/b. (4.36)

To determine the minimal eigenvalue λ (see (3.39)) of the problem (4.18–4.20)
and (4.35), and the corresponding eigenfunction, we apply the same representation
as before:

W = W (x, y) = f
( y

b

)
sin

(πx

�

)
, (4.37)

where f (y/b) is an unknown function. It follows from (4.37) that the divergence
form (steady-state solution) W satisfies the boundary conditions (4.18).

As before, let us define the dimensionless quantities η and μ, given by (3.41),

η = y

b
, μ = �

πb
, (4.38)

and the eigenvalue λ as per (3.39),

λ = γ 2 = �2

π2 D

(
mV 2

0 − T0

)
. (4.39)

By using the free-of-traction boundary conditions (4.19) and (4.20), the static equa-
tion (4.35) and the definition of W , (4.37), we obtain the following eigenvalue prob-
lem for the unknown function f (η):

μ4 d4 f

dη4 − 2μ2 d2 f

dη2 + (1 − λ + α̃η) f = 0 , −1 < η < 1 , (4.40)

where

α̃ = b�2

π2 D
α = b3μ2

D
α. (4.41)

Equation (4.40) is considered with the boundary conditions

μ2 d2 f

dη2 − ν f = 0 , η = ±1 and (4.42)

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
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μ2 d3 f

dη3 − (2 − ν)
d f

dη
= 0 , η = ±1 , (4.43)

which correspond to the free-of-traction boundary conditions of the original problem.
Equation (4.40) with the boundary conditions (4.42) and (4.43) constitutes a linear

eigenvalue problem for f with polynomial coefficients.
For an orthotropic material, it is possible to use problem (4.40), (4.42–4.43) in

a straightforward way by setting the orthotropic in-plane shear modulus G12 as the
geometric average shear modulus

GH ≡
√

E1 E2

2
(
1 + √

ν12ν21
) ,

and reducing the orthotropic problem into the isotropic one (see Timoshenko and
Woinowsky-Krieger 1959).

Alternatively, if one wishes to keep G12 as an independent material parameter,
which is more accurate for some materials, it is possible to derive the corresponding
eigenvalue problem for the orthotropic plate following the same procedure that was
used above for the isotropic plate (Fig. 4.3). Again, let the axial in-plane tension (4.1)
take the form (4.12). As was noted, the value of α in (4.12) is constrained by (4.36).
We have the following partial differential equation:

(
mV 2

0 − T0

) ∂2W

∂x2 − T (y)

m

∂2W

∂x2 + D0L0(w) = 0 , (4.44)

where the differential operator L0(w) is given by (3.4),

L0(w) = D1

D0

∂4w

∂x4 + 2D3

D0

∂4w

∂x2∂y2 + D2

D0

∂4w

∂y4 ,

and D0 is an arbitrary normalization factor, which is convenient to take as D0 = D1.
The coefficients D j for j = 1, 2, 3 are the orthotropic bending rigidities

D1 = h3

12
C11 , D2 = h3

12
C22 , D3 = h3

12
(C12 + 2 C66) ,

which were already given as (2.18), Sect. 2.1.3 (or see Timoshenko and Woinowsky-
Krieger 1959, chap. 11). The Ci j are the elastic moduli, (2.19).

The boundary conditions for W are given in (4.18–4.20). However, in the free
edge boundary conditions (4.19) and (4.20), instead of the isotropic free boundary
coefficients ν and 2 − ν, we must now use the orthotropic coefficients β1 and β2
(respectively) defined in (2.23) in the same way as in Sect. 2.1.3 (their definitions are
repeated at the end of this subsection for convenience).

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Fig. 4.3 Top Critical plate
velocity (V0)crit with respect
to the tension profile skew
parameter α and plate half-
width b. Note the logarithmic
scale for b. The plate length
is constant (� = 0.1 m).
Bottom The critical velocity
plotted with respect to the
tension profile skew parameter
(� = 0.1 m, 2 b = 1 m).
(Reproduced from Banichuk
et al. 2013)
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In Sect. 2.2, the in-plane tension field for an orthotropic plate in the case of a
linear tension distribution was solved with the help of the Airy stress function. See
Eqs. (2.50) and (2.51).

To determine the minimal eigenvalue λ (4.39), and the corresponding eigenfunc-
tion, of the problem (4.44) with boundary conditions (4.18–4.20) (modified for the
orthotropic case as explained), we apply the representation (4.37). By using the
dimensionless quantities η and μ in (4.38), the free-of-traction boundary conditions

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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(4.19) and (4.20), with the relations (4.39), (4.44) and (4.37), we obtain the eigenvalue
problem for the orthotropic case:

μ4 H2
d4 f

dη4 − 2μ2 H3
d2 f

dη2 + (H1 − λ − ᾱη) f = 0 , −1 < η < 1 , (4.45)

μ2 d2 f

dη2 − β1 f = 0 , η = ±1 and (4.46)

μ2 d3 f

dη3 − β2
d f

dη
= 0 , η = ±1. (4.47)

In (4.45), the dimensionless tension profile skew parameter is defined as

ᾱ = b�2

π2 D0
α = b3μ2

D0
α (4.48)

and the Hj are the dimensionless bending rigidities defined by (3.91), Sect. 3.5,
repeated here for convenience:

H1 = D1

D0
, H2 = D2

D0
, H3 = D3

D0
.

As before, D0 is the normalization factor for the bending rigidities and can be chosen
arbitrarily. A convenient choice is D0 = D1. In (4.46) and (4.47), the β j are defined
in (2.23) in Sect. 2.1.3, also repeated here for convenience:

β1 = ν12 ,

β2 = ν12 + 4 G12

E2
(1 − ν12ν21) .

Again, we have a linear eigenvalue problem with polynomial coefficients.
For the rest of this chapter, we will concentrate on the isotropic case.

4.3.2 Numerical Analysis

We will proceed with a numerical solution of the eigenvalue problem for the isotropic
elastic plate. Finite differences will be used, with virtual points added to the ends of
the domain to enforce the boundary conditions.

As the considered problem is linear in f , the discretization will lead to a standard
discrete linear eigenvalue problem representing (4.40):

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Af = λf . (4.49)

Equation (4.49) does not yet include the boundary conditions (4.42)–(4.43). Because
the boundary conditions are homogeneous, it is possible to add them to the discrete
system by rewriting the original discrete problem (4.49) as a generalized linear
eigenvalue problem,

Af = λBf , (4.50)

where B is an identity matrix with the first two and last two rows zeroed out. In
(4.50), the first two and the last two rows of A contain discrete representations of the
boundary conditions (4.42)–(4.43).

The details are as follows. Equations (4.40)–(4.43) are to be discretized. The
standard central difference formulas, of second-order asymptotic accuracy, for the
first four derivatives on a uniform grid are

∂ f j

∂η
≈ f j+1 − f j−1

2 (Δη)
, (4.51)

∂2 f j

∂η2 ≈ f j+1 − 2 f j + f j−1

(Δη)2 , (4.52)

∂3 f j

∂η3 ≈ f j+2 − 2 f j+1 + 2 f j−1 − f j−2

2 (Δη)3 , (4.53)

∂4 f j

∂η4 ≈ f j+2 − 4 f j+1 + 6 f j − 4 f j−1 + f j−2

(Δη)4 , (4.54)

where f ≡ f (x) is the function to be differentiated, f j ≡ f (η j ), and Δη is the grid
spacing.

When the derivatives in (4.40) are replaced by the discrete approximations (4.52)
and (4.54) for each grid point η j , we obtain the discrete equation system for the
interior of the domain. The ᾱη term is handled by substituting in the coordinate of
the j th grid point, η j = j (Δη). Then the discrete equations are collected into matrix
form, and the λf term is moved to the right-hand side.

The boundary conditions (4.42)–(4.43) are then handled by adding two virtual
points at each end of the domain. Applying (4.51)–(4.54) to the boundary conditions
produces discrete equations connecting the function values at the virtual points to
those inside the domain.

If we number the points starting at 1 at the first (outermost) virtual point at the
left end of the domain, the final left-hand side matrix becomes

A ≡ A4 + A2 + A0 + L1 + L2 + L3 + L4 ,

where the terms Am correspond to Eq. (4.40), and are given by
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A4 ≡ μ4

(Δη)4

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .

1 −4 6 −4 1
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A2 ≡ − 2μ2

(Δη)2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 1 −2 1

. . .
. . .

. . .

1 −2 1 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A0 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 0 . . . . . . 0
0 0 ak . . . 0

. . .

0 . . . ak 0 0
0 . . . . . . 0 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where
ak ≡ 1 + ᾱ [−1 + (k − 3) (Δη)]

and k denotes the row number of the matrix A0. The first contribution in A0 is 1 − ᾱ

(on row 3, corresponding to the point at η = −1), and the last is 1 + ᾱ (third last
row, corresponding to η = +1).

Empty entries in the matrices denote zeroes; some zeroes are displayed explicitly
to show more clearly where the nonzero entries belong.

The terms Lm correspond to the boundary conditions (4.42)–(4.43), and are
given by

L1 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 μ2/(Δη)2 −2μ2/(Δη)2 − ν μ2/(Δη)2 . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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L2 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ2/[2(Δη)3] χ 0 −χ μ2/[2(Δη)3] 0 . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L3 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . . . . . . . . . . 0
0 . . . μ2/(Δη)2 −2μ2/(Δη)2 − ν μ2/(Δη)2 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

L4 ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . . . . 0
0 . . . −μ2/[2(Δη)3] χ 0 −χ μ2/[2(Δη)3]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where in L2 and L4 we use the notation

χ ≡ μ2/(Δη)3 + (2 − ν)/[2(Δη)].

The matrices L1 and L3 correspond to the boundary condition (4.42) at the left and
right endpoints of the domain, respectively, while L2 and L4 correspond to (4.43).

Finally, the discrete problem (4.50) is completed by defining

B ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 . . . . . . 0
0 0 . . . . . . 0
0 0 1 . . . 0

. . .

0 . . . 1 0 0
0 . . . . . . 0 0
0 . . . . . . 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which enforces the homogeneous boundary conditions (4.42)–(4.43), represented by
the first two and last two rows of the discrete equation system.

In order to solve the original problem, we compute the solution of (4.50), dis-
card eigenvalues of infinite magnitude, which result from our way of handling the
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boundary conditions, and then extract the smallest eigenvalue λ and its corresponding
eigenvector f . The first two and last two components of the eigenvector are discarded,
because they represent the function values at virtual points that were generated from
the boundary conditions. Finally, the buckling mode (divergence mode) W (x, y) is
constructed using the equation

W (x, y) = f
(πy

�

)
sin

(πx

�

)
.

Below, numerical results are shown for some practically interesting choices of prob-
lem parameters. The physical parameters used in the examples are presented in
Table 4.1. These parameter values approximately correspond to some paper materi-
als, within the limitations of the isotropic model.

Various values of the Poisson ratio ν and the tension profile skew parameter α̃

are used in the examples. For the Poisson ratio, the values 0, 0.1, 0.3 and 0.5 are
used. The values of α/αmax (or α̃/α̃max) are 0, 10−6, 10−4 and 10−2, where αmax
corresponds to the upper limit imposed by the constraint (4.36), α < T0/b. Note that
α̃max depends on ν, via D. In Table 4.2, critical divergence velocities are presented for
these cases. The analytical solution for α̃ = 0 for the same geometric and material
parameters (see (3.39), (3.54–3.56)) matches the values in the first column of the
table.

The results for the transverse displacement are shown in Figs. 4.4, 4.5 and 4.6. In
each figure, ν is fixed. Figure 4.4 is divided into two parts. Both parts of the figure are
further divided into four subfigures. Each of these four subfigures shows the results for
a different value of the skew parameter α̃. In the upper four subfigures, f (η) is plotted,
showing a slice of the out-of-plane displacement from one free edge to the other at
x = �/2. Tension increases toward positive η. The total out-of-plane displacement
in the whole domain Ω , from Sequation W = f (πy/�) sin (πx/�), is shown in
the lower four subfigures. Note the orientation of the axes. In Figs. 4.5 and 4.6,

Table 4.1 Physical parameters used in the numerical examples.

T0 (tension at y = 0) m � 2b h E

500 N/m 0.08 kg/m2 0.1 m 1 m 10−4 m 109 N/m2

Table 4.2 Critical divergence velocities V div
0 for example cases

ν α̃

0 10−6α̃max 10−4α̃max 10−2α̃max

0 79.0634 79.0634 79.0605 78.6892
0.1 79.0635 79.0635 79.0605 78.6886
0.3 79.0640 79.0640 79.0609 78.6876
0.5 79.0652 79.0652 79.0618 78.6870

Note that α̃max is different for each value of ν (Banichuk et al. 2013)

http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
http://dx.doi.org/10.1007/978-3-319-01745-7_3
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Fig. 4.4 Out-of-plane displacement of an axially travelling pinned-free plate with dimensions
� = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.3. Tension
profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al. 2013)
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Fig. 4.5 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.
Tension profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al.
2013)

the four subfigures show the slices of the out-of-plane displacement at x = �/2 for
the limit cases ν = 0 and ν = 0.5, in analogous order.

From Figs. 4.3, 4.4, 4.5 and 4.6 and Table 4.2, three conclusions are apparent.
First, it is seen that inhomogeneities in the tension profile may significantly decrease
the critical velocities. Up to a 20 % tension inhomogeneity between the midpoint
and edges causes a decrease in critical velocity of 10 %. It is also seen that a wider
plate is more sensitive to tension inhomogeneities. Secondly, by comparing Figs. 4.4,
4.5 and 4.6, it is observed that materials with a larger Poisson ratio tend to exhibit a
higher degree of sensitivity to inhomogeneities in the tension profile.

Finally, we see that even for the smallest inhomogeneity in the examples (one
part in 106), for the problem parameters considered the buckling mode (divergence
mode) changes completely. Thus, from a practical point of view, although studies of
the homogeneous tension case can predict the critical velocity relatively accurately,
the obtained results indicate that if one wishes to predict the divergence shape, even
a small inhomogeneity in the tension must be accounted for.
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Fig. 4.6 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.5.
Tension profile skew parameter α/αmax = 0, 10−6, 10−4, 10−2. (Reproduced from Banichuk et al.
2013)

The sensitivity to the inhomogeneity is affected also by the tension at midpoint T0.
The higher the tension, the more sensitive the system is to small inhomogeneities. This
effect is shown in Fig. 4.7. The subfigure on the bottom left of this figure corresponds
to the subfigure at the top right of Fig. 4.4. We see that with ν = 0.3, α̃ = 10−6α̃max,
and the values of the other parameters fixed to those given at the beginning of this
section, the sensitivity is very high already at T0 = 500 N/m, which is realistic in the
application of paper production.

It should be noted that as far as geometric parameters are concerned, the divergence
shape is a function of not only the aspect ratio �/2b, but also the overall scale. Even
for the same aspect ratio, scaling � (and also b to keep the same aspect ratio) changes
the divergence shape. This effect occurs even if h is scaled by the same amount
as � and b. Thus, it should be emphasized that the results in Figs. 4.4, 4.5, 4.6 and
4.7 only represent the specific case of plates with the dimensions � × 2b × h =
0.1 m × 1 m × 10−4 m.
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Fig. 4.7 Out-of-plane displacement of an axially travelling pinned-free plate at x = �/2 with
dimensions � = 0.1 m (length), 2b = 1 m (width), h = 10−4 m (thickness). Poisson ratio ν = 0.3,
tension profile skew parameter α/αmax = 10−6. Midpoint tension T0 = 5, 50,500 and 5,000 N/m.
(Reproduced from Banichuk et al. 2013)
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Chapter 5
Travelling Panels Made of Viscoelastic Material

Abstract In this chapter, our focus is to analyse the behaviour of moving panels
using viscoelastic materials. As the reader will have noticed, all the models discussed
in previous chapters have concerned the case of a purely elastic material. The defor-
mation of an elastic material depends only on the applied forces; it has no explicit
time dependence. Paper, however, is a more complicated material: it is viscoelas-
tic. In addition to elastic properties, it has also time-dependent viscous properties,
which cause the phenomena of creep and relaxation (see, e.g., Alava and Niskanen
2006). One of the simplest models for a viscoelastic solid is the Kelvin–Voigt model,
which consists of a linear spring and a dashpot (damper) connected in parallel. In
this chapter, we will use dynamic (modal) analysis to investigate the stability of an
axially moving viscoelastic Kelvin–Voigt panel. The material derivative will be used
in the viscoelastic constitutive relations. A similar analysis has been performed in
the papers by Marynowski and Kapitaniak (2002) and Lee and Oh (2005), but using
the partial time derivative in the viscoelastic constitutive relations. We will present
comparisons of the results using the material derivative with the results obtained
using the partial time derivative.

5.1 Modelling of Moving Viscoelastic Panels

Consider an axially moving thin plate, made of viscoelastic material, in a Cartesian
coordinate system. The plate is assumed to undergo cylindrical transverse deforma-
tion, that is, the transverse displacement does not vary in the y direction. In such
a case, the panel model can be used (Timoshenko and Woinowsky-Krieger 1959;
Bisplinghoff and Ashley 1962). See Fig. 5.1.

The panel is supported at x = 0 and x = �, and the length of the unsupported
interval is �. The axial velocity of the panel is assumed to be constant and denoted
by V0. The transverse displacement is described by the function w = w(x, t).

N. Banichuk et al., Mechanics of Moving Materials, 89
Solid Mechanics and Its Applications 207, DOI: 10.1007/978-3-319-01745-7_5,
© Springer International Publishing Switzerland 2014
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Fig. 5.1 Top A plate travelling between two fixed supports, undergoing cylindrical deformation.
Bottom The corresponding travelling panel (Reproduced from Saksa et al. (2012) with permission
from Elsevier)

Fig. 5.2 The Kelvin–Voigt
viscoelastic material model.
Combining various numbers
of springs and dashpots it
is possible to generate more
advanced and complex models
for many situations

The viscoelasticity of the material is described using the rheological Kelvin–Voigt
model, which consists of an elastic spring and a viscous damper connected in parallel.
The spring element is described by the elastic parameters E and ν, and the damper by
the viscous damping coefficient η and the Poisson ratio for viscosity μ. See Fig. 5.2.

Since, we consider a panel, i.e. a two-dimensional plate with the assumption that
its transverse displacement does not vary in the y direction, we will first present
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the stress-strain relations of bending for the plate and then reduce them to the one-
dimensional relations. Under assumption of plane stress, the constitutive stress-strain
relations for elastic material are

σx = E

1 − ν2

(
εx + νεy

)
,

σy = E

1 − ν2

(
νεx + εy

)
, (5.1)

τxy = E

2(1 + ν)
γxy ,

where σx, σy are the normal stresses, and τxy the shear stress due to bending. The
bending strains εx and εy and the shear strain γxy for small deformations are defined
as (Timoshenko and Woinowsky-Krieger 1959)

εx = −z
∂2w

∂x2 ,

εy = −z
∂2w

∂y2 , (5.2)

γxy = −2z
∂2w

∂x∂y
.

The relations in (5.1) are also known as the generalized Hooke’s law; compare with
the generalized Hooke’s law for the in-plane strains of orthotropic material, (2.32–
2.34), in Sect. 2.2.

Similar constitutive relations as (5.1) for a viscous Newtonian fluid can be writ-
ten, corresponding to the viscous damper in the Kelvin–Voigt model (see also, e.g.,
Sobotka 1984):

σx = η

1 − μ2

(
dεx

dt
+ μ

dεy

dt

)
,

σy = η

1 − μ2

(
μ

dεx

dt
+ dεy

dt

)
, (5.3)

τxy = η

2(1 + μ)

dγxy

dt
.

In (5.3), the derivatives d/dt denote material derivatives,

d(·)
dt

= ∂(·)
∂t

+ V0
∂(·)
∂x

.

The stress-strain relations for the axially moving Kelvin–Voigt plate under
assumption of plane stress are obtained by superposing the stress-strain relations
in (5.1) and (5.3) and by expanding the material derivatives:

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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σx = E

1 − ν2

(
εx + νεy

)

+ η

1 − μ2

[(
∂εx

∂t
+ V0

∂εx

∂x

)
+ μ

(
∂εy

∂t
+ V0

∂εy

∂x

)]
,

σy = E

1 − ν2

(
νεx + εy

)
(5.4)

+ η

1 − μ2

[
μ

(
∂εx

∂t
+ V0

∂εx

∂x

)
+

(
∂εy

∂t
+ V0

∂εy

∂x

)]
,

τxy = E

2(1 + ν)
γxy + η

2(1 + μ)

(
∂γxy

∂t
+ V0

∂γxy

∂x

)
.

Denoting σ = σx and ε = εx, and assuming small cylindrical deformations (hence
εy = −z∂2w/∂y2 = 0), the relations (5.4) are reduced to

σ = E

1 − ν2 ε + η

1 − μ2

(
∂ε

∂t
+ V0

∂ε

∂x

)
. (5.5)

For the bending moment M = Mx, we have

M =
∫ h/2

−h/2
zσ dz = −

[
D

∂2w

∂x2 + ϒ

(
∂3w

∂x2∂t
+ V0

∂3w

∂x3

)]
, (5.6)

where we have used the notations

D = Eh3

12(1 − ν2)
, ϒ = ηh3

12(1 − μ2)
. (5.7)

If we perform notation changes D ↔ E I and ϒ ↔ ηI in (5.6), we obtain the
corresponding equations for a viscoelastic beam.

Let us define the parameter tR as a retardation time constant (see Sobotka 1984)

tR = η

E
. (5.8)

The SI unit of tR is the second. With the help of (5.8) and assuming that the elastic
and viscous Poisson rations coincide, i.e. μ = ν, we may write

ϒ = tR D .

Writing the dynamic equilibrium for the bending forces affecting the panel,

1

m

∂2 M

∂x2 + T0

m

∂2w

∂x2 = ∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ V 2

0
∂2w

∂x2 , (5.9)
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and inserting expression (5.6) for the bending moment into (5.9) (see also Ding and
Chen 2008), we have

∂2w

∂t2 + 2V0
∂2w

∂x∂t
+ tR D

m

∂5w

∂x4∂t
+

(
V 2

0 − T0

m

)
∂2w

∂x2

+ D

m

∂4w

∂x4 + V0
tR D

m

∂5w

∂x5
= 0 .

(5.10)

In (5.10), m is mass per unit area, and T0 is a constant tension at the panel ends,
having the unit of force per unit length. With the change D ↔ E I (and tR E I = ηI )
in (5.10), one has the dynamic equation for the axially moving viscoelastic beam.

For a derivation of the dynamic equation for a non-linear moving viscoelastic beam
based on Newton’s second law, refer to Ghayesh (2011). Derivation of the dynamic
equation for the axially moving viscoelastic plate, via Hamilton’s principle, is given
in Tang and Chen (2013). Their equation is reduced into (5.10) when we assume that
the displacement w does not vary in the y direction, and that the axial velocity of the
plate is constant.

Since (5.10) is of the fifth order in space, five boundary conditions are needed.
We first assume that both the ends are clamped and, therefore, we have

w(0, t) = w(�, t) = 0 and
∂w

∂x
(0, t) = ∂w

∂x
(�, t) = 0 . (5.11)

These boundary conditions can be derived, e.g., by setting clamped boundary condi-
tions for the panel in the reference frame moving with the panel, and performing an
appropriate change of variables. For details, see e.g. Chen and Ding (2010). Since
the panel is moving in the positive x direction, we seek a fifth condition at the in-flow
end x = 0, indicating that we have more information there than at the out-flow end.

For the bending moment M in (5.6), we write the following continuity condition
(see Flügge 1975)

lim
δ→0

∫ +δ

−δ

M dx = 0 ,

where M is as described in (5.6). Denoting the displacement of the panel in the
domain x < 0 by w−, we obtain in the limit δ → 0:

− D
∂w

∂x
+ ϒ

(
∂2w

∂x∂t
+ V0

∂2w

∂x2

)
+ D

∂w−

∂x
− ϒ

(
∂2w−

∂x∂t
+ V0

∂2w−

∂x2

)
= 0

(5.12)
at x = 0. Since

∂w

∂x
(0, t) = 0 , (5.13)
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and thus also
∂2w

∂x∂t
(0, t) = 0 , (5.14)

by the continuity of the panel (see Flügge 1975) it must hold that

∂w−

∂x
(0, t) = 0 , (5.15)

and thus
∂2w−

∂x∂t
(0, t) = 0 . (5.16)

Substituting (5.13–5.16) into (5.12), we obtain

∂2w

∂x2 (0, t) = ∂2w−

∂x2 (0, t) . (5.17)

That is, the second derivative of the panel deflections before and after the support
must coincide. We choose

∂2w−

∂x2 = 0 (5.18)

and obtain the fifth condition
∂2w

∂x2 (0, t) = 0 . (5.19)

In the cases of an elastic panel (ϒ = 0), or a viscoelastic panel where partial time
derivative is used instead of the material derivative in the constitutive relations, (5.12)
does not produce additional conditions. This is as expected.

In the following, we will treat the problem using two different combinations of
boundary conditions. First, a clamped boundary condition at the out-flow end and
three conditions at the in-flow end are set

w(0, t) = 0 ,
∂w

∂x
(0, t) = 0 , (5.20)

∂2w

∂x2 (0, t) = 0 , (5.21)

w(�, t) = 0 ,
∂w

∂x
(�, t) = 0 . (5.22)

Equations (5.20–5.22) will be called the C+-C conditions. If the condition (5.21) is
removed, we obtain the clamped–clamped (C-C) boundary conditions.

Second, we consider a simply supported condition at the out-flow end and three
conditions at the in-flow end:
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w(0, t) = 0 ,
∂w

∂x
(0, t) = 0 , (5.23)

∂2w

∂x2 (0, t) = 0 , (5.24)

w(�, t) = 0 ,
∂2w

∂x2 (�, t) = 0 . (5.25)

Equations (5.23–5.25) will be called the C+-S conditions. If the condition (5.24)
is removed, we obtain the clamped–simply supported (C-S) conditions. The last
condition in (5.25) corresponds to zero moment for an elastic panel, but for the
viscoelastic panel, it should be considered as a purely kinematical (i.e. displacement-
like) condition. Alternatively, if ϒ is small, it can be viewed as an approximative
condition for the moment given by (5.6).

As was mentioned above, we use three boundary conditions at the in-flow end
and two conditions at the out-flow end, indicating that we have more information at
the in-flow end. The label C+ for the three conditions at x = 0 (in (5.20–5.22) and
(5.23–5.25)) is motivated by the fact that clamping is a stronger condition than being
simply supported.

Let us transform the dynamic Eq. (5.10) into a dimensionless form. We introduce
the transformations

x′ = x

�
, t ′ = t

τ
, w′(x′, t ′) = w(x, t)

h
. (5.26)

Inserting (5.26) into (5.10), omitting the primes and multiplying by m�2/(T0h), we
obtain

m�2

τ 2T0

∂2w

∂t2 + 2V0
m�

τT0

∂2w

∂x∂t
+ tR D

τ�2T0

∂5w

∂x4∂t

+
(

V 2
0

T0/m
− 1

)
∂2w

∂x2 + D

�2T0

∂4w

∂x4 + V0
tR D

�3T0

∂5w

∂x5
= 0 . (5.27)

Next, let us choose

τ = �

√
m

T0
, (5.28)

as a characteristic time, and introduce the dimensionless problem parameters

c = V0√
T0/m

, α = D

�2T0
, γ = tR

τ
= η

E

√
T0

�
√

m
, (5.29)

where γ is the dimensionless retardation time. Note that (5.28) is not the only way to
choose the characteristic time. For example, in the study by Zhou and Wang (2007)
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concerning a two-dimensional viscoelastic plate model, the dimensionless delay time
was defined in a similar manner, but a different choice was used for the characteristic
time.

Inserting (5.29) into (5.27), we have

∂2w

∂t2 + 2c
∂2w

∂x∂t
+ γα

∂5w

∂x4∂t
+ (

c2 − 1
) ∂2w

∂x2

+ α
∂4w

∂x4 + γαc
∂5w

∂x5
= 0 ,

(5.30)

with the boundary conditions

w(0, t) = ∂w

∂x
(0, t) = ∂2w

∂x2 (0, t) = 0 ,

w(1, t) = 0 , and

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂w

∂x
(1, t) = 0, or

∂2w

∂x2 (1, t) = 0.

(5.31)

Let us represent the solution of the dynamic problem (5.30–5.31), in the following
form (using the standard time-harmonic trial function):

w(x, t) = W (x)est , (5.32)

where
s = iω , (5.33)

and ω is the characteristic (dimensionless) frequency of small transverse vibrations.
As in the previous chapters, considering the system behaviour, the stability exponent
s characterizes it in the following manner:

• If the imaginary part of s is non-zero, and

– the real part of s is zero, the panel vibrates harmonically with a small amplitude.
– the real part of s is positive, the amplitude of transverse vibrations grows expo-

nentially (flutter).
– the real part of s is negative, the transverse vibrations are damped exponentially.

• If the imaginary part of s is zero, and

– the real part of s is zero, the panel has a critical point.
– the real part of s is positive, the panel displacement grows exponentially (diver-

gence, buckling).
– the real part of s is negative, the panel displacement decreases exponentially.
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The sign of the real part of s characterizes the stability of the panel: if Re s > 0, the
behaviour is unstable, and otherwise it is stable.

Inserting (5.32) into (5.30), we obtain

s2W + s

(
2c

∂W

∂x
+ γα

∂4W

∂x4

)
+ (c2 − 1)

∂2W

∂x2 +

α
∂4W

∂x4 + γαc
∂5W

∂x5
= 0 .

(5.34)

The boundary conditions for W are

W (0) = ∂W

∂x
(0) = ∂2W

∂x2 (0) = 0 ,

W (1) = 0 , and

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂W

∂x
(1) = 0 , or

∂2W

∂x2 (1) = 0 .

(5.35)

The stability of the travelling viscoelastic panel can be studied by solving (5.34–5.35)
for (s, W ), parametrized by the transport velocity c.

If we neglect the fifth-order derivative in (5.34), and formulate the buckling prob-
lem by setting s = 0 and and removing the (now superfluous) boundary condition

∂2W

∂x2 (0) = 0 ,

we obtain the buckling problem for an elastic panel (beam), with the bound-
ary conditions C-C or C-S depending on the chosen boundary condition at the
out-flow end.

For an axially moving elastic panel, the critical velocity corresponding to the
divergence instability can be found analytically. For a C-C elastic panel, the dimen-
sionless critical velocity is expressed as

ccr =
√

1 + 4απ2 . (5.36)

For the derivation of (5.36), see, e.g., Wickert and Mote (1990), who derived the
formula for travelling elastic beams. The corresponding critical mode is

W (x) = A [1 − cos(2πx)] ,
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where A is an arbitrary constant. Similarly, one may obtain for a C-S elastic panel
the following:

ccr =
√

1 + αk2
1 , (5.37)

where k1 is the smallest positive solution of tan k = k . The critical mode for a C-S
elastic panel is

W (x) = A [k1 cos(k1x) − sin(k1x) + k1x − k1] ,

where A is an arbitrary constant.

5.2 Numerical Solution

The problem can be solved using a finite difference approximation. The outline
of the finite difference discretization approach is as follows. Our objective is to find
w = (w1, . . . , wn) satisfying the discretised form of (5.34–5.35). We will use central
differences of second-order asymptotic accuracy:

∂w j

∂x
≈ w j+1 − w j−1

2�x
,

∂2w j

∂x2 ≈ w j+1 − 2w j + w j−1

(�x)2 ,

∂4w j

∂x4 ≈ w j+2 − 4 w j+1 + 6 w j − 4 w j−1 + w j−2

(�x)4 ,

∂5w j

∂x5
≈ w j+3 − 4 w j+2 + 5 w j+1 − 5 w j−1 + 4 w j−2 − w j−3

2(�x)5
. (5.38)

The interval [0, �] is divided to n + 1 subintervals equal in length, and therefore
�x = 1/(n + 1). The end points of the subintervals are labelled as

0 = x0,x1,x2, . . . ,xn,xn+1 = � . (5.39)

We use two virtual points (w−2 and w−1) at the in-flow end and one virtual (wn+2)
point at the out-flow end. From the boundary conditions (5.35), we obtain at the
in-flow end the following relations:

w−2 = −w2 (from
∂2W

∂x2 (0) = 0) , (5.40)

w−1 = w1 (from
∂W

∂x
(0) = 0) and w0 = 0 . (5.41)
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Similarly, at the out-flow end:

wn+1 = 0 ,

wn+2 =
{

wn , (C) ,

−wn , (S) .

To calculate the fifth-order derivative at the out-flow end ( j = n), we can use the
following backward difference scheme, which provides second-order asymptotic
accuracy:

∂5w j

∂x5
≈ 3 w j+2 − 16 w j+1 + 35 w j − 40 w j−1 + 25 w j−2 − 8 w j−3 + w j−4

2(�x)5
.

We denote the derivative matrices by K1, K2, K4, K5 built up with the help of
(5.38) with the following correspondence:

K1 : ∂W

∂x
, K2 : ∂2W

∂x2 , K4 : ∂4W

∂x4 , K5 : ∂5W

∂x5
.

Inserting the matrices K1, K2, K4, K5 into (5.34), we obtain the matrix equation

s2w + s
[
2cK1 + γαK4

]
w +

[
(c2 − 1)K2 + αK4 + γαcK5

]
w = 0 . (5.42)

In the case α = 0 or c = 0, we obtain a fourth-order equation needing only four
boundary conditions. This can be taken into account by choosing the boundary con-
ditions as in (5.40) and (5.41): the virtual point w−2 is then needed only by the matrix
K5. When K5 is removed from the matrix Eq. (5.42), the boundary condition

∂2W

∂x2 (0) = 0

is simultaneously removed from the discretised problem. It can be numerically con-
firmed that when the value of α is decreased, the solution of (5.42) with the boundary
conditions C+-C approaches the solution of the corresponding elastic problem with
the boundary conditions C-C, and similarly, the C+-S solution approaches the elastic
C-S solution. This is the case even if we choose

w−2 = w2 from
∂W

∂x
(0) = 0 , and w−1 = −w1 from

∂2W

∂x2 (0) = 0 .

The matrix Eq. (5.42), which is a quadratic eigenvalue problem with respect to s,
can be rewritten as (see Tisseur and Meerbergen 2001)
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Table 5.1 Physical parameters used in the numerical examples

T0 m � h E ν

500 N/m 0.08 kg/m2 1 m 10−4 m 109 N/m2 0.3

D = Eh3/(12 × (1 − ν2))

9.1575 × 10−5 Nm

[−M1 −M0
I 0

] [
sw
w

]
= s

[
sw
w

]
, (5.43)

where

M0 = (c2 − 1)K2 + αK4 + γαcK5 ,

M1 = 2cK1 + γαK4 . (5.44)

The matrix Eq. (5.43) is now an eigenvalue problem of the standard form

Ay = sy (5.45)

with

A =
[−M1 −M0

I 0

]
, y =

[
sw
w

]
.

5.3 Numerical Illustrations

In this section, we consider some numerical examples for the problem (5.34–5.35),
using the finite difference discretization presented above. The number of computation
points is n = 200.

Problem parameters fixed to those typical of a paper material and used in the
numerical examples are shown in Table 5.1. Paper material constants have been mea-
sured for example by Yokoyama and Nakai (2007). Various values are chosen for
the retardation time constant tR in order to demonstrate the effect of viscosity.

Using the physical parameters in Table 5.1, the dimensionless parameter α in
(5.29) obtains the value α = 1.8315×10−7. For the retardation time constant tR and
the dimensionless retardation time γ , we use the values presented in Table 5.2.

In Figs. 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8, the three lowest eigenvalue pairs s, see
(5.33), are plotted with respect to the dimensionless panel velocity. In the numerical
examples, it can be seen that for the parameter values in Table 5.1, the panel behaviour
is stable with harmonic vibrations when the panel velocity c is between 0 and 1,
regardless of the value of the dimensionless retardation time γ or the retardation
time constant tR. It is also seen that the panel may experience a divergence instability
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Fig. 5.3 The first three eigenvalue pairs for moving elastic panels (γ = 0) plotted against the
dimensionless velocity c. Solid lines present real parts of eigenvalues (Re s) and dashed lines
present imaginary parts (Im s). The point representing the critical velocity ccr is labelled. The
points representing critical velocities ccr are labelled. a Boundary conditions C-C. b Boundary
conditions C-S (Reproduced from Saksa et al. 2012)
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Fig. 5.4 The first three eigenvalue pairs for moving viscoelastic panels with respect to the dimen-
sionless velocity c. Dimensionless retardation time γ = 3.953 × 10−3 (tR = 5 × 10−5 s, almost
elastic). Solid lines represent real parts of eigenvalues (Re s) and dashed lines represent imaginary
parts (Im s). The point representing the critical velocity ccr is labelled. The behaviour of the eigen-
values s between c = 0 and c = 1 is shown at the upper left. The eigenmode corresponding to
the (dimensionless) critical velocity ccr is shown at the upper right. Boundary conditions C+-C
(Reproduced from Saksa et al. 2012)
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Fig. 5.5 The first three eigenvalue pairs for moving viscoelastic panels with respect to the dimen-
sionless velocity c. Dimensionless retardation time γ = 3.953 × 10−3 (tR = 5 × 10−5 s, almost
elastic). Solid lines represent real parts of eigenvalues (Re s) and dashed lines represent imagi-
nary parts (Im s). The point representing the critical velocity ccr is labelled. The behaviour of the
eigenvalues s between c = 0 and c = 1 is shown at the upper left. The eigenmode corresponding
to the (dimensionless) critical velocity ccr is shown at the upper right. Boundary conditions C+-S
(Reproduced from Saksa et al. 2012)
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Fig. 5.6 The first three eigenvalue pairs for moving viscoelastic panels with respect to the dimen-
sionless velocity c. Dimensionless retardation time γ = 3.953×10−2 (tR = 5×10−4 s). Solid lines
represent real parts of eigenvalues (Re s) and dashed lines represent imaginary parts (Im s). The
point representing the critical velocity ccr is labelled. The behaviour of the eigenvalues s between
c = 0 and c = 1 is shown at the upper left. The eigenmode corresponding to the (dimensionless)
critical velocity ccr is shown at the upper right. Boundary conditions C+-C (Reproduced from Saksa
et al. 2012)
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Fig. 5.7 The first three eigenvalue pairs for moving viscoelastic panels with respect to the dimen-
sionless velocity c. Dimensionless retardation time γ = 3.953×10−2 (tR = 5×10−4 s). Solid lines
represent real parts of eigenvalues (Re s) and dashed lines represent imaginary parts (Im s). The
point representing the critical velocity ccr is labelled. The behaviour of the eigenvalues s between
c = 0 and c = 1 is shown at the upper left. The eigenmode corresponding to the (dimensionless)
critical velocity ccr is shown at the upper right. Boundary conditions C+-S (Reproduced from Saksa
et al. 2012)
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Fig. 5.8 The first three eigenvalue pairs for moving viscoelastic panels with respect to the di-
mensionless velocity c. Dimensionless retardation time γ = 0.3953 (tR = 5 × 10−3 s). Solid
lines represent real parts of eigenvalues (Re s) and dashed lines represent imaginary parts (Im s).
a Boundary conditions C+-C. b Boundary conditions C+-S (Reproduced from Saksa et al. 2012)
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Table 5.2 Chosen values of the retardation time constant tR and dimensionless retardation time γ ,
used in the numerical examples

tR 5 × 10−5 s 5 × 10−4 s 5 × 10−3 s

γ 3.953 × 10−3 3.953 × 10−2 0.3953

Table 5.3 The results for critical velocities. The dimensional critical velocity (V0)cr is obtained
from ccr by (5.29) using the parameter values in Table 5.1. (Saksa et al. 2012)

ccr (V0)cr (m/s)
γ tR (s) C(+)-C C(+)-S C(+)-C C(+)-S

0 0 1.0000036 1.0000018 79.0572 79.0571
3.953 × 10−3 5 × 10−5 1.0000036 1.0000019 79.0572 79.0571
3.953 × 10−2 5 × 10−4 1.0000043 1.0000022 79.0573 79.0571
0.1022 1.29 × 10−3 1.0000087 – 79.0576 –
0.2183 2.76 × 10−3 – 1.0000099 – 79.0577

at a critical dimensionless velocity ccr slightly above the value 1, depending on the
value of γ . The eigenvalues between 0 and 1 behave similarly in all of the example
cases. This behaviour is shown in Figs. 5.4, 5.5, 5.6 and 5.7, in the upper left corner
of each figure.

To illustrate the behaviour close to the possible critical point more closely, the
velocity range 1 . . . 1.00003 is shown magnified in Figs. 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8.
As found previously for elastic beams (see e.g. Wickert and Mote 1990), at velocities
greater than the divergence speed ccr, a flutter instability region may appear. In the
present model, it is seen that when the value of the parameter α is increased, the value
of the critical velocity increases, and the distance between the possible divergence
speed and the possible flutter speed increases.

In Fig. 5.3, the eigenvalue spectra for moving elastic panels are shown with the
boundary conditions C-C and the boundary conditions C-S. Figures 5.4, 5.5, 5.6,
5.7 and 5.8 present, in proportion, the eigenvalues spectra for moving viscoelastic
panels with three different values of the dimensionless retardation time: γ = 3.953×
10−3 , 3.953 × 10−2 , and 0.3953.

Figures 5.3, 5.4 and 5.5 illustrate that for a panel with small viscosity (γ =
3.953 × 10−3), the results are close to those of elastic panels. The values of critical
divergence velocities ccr seem to coincide. See also Table 5.3.

The stable region after the divergence instability region seen in the behaviour of
elastic panels in Fig. 5.3 disappears when viscoelasticity is introduced into the model.
See Figs. 5.4 and 5.5.

In the case of elastic panels for both types of boundary conditions, the first
and second mode couple, representing a coupled-mode flutter. At greater values of
velocity and in the case of the C-C boundary conditions, the second and the third
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mode couple, and with the C-S boundary conditions, the first and the third mode
couple. All these couplings disappear when viscoelasticity is introduced.

In the upper right corner of Figs. 5.4 and 5.5, the eigenmodes corresponding to
the critical velocities ccr (solid line) and the eigenmodes of corresponding elastic
problems (dashed line) are shown. The solutions are very close to each other for
elastic problems and viscoelastic problems with a small viscosity. The eigenmodes
shown can be found by solving problem (5.34–5.35) with s = 0, and the critical
velocities given by this static analysis and the dynamic analysis are found to be the
same.

In Figs. 5.6 and 5.7, the eigenvalue spectra and critical eigenmodes are shown for
a dimensionless delay time γ ten times greater than in the case analysed above. The
changes in the spectra are notable. The values of critical velocities are greater than
for the corresponding elastic panels. Also the shapes of the corresponding critical
eigenmodes are different. More changes in the spectra can be seen: in the case of
C+-C boundary conditions, the divergence instability region becomes slightly wider
γ = 3.953 × 10−2 than for γ = 3.953 × 10−3. However, the unstable region after
the divergence instability region has now become stable, or stated more precisely, the
panel now vibrates with a damped amplitude. The second mode has become stable
for all values of velocity. In the case of C+-S boundary conditions (see Fig. 5.7), the
unstable region still exists after the divergence instability, and the second mode is un-
stable, with divergence-type instability, for some range of velocities greater than ccr.

When the dimensionless retardation time γ is further increased, the real part of
also the lowest eigenvalue stays negative, and no critical point or loss of instability
can be detected. This can be seen in Fig. 5.8. Since no real part of the eigenvalues
crosses the x axis, problem (5.34–5.35) with s = 0 has no solution in such cases.
This suggests that high viscosity makes this model stable at any velocity.

The limit values for the dimensionless retardation time γ can be found nu-
merically, using e.g. the bisection method. For C+-C boundary conditions,after
γ ≈ 0.1022 (tR ≈ 1.29 × 10−3 s), the real part of the first eigenvalue does not
become positive, and also the other (higher) eigenvalues behave similarly. For C+-S
boundary conditions, the value after which the real part of s remains non-positive is
γ ≈ 0.2183 (tR ≈ 2.76 × 10−3 s).

Some example values of the critical velocities for different values of dimensionless
retardation time γ and the corresponding retardation time constant tR are collected
in Table 5.3, including the limit cases. The critical velocities of viscoelastic panels
approach the critical velocities of elastic panels as the dimensionless retardation time
γ approaches zero. The critical velocities for the elastic panels have been calculated
analytically with the help of (5.36) and (5.37).The limit value of the dimensionless
retardation time γ needed for stabilization is higher for the C+-S boundary conditions
than for the C+-C conditions, suggesting that the latter case is more stable than the
former one. The analytically calculated critical velocities for elastic panels coincide
with the numerically calculated critical velocities from the dynamic analysis.

Several studies exist of the model where the partial time derivative is used in-
stead of the material derivative in the viscoelastic relations. We therefore illustrate
the eigenvalue spectra of these two different models using the boundary conditions
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Fig. 5.9 Comparison of two different models. Solid lines show the spectra of the model with the
material derivative in viscoelastic relations. Dashed lines represent the model with the partial time
derivative in the viscoelastic relations. Real parts of eigenvalues are plotted in bold line, imaginary
parts in light line. Boundary conditions C(+)-C. Dimensionless retardation time γ = 3.953 × 10−2

(tR = 5 × 10−4 s) (Reproduced from Saksa et al. 2012)

C(+)-C and dimensionless retardation time γ = 3.953 × 10−2. The results are
shown in Fig. 5.9. The magnitude of γ has been found not to qualitatively affect the
eigenvalue spectrum in the case of the model with the partial time derivative. The
eigenvalue spectrum of this model is very close to the one of the elastic C-C panel
(see Fig. 5.3), but the real parts of s are slightly negative before the critical velocity.

The behaviours predicted by the two different models are totally different as
shown in Fig. 5.9. The model where the partial time derivative is used predicts a
smaller value for the critical velocity than the model with the material derivative.
The behaviours at supercritical speeds from the two models differ from each other
in many ways. First, after the divergence instability, a second stable region can be
seen in the model with the partial time derivative but vibrations of the panel are
damped in the model with the material derivative. Secondly, after this, according to
the model with the partial time derivative, the panel undergoes couple-mode flutter,
but remains stable undergoing damped vibrations according to the model with the
material derivative.

In Fig. 5.10, the dynamic behaviour of the viscoelastic panel at sub-critical and
super-critical velocities is illustrated. For the space discretization, finite differences
are used as reported in Sect. 5.2, and the time discretization has been performed via
the fourth-order Runge–Kutta method. The initial displacement w(x, 0) has been
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Fig. 5.10 The dynamic behaviour of the displacement maxima maxx∈[0,1] w(x, t) for the first 10 s.
Boundary conditions C+-C are used. Top The dimensionless retardation time is γ = 0.3953. Bottom
γ = 3.953 × 10−2 (Reproduced from Saksa et al. 2012)

chosen as the critical eigenmode with γ = 3.953 × 10−2 (shown in Fig. 5.6), and
(∂w/∂t)(x, 0) = 0 initially. Two different values for the dimensionless retardation
time are illustrated, γ = 3.953 × 10−2 (tR = 5 × 10−4 s) and γ = 0.3953 (tR =
5 × 10−3 s), and the boundary conditions used are C+-C. With the help of Figs. 5.6
and 5.8, appropriate sub-critical and super-critical velocities have been chosen, being
c = 0.99 (sub-critical) and c = 1.000005 (super-critical). Figure 5.10 presents the
time behaviour of the displacement maxima for the first 10 s.

The dynamic behaviour in Fig. 5.10 resembles the behaviour predicted by the
dynamic analysis. For γ = 0.3953 at the chosen sub-critical velocity, the panel
vibrates with a damped amplitude, and at the super-critical velocity, the panel dis-
placement decreases exponentially (without vibrating). For γ = 3.953 × 10−2 at
the super-critical velocity, the displacement grows exponentially and thus the panel
is unstable. At the sub-critical velocity, the panel vibrations are damped, but the
damping occurs more slowly than for the panel with γ = 0.3953.
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Chapter 6
Travelling Panels Interacting with External Flow

Abstract This chapter is devoted to the analysis of the travelling panel, submerged
in axially flowing fluid. In order to accurately model the dynamics and stability of a
lightweight moving material, the interaction between the material and the surround-
ing air must be taken into account somehow. The light weight of the material leads
to the inertial contribution of the surrounding air to the acceleration of the material
becoming significant. In the small displacement regime, the geometry of the vibrat-
ing panel is approximately flat, and hence flow separation is unlikely. We will use the
model of potential flow for the fluid. The approach described in this chapter allows
for an efficient semi-analytical solution, where the fluid flow is solved analytically
in terms of the panel displacement function, and then strongly coupled into the par-
tial differential equation describing the panel displacement. The panel displacement,
accounting also for the fluid–structure interaction, can then be solved numerically
from a single integrodifferential equation. In the first section of this chapter, we will
set up and solve the problem of axial potential flow obstructed by the travelling panel.
In the second section, we will use the results to solve the fluid–structure interaction
problem, and give so me numerical examples.

6.1 Flow Problem of Surrounding Air

In this section, we will set up and solve analytically the aerodynamic problem for
potential flow obstructed by the axially moving panel (see Figs. 6.1–6.3). We will
also derive an added-mass approximation from the exact solution, and compare it to
some known results in literature.

Consider a travelling panel submerged in potential flow, where the free stream
flows toward the right at velocity v∞ (in Euler coordinates). See Fig. 6.2. The gov-
erning equation for the dynamical behaviour of the panel is

m
∂2w

∂t2 + 2mV0
∂2w

∂x∂t
+

(
mV 2

0 − T
) ∂2w

∂x2 + D
∂4w

∂x4 = qf + g, (6.1)
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Fig. 6.1 Axially moving thin plate with SFSF boundary conditions, undergoing cylindrical defor-
mation. Two opposite edges are simply supported (S), and the other two edges are free (F). The
three-dimensional physical situation

Fig. 6.2 Axially moving panel submerged in axially flowing, two-dimensional ideal fluid. The
roller symbols represent simple supports, with presence of axial motion

where w ≡ w(x, t) is the transverse displacement of the panel, qf ≡ qf(w) is the
aerodynamic reaction pressure, and g ≡ g(x, t) represents external forces inside
the domain. The mass per unit area of the panel is m. The panel travels axially at the
velocity V0, being subjected to axial tension T (the unit of which is force per unit
length), and its bending rigidity is D, given by (2.6) in Sect. 2.1.2 and repeated here
for convenience:

D = Eh3

12
(
1 − ν2

) .

Here h is the thickness of the panel, E is the Young’s modulus of the panel material,
and ν is its Poisson ratio. The panel is assumed isotropic.

http://dx.doi.org/10.1007/978-3-319-01745-7_2
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Fig. 6.3 Steady-state problem for the eigenshapes of the axially moving panel submerged in axially
flowing, two-dimensional ideal fluid. The roller symbols represent simple supports, with presence
of axial motion. Now the panel velocity V0 is the eigenvalue, and w = w(x) only (i.e. the panel
material undergoes steady-state flow)

The aerodynamic reaction qf is unknown, to be solved from the flow model in
terms of w(x, t). The aerodynamic reaction describes how the surrounding air pushes
back on the panel, in reaction to the panel vibration. The external forces are considered
given, and are allowed to vary dynamically, if desired.

For solving the flow problem of the fluid component, we will apply techniques
from the aerodynamics of thin aerofoils, constructing a Green’s function type solu-
tion via complex analysis. More information on thin airfoil theory is available in
the books by Ashley and Landahl (1985), Bisplinghoff and Ashley (1962), and
Anderson (1985). Especially the first one contains a clear presentation and uses
a similar approach.

6.1.1 Aerodynamic Reaction

In laboratory coordinates, the velocity potential of the disturbed stream is

Φ(x, z, t) = xv∞ + ϕ(x, z, t), (6.2)

where the first term is the free-stream potential, and the second term is a disturbance
potential due to the obstacle. The Cauchy–Lagrange integral (see, e.g., Sedov 1972,
Chap. 9) is

∂Φ

∂t
+ 1

2
(∇Φ)2 + p

ρf
− U = f (t), (6.3)

where we have assumed that the fluid is incompressible. The fluid density ρf is
assumed constant. The symbol U represents the scalar potential of the external forces
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affecting the flow, F = ∇U . The force potential exists, based on the derivation of the
Cauchy–Lagrange integral. The function f (t) is an arbitrary function of time that
comes from the integration leading to (6.3).

In the following, let us assume that there are no external forces, i.e. U ≡ 0. Solving
(6.3) for p, we have

p = ρf

[
f (t) − ∂Φ

∂t
− 1

2
(∇Φ)2

]
. (6.4)

The aerodynamic reaction is the pressure difference

qf(x, t) ≡ p−(x, t) − p+(x, t), (6.5)

where the superscript notation is defined as

f ±(x, t) ≡ lim
z→0± f (x, z, t), (6.6)

where the upper (respectively lower) signs correspond to each other. That is, the
pressure difference is the jump in pressure, caused by the discontinuity introduced
by the obstacle through which no flow can occur. The sign convention for (6.5) is
that a positive reaction pushes upwards, i.e., toward positive z. Obviously, this occurs
when the pressure on the lower surface is greater than that on the upper surface.

From (6.2), the gradient of the potential giving the fluid velocity is

vf ≡ ∇Φ = (v∞ + ∂ϕ

∂x
,
∂ϕ

∂z
), (6.7)

where v f denotes the fluid velocity field. The square of the gradient, needed in
(6.4), is

(∇Φ)2 ≡ (∇Φ) · (∇Φ)

=
(

v∞ + ∂ϕ

∂x

)2

+
(

∂ϕ

∂z

)2

= v2∞ + 2v∞
∂ϕ

∂x
+

(
∂ϕ

∂x

)2

+
(

∂ϕ

∂z

)2

.

Let us assume that the disturbance velocities ∂ϕ/∂x and ∂ϕ/∂z are first-order small.
The linearized squared gradient becomes

(∇Φ)2 ≈ v2∞ + 2v∞
∂ϕ

∂x
. (6.8)

We write (6.5) in terms of (6.4) and insert (6.8):
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qf = ρf

[(
∂Φ

∂t

)+
−

(
∂Φ

∂t

)−
+ v∞

(
∂ϕ

∂x

)+
− v∞

(
∂ϕ

∂x

)−]

= ρf

(
∂

∂t
+ v∞

∂

∂x

) (
ϕ+ − ϕ−)

. (6.9)

The function f (t) vanishes from this jump expression, because it only depends on
time. Also the v2∞ term vanishes, because it is a constant. Finally, we have

∂Φ

∂t
= ∂ϕ

∂t

everywhere, because the chosen free-stream potential xv∞ does not depend on time.

6.1.2 Slip Boundary Condition

We aim to solve the fluid flow in the (x, z) plane region exterior to the panel. On the
panel surface, a boundary condition is needed for the fluid flow. The classical choice,
which will also be used here, is that flow cannot cross the surface of the panel.

However, we are now allowing axial motion for both the panel and the free stream.
Let us work through the derivation of the boundary condition, to illustrate how the
axial motion affects it.

We begin with the statement of the boundary condition in terms of the velocity
fields in the laboratory (Euler) coordinates,

n · vf = n · dU
dt

on Γ, (6.10)

where n is the unit surface normal vector of the panel, vf is the fluid velocity field, and
U is the (vector-valued) displacement field of the panel. The symbol d/dt denotes
the Lagrange derivative (material derivative). The boundary Γ is the surface of the
panel.

By trigonometry (see Fig. 6.4), we obtain that the local normal vector of the panel
surface is

n =
(− sin α

cos α

)
, (6.11)

where α is the (counterclockwise) angle between the positive x axis and the local
tangent vector of the panel. The direction of n is chosen such that it points toward
positive z when α = 0. It does not matter which choice we use, as long as we use
the same choice for both sides of (6.10).

To find (6.11), consider a differential element of the panel, and in it, the upper
180◦ angle between the positive and negative x axis, which is divided by the panel
surface and n into α, a straight angle and (π/2) − α. Then consider the triangle
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Fig. 6.4 Close-up of the panel surface showing the (local) normal and tangent vectors

formed by n, nz and nx , and the angles in this triangle. These must be the same three
angles, but in a different order (refer to Fig. 6.4).

Alternatively, the normal vector can be found algebraically. Take the positively
oriented tangent vector of the panel and the counterclockwise 2D rotation matrix

t =
(

cos α

sin α

)
, R(θ) =

(
cos θ − sin θ

sin θ cos θ

)
. (6.12)

Then, evaluate the relation
n = R(π/2)t (6.13)

to obtain (6.11) (refer to Fig. 6.4).
By the definitions of the tangent function, and on the other hand the derivative,

we have from the geometry of the situation that

tan α = ∂w

∂x
(6.14)

at the limit where dz and dx simultaneously tend to zero (refer to Fig. 6.4).
The panel moves axially at a constant velocity V0. The displacement field of the

panel, written in the Euler coordinates, is

U(x, t) = (V0t + ũ(ξ(x, t), t) , w̃(ξ(x, t), t)), (6.15)

where ũ and w̃ are, respectively, the in-plane and out-of-plane displacement functions
defined in terms of the Lagrange coordinates, and the V0t term accounts for the global
axial motion.

The form of (6.15) is critically important for deriving the slip boundary condition
correctly. We have assumed small displacements in (6.15). It should be obvious that
in the general case,
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ũ = ũ(s, t) and w̃ = w̃(s, t),

where s is the longitudinal coordinate along the panel. The displacements are, gener-
ally speaking, functions of s and not of ξ (or x). However, in the small displacement
regime, we can approximate

s ≈ ξ.

In addition to being valid for small displacements only, this approximation has a
further important mathematical consequence: describing shapes which are not single-
valued functions of ξ is impossible in terms of the functions ũ(ξ, t) and w̃(ξ, t).
This limits the class of shapes that can be described, but the limitation also induces a
benefit: self-intersection of the panel surface is automatically prevented without the
need for further constraints.

We have defined the displacement functions ũ and w̃ as being concerned with the
elastic behaviour only. Mathematically, they are the solutions of the partial differential
equations governing the vibrations of the panel in the longitudinal and out-of-plane
directions. This choice implies that if we wrote the displacement field in the Lagrange
coordinates, we would have

Ũ(ξ, t) = (ũ(ξ, t) , w̃(ξ, t)). (6.16)

This is because at any given point of time t , each particle is only displaced from
its original position in the co-moving coordinate system by the effects of elastic
vibration. The Lagrange coordinate system for this problem is defined precisely
such that it accounts for the global axial motion. This is why a V0t term appears in
(6.15), but not in (6.16).

Finally, it is worth pointing out that the axial tension in a paper machine is in
practice generated by using a velocity difference between the rollers at the ends
of each free span. This causes the web to stretch, which induces an x-dependent
longitudinal strain. Typically these strains are small; we have neglected this effect in
(6.15). If one wishes to take it into account, one needs a third, x-dependent term in
the axial component of U. Although this term is easier to add into the Euler version U
than the Lagrange version Ũ (where it will depend on both ξ and t), from the physics
of the situation it is evident that this term, if added, must appear in both coordinate
systems.

From (6.15), we obtain in (x, t) coordinates the velocity field of the panel,

dU
dt

= (V0 + V0
∂u

∂x
+ ∂u

∂t
, V0

∂w

∂x
+ ∂w

∂t
). (6.17)

For the normal motion of the panel, from (6.11) and (6.17) we obtain the expression

n · dU
dt

= − sin α

[
V0 + ∂u

∂t
+ V0

∂u

∂x

]
+ cos α

[
∂w

∂t
+ V0

∂w

∂x

]
. (6.18)
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Similarly, from (6.11) and (6.7), for the normal fluid velocity we have

n · vf = − sin α

[
v∞ + ∂ϕ

∂x

]
+ cos α

∂ϕ

∂z
. (6.19)

Subtracting (6.18) from (6.19) and using (6.10) to eliminate the left-hand side gives

− sin α

[
v∞ − V0 − ∂u

∂t
− V0

∂u

∂x
+ ∂ϕ

∂x

]
+ cos α

[
∂ϕ

∂z
− ∂w

∂t
− V0

∂w

∂x

]
= 0.

Dividing by cos α, substituting (6.14) for tan α, and multiplying the equation by −1
obtains

∂w

∂x

[
v∞ − V0 − ∂u

∂t
− V0

∂u

∂x
+ ∂ϕ

∂x

]
−

[
∂ϕ

∂z
− ∂w

∂t
− V0

∂w

∂x

]
= 0. (6.20)

We see that the terms with V0∂w/∂x cancel exactly, and all other terms remain. The
condition in (6.20) is the exact small-displacement slip boundary condition.

Finally, in small-displacement theory it is customary to assume that the quantities

∂w

∂x
,

∂u

∂t
,

∂u

∂x
, and

∂ϕ

∂x

are small, and discard second-order small terms. This will approximate the panel
as perfectly horizontal. This approximation will be used to set up the geometry for
the fluid flow problem. It is a useful simplification in order to obtain an analytical
solution for the flow problem. Rearranging terms, we obtain the linear approximation

∂ϕ

∂z
= ∂w

∂t
+ v∞

∂w

∂x
≡ γ (x, t), (6.21)

which is the approximate small-displacement slip boundary condition on the panel
surface. It ensures that the flow will not cross the surface of the panel, accounting
for up to first-order small terms.

Equation (6.21) is more convenient to use than (6.20), as it does not require
considering the longitudinal displacement u at all. This is another manifestation of
the rather general phenomenon that in the small-displacement approximation, the
in-plane and out-of-plane components become decoupled from each other.

Note especially that the boundary condition (6.21) does not have a term including
V0, although in Lagrange coordinates, what the system experiences is indeed the
axial velocity difference v∞ − V0.

The result is easily confirmed by repeating the steps (6.15–6.21) in the Lagrange
coordinates. When doing this, one must be careful to use

∂ξ

∂t
= −V0
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instead of
∂x

∂t
= V0,

as was done in the Euler coordinates. The V0t term, which caused the cancellation, is
not present in Ũ, and the velocity coefficient in the corresponding Lagrange boundary
condition will indeed be (v∞ − V0).

On the other hand, the lack of a V0 term in (6.21) is not very surprising, since both
axial motions are accounted for independently in the Euler coordinate system. Above,
the free-stream fluid velocity has been given in the Euler coordinates to begin with.
By transforming the mechanics of the panel from the Lagrange into the Euler system,
we have written both axial velocities with respect to the same coordinate system. The
approach of writing the boundary condition in the Lagrange coordinate system, on
the other hand, transforms the fluid velocity into the coordinates axially moving with
the panel, introducing a shift by −V0 as expected.

6.1.3 Fluid Velocity Potential

As is well-known, velocity potentials fulfill Laplace’s equation, as also do harmonic
functions in complex analysis. Thus a classical way to approach two-dimensional
potential flow problems is to use complex analysis, and seek a harmonic function
such that it fulfills the given boundary conditions (see e.g. Ashley and Landahl,
1985).

We identify the complex plane C with the (x, z) plane in the model,

η ≡ x + zi ∈ C ⇔ (x, z) ∈ R
2.

Because we work in the small deformation regime, we can approximate the panel as
a linear cut in the complex plane, located completely on the real axis. The domain
of the aerodynamic flow problem is the region exterior to the panel; see Fig. 6.5.

We consider the disturbed flow as a superposition of a constant-velocity free
stream and a disturbance term representing the effect of the obstacle. The free-stream

Fig. 6.5 Domain of the problem for the surrounding airflow. The panel is geometrically approx-
imated as the infinitely thin linear cut S ≡ {z = 0,−1 ≤ x ≤ 1}. The symbol i denotes the
imaginary unit, i ≡ √−1
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potential is linear in x ; thus it is trivially harmonic. Also, it fulfills the slip condition
along all of the real axis. Therefore, we only need to solve the first-order correction
to the free stream, i.e. the flow problem for the disturbance potential. This problem
can be stated as

�ϕ ≡ ∂2ϕ

∂x2 + ∂2ϕ

∂z2 = 0 in Ω (6.22)

(
∂ϕ

∂z

)±
= γ (x, t), along S (6.23)

(∇ϕ)∞ = 0, (6.24)

where (6.22) is the Laplace equation for the disturbance potential, (6.23) is the
linearized slip boundary condition where γ (x, t) is given by (6.21), and (6.24)
requires that the disturbance in the fluid velocity field vanishes at infinity. The domain
Ω ≡ C \ S (Fig. 6.5). The ± notation is defined as earlier, (6.6), and the subscript
infinity denotes the limit

(·)∞ ≡ lim|η|→∞(·), (6.25)

where
|η| ≡

√
x2 + z2

is the complex modulus.
Because we have a Laplace problem with only Neumann boundary conditions,

the value of the disturbance potential ϕ can only be unique up to an additive constant.
This ambiguity can, however, be resolved in an arbitrary manner, because the value
of the velocity potential is of no physical interest. To obtain the velocity field, we
need only its gradient, on which a global additive constant clearly has no effect.

The doubly connected topology of our fluid domain introduces an additional com-
plication. From potential flow theory, we know that in a doubly connected domain,
∇ϕ is unique if and only if we prescribe the value of circulation Γ around the cut.
To illustrate this point, suppose that we have found a (two-dimensional) velocity
potential of the noncirculatory flow, Γ = 0, satisfying the slip boundary condition
on a given surface S. Now, it is possible to add to this flow a simple (inviscid) vortex
of arbitrary strength Γ0, for which one of the circular streamlines has been confor-
mally transformed into the surface S. The general mapping theorem (also known as
Riemann’s mapping theorem; see e.g. Nehari 1952, p. 175) guarantees that this can
always be done. By superposition of the two flows, a new irrotational flow has been
created, still satisfying the slip boundary condition on S, but now the circulation is

Γ = Γ0,
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where Γ0 was arbitrary. Hence, the circulation Γ must be specified if we wish to have
a unique irrotational flow in a doubly connected two-dimensional domain. (See, e.g.,
Ashley and Landahl 1985, pp. 42–43.)

This ambiguity is commonly resolved by requiring the Kutta condition (also
known as the Kutta–Zhukowski condition) at the trailing edge. The condition picks a
unique solution, makes the pressure continuous at the trailing edge, and also moves
the trailing stagnation point of the flow to the tip of the airfoil, removing a singularity
in the flow velocity field that would otherwise occur there for shapes with sharp trail-
ing edges. See e.g. Ashley and Landahl (1985), and Lighthill (1986). In our solution,
we will use a regularity condition by Sherman (1952), which comes from a problem
in elastics sharing some of the mathematical form with our flow problem.

It should be pointed out that the problem (6.22–6.24) involves several approx-
imations. Some are obvious, such as the two-dimensional problem setup and the
potential flow model. Thus, width-directional variation both in the flow and in the
behaviour of the moving web are neglected, as are fluid rotation and viscosity. A fur-
ther approximation is that the boundary condition (6.23) is only valid up to first-order
small terms, as was discussed during the derivation of (6.21).

A more subtle approximation concerns the panel geometry. The domain of the
aerodynamic problem is infinite. It consists of the whole xz plane with the exception
of the cut at

S ≡ {z = 0,−1 ≤ x ≤ 1},

which is our linearised representation of the space occupied by the panel (see Fig. 6.5).
Thus, although we consider an axially moving panel, for the purposes of this aero-
dynamic problem the panel only exists on the interval

−1 ≤ x ≤ 1.

Effectively, in the panel domain, if we assume V0 > 0, there is a material source at x =
−1 and a material sink at x = +1. Also, the rollers are ignored in the flow problem,
being represented only in the boundary conditions for the panel displacement.

The way we have proceeded is of course just one possible choice to build a model
for this kind of situation. Alternatively, it could be assumed that the elastic panel is
embedded in a rigid baffle of infinite extent, splitting the xz plane into two parts (as
in Kornecki et al 1976). This choice leads to a singly connected flow topology.

A third alternative is to model also the rollers and some of the surrounding panel
surface, but then a more purely numerical approach is required. Available methods
include, for example, the classical vortex panel method (see e.g. Anderson 1985), and
the much more general and more modern finite element method (see e.g. Strang and
Fix 1973; Ciarlet 1978; Johnson 1987; Allen et al. 1988; Krizek and Neittaanmäki
1990; Hughes 2000; Brenner and Scott 2010; and for flow problems specifically,
Gresho and Sani 1999; Donea and Huerta 2003).

Finally, although as far as the flow problem is concerned the geometry of the panel
is simplified into the straight line segment S, the transverse panel velocity ∂w/∂t and
the local angle of the panel with respect to the x axis, ∂w/∂x , are both allowed to be
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nonzero in the slip boundary condition. Strictly speaking this is of course impossible,
but it is a reasonable approximation in the small-deformation range.

The shape and dynamic motion of the surface will affect the boundary condition
(6.23), which creates a nonzero disturbance velocity in the fluid along the line segment
S. This in turn affects the qf(w) term in the panel equation, feeding back into the
motion of the panel. This way the two-way aeroelastic coupling is taken into account.
The model works in the small-displacement range, i.e., as long as the straight line
segment assumption is approximately valid.

6.1.4 Complex Analysis Approach

Because potential flow is memory-free, the flow field reconfigures itself instantly at
each time t , independent of its previous history. Therefore, as far as the flow problem
is concerned, the time t in the function γ (x, t) in boundary condition (6.23) is just a
parameter. This is the only time-dependent part in the fluid flow problem (6.22–6.24).
Hence, in the following, we will consider an arbitrary fixed value for t , and treat only
x and z as variables.

In accordance with the complex analysis approach to 2D potential flows, we
introduce an auxiliary analytic function

Π (η, t) = Ψ (x, z, t) + iϕ (x, z, t) (6.26)

of the complex variable η = x +i z, where i2 = −1. The Cauchy–Riemann equations
and the boundary condition (6.23) for the flow on the panel surface imply that

∂Ψ

∂x
|z=0 = ∂ϕ

∂z
|z=0 = γ (x, t) . (6.27)

Let us denote Ψ (x, t) ≡ Ψ (x, 0, t). We have

Ψ (x, t) = χ (x, t) + C (t) , (6.28)

where

χ (x, t) =
∫ x

−1
γ (ξ, t) dξ, (6.29)

and C (t) is a real constant of integration for each fixed t . Here ξ is a dummy variable
for integration. Thus, finding the velocity potential ϕ reduces to the computation of
the imaginary part of the analytic function (6.26), whose real part on [−1, 1] is (6.28).

In other words, the idea of introducing the auxiliary function Π is that we may
use the Neumann boundary data (6.23) for the original (unknown) potential ϕ to
generate Dirichlet boundary data for the (similarly unknown) stream function Ψ , as
per (6.28) and (6.29). Note that unlike the usual convention, the real part of Π is here
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the stream function, and the imaginary part is the real-valued potential for which the
original problem was formulated.

We use the results given by Sherman (1952) (compare also Ashley and Landahl
1985, Chap. 5–3) and represent the solution of this problem as

Π (η, t) = 1

2π i

(
η − 1

η + 1

)1/2 ∫ 1

−1

(
ξ + 1

ξ − 1

)1/2
χ (ξ, t) + C (t)

ξ − η
dξ. (6.30)

Here also ξ is a dummy variable for integration. The real constant C (t) is determined
with the help of the following equation:

1

2π i

∫ 1

−1

χ (ξ, t) + C (t)√
ξ2 − 1

dξ = 0, (6.31)

which represents a regularity condition for the function Π . The condition comes
from Sherman (1952). The (6.31) is obtained by taking the limit η → −1 in (6.30),
and using the identity

(ξ − 1)(ξ + 1) = ξ2 − 1

in the denominator. The condition requires that the integral factor in (6.30) vanishes
at η = −1. From condition (6.31), we obtain

C (t) = 1

π i

∫ 1

−1

χ (ξ, t) dξ√
ξ2 − 1

. (6.32)

Using expression (6.32) and the formula (for treatment of a similar integral, see
Ashley and Landahl 1985, pp. 94–95),

1

2π i

∫ 1

−1

(
ξ + 1

ξ − 1

)1/2 dξ

ξ − η
= 1

2

(
η + 1

η − 1

)1/2

− 1

2
, (6.33)

we perform substitutions into expression (6.30) and elementary transformations and
obtain

Π = 1

2π i

(
η − 1

η + 1

)1/2 ∫ 1

−1

(
ξ + 1

ξ − 1

)1/2
χ (ξ, t) dξ

ξ − η

+ C (t)

2

[
1 −

(
η − 1

η + 1

)1/2
]

(6.34)

=
√

η2 − 1

2π i

∫ 1

−1

χ (ξ, t) dξ

(ξ − η)
√

ξ2 − 1
+ C (t)

2
.

From the representation (6.34), we can compute the quantity ϕ+:



126 6 Travelling Panels Interacting with External Flow

ϕ+ = lim
z→0+ [ImΠ (x + i z)]

= p.v.

(
−

√
1 − x2

2π

∫ 1

−1

χ (ξ, t) dξ

(ξ − x)
√

1 − ξ2

)
. (6.35)

Here, we have taken into account that the constant C (t) in (6.34) is real, and conse-
quently must be omitted when the limit of the imaginary part is computed in (6.35).
The integration in (6.35) is understood in the sense of Cauchy’s principal value, here
denoted p.v.(·).

Because the flow is antisymmetric with respect to the linearised plate surface, it
holds for the disturbance potential that

ϕ+ − ϕ− = 2ϕ+. (6.36)

See, e.g., Eloy et al (2007) for a similar case. Alternatively, we can take the corre-
sponding limit of (6.34) on the side with negative z,

η = x − i z → x − i · 0
(
z → 0−)

,

and obtain the same result.
By definition of Cauchy’s principal value, we have

2ϕ+ = p.v.

(
− 1

π

∫ 1

−1

(
1 − x2

1 − ξ2

)1/2
χ (ξ, t) dξ

ξ − x

)

≡ lim
ε→0

− 1

π

[∫ x−ε

−1

(
1 − x2

1 − ξ2

)1/2
χ (ξ, t) dξ

ξ − x
(6.37)

+
∫ 1

x+ε

(
1 − x2

1 − ξ2

)1/2
χ (ξ, t) dξ

ξ − x

]
.

Let us integrate by parts and substitute expression (6.29) for χ (x, t). We have the
result

2ϕ+ = lim
ε→0

[
N (x − ε, x)

∫ x−ε

−1
γ (ξ, t) dξ

− N (x + ε, x)

∫ x+ε

−1
γ (ξ, t) dξ

−
∫ x−ε

−1
N (ξ, x) γ (ξ, t) dξ

−
∫ 1

x+ε

N (ξ, x) γ (ξ, t) dξ

]
, (6.38)
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where we have defined

N (ξ, x) ≡ 1

π
ln

∣∣∣∣1 + Λ(ξ, x)

1 − Λ(ξ, x)

∣∣∣∣ , where

Λ(ξ, x) ≡
[
(1 − x) (1 + ξ)

(1 − ξ) (1 + x)

]1/2

. (6.39)

This is obtained by setting

∂u

∂ξ
=

√
1 − x2

1 − ξ2

ξ − x
, v = χ(ξ, t)

in the integration by parts formula

∫ b

a

∂u

∂ξ
v dξ = [uv]b

ξ=a −
∫ b

a
u

∂v

∂ξ
dξ.

The first term in (6.38) is the boundary term uv, evaluated at the upper limit x−ε. The
lower limit produces no term, because χ(x, t) is defined with the help of an integral
from −1 to x ; hence, χ(−1, t) = 0. The second term in (6.38) is uv, evaluated at the
lower limit x + ε. The limits of integration from −1 to x + ε are due to evaluating
χ(x + ε, t). Now the upper limit produces no term, because

N (ξ, x) → 0 as ξ → 1.

The last two terms in (6.38) are the straightforward integrated-by-parts terms of the
form u ∂v/∂ξ . See Figs. 6.6 and 6.7 for a qualitative illustration of the functions Λ

and N , and Fig. 6.8 for contour plots.
We observe that all terms on the right-hand side of (6.38) are finite; therefore the

integration by parts is legitimate. As ε → 0, the sum of the first two terms in (6.38)
approaches zero. It can be shown that the last two integrals converge (we will do this
below).

Therefore, the required functional dependence is of the form

2ϕ+(x, t) = −
∫ 1

−1
N (ξ, x) γ (ξ, t) dξ. (6.40)

With the help of (6.9), (6.21), (6.39) and (6.40), we arrive at the expression for
the aerodynamic reaction of the fluid. Writing out the coordinate scaling factors τ

and � explicitly, we have:

qf (x, t) = p− (x, t) − p+ (x, t)
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Fig. 6.6 Auxiliary function Λ(ξ, x) in [−1, 1] × [−1, 1]. Qualitative illustration. The infinities
should be understood in the sense of limits

= ρf

(
1

τ

∂

∂t
+ 1

�
v∞

∂

∂x

) (
ϕ+ (x, t) − ϕ− (x, t)

)

= ρf

(
1

τ

∂

∂t
+ 1

�
v∞

∂

∂x

) (
2ϕ+ (x, t)

)

= −ρf

(
1

τ

∂

∂t
+ 1

�
v∞

∂

∂x

)∫ 1

−1
N (ξ, x) γ (ξ, t) dξ (6.41)

= −ρf

(
1

τ

∂

∂t
+ 1

�
v∞

∂

∂x

)∫ 1

−1
N (ξ, x)

(
�

τ

∂

∂t
+ v∞

∂

∂x

)
w(ξ, t) dξ

= −ρf
1

�

(
�

τ

∂

∂t
+ v∞

∂

∂x

)∫ 1

−1
N (ξ, x)

(
�

τ

∂

∂t
+ v∞

∂

∂x

)
w(ξ, t) dξ.

The scaling factor � is the half-length of the span (refer to Fig. 6.2 in Sect. 6.1), and
τ is an arbitrary scaling factor for nondimensionalization of the time coordinate. For
a physically meaningful scaling, one can choose e.g. τ = �/C , where C = √

T/m
(refer to (6.1)). The unit of τ is [τ ] = s.
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Fig. 6.7 Aerodynamic kernel N (ξ, x) in [−1, 1] × [−1, 1]. Qualitative illustration. The infinities,
and the upper and left edges (which are outside the domain of the auxiliary function Λ(ξ, x), needed
by N (ξ, x)), should be understood in the sense of limits

The expression (6.41) is valid, because N (ξ, x) is a Green’s function of Laplace’s
equation, and thus, the improper integral (6.40) converges (see, e.g., the book by
Evans 1998). The convergence can also be established in a more direct manner,
which we will do in the next section.

6.1.5 Properties of Aerodynamic Kernel

In this section, we will show that the aerodynamic kernel N (ξ, x) is symmetric with
respect to reflection by the lines x = ±ξ , and that it is integrable. The symmetricity
can be obtained by inspection of (6.39) and algebraic manipulation. We will present
it here briefly for completeness.

First, note that the domain of Λ(ξ, x) is (−1, 1) × (−1, 1), and that of N (ξ, x) is

{ (−1, 1) × (−1, 1) } \ { ξ = x } .

Consider Λ(ξ, x), defined in (6.39). Reflecting the point (ξ, x) with respect to x = ξ ,
let us evaluate Λ(x, ξ):



130 6 Travelling Panels Interacting with External Flow

x

ξ

Λ(ξ,x)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

2

3

4

5

6

7

8

9

10

x

ξ

N(ξ,x)

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Fig. 6.8 Contour plots of the functions Λ(ξ, x) and N (ξ, x). Top Λ. Bottom N . Note that both
functions grow without bound toward the singularities marked in Figs. 6.6 and 6.7. In both subfigures,
the upper end of the colour scale has been chosen arbitrarily to show the structure away from the
singularity

Λ(x, ξ) =
[
(1 − ξ) (1 + x)

(1 − x) (1 + ξ)

]1/2

=
[
(1 − x) (1 + ξ)

(1 − ξ) (1 + x)

]−1/2

= 1

Λ(ξ, x)
. (6.42)
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Then, using (6.42) we have

N (x, ξ) = 1

π
ln

∣∣∣∣∣
1 + 1

Λ

1 − 1
Λ

∣∣∣∣∣ = 1

π
ln

∣∣∣∣Λ + 1

Λ − 1

∣∣∣∣

= 1

π
ln

∣∣∣∣−1 + Λ

1 − Λ

∣∣∣∣ = 1

π
ln

∣∣∣∣∣
1 + Λ

1 − Λ

∣∣∣∣∣ = N (ξ, x). (6.43)

Similarly, for reflection with respect to x = −ξ , we have

Λ(−x,−ξ) = Λ(ξ, x),

and thus also
N (−x,−ξ) = N (ξ, x),

because N depends on ξ and x only implicitly via Λ(ξ, x). Thus N is symmetric in
reflection with respect to the lines x = ±ξ .

Next we will consider the integrability. For the aerodynamic problem, we need to
show that the integral (6.40) converges. Let

x ∈ (−1, 1) and t ∈ [0,∞)

be fixed. Let

I1(x) ≡
∫ 1

−1
N (ξ, x) f (ξ) dξ, (6.44)

where
f (ξ) ≡ f (ξ ; t) ,

i.e. f is allowed to depend on t , but this dependence is omitted from the notation
since we hold t fixed and thus it can be treated as a parameter. We require that f (ξ)

is bounded for −1 < ξ < 1.
We estimate (6.44) from above by

I1 (x) ≤ ∣∣I1 (x)
∣∣ ≡

∣∣∣∣
∫ 1

−1
N (ξ, x) f (ξ) dξ

∣∣∣∣ ≤
∫ 1

−1

∣∣∣N (ξ, x) f (ξ)

∣∣∣ dξ

(6.45)

≤
∫ 1

−1

∣∣∣N (ξ, x)

∣∣∣ dξ · max
ξ∈[−1,1]

| f (ξ)| .

Because
N (ξ, x) ≥ 0
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over the whole domain, we can omit the absolute value in the integral on the last line
above. Thus, it is sufficient to show that the integral

I2(x) ≡
∫ 1

−1
N (ξ, x) dξ (6.46)

converges. Furthermore, as was shown above, the function N (ξ, x) is symmetric
with respect to the lines ξ = x and ξ = −x . Define

I3(x) ≡
∫ x

−1
N (ξ, x) dξ. (6.47)

Due to the symmetries, it holds that

I2(x) = I3(x) + I3(−x) for all x ∈ [−1, 1].

See Fig. 6.9 for an illustration. Therefore, it is sufficient to consider the convergence
of only the integral (6.47). The integral (6.47) is of the form of the third integral in
(6.38), when taken to the limit, so the following argument will prove the convergence
of that limit, too. Due to the symmetry, it is also sufficient for proving the convergence
of the fourth integral in the same equation.

Fig. 6.9 Effect of the symmetries of N (ξ, x) on the integral I2(x)
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Now, to show that (6.47) converges, we can use the elementary sandwich theorem,
also called dominated convergence, from analysis. The outline of the argument is as
follows; details are given in Jeronen (2011).

Due to the symmetry of N (ξ, x) with respect to ξ = x , it is sufficient to consider
just one half of the domain. Hence, let ξ < x . We leave out strict equality to avoid
the singularity of N (ξ, x) at x = ξ . Consider the set

D1 ≡
{
(x, ξ) ∈ R

2 | − 1 < x < 1,−1 < ξ < x
}

.

We observe that
0 ≤ Λ(ξ, x) < 1 for all (x, ξ) ∈ D1.

Taking this into account, we can estimate N from above, simplifying the expression
slightly:

N (ξ, x) ≡ 1

π
ln

∣∣∣∣1 + Λ

1 − Λ

∣∣∣∣

for ξ<x= 1

π
ln

1 + Λ

1 − Λ
(6.48)

< ln
2

1 − Λ
≡ s(ξ, x),

where s(ξ, x) is defined as indicated. This simplifies the numerator and gets rid of
the absolute value. Let us define transformed coordinates η ≡ x − ξ and ζ ≡ x + ξ .
Let

r(η) ≡ ln

(
4

η

)
,

and
r(ξ, x) ≡ r(η) ≡ r(x − ξ).

In the set D1, it holds that η ∈ (0, 2). In this range, the function r is positive and
integrable; ∫

r(x − ξ) dξ < ∞.

Once we show that on lines parallel with x = −ξ , for the function s it holds that

s(η, ζ ) ≤ s(η, 0),

the argument reduces into one dimension. Then, it is sufficient to show that for
η ∈ (0, 2), we have
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s(η, 0) < r(η).

Finally, applying the sandwich theorem concludes the argument.
As a final remark to this section, we see that N (ξ, x) decreases quickly. Quanti-

tatively speaking, it decreases faster than ln(4/η), as the distance η ≡ |ξ − x | from
the singularity ξ = x increases.

6.1.6 Added-Mass Approximation

Added-mass models are often used for taking into account the inertial effects of
fluid-structure interaction in simplified settings. In this section, we will construct an
added-mass approximation for our model and compare the result to some existing
added-mass models. This is additional material that is will not be used in the rest of
the book; for the fluid–structure interaction problem, we will use the original model
directly.

Above, it was observed that N (ξ, x) has the following properties:

1. N has a singularity at ξ = x :

N (ξ, x) → ∞ as ξ → x,

2. N is integrable: ∫ 1

−1

∣∣∣N (ξ, x)

∣∣∣ dξ < ∞, and

3. the value of N (ξ, x) decreases quickly as the distance from the singularity
increases.

Motivated by these properties, let us make the following simplifying approximation:

∫ 1

−1
N (ξ, x) f (ξ)dξ ≈ μ

∫ 1

−1
δ(ξ, x) f (ξ)dξ, (6.49)

where δ(ξ, x) is the Dirac delta distribution, the function

f (ξ) = f (ξ ; t)

is any admissible function, and μ is the constant

μ ≡ mean
x∈(−1,1)

∫ 1

−1
N (ξ, x)dξ = 1

2

∫ 1

−1

[∫ 1

−1
N (ξ, x)dξ

]
dx. (6.50)

The symbol mean(·) denotes the average of the indicated quantity over the indicated
interval.
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The approximated integral in (6.49) is easy to evaluate. Using the definition of
the Dirac delta distribution, we have

μ

∫ 1

−1
δ(ξ, x) f (ξ)dξ = μ f (x) ∀x ∈ [−1, 1]. (6.51)

Numerically, we find that the required mean value is μ ≈ π/4. To do this, the formula
(6.50) can be evaluated in several ways. One way is to use the Monte Carlo method:
take the middle form of the expression (6.50), replace the mean by the sample mean,
and sample the integral for e.g. n = 1000 uniformly distributed random values of x .
The sample mean then gives an approximation for μ.

Alternatively, it is possible to use the rightmost form of (6.50), and evaluate the
double integral directly by applying a quadrature method to both the outer and inner
integrals. This approach requires many evaluations of the inner integral, and is thus
fairly slow, but it gives a more accurate result.

Whichever method is used, due to the singularity of N (ξ, x) at ξ = x , in practice
the (inner) integral must be numerically approximated as

∫ 1

−1
N (ξ, x)dξ ≈

∫ x−ε

−1
N (ξ, x)dξ +

∫ 1

x+ε

N (ξ, x)dξ, (6.52)

where ε is small.
It is important to notice that the added-mass model, by replacing the exact aero-

dynamic kernel by the Dirac delta approximation as per (6.49), approximates the
fluid-structure interaction as pointwise local. Thus, the added-mass model can be
seen as performing mass lumping on the original model; the factor μ approximates
the total strength of the aerodynamic reaction on one point of the panel surface.

Of course, a global mean value is not the only way to perform mass lumping.
Alternatively, one can approximate

∫ 1

−1
N (ξ, x) f (ξ)dξ ≈ S(x)

∫ 1

−1
δ(ξ, x) f (ξ)dξ,

where

S(x) ≡
∫ 1

−1
N (ξ, x)dξ. (6.53)

This choice is slightly more sophisticated in that it accounts for differences in the
strength of the coupling at different values of x . It approximates the effect of the
kernel with the local mean at each fixed x , instead of the global mean π/4. For a plot
of S(x), see Fig. 6.10. If fast computation is desired, a polynomial approximation
can be used. A least squares fit (by the method of normal equations) using the basis

φ0(x) ≡ 1, φ1(x) = x2, φ2(x) = x4
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Fig. 6.10 The function S(x) defined by (6.53), for local approximation of the aerodynamic reaction.
Both the original function and its three-term polynomial approximation are shown. The polynomial
fit coefficients are c0 = 0.9892, c1 = −0.3195, and c2 = −0.4872. Note that the original function
touches zero at both ends of the domain, whereas the polynomial approximation does not

gives coefficients c0 = 0.9892, c1 = −0.3195, and c2 = −0.4872. This approach
leads to a variable-coefficient partial differential equation, and is in spirit similar to
the approach of Frondelius et al. (2006), where an added-mass model was used, with
the added masses taken as functions of x derived from boundary layer theory. (Of
course, with the obvious difference that here we use thin airfoil theory instead of
boundary layer theory.)

In any case, how accurate the added-mass approximation is depends on the physi-
cal situation being considered. In Païdoussis (2008), it is pointed out that the problem
of plates subjected to axial flow is more complex than the otherwise very similar,
canonical problem of the fluid-carrying pipe, exactly due to the nonlocal coupling
effect that is ignored by the added-mass model.

Let us work out the added masses predicted by our model. For simplicity, consider
only the inertial terms and qf in (6.1). That is, in (6.1), assume T = 0, D = 0 and
g ≡ 0 for simplicity, as we can easily add these terms back when finished. We
approximate qf by inserting (6.49) and μ = π/4 into (6.41). Then, we evaluate the
approximated aerodynamic integral by (6.51).

In dimensionless coordinates, we have the result
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m

τ 2

∂2w

∂t2 + 2
mV0

�τ

∂2w

∂x∂t
+ mV 2

0

�2

∂2w

∂x2 =

−ρf
π

4

[
�

τ 2

∂2w

∂t2 + 2
v∞
τ

∂2w

∂x∂t
+ v2∞

�

∂2w

∂x2

] (6.54)

from which we obtain

1

τ 2 [m + ma]
∂2w

∂t2 + 2
V0

�τ
[m + marv]

∂2w

∂x∂t
+

V 2
0

�2

[
m + mar2

v

] ∂2w

∂x2 = 0,

(6.55)

where

ma ≡ �ρfπ

4
and rv ≡ v∞

V0
. (6.56)

The result reduces to a classical one- or three-term single-parameter added-mass
model by choosing rv = 0 i.e. v∞ = 0, no free-stream flow in laboratory coordinates,
or rv = 1 i.e. v∞ = V0, whole air mass moves with the web.

The prediction for the added mass ma thus derived, in (6.56), agrees with equation
(12A) of Pramila (1986):

ma = απρa/4,

if we take α = 0.5 in Pramila’s equation. Our � denotes the span half-length and
Pramila’s a denotes the full length; hence a = 2�. The symbol ρ represents the
fluid density (the same as our ρf ). According to Pramila (1986), the choice α = 0.5
corresponds to an aspect ratio slightly larger than 1.0, i.e., the span is slightly longer
than wide.

Compare also Eq. (13) of Pramila (1987), due to T. Y.-T. Wu, reported to hold for
long and narrow spans:

q1 = −πρ(b2/4)(w,t t + 2vw,xt + v2w,xx ).

Here q1 denotes the lift force per unit length, and the term is situated on the right-hand
side of the dynamical equation, in the same way as our qf . Hence, upon transferring
the lift force to the left-hand side of the equation, the sign becomes positive. The
velocity v corresponds to our v∞ and the fluid density ρ to our ρf . When we consider
the force per unit surface area, by dividing the given expression by the span width b,
the corresponding added mass becomes

ma = bρfπ

4
.
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This formulation, instead of �, uses the span width b as the length scale. Comparing
to our approximation in (6.56), the best agreement is obtained when �/b ≈ 1 (i.e.
when the span is twice as long as wide).

Finally, in the special case V0 = 0, the effect of fluid cannot be included in
the mass only, because for V0 = 0 the quantity rv in (6.56) becomes undefined.
However, the added mass ma is still well-defined. The added mass ma and the fluid
axial velocity v∞ together fully characterize the approximated effect of the fluid.

In the general case, instead of writing (6.55), we can use the following:

mtotal = m + ma, (6.57)

ptotal = mV0 + mav∞, (6.58)

2Ktotal = mV 2
0 + mav

2∞, (6.59)

where ma is the added mass, mav∞ is the added linear momentum, and 1
2 mav

2∞ is
the added kinetic energy. We have

1

τ 2 mtotal
∂2w

∂t2 + 2
1

�τ
ptotal

∂2w

∂x∂t
+ 1

�2 2Ktotal
∂2w

∂x2 = 0,

or, equivalently,

1

τ 2 [m + ma]
∂2w

∂t2 + 2
1

�τ
[mV0 + mav∞]

∂2w

∂x∂t

+ 1

�2

[
mV 2

0 + mav
2∞

] ∂2w

∂x2 = 0.

(6.60)

This generalized added-mass type approximation covers all values of V0.
It should be pointed out that due to the forms of (6.55) and (6.60), neither approxi-

mation can qualitatively change the dynamic behaviour of the system when compared
to the corresponding vacuum case. These added-mass approximations only modify
the coefficients of the original constant-coefficient partial differential equation. The
partial differential equation itself remains identical to the vacuum case. Thus, the
dynamic stability results of the corresponding vacuum case fully qualitatively gov-
ern the stability of the added-mass fluid-structure interaction model.

6.1.7 Notes and Discussion

Above, we set up the aerodynamic problem and derived its solution in a functional
form, using the techniques of thin airfoil analysis. We obtained a Green’s function
solution with respect to the aerodynamic kernel N (ξ, x), determined explicitly in
closed form, and to the panel transverse displacement w(x, t). An explicit formula
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was obtained for the aerodynamic reaction qf (w). We showed certain symmetry prop-
erties and the absolute integrability of the aerodynamic kernel. We also established
an analytical upper limit for its values across its whole domain. Finally, we derived
a simple added-mass approximation, and suggested a second, more sophisticated
added-mass approximation with coefficients depending on x .

The assumptions behind the obtained solution are as follows. The fluid is ideal;
that is, only potential flow occurs, and fluid rotation and viscosity are neglected.
The panel displacement w, the fluid disturbance potential ϕ, and their derivatives
are small. Especially, the panel undergoes small deformation only; geometrically, it
can be approximated as a straight line segment on the x axis. In the flow problem,
only the slip boundary condition depends on the panel’s transverse displacement w.
Although an axially moving panel is studied, in the fluid flow problem the panel only
exists in the interval x ∈ [−1, 1]. Thus, in the panel domain, there is a material source
at x = −1 and a material sink at x = +1 for positive V0. The rollers supporting the
panel, and any surrounding parts of the panel itself, are neglected in the flow analysis.

The approach is thus highly approximate, but it is relatively simple and it accounts
for two-way coupling between the panel and fluid components of the fluid-stucture
interaction model. The deformation of the panel disturbs the fluid, which then causes
pressure on the panel surface. The linearity of the coupled model is preserved, because
potential flow is memory-free.

Finally, the described solution for the aerodynamic problem does not require the
simply supported boundary conditions for the panel that are used in this book. Any
choice of boundary conditions for the panel can be used, as long as the panel dis-
placement w and its derivatives inside the domain remain small. For one example, the
same aerodynamic reaction is applicable also with the nonsymmetric boundary con-
ditions introduced by Garziera and Amabili (2000), where the case of tape winding
onto a reel was investigated. In the paper making context, those boundary conditions
could be used for modelling the end of the paper machine, where the finished product
is wound onto a reel.

6.2 Behaviour of Travelling Panels Submerged in Ideal Fluid

In this section, we will take the solution of the flow problem derived above, and
use it for analyzing the axially moving panel submerged in axial potential flow. The
analysis has been split into several sections to facilitate logical organization. In this
first, short section, we set up three problems for the travelling panel submerged in
ideal fluid. Then we will perform the space discretization to obtain the semidiscrete
form. Much of the work in the space discretization is identical in the steady-state and
dynamic cases, so we will perform it only once.

The three problems that will be treated are the static stability problem, the dynam-
ical behaviour problem, and the eigenfrequency problem. We will analyze them
starting from the semidiscrete form. The presentation of problem-specific numerical
approaches is deferred until the handling of each problem.
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Let us begin by defining some common notation for all the problems. Let

C ≡ √
T/m, (6.61)

which is the critical velocity of a membrane in vacuum (see, e.g., Chang and Moretti
1991). Define also the dimensionless quantities

γ ≡ �
ρf

m
, (6.62)

β ≡ D

mC2�2 = D

�2T
, (6.63)

c ≡ V0

C
, (6.64)

θ ≡ v∞
C

, (6.65)

α ≡ �/τ

C
. (6.66)

These denote a fluid effect coefficient, dimensionless bending rigidity, dimensionless
axial velocities for the panel and the fluid, and dynamic time scale, respectively. The
quantities (6.62–6.65) appear in both steady-state and dynamic cases; the quantity
(6.66) only in the dynamic case.

All three problems that will be analyzed can be expressed in abstract integro-
differential form as

L(w; V0) + γK(w; v∞) = G, (6.67)

where L is the differential operator of the corresponding vacuum problem, γ is the
fluid effect coefficient, K is the integro-differential operator accounting for fluid-
structure interaction, and G = G(x, t) is the (optional) external load function, which
does not depend on w. The operator L has the panel velocity V0 as parameter, while
K has the fluid free-stream velocity v∞. As the dynamical behaviour problem is the
most general of those considered, Eq. (6.74), further below, can be used as a definition
for L, K and G.

The first problem is the static stability problem. We use the Euler approach of
determining nontrivial steady-state solutions, and the associated critical values of the
problem parameter of interest. We will concentrate on finding the critical velocities,
which play the role analogous to Euler’s critical compression force for the axially
compressed beam.

Recall (6.1), which describes the dynamical behaviour of the moving panel sub-
merged in potential flow. Setting the time-dependent terms to zero, and assuming
zero external forces (g ≡ 0), we obtain the steady-state equation

(
mV 2

0 − T
) ∂2w

∂x2 + D
∂4w

∂x4 = qf , (6.68)
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which describes the buckling of a travelling panel submerged in potential flow. Refer
to Fig. 6.3 in Sect. 6.1.

It is convenient to transform the problem into a nondimensional form for analysis.
This should be done before we proceed any further, because the aerodynamic reaction,
which we wish to insert here, was derived in dimensionless coordinates. Let us use
the dimensionless coordinate

x ′ = x/�,

hence each differentiation will produce a factor of 1/�. Since we will be considering
the eigenvalue problem only, the scaling of w is of no concern. Let us choose the
dimensionless displacement

w′(x ′, t ′) ≡ w(x, t)

where the scaling factor is unity.
In dimensionless coordinates, we have

(
mV 2

0 − T
) 1

�2

∂2w

∂x2 + D
1

�4

∂4w

∂x4 = qf ,

where x ∈ [−1, 1]. The primes have been omitted from the notation. Transferring qf
to the left-hand side, inserting the final solution for the aerodynamic reaction from
(6.41), and dropping the time dependence in it, we obtain

(
mV 2

0 − T
) 1

�2

∂2w

∂x2 + D
1

�4

∂4w

∂x4

+ ρf
1

�
v∞

∂w

∂x

∫ 1

−1
N (ξ, x) v∞

∂w

∂x
w(ξ) dξ = 0.

(6.69)

Multiplying (6.69) by the factor
�2

mC2 ,

and applying (6.62–6.65), we obtain

(c2 − 1)
∂2w

∂x2 + β
∂4w

∂x4 + γ θ2 ∂

∂x

[∫ 1

−1
N (ξ, x)

(
∂

∂x
w(ξ)

)
dξ

]
= 0. (6.70)

This is the fourth-order integro-differential equation that will be solved for investi-
gating the static stability. For the boundary conditions, we take the simply supported
conditions (2.7–2.8).

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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We fix all parameters but one, and treat the remaining parameter as an eigenvalue.
In this study, we consider only the axial velocities V0 (dimensionless form: c) and
v∞ (dimensionless form: θ ) as eigenvalues.

The static stability problem asks to determine the critical values of the chosen para-
meter, such that (6.69) admits nontrivial solutions w(x) �≡ 0, and the corresponding
nontrivial solutions.

In the dynamical behaviour problem, we investigate the full dynamical equation
(6.1)

m
∂2w

∂t2 + 2mV0
∂2w

∂x∂t
+

(
mV 2

0 − T
) ∂2w

∂x2 + D
∂4w

∂x4 = qf + g,

describing small transverse vibrations of a travelling panel submerged in potential
flow. Refer to Fig. 6.2 in Sect. 6.1 for the setup. The external load g ≡ g(x, t) is
allowed to be nonzero, and is considered given.

Let us move into dimensionless coordinates. Let x ′ = x/� and t ′ = t/τ , and for
the displacement w, choose the scaling w′ = w/� that is especially convenient for
this problem. We have

m
1

τ 2

∂2w

∂t2 + 2mV0
1

�τ

∂2w

∂x∂t

+ (
mV 2

0 − T
) 1

�2

∂2w

∂x2 + D
1

�4

∂4w

∂x4 = 1

�
qf + 1

�
g.

(6.71)

The 1/� factor on the right-hand side comes from the scaling of w = �w′ after
division of both sides by �. The dimensionless variables have the ranges

x ∈ [−1, 1] and t ∈ [0,∞).

The primes have been dropped from the notation.
Next, let us insert the aerodynamic reaction

qf ≡ qf(w),

which is given in dimensionless coordinates in (6.41)

qf = −ρf
1

�

(
�

τ

∂

∂t
+ v∞

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
�

τ

∂

∂t
+ v∞

∂

∂x

)
w(ξ, t) dξ.

In the formula for the aerodynamic reaction, the scaling of w has not been applied
yet; only dimensionless x ′ and t ′ are used. Let us apply it now, to get an equation
which depends only on the scaled w′. Inserting w = �w′ into (6.41) eliminates the
leading 1/�. However, when we insert the resulting expression into (6.71), the same
factor will be brought back by the 1/� multiplying the qf .
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Summarizing, we obtain

m
1

τ 2

∂2w

∂t2 + 2mV0
1

�τ

∂2w

∂x∂t
+

(
mV 2

0 − T
) 1

�2

∂2w

∂x2 + D
1

�4

∂4w

∂x4 =

−ρf
1

�

(
�

τ

∂

∂t
+ v∞

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
�

τ

∂

∂t
+ v∞

∂

∂x

)
w(ξ, t) dξ + 1

�
g(x, t).

(6.72)

Anticipating upcoming manipulations, let us define the dimensionless external load

g′(x ′, t ′) ≡ �

mC2 g(�x ′, τ t ′) = �

T
g(�x ′, τ t ′). (6.73)

where g is the original (dimensional) load function.
We multiply (6.72) by the factor �2/mC2, and in the qf term, distribute the 1/C2

into the operators (one 1/C per instance of the operator). Applying (6.62–6.66) to
the result, and moving qf to the left-hand side, we havev

α2 ∂2w

∂t2 + 2αc
∂2w

∂x∂t
+ (c2 − 1)

∂2w

∂x2 + β
∂4w

∂x4

+γ

(
α

∂

∂t
+ θ

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
α

∂

∂t
+ θ

∂

∂x

)
w(ξ, t) dξ = g(x, t), (6.74)

where all the variables and functions are in the dimensionless form. The domain of
(6.74) is

(x, t) ∈ ( (−1, 1), (0,∞) ).

This is the equation that will be solved to determine the dynamical behaviour.
As the boundary conditions, we use the simply supported conditions (2.7–2.8).

Uniqueness of dynamic behaviour requires two initial conditions, as the equation is
of the second order in time. We set

w(x, 0) = g1(x) (6.75)

∂w

∂t
(x, 0) = g2(x), (6.76)

where g1(x) and g2(x) are given functions.
The dynamical problem is to solve the initial boundary value problem (6.74),

(2.7–2.8) to find the time-dependent behaviour w(x, t).
The last of the three problems, the corresponding eigenfrequency problem, is

concerned with finding the unloaded time-harmonic behaviour. For this, we start
from (6.74), and set the load to zero, g ≡ 0. By inserting the time-harmonic trial

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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function
w(x, t) ≡ est W (x) (6.77)

into (6.74), and ignoring the common exp factor, we have the pseudo-steady-state
problem

α2s2W + 2αcs
∂W

∂x
+ (c2 − 1)

∂2W

∂x2 + β
∂4W

∂x4

+γ

(
αs + θ

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
αs + θ

∂

∂x

)
W (ξ) dξ = 0. (6.78)

Because our original operator is linear in w, and the original coefficients are real, the
complex-valued time-harmonic approach is justified: the real and imaginary parts of
the complex-valued solution will be real-valued solutions of the original problem.
However, as usual, s will be complex, and the coefficients of the space-component
problem (6.78) will be complex-valued.

As the boundary conditions for W (x), also in this case we choose the simply
supported conditions. In the eigenfrequency analysis, we only look for possible
modes for free vibrations, so initial conditions are not needed. We have an eigenvalue
problem for pairs (s, W ), to determine the values for the complex stability exponent,
and the corresponding vibration modes.

6.2.1 Numerical Considerations

For the purposes of numerical analysis, a discrete approximation will be used for
the partial differential equations as usual. In the traditional manner, the space dis-
cretization will be performed first, producing a semi-discrete form. Deriving the
semi-discrete form is the purpose of the present section.

In the dynamical behaviour problem, we will also need a time discretization. This
will be performed during the analysis of the dynamic problem. For the other two
problems, the space discretization is sufficient. The steady-state problem is by def-
inition time-independent, and for the eigenfrequency problem, the time component
is known analytically.

Galerkin methods are especially convenient for numerical handling of integro-
differential equations. We will space-discretize using the Fourier–Galerkin method
(see e.g. Canuto et al. 1988). The Fourier–Galerkin method is a traditional spectral
method of the Galerkin type. According to Canuto et al. (1988), the first serious appli-
cation of spectral methods to partial differential equations was made by Silberman
(1954) for meteorological modelling. A stability analysis of the method and some
further references are available in Tadmor (1987). Recently, the method has been
applied, e.g., for computing the stationary solutions of two-dimensional generalised
wave equations by Christou and Christov (2007).



6.2 Behaviour of Travelling Panels Submerged in Ideal Fluid 145

We represent the displacement w as a Galerkin series,

w (x, t) =
∞∑

n=1

fn (t) Ψn (x) , (6.79)

We work in dimensionless coordinates, so there is no scaling factor, and w, which
is actually w′ with the prime omitted from notation, is dimensionless. The functions
fn and Ψn are both dimensionless.

For the shape functions Ψn , we choose the eigenmodes of free vibrations of a
stationary string in vacuum,

Ψn (x) ≡ sin

(
nπ

x + 1

2

)
, x ∈ [−1, 1] . (6.80)

This is a Fourier sine basis that splits the space component of the solution into a
frequency domain along the x axis. This use of the word frequency here has nothing
to do with time, but represents the decomposition of the space axis in a manner
somewhat similar to what Fourier analysis does to time signals. The functions fn are
functions of the time t directly, hence our frequency domain is only spatial.

By construction, the chosen basis automatically accounts for the simply supported
boundary conditions (2.7–2.8). The basis is equivalent to the standard Fourier sine
basis, up to a constant factor of 2, if the solution is considered to have period 4, and
to be antisymmetric with regard to the (fictitious) midpoint x = 1.

We start the development of the semi-discrete form from the dimensionless
integro-differential equation (6.74), which we will repeat here:

α2 ∂2w

∂t2 + 2αc
∂2w

∂x∂t
+ (c2 − 1)

∂2w

∂x2 + β
∂4w

∂x4

+ γ

(
α

∂

∂t
+ θ

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
α

∂

∂t
+ θ

∂

∂x

)
w(ξ, t) dξ = g(x, t). (6.81)

One must be careful with the ∂/∂x in front of the integral in the fluid term,
because the aerodynamic kernel N (ξ, x) is singular. It is not possible to directly
take the derivative operator into the integral, because the L1 norm of ∂ N/∂x is not
finite. A straightforward, but somewhat lengthy, calculation finds that ∂ N/∂x has
singularities of type 1/xa , where a ≥ 1. The singularities are located at x = ±1
with a = 3/2, and at x = ξ with a = 1.

However, as was shown in the first section of this chapter, the integral in (6.40) is
absolutely convergent, and thus the function ϕ+ is bounded. It is possible to choose
from two approaches. The first approach is to integrate first, and then differentiate the
result by any method. The second approach, more applicable here because we will
work in the weak form and do not have a closed-form antiderivative, is to integrate
by parts against the test function as usual. This is legitimate despite the singularity,

http://dx.doi.org/10.1007/978-3-319-01745-7_2
http://dx.doi.org/10.1007/978-3-319-01745-7_2
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because the integrand of the weak form is a product of two bounded, integrable
functions.

We now consider the system of equations corresponding to the dynamics of the
panel, expressed by the weak form of (6.74). As was mentioned earlier, (6.74) is of
the abstract form

L(w; V0) + γK(w; v∞) = G.

We multiply (6.74) by the test function Ψ j (x) and integrate over the dimensionless
space domain Ω ≡ {x ∈ R | − 1 < x < 1}. We have

α2
∫ 1

−1

∂2w

∂t2 Ψ j dx + 2αc
∫ 1

−1

∂2w

∂x∂t
Ψ j dx

+ (c2 − 1)

∫ 1

−1

∂2w

∂x2 Ψ j dx + β

∫ 1

−1

∂4w

∂x4 Ψ j dx

+ γ

∫ 1

−1

[(
α

∂

∂t
+ θ

∂

∂x

) ∫ 1

−1
N (ξ, x)

(
α

∂

∂t
+ θ

∂

∂x

)
w(ξ, t) dξ

]
Ψ j (x)dx

=
∫ 1

−1
g(x, t)Ψ j dx . (6.82)

The brackets emphasize that the aerodynamic reaction is one function. In the same
term, the x in Ψ j (x) is indicated explicitly, because there are two integrations: first,
over the dummy variable ξ to determine qf(x, t) at a fixed x , and then over x from
the weak form. From (6.82), the choices of functions for integration by parts should
be more apparent, and it should be clear what to do in practice in order to transfer
the outer ∂/∂x to the factor Ψ j (x).

That takes care of the space derivative. What about the outer ∂/∂t? Once we insert
the Galerkin series (6.79), for each term n in the sum, the function w will separate
into a product of space- and time-dependent parts. We make the standard assumption
that the series is “convergent enough” so that the order of spatial integration and
series summation can be exchanged. Once the summation has been taken outside
both (nested) integrals, we can use the fact that the time part is constant in space,
and hence it too can be taken outside the integrals.

To sum up, as long as care is taken with the outer ∂/∂x in the aerodynamic term,
the rest can be done in the standard manner. The result is as follows. Inserting the
Galerkin series (6.79) into the weak form (6.82) gives us the following expressions
for the weak equivalents of the operators L and K:
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∫ 1

−1
L (w; c) Ψ j dx =

∫ 1

−1
L

( ∞∑
n=1

fnΨn ; c

)
Ψ j dx =

∞∑
n=1

[
α2 A jn

d2 fn

dt2 + 2αcB jn
d fn

dt
+ (c2 − 1)C jn fn + βD jn fn

] (6.83)

∫ 1

−1
K (w; θ) Ψ j dx =

∫ 1

−1
K

( ∞∑
n=1

fnΨn ; θ

)
Ψ j dx =

∞∑
n=1

[
α2a jn

d2 fn

dt2 + 2αθb jn
d fn

dt
+ θ2c jn fn

]
.

(6.84)

The operator L depends on the dimensionless panel velocity c, while K depends
on the dimensionless fluid velocity θ . Both operators are nonzero even at zero
velocity.

The formal matrices A jn , B jn , C jn , D jn , a jn , b jn and c jn are defined by

A jn =
∫ 1

−1
Ψn(x)Ψ j (x)dx = δ jn (6.85)

B jn =
∫ 1

−1

dΨn

dx
(x)Ψ j (x)dx =

{
0, j = n

nj
n2− j2

(
(−1) j+n − 1

)
, j �= n (6.86)

C jn =
∫ 1

−1

d2Ψn

dx2 (x)Ψ j (x)dx = −
(

jπ

2

)2

δ jn (6.87)

D jn =
∫ 1

−1

d4Ψn

dx4 (x)Ψ j (x)dx =
(

jπ

2

)4

δ jn (6.88)

a jn =
∫ 1

−1

∫ 1

−1
Ψn(ξ)N (ξ, x) Ψ j (x)dξdx (6.89)

b jn = 1

2

(
I jn − Inj

)
and (6.90)

c jn = −
∫ 1

−1

∫ 1

−1

dΨn

dx
(ξ) N (ξ, x)

dΨ j

dx
(x) dξdx, (6.91)

where j, n = 1, 2, 3, . . . and δ jn is the Kronecker delta. In (6.90), we have defined

I jn ≡
∫ 1

−1

∫ 1

−1

dΨn

dx
(ξ) N (ξ, x) Ψ j (x) dξdx . (6.92)

The test functions are indexed by j ; the Galerkin series is summed over n.
In (6.91), and in the Inj term in (6.90), we have carried out the mentioned integra-

tion by parts. No boundary terms appear, because N (ξ,±1) = 0 either directly, at
x = +1, or in the sense of limits, at x = −1. This holds for any choice of boundary



148 6 Travelling Panels Interacting with External Flow

conditions for w. Additionally, if the boundary conditions require

w = 0 , at x = ±0,

then it follows that
Ψ j (±1) = 0 for all j.

Although we use a global sine basis which is infinitely smooth, the integration by
parts is compulsory due to the singularity of N (ξ, x).

The closed-form solutions of (6.85–6.88) are, obviously, specific to the basis
(6.80). In all other respects, the definitions (6.85–6.92) always hold, regardless of
the basis or boundary conditions chosen.

The integrals in (6.89–6.92) have no closed-form solution, but some useful prop-
erties may be obtained analytically, assuming the basis (6.80). A summary follows;
for details, see Jeronen (2011). If j + n is odd, then

a jn = c jn = 0

by considering the symmetries of each integrand. The matrix b jn is antisymmetric,
and if j + n is even, then b jn = 0. The matrices a jn and c jn are symmetric by the
symmetry of N (ξ, x) with respect to the line x = ξ and the application of Fubini’s
theorem. When j + n is even, each integrand a jn and c jn is symmetric with respect
to the lines x = ξ and x = −ξ .

Summarizing, starting from (6.74), we have obtained the semidiscrete weak form,

∞∑
n=1

(
α2 [

A jn + γ a jn
] d2 fn

dt2 + 2α
[
cB jn + γ θb jn

] d fn

dt

+
[
(c2 − 1)C jn + γ θ2c jn + βD jn

]
fn

)
− G j = 0, (6.93)

where definitions (6.62–6.66) and (6.85–6.92) have been used. Additionally, we have
defined the space-discrete load vector, whose j th component is

G j (t) ≡
∫ 1

−1
g(x, t) Ψ j (x) dx, (6.94)

where all the functions and variables are dimensionless.
Finally, consider the initial conditions for direct temporal simulation. We insert

(6.79) into (6.75–6.76), multiply both sides by Ψ j (x), integrate over the domain, and
use (6.85) to eliminate all cross terms on the left-hand side. We have

f j (0) = 1

�

∫ 1

−1
Ψ j (x)g1(x)dx, j = 1, 2, 3, . . . (6.95)
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d f j

dt
(0) = 1

�

∫ 1

−1
Ψ j (x)g2(x)dx, j = 1, 2, 3, . . . . (6.96)

The leading 1/� comes from the scaling w = �w′, by dividing both sides of each
equation by �.

This completes the semi-discrete form. The original initial boundary value prob-
lem has been transformed into a Cauchy problem for the system of ordinary differ-
ential Eq. (6.93) with initial conditions (6.95–6.96).

For a practical numerical implementation, we truncate the Galerkin series at a
given value of n = n0. The resulting finite equation corresponding to (6.93) is a
linear, second-order, non-homogeneous, system of ordinary differential equations
with constant coefficients.

We will consider the three main problems one at a time. We will discuss the
steady-state problem, direct temporal integration (dynamical behaviour problem),
and the eigenfrequency problem. The treatment of the last one is split into two parts.
We will first look at the lowest eigenfrequency, and then at computing as many
eigenfrequencies as the discretization allows. For each problem, we will first explain
the solution strategy, starting from the semi-discrete form that was derived above.
We will then consider numerical examples. The handling of each problem ends with
a short summary and conclusion.

Problem parameters used in all numerical examples are given in Table 6.1. The
physical parameters have been chosen as typical for a paper web surrounded by air.
For the bending rigidity D, zero is used for some calculations; this is mentioned
when it is the case. Otherwise, the value in Table 6.1 is used.

6.2.2 Static Stability Analysis

As was mentioned above, let us first outline the numerical solution strategy. The
discrete steady-state problem, for numerical static stability analysis, can be obtained
directly from the semidiscrete form, (6.93), by setting the time scale parameter to
α = 0 (i.e., τ → ∞) and assuming zero external load, G j ≡ 0. We have

∞∑
n=1

[
(c2 − 1)C jn + γ θ2c jn + βD jn

]
fn = 0. (6.97)

Compare the continuum formulation in (6.70). Note that (6.97) is in weak form,
while the original Eq. (6.70) is in strong form. The finite equation corresponding
to (6.97) is an algebraic, linear equation system. The discrete problem is to find the
critical values of the chosen parameter, such that (6.97) admits nontrivial steady-state
solutions f �≡ 0, and to determine those nontrivial solutions.

Let us truncate the series (6.97) at some n0. First, consider the panel velocity V0
(respectively c in dimensionless form) as the eigenvalue. If v∞ is independent of
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Table 6.1 Problem parameters used. Physical parameters are the fluid density ρf , axial tension T ,
mass per unit area of the panel m, span half-length � (refer to Fig. 6.2 in Sect. 6.1), characteristic time
τ , panel thickness h, Young modulus E , Poisson ratio ν, and bending rigidity D. Dimensionless
parameters α, β, γ , θ and c are as defined in (6.62–6.66)

ρf [kg/m3] T [N/m] m [kg/m2] � [m] τ [s]
1.25 500 0.08 1 �/

√
T/m

h[m] E[N/m2] ν ⇒ D[Nm]
10−4 109 0.3 9.16 · 10−5

⇒ α β ⇒ γ

1 ∗ 15.625; ×

θ c
e.v. in (6.100), (6.101); else ∗ e.v. in (6.98), (6.99); else ∗

Legend
⇒ Implied by other parameters
∗ Several values used; see text
× Also used as plot axis variable
e.v. Eigenvalue to be solved

V0, we can rearrange the terms of (6.97) to produce the following generalized linear
eigenvalue problem in (c2, f):

n0∑
n=1

[
C jn − γ θ2c jn − βD jn

]
fn = c2

n0∑
n=1

C jn fn . (6.98)

If v∞ = V0 (resp. θ = c; the whole air mass moves with the panel), the problem for
(c2, f) reads

n0∑
n=1

[
C jn − βD jn

]
fn = c2

n0∑
n=1

(C jn + γ c jn) fn . (6.99)

From this discrete form, it is apparent that the model described by (6.99) is similar in
spirit to the corresponding vacuum model, as there is only one independent velocity.
Indeed, the form of the equation is a perturbed vacuum model with the additional
term γ c jn . In the limit of zero dimensionless fluid density, γ → 0, it reduces to the
vacuum model. Compare (6.98), which reduces to the vacuum model not only when
the fluid density γ → 0, but also when the dimensionless fluid velocity θ → 0.
This is because in the steady-state problem, the part of the operator K that does not
depend on the velocity θ is not present; it would be in the term with the second-order
time derivative. In the dynamic case, where this part is present, the model differs
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from the vacuum model even for θ = 0. Hence, we can expect different behaviour
from the two cases.

Now consider the fluid velocity v∞ (respectively θ in dimensionless form) as the
eigenvalue. The problem for (θ2, f) (now for fixed V0, i.e., c) reads

n0∑
n=1

[
(1 − c2)C jn − βD jn

]
fn = θ2

n0∑
n=1

γ c jn fn . (6.100)

The special case c = 0 of (6.100) corresponds to a stationary, tensioned panel
subjected to axial flow; see e.g. Kornecki et al (1976) and Païdoussis (2004, 2008).
This case has been experimentally tested in a wind tunnel, for a stationary web held
fixed at two edges and free to move on two others, by Chang and Moretti (1991). In
the article, the authors considered a threadline model for cylindrical displacement,
with added masses to account for the surrounding flow. We obtain the corresponding
problem in the limit of an infinitely wide wind tunnel, i.e., assuming the walls are far
enough not to disturb the flow near the panel, by setting β = 0 and c = 0 in (6.100).
We have

n0∑
n=1

C jn fn = θ2
n0∑

n=1

γ c jn fn, (6.101)

which is the eigenvalue problem for (θ2, f) corresponding to Chang and Moretti
(1991).

The classical non-tensioned panel requires different treatment, because we have
divided by the tension T to produce the dimensionless form. Guo and Païdoussis
(2000) (see also Païdoussis 2004) have considered the stability of a classical non-
tensioned plate subjected to two-dimensional axial flow in a channel. In our notation,
the continuum formulation reads

D
∂4w

∂x4 = �3qf .

Let us rewrite (6.97) without the dimensionless forms (6.62–6.65):

∞∑
n=1

[(
m

�
V 2

0 − T

�

)
C jn + D

�3 D jn + ρfv
2∞c jn

]
fn = 0. (6.102)

By setting T = 0 and V0 = 0 from (6.102), we can formulate this problem, again in

the limit of an infinitely wide channel, for (U
2
, f):

−
∞∑

n=1

D jn fn = U
2

∞∑
n=1

c jn fn, (6.103)
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where the eigenvalue U
2

is the dimensionless dynamic pressure (Païdoussis 2004)

U
2 = ρf �3

D
v2∞, (6.104)

which is the square of the dimensionless flow velocity U . The critical fluid flow

velocity for divergence, vdiv∞ , can be found from Ucd
2
, the minimal positive eigenvalue

U
2

of the problem (6.103).
All the problems (6.98–6.101), (6.103) are generalized linear eigenvalue prob-

lems; i.e. are of the general form

A1Y = κA2Y (6.105)

with A2 a non-identity matrix. Here A1 is an arbitrary matrix, κ is the (scalar)
eigenvalue and Y is the corresponding eigenvector. Standard eigenvalue solvers can
be used to solve (6.105). Refer to Golub and van Loan (1996) for algorithmic details
if needed.

Next, we will look into some numerical examples for these steady-state problems.
A parametric study will be performed for problems (6.98) and (6.99). The critical
velocities predicted from (6.99) will be compared to Pramila (1986). Additionally,
the results of (6.101) will be compared to those in Chang and Moretti (1991), and
the results from (6.103) will be compared to Guo and Païdoussis (2000).

In all cases, the Galerkin series is truncated at n0 = 56. For problems (6.98) and
(6.99), physical parameters given in Table 6.1 are used.

For problem (6.101), the physical parameters are chosen as corresponding to
those of Chang and Moretti (1991). The parameter values are D = 0, m =
0.076680634 kg/m2, c = 0. The width of the plate, needed in the theory of Chang
and Moretti (1991), is b = 0.1524 m. Note that the model described in this book does
not use the width. Two cases are illustrated; in case A, plate length is 2� = 0.508 m.
In case B, length 2� = 0.254 m. The compared theoretical results are calculated from
Chang and Moretti (1991, Eq. (20)), which states

vdiv∞ =
√

T

ma
, where ma = π

4
ρf b. (6.106)

The symbol T represents the tension per unit width of web, and b is the web width.
Because in this problem the web itself is stationary, only the added mass ma appears
in the expression for vdiv∞ and it does not depend on the web mass m.

Now, let us look at the effect of problem parameters on the critical panel
velocity c. Figures 6.11–6.14 show results calculated from problem (6.98), where
the dimensionless fluid velocity θ is a parameter. Figure 6.11 shows an example of
the critical shape (buckling mode, divergence mode), and the difference between the
vacuum mode and the with-fluid mode for some parameter values.
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Fig. 6.11 Some solutions of problem (6.98), where the dimensionless fluid velocity θ is a parameter.
The dimensionless fluid density γ = 15.625. Top Critical eigenmode (solid line). The dashed line
shows the corresponding vacuum mode. Both modes are normalized such that the maximum is 1.
Shapes are very similar for any admissible θ . Bottom the difference between the vacuum and with-
fluid solutions at two dimensionless bending rigidities β, for different fluid velocities θ . Differences
are computed using the same normalization for the solutions as on the top. The symbol θcritical
denotes the smallest value of θ at which the dimensionless critical panel velocity c becomes zero
(see Fig. 6.12)
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Fig. 6.12 Problem (6.98). Effects of the dimensionless fluid velocity θ and the dimensionless
bending rigidity β on the dimensionless critical panel velocity c. The dimensionless fluid density
γ = 15.625. The result is symmetric for −θ ; hence only the positive half is shown. The axis
intersection points on the horizontal axis are the values θcritical for the corresponding parameter
point (β, γ )

Consider Fig. 6.12. As expected, the region of stability expands toward mate-
rials having a larger bending stiffness D, or as the length of the span � becomes
shorter. Both of these changes increase β. However, as the tension T is increased,
β decreases. This is counterintuitive, as one would expect a stabilising effect result-
ing from increased tension. A stabilising effect is indeed present, because increas-
ing the tension also increases the vacuum divergence velocity, which is used in the
normalization of the dimensionless quantities. This causes θ to decrease if the dimen-
sional fluid velocity is kept constant, and at θ = 0, c stays constant with increasing
T . Thus, one needs to be careful when interpreting the dimensionless results with
respect to tension (T ) or panel area mass (m).

Because static instability analysis is only concerned with the critical velocity, and
not the complex-valued eigenfrequencies, it cannot tell apart the type of the interval
between the origin (V0 = 0) and the minimal positive eigenvalue, i.e., whether the
behaviour in the interval is stable or unstable. Of course, by physical considerations
this interval is known to be stable when the fluid velocity is zero.

We concentrate in this analysis only on the lowest region of stability, given by
the interval between the two eigenvalues that, at zero fluid velocity, are the maximal
negative and the minimal positive eigenvalue. Once either end of this region crosses
the origin, as θ is varied, the results become physically meaningless. The figures
shown have been filtered to show only the physically meaningful data. The critical
value of θ = θcritical, where the lowest region of stability ends, can be found for
each fixed pair (β, γ ) numerically e.g. with a linear-logarithmic search procedure.
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Fig. 6.13 Problem (6.98). Effects of the dimensionless fluid density γ and the dimensionless fluid
velocity θ on the dimensionless critical panel velocity c. The result is symmetric for −θ ; hence
only the positive half is shown. The bending rigidity is fixed to β = 0; the solution is representative
for small bending rigidities. On the axes, c ≡ 1. In the blank area, the problem has no physically
meaningful solution. See also slices of this contour plot in Fig. 6.14

That is, start from θ = 0, increase θ in fixed steps until c2 < 0, then go back one
step, halve the step size and repeat the procedure until desired tolerance is achieved.
However, in order for this to work correctly, the starting step size should be small
enough. Otherwise the search may find a higher stability region, where again c2 > 0,
which occurs in the linear model starting at some value of θ larger than θcritical.

Figure 6.13 shows the effects of γ and θ on the critical velocity c. The contour
plot is symmetric with respect to θ , and hence only the positive half is shown. This
feature is to be expected, because (6.98) only depends on θ2. Figure 6.14 shows
axis-oriented slices of the contour at various parameter values.

Figures 6.15–6.17 illustrate the solutions of problem (6.99), where the whole air
mass moves with the panel, i.e., v∞ = V0, and θ = c = eigenvalue. Figure 6.15
again shows an example of the critical shape (buckling mode, divergence mode),
and its difference from the vacuum solution for some values of the dimensionless
bending rigidity β. In Fig. 6.16 we see the effects of β and γ on the critical velocity c.
Figure 6.17 again shows axis-oriented slices of the same effect at various parameter
values. As expected, an increase in the bending stiffness β has a stabilizing influence,
while an increase in the fluid density γ has a destabilizing influence.

Table 6.2 gives the numerical values of the critical velocity for the reference
values of the problem parameters (refer to Table 6.1) at various v∞. The values of
v∞ correspond to the choices in Fig. 6.27 in the upcoming lowest eigenfrequency
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Fig. 6.14 Problem (6.98). Effects of the dimensionless fluid density γ and the dimensionless fluid
velocity θ on the dimensionless critical panel velocity c. Top effect of density γ . For θ = 0, c ≡ 1
(not plotted). Bottom effect of fluid velocity θ . For γ = 0, c ≡ 1 (not plotted). The bending rigidity
is fixed to β = 0; the solution is representative for small bending rigidities. See also the contour
plot in Fig. 6.13

analysis. The vacuum case gives the same critical velocity as v∞ = 0, so it is not
reported separately. This is expected; recall the comments on (6.98). The special
case v∞ = V0 is also shown. We see that with this assumption, using our parameter
values we obtain a critical velocity that is about 39 % of the corresponding vacuum
value.

Let us compare these results to those by Pramila (1986). In Pramila (1986), an
axially moving web submerged in ideal fluid was considered. We have v∞ = 0 for the
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Fig. 6.15 Some solutions of problem (6.99), where the air mass moves with the panel. The dimen-
sionless density γ = 15.625. Top Critical eigenmode (solid line). The dashed line shows the
corresponding vacuum mode. Both modes normalized such that the maximum is 1. Bottom the
difference between the vacuum and with-fluid solutions at different values for the dimensionless
bending rigidity β. Differences computed using the same normalization for the solutions as on the
left

stationary air, D = 0 for the threadline model (corresponding to an ideal membrane
in the panel model), and ρf = 1.2 kg/m3. However, since in our model the fluid does
not affect the critical velocity when v∞ = 0, it is more natural to assume v∞ = V0
as an alternative model for the case with no free stream.
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Fig. 6.16 Problem (6.99). Effects of the dimensionless fluid density γ and the dimensionless
bending rigidity β on the dimensionless critical panel velocity c. See also slices of this surface in
Fig. 6.17

In Pramila (1986) the nondimensional first natural frequency is given as a func-
tion of the nondimensional velocity for some example cases. We will compare the
natural frequency predictions of the present model with those of Pramila (1986) later.
Currently, we will look at the nondimensional velocity where the natural frequency
becomes zero, denoted c in our eigenvalue problem.

From added mass considerations, in Pramila (1986) a scaling factor is obtained.
Let us denote this factor by r . In the model of Pramila (1986), the first natural
frequency and the critical velocity, computed from the vacuum case, both become
scaled with the factor r , when the ideal fluid is taken into account. In our model, c
is the scaling factor for the critical velocity, and the steady-state analysis makes no
prediction concerning the natural frequency.

For m = 35.5 g/m2, Fig. 5 of Pramila (1986, p. 74) suggests that r is in the range
20–30 %, depending on which added mass expression is used. Similarly, Fig. 6 of
Pramila (1986) suggests that for m = 54 g/m2, the factor r is in the range 22–35 %.
For both these examples, the dimensions of the open draw are span length 2 � = 2.4 m
and web width b = 0.47 m, leading to an aspect ratio of 2 �/b ≈ 5.1, i.e. a narrow
strip. We will not need the width in our model.

In both cases, we have the dimensionless parameter β = 0. In problem (6.99)
(v∞ = V0, i.e., θ = c), because the value of T only affects the absolute value of
V div

0 and does not affect c, our model predicts that for the first case (γ = 40.5634),
the factor r ≈ 25.2 % regardless of tension. For the second case (γ = 26.6667), we
have r ≈ 30.6 % regardless of tension. Both cases show good agreement with the
results of Pramila (1986).

To illustrate the limitations of the panel model, let us compare the results using
another aspect ratio, too. In a numerical example in Pramila (1986), appropriate for
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Fig. 6.17 Problem (6.99). Effects of the dimensionless fluid density γ and the dimensionless
bending rigidity β on the dimensionless critical panel velocity c. Top effect of density γ . Bottom
effect of bending rigidity β. See also the surface plot in Fig. 6.16

comparison here, the geometry is a wide plate with 2 � = 0.75 m and b = 7.5 m,
giving an aspect ratio of 2�/b = 0.1. The physical parameters are T = 16 N/m and
m = 50 g/m2. This gives a vacuum divergence velocity of

C = √
T/m ≈ 18 m/s.
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Table 6.2 Critical panel velocity V0 as a function of fluid velocity v∞
v∞[m/s] 0 10 15 20 25 30 v∞ = V0

V div
0 [m/s] 79.057 75.385 70.526 63.098 52.012 33.845 30.607

θ 0 0.13 0.19 0.25 0.32 0.38 θ = c
cdiv 1 0.95355 0.89209 0.79813 0.65791 0.42811 0.38715

The solution does not depend on the signs of the velocities. The same data are given in both
dimensional and dimensionless forms; given a value ofv∞ (respectively θ), the critical panel velocity
is V div

0 (respectively cdiv). The dimensionless critical velocities cdiv give the axis intersection points
of Fig. 6.27

In Pramila (1986), it is predicted that with these values, depending on the added mass
expression used, the critical velocity is found to be between 2.7–4.6 m/s, or 15–26 %
of the vacuum case.

Inserting the numbers to the model presented in this book, we have β = 0 and
γ = 9.0. Solving the eigenvalue problem (6.99) gives V div

0 ≈ 8.66 m/s, or 48.4 % of
the vacuum case. Here the only agreement is qualitative: according to both models, the
divergence velocity decreases when compared to the vacuum case. The quantitative
difference is probably due to the deformation localisation effect, which renders the
cylindrical deformation assumption invalid in the case of a wide plate. See Fig. 3.5
in Sect. 3.4.

Moving on to the next case, in Fig. 6.18, we have considered the problem of Chang
and Moretti (1991) for the critical flow velocity vdiv∞ , presented in (6.101) above. In
this problem, the panel is stationary and is assumed to have zero bending rigidity. The
results for vdiv∞ from our model, computed by solving (6.101), are shown together
with the theoretical results and experimental data of Chang and Moretti (1991). We
see that the model presented in this book gives a more accurate prediction for case
A (20 × 6 in, 2�/b ≈ 3.33) than the original model. However, in case B (10 × 6 in,
2�/b ≈ 1.67), the presented model almost systematically overestimates. The criti-
cal velocity, according to the measurements, increases more slowly in terms of the
applied tension value than predicted. The increasing trend is predicted correctly, but
the original model gives a better quantitative approximation. Comparatively better
agreement with experiment in case A is to be expected, since the cylindrical defor-
mation assumption holds best for long and narrow plates (see Fig. 3.5 in Sect. 3.4).

Finally, consider the classical stationary, non-tensioned panel subjected to axial
flow. This problem is parameter-free, if we are only interested in the dimensionless
Ucd, so one solution is sufficient. In his book, Païdoussis (2004) states that in the
limit of a wide channel, the dimensionless critical flow velocity for a pinned-pinned
plate with flow on both sides is

Ucd ref ≈ 3.3.

By solving the eigenvalue problem (6.103), we obtain

Ucd
2 ≈ 2.7788,
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Fig. 6.18 Static stability problem of Chang and Moretti (1991). A stationary panel is subjected to
steady-state flow in a wind tunnel; the quantity of interest is the critical flow velocity vdiv∞ at a given
value of tension T . Top case A, 2� = 0.508 m (20 in). Bottom case B, 2� = 0.254 m (10 in)

from which
Ucd ≈ 1.6670.

Our domain is x ∈ [−1, 1], while the standard is x ∈ [0, 1]. Hence, we should scale
our eigenvalue Ucd by 2 to make the results comparable. For an illustration of the
issue, consider the eigenvalue problem of the one-dimensional Laplace operator with
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zero Dirichlet boundary conditions. For

−∂2w

∂x2 = λ2w,

the eigenvalues λ are inversely proportional to the length of the domain. Hence, if
the same problem is solved on a domain that is twice longer, by a different nondi-
mensionalization of x , the eigenvalues will be halved. The present problem behaves
in a similar manner. Taking this into account produces

2Ucd ≈ 3.3339,

which agrees with the reference value.

Païdoussis (2004) also lists the quantity Ucd
2
/π3 for several different studies,

where flow on one side only has been investigated. In this case

Ucd ref

must be scaled by a factor of 2 to account for flow on one side of the plate only (see
Païdoussis 2004). This scaling by 2 is independent of the one due to the difference
in domain lengths. For our result, we obtain

(4 Ucd)
2/π3 ≈ 1.43,

which agrees with the value from Païdoussis,

(2Ucd ref)
2/π3 ≈ 1.4.

We observe that the choice of n0 does not matter. The change in the computed Ucd
2

between n0 = 1 and n0 = 56 can be observed to be less than 0.5 %. The fast
convergence agrees with the remark in the article by Guo and Païdoussis (2000).

Above, the critical velocity of the travelling panel submerged in axial potential
flow was investigated numerically as a function of problem parameters. The results
were summarized in graphical form. It was found that, quite intuitively, increasing
the fluid density decreases the critical velocity, while increasing the bending rigidity
increases the critical velocity. The effect of the given free-stream velocity was inves-
tigated parametrically, as well as the effects of bending rigidity and fluid density.
The numerical examples shown give quantitative predictions for the critical velocity
when parameter values are given.

A less intuitive result is that, by the model presented in this book, any nonzero
free-stream velocity for the fluid decreases the critical velocity of the panel. This is
found to be the case even if the fluid and the panel move in the same direction. One
would expect any setup with a smaller velocity difference (v∞ − V0) to resemble
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more the case of a stationary panel in stationary air; however, as was seen, this is not
the case.

In the analysis performed, four different steady-state problems were solved. The
first two were related to the critical velocity of the panel, as follows. In the first
problem, the free-stream velocity of the fluid v∞ (dimensionless form: θ ) was given
as a problem parameter, while the panel velocity V0 (respectively c) was the unknown
eigenvalue.

In the second problem, the whole air mass was assumed to move along with the
panel; v∞ = V0. In this case, there was only one velocity, which was treated as the
unknown eigenvalue c. The structure of the equation then became that of a perturbed
vacuum model. It was found that if the whole air mass moves with the panel, the
critical velocity of the panel is decreased. The decrease is significant; values between
25.2–48.4 % of the corresponding vacuum value were observed.

The other two investigated steady-state problems were related to the flow diver-
gence of stationary panels. As these do not concern axially moving panels, these
results are of interest mainly for seeing how the predictions from the model pre-
sented in this book differ from known values in literature, when the model is reduced
to that of a stationary panel.

Of these, the third problem was the divergence of the stationary tensioned panel
when subjected to axial flow. The panel velocity was zero, V0 = 0 (respectively
c = 0), and the free-stream velocity of the fluid, v∞ (respectively θ ), was the
unknown eigenvalue. The critical fluid velocity was thus determined. The results
were compared to Chang and Moretti (1991). In the case of a long, narrow strip
(20 × 6 in, 2�/b ≈ 3.33), it was seen that the present model improves on the theo-
retical predictions of Chang and Moretti (1991), in terms of matching experimental
data. In the case of a relatively wider span (10 × 6 in, 2�/b ≈ 1.67), the agreement
was not as good, although the qualitative trend was predicted correctly.

The fourth and last problem was the classical non-tensioned stationary panel
subjected to axial flow. Again, the panel velocity was zero, V0 = 0 (respectively c =
0), and the free-stream velocity of the fluid, v∞ (respectively θ ), was the unknown
eigenvalue. This was a parameter-free problem with just the dimensionless lowest
critical velocity as the solution. The result was compared to those summarized in the
book by Païdoussis (2004). The agreement was seen to be good.

To sum up, the parametric study performed in this section gives insight into the
behaviour of the critical panel velocity, when fluid-structure interaction is accounted
for. The model presented in this book was found to work especially well for long,
narrow strips. Overall it can be said that the model works well for aspect ratios 2�/b
of 3 and higher. Qualitative trends are correct for lower aspect ratios, too, but then
the critical velocity may be overestimated by the model.
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6.2.3 Dynamical Behaviour

Our next problem is the dynamical behaviour of the system. As above, we will first
look into the numerical solution strategy used, and then consider some numerical
examples.

For the time integration of (6.93), which is a system of ordinary differential equa-
tions, we can proceed using order reduction, and then numerical diagonalization. Let
us briefly review these techniques.

Let us truncate the Galerkin series at n = n0. The finite equation corresponding
to (6.93) is of the general form

M2
d2f(t)

dt2 + M1
df(t)

dt
+ M0f(t) = G(t), (6.107)

where the coefficient matrices are defined by the obvious identifications (compare
(6.107) and (6.93)), and G is a vector consisting of the components G j defined by
(6.94). For convenience, they are

(M2) jn ≡ α2 [
A jn + γ a jn

]
, (6.108)

(M1) jn ≡ 2α
[
cB jn + γ θb jn

]
, (6.109)

(M0) jn ≡ (c2 − 1)C jn + γ θ2c jn + βD jn, (6.110)

G j (t
′) ≡ �

T

∫ 1

−1
g( � x ′, τ t ′ ) Ψ j (x ′) dx ′. (6.111)

In (6.111), the primes explicitly indicate dimensionless quantities. The load func-
tion g is the original, dimensional load function (the factor �/T then makes G j

dimensionless), expressed in the original, unscaled (x, t) coordinates.
System (6.107) can be reduced to a twice larger first-order one by defining

u ≡
[

df/dt
f

]
, (6.112)

where the prime denotes the time derivative. Taking into account that M2 is small
enough to invert numerically, the expanded equation system becomes

d

dt

[
df/dt

f

]
=

[−M−1
2 M1 −M−1

2 M0
I 0

] [
df/dt

f

]
+

[
M−1

2 G
0

]
, (6.113)

which can be written as
du
dt

= Mu + g(t), (6.114)

where
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M =
[−M−1

2 M1 −M−1
2 M0

I 0

]
, g(t) =

[
M−1

2 G(t)
0

]
. (6.115)

The quantities (6.115) are the mass matrix and the force vector of the reduced-order
problem.

Standard integration techniques, such as the fourth-order Runge–Kutta method,
are directly applicable to the first-order system (6.114). However, we have only one
space dimension in the original problem, and the Fourier basis typically does not
require many modes along each space dimension in order to get acceptable results.
This motivates the use of a diagonalization method (see, e.g., Kreyszig 1993), which
can take advantage of the small number of unknowns.

Let us assume that M has a full eigenvector basis (in practice, this holds). Define
Λ, X, z, and h(t) by

Λ ≡ X−1MX, u ≡ Xz, Xh(t) ≡ g(t), (6.116)

where Λ is a diagonal matrix with the (complex) eigenvalues λ j of M on the diagonal,
and X is a unitary matrix containing the eigenvectors of M in its columns. Using the
relations (6.116), equation (6.114) becomes

dz
dt

= Λz + h(t), (6.117)

The solution for the j th component of z is (see e.g. Kreyszig 1993)

z j (t) = eλ j t
[

z j (0) +
∫ t

t̂=0
e−λ j t̂ h j (t̂) dt̂

]
, (6.118)

where t̂ is a dummy variable for integration and j = 1, 2, . . . , 2 · n0. The initial value
z(0) is evaluated by using (6.95–6.96) and (6.112), and solving the linear system in
(6.116) for z.

Using (6.118), (6.116) and (6.112), the space-discrete solution f(t) and its time
derivative df(t)/dt may be computed at any desired time t without the need for
timestepping. Especially, there is no requirement on the size of the interval of con-
secutive time values. Because the equation system is small, and M is constant in
time, it is not expensive to compute Λ and X using a standard numerical eigenvalue
solver.

Next, let us look into some numerical examples.The Galerkin series is again
truncated at n0 = 56, and physical parameters are chosen as typical for a paper web
surrounded by air; refer to Table 6.1. The timescale parameter, which is new to the
dynamical problem, is chosen as

τ = �/
√

T/m,

which leads to α = 1 (see (6.66)).
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Each example is presented in a figure consisting of three parts. The top half
displays a space–time plot of the displacement function w(x, t). The horizontal
axis represents dimensionless time t and the vertical axis designates the position x
between the rollers at x = ±1 (note the orientation, positive x up). The shade of
each point in the image indicates the height, measured from zero displacement.

The bottom half of each figure is made up of two graphs. The graph on the left
shows the displacement of the panel as a function of x at a few selected times t . The
graph on the right shows the time behaviour of the centre point of the panel, w(0, t).
The corresponding points in the lower two graphs are marked with circles.

In all of the examples shown, the initial position of the panel is given. For the
cases in Figs. 6.19–6.24, the initial condition for position is

w (x, 0) ≡ g1 (x) ≡ a · sin(π
x + 1

2
), (6.119)

where the initial amplitude at the center point is a = 5 · 10−3. The initial transverse
velocity is zero,

∂w

∂t
(x, 0) ≡ g2 (x) ≡ 0, (6.120)

and there are no external disturbances,

g (x, t) ≡ 0. (6.121)

Note that (6.120–6.121) are not fundamental limitations of the model, but are simply
choices made to simplify the examples.

In the top subfigures of Figs. 6.19–6.21, we have as a fundamental test case a
plate in vacuum, travelling at various speeds and undergoing a steady, cylindrical
vibration. In the space–time plot, the shapes are aligned at an angle to the x axis.
Due to the axial motion toward the positive x direction, the positive-x half of the
plate experiences each maximum (minimum) of the vibration before the negative-x
half does. Physically, as is well known, the wave travelling to the direction of travel
on an axially moving medium moves at a higher velocity than the wave travelling in
the opposite direction. Mathematically, the phenomenon can be seen as the velocity-
dependent phase shift in the eigenmodes of axially travelling strings and beams that
was discussed by Wickert and Mote (1990). As was noted in the problem setup, the
flat panel model shares the mathematical formulation with the beam model, so we
can expect the same phenomenon to occur here.

Let us now move onto the focus of the present study, and consider the effect of
fluid-structure interaction. The bottom subfigures of Figs. 6.19–6.21 represent the
dynamic response of the panel in stationary ideal fluid. Figures 6.22–6.24 represent
the response in axially moving fluid. The qualitative behaviour in our Figs. 6.19–6.24
is seen to be similar to Fig. 2 in Chang et al. (1991), where a free vibration cycle of
a travelling threadline from a direct simulation was plotted.
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Fig. 6.19 Dynamic response of the panel in vacuum and in stationary fluid. Stationary panel,
V0 = 0 m/s. Top in vacuum. Bottom submerged in stationary fluid (v∞ = 0 m/s)
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Fig. 6.20 Dynamic response of the panel in vacuum and in stationary fluid. Travelling panel,
V0 = 30 m/s. Top in vacuum. Bottom submerged in stationary fluid (v∞ = 0 m/s)
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Fig. 6.21 Dynamic response of the panel in vacuum and in stationary fluid. Travelling panel,
V0 = 60 m/s. Top in vacuum. Bottom submerged in stationary fluid (v∞ = 0 m/s)
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Fig. 6.22 Dynamic response of the panel submerged in potential flow, at some fluid (free-stream)
and panel velocities. Stationary panel, V0 = 0 m/s. Top v∞ = +10 m/s. Bottom v∞ = −10 m/s
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Fig. 6.23 Dynamic response of the panel submerged in potential flow, at some fluid (free-stream)
and panel velocities. Travelling panel, V0 = 30 m/s. Top v∞ = +10 m/s. Bottom v∞ = −10 m/s
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Fig. 6.24 Dynamic response of the panel submerged in potential flow, at some fluid (free-stream)
and panel velocities. Travelling panel, V0 = 60 m/s. Top v∞ = +10 m/s. Bottom v∞ = −10 m/s



6.2 Behaviour of Travelling Panels Submerged in Ideal Fluid 173

Fig. 6.25 Steady state solution. V0 = 70.5257 m/s. v∞ = −15 m/s, tfin = 1 s, g1(x) set to critical
eigenmode, g(x, t) ≡ 0, g2(x) ≡ 0

We conclude these examples with a direct simulation of a special case. The solu-
tions shown in the previous Figs. 6.19–6.24 are periodic and stable. Figure 6.25
represents the limiting case where a nontrivial static solution (divergence) exists.
For this case, the starting position of the panel is specified as the critical eigenmode
(buckling mode, divergence mode) of the corresponding steady-state problem.

The steady-state problem can be solved as described above, and the obtained
numerical Fourier–Galerkin coefficients and the critical velocity are then used as
input data for the dynamic solution process. In this configuration, the initial transverse
velocity is zero as per (6.120), and there are no external disturbances, as per (6.121).
It is seen, as shown in Fig. 6.25, that the computed solution stays constant in time,
as expected.

The following observations can be made about the numerical solutions. First,
although the eigenvalues λ j are in general complex, the exact solution u stays real-
valued for real-valued initial data.

The diagonalization method does not cause numerical dissipation of energy,
because the qualitative behaviour of the first-order system (6.117) is captured by
(6.118).

The initialization of the diagonalization method requires computing Λ and X.
The asymptotic cost of this initialization is O(n3

0) (with e.g. the Q R algorithm; see
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Golub and van Loan 1996), so the method is only applicable when the number of
unknowns is small. After the initialization, the cost of evaluating the solution at one
point of time t is O(n2

0) due to the full vector-matrix multiplication. The advantage
of the method is that there is no timestep limitation.

As can be seen from (6.118), any numerical approximation of the transformed
solution z will drift away from the exact one at a rate which depends on the amount
of numerical error in the eigenvalues λ j . The error in the numerical approximation of
u then behaves as a linear combination of these errors, by the transformation (6.116).
The error is independent of the spacing of the points of time at which the solution is
evaluated.

Numerical error in the eigenvalues may cause small imaginary components to
be introduced into the Galerkin coefficients u, which are known a priori to be real.
This can be detected by inspecting the imaginary part of the solution at each point of
time for which it is computed, and then either ignoring the imaginary part (if small)
or stopping computation. In the examples shown, the original solution vector was
tested for imaginary parts greater than a threshold. The validity criterion used was∣∣Im(u j )

∣∣ < 10−8 separately for each component j = 1, 2, . . . , 2 · n0. In practice,
this criterion was never violated. Then, the small imaginary parts were discarded in
visualization (during the assembly of the Galerkin approximation).

Summarizing the above, direct temporal simulations of panel behaviour were
made, with and without the effect of the surrounding air. The simulations showed
the response of the system as it starts from a given initial position. This gives some
intuitive insight into the time evolution of the system.

The examples illustrated were all of the type where the initial position was
given and the initial velocity and external disturbances were zero, but the presented
approach allows also for given initial velocity and given, dynamic external distur-
bances (load functions inside the domain).

6.2.4 Eigenfrequency Analysis

Our final problem in this chapter are the eigenfrequencies of the system. The solution
can be obtained as follows. Consider the eigenfrequency problem (free vibration
problem) of the space-discrete system (6.107). Let us set the external forces to zero,
G(t) ≡ 0, and use the standard time-harmonic trial function:

f(t) = Fest , (6.122)

where F is a constant vector. We wish to find all s ∈ C, and the corresponding
nontrivial F ∈ C

n0 , such that

[(
M2s2 + M1s + M0

)
F
]

est ≡ L(s) F est = 0.

The matrices M j are given by (6.108–6.110), in Sect. 6.2.3.
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Obviously, the common exp factor does not matter, so we have
(

M2s2 + M1s + M0

)
F ≡ L(s) F = 0. (6.123)

To find s, we use the determinant method. In order to admit nontrivial F, the
matrix L(s) in (6.123) must be singular. It is easily seen that the zeroes of det(L(s))
(as a function of s) are exactly the eigenvalues of M, the 2 ·n0 ×2 ·n0 matrix defined
by (6.115). Thus, there are up to 2 · n0 distinct solutions, all of which can be readily
obtained by computing the eigenvalues.

To see the equivalence, expand det(M − λ j I) as a block determinant, noting that
the necessary blocks commute. Multiply (6.123) from the left by M−1

2 . Compare the
zero determinant conditions to find that s = λ j .

The solutions s give us the eigenfrequency spectrum of the system, e.g., for various
values of V0 with the other parameters kept fixed. The critical velocity at which s j = 0
for all j = 1, 2, . . . , 2 · n0, obtained by a numerical search procedure, matches the
critical velocity predicted by the static instability analysis.

Finally, it is important to notice that L(s) ∈ C
n0×n0 , while M ∈ R

2n0×2n0 (but
with complex eigenvalues). The matrix L(s) is gyroscopic, because M2 and M0 are
symmetric, while M1 is skew-symmetric. The presented method for computing the
eigenfrequencies is classical and simple, but other methods also exist specifically for
gyroscopic systems. See e.g. Qian and Lin (2007) for a method which works directly
on (6.123) without requiring M.

Next, we will briefly review on how to find the eigenvectors F, once the eigenvalues
s are known. Consider the matrix L(s) defined in (6.123), and a fixed s, which is a
solution of det(L(s)) = 0. The singular value decomposition (SVD) is useful here.
Write the SVD of the matrix L as

L = USV, (6.124)

where U and V are unitary, and S is a diagonal matrix containing the singular values
of L on the diagonal. Standard numerical solvers can be used to perform the SVD.
The algorithmic details, if needed, can be found in the book by Golub and van Loan
(1996).

The right-hand side of (6.124) represents a rotation (plus possibly a reflection)
V, followed by a scaling S, followed by another rotation (plus possibly reflection)
U. In the once-rotated space, the nontrivial kernel of L must correspond to the zero
rows of S, because these rows are then scaled to zero before applying the second
rotation U. Hence, the question becomes: which vectors in the input space map to
the corresponding vector elements?

Let us denote the index set of the zero rows of S as

I0 = {i : Sii = 0}. (6.125)

In this definition, it is sufficient to use just the diagonal elements, because S is a
diagonal matrix. The matrix L can be viewed as a linear operator in C

n0 → C
n0 :
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a �→ La. On the other hand, L = USV as was mentioned. Consider the linear
mapping

b = Va, (6.126)

where a and b are (complex) vectors with n0 elements. In the next step of applying
the product L = USV to the vector a, the elements {b j : j ∈ I0} of the vector
b = (b1, b2, . . . , bn0)

T will be zeroed out in the matrix-vector product Sb. Because
V is unitary, multiplying (6.126) from the left by VH (the Hermitian conjugate of
V) gives

VHb = a. (6.127)

Since the index set I0 can be obtained directly (by inspection of the SVD result),
we can choose a set of vectors {bk} = {êk : k ∈ I0}, where êk is the kth standard
basis vector of unit length, and see how each of them maps through (6.127). This
procedure gives the corresponding vectors ak in the original, untransformed space.
These vectors represent the directions that are in the null space of L; thus, they are
the eigenvectors of the discretized free vibration problem (6.123).

From an implementation viewpoint, computing the SVD is sufficient. The product
VHêk simply picks the kth column of the matrix VH. Because VH is the Hermitian
conjugate of V, this is equivalent with picking the complex conjugate of the kth row
of the original V.

The conclusion is that the eigenvectors, corresponding to one fixed eigenfrequency
s, are

E ≡ {vk : k ∈ I0}, where (vk) j = conj(Vkj ), (6.128)

where (vk) j denotes the j th component of the vector vk , and conj(·) the complex
conjugate. The matrix V comes from the SVD of L(s), and the index set I0 is defined
by (6.125). Note that, via the SVD, the set E has the eigenvalue s as a parameter;
thus the set of eigenvectors must be evaluated separately for each solution s of the
equation det(L(s)) = 0.

For the panel problem discussed in this chapter, it occurs in practice that #I0 = 1,
i.e., there is only one eigenvector for each eigenvalue s.

Now, let us move on to numerical examples. Examples for the first (lowest) eigen-
frequency problem will be discussed first. Then we will discuss examples of the
eigenfrequency spectrum, which is the final topic in the analysis of our main prob-
lems in this chapter.

Let us look at some solutions of the dimensionless first (lowest) eigenfrequency of
the system. Let the physical problem parameters be chosen as in Table 6.1, except let
the bending rigidity be zero, D = 0 (membrane limit). As in the dynamic simulations,
choose the timescale parameter as

τ = �/C = �/
√

T/m, (6.129)

which leads to α = 1 (Eq. (6.66), in Sect. 6.2).
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The dimensionless first eigenfrequency of the system is plotted as a function
of dimensionless panel velocity c in Fig. 6.26. Two cases are shown: stationary air
(v∞ = 0), and the case where the whole air mass moves with the web (v∞ = V0).
Again, the assumption in the second case makes it similar in spirit to the vacuum
case, as there is only one independent velocity. It can be seen that the presence of
fluid decreases the first natural frequency, as expected (see the studies by Pramila
1986; Frondelius et al. 2006; and Kulachenko et al 2007).

The eigenfrequency is non-dimensionalized by ω0, the lowest eigenfrequency
of the same system, in vacuum at V0 = 0. The normalization factor can be com-
puted numerically, using the same solution process, but with the fluid terms omitted
(effectively setting qf(x, t) ≡ 0).

The results are obtained by solving (6.123) as explained above, and taking the
lowest dimensionless eigenfrequency as

ωmin(V0) ≡ min j
∣∣Im s j (V0)

∣∣
ω0

.

For comparison, three pairs of classical analytical results from two added-mass
models from a study by Pramila (1987) are included in Fig. 6.26, plotted for our
problem parameters. Each pair begins at a single point at V0 = 0, and the different
pairs correspond to different aspect ratios (span length per width). In the model of
Pramila (1986), the added masses are constants that are affected by βPr, the β value
of Pramila (1986), which depends on the aspect ratio R. For the results shown here,
this dependence has been modelled in the form R(βPr) = c1/βPr + c2/β

2
Pr.

To determine the coefficients in the function R(βPr), a least squares fit to the data
tabulated in Pramila (1986) can be performed using the method of normal equations.
The variable x = βPr, and (x j , f j ) are the (βPr, R) pairs from Pramila’s table. We
have used the functions φ1(x) = 1/x and φ2(x) = 1/x2 as the basis for the least
squares fit, obtaining the coefficients c1 = 0.1387 and c2 = 0.5318. Alternative
forms, with just the first term 1/x , and a three-term form including 1/x3, could also
be used, but of these the two-term form given here is found to produce the most
satisfactory fit.

In Fig. 6.26, the curve marked as Eq. (16) corresponds to an added-mass model
modifying all three masses (local inertia, Coriolis and centripetal), while the one
labelled as Eq. (22) corresponds to a model modifying only the local inertia mass.

For convenience, Equations (16) and (22) from Pramila (1987), converted to our
notation, are reproduced below. The real part of the complex eigenfrequency, in both
cases, is zero. The imaginary parts are:
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s(Pr, 16)
Im =

[
1 − (m + ma)

T
V 2

0

]
·
√

T

m + ma
· 1

4�
(6.130)

s(Pr, 22)
Im =

1 − m

T
V 2

0√
1 + ma

m
− ma

T
V 2

0

·
√

T

m
· 1

4�
, (6.131)

where the superscript on the left-hand side corresponds to the equation numbering
in the reference. We use 4� instead of 2�, because in our notation � denotes the
half-length of the span. In both Eqs. (6.130) and (6.131), the added mass ma is
computed as

ma = 2� ρf βPr, (6.132)

where we use 2� instead of � (as in Pramila 1987) for the same reason as above.
For the Eq. (16) model, all three added masses are equal. Note that in Pramila

(1987), mass per unit length was used, whereas we use mass per unit area. Because
the frequency expressions contain only ratios of the parameters, the width can be
cancelled out and the results are directly comparable, once the span length and time
scaling are taken into account.

We see that the model presented in this book, with v∞ = 0, agrees closely with
equation (22) model of Pramila (1987), as expected. From the discretization (6.93)
we see that in this case, only the matrix a jn has an effect. This corresponds in first
approximation to a local inertia mass increase. The magnitude of the decrease in
eigenfrequency is similar to that reported in Pramila (1986) (about 75 %). For a
certain aspect ratio (2�/b ≈ 3.1989, βPr = 0.43), the predictions coincide for the
problem parameters used.

In the case v∞ = V0, the models qualitatively agree. If we again use βPr = 0.43
for the model of Pramila (1986), we see that the prediction given by our model for
the critical velocity is approximately 60 % higher than that from the corresponding
added-mass approach (6.130). On the other hand, if the value βPr = 0.18 (corre-
sponding to 2�/b ≈ 17.1850) is used, then the predictions of critical velocity agree,
but the eigenfrequency given by the added-mass model is approximately 60 % higher.
Values of βPr between these two cases produce results that vary continuously from
the first case to the second. See Fig. 6.26 for an example.

It is seen that the primary difference between the present functional approach and
the classical results being compared, as far as the lowest eigenfrequency is concerned,
is that the predictions change in the case where all three inertia terms are modified.
The aspect ratio never explicitly enters this model, so which prediction differs more,
depends on the aspect ratio.

The effect has a simple mathematical explanation. In (6.130), changing the added
mass changes the scaling of both axes equally. For each pair of added-mass curves
in Fig. 6.26, it is seen that the axis intersection points of the curve corresponding
to (6.130) are equal. The present model does not make any such assumption, and
thus the scalings, which arise naturally by solving the integro-differential equation,
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Fig. 6.26 Behaviour of the nondimensional first natural frequency as a function of the
nondimensional velocity of the panel. The plot is normalized by the axis intersecting values from
the corresponding vacuum case. For the upper solid line, fluid velocity v∞ = 0. For the lower solid
line, v∞ = V0, i.e. the air mass moves with the web. For comparison, the vacuum case (dashed
line) and three pairs of results corresponding to added-mass formulas (dash-dot lines) from the
study by Pramila (1987) are shown. Each pair begins at a single point at V0 = 0. The different
pairs correspond to different aspect ratios (length per width). From top to bottom, 2�/b ≈ 17.1850
(βPr = 0.18); 2�/b ≈ 5.1064 (βPr = 0.3275); and 2�/b ≈ 3.1989 (βPr = 0.43; in this particular
case, the upper curves coincide). The symbol βPr refers to the β value of Pramila (1986). See also
Fig. 6.35 for a view in the (V0, v∞) plane. Axis intersection point for v∞ = V0 in our model is
given as cdiv in Table 6.2

may be different. To summarize, the fact that we may match either the first natural
frequency at V0 = 0, or the critical velocity, but not both, arises from a difference in
how mass is handled in the two models.

The equal scaling is not an inherent limitation of the added-mass approach, but
is due to the specific form of (6.130). See the study by Chang et al. (1991) for a
discussion on how different (but still constant) added masses in each term affect
the eigenfrequency behaviour. For an approach utilizing boundary layer theory to
compute added masses as functions of x , also resulting in different scalings for the
axes, see Frondelius et al. (2006).

In addition to the two classical cases presented in Fig. 6.26, the model presented in
this book opens the possibility for studying the problem with an arbitrary axial flow
velocity for the surrounding air. In Fig. 6.27, we have plotted first eigenfrequency
curves similar to those in Fig. 6.26 for several different fluid velocities v∞. The
normalization procedure is the same as in Fig. 6.26.

Note that as is evident from Fig. 6.27, if v∞ is nonzero and independent of V0, the
eigenfrequency curves are no longer symmetric with respect to V0 = 0. This reflects
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Fig. 6.27 Behaviour of the nondimensional first natural frequency as a function of the nondimen-
sional velocity of the panel. The plot is normalized by the axis intersecting values in vacuum. The
vacuum case is partly shown for comparison (dash-dot line). Solid lines indicate v∞ ≥ 0, dashed
lines v∞ < 0. From top to bottom, the absolute values of the fluid velocities are 0 (corresponds to
upper solid line of Fig. 6.26), 10 (θ ≈ 0.13), 15 (θ ≈ 0.19), 20 (θ ≈ 0.25), 25 (θ ≈ 0.32), and
30 m/s (θ ≈ 0.38). Note the scaling of the vertical axis. See also Fig. 6.35 for a view in the (V0, v∞)

plane. See values cdiv in Table 6.2 for the axis intersection points

the asymmetry in the physics of the situation: the velocities V0 and v∞ can have
either the same or different signs. We will see by consideration of the higher eigen-
frequencies, in Sect. 6.2.5, that the effect of the asymmetry on the eigenfrequency
spectrum is much more dramatic than Fig. 6.27 alone suggests. Compare, especially,
Figs. 6.29–6.30 and 6.31–6.32 below for different signs of V0 in the asymmetric case.

6.2.5 Flutter Problem

Now all that remains is to compute the eigenfrequency spectrum.Let us solve the
flutter problem (6.123) for the travelling panel submerged in axial potential flow.
As was explained above, we will use the Fourier–Galerkin method for the space
discretization.

Because eigenvalue solvers usually return the eigenvalues in random order, a
tracking algorithm is needed to construct continuous curves for plotting. Also, solving
the discrete system will generally produce numerical artifacts: some solutions will
have incorrect asymptotic behaviour (this has been noted e.g. in the study by Parker
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1999). These problems have been accounted for in the numerical examples shown;
for details, see Jeronen (2011).

To maintain legibility of the plots, we use n0 = 10. The rest of the parameters are
the same as for the first eigenfrequency computations. The bending rigidity D = 0;
for the rest, refer to Table 6.1.

No scaling has been applied. The raw data values are shown as-is. Although the
3D plots are shown at an angle to better display their qualitative structure, in each
figure the eigenfrequencies start with Re s j = 0 (for all j) at V0 = 0.

We will show both 3D plots and their projections onto the (V0, Re s) and
(V0, Im s) planes. Both projections are plotted into the same image, with red lines
denoting the real parts and blue lines the imaginary parts.

Three cases are considered. First, in Fig. 6.28, the fluid free-stream velocity v∞ =
0. Second, in Figs. 6.29–6.32, we have taken v∞ = 20 m/s. This case is asymmetric
in V0 due to the physical asymmetry of the situation, as was noted further above; the
velocities V0 and v∞ may have either the same or different signs. The two figures
together cover both situations. Finally, in the third case, v∞ = V0, i.e. it is assumed
that the whole air mass moves axially with the panel. This situation is shown in
Figs. 6.33–6.34. Compare these plots to the previous Figs. 6.26–6.27, which show
only the first eigenfrequency up to the lowest critical velocity.

The spectra illustrated here suggest that the moving panel with v∞ = 0, in the
membrane limit, has no instability at its first critical point (V0 such that s = 0).
This is similar to the result by Wang et al (2005) for the classical axially moving
ideal string. If the free stream of air moves at a given axial velocity v∞, the panel
experiences a lowest-mode divergence state at the first critical point for both positive
and negative V0, even in the membrane limit. This occurs happens already at relatively
low free-stream velocities. Although it is not illustrated in the figures, v∞ = 1 m/s
already exhibits this effect.

In the case where the air mass moves with the web, a lowest-mode divergence
state is likewise formed at the first critical point. By the potential flow model, the
existence of time-harmonic instability seems to depend on whether the free stream
is stationary (in laboratory coordinates) or not.

For this phenomenon, it does not matter whether the free-stream velocity is a
separate parameter, or fixed to the panel velocity. This latter phenomenon has a
natural mathematical explanation. See Fig. 6.35 for an illustration. In the (V0, v∞)

plane, fixing v∞ = V0 explores a line angled at 45◦, passing through the origin. Both
velocities are still parameters with given, constant values for each eigenvalue problem
solved. Fixing v∞ and varying only V0 explores lines angled at 0◦ (horizontally) in
this same plane. The critical point for the 45◦ line corresponds to the critical point of
one of the 0◦ lines. Similarly, any point at a distance ε inward from the critical point
along this line corresponds to a point in one of the other solutions.

In reality, because of the boundary layer, some of the air indeed moves with the
web, so it is reasonable to expect an instability in practice.

Finally, in Figs. 6.36–6.39 we include some plots of eigenfunctions W (x) at vari-
ous V0. The plots are normalized such that the maximum complex amplitude is unity,
i.e. maxx W (x)W (x) = 1.
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Fig. 6.28 Spectrum of axially moving panel submerged in ideal fluid. Fluid free-stream velocity
v∞ = 0. In the projection, blue line denotes imaginary part, red line real part. Note that Re s ≡ 0

In Fig. 6.36, the panel is in vacuum. In Fig. 6.37, stationary ideal fluid is added. In
Fig. 6.38, the fluid moves at v∞ = 20 m/s. In the final example, Fig. 6.39, we have
set v∞ = V0, i.e. the whole air mass moves axially with the panel.

The complex conjugate structure of the eigenfunction pairs is clearly visible in
the figures. If (s, W ) are an eigenvalue-eigenfunction pair, then so are (s̄, W ). The
functions at V0 = 0 are the same for the vacuum case, for v∞ = 0, and for the case
v∞ = V0 (which, for V0 = 0, reduces to the previous case). If v∞ is nonzero, the
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eigenfunctions become different even for V0 = 0 (Fig. 6.38, left; compare the left
column of the other three Figs. 6.36–6.37, 6.39).

In the eigenfrequency analysis above, both the panel and fluid velocities were con-
sidered as given problem parameters. Eigenfrequencies were studied parametrically,
and some examples of eigenmodes were plotted.
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The discrete eigenfrequency spectrum of the system was plotted in three cases:
zero free-stream fluid velocity (v∞ = 0), nonzero free-stream fluid velocity (in the
example, v∞ = 20m/s was used), and with the whole air mass following the panel
(v∞ = V0). The eigenfrequencies were visualized.

From the present model at the membrane limit (D = 0), it was found that if
v∞ = 0, there is no instability, but in all other cases a divergence instability is
generated at the lowest critical velocity.
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In the case where v∞ has a given nonzero value, it was found that the spectrum
becomes asymmetric with respect to reflection of V0 through the origin. This is
due to the asymmetry in the physics of the situation; the velocities v∞ and V0 may
have either the same or different signs. Near the critical velocity, the spectrum looks
completely different for different signs.

For the case v∞ = V0, very nontrivial eigenvalue interaction (Fig. 6.34) was
observed in the postcritical regime. However, it should be pointed out that strictly
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speaking (see e.g. Païdoussis 2005) this is outside the region of validity of the linear
model, since an instability exists at the lowest critical velocity.

Returning to the physics, an important qualitative difference was found between
classical added-mass models and the present model. As was noted earlier, added-
mass models with constant coefficients always behave qualitatively exactly like the
corresponding vacuum model. Thus, if there is no bending rigidity (membrane limit),
there will be no instability at the critical velocity. In contrast, the introduction of
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the exact analytical aerodynamic reaction, which changes the form of the equation,
may change the stability predictions, by qualitatively changing the behaviour of the
eigenfrequency spectrum of the model. We presented examples of the eigenfrequency
spectra at the membrane limit, and indeed observed the introduction of an instability
at the lowest critical panel velocity for nonzero free-stream velocities.
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In reality, some of the surrounding air will move with the web due to the boundary
layer. Thus, it is reasonable to expect that an instability at the critical velocity will
occur in practice.
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To summarize this chapter, the dynamical behaviour and stability of a moving
panel submerged in axial potential flow was considered, with the application of
paper production in mind. In any practical paper machine, mechanical stability of the
moving paper web is important in order to avoid web breaks, for both technological
and economical reasons. Open draws always exist; hence the motion of the web while
it travels between supporting rollers is of interest.

The interaction between the travelling material and the surrounding air is espe-
cially important for lightweight materials, such as paper. It is not sufficient to consider
only the dynamics of the travelling material, but the behaviour of the surrounding air-
flow must also be analyzed, and its effects on the material fed back into the dynamical
model. The coupling changes the dynamics, which, in turn, affects the surrounding
flow.

An analytical solution for the airflow problem was derived in terms of the panel
displacement, using the model of potential flow. The solution was used in the fluid-
structure interaction model to represent the pressure difference across the web in a
mathematically exact manner. This had the further advantage of reducing the fluid-
structure interaction model into to a single integro-differential equation, saving com-
putational effort.

The fluid-structure interaction problem was studied with simply supported bound-
ary conditions. However, the analytical flow solution is applicable for any boundary
conditions for the ends of the moving panel. The presented discretized solution of
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Fig. 6.36 Lowest free vibration eigenmodes of an axially moving panel. Vacuum case. Horizontal
axis dimensionless x , vertical axis w(x). Solid line is real part, dashed line imaginary part. Bottom
V0 = 0. Top V0 = 70 m/s (near critical, C = √

T/m = 79.0569 m/s)
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Fig. 6.37 Lowest free vibra-
tion eigenmodes of an axially
moving panel submerged in
ideal fluid. Fluid free-stream
velocity v∞ = 0 (station-
ary fluid). Horizontal axis
dimensionless x , vertical
axis w(x). Solid line is real
part, dashed line imaginary
part. Bottom V0 = 0. Top
V0 = 70 m/s (near critical,
C = √

T/m = 79.0569 m/s)
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the moving panel problem can be relatively easily adapted to other Galerkin bases,
or to cases with different boundary conditions.

Using Euler’s approach for stability analysis and numerical techniques, the critical
velocity of the system was obtained. The critical velocity was analyzed numerically
as a function of problem parameters, and compared to some existing studies on
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Fig. 6.38 Lowest free
vibration eigenmodes of an
axially moving panel sub-
merged in axially flowing
ideal fluid. Fluid free-stream
velocity v∞ = 20 m/s. Hori-
zontal axis dimensionless x ,
vertical axis w(x). Solid line
is real part, dashed line imagi-
nary part. Bottom V0 = 0. Top
V0 = 60 m/s (near critical;
from steady-state problem,
V crit

0 ≈ 63.098 m/s)
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nearby problems. The predictions from the model can be used to account for the
fundamental, physical stability limit in paper machine design.

Direct temporal simulations of the system dynamics were performed to visualize
the time evolution of the system, starting from a given initial condition. The space-
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Fig. 6.39 Lowest free vibra-
tion eigenmodes of an axially
moving panel submerged in
axially flowing ideal fluid.
Fluid free-stream velocity
v∞ = V0, i.e. whole air mass
moves axially with the panel.
Horizontal axis dimensionless
x , vertical axis w(x). Solid line
is real part, dashed line imagi-
nary part. Bottom V0 = 0. Top
V0 = 30 m/s (near critical,
V crit

0 ≈ 30.607 m/s)
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time behaviour was visualized, and briefly studied with respect to the web and air
velocities. The examples illustrated were all of the type where the initial position
was given and the initial velocity and external disturbances were zero, but the pre-
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sented approach allows also for given initial velocity and given, dynamic external
disturbances (load functions inside the domain).

The complex eigenfrequencies of the system were determined, and studied para-
metrically as a function of the panel and fluid velocities. By this analysis, it was
obtained how the free vibrations of the system behave in different settings. Stability
implications were briefly discussed, and it was observed that in the membrane limit,
the introduction of the exact analytical aerodynamic reaction qualitatively changes
the stability behaviour of the panel model. The results were visualized.

Independent axial motion of the paper web and the free stream were allowed. The
model predicted that in all cases, the surrounding air decreases the natural frequencies
of the moving panel. Also, if it was assumed that the air mass moves with the web—
or if there is a nonzero free-stream velocity—it was seen that the critical velocities of
the panel decrease when compared to the corresponding vacuum case.
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Chapter 7
Fracture and Fatigue of Travelling Plates

Abstract In this chapter, problems of fracture and stability of a moving plate, trav-
elling in a system of rollers at a constant velocity, are studied. It is known that in
the manufacturing process, there may occur many kinds of defects in the paper web,
such as edge cracks and blister and fiber cuts. Our aim is to tackle this problem and
analyse theoretically how the defects change the behaviour. We will use the model of
a thin elastic plate made of brittle material. A plate with initial cracks is studied, sub-
jected to constant tension and cyclic tension. As a result, we will show how to find
safe parameter ranges of transport velocities and in-plane tensions when fracture,
stability and constraints on longevity are taken into account.

7.1 Travelling Plates Under Fracture and Instability Constraints

In the following sections, we will discuss fracture of travelling rectangular plates
based on the theory of linear elastic fracture mechanics. Two different cases of
tension profiles will be considered: homogeneous tension and linearly distributed
nonhomogeneous tension. With the help of analytical expressions, we will present
an optimal value for the plate velocity.

7.1.1 Safe Range of Velocities for the Case of Homogeneous
Tension

Consider a rectangular, elastic plate travelling at a constant velocity V0 in the x
direction between rollers located at x = 0 and x = �. See Fig. 7.1. In a cartesian
coordinate system, the plate spans the region

Ω ≡ {
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

.
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Fig. 7.1 An axially moving elastic plate, containing a small crack at the edge

The quantities � and b are considered given. We will model the plate as a rectangular,
isotropic elastic plate having constant thickness h, Poisson ratio ν, Young modulus
E and bending rigidity D.

The plate is assumed to be subjected to constant tension T0, acting in the x direc-
tion. The sides of the plate

�� = { x = 0 , −b ≤ y ≤ b } and �r = { x = � , −b ≤ y ≤ b }

are simply supported, and the sides

�− = { y = −b , 0 ≤ x ≤ � } and �+ = { y = b , 0 ≤ x ≤ � }

are free of tractions.
Stationary equations describing the behaviour of the plate with the applied bound-

ary conditions form the following eigenvalue problem (which is a buckling problem):

(mV 2
0 − T0)

∂2w

∂x2 + D

(
∂4w

∂x4 + 2
∂4w

∂x2∂y2 + ∂4w

∂y4

)
= 0 , in Ω ,

w = 0 ,
∂2w

∂x2 = 0 , on �� and �r , (7.1)

∂2w

∂y2 + ν
∂2w

∂x2 = 0 , on �− and �+ ,

∂3w

∂y3 + (2 − ν)
∂3w

∂x2∂y
= 0 , on �− and �+ ,
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where D = Eh3/(12(1 − ν2)), and m is the mass per unit area of the plate. We
denote the eigenvalue

λ = γ 2 = �2

π2 D
(mV 2

0 − T0) . (7.2)

As was discussed in Sect. 3.4, the travelling isotropic plate subjected to a constant
tension experiences divergence instability at a critical speed

(V 2
0 )∗ = T0

m
+ γ 2∗

m

π2 D

�2 , (7.3)

where γ 2∗ = λ∗ is the minimal eigenvalue of problem (7.1). Parameter γ = γ∗ is
found as the root of the equation


(γ,μ) − �(γ, ν) = 0 . (7.4)

where


(γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
,

�(γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 , μ = �

πb
. (7.5)

For an illustration of the behaviour of 
 and �, see Fig. 3.3 in Sect. 3.4
As is seen from (7.4, 7.5), the root γ = γ∗ depends on ν and μ, and does not depend

on the other problem parameters including the value of tension T0. Consequently,
the critical velocity of instability, defined in (7.3), increases when tension T0 is
increased. However, T0 cannot be increased indefinitely due to initial damages and
other imperfections.

Suppose that the plate has small edge cracks that arise at the free boundaries of
the plate and have length a with upper bound a∗, i.e.,

a ≤ a∗ � 2 b , (7.6)

where a∗ is a given admissible value. The cracks are assumed to be orthogonal to the
boundary lines, and thus, the external loading mode is an opening mode and cracks
can be considered in the xy plane. If distances between the cracks are large enough,
we may consider only one isolated crack of a limited length a = a∗. This is to say
that there is no correlation between the singular stress fields that arise nearby crack
ends. We also assume that the rollers do not affect the crack behaviour, i.e., from the
viewpoint of a crack, we consider a long travelling plate without supports.

The stress intensity factor K can be expressed as (Westergaard 1939; Irwin 1958)

K = βσ
√

πa . (7.7)
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Here β = 1.12 is a geometric factor (for a/2b small) and σ = σx is the axial x
component of the stress tensor. In accordance with the brittle fracture condition,

K = Ka=a∗ ,

and defining fracture toughness KC such that

KC ≡ Ka=a∗ , (7.8)

we will have the following expression for the critical value of tension:

(T0)∗ = (σ h)∗ = KCh

β
√

πa∗
. (7.9)

Thus, safe movement of the plate is realised when

T0 ≤ KCh

β
√

πa∗
, (7.10)

and, by (7.3), it is characterised by the following safe range of velocities:

0 < V0 < (V0)∗ =
√

γ∗
π2 D

m�2 + KCh

βm
√

πa∗
. (7.11)

If the tension increases, reaching the critical value (7.9) (see Fig. 7.2), then
the crack will propagate without stop and cut the plate into two. This process of
crack growth occurs in a dynamical manner, and is considered as inadmissible and
catastrophic for applications.

Fig. 7.2 Admissible length of
crack a∗ and critical tension
T∗. A schematic drawing. Note
the assumption a∗ � 2 b.
Hence the displayed equation
for Ta is only valid (solid
line) when a∗ is small enough.
(Reproduced from Banichuk
et al. 2013)
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7.1.2 Travelling Plates Under Non-Homogeneous Tension

Let us now investigate the case with linearly distributed tension. Again, consider an
elastic plate with initial cracks travelling between two rollers at a constant velocity
V0. Let the plate be subjected to linearly distributed tension

T = T (y) = T0 − αy , (7.12)

where T0 > 0 and α > 0 are given parameters. See Fig. 7.3. For a crack of length a,
tension at the crack end can now be expressed as

Ta = T (a − b) = T0 + α(b − a) . (7.13)

For any given crack length a, the corresponding critical tension can be written as

(Ta)C = KCh

β
√

πa
. (7.14)

Suppose that the initial cracks satisfy inequalities (7.6) and that for the most
dangerous initial crack equality holds, i.e., a = a∗. The critical state for the initial
crack of length a = a∗ will be realised, if the tension Ta at the crack tip achieves
some definite value T∗, defined by the fracture mechanics condition (7.8). With the
critical crack length a∗, the value of tension at the crack end, (7.13), coincides with
the critical value of tension (7.14):

T∗ ≡ T0 + α(b − a∗) = KCh

β
√

πa∗
. (7.15)

In the considered case of linearly distributed tension, we introduce some fixed
parameter a∗∗ satisfying the conditions

Fig. 7.3 Travelling plate subjected to linearly distributed tension, containing a small crack at the
edge
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0 < a∗ < a∗∗ < 2b , (7.16)

and consider the interval
0 < a ≤ a∗∗ (7.17)

of crack lengths as admissible.
Consider now a crack with length a satisfying (7.17). Depending on the values of

the problem parameters, there are two different possible variants of the behaviour of
the crack. See Fig. 7.4.

In the first variant, the crack dynamically spreads if Ta > (Ta)C, and stops for
some crack length in the interval [a∗, a∗∗], i.e.,

a∗ < a = ast ≤ a∗∗ , (7.18)

when the following equation holds:

Tst = T0 + α(b − ast) = KCh

β
√

πast
. (7.19)

In this case, we consider the stopping tension Tst as a critical value of the tension
and admit all tensions T0 satisfying the condition

0 < T0 ≤ Tst − α(b − ast) ≡ (T0)st = (T0)cr (7.20)

as a safe tension range.
In the second variant, when the problem parameters satisfy the inequality

Fig. 7.4 Two variants of tension distributions and critical tension curve. A schematic figure
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T0 + α(b − a∗∗) >
KCh

β
√

πa∗∗
, (7.21)

the growth of the crack may stop, when the temporary length a of the crack satisfies
the condition

a∗∗ < a = ast < 2b , (7.22)

or alternatively, if ast ≥ 2b, the crack will separate the plate into two parts.
Note that the first variant of the crack behaviour discussed above is unexpected in

practice, since it requires a relatively steep tension profile, which results in a decrease
in the critical transport velocity at the same time (see Chap. 4 and the study Banichuk
et al. 2010). From the viewpoint of fracture, the case with a linear tension distribution
is similar to the case with homogeneous tension. See Fig. 7.4.

7.2 Cyclic Tension and Constraints on Longevity and Instability

Up to now, we have considered a moving brittle plate with an initial crack, when
the in-plane tensions (homogeneous or nonhomogeneous) are fixed. The scenario
changes when we study the plate moving under cyclic in-plane tensions and fatigue
crack growth.

7.2.1 Fatigue Crack Growth and Critical Conditions

Suppose that the travelling isotropic plate is subjected to cyclic tension T that varies
in the following limits:

Tmin ≤ T ≤ Tmax ,

Tmin =T0 − �T , Tmax = T0 + �T , (7.23)

where �T > 0 is a given parameter such that T0 − �T > 0. See Fig. 7.5.
For one cycle, the tension increases from T = Tmin up to T = Tmax (the loading

process) and then decreases from T = Tmax to T = Tmin (the unloading process).
The loading and unloading processes are assumed quasistatic; dynamical effects are
excluded.

Let us apply fatigue crack growth theory, and suppose that the plate contains an
initial crack of length a0. The process of fatigue crack growth under cyclic tension
(loading) can be adequately characterised in the following form (Paris and Erdogan
1963; Forman et al. 1967)

da

dn
= C(�K )k

(1 − R)(KC − Kmax)
, (7.24)

http://dx.doi.org/10.1007/978-3-319-01745-7 _4
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Fig. 7.5 Possible causes for cyclic tension. Top Tension differences produced by a tension increase
in the nip area (see Hristopulos 2002). Bottom Tension differences produced by the Earth’s gravity
(see Banichuk et al. 2011)

where

Kmax = βσmax
√

πa , Kmin = βσmin
√

πa , (7.25)

�K = Kmax − Kmin , R = σmin

σmax
= Tmin

Tmax
= Kmin

Kmax
, (7.26)

σmax = Tmax

h
, σmin = Tmin

h
. (7.27)

Here C and k are material constants, h is the thickness of the plate, n is the number of
cycles, and σmax, Kmax, σmin, and Kmin are, respectively, the maximum and minimum
values of the stress σ and stress intensity factor K in any given loading cycle.

The ordinary differential equation (7.24) defines a quasistatic process of crack
growth, and determines the dependence of the crack length a on the number of
cycles n. This equation is valid up to the moment when a = a∗, and unstable crack
growth (fracture of the plate) is attained.
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Suppose that unstable crack growth is attained after n = n∗ cycles, when the
critical crack length a∗ satisfies the limiting relation

(Kmax)a=a∗ = KC , (7.28)

or in another form,

(Kmax)a=a∗ = β
Tmax

h

√
πa∗ = KC . (7.29)

Note that σmax and Tmax (respectively σmin and Tmin) are the maximum (minimum)
stresses and tensions in the uncracked plate at the location of the crack. Thus, the
structural longevity can be measured by the number of load cycles

n = n∗ , (7.30)

for which a = a∗ (realising unstable fracture). In the analysis process, the longevity
constraint can be taken as

n∗ ≥ nC , (7.31)

where nC is a given minimum value of cycles.
From (7.29), we have

a∗ = 1

π

(
KCh

βTmax

)2

. (7.32)

Using (7.25–7.27), (7.32), and performing integration in (7.24), we obtain

n∗ = 1

B

∫ a∗

a0

(
√

a∗ − √
a)

ak/2 da = A

B
, (7.33)

where

A =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2
[√

a∗
2−k

(
a(2−k)/2∗ − a(2−k)/2

0

)
− 1

3−k

(
a(3−k)/2∗ − a(3−k)/2

0

)]
if k 	= 2, k 	= 3 ,

√
a∗ (log a∗ − log a0) − 2

(
a1/2∗ − a1/2

0

)
if k = 2 ,

−2
(
1 − √

a∗/
√

a0
) − log a∗ + log a0 if k = 3 ,

and

B = C

(
2
√

πβ�T

h

)k−1

.
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Table 7.1 Physical parameters used in the numerical examples

Material constants

E ν m GC/ρ (Seth and Page 1974) k C

109 N/m2 0.3 0.08 kg/m2 10 Jm/kg 3 10−14

Geometric constants

� b (plate half-width) h β

0.1 m 0.5 m 10−4 m 1.12

The critical value of maximum tension (Tmax)∗ is found, first, by solving a∗ for
a given n∗ = nC from (7.33), and then, calculating the corresponding tension from
(7.29). The critical value of the average tension T ∗ will then be found by (7.23). The
safe range of velocities can be estimated as

0 < V0 < (V0)∗ =
√

γ∗
π D

m�2 + T ∗
m

, (7.34)

where γ∗ is the root of (7.4).

7.2.2 Numerical Examples

In the following, the analytical results obtained for some critical crack lengths, crit-
ical tensions and critical transport velocities will be illustrated for parameter values
describing paper material. The used material constants and geometric constants are
presented in Table 7.1. The fracture toughness KC of paper is calculated from the
fundamental relation GC = K 2

C/E (see e.g. Irwin 1958), since there are measured
values for the strain energy release rate GC.

In Fig. 7.6, top, the predicted critical tension (T0)∗ is plotted with respect to the
critical crack length a∗, as per (7.9). Two different values of GC/ρ are illustrated: the
smaller one (10 Jm/kg) corresponding to newsprint and the larger one (20 Jm/kg)
corresponding to writing paper.

Note that we assume a∗ � 2 b, which allows us to use a constant crack geometry
factor β = 1.12. The results in Fig. 7.6, although plotted for the range 0 ≤ a∗ ≤ 1 m,
may not be valid for a∗ close to 1 m, if 2b = 1 m. However, the results in Fig. 7.6 are
independent from the parameter b. Only the accuracy of the results depends on b.
Thus, the results for a∗ close to 1 m are valid for very wide plates, when 2 b 
 1 m.

On the bottom of Fig. 7.6, the critical velocity (V0)∗ is plotted with respect to the
critical crack length a∗, (7.11). The results suggest that higher safe plate speeds are
achieved for plates with smaller initial cracks.
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Fig. 7.6 Top Critical tension and; Bottom The corresponding critical velocity with respect to the
critical crack length for two different values of the strain energy rate. The value GC/ρ = 10 Jm/kg
corresponds to newsprint and 20 Jm/kg to writing paper. Note the assumption a∗ � 2b made above

In Figs. 7.7–7.9, the results of the longevity analysis are shown. The used strain
energy rate over density was GC/ρ = 10 Jm/kg (newsprint).

In Fig. 7.7, the admissible critical crack length is considered known, and the
corresponding admissible initial crack length is found. The admissible initial crack
length a0 is presented as a coloured sheet with respect to the critical crack length
a∗ and the variance in the tension �T (top) or the critical numberof cycles nC
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Fig. 7.7 Admissible initial crack length a0 with respect to the critical crack length a∗ and the
variance in tension �T (left) or the critical number of cycles nC (right). Note the roles of a0 and
a∗. Top The critical number of cycles is constant, nC = 100. Bottom The variance in tension is
constant, �T = 10 N/m. Note the logarithmic scale of nC

(bottom). The critical crack length a∗ is given values in the range [0.01, 0.1] m,
the variance in tension in the range [2, 30] N/m, and the critical number of cycles
is in the range [10, 1000]. In Fig. 7.7 on the top, the number of cyclesis kept
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Fig. 7.8 Critical crack length a∗ with respect to the initial crack length a0 and the variance in
tension �T . The critical number of cycles is constant, nC = 100. Note the roles of a0 and a∗

constant, nC = n∗ = 100. On the right hand side, the variance in tension is constant,
�T = 10 N/m.

With the chosen problem parameters, increasing the number of cycles only slightly
decreases the (admissible) initial crack length. The more cycles we require, the
smaller the initial cracks that can be accepted. The effect of the length of the critical
crack is shown clearly, and as expected, the smaller the critical crack length the
smaller is the initial crack that can be accepted (Fig. 7.6, bottom).

In Figs. 7.8–7.9, the initial crack length a0 is known, and the corresponding
critical crack length a∗ is predicted. In these figures, the critical crack length a∗,
the corresponding critical tension T ∗, and the critical velocity (V0)∗ (estimate) are
presented as a coloured sheet with respect to the initial crack length a0 and the
variance in the tension �T . The initial crack length a0 is given values in the range
[0.01, 0.1] m, and the variance in tension is in the range [2, 30] N/m. The critical
number of cycles is constant, nC = n∗ = 100. As we can see from the figures, the
results are as expected: if the variance in tension is large, only minimal initial cracks
can be accepted.

It should be pointed out that in the figures, the critical conditions are shown. Also
the number of cycles corresponds to the critical situation. Furthermore, these results
are mainly qualitative. Hence, additional safety margins may be required in practice
to avoid web breaks.
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Fig. 7.9 Top Critical average tension T∗ and; Bottom Transport velocity (V0)∗ with respect to the
initial crack length a0 and the variance in tension �T . The critical number of cycles is constant,
nC = 100
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Chapter 8
Some Optimization Problems

Abstract In this chapter, the problems of safety analysis and optimization of a
moving elastic plate travelling between two rollers at a constant axial velocity are
considered. We will use a model of a thin elastic plate subjected to bending and
in-plane tension (distributed membrane forces). We will study transverse buckling
(divergence) of the plate and its brittle and fatigue fracture caused by fatigue crack
growth under cyclic in-plane tension (loading). Our aim is to find the safe ranges of
velocities of an axially moving plate analytically under the constraints of longevity
and stability. In the end of this chapter, the expressions for critical buckling velocity
and the number of cycles before the fracture (longevity of the plate) as a function of
in-plane tension and other problem parameters are used for formulation and we will
study the case as an optimization problem. Our target is to find the optimal in-plane
tension to maximize the performance function of paper production. This problem is
solved analytically and the obtained results are presented as formulae and numerical
tables.

8.1 Optimization of Moving Plates Subjected to Instability
and Fracture

It is known that, in systems with travelling continuum, an increase in tension has
a stabilizing effect but a decrease in tension may lead to a loss of stability. From
the viewpoint of fracture, tension has an opposite effect: high tension may lead to
growing or arising of cracks, and tension low enough then guarantees safe conditions.
In practice, both instability and material fracture may lead to web breaks.

In this section, we will present constraints for the plate velocity and the structural
longevity so that the considered system would perform in a safe manner. By longevity

Co-author in this chapter: Maria Tirronen, Department of Mathematical Information
Technology, University of Jyväskylä.
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Fig. 8.1 Top A plate travelling through a system of supporting rollers, and having an initial crack.
Bottom Examples of cyclic tension. There may be few or many tension cycles per span. (Reproduced
from Banichuk et al. 2013)

or structural longevity, we refer to the number of cycles that the (cracked) material
sustains before fracture failure. We will also construct a productivity function, with
the help of which an optimal value for in-plane tension will be sought.

8.1.1 Optimization Criterion and Constraints

Consider an elastic plate travelling at a constant velocity V0 in the x direction and
being simply supported by a system of rollers located at x = 0, �, 2�, 3�, . . . (Fig.
8.1). A rectangular element Ωi , i = 0, 1, 2, . . . , of the plate

Ωi ≡ {
(x, y) ∈ R

2 | i� < x < (i + 1)� , −b < y < b
}

(8.1)

is considered in a cartesian coordinate system, where � and b are prescribed geomet-
ric parameters. Additionally, assume that the considered plate is represented as an
isotropic elastic plate having constant thickness h, Poisson ratio ν, Young modulus
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E , and bending rigidity D. The plate elements in (8.1) have small initial cracks (Fig.
8.1) of length a with a given upper bound a0, i.e.,

0 < a ≤ a0 , (8.2)

and are subjected to homogeneous tension T , acting in the x direction.
The sides of the plate element (i = 1, 2, 3, . . . )

{ x = i�, −b ≤ y ≤ b } and { x = (i + 1)�, −b ≤ y ≤ b }

are simply supported and the sides

{ y = −b, i� ≤ x ≤ (i + 1)� } and { y = b, i� ≤ x ≤ (i + 1)� }

are free of tractions.
Consider the following scenario, where the plate is moving under cyclic in-plane

tension and fatigue crack growth is realised. Suppose that the plate is subjected to a
cyclic tension T that varies in the given limits

Tmin ≤ T ≤ Tmax ,

where
Tmin = T0 − ΔT , Tmax = T0 + ΔT .

Above, ΔT > 0 is a given parameter such that

T0 − ΔT > 0 and
ΔT

T0
� 1 . (8.3)

For one cycle, the tension increases from T = Tmin up to T = Tmax (the loading
process) and then decreases from T = Tmax to T = Tmin (the unloading process). The
loading and unloading processes are supposed to be quasistatic; dynamical effects
are excluded.

The product of the plate velocity V0 and the process time tf can be considered a
productivity criterion (performance function), i.e.,

J = m0V0tf , m0 = 2bm . (8.4)

Here, m is the mass per unit area of the plate. In (8.4), the velocity V0 is taken from
the safe interval

0 < V0 < V cr
0 ,

where V cr
0 is the critical buckling speed.
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A safe interval for the safe functioning time (number of cycles) is written as

0 < tf < tcr
f or 0 < n < ncr ,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture. For a small cycle time period τ and a big number of cycles n,
we assume that tf ≈ nτ . Note that the critical buckling velocity V cr

0 and the critical
functioning time tcr

f (critical number of cycles ncr) depend on the parameters of the
average in-plane tension T0, and the admissible variance ΔT , i.e

V cr
0 = V cr

0 (T0,ΔT ) ,

tcr
f = tcr

f (T0,ΔT ) ,

ncr = ncr(T0,ΔT ) .

Consequently, the maximum value of the productivity criterion for the given values
T0 and ΔT is evaluated as

J (T0,ΔT ) = m0V cr
0 (T0,ΔT )tcr

f (T0,ΔT )

= m0τ V cr
0 (T0,ΔT )ncr(T0,ΔT ) .

The optimal average (mean) in-plane tension T0 is found by solving the following
optimization problem:

J ∗ = max
T0

J (T0,ΔT ) .

To solve the formulated optimization problem, we will use the explicit analytical
expressions for the values V cr

0 and ncr. The value of T0, giving the maximal production
J ∗, is denoted by T ∗

0 .
To evaluate ncr, let us apply fatigue crack growth theory. Suppose that the plate

contains one initial crack of length a0. The process of fatigue crack growth under
a cyclic tension (loading) can be described by the following equation (Paris and
Erdogan 1963) and initial condition

da

dn
= Cκk

0 ak/2 , (8.5)

where

κ0 = 2β
√

π

h
ΔT .
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The variance ΔK of the stress intensity factor K is determined with the help of the
formulae

ΔK = Kmax − Kmin , Kmax = βσmax
√

πa ,

Kmin = βσmin
√

πa , σmax = Tmax

h
, σmin = Tmin

h
. (8.6)

In (8.5), C and k are material constants. In (8.6), h is the thickness of the plate, n is the
number of cycles, and σmax, Kmax, σmin and Kmin are, respectively, the maximum and
minimum values of the stress σ and the stress intensity factor K in any given loading
cycle. For the considered case, the surface crack geometric factor is β = 1.12.

It follows from (8.5) and that for considered values of the parameter k 	= 2, we
will have

n = A

[
1

a(k−2)/2
0

− 1

a(k−2)/2

]
, (8.7)

where

A = 2

(k − 2)Cκk
0

.

Unstable crack growth is obtained after n = ncr cycles when the critical crack
length acr satisfies the limiting relation

(Kmax)a=acr = KC

or, in another form, we have

β
Tmax

h

√
πacr = KC . (8.8)

The quantities σmax and Tmax (respectively σmin and Tmin) are the maximum (mini-
mum) stresses and tensions in the uncracked plate, where the crack is located. Using
(8.8) and the inequality ΔT/T0 � 1, we obtain

acr = 1

π

(
KCh

βTmax

)2

≈ 1

π

(
KCh

βT0

)2

and, consequently, we will have the following expression for the critical number of
cycles:

ncr = (n)a=acr = A

[
1

a(k−2)/2
0

−
(√

πβT0

KCh

)k−2
]

. (8.9)

From the condition of positiveness of the expression in (8.9), we find the maximum
value of admissible tensions,
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Fig. 8.2 Dependence of the normalized critical number of cycles, (8.25), on the dimensionless
average tension, (8.20)

T0 ≤ 1√
πa0

KCh

β
≡ T M

0 . (8.10)

In the special case k = 2, we can find the critical number of cycles to be

ncr = B ln

[
1

πa0

(
KCh

βT0

)2
]

, (8.11)

where

B = 1

Cκ2
0

,

and the tension limit T M
0 is expressed by (8.10).

The dependence of the critical number of cycles ncr on the average tension T0 and
the problem parameter k is shown in Fig. 8.2 using dimensionless quantities that will
be presented below in (8.19) and (8.24).

The critical velocity of static instability (buckling) of the travelling plate, as was
discussed in Sect. 3.4 (see also Banichuk et al. 2010), is given by the following
formula:

(V cr
0 )2 = T0

m
+ γ 2∗

m

π2 D

�2 , (8.12)

where D = Eh3/
[
12 (1 − ν2)

]
, m is the mass per unit area (of the plate), and γ = γ∗

is the root of the equation (see Fig. 3.3)
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Φ(γ,μ) − Ψ (γ, ν) = 0 , (8.13)

where

Φ(γ,μ) = tanh

(√
1 − γ

μ

)
coth

(√
1 + γ

μ

)
,

Ψ (γ, ν) =
√

1 + γ√
1 − γ

(γ + ν − 1)2

(γ − ν + 1)2 , μ = �

πb
. (8.14)

As is seen from (8.13) and (8.14), the root γ = γ∗ depends on ν and μ, and
does not depend on the other problem parameters including the value of tension
T0. Consequently, the critical instability velocity, defined in (8.12), increases when
tension T0 is increased. However, T0 cannot be increased indefinitely due to initial
damages and other imperfections.

8.1.2 Finding Optimal Solution

The most important factor, for the runnability and stability of moving plates con-
taining initial imperfections, is the applied tension. To find a safe and optimal T0
maximizing the performance function is the problem we will consider in this section.

Let us represent the functional to be optimized, (8.4), as a function of the average
tension T0. By taking into account explicit expressions for ncr, in (8.9), and for V cr

0 ,
in (8.12), and performing necessary algebraic transformations, assuming that k 	= 2,
we will have

J (T0) = m0τ V cr
0 (T0)n

cr(T0)

= J0

[
1 + 1

D

(
�

γ∗π

)2

T0

]1/2 [
1 −

(
β
√

πa0

hKC
T0

)k−2
]

(8.15)

where
J0 = m0τCV0 Cn , (8.16)

and

CV0 = πγ∗
√

D

�
√

m
(8.17)

and

Cn = 2a0

(k − 2)C

(
h

2βΔT
√

πa0

)k

. (8.18)

The performance function J is proportional to the multiplier J0, and consequently,
the optimized tension T0 does not depend on J0.
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For convenience of the following estimations and reduction of characteristic para-
meters, we introduce the dimensionless values

J̃ = J

J0
, (8.19)

T̃0 = T0

T M
0

= β
√

πa0

KCh
T0 , (8.20)

g = KCh

βD
√

πa0

(
�

γ∗π

)2

. (8.21)

The optimized functional and the interval of optimization, in the case when k > 2,
are

J̃ (T̃0) =
(

1 + gT̃0

)1/2 (
1 − T̃ k−2

0

)
, (8.22)

with
0 ≤ T̃0 ≤ 1 . (8.23)

In other words, we consider

J̃ (T̃0) = Ṽ cr
0 (T̃0) ñcr(T̃0)

with

Ṽ cr
0 (T̃0) =

(
1 + gT̃0

)1/2
(8.24)

and
ñcr(T̃0) = 1 − T̃ k−2

0 . (8.25)

In the special case k = 2, we will use the expressions (8.4), (8.11) and (8.12), and
perform algebraic transformations. We will have

J (T0) = m0τ V cr
0 (T0)n

cr(T0)

= J1

[
1 + 1

D

(
�

γ∗π

)2

T0

]1/2

ln

(
hKC

β
√

πa0

1

T0

)

with

J1 = 2m0τπγ∗
√

D

C�
√

m

(
h

2βΔT
√

π

)2

.

Using the dimensionless values J̃ = J/J1 and T̃0, g from (8.19)–(8.21), we find that

J̃ (T̃0) = ln

(
1

T̃0

)(
1 + gT̃0

)1/2
, 0 ≤ T̃0 ≤ 1 . (8.26)
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Table 8.1 Physical parameters used in the numerical examples

Material constants

E ν m GC/ρ (Seth and Page 1974) C
109 N/m2 0.3 0.08 kg/m2 10 Jm/kg 10−14

Geometric constants
� 2b h β

0.1 m 10 m 10−4 m 1.12

It is seen from (8.26) that

0 = ( J̃ )T̃0=1 ≤ J̃ (T̃0) ≤ lim
T̃0→0

( J̃ ) = ∞ , 0 ≤ T̃0 ≤ 1 . (8.27)

Note that (8.27) also holds in the case k < 2, when

J̃ (T̃0) = −
(

1 + gT̃0

)1/2 (
1 − T̃ k−2

0

)

and

J0 = 2m0τπa0γ∗
√

D

(2 − k)C�
√

m

(
h

2βΔT
√

πa0

)k

.

Thus, in the case k ≤ 2, the optimum is T̃0 = 0, which is not a physically meaningful
case, since it corresponds to an extremely low plate velocity. However, for most
materials k ≈ 3 or bigger.

8.1.3 Dependence of Optimal Solution on Problem Parameters

In the following, we will look at some numerical examples. The optimization problem
(8.22)–(8.23) is solved numerically for different values of k: for k = 2.5, k = 3
and k = 3.5. The material parameters are chosen to describe a paper material. The
parameter values used in the examples are given in Table 8.1. Paper fracture toughness
KC is calculated from the fundamental relation GC = K 2

C/E . The variance in tension
is chosen to be small, ΔT = 0.1 N/m. The values of initial crack lengths used in the
examples are a0 = 0.005, 0.01 , 0.05 , 0.1 m. As illustrated in Fig. 8.1, the length
of one cycle is assumed to be 2�. This value is used to approximate the cycle time
period τ by τ = 2�/V cr

0 after the value of V cr
0 is evaluated by the optimization.

In Fig. 8.3, the dimensionless performance function (8.22) is plotted for k =
2.5, 3, 3.5. It is seen that the value of optimal tension T̃ ∗

0 is increased with increas-
ing k.

In Tables 8.2 and 8.3, the results of the nondimensional optimization problem
(8.22)–(8.23) are shown for the considered values of parameters k and a0. In Table 8.2,
the values of the productivity function J̃ at the optimum are shown.



222 8 Some Optimization Problems

0 0.2 0.4 0.6 0.8 1
0

10

20

30

40

50

60

70

80

T
0

J~

a
0
=0.005 m

~

k=2.5
k=3
k=3.5

Fig. 8.3 Performance dependence on tension (dimensionless quantities). The dimensionless para-
meters and functions are presented in (8.19)–(8.22)

Table 8.2 Dependence of the optimum of the performance J̃ on the Paris material constant k and
the initial crack length a0

J̃ ∗ a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 37.4023 31.4527 21.0369 17.6920
k = 3 57.5834 48.4230 32.3862 27.2358
k = 3.5 70.6836 59.4390 39.7532 33.4308

An increase in the length of the initial crack a0 is seen to decrease productivity.
The values of productivity seem to increase when k is increased. However, one must
take into account that also J0, in (8.16)–(8.17), depends on k, which affects the actual
productivity J = J0 J̃ .

In Table 8.3, the optimal values of the dimensionless tension T̃ ∗
0 are shown. It is

seen that the optimal dimensionless tension values slightly decrease when the crack
length is increased.

Since the actual optimal productivity, the actual tension, and the related critical
speed and the critical number of cycles are of interest, these values were found at the
optimum and are shown in Tables 8.4 and 8.5.

Note that several assumptions have been made. First, the Paris constant C = 10−14

is assumed to be independent of k, and both of the values are not measured for paper,
but were chosen to be close to the typical values of some known materials. Secondly,
the cycle time period τ is approximated assuming that one cycle length is 2�, that is,
τ = 2�/V cr

0 .
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Table 8.3 Dependence of optimal dimensionless tension T̃ ∗
0 on the Paris material constant k and

the initial crack length a0

T̃ ∗
0 a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 0.2500 0.2499 0.2499 0.2498
k = 3 0.3333 0.3333 0.3332 0.3332
k = 3.5 0.3968 0.3968 0.3968 0.3967

Table 8.4 Top Dependence of the optimal tension T ∗
0 (N/m) on the Paris material constant k and

the initial crack length a0 (m). Bottom Critical velocity V cr
0 (m/s) at the optimum, depending on the

parameters k and a0

T ∗
0 (N/m) a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 504 356 159 113
k = 3 672 475 212 150
k = 3.5 800 565 253 179

V cr
0 (T ∗

0 ) (m/s) a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 79.352 66.727 44.623 37.523
k = 3 91.628 77.051 51.529 43.332
k = 3.5 99.979 84.073 56.226 47.282

The actual optimal tension T ∗
0 is calculated from (8.19), that is T ∗

0 = T M
0 T̃ ∗

0 . Since
T M

0 depends only on fixed values, and the material parameters in T M
0 are measured

and known for paper materials, the results for the actual optimal tension, shown in
Table 8.4, left, are comparable and quite reliable. The results for the optimal tension
T ∗

0 are also illustrated as a colorsheet in Fig. 8.4.
In Table 8.4, right, the critical velocities corresponding to the optimal values of

tension V cr
0 (T ∗

0 ) are shown. The values of velocities can be calculated directly from
(8.12) using the values in Table 8.4a. As expected, the velocities decrease as a0 is
increased.

The actual optimal number of cycles ncr(T ∗
0 ) and the actual optimal productivity

J ∗ are more difficult to predict, since they depend on the Paris constant C , which is
not known for paper materials. As mentioned above, the same value of C , namely
C = 10−14, is used for all investigated values of k, which might not be reasonable.
Since the value of κ0 defined in (8.5) is large (the numerical value of κ0 is larger than
unity), then κk

0 increases with the increase in k. Keeping C constant, we see from (8.5)
that the crack growth rate may be larger for a large value of k, depending on the value
of ak/2, which is small. This means that the number of cycles may be the smaller the
greater the value of k is, which can also be seen from (6.11): the greater the value of
k, the smaller the value of A. In the results in Table 8.5, top, it can be seen that the
effect of κ0 is large, and the number of cycles at the optimum decreases remarkably
when k is increased. This also results in a decrease in the optimal productivity J ∗,
which is shown in Table 8.5, bottom.

http://dx.doi.org/10.1007/978-3-319-01745-7_6
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Fig. 8.4 A colorsheet showing the dependence of the optimal tension T ∗
0 (N/m) on the parameters

k (Paris material constant) and a0 (initial crack length). Note the logarithmic scale of a0

Table 8.5 Top The number of cycles ncr at the optimum, depending on the parameters k and a0.
Bottom Dependence of the optimum of the performance J (kg) on the Paris material constant k and
the initial crack length a0 (m)

ncr(T ∗
0 ) a0 (m)

0.005 0.01 0.05 0.1

k = 2.5 757,300 636,834 425,943 358,216
k = 3 30,130 21,306 9,529 6,738
k = 3.5 1,348 801 239 142

J ∗ (kg) a0 (m)
0.005 0.01 0.05 0.1

k = 2.5 121,168 101,894 68,151 57,315
k = 3 4,821 3,409 1,525 1,078
k = 3.5 216 128 38 23

Comparing the results in Tables 8.2 and 8.5, top, we therefore make no conclusion
about the effect of k on the actual performance J ∗. The qualitative result of the
decrease in performance J ∗ when a0 is increased is, however, plausible.

8.2 Pareto Optimal Solutions for Good Runnability

In this section, we seek an optimal in-plane tension that maximizes a performance
vector function consisting of the critical velocity, the number of cycles before fracture
and process effectiveness. The considered problem of multiple objectives is called
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a multi-objective optimization (multi-objective programming or multi-criteria opti-
mization) problem. Necessary conditions for the optimality of the maximized vector
function are derived, and the Pareto optimal solutions are found analytically for some
example cases.

As was seen above, optimal magnitude of tension is essential for safe conditions in
systems with axially travelling material. Seeking the optimal tension but having sev-
eral objectives, such as high material longevity, transport velocity and productivity,
we encounter a multi-objective optimization problem. Extensive literature reviews
on multi-objective optimization are provided by White (1990) and Miettinen (1994).
For a historical review of the origin and development of multicriteria optimization,
refer to Stadler (1979). For surveys of concepts and methods of multi-objective opti-
mization, see Chankong and Haimes (1983) and Steuer (1986).

Below, we will derive the multiobjective optimization problem consisting of max-
imizing the critical plate velocity, the longevity (critical number of loading cycles)
and the productivity with respect to the value of in-plane tension. We concentrate
especially on paper making productivity, though the analysis is also applicable to
any other analogous processes.

The obtained objective vector function is transformed into a scalar objective func-
tion using the weighting method. For several important subproblems, the optimal
value of tension is found analytically in the Pareto sense with respect to the other
problem parameters.

8.2.1 Multicriteria Optimization

We consider again an axially moving elastic plate which is travelling between a
system of rollers. See Fig. 8.1.

All the plate elements

Ωi ≡ {
(x, y) ∈ R

2 | i� < x < (i + 1)� , −b < y < b
}
, i = 0, 1, 2, . . .

are subjected to homogeneous (in the y direction) tension T acting in the x direction.
The sides

{ x = i�, −b ≤ y ≤ b } and { x = (i + 1)�, −b ≤ y ≤ b }

are simply supported and the sides

{ y = −b, i� ≤ x ≤ (i + 1)� } and { y = b, i� ≤ x ≤ (i + 1)� }

are free of tractions.
We present a productivity criterion (performance function) with the help of the

plate velocity V0 and the process time tf :
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M = m0V0tf , m0 = 2bm . (8.28)

In (8.28), the velocity V0 is taken from the safe interval

0 < V0 < V cr
0 ,

where V cr
0 is the critical buckling velocity that is also taken as a criterion of the

considered process:
JV ≡ V cr

0 , (8.29)

where V cr
0 is expressed by (8.12).

A safe interval for the safe functioning time (number of cycles) is written as

0 < tf < tcr
f or 0 < n < ncr ,

where tcr
f and ncr are, respectively, the time interval and the total number of cycles

before fatigue fracture.
For a small cycle time period τ and a big number of cycles n, we assume that

tf ≈ nτ .
We will consider the critical number of cycles as a safety function JN, i.e.,

JN ≡ ncr , (8.30)

where ncr is given by (8.9), or (8.11) in the case of k = 2. The productivity criterion
Mcr is also considered as a problem function

JM ≡ Mcr , (8.31)

where Mcr is given by (8.28) with critical parameter values. We have

JM = m0 JVtcr
f = m0τ JV JN . (8.32)

Note that the functions JV, JN and JM defined in (8.29), (8.30) and (8.31) depend
on the value of in-plane average tension T0:

JV = JV(T0) ,

JN = JN(T0) ,

JM = JM(T0) .

Using the limit velocity V0, longevity n and runnability effectiveness M cri-
teria, presented in the previous section, we may consider the following vector
function
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J =
⎧⎨
⎩

JV(T0)

JN(T0)

JM(T0)

⎫⎬
⎭ =

⎧⎨
⎩

V cr
0 (T0)

ncr(T0)

Mcr(T0)

⎫⎬
⎭ . (8.33)

Now, we formulate the multicriteria (multiobjective) optimization problem. It
is required to determine the optimal value T ∗

0 of in-plane tension T0 that gives a
maximum of the considered vector function, i.e.

J ∗ = J (T ∗
0 ) = max

T0
J (T0) . (8.34)

The values in (8.33) and (8.34) are determined with the help of the corresponding
formulas and relations presented in Sects. 8.1.1 and 8.1.2.

The max operation in (8.34) is considered in the Pareto sense. It is:

T ∗
0 = arg max

T0
J (T0)

if there is no other value T̂0, such that

Ji
(
T̂0

) ≥ Ji
(
T ∗

0

)
, i = V, N, M ,

and the following rigorous inequality is satisfied for at least one component criterion:

J j
(
T̂0

)
> J j

(
T ∗

0

)
.

To solve this multiobjective optimization problem, we apply the weighting
method. We formulate the preference function as a sum of the single objective func-
tionals JV, JN, JM associated with the weighting factors CV, CN, CM:

JC = CV JV + CN JN + CM JM , (8.35)

and we suppose that

CV ≥ 0 , CN ≥ 0 , CM ≥ 0 ,

CV + CN + CM = 1 .

We will consider the multiobjective optimization problem of finding the optimal
in-plane tension T ∗

0 separately for different particular cases.
For convenience of performing the analysis and for reduction of characteristic

parameters, we introduce the following values with tildes

J̃V = JV

J 0
V

, J 0
V =

√
KCh

mβ
√

πa0
,
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J̃N = JN

J 0
N

, J 0
N = 2

(k − 2)Cκk
0 a(k−2)/2

0

, (8.36)

J̃M = JM

J 0
M

, J 0
M = m0τ J 0

V J 0
N ,

and represent the criterion functions as

J̃V = (
T̃0 + d

)1/2
,

J̃N = 1 − T̃0
k−2

, (8.37)

J̃M = J̃V J̃N ,

using the dimensionless values and problem parameters:

T̃0 = β
√

πa0

KCh
T0 , d = γ 2∗ π2 Dβ

√
πa0

l2 KCh
, 0 ≤ T̃0 ≤ 1 . (8.38)

8.2.2 Maximizing Critical Velocity and Safety Criterion

We consider the case of maximization of the velocity criterion J̃V and the safety
criterion J̃N when k = 3. In this case, we have

J̃1 ≡ CV J̃V + CN J̃N ,

CV + CN = 1 . (8.39)

Let us study the solution of (8.39) with respect to the weight CN. Now, the optimiza-
tion problem is (note CV = 1 − CN)

max
0≤T̃0≤1

(1 − CN)(T̃0 + d)1/2 + CN(1 − T̃0) . (8.40)

The object function in (8.40) is concave, so the use of the weighting method is
justifiable for finding the Pareto optimal solutions.

Depending on the value of the weight CN, the optimal value of the dimensionless
tension T̃ ∗

0 , which in this case can be found at the at the zero of the derivative of the
objective function J̃1, is

0 ≤ CN ≤ 1

1 + 2
√

d + 1
: T̃ ∗

0 = 1 ,

1

1 + 2
√

d + 1
< CN <

1

1 + 2
√

d
: T̃ ∗

0 =
(

1 − CN

2CN

)2

− d ,
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Fig. 8.5 The Pareto front (PF)
for the problem of maximizing
the critical velocity J̃V and
safety criterion J̃N. See (8.37)
and (8.41). A schematic figure

PF

1

1 + 2
√

d
≤ CN ≤ 1 : T̃ ∗

0 = 0 .

Consequently, the values of the component functions are found in the following form:

J̃V =
√

T̃ ∗
0 + d = 1 − CN

2CN
,

J̃N = 1 − T̃ ∗
0 = 1 + d −

(
1 − CN

2CN

)2

,

and, for the considered problem of critical velocity and longevity maximization, the
Pareto front (PF) of the optimal solution is given by the equation

J̃N = 1 + d − J̃ 2
V , (8.41)

where
J̃V ∈ [ √

d,
√

1 + d ] .

The Pareto front is represented in Fig. 8.5.

8.2.3 Maximizing Critical Velocity and Process Effectiveness

Consider now another case, where we maximize the critical velocity criterion J̃V and
the process effectiveness criterion J̃M. We discuss again the case with k = 3. In this
case, the weighting method problem is

J̃2 ≡ CV J̃V + CM J̃M ,

CV + CM = 1 ,
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so that we study

max
0≤T̃0≤1

[
CV(T̃0 + d)1/2 + CM(T̃0 + d)1/2(1 − T̃0)

]
. (8.42)

The object function in (8.42) is concave. Now, the extremum condition is

d J̃2

dT̃0
= CV

d J̃V

dT̃0
+ CM

d J̃M

dT̃0

= CV
d J̃V

dT̃0
+ CM

(
J̃N

d J̃V

dT̃0
+ J̃V

d J̃N

dT̃0

)
(8.43)

= 0 .

The solution of the problem is studied with respect to the weight CM (note again
CV = 1 − CM). By (8.43), it is found that the optimal value for the dimensionless
tension T̃ ∗

0 depends on CM as follows:

0 ≤ CM ≤ 1

2d + 3
: T̃ ∗

0 = 1

1

2d + 3
< CM ≤ 1 : T̃ ∗

0 = 1 − 2dCM

3CM
.

For the optimized functionals J̃V and J̃M, we have

J̃ 2
V = 1

3

(
1

CM
+ d

)
,

J̃M = 1

3

(
2d + 3 − 1

CM

)√
1

3

(
1

CM
+ d

)
.

The Pareto front of the problem under consideration is described by the equation

J̃M = (1 + d) J̃V − J̃ 3
V (8.44)

defined on the interval

J̃V ∈
[ √

(1 + d)/3,
√

1 + d

]

and is shown in Fig. 8.6.
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PF

Fig. 8.6 The Pareto front (PF) for the problem of maximizing the critical velocity J̃V and the
criterion of process effectiveness J̃M. See (8.37) and (8.44). A schematic figure

8.2.4 Maximizing Safety and Process Effectiveness

As a third case, we study the maximization of the safety criterion J̃N and the process
effectiveness criterion J̃M when k = 3. We have

J̃3 ≡ CN J̃N + CM J̃M ,

CN + CM = 1 ,

and the optimization problem reads

max
0≤T̃0≤1

[
CN(1 − T̃0) + (1 − CN)(T̃0 + d)1/2(1 − T̃0)

]
. (8.45)

Also the object function J̃3 is concave. We study the problem (8.45) with respect to
the weight CN. Now the optimal value of the dimensionless tension T̃ ∗

0 depends on
CN in the following way:

0 ≤ CN <
1 − 2d

1 − 2d + 2
√

d
: T̃ ∗

0 = 2

9

(
α2 − 3d + 3/2

− α
√

α2 + 3d + 3
)

,

1 − 2d

1 − 2d + 2
√

d
≤ CN ≤ 1 : T̃ ∗

0 = 0 ,

where

α ≡ CN

CM
= CN

1 − CN
. (8.46)



232 8 Some Optimization Problems

PF

Fig. 8.7 The Pareto front (PF) for the problem of maximizing the critical number of cycles J̃N and
the criterion of process effectiveness J̃M. See (8.37) and (8.47). A schematic figure

In this case, the Pareto front is given by

J̃M = J̃N

√
1 + d − J̃N , J̃N ∈

[
2

3
(1 + d), 1

]
. (8.47)

See Fig. 8.7.
Finally, note that the maximum of (8.35) in the case CM = 1 and CV = CN = 0

is found above by solving the problems (8.42) and (8.45). Then,

J̃V = √
(1 + d)/3 and J̃N = 2

3
(1 + d) ,

which is also a Pareto optimal solution for the problem (8.40) confirmed by (8.41).

8.2.5 Some Illustrations

In the previous section, the multi-objective optimization problems of maximizing the
critical velocity, maximizing the longevity and maximizing the process effectiveness
were studied, and analytical results were found for some special subproblems.

The obtained analytical results are illustrated numerically in this section. Para-
meter values (material and geometrical) are given in Table 8.6. The paper fracture
toughness is KC = √

GC E . The investigated critical crack length a0 obtains the
values 0.005, 0.01, 0.05 and 0.1 m.

The Pareto fronts (8.41), (8.44) and (8.47) are illustrated in Fig. 8.8 when the
initial crack length is a0 = 0.01 m.

In Fig. 8.9, the optimal values of tension T ∗
0 (N/m) for the problems (8.40), (8.42)

and (8.45) are plotted with respect to the weights (CN, CM and CN, respectively) and
the initial length of the crack a0.

In Fig. 8.9, top, we present the optimal values of tension T ∗
0 when the velocity JV

and the longevity JN are optimized. One may note that the even for a small crack
size (a0 = 0.01), the optimal value of tension is almost zero, when the longevity is
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Table 8.6 Physical parameters used in the numerical examples

Material constants

E ν m GC/ρ (Seth and Page 1974)
109 N/m2 0.3 0.08 kg/m2 10 Jm/kg
Geometric constants
� 2b h β

0.1 m 10 m 10−4 m 1.12

given a large weight (CN > 0.8). Weighting the velocity, the optimal tension obtains
very large values (T ∗

0 ∼ 1400 N/m). In other words, changing the weights radically
changes the optimal result. In this case, it is difficult to decide how to weight the
object functions.

In Fig. 8.9, middle, we weight the velocity function JV against the process effec-
tiveness function JM. In this case, it is noted that the length of the initial crack length
significantly affects the optimal value of tension.

Figure 8.9, bottom, shows the third case, where the longevity JN and the process
effectiveness JM are compared. Also here, it is seen that a0 has an effect on the value
of optimal tension, especially when the process effectiveness is weighted.

Note that the case CM = 1 and CV = CN = 0 is included in both middle and
bottom parts of Fig. 8.9, giving the lowest values for tension in the middle figure and
the highest values in the bottom figure. Analyzing these two subproblems helps us to
make decisions on the weights to be selected. The optimum for process effectiveness
gives some kind of reference value for the desired tension.

With the help of Fig. 8.9, we have chosen some values for the weights CN and
CM. The solutions are collected into Table 8.7.

8.3 Optimization with Uncertainties

In this section, we present a stochastic analysis of axially moving cracked elastic
plates with uncertainties. The study is focused on instability and material fracture,
which are the most serious threats to stable production of a papermachine. On these
phenomena a change in tension magnitude has opposite effects. Increasing the mag-
nitude of tension has a stabilizing effect but it may lead to growing of cracks. We
will present an analysis to find the optimal value of velocity and tension for efficient
product processing.

In last decades, the studies of runnability have been based on a deterministic
approach. However, we know that in practice the values of different parameters are
not known precisely and the process to be modelled usually includes random factors.
At the last section of this book, we would like to raise awareness of this and offer
one relatively simple approach to consider this issue.
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Fig. 8.8 Pareto fronts for
the problems max{ J̃N, J̃V},
max{ J̃M, J̃V}, and
max{ J̃M, J̃N}, respectively,
in the case when the initial
crack length a0 = 0.01 m
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From the application point of view, uncertainty occurs as, e.g., variation of tension,
in space and time, in the press system of a papermachine, and defects on a paper web,
which vary in their location, size, shape and orientation (Björklund and Svedjebrant
2009; Niskanen 2012). Another example is given by strength of paper which was
found to obey the Weibull and Duxbury distributions by Salminen (2003). Accord-



8.3 Optimization with Uncertainties 235

Fig. 8.9 Dependence of
the optimal tension T0 on
the initial crack length a0
and the weight CN or CM.
(Reproduced from Banichuk
et al. 2013)
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Table 8.7 Dependence of the optimal tension (dimensionless T̃ ∗
0 and dimensional T ∗

0 ) on the
selected weights for the three studied cases. The used initial crack length was a0 = 0.01 m (Banichuk
et al. 2013)

arg max{CN JN + CV JV} arg max{CM JM + CV JV}
CN T̃ ∗

0 T ∗
0 (N/m) CM T̃ ∗

0 T ∗
0 (N/m)

0.4 0.5624 801 0.4 0.8333 1,187
0.5 0.2499 356 0.5 0.6666 950
0.6 0.1110 158 0.6 0.5555 791
0.7 0.0459 65 0.7 0.4761 678
0.8 0.0156 22 0.8 0.4166 594
0.9 0.0030 4 0.9 0.3703 528

1.0 0.3333 475

arg max{CN JN + CM JM}
CN T̃ ∗

0 T ∗
0 (N/m)

0.0 0.3333 475
0.1 0.2932 418
0.2 0.2500 356
0.3 0.2042 291
0.4 0.1571 224
0.5 0.1111 158
0.6 0.0695 99
0.7 0.0364 52
0.8 0.0143 20
0.9 0.0030 4

ing to Uesaka (2004), the majority of web breaks in paper production are caused
by tension variations, combined with strength variations of the paper web. Wathén
(2003) discusses the effect of flaws of paper on web breaks and notes that even a
seemingly perfect paper can fail at very low tensions due to stress concentrations
caused by discontinuities, e.g., cuts and shives, inside the structure. Because of the
stochastic structure of paper, it is difficult to predict occurences of flaws. Therefore
we include uncertainty aspects in the model and study the problem of finding the
optimal velocity from a probabilistic point of view.

There occur a large variety of defects in a paper web during its manufacturing
process, but we concentrate on studying a plate with an initial crack at the edge, which
can be considered the most usual case. Björklund and Svedjebrant (2009) have found
that there is a higher density of defects at the edges of the paper, possibly as a result
of greater variance of the steam box control at the edges. Smith (1995) classifies
edge cracks as edge cuts or nicks that usually extend only a short distance. A fiber
cut in the web or plate is defined as a typically short and straight cut that is located
randomly, and is usually at an approximately right angle at the edge. Smith also lists
several possible reasons for an occurrence of a broken edge, the list including dry
edges, high sheet caliper at the edge, and web overlapping. A fiber cut is caused



8.3 Optimization with Uncertainties 237

when a pulp fiber or shive that is less compactible than the rest of the web, passes
through a high pressure nip.

In the following, the theoretical treatment is divided into two parts. In the first
part, we assume the moving plate to have an initial crack of random length at the
edge, and we formulate analytical expressions for the optimal tension and velocity
of the plate. In the second study, the magnitude of homogeneous in-plane tension
affecting the plate in the machine direction is assumed to be a random variable, and
we derive a formula for the optimal velocity. In this part, the length of the crack is
assumed to be constant.

The obtained analytical expressions are used for computing the optimal tension
and the corresponding optimal velocity numerically. To do this, we use the log-normal
distribution for the crack length and the in-plane tension is modelled with truncated
normal distribution. The effect of changing the values of distribution parameters is
illustrated. In the case of random crack length we will see that the optimal values
decrease when the expected value and variance of the crack length increase. In the
case of random tension, it is seen that the more the magnitude of tension is dispersed,
the lower is the optimal tension. We will also illustrate the effect of changing the
value of the admissible probabilites in the constraints. It will be seen that the optimal
values increase when the probabilities increase.

8.3.1 Uncertainty in Initial Crack Length

We consider a rectangular elastic plate, which is supported by rollers at both ends
and is moving at a constant velocity V0. Denotation of this domain is the same as in
the previous chapters of this book,

Ω ≡ {
(x, y) ∈ R

2 | 0 < x < �, −b < y < b
}

, (8.48)

where � and b are prescribed parameters of length and width. The considered domain
Ω is a representation of a thin isotropic elastic plate having constant thickness h,
Poisson ratio ν, Young modulus E , and bending rigidity D = Eh3/

[
12 (1 − ν2)

]
.

The mass of the plate per unit area is denoted by m. We assume that the plate is
subjected to homogeneous tension T0 acting in the x direction. We also assume that
the plate travels in the x direction as usual. The supporting rollers are located at both
ends of the plate, the other edges are free of traction. Schematic setup of the problem
is presented in Fig. 8.10.

Suppose there is an initial crack of mode I (see Fig. 8.11) at the edge of the plate,
and let ξ be a positive valued random variable that describes the length of the crack.
We consider the stress intensity factor (SIF) related to the crack and want to avoid
the stress intensity factor reaching its critical value, known as the critical fracture
toughness, at which the crack begins to propagate.

We formulate an optimization problem using a similar approach as is presented
in the book by Banichuk and Neittaanmäki (2010). We seek the maximal magnitude
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Fig. 8.10 A travelling elastic plate with a crack at the edge

Fig. 8.11 Mode I crack
(opening)

of velocity under the constraint that the probability of fracture is small. Letting
p ∈ (0, 1) denote the probability of fracture that can be accepted, our optimization
problem reads as

max
T0

V cr
0 (T0) , such that (8.49)

P(KI ≥ KIC) ≤ p , (8.50)

where V cr
0 , given by (8.12), is the critical velocity, and KIC is the critical fracture

toughness of the considered material.
For the stress intensity factor we use the expression

KI = α(ξ) T0
√

πξ

h
, (8.51)

where α is a weight function that depends on the geometry of the domain, the ratio
of ξ and b and the ratio of � and b. The formula of α is given, e.g., in Perez (2004),
Laham (1998) and Fett (1999). We assume α to be an increasing positive function of
ξ and, for simplicity, approximate it as a constant function α = 1.12 in this study.

To solve problem (8.49)–(8.50) we are looking for the maximal value of the tension
T0 that satisfies the inequality (8.50) and the equation of stress intensity factor (8.51).
The constraint (8.50) is equal to

P

(
ξ ≥ g−1

(
KICh

T0
√

π

))
≤ p , (8.52)

where g−1 is the inverse function of the function g(ξ) ≡ α(ξ)
√

ξ . The inverse
function exists, since g is strictly increasing due to the assumptions of α. Further,
the inequality above is equal to
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Fξ

(
g−1

(
KCh

T0
√

π

))
≥ 1 − p , (8.53)

where Fξ the cumulative distribution function of ξ. Assuming that ξ has a continuous
density function, the function Fξ is strictly increasing.

Denote
ξC = F−1

ξ (1 − p) . (8.54)

The value ξC is the minimum of the set

{x : Fξ (x) ≥ 1 − p} . (8.55)

Consider another value of crack length ξ∗
C > ξC. For the values of tension TC and

T ∗
C that satisfy

ξC = g−1
(

hKIC

TC
√

π

)
and ξ∗

C = g−1
(

hKIC

T ∗
C
√

π

)
, (8.56)

it holds
TC > T ∗

C . (8.57)

Thus, the maximal value of T0 satisfying (8.50) is found by the equation

P(KI ≥ KIC) = p , (8.58)

and can be expressed as

T max = hKIC

α(F−1
ξ (1 − p))

√
π F−1

ξ (1 − p)

, (8.59)

The solution of the optimization problem (8.49)–(8.50) is

(V0)opt = V cr
0 (T max) , (8.60)

The optimal tension T max and the optimal velocity are computed numerically
presuming a distribution for the crack length. For this, we have chosen the log-normal
distribution. The probability density function of ξ is

fξ (x) = 1

xsl
√

2π
exp

(
− (ln(x/cl))

2

2s2
l

)
, x > 0 , sl > 0 , cl > 0 , (8.61)

and the cumulative distribution function is

Fξ (x) = N

(
ln x − ln cl

sl

)
, (8.62)
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where

N (x) = 1√
2π

∫ x

−∞ exp
(− t2

2

)
dt (8.63)

is the cumulative distribution function of the standard normal distribution.

8.3.2 Uncertainty in Tension

In practice, in a paper machine the tension of the plate is generated by a velocity
difference between rollers. It is very likely, that for mechanical reasons, the tension
practically varies lightly between minimum and maximum values i.e in-plane ten-
sion fluctuates around a given positive constant T0. In this section, we model this
phenomenon by describing the tension as

T ≡ T0 + θ ,

where θ is a random variable that has a cumulative distribution function Fθ . As
before, the plate is assumed to have an initial crack of mode I. The length of the
crack is assumed to be known and equal to a constant:

ξ = a, a > 0 .

In this case, formulation of optimization problem consists of two parts. First, we
seek the maximal value of T0 satisfying

P(KI ≥ KIC) ≤ q1 , where q1 ∈ (0, 1) (8.64)

is the admissible probability of fracture. Secondly, denoting the solution of inequality
(8.64) by T max

0 , we search for the maximal value of velocity V0 under a constraint
for instability:

P
(
V0 > V cr

0 (T max
0 + θ)

) ≤ q2 , where q2 ∈ (0, 1) . (8.65)

Here q2 is the admissible probability of instability.
The stress intensity factor related to the crack satisfies

KI = α(a)
√

πa

h
T = α(a)

√
πa

h
(T0 + θ) . (8.66)

Noticing that

P(KI ≥ KIC) = P

(
θ ≥ hKIC

α(a)
√

πa
− T0

)
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= 1 − Fθ

(
hKIC

α(a)
√

πa
− T0

)
,

the constraint (8.64) is equal to

Fθ

(
hKIC

α(a)
√

πa
− T0

)
≥ 1 − q1 . (8.67)

Denote the maximal value of tension that satisfies the above inequality by T max
0 .

If the function Fθ does not depend on T0, it is seen with similar reasoning as above
that the maximal value of tension that satisfies the inequality above is

T max
0 = KICh

α(a)
√

πa
− F−1

θ (1 − q1) . (8.68)

Furthermore,

P
(
V0 > V cr

0 (T max
0 + θ)

) = P

(
V0 >

√
T max

0 + θ

m
+ γ 2∗

π2 D

ml2

)

= P

(
θ < mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)

= Fθ

(
mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)
,

and we may write the inequality (8.65) as

Fθ

(
mV 2

0 − T max
0 − γ 2∗

π2 D

l2

)
≤ q2 . (8.69)

Let us denote θC = F−1
θ (q2), and consider another value θ∗

C < θC. The two values
of tension variation, θC and θ∗

C, satisfy Fθ (θC) ≤ q2 and Fθ (θ
∗
C) ≤ q2. By noticing

that

V0 =
√

1

m

(
T max

0 + γ 2∗ π2 D

l2 + θC

)
>

√
1

m

(
T max

0 + γ 2∗ π2 D

l2 + θ∗
C

)
≡ V ∗

0 ,

we deduce that the maximal value of V0 satisfying (8.64) and (8.65) is

(V0)opt =
√

1

m

(
T max

0 + γ 2∗ π2 D

l2 + F−1
θ (q2)

)
. (8.70)

We assume θ to obey the truncated normal distribution with scale parameter ct > 0
and location at 0. The minimum and maximum values of the distribution are set as
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Table 8.8 Parameter values
for numerical examples

Parameter Value

ν 0.3
E 109 Pa
m 0.08 kg/m2

h 10−4 m
l 0.1 m
b 5 m
GC/ρ 10 Jm/kg

θmin = −T0 and θmax = T0 .

Hence, the probability function of θ is symmetrical, and expected value E(θ) = 0.
The cumulative distribution function of θ is

Fθ (x; ct, T0) =
N

(
x

ct

)
− N

(−T0

ct

)

1 − 2N

(−T0

ct

) , (8.71)

where N is the cumulative distribution function of the standard normal distribution
as above. In (8.70), we have

Fθ (x) = Fθ (x; ct, T max
0 ) .

In the following, we illustrate numerically the results obtained above. The cho-
sen parameter values are shown in Table 8.8. The paper fracture toughness KIC is
calculated from the equation KIC = √

GC E . The value of the weight function is
approximated by

α
(
F−1

ξ (1 − p)
) = α(a) = 1.12 .

In Figs. 8.12 and 8.13 we illustrate the effect of changing the value of the distrib-
ution parameters and the admissible probability of fracture p on the optimal values,
when the crack length is assumed to obey the log-normal distribution. In Fig. 8.12
the optimal tension and the corresponding optimal velocity are plotted with respect
to the distribution parameters sl and cl of the log-normal distribution. For this, it was
set p = 0.001.

In Fig. 8.13 we illustrate the effect of increasing the value of p from p = 0.001
with some values of the distribution parameters. As is expected, the optimal val-
ues increase when the admissible probability of fracture p is increased. With
smaller value of sl, the change is small. Some of the optimal values are gathered
in Table 8.9.

In Fig. 8.14 we see the optimal tension and the corresponding optimal veloc-
ity plotted with respect to the distribution parameter ct of the truncated normal
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Fig. 8.12 Log-normal distribution. The effect of changing the value of the distribution parameters
sl and cl on the optimal tension and velocity with the admissible probability of fracture p = 0.001

distribution. The optimal values are computed with the initial crack length a = 0.05.
With the considered parameter values the function

Fθ

(
hKIC

α(a)
√

πa
− T0

)
+ q1 − 1 (8.72)

was found to be strictly decrasing with respect to T0. The maximal value of tension
was thus found by solving the equation

Fθ

(
hKIC

α(a)
√

πa
− T0

)
+ q1 − 1 = 0 . (8.73)
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Fig. 8.13 Left The effect of changing the admissible probability of fracture p on the optimal values
of tension and velocity, using a log-normal distribution for the crack length ξ . Right The probability
density function of ξ

Table 8.9 The optimal tension (upper value, N/m) and velocity (lower value, m/s) with respect to
p and the distribution parameters sl and cl, using a log-normal distribution for the crack length

sl cl p
0.001 0.005 0.01

0.1 0.01 1,220.8 1,252.6 1,268.3
123.5 125.1 125.9

0.04 610.4 626.3 634.2
87.4 88.5 89.0

Figure 8.14 shows that the more the tension is dispersed, the lower the optimal
values are. Increasing the admissible probability of fracture or instability increases
the optimal values. When the length of the initial crack increases, the optimal values
decrease.

Some of the optimal values are gathered in Table 8.10.
To conclude, in this section we discussed the problem of finding the optimal

velocity for an axially moving elastic plate with a crack from a probabilistic point of
view. The model was assumed to include randomness, and the optimal velocity was
investigated under the constraint that the probability of fracture is limited. Two cases
were considered separately. First, the length of the crack was modelled as a random
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Fig. 8.14 Optimal tension and velocity, using the truncated normal distribution to model tension
variation. The optimal values are shown with respect to the distribution parameter ct, in all cases
using a constant crack length a = 0.05. Here q1 and q2 are, respectively, the admissible probabilities
of fracture and instability

Table 8.10 Truncated normal distribution. Optimal tensions (upper value, N/m) and velocities
(lower value, m/s) with respect to the probabilities q1 and q2 and the distribution parameter ct. The
crack length a = 0.05

ct q1, q2

0.001 0.005 0.01

10.0 606.3 611.4 613.9
84.8 85.6 85.9

50.0 482.7 508.4 520.9
64.1 68.9 71.1

100.0 337.6 380.1 404.6
21.8 39.2 46.4

variable. Secondly, the in-plane tension was assumed to be a random variable. In the
latter case, we also formulated a constraint for stability.

The optimal velocity was found by first computing the optimal tension for the
plate. Assuming the crack length to be random, we formulated an analytical expres-
sion for the optimal tension. Modelling the crack length with the log-normal distrib-
ution, the effect of changing the admissible probability of fracture was numerically
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illustrated. It was seen that with both of the considered distributions, increasing the
admissible probability of fracture increases the optimal tension and the correspond-
ing optimal velocity.

The optimal velocity was also numerically computed for the log-normal distrib-
ution with different values of distribution parameters. The values were chosen such
that the distributions were close to the presumable crack distribution of the paper
making application.

The optimal tension and the related optimal velocity in the case of random in-
plane tension were obtained, assuming the in-plane tension to obey a truncated normal
distribution. It was seen that the more the tension is dispersed, the lower is the optimal
velocity. Increasing the admissible probability of fracture had the same effect on the
optimal values as in the case of random crack length. Also increasing the admissible
probability of instability increased the optimal values.
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A
Acceleration

centripetal, 14, 70
Coriolis, 14, 70
local, 14, 70

Added-mass approximation, 113, 134, 139
generalized, 138
qualitative behaviour of solutions using,

138
Added-mass model, 134, 177
Aerodynamic

kernel, 129, 135, 138, 145
problem, 113, 123
reaction, 2, 25, 114, 116, 135, 139, 141, 142

analytical solution of, 127
Aeroelasticity, 124
Airfoil theory, see thin airfoil theory
Airy stress function, 19, 71

for orthotropic material, 20
Antisymmetric flow, 126
Axial motion, 11

B
Beam, 12, 24

viscoelastic, 26, 27, 92
Bending

moment, 13, 92
operator, 15, 30, 47, 71
rigidity, 12, 15, 36, 114, 162, 198, 215, 237

dimensionless (for panel), 140, 154,
155, 157–159

dimensionless (for plate), 48, 80
orthotropic, 15, 30, 47, 78

Biharmonic equation, 20, 71

Bilinear form, 48
Boundary conditions, 9, 11, 15, 19, 26, 31, 33,

71, 73, 77, 94, 97, 143
built-in, see clamped
C+-C, 94, 108
C+-S, 95, 108
clamped, 13, 93
for airflow, 117, 120, 122, 124
for Airy stress function, 20, 71
free of tractions, 9, 14, 16, 37, 48, 71, 78,

114
hinged, see simply supported
pinned, see simply supported
SFSF, 9, 114
simply supported, 9, 13, 14, 16, 71, 114,

115, 143
Boundary layer theory, 136
Brittle fracture condition, 200
Buckling, 23
Buckling mode, 36, 37, 46, 62, 63, 84, 86, 152,

155, 173

C
Cauchy problem, 149
Cauchy’s principal value, 126
Cauchy–Lagrange integral, 115
Cauchy–Riemann equations, 124
Centripetal acceleration, 14, 70
Classification of instabilities, 28, 29
Compatibility relation, 18
Complex analysis, 115, 121, 124
Complex-valued solution, 27, 144
Condition for non-trivial solutions, see zero

determinant condition
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Condition for regularity (potential flow), 125
Coriolis acceleration, 14, 70
Crack growth theory, fatigue, 216
Crack growth, fatigue, 203, 213
Crack, edge, 197–199, 201
Cracked elastic plate, 233
Creep (viscoelasticity), 89
Criterion functions, 228
Critical eigenmode, 153
Critical fracture toughness, 237, 238
Critical velocity, 30, 36, 40, 53, 62, 64, 84, 86,

97, 101, 107, 140, 152, 154–156,
159, 160, 175

Cumulative distribution function, 239, 242
Cyclic in-plane tension, 203, 213
Cylindrical rigidity, see bending rigidity

D
Deflection, see displacement
Determinant method, 175
Diagonalization method, 165, 173
Differential operator, linear, 28
Dimensionless retardation time, 110
Dirac delta distribution, 134, 135
Displacement, 118

in-plane, 18, 118
out-of-plane, 10, 12, 13, 30, 71, 114, 118,

138, 142
Disturbance potential, 115, 122, 124
Divergence instability, 24, 25, 28–30, 37, 46,

69, 97, 100, 149, 199
Divergence mode, 36, 37, 46, 62, 63, 84, 86,

152, 155, 173
Dominated convergence, 133
Duxbury distribution, 234
Dynamic instability, see flutter instability
Dynamic stability analysis, 23
Dynamical behaviour problem, 113, 139,

142–144, 149, 164

E
Edge crack, 197–199, 201
Eigenfrequency

analysis, 26, 27, 144, 174, 183
problem, 139, 143, 144, 149, 174, 176
spectrum, 175, 176, 180, 184, 187

Eigenfunction, see eigenmode
Eigenmode, 27, 37, 47, 77, 79, 145, 157
Eigenvalue problem, 31, 37, 38, 47, 76, 80,

100, 198
generalized, linear, 152
quadratic, 99

Eigenvalues, non-negativeness of, 48
Elastic moduli, 15, 18
Equilibrium of stresses, 17, 18, 72
Euler coordinates, see Eulerian (stationary)

frame of reference
Euler derivative, 10
Euler value of critical force, 44
Eulerian (stationary) frame of reference, 2, 10,

117, 118

F
Fatigue crack growth, 203, 213
Fatigue crack growth theory, 216
Finite difference method, 80, 98
Finite element method, 123
Flexural stiffness, 12
Flow, antisymmetric, 126
Fluid mechanics, 1
Fluid–structure interaction, 25, 113, 134
Flutter instability, 28–30, 107, 180
Fourier basis, 165
Fourier sine basis, 145
Fourier–Galerkin method, 144, 180
Fracture, 197

condition, brittle, 200
mechanics, linear elastic, 197
toughness, 200

critical, 237, 238
of paper, 206, 221, 232, 242

Frame of reference
Eulerian (stationary), 2, 10, 117, 118
Lagrangean (co-moving), 2, 11, 119

Free-stream potential, 115, 121
Fubini’s theorem, 148

G
Galerkin method, 144
Galerkin series, 145, 146, 164
Galilean relativity, 2
Generalized added-mass approximation, 138
Generalized Hooke’s law, 18, 91

inverse of, 20
Geometric average shear modulus, 16, 50, 55,

78
Geometric factor, 200, 217
Green’s 2nd identity, 34
Green’s function, 115, 129, 138
Group velocity, of waves, 11
Gyroscopic system, 175
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H
Hamilton’s principle, 93
Harmonic function, 121
Hermitian conjugate, 176
Homogeneous tension, 17, 30, 31, 33, 37, 46,

198, 215, 237
Hooke’s law, generalized, 18, 91

inverse of, 20

I
In-plane

displacement, 18, 118
stress, 15
tension, 17, 71, 213

Initial conditions, 143
Instability

classification of, 28, 29
divergence, 24, 25, 28–30, 37, 46, 69, 97,

100, 149, 199
dynamic, see flutter
flutter, 28–30, 107, 180
static, see divergence

Integrodifferential equation, 113
Irrotational flow, 122
Isotropic plate, 9, 15, 16, 33, 36, 69, 198, 203,

237

K
Kelvin–Voigt model, 89, 90
Kronecker delta, 147
Kutta–Zhukowski condition, 123

L
Lagrange coordinates, see Lagrangean

(co-moving) frame of reference
Lagrange derivative, see material derivative
Lagrangean (co-moving) frame of reference, 2,

11, 119
Laplace’s equation, 121, 129
Least squares fit, 135, 177
Linear differential operator, 28
Linear elastic fracture mechanics, 197
Linear stability analysis, 27
Linear-logarithmic search procedure, 154
Linearized model, 29
Linearly distributed tension, 21, 72, 201
Local acceleration, 14, 70
Log-normal distribution, 237, 239
Longevity, 205, 213, 232

M
Mass lumping, 135
Material derivative, 10, 27, 117
Material, moving, 1
Membrane, 9, 15, 24, 31
Membrane operator, 14, 70
Monte Carlo method, 135
Motion, axial, 11
Moving material, 1
Multi-objective

optimization, 225
problem, 227, 232

programming, see optimization

N
Newton’s second law, 93
Non-homogeneous tension, 19, 69
Non-negativeness of eigenvalues, 48
Non-tensioned panel, 151, 160

O
Objective functional, 227
Open draw, 2, 3
Operator

bending, 15, 30, 47, 71
differential, linear, 28
differential, of vacuum problem, 140
integro-differential, of fluid-structure

interaction, 140
membrane, 14, 70

Optimal productivity, 223
Optimization

multi-objective, 225
problem, 227, 232

Optimization problem, 213, 221, 237
Orthotropic plate, 9, 15, 25, 33, 45, 64
Out-of-plane

displacement, 10, 12, 13, 30, 71, 114, 118,
138, 142

vibration, 9, 10, 12, 14, 24, 30, 70, 73, 142

P
Panel, 9, 11, 113–115, 117, 123, 139, 142, 162,

180
non-tensioned, 151, 160
viscoelastic, 94, 95, 97, 102–109

Paper machine, 2–4
generation of axial tension in, 119, 240

Paper production, 1–3, 213
Paper web, 2
Pareto front, 229, 230, 232
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Pareto optimal solution, 225, 228
Paris constant, 222
Performance function, 215
Perturbed vacuum model, 150
Plate, 9, 14, 114, 199, 214

isotropic, 9, 15, 16, 33, 36, 69, 198, 203,
237

orthotropic, 9, 15, 25, 33, 45, 64
Poisson ratio, 15, 114
Potential flow, 113, 121, 123, 124, 139, 162,

180
memory-free property of, 124, 139

Potential flow theory, 122
Potential, of velocity, 115, 121

disturbance, 115, 122, 124
free-stream, 115, 121

Process effectiveness criterion, 229
Productivity criterion, 215, 216
Productivity function, 221
Pseudo-steady-state problem, 144

Q
Quadratic eigenvalue problem, 99
Quasistatic loading process, 203

R
Real-valued solution, 28, 144
Reduction

narrow strip to 1D, 42
orthotropic to isotropic, 16, 78
to first-order system, 164

Regularity condition (potential flow), 125
Relaxation (viscoelasticity), 89
Riemann’s mapping theorem, 122
Roller symbol, 12, 14, 114, 115

for string, 10

S
Shear modulus, geometric average, 16, 50, 55,

63, 78
Singular value decomposition, 175
Solution

complex-valued, 27, 144
real-valued, 28, 144
steady-state, 29, 37, 47, 77, 140, 149

Spectral boundary value problem, 38
Spectral method, 144
Speed of propagation, waves, 11
Stability analysis, 23, 30, 197

dynamic, 23, 30
linear, 27

static, 23, 37, 46, 76, 140, 142, 149
Stability exponent, 28, 32, 73, 96
Static instability, see divergence instability
Static stability analysis, 23, 37, 46, 76, 140,

142, 149
Static stability problem, 37, 46, 76, 139, 140,

142, 149
Steady-state problem, 144, 149, 152
Steady-state solution, 29, 37, 47, 77, 140, 149
Stochastic analysis, 233
Strain compatibility equation, 20
Strain energy, 48
Strain energy release rate, 206
Strain-displacement relations, 18
Stress equilibrium equations, 17, 18, 72
Stress intensity factor, 199, 204, 217, 237
Stress, in-plane, 15, 70
Stress-strain relations, 91
String, 9, 10, 24

T
Tension, in-plane, 17, 71

cyclic, 203, 213
homogeneous, 17, 30, 31, 33, 37, 46, 198,

237
linearly distributed, 21, 72, 201
non-homogeneous, 19, 69

Thin airfoil theory, 115, 136, 138
Threadline, 10
Time-harmonic trial function, 27, 31, 72, 96,

144, 174
Time-harmonic vibration, 28, 31, 33
Transverse displacement, see out-of-plane

displacement
Transverse vibration, see out-of-plane vibration
Truncated normal distribution, 241, 245

V
Velocity-dependent phase shift, 166
Vibration

out-of-plane, 9, 10, 12, 14, 24, 30, 70, 73,
142

time-harmonic, 28, 31, 33
Viscoelastic

beam, 26, 27, 92
material, 26, 89, 90
panel, 94, 95, 97, 102–109

Vortex panel method, 123
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W
Wave equation, 10
Weak form, 145
Web, paper, 2
Weibull distribution, 234
Weighting factor, 227
Weighting method problem, 229

Y
Young’s modulus, 12, 15, 114

Z
Zero determinant condition, 38, 51
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