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Abstract. This article deals with interconnected systems described by retarded
nonlinear equations with discontinuous right-hand side. The problem of feedback
control redesign to achieve ISS (input-to-state stability) and iISS (integral input-
to-state stability) with respect to additive disturbances acting on each subsystem is
solved. It is shown that it is possible to design a decentralized controller accom-
plishing the robustification whenever a small-gain condition is satisfied.

1 Introduction

Lyapunov redesign is an important strategy in nonlinear control, which allows us
to enhance system properties by additional feedback compensation exploiting the
knowledge of a Lyapunov function. The ISS feedback control redesign was intro-
duced by [14], for finite dimensional nonlinear systems. This methodology allows
to attenuate the actuator disturbance in terms of ISS. It has been extended to differ-
ent classes of systems with time-delays in [10], [11] and [12]. In particular, in [12],
systems described by nonlinear functional differential equations with discontinuous
right-hand side are considered, and the saturation problem of the input magnitude is
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addressed, in both an iISS and an ISS fashion. The problem of iISS (ISS) feedback
control redesign is based on the knowledge of a Lyapunov-Krasovskii functional
which needs to be constructed a priori for the unforced (disturbance equal to zero)
system. In [5], the construction of Lyapunov-Krasovskii functionals is addressed
for ISS and iISS of interconnected systems under a small-gain condition. The small-
gain condition allows to split the problem of finding an overall Lyapunov-Krasovskii
functional for the whole system, into the problems of finding Lyapunov-Krasovskii
functionals for each subsystem. This renders the original problem much easier. The
reader can refer to [7] for an application of a similar, but different small-gain char-
acterization to stabilization of a chemostat.

This article shows, for a class of nonlinear retarded interconnected systems, that it
is possible, under a small-gain condition, to achieve the iISS (ISS) feedback control
redesign by means of decentralized controllers. That is, the redesign allows us to
attenuate the effect of disturbances acting on each subsystem by means of a feedback
from the state of each subsystem itself. For this aim, we exploit the Lyapunov-
Krasovskii functional which is proved to exist when the global asymptotic stability
of the disturbance-free overall closed-loop is secured via a small-gain condition
in [5]. We cover multiple discrete as well as distributed time-delays, and the maps
describing the dynamics are allowed to be discontinuous. A preliminary version of
this article has been presented in [6].

Notations. The symbol R denotes the set of real numbers (−∞,+∞). R denotes the
extended real line [−∞,+∞]. We also use R+ := [0,+∞) and R+ := [0,+∞]. For a
positive integer n, Rn denotes the n-dimensional Euclidean space with norm | · |. A
function v : R+ → R

m, with positive integer m, is said to be essentially bounded if
esssupt≥0 |v(t)|< ∞. For given times 0 ≤ T1 < T2, we indicate with v[T1,T2) : R+→
R

m the function given by v[T1,T2)(t) = v(t) for all t ∈ [T1,T2) and = 0 elsewhere.
The function v is said to be locally essentially bounded if, for any T > 0, v[0,T ) is
essentially bounded. The essential supremum norm is indicated with the symbol ‖ ·
‖∞. For a positive integer n and a positive real Δ : Cn denotes the space of continuous
functions mapping [−Δ ,0] into R

n; Qn denotes the space of bounded, continuous,
except at a finite number of points, and right-continuous functions mapping [−Δ ,0)
into R

n. For φ ∈ Cn, φ[−Δ ,0) is the function in Qn defined as φ[−Δ ,0)(τ) = φ(τ),
τ ∈ [−Δ ,0). For a function x : [−Δ ,c)→R

n, with 0< c≤+∞, for any real t ∈ [0,c),
xt is the function in Cn defined as xt(τ) = x(t + τ), τ ∈ [−Δ ,0]. For given positive
integers n,m, a map f : Cn → R

n×m is said to be Lipschitz on bounded sets if,
for any positive real q there exists a positive real Lq such that, for any φ1,φ2 ∈ Cn

satisfying ‖φi‖∞ ≤ q, i = 1,2, the inequality holds | f (φ1)− f (φ2)| ≤ Lq‖φ1−φ2‖∞.
A function γ :R+→R+ is said to be: of class P if it is continuous, zero at zero, and
positive at any positive real; of class K if it is of class P and strictly increasing;
of class K∞ if it is of class K and it is unbounded; of class L if it is continuous
and it monotonically decreases to zero as its argument tends to +∞. A function
β : R+×R+→R+ is of class K L if β (·, t) is of class K for each t ≥ 0 and β (s, ·)
is of class L for each s ≥ 0. The symbols ∨ and ∧ denote logical sum and logical
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Fig. 1 Decentralized robustification with respect to disturbances

product, respectively. For x ∈ R, tanh(x) = (ex− e−x)/(ex + e−x). For x ∈ R \ {0},
sgn(x) = x/|x| and sgn(0) = 0. Proofs are omitted due to the space limitation.

2 Idea and Issues to Be Solved

Decentralized Robustification. Consider a finite-dimensional dynamical system
Σ consisting of two subsystems Σ1 and Σ2, and suppose that the trivial solution
x = 0 of the overall system Σ is globally asymptotically stable (GAS)1. If the GAS
property is characterized by a Lyapunov function in a desirable form, we can secure
robustness of the system Σ against the additional disturbances d1 and d2 shown in
Fig. 1(a) by introducing decentralized compensators. Such decentralized robustifi-
cation is to insert local feedback inputs in the places where the disturbances come
in as shown in Fig. 1(b). To illustrate this idea, let subsystems Σ1 and Σ2 be

ẋi(t) = fi(xi(t),x3−i(t)), i = 1,2 (1)

and define x = [xT
1 ,x

T
2 ]

T and f = [ f T
1 , f T

2 ]T . Let V (x) be a Lyapunov function de-
scribing the GAS of Σ , i.e., V (x) is a C1 function satisfying

α(|x|)≤V (x)≤ α(|x|), V̇ (t)≤−α(|x(t)|) (2)

along the trajectories of (1) for some α ∈P and α,α ∈K∞. To assess robustness
of the interconnected system Σ , we consider the disturbances d1 and d2 as

ẋi(t) = fi(xi(t),x3−i(t))+ gi(xi(t))di(t), i = 1,2. (3)

depicted in Fig. 1(a). Then along the trajectories of (3) with d = [dT
1 ,d

T
2 ]

T , we have

V̇ = Lf V (x)+LgV(x)d ≤−α(|x|)+LgV(x)d, (4)

where g = [gT
1 ,g

T
2 ]

T . A bounded α can yield a fair stability margin for GAS of the
original system (1) without disturbance. However, we cannot derive either the ISS

1 For brevity, a system without input is said to be GAS if an equilibrium of the system is
GAS.
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or iISS property of the system (3) with respect to the disturbance d for the bounded
α if LgV (x) is an unbounded function of x. To secure the robustness with respect to
d, we can introduce a control input ui at the place of di, i.e.,

ẋi(t) = fi(xi(t),x3−i(t))+ gi(xi(t))(di(t)+ ui(t)) , i = 1,2. (5)

Indeed, applying the “LgV -type” full state feedback

u(t) = [uT
1 (t),u

T
2 (t)]

T =−a(LgV (x(t)))T (6)

with a real number a > 0 to (5) we obtain

V̇ = Lf V (x)− a(LgV(x))(LgV (x))T +LgV(x)d ≤−α(|x|)+ 1
4a
|d|2 (7)

along the trajectories of (5) with the help of Young’s inequality. The disadvantage
of using (6) is its centralized structure. Since LgV (x) in (6) usually contain both x1

and x2, the control input ui(t) of subsystem i is based not only on the local state
xi, but also on the state x3−i of the other subsystem 3− i. To make the robustifying
compensation decentralized, instead of V (x), we consider C1 functions Vi(xi) which
only contain local information for i = 1,2. Applying the local version

ui(t) =−ai(LgiVi(xi(t)))
T , i = 1,2 (8)

with a real number ai > 0 to (5) we obtain

V̇i = LfiVi(xi,x3−i)− ai(LgiVi(xi))(LgiVi(xi))
T +LgiVi(xi)di

≤ LfiVi(xi,x3−i)+
1

4ai
|di|2, i = 1,2. (9)

At this point, the property (9) does not give us information about robustness of the
overall system (5) with the decentralized state feedback (8). Indeed, it is true in gen-
eral that a(LgV (x)) = [a1(Lg1V1(x1)),a2(Lg2V2(x2))] does not hold for any choice
of positive constants a, a1 and a2. If the function V (x) fulfilling (2) happens to be in
the form of V (x) =V1(x1)+V2(x2), then the property (9) implies (7) for the choice
a = a1 = a2. The larger the feedback gain ai is, the stronger the robustness with
respect to d is. However, general nonlinear systems consisting of (1) often disallow
any V in the form of V (x) = V1(x1)+V2(x2) to accomplish (2) even if the equilib-
rium x = 0 is GAS. In this way, the feedback input ui which uses only local state
xi as in Fig. 1(b) achieves the desired robustness of the overall system Σ with re-
spect to the disturbance d only if the construction of the Lyapunov function V (x)
and the selection of the local feedback control laws ui(xi) are judiciously coordi-
nated. Therefore, it is significantly useful to derive a condition under which such a
desirable pair V and u can be constructed, and to provide the formulas of V and u.

iISS. If α ∈K∞ holds in (2), the property (7) implies ISS of the system Σ with
respect to the disturbance d. In the case of α ∈P \K∞, the system Σ is iISS with



Decentralized Robustification Based on iISS 203

respect to d. It is, however, not guaranteed to be ISS. The existence of V (x) satisfy-
ing (2) ensures the existence of another C1 function V (x) satisfying (2) with a class
K∞ function α . Indeed, replacing V (x) by F(V (x)) with an appropriate C1 function
F : R+ → R+ always allows us to achieve (2) with α ∈K∞. Here, it is important
to notice that this transformation into α ∈K∞ via redefinition of V (x) does not pre-
serve the decentralized structure of robustifying controllers. In fact, the redefinition
of V (x) yields the “LgV -type” feedback (6) as

u(t) =−a(LgF(V (x(t))))T = [uT
1 (x(t)),u

T
2 (x(t))]

T (10)

in which ui = uT
i (xi) does not hold true in general. The transformation by F results in

the centralized feedback ui = uT
i (x1,x2), i = 1,2, even if the original V is in the form

of V (x) = V1(x1) +V2(x2). In addition, there are a lot of GAS systems for which
no matter how we choose C1 functions F1,F2 : R+ → R+, the composite function
V (x) = F1(V1(x1)) +F2(V2(x2)) never achieves (2) with α ∈K∞. Such examples
are found in the iISS framework (see e.g. [2]). Hence, it is unreasonable to expect
that the interconnected system Σ achieves ISS with respect to the disturbance d. In
this way, allowing α �∈K∞ is imperative to avoid unreasonably stringent constraints
on systems Σi, and it is quite useful to develop a method of achieving iISS and
including ISS as a special case.

Limitation of Input Magnitude. The control laws (6) and (8) are unbounded un-
less a strong constraint is imposed on the system Σ . In practical situations where the
magnitude of control input is limited, the laws (6) and (8) need to be implemented
with saturation functions. Then the property (7) does not hold true. From (5) it is
obvious that, if |di(t)| becomes larger than the upper limit of |ui(t)| an actuator can
generate, such a control input cannot enhance the robustness against d. However, the
upper bound of |di(t)| is known and it is smaller than the actuator limitation, the ro-
bustness of Σ should be enhanced by applying appropriately saturated control input
ui(t). Therefore, it is practically important to clarify how robust the system Σ can
be by judiciously designing robustifying controllers meeting the input constraints.

LgV in the Presence of Delays and Discontinuities. In addition to the inevitabil-
ity of time delays in dynamical systems, discontinuity in the right-hand side often
arises in practical models of control and sliding mode control laws. Such delays
and discontinuities need to be incorporated into the right-hand side of (1), (3)
or (5). Moreover, the map V needs to be extended to a functional in order to
characterize the behavior of systems with delays whose solutions are defined as the
evolution of segments defined on the delay interval along the time axis. In (6) and
(8), the symbol LgV indicated the Lie derivative of the C1 function V along g, i.e.,
LgV = ∂V

∂x g(x). When V is a functional, this definition is inapplicable. Furthermore,
the relation between LgV and the estimation of the solutions x(t) to the system Σ
is not immediate at all for time-delay discontinuous right-hand side systems. It is
necessary to redefine LgV in accordance with a feasible estimation of the behavior
of Σ subject to time-delays and discontinuities.



204 H. Ito, P. Pepe, and Z.-P. Jiang

An Approach. To address the above issues, we take an new approach based on

• Invariantly differential functionals to characterize the robustification in the form
of LgV ;

• A sum-type construction of a Lyapunov-Krasovskii functional to obtain V lead-
ing to the decentralized robustification;

• An iISS small-gain condition to formulate the robustification in the iISS frame-
work in the presence of actuator limitations.

These tools have been investigated and developed very recently in [4, 5, 12]. This
article demonstrates how successfully the problem of decentralized robustification
for time-delay discontinuous right-hand side systems can be solved.

3 Invariantly Differentiable Functionals

This article borrows the definition of invariant differentiable functionals from [8]
(see Definitions 2.2.1, 2.5.2 in Chapter 2). In the subsequent sections, we will as-
sume that Lyapunov-Krasovskii functionals are invariantly differentiable. The for-
malism used in [8] is slightly modified here for the purpose of formalism uniformity
throughout this article. For any given x ∈ R

n, φ ∈Qn and any continuous function

Y : [0,Δ ]→ R
n with Y (0) = x, let ψ(x,φ ,Y )

h ∈Qn, h ∈ [0,Δ), be defined as

ψ(x,φ ,Y )
0 = φ

ψ(x,φ ,Y )
h (s) =

{
φ(s+ h), s ∈ [−Δ ,−h)
Y (s+ h), s ∈ [−h,0)

for h > 0. (11)

Definition 1. (see [8]) A functional V : Rn×Qn →R+ is said to be invariantly dif-
ferentiable if, at any point (x,φ) ∈ R

n×Qn:
i) for any continuous function Y : [0,Δ ]→R

n with Y (0) = x, there exists the finite

right-hand derivative ∂V
(

x,ψ(x,φ ,Y )
h

)
/∂h

∣∣∣
h=0

and such derivative is invariant with

respect to the function Y ;
ii) there exists the finite derivative ∂V (x,φ)/∂x; iii) for any z ∈ R

n, for any contin-
uous function Y : [0,Δ ]→R

n with Y (0) = x, for any h ∈ [0,Δ),

V
(

x+ z,ψ(x,φ ,Y )
h

)
−V(x,φ) =

∂V (x,φ)
∂x

z+
∂V

(
x,ψ(x,φ ,Y )

�

)

∂�

∣∣∣∣∣∣
�=0

h+ o

(√
|z|2 + h2

)
(12)

with lims→0+ o(
√

s)/
√

s = 0.

The first two terms in (12) serve as a differential of V (x,φ), and they are inde-
pendent of Y defining the increment of the second argument φ of the functional
V (x,φ). As explained in [12,16], due to the invariant differentiability, we can define
an appropriate derivative by which we can estimate the behavior of the trajectories
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of time-delay discontinuous right-hand side systems with a locally Lipschitz func-
tional V :Rn×Qn→R+ as in the classical Lyapunov theory for ordinary differential
equations. Lemma 6 in [12] provides a tool to rescale invariantly differentiable func-
tionals, which helps us evaluate robustness of interconnected systems effectively by
means of invariantly differentiable functionals.

4 Interconnected Time-Delay Systems with Discontinuous
Right-Hand Side

Consider an interconnected system Σ described by the following functional differ-
ential equations with discontinuous right-hand side

Σ
{
Σ1 : ẋ1(t) = f1(x1,t ,x2,t)+ g1(x1,t)(u1(t)+ d1(t))
Σ2 : ẋ2(t) = f2(x2,t ,x1,t)+ g2(x2,t)(u2(t)+ d2(t))

(13)

x1,0 = ξ1,0, x2,0 = ξ2,0,

where, for i = 1,2, xi(t) ∈ R
ni ; di(t) ∈ R

mi is a disturbance adding to the control
input (measurable, locally essentially bounded); ni and mi are positive integers. For
t ∈ R+, xi,t : [−Δ ,0]→ R

ni denotes the function xi,t(τ) = xi(t + τ), where Δ >
0 is the maximum involved delay. Suppose that ξi,0 ∈ Cni . The locally bounded
maps fi : Cni ×Cn3−i → R

ni are continuous with respect to the second argument,
and are allowed to be discontinuous with respect to the first argument, the maps
gi : Cni →R

ni×mi are assumed to be Lipschitz on bounded sets. We combine vectors
as x(t) = [x1(t)T ,x2(t)T ]T ∈ R

n, n = n1 + n2, u(t) = [u1(t)T ,u2(t)T ]T ∈ R
m, d(t) =

[d1(t)T ,d2(t)T ]T ∈ R
m, m = m1 +m2, ξ0 = [ξ T

1,0,ξ T
2,0]

T ∈ Cn, f () = [ f1()
T , f2()

T ]T ,
φ = [φT

1 ,φT
2 ]T ∈ Cn and g() = [g1()

T ,g2()
T ]T . We define xt as done for its i-th

component xi,t . It is assumed that fi(0,0) = 0, i = 1,2. We use semi-norms ‖ · ‖a,i :
Cni → R+ and ‖ · ‖a : Cn → R+, i = 1,2, respectively, for which there exist class
K ∞ functions γ

a,i
, γa,i, γa

and γa such that

γ
a,i
(|φi(0)|)≤ ‖φi‖a,i ≤ γa,i(‖φi‖∞), ∀φi ∈ Cni (14)

γ
a
(|φ(0)|) ≤ ‖φ‖a ≤ γa(‖φ‖∞), ∀φ ∈ Cn . (15)

The retarded inclusions corresponding to Σ represented by (13) are given by

ẋ1(t) ∈Ψ1(x1,t ,x2,t ,u1(t)+ d1(t)), t ≥ 0, a.e.,

ẋ2(t) ∈Ψ2(x2,t ,x1,t ,u2(t)+ d2(t)), t ≥ 0, a.e.,

x(τ) = ξ0(τ), τ ∈ [−Δ ,0], ξ0 ∈ Cn, (16)

where, for (φi,φ3−i,v) ∈ Cni ×Cn3−i×R
mi ,Ψi(φi,φ3−i,v) is the set given by

Ψi(φi,φ3−i,v) = {ξi + gi(φi)v, ξi ∈ Fi[ fi](φi,φ3−i)}, (17)



206 H. Ito, P. Pepe, and Z.-P. Jiang

and Fi[ fi](φi,φ3−i) is the convex closure of all limit values of the map fi at the
point (φi,φ3−i). We introduce here the following standard assumption on the maps
fi of subsystems in (13): For each (φi,φ3−i) ∈ Cni ×Cn3−i , the set Fi[ fi](φi,φ3−i)
is assumed to be compact in R

ni ; for each bounded set W ∈ Cni ×Cn3−i , the set
∪(φi,φ3−i)∈W Fi[ fi](φi,φ3−i) is assumed to be bounded; the multimap (φi,φ3−i) →
Fi[ fi](φi,φ3−i) is assumed to satisfy the Carathéodory conditions (see Sections 4.2,
4.3, pp. 121-126, in [9]).

For the system (13), as in [12], we consider situations where essential bounds of
the disturbance d(t) are known in the following sense:

di, j ≤ ess inf
t∈R+

di, j(t), di, j ≥ ess sup
t∈R+

di, j(t). (18)

Here, di, j,di, j ∈ R, i = 1,2, j = 1,2, ...,mi satisfying di, j ≤ 0 ≤ di, j are given a
priori. Note that, when do not have any a priori knowledge of the disturbance mag-
nitude at Σi, we let −di, j = di, j = ∞, i = 1,2 for j = 1,2, ...,mi. The notions of ISS
and iISS with the essential bounds are defined as follows:

Definition 2. The system (13) with u(t)≡ 0 is said to be input-to-state stable (ISS)
with respect to d with the essential bounds (18) if there exist a K L function β
and a K function γ such that, for any initial state ξ0 and any measurable, locally
essentially bounded input d satisfying (18), any corresponding solution in the sense
of (16) exists for all t ≥ 0 and furthermore it satisfies

|x(t)| ≤ β (‖ξ0‖∞, t)+ γ
(
‖d[0,t)‖∞

)
. (19)

Definition 3. The system (13) with u(t)≡ 0 is said to be integral input-to-state sta-
ble (iISS) with respect to d with the essential bounds (18) if there exist a K∞ func-
tion χ , a K L function β and a K function γ such that, for any initial state ξ0

and any measurable, locally essentially bounded input d satisfying (18), any corre-
sponding solution in the sense of (16) exists for all t ≥ 0 and furthermore it satisfies

χ(|x(t)|)≤ β (‖ξ0‖∞, t)+
∫ t

0
γ (|d(τ)|)dτ. (20)

It is stressed that, in the situation where we take −di, j = di, j = ∞ for i = 1,2 and
j = 1,2, ...,mi, the above definition reduces to the standard definitions of ISS and
iISS without any bounds of the disturbance d (see [1, 13–15]). For example, the
system (13) with u(t)≡ 0 is ISS with respect to d with the essential bounds (18) for
−di, j = di, j =∞, i = 1,2, j = 1,2, ...,mi, if and only if the system (13) with u(t)≡ 0
is ISS with respect to d. This equivalence also holds in the iISS case.

The following assumption is imposed on each unforced (ui(t) = di(t) ≡ 0) sub-
system in (13): For each subsystem Σi (i = 1,2) defined in (13) with ui(t) = di(t)≡
0, we assume the existence of a Locally Lipschitz invariantly differentiable func-
tional Vi : Rni ×Qni → R+ such that
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α i(‖φi‖a,i)≤Vi(φi(0),(φi)[−Δ ,0))≤ α i(‖φi‖a,i), (21)

D+Vi(φi,φ3−i)≤ ρi(φi,φ3−i), ∀ φ j ∈ C j, j = 1,2 (22)

hold, where α i,α i are K∞ functions and ρi : Cni ×Cn3−i → R is a continuous func-
tional given by

ρi(φi,φ3−i) =−αi(‖φi‖a,i)+σi,0(‖φ3−i‖a,i)+
h

∑
j=1

σi, j

(
γ

a,3−i
|φ3−i(−Δ j|)

)

+
h+hd

∑
j=h+1

∫ 0

−Δ j

σi, j

(
γ

a,3−i
|φ3−i(τ)|

)
dτ. (23)

Here, h and hd are non-negative integers, αi and σi, j are class K functions, and
Δ j ∈ (0,Δ ] for j = 0,1, . . . ,h+ hd. The left hand side of (22) is defined with

D+Vi(φi,φ3−i) = sup
ξi∈Fi[ fi](φi,φ3−i)

∂Vi(xi,φi)

∂xi

∣∣∣∣
xi=φi(0)

ξi +
∂Vi(φi(0),φi,h)

∂h

∣∣∣∣
h=0

(24)

φi,h(s) =

{
φi(s+ h), s ∈ [−Δ ,−h)
φi(0), s ∈ [−h,0]

for h ∈ [0,Δ). (25)

5 Decentralized iISS and ISS Feedback Redesign

We introduce a few notations and definitions. Define an operator α(i : R+→ R+ as

α(i (s) = sup{v ∈ R+ : s≥ αi(v)}. (26)

Thus, we have α(i (s) = ∞ for s ≥ limτ→∞αi(τ), and α(i (s) = α−1
i (s) elsewhere.

For a class K function ω : R+→ R+, this article uses the extension ω : R+→ R+

defined as

ω(s) := sup
v∈{w∈R+ :w≤s}

ω(v).

The reader may refer to [3] for the benefit of these extended operators. We define
the following set D(w,w) of continuous functions:

Definition 4. Given −∞ ≤ w < 0 < w ≤ +∞, a function ω : R→ R is said to be-
long to D(w,w) if it is a strictly increasing and locally Lipschitz function such that
ω(0) = 0 ∧ {lims→−∞ω(s)<w ∨ lims→−∞ω(s) =−∞} ∧ {w< lims→+∞ω(s) ∨
lims→+∞ω(s) = +∞}.

For a mapping ω ∈ D(w,w) from R onto (a,b) ⊆ R, the inverse of ω is a strictly
increasing continuous function denoted by ω−1 : (a,b)→ R. For ω ∈D(w,w), the
function ω−1(s)s : (w,w)→R is locally Lipschitz. For each i = 1,2, let Ni be
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Ni =
h+hd

∑
j=0

sgn(σi, j(1)) , (27)

which describes the number of non-zero functions among σi,0, ..., σi,h+hd , in (23).
The following achieves decentralized robustification under a small-gain condition.

Theorem 1. Define σi ∈K , i = 1,2, by

σi(s) = Ni max

{
max

j=0,1,...,h
σi, j(s), max

j=h+1,...,h+hd

Δ jσi, j(s)

}
. (28)

Suppose that there exist ci > 1, i = 1,2, such that

c1σ1 ◦α−1
2 ◦α2 ◦α(2 ◦ c2σ2(s)≤ α1 ◦α−1

1 ◦α1(s), ∀s ∈ R+ (29)

holds. Pick τi,μi > 0 and ϕ ≥ 0 such that

1 < τi <
ci

1+ μi
,

(
τi(1+ μi)

ci

)ϕ
≤ τi− 1, i = 1,2 (30)

are satisfied. Define class K functions λi, i = 1,2, by

λi(s) =

[
1
τi
αi(α−1

i (s))

]ϕ [
(1+ μi)σ3−i(α−1

i (s))
]ϕ+1

. (31)

Assume that the mapping

hi(φi) = [hi,1(φi),hi,2(φi), ...,hi,mi(φi)]

= λi(Vi(φi(0),(φi)[−Δ ,0))) ·
∂Vi(xi,(φi)[−Δ ,0))

∂xi

∣∣∣∣
xi=φi(0)

gi(φi) (32)

from Cni into R
mi is Lipschitz on bounded sets for i = 1,2. Define

pi(φi) =−[Yi,1(hi,1(φi)),Yi,2(hi,2(φi)), · · · ,Yi,mi(hi,mi(φi))]
T (33)

for Yi, j ∈D(di, j,di, j), i = 1,2, j = 1,2, ...,mi. Then the decentralized feedback con-
trol laws (i = 1,2)

ui(t) = pi(xi,t) (34)

render the closed-loop system consisting of (13) and (34) iISS with respect to the
disturbance d with the essential bounds (18). Moreover, if lims→∞αi(s) = ∞ holds
true for i = 1,2, then the closed-loop system is ISS with respect to the disturbance d
with the essential bounds (18).

For any ci > 1, there always exist τi,μi > 0 and ϕ ≥ 0 fulfilling (30). Note that The-
orem 1 establishes ISS and iISS even if −di, j = di, j =∞ for i = 1,2, j = 1,2, ...,mi.
In such a case, Yi, j’s are required to be unbounded and the magnitude of the
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robustifying inputs ui(t) become large arbitrarily for arbitrarily large disturbances
di, j(t). If time delays reside only in communication channels, the mappings Vi are
functions which do not involve any terms for time delays. In such cases, equations
(32), (33) and (34) yield the compensations ui(t) which are delay free. Theorem 1
is established by making use of the functional V : Rn×Qn → R+:

V (φ(0),(φ)[−Δ ,0)) =
2

∑
i=1

∫ Vi(φi(0),(φi)[−Δ ,0))

0
λi(s)ds

+
h

∑
j=1

∫ 0

−Δ j

Fi, j(τ)σ̃i, j

(
γ

a,3−i
(|φ3−i(τ)|)

)
dτ

+
h+hd

∑
j=h+1

∫ 0

−Δ j

Fi, j(τ)
∫ 0

τ
σ̃i, j

(
γ

a,3−i
(|φ3−i(θ )|)

)
dθdτ. (35)

where, for i = 1,2 and j = 1,2, ...,h+hd, the continuous functions Fi, j : [−Δ j,0]→
R and the functions σ̃i, j ∈K are given by

Fi, j(τ) =
−τ
Δ j

+(1+ μi)
τ+Δ j

Δ j
, σ̃i, j(s) = λi(θi, j(s))σi, j(s)

θi, j(s) =

{
α i ◦α(i ◦Niτiσi, j(s) , j = 0,1, ...,h
α i ◦α(i ◦NiτiΔ jσi, j(s) , j = h+ 1,h+ 2, ...,h+hd.

Let α , α ∈K∞ be such that α(‖φ‖a) ≤ V (φ(0),(φ)[−Δ ,0)) ≤ α(‖φ‖a). The func-
tional V in (35) plays the role of a Lyapunov-Krasovskii functional to estimate the
influence of the disturbance d on the resulting system as follows:

Corollary 1. Suppose that all the assumptions in Theorem 1 are fulfilled. Then the
closed-loop system consisting of (13) and (34) satisfies

D+V (φ ,d)≤−α(‖φ‖a)+σ(|d|), (36)

where α ∈K is given by (37), and σ is any class K function satisfying (38):

α(s) = min
{φ=[φT

1 ,φT
2 ]T∈Cn:s=‖φ‖a}

{ n

∑
i=1

h

∑
j=1

μi

Δ j

∫ 0

−Δ j

σ̃i, j

(
γ

a,3−i
(|φ3−i(τ)|

)
dτ+

h+hd

∑
j=h+1

μi

Δ j

∫ 0

−Δ j

∫ 0

τ
σ̃i, j

(
γ

a,3−i
(|φ3−i(θ )|

)
dθdτ+

(
1− τi

ci

)
(τi− 1)

τi
λi(Vi(φi(0),(φi)[−Δ ,0)))[αi ◦α−1

i (Vi(φi(0),(φi)[−Δ ,0)))]

}
(37)

σ(s)≥ sup
{d∈Rm:s≥|d|, di, j∈(di, j ,di, j)}

2

∑
i=1

mi

∑
j=1

Y−1
i, j (di, j)di, j. (38)
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Furthermore, a pair of χ and γ in (20) is given by χ(s) = α ◦ γ
a
(s) and γ(s) =

2σ(s). Moreover, if lims→∞αi(s) = ∞ holds for i = 1,2, a function γ satisfying (19)
is γ(s) = γ−1

a
◦α−1 ◦α ◦α−1(2σ(s)).

Equation (31) is a special case of the more general formula of λi presented in [4].
The free parameters in [4] allow us to replace (31) by the one presented in [5].

6 An Example

Consider the interconnection of two scalar subsystems:

ẋ1(t) =−
sgn(x1(t))
1+ |x1(t)|

+
γ1

1+ |x1(t)|
x2(t−Δ)+ cos(x1(t))(u1(t)+ d1(t)) (39)

ẋ2(t) =−x2(t)(2+ sgn(x2(t)− 1))+ γ2
x1(t−Δ)

1+ |x1(t−Δ)|
+ x2(t)(u2(t)+ d2(t)),

where Δ > 0 is a channel delay, γi ∈ R, i = 1,2, are interaction parameters. Choose
Vi(φi(0),(φi)[−Δ ,0)) = φi(0)2, i = 1,2. For ui(t)≡ 0, di(t)≡ 0, we obtain

D+V1 ≤−
2|φ1(0)|

1+ |φ1(0)|
+ 2|γ1||φ2(−Δ)|, D+V2 ≤−|φ2(0)|2 + γ2

2

(
|φ1(−Δ)|

1+ |φ1(−Δ |)

)2

.

If |γ1γ2| < 1, (29) is satisfied. For example, in the case of |γ1| = |γ2| = 1/2, the
formula (31) gives λ1(s) =

1
4 (
√

s/(1+
√

s))2 and λ2(s) =
√

s for ϕ = 0 and τi(1+
μi) = 17/8, i = 1,2. Assume that |d1(t)| ≤ 2 and |d2(t)| ≤ 7 hold for all t ≥ 0.
Setting d1,1 = d1,1 = 2 and d2,1 = d2,1 = 7, we can choose Y1,1(s) = 3tanh(s) and
Y2,1(s) = 10tanh(s). Thus, equations (32)-(34) yield

u1(t) =−3tanh(λ1(x2
1(t))2x1(t)cos(x1(t)))

u2(t) =−10tanh(λ2(x2
2(t))2x2

2(t))
(40)

which achieve iISS of the overall system (39) with respect to di(t), i = 1,2. Figure
2(a) illustrates the effectiveness of (40) for (39) with ξ0(τ) = [−1,3]T , τ ∈ [−Δ ,0],
Δ = 2 and γ1 = γ2 = 0.5 in the presence of d = [2cos(2t),4+ 3cos(4t)]T which
satisfies |d1(t)| ≤ 2 and |d2(t)| ≤ 7 for all t ≥ 0. Compared with Fig.2(c), the local
feedback laws (40) with the input magnitude limitations significantly improve ro-
bustness with respect to the disturbance d. If no limitations of input magnitude are
necessary, Theorem 1 yields the unbounded local feedback laws

u1(t) =−3λ1(x2
1(t))2x1(t)cos(x1(t)),

u2(t) =−10λ2(x2
2(t))2x2

2(t)
(41)

which produce state trajectories shown in Fig.2(b). The robustness achieved by
the bounded control (40) is almost identical to the robustness achieved by the
unbounded control (41). For d = [7cos(2t),9+ 11cos(4t)]T exceeding the upper
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(a) With bounded decentralized feedback: (40) (b) With unbounded decentralized feedback: (41)
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(c) Without feedback: ui(t)≡ 0, i = 1,2

Fig. 2 State transition x(t) = [x1(t),x2(t)]T of (39) with d = [2cos(2t),4+3cos(4t)]T
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(a) With bounded decentralized feedback: (40)
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(b) With unbounded decentralized feedback: (41)

Fig. 3 State transition x(t) = [x1(t),x2(t)]T of (39) with d = [7cos(2t),9+11cos(4t)]T

bounds, the trajectories with the bounded laws (40) and the unbounded laws (41)
are plotted in Figs.3(a) and (b), respectively. The parameters Δ , γ1, γ2 and ξ0 are
the same as those used in Figs. 2(a), (b) and (c). The control inputs (40) fulfill the
magnitude constraints |u1(t)| ≤ 3 and |u2(t)| ≤ 10 for all t ≥ 0. However, they can-
not ensure the robustness the larger control inputs (41) can attain. In the case of no
control inputs, the simulation exhibited a vertical increase of x2 at t = 1.80.



212 H. Ito, P. Pepe, and Z.-P. Jiang

7 Conclusions

For interconnected systems described by retarded nonlinear equations with discon-
tinuous right-hand side, this article has proposed a methodology for decentralized
redesign. In the iISS framework that does not require subsystems to be ISS, input
magnitude limits and saturated decay rates of subsystems have been addressed. It
has been shown that, if dissipation inequalities of subsystems satisfy the small-gain
condition (29), the interconnected system can be rendered robust with respect to
disturbances by adding local state feedback inputs. The notion of invariantly differ-
ential functionals allows us to carry out the robust compensation in the form of LgV
for retarded nonlinear equations with discontinuities. The sum-type construction of
Lyapunov-Krasovskii functionals as in (35) enables us to obtain the robust compen-
sation as decentralized controllers. The proposed controllers become delay free if
time delays exist only in communication channels between subsystems.
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