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Abstract. A stability analysis of general consensus algorithms in discrete-time
networks of multi-agents is presented. Here, the networks can have time-varying
topologies and delays, as well as nonlinearities. The Hajnal diameter approach is
developed for synchronization analysis and sufficient conditions for both consen-
sus at uniform value and synchronization at periodic trajectories are derived, which
show how the periods depend on the transmission delay patterns.

1 Introduction

Consensus problems have been recognized to be important in coordination of dy-
namic agent systems and are widely applied in distributed computing [1], manage-
ment science [2], flocking/swarming theory [3], distributed control [4], and sensor
networks [5]. In these applications, the multi-agent systems need to agree on a com-
mon value for a certain quantity of interest that depends on the states of the interests
of all agents or is a preassigned value. In this chapter, we consider the following
dynamical system of multi-agents:

xt+1
i = φ t

i

(
xt−τi1(t)

1 , . . . ,xt−τim(t)
m

)
, i = 1, . . . ,m; t ∈ Z≥0, (1)
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where xt
i ∈ R denotes the state of agent i at time t, φ t

i : Rm → R is a differentiable
map for each t τi j(t) is the time-varying delay from agent j to agent i and Z≥0

denotes the discrete time, the set nonnegative integers. We suppose that the delays
are uniformly bounded, i.e., supi, j,t τi j(t) = τM for some finite τM > 0.

Let xt = [xt
1, . . . ,x

t
m]
 ∈R

m and w(t) = [xt ,xt−1 , . . . ,xt−τM ] ∈R
m(τM+1). We

first rewrite (1) in the more abstract form

w(t + 1) =Φt(w(t)) (2)

with Φt (·) = [Φt
0(·)

 , . . . ,Φt
τM (·)

 ] , where

{
Φt

0(w) = [φ t
1(w), . . . ,φ

t
m(w)]

 

Φt
τ (w) = xt−τ+1 τ ≥ 1.

We assume that all φ t
i (·), i = 1, · · · ,m, are C1+α continuous for some α > 0 and

φ t
i (s, . . . ,s) = s (3)

for all s ∈D(⊂R), i, and t. Eq. (2) is an abstraction and simplification of consensus
algorithm/protocol, an interaction rule specifying the information communication
between each agent and its neighborhood. In the present work, we address the ques-
tion of consensus when the right-hand side of (2) contains time variations in both
couplings and delays.

The condition (3) guarantees that global consensus is a solution of (1). A concept
related to consensus, namely synchronization [6–8] , indicates that the system’s di-
agonal, i.e. the set

S =
{

u ∈R
m : ui = u j ∈R, for all i, j = 1, . . . ,m

}

is invariant under the dynamics and asymptotically attracting. Due to fact that the
transmission delays τi j(t) from agent j to agent i depend on the receiver agent i, the
scenario is different from the systems without delays. To specify the argument, let

S=
{

w = [w0 , · · · ,wτM ] ∈ R
m(τM+1) : wτ ∈S , ∀ τ = 0,1, . . . ,τM

}
.

Under hypothesis (3), S may contain subsets that are invariant with respect to (2).
However, the more general condition used in [9], namely φ t

i (s, . . . ,s) = φ(s) for
some function φ independent of index i, does not guarantee that S contains invari-
ant subsets with respect to Eq. (1).

Actually, the trajectory of system (2), constrained on S, depends on the pattern
of the delays. First, let

S1 =
{

w = [w0 , . . . ,wτM ] ∈ S : wτ = wτ ′ , for all τ,τ ′ = 0, . . . ,τM

}
.
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Each s∗ = [s, · · · ,s] ∈S is an equilibrium of system (2). Next, if

P = gcd{τi j(t)+ 1 : i, j = 1, . . . ,m; t ∈ Z≥0}> 1, (4)

where gcd stands for the greatest common divisor, then the set

SP =
{

w = [w0 , . . . ,wτM ] ∈ S : wk = wk+P, ∀ k = 0,1, . . . ,τM−P
}

consists of invariant periodic solutions of system (2) (with period P). It can be seen
that S1 is a special case of SP when P = 1. In addition, restricting S on a local
region, for example, the region D where (3) holds, we define

S (C) =
{

u ∈ R
m : ui = u j ∈C, for all i, j = 1, · · · ,m

}

for some C ⊂ R. In the same fashion, we define S(C), S1(C) and SP(C) as well.
The relationship and difference between consensus and synchronization was pre-

sented in [10]. The question we consider is whether the invariant set S0 or SP (ac-
cording to the delays’ gcd) is attracting for dynamical states [xt

m, . . . ,x
t
m] outside of it,

at least locally. First, this question can be translated into synchronization problem
as we did in [9]. Then, upon reaching synchronization, hypothesis (3) guarantees
that the synchronized trajectory should be an equilibrium or a periodic trajectory
(depending of the delay patterns), instead of a general attractor on S.

The motivation for studying (1) (or its abstract form (2)) comes initially from the
basic discrete-time consensus algorithm:

xt+1
i =

m

∑
j=1

Gi jx
t
j, i = 1, · · · ,m, (5)

where xt
i ∈R denotes the state variable of the agent i and Gi j ≥ 0 is the nonnegative

coupling strength from agent j to agent i and satisfies: ∑m
j=1 Gi j = 1. Define G =

[Gi j]
m
i, j=1, which is related to the underlying connecting graph of the system, in the

sense that Gi j > 0 if there is a link from node (agent) j to i and Gi j = 0 otherwise.
It can be seen that G is a stochastic matrix. Then, (5) can be rewritten as

xt+1 = Gxt , (6)

where xt = [xt
1, . . . ,x

t
m]
 . Eq. (6) is a general model of the consensus algorithm on a

network with fixed topology, which can be a directed graph and may have weights.
Additionally, in many real-world applications, the connection structure may change
in time, for instance when the agents are moving in physical space. One must then
consider time-varying topologies under link failure or creation. Furthermore, delays
occur inevitably due to limited information transmission speed. To sum up, the linear
model of consensus with transmission delays can be described as

xt+1
i =

m

∑
j=1

Gi j(t)x
t−τi j(t)
j , (7)
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where τi j(t), i, j = 1, · · · ,m, denotes the time-dependent delay from agent j to agent
i. We say that a link from j to i is instantaneous if τi j(t)≡ 0, and delayed otherwise.
We will associate G(t) = [Gi j(t)]mi, j=1 with a directed graph sequence (see Sec. 3).

Stability analysis of the consensus in multi-agent networks (the special forms
of (7) for discrete-time model) has been intensively investigated in control the-
ory [11–19]. In our recent work [20], we have investigated consensus in dynamic
networks and delays under a general stochastic framework, which provides a the-
oretical method to analyze stability of Eq. (7), and applied the results to analyze
consensus in a mobile agent network model [21]. In this paper, we shall address this
problem in the context of the general form (1).

The time variation of the connections and delays can be either deterministic or
stochastic, which may have a special form, or may be driven by some other dynam-
ical system. Let Y = {Ω ,F ,P(·),θ t} denote a metric dynamical system, where Ω
is the metric state space, F is the σ -algebra, P(·) is the probability measure, and θ t

is a measure-preserving shift satisfying: θ t+s = θ t ◦ θ s and θ 0 = id, where id de-
notes the identity map. Then Eq. (7) can be regarded as a random dynamical system
(RDS) driven by Y :

xt+1
i =

m

∑
j=1

Gi j(θ tω)xt−τi j(θ tω)
j , i = 1, . . . ,m, t ∈ Z≥0;

or the abstract form (2) can be rewritten as:

wt+1 =Φ(wt ,θ tω), t ∈ Z≥0,ω ∈Ω . (8)

The consensus problem under this scenario is defined in forward and almost-sure
sense, i.e., convergence is attained except for a subset of ω of zero probability. For
details on random dynamical systems and attractors, we refer the reader to [22].

2 Stability Analysis

In this section we present a linear stability analysis of the invariant sets S1 and
SP according to delay patterns. We first consider S1 in the deterministic time-
varying case. We start with a boundedness condition of system (1). The notation
πA(·) denotes the orthogonal projection operator from R

m(τM+1) onto a subset A.
B1: There exists a neighborhood U containing S1(D) such that any trajectory

w(t) of (2) starting in U is bounded and πS1(w(t)) ∈S1(D) for all t.
Due to hypothesis (3), each point s∗ = [s, . . . ,s] ∈ S is an equilibrium of (1).

Using the approach in [9] the variational equations of z(t) = x(t)− s∗ near an equi-
librium point s∗ ∈S are

zt+1
i =

m

∑
j=1

∂φ t
i

∂x j
(s∗)z

t−τi j(t)
j , i = 1, . . . ,m. (9)

Hypothesis (3) implies that
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m

∑
j=1

∂φ t
i

∂x j
(s∗) = 1, i = 1, . . . ,m,

for all t and s∗ ∈S (D). However, the Jacobian matrix J(t) = [
∂φ t

i
∂x j

(s∗)]mi, j=1 is not

necessary a stochastic matrix since some elements may be negative.
With τM = supi, j,t τi j(t), assumed to be finite as above, partition J(t) into

J0(t),J1(t), . . . ,JτM(t), according to the delays, such that J(t) = ∑τMτ=0 Jτ(t), and (9)
can be rewritten in the general form

zt+1 =
τM
∑
τ=0

Jτ(t)z
τ , (10)

where z(t) = [z1(t), . . . ,zt
m]
 . Eq. (10) can further be rewritten as

yt+1 = B(t)yt ,

where yt = [zt ,zt−1 , . . . ,zt−τM ] and

B(t) =

⎡
⎢⎢⎢⎢⎢⎣

J0(t) J1(t) J2(t) · · · JτM (t)
Im 0 0 · · · 0
0 Im 0 · · · 0
...

...
...

. . .
...

0 0 · · · Im 0

⎤
⎥⎥⎥⎥⎥⎦

with all row sums equal to 1. To state the main results, we use the concept of the
Hajnal diameter introduced in [23, 24]: For a matrix A with row vectors a1, . . . ,am

and a vector norm ‖ · ‖ in R
m, the Hajnal diameter of A is defined by diam(A) =

maxi, j ‖ai− a j‖ . The Hajnal diameter of an infinite product of a deterministically
time-varying matrix sequence {B(t)} is defined as [9]:

diam(B(·)) = lim
T→∞

sup
t0≥0

[
diam(

t0+T

∏
t=t0

B(t))

]1/T

.

From Theorem 3.1 in [9], the following result can be concluded.

Theorem 1. Under the hypothesis B1, if sups∗∈S1(D) diam(B(·)) < 1, then system
(1) is (locally) stable with respect to S1(D), that is, there exists a sufficiently small
neighborhood U of S1(D) such that for any initial condition in U, the trajectory
converges to an equilibrium in S1(D).

In fact, Theorem 3.1 in [9] assumes that there exists an attractor for the system
restricted to S1, which is needed to guarantee that the projection of the trajectory
on S1 are kept in the bounded region defined by the attractor. Here, condition B1

guarantees that the projection of the trajectory of Eq. (2) with initial condition in U
onto S1 is still in D. So, the proof of Theorem 3.1 in [9] is valid for this theorem, and
in addition, this condition also guarantees that hypothesis (3) holds for the system
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restricted to S1. When (1) converges to S1(D), according to the form of (3), the
synchronized trajectory should be an equilibrium. In other words, system (2) reaches
consensus, as all agents converge to a uniform value.

If the time-variation is driven by a stochastic process, then the system (1) or (2)
becomes the random dynamical system (8). Let

Vt
λ =

{
ω ∈Ω :

[
diam(

t

∏
k=0

B(θ kω))
]1/t

< λ

}
.

From Theorem 4.3 in [25], we have:

Theorem 2. Under hypothesis B1, if there exists some λ ∈ (0,1) such that
∑∞t=0 P(Vt

λ ) < +∞, then (8) is (locally) stable with respect to S1(D) in the almost
sure sense, that is, for almost every ω ∈Ω , there exists a sufficient small neighbor-
hood U(ω) (possibly depending on ω) of S1(D) such that for any initial condition
in U, the trajectory of (8) converges to an equilibrium in S1(D).

We note that the equilibrium depends also on ω . In [25], a sufficient condition was
stated in terms of the normal Lyapunov exponent, which was proved to be equivalent
to the Hajnal diameter in [9].

We next consider synchronized periodic solutions under condition (4). Note that
each t ∈ Z≥0 can be written as t = kP+ l for some k≥ 0 and l = 0, . . . ,P−1. Eq. (1)
implies that the state at t+1 depends on the states at t−τi j(t), i, j = 1, . . . ,m. We can
write τi j(t) = zi j(t)P− 1, owing to hypothesis (3). Therefore, mod(t− τi j(t),P) =
l+1, which is equal to mod(t + 1,P) (if l =P−1, then l+1 equals to 0 in modulus),
where mod(a,b) denotes the remainder of a divided by b. In other words, hypothesis
(4) implies that the state of node at time t+1 depends only on those states at the time
points that have the same remainder with respect to P. Therefore, after permutation
of the τM+1 components in wt = [xt , . . . ,xt−τM ] such that the time with the same

remainder with respect to P are brought together, i.e., w̃t =
[
(w̃t

0)
 , . . . ,(w̃t

P−1)
 ] 

with w̃t
k =

[
(xt−k) ,(xt−P−k) , . . . ,(xt−(τM+1)+P−k) 

] 
for all k = 0, . . . ,P−1, sys-

tem (2) has the following block form:

w̃t+1
k = Φ̃t

k

(
w̃t

k

)
, k = 0, . . . ,P− 1, t ∈ Z≥0,

with Φ̃t
k =

[
Φ̃t

k,0, . . . ,Φ̃
t
k,n

] 
(n = (τM + 1)/P− 1), and

Φ̃t
k,z =

{
[φ t−k

1 (·) , . . . ,φ t−k
m (·) ] z = 0,

xt−zτ0−k z > 0.

By linearization, with the same permutation of yt with that of wt , we can bring
the variational equation near each periodic solution w∗ into the form

ỹt+1 = B̃(t)ỹt (11)
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with block-diagonal B̃(t) :

B̃(t) = diag[B̃r(t)]
P−1
r=0 .

Thus, after a partition of ỹ = [ỹ 0 , · · · , ỹ P−1]
 , (11) has the block form

ỹt+1
r = B̃r(t)ỹt

r, r = 0, . . . ,P− 1. (12)

A similar hypothesis to B1 can be stated as
B2: There exists neighborhoodU containing SP(D) such that any trajectory w(t)

of (2) starting in U is bounded and πSP(w(t)) ∈SP(D) for all t ∈ Z≥0.
Then, from Theorem 3.1 in [9], we have

Theorem 3. Under the hypothesis B2, if supw∗∈SP(D) maxr=0,...,P−1 diam(B̃r(·)) <
1, then system (2) is (locally) stable with respect to SP(D), that is, there exists a
sufficiently small neighborhood U of SP(D) such that from any initial condition in
U, the trajectory converges to a periodic trajectory in SP(D).

In a similar fashion as in Theorem 2, if the time-variation is driven by a metric
dynamical system (Ω ,F ,P,θ t ), i. e., Eq. (10) becomes a RDS:

ỹt+1 = B̃(θ tω)ỹt , (13)

then letting

Ṽ t
λ =

{
ω ∈Ω : max

r=0,...,P−1

[
diam(

t

∏
k=0

B̃r(θ kω))
]1/t

< λ

}
,

we can state the following result.

Theorem 4. Under hypothesis B2, if there exists some λ ∈ (0,1) such that
∑∞t=0 P(Ṽ t

λ ) < +∞, then (8) is (locally) stable with respect to SP(D) in the almost
sure sense, that is, for almost every ω ∈Ω , there exists a sufficient small neighbor-
hood U(ω) (possibly depending on ω) of SP(D) such that for any initial condition
in U, the trajectory of (8) converges to a periodic trajectory in SP(D).

Theorems 1 and 2 can be regarded as special cases of Theorems 3 and 4, respec-
tively, when P = 1.

Remark 1. Hypotheses B1,2 can be satisfied if system (2) is essentially bounded, i.e.,
there exists a bounded region Q⊂R

m(τM+1) such that any trajectory enters Q for all
t ≥ T for a sufficiently large T . Then the set D can be derived by projecting the
convex closure of Q onto S1 or SP, respectively.

3 Linear Model

Eq. (7) can be regarded as a special case of (1) withΦt
i =∑

m
j=1 Gi j(t)x

t−τt
i j

j . However,
in such a linear model the stability is always global, instead of local for nonlinear
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systems. In this section, we provide the main results in terms of matrix and graph
theories for linear models (7) or (8). The link between stochastic matrices and graphs
is an essential feature here.

A stochastic (or simply nonnegative) matrix A = [ai j]
m
i, j=1 ∈R

m,m defines a graph
G = {V ,E }, where V = {1, . . . ,m} denotes the node (agent) set with m nodes and
E denotes the link set where there exists a directed link from node j to i (i.e., e(i, j)
exists) if and only if ai j > 0. We denote this graph corresponding to the stochastic
matrix A by G (A). The node i is said to be self-linked if e(i, i) exists, i.e., aii > 0.
The node i can access the node j, or equivalently, the node j is accessible from the
node i, if there exists a path from i to j. The graph G has a spanning tree if there
exists a node i which can access all other nodes. The graph G is said to be strongly
connected if each node is a root. We refer the interested reader to the book [26] for
more details. Due to the relationship between nonnegative matrices and graphs, we
can call upon and switch between their respective properties as needed. For example,
the indecomposability of a nonnegative matrix A is equivalent to that G (A) has a
spanning tree, and the aperiodicity of a graph is associated with the aperiodicity of
its corresponding matrix [27]. For a sequence of nonnegative matrices A(t), we can
define a graph sequence associated with A(t): G (t) = G (A(t)). The union of several
graphs {Gi, i = 1, . . . , p} on the same node set is the union of their link sets.

For a nonnegative matrix A and a given δ > 0, the δ -matrix of A, denoted by Aδ ,
is defined as

[Aδ ]i j =

{
δ , if Ai j ≥ δ ;
0, if Ai j < δ .

The δ -graph of A is the directed graph corresponding to the δ -matrix of A. We can
then state the following result for the stability of S1 (noting that in the linear model,
D = R).

Theorem 5. [12] Suppose there exist μ > 0, L∈Z≥0, and δ > 0 such that G0(σ)>
μIm for all σ ∈ Ω and the δ -graph of ∑n+L

k=n+1 G(k) has a spanning tree for all
n ∈ Z≥0. Then system (7) is (globally) stable with respect to S1, i. e., it reaches
consensus.

In fact, with D = R, if the condition in this theorem is satisfied, there exist a suffi-

ciently large integer T and λ ∈ (0,1) such that diam
(
∏n+T ′

k=n+1 G(k)
)
< λ T ′ for any

T ′ > T . Hence, the conditions in Theorem 1 hold.
We rewrite system (7) in the general form

xt+1
i =

τM
∑
τ=0

m

∑
j=1

Gτi j(t)x
t−τ
j , i = 1, . . . ,m, (14)

by partitioning the inter-links according to delays, as well as in the matrix form

xt+1 =
τM
∑
τ=0

Gτ(t)xt−τ , (15)
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where Gτ(t) = [Gτi j(t)]
m
i, j=1. In some cases delays occur at self-links, for example

when it takes time for each agent to process its own information. Suppose that the
self-linking delay for each node is identical, that is, τii = P−1> 0. We classify each
integer t in the discrete-time set Z≥0 (or the whole integer set Z) via mod(t + 1,P)
as the quotient group of (Z+ 1)/P. As a default set-up, we denote 〈i〉P by 〈i〉. Let
Ĝi(·) = ∑ j∈〈i〉G

j(·). We have the following result for the stability of SP.

Theorem 6. Assume that
(1) Hypothesis (4) holds for P > 0;
(2) τii(t) = P− 1 for all i = 1, . . . ,m;
(3) GP−1(t)> μIm for some μ > 0 and all t ∈ Z≥0.

Suppose further that there exist L ∈ Z≥0 and δ > 0 such that the δ -graph of
∑n+L

k=n+1 Ĝ0(k) is strongly connected for all n ∈ Z≥0. Then system (14) is (globally)
stable with respect to SP, i. e., it synchronizes to a P-periodic trajectory.

This theorem can be proved as a consequence from Theorem 3 in a similar fashion
as the proof of Theorem 3.4 in [21], but by removing the discussion of randomness,
since here we consider deterministic time-variation.

The time-variation can be random, e. g., induced by a stochastic process σ t .
In [20, 21], we considered the case when {σ t} is an adapted stochastic process:
Let {Ak} be a stochastic process defined on the basic probability space {Ω ,F ,P},
with the state space Ω , the σ -algebra F , and the probability function P. Let {F k}
be a filtration, i. e., a sequence of nondecreasing sub-σ -algebras of F . If Ak is mea-
surable with respect to (w.r.t.) F k, then the sequence {Ak,F

k} is called an adapted
process. Let E(·|F t ) denote the conditional expectation with respect to σ -algebra
F t . Then, Eq. (15) becomes

xt+1 =
τM
∑
τ=0

Gτ(σ t)xt−τ . (16)

This adapted process can be regarded as a metric dynamical system with invariant
probability, {ΩΩΩ ,F,P,θ t}, where ΩΩΩ = ΩZ≥0 , i. e., each element is the sequence
{σ t}t≥0, F = FZ≥0 is the infinite Cartesian product of F , P coincides with the
intrinsic probability P, and θ t is the shift map: θω = {σ t}t≥1. The following results
are the stochastic versions of Theorems 5 and 6.

Theorem 7. [20, 21] Suppose there exist μ > 0, L ∈ Z≥0, and δ > 0 such that
G0(σ)> μIm for all σ ∈ Ω and the δ -graph of E{∑n+L

k=n+1 G(σ k)|F n} has a span-
ning tree for all n∈Z≥0 almost surely. Then (16) is stable with respect to S1 almost
surely (i.e. with probability one).

Theorem 8. [20, 21] Assume that
(1) Hypothesis (4) holds;
(2) τii(t) = P− 1 for all i = 1, . . . ,m;
(3) GP−1(t)> μIm for some μ > 0 and all t ∈ Z≥0.

Suppose further that there exist L ∈ Z≥0 and δ > 0 such that the δ -graph of
E{∑n+L

k=n+1 Ĝ0(σ k)|F n} is strongly connected for all n ∈ Z≥0 almost surely. Then
(16) is stable with respect to SP almost surely (i.e. with probability one).
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4 Multi-agent Model with Nonlinear Coupling

In this section, we present a stability analysis of a class of nonlinear multi-agent
models

xt+1
i =

m

∑
j=1
ψt

i j

(
x

t−τi j(t)
j − xt−τii(t)

i

)
x

t−τi j(t)
j , i = 1, . . . ,m, t ∈ Z≥0, (17)

where ψt
i j(·) is a (time-dependent) nonlinear function that denotes the coupling

strength from agent j to agent i, acting on the difference between the states of the
two nodes under the presence of delays. We assume that ψt

i j(s) is C1+α continuous
for some α > 0 and attains its maximum value, which is assumed to be nonzero, at
s = 0. In other words, the coupling strength is maximum when the (delayed) states
are equal. Thus, dψt

i j(s)/ds|s=0 = 0 for all i, j = 1, . . . ,m and t ∈ Z≥0. For example,
ψt

i j(·) can be chosen from a class of Gaussian-type kernel functions. In addition, to
guarantee that (3) holds, we also assume that ∑m

j=1ψt
i j(0) = 1 for all i and t.

The variational equation near S1 or SP under the assumption (4) is:

δxt+1
i =

m

∑
j=1

ψt
i j(0)δx

t−τi j(t)
j , i = 1, · · · ,m , t ∈ Z≥0. (18)

It has the similar form of (7). LetΨ0(t) = [ψt
i j(0)]

m
i, j=1 and Ψ̃0

r (t) be defined in the
same fashion as done in Eqs. (11) and (12). Then we have the following result.

Theorem 9. Assume all conditions mentioned above for ψt
i j(·) hold.

(1) Under hypothesis B1 for some D⊂R, if diam
(
Ψ0(·)

)
< 1, then system (17)

is (locally) stable with respect to S1(D);
(2) Under the hypothesis B2 for some D ⊂ R, if diam

(
Ψ̃0

r (·)
)
< 1 for all r =

0, . . . ,P− 1, then system (17) is (locally) stable with respect to SP(D).

In addition, if ψt
i j(0) are all nonnegative, then {Ψ0(t)} are stochastic matrices, and

the conditions in Theorem 9 can be “translated” in terms of graphs associated with
the stochastic matrix sequence {Ψ0(t)}, namely, into the conditions in Theorems 6
and 7.

When the time-variation is induced by a stochastic process, or generally by a
metric dynamical system, the results of Theorems 2 and 4 can be applied to derive
sufficient conditions for consensus in the almost surely sense for system (17). Com-
bined with the graph theory used in [20], if {Ψ0(t)} are stochastic matrices, we can
derive sufficient conditions for consensus like Theorem 7 and 8. We omit the details
due to space constraints.
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5 Numerical Examples: Dynamical Networks for Random
Waypoint Model

We perform numerical examples to illustrate the results by the “random waypoint”
(RWP) model, which is a widely used model in performance evaluation of protocols
of ad hoc networks, first introduced in [29]. We use the same set-up of the model as
done in [21] to mimic time-varying graph topologies and realize the random way-
point model in a 1000× 1000 (m2) square area, where the agent i moves towards a
randomly selected target in this area following the uniform distribution. The velocity
of movement is also random, with a uniform distribution in [10,20] (m/sec). After
approaching the target, the agent waits for a random time period following the uni-
form distribution in [1,5] (sec). Moreover, each agent’s behavior is stochastically
independent of the others. The links between agents are generated such that each
agent is linked to the agents whose distance is not more than R. We take R = 120
(m). There are 50 independent mobile agents in the network, whose location and
status of the agents can be modeled as a homogeneous Markov chain [21].

We set up two models of multi-agent systems on the RWP network. The first one
is a linear model (stated in the form of (7)):

xt+1
i =

1
#N t

i
∑

j∈Ni(t)

x
t−τt

i j
j , i = 1, . . . ,m, (19)

where Ni(t) denotes the neighborhood of agent i at time t and #F denotes the num-
ber of the elements in a finite set F . The second model is a special case of (17) with
coupling functions:

ψt
i j(s) =

1
#Ni(t)

exp(− s2

2
). (20)

It can be verified that all conditions of ψt
i j(·) in Section 4 are satisfied. We assume

that the self-links exist for all nodes. Thus Ni(t) is always nonempty.
We consider discrete time with a 0.01 (sec) time interval. Each agent operates

according to the algorithm (19). Transmission delays exist due to finite information
transmission speed and storage buffer. Since the speed of information transmission
is typically much higher than the movement of agents, we omit the displacement
of the information transmission caused by the movement of agents and define the
delays (0.01 sec) as:

τi j(σ t ) = λ#
dt

i j

vs
$+ τ0, (21)

where dt
i j (m) denotes the distance between agents i and j in the two-dimensional

space at time t, vs denotes the transmission speed of information, #·$ denotes the
floor function, i.e., the largest integer less than or equal to its argument, λ is a
scaling parameter representing the ratio of the time scale of movement of the agents
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and that of the information transmission and processing among agents, and τ0 (0.01
sec) denotes the identical self-linking delay.

Following the arguments in [21], the network has a positive probability of be-
ing a complete network, with respect to the stationary probability distribution. This
implies that the expectation, with respect to the stationary probability distribution,
of the graph topology is a complete graph. Hence, for the case of existence of self-
links, the conditions of Theorems 7 and 8 are satisfied. In the absence of self-links,
for any initial network graph, there are a path of finite length and a positive prob-
ability such that all agents enter a disc with radius less than R. So, the conditional
expectation of product of the matrices has a positive probability of being complete.
This implies that the conditional expectation is complete. In a similar way, condi-
tions for consensus can be verified for system (17) with (20) as well.
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(a) Convergence of (19) with λ = 1 and τ0 =
0.
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(b) Convergence of (17) with (20), λ = 1 and
τ0 = 0.
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(c) Convergence of (19) with λ = 2 and τ0 =
1.
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(d) Convergence of (17) with (20), λ = 2 and
τ0 = 1.

0 50 100 150 200

−2

−1

0

1

2

Time (sec)

x i,  
i=

1,
...

,5
0

(e) Convergence of (19) with λ = 2 and τ0 =
2.
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(f) Convergence of (17) with (20), λ = 2 and
τ0 = 2.

Fig. 1 Convergence dynamics of the multi-agent systems (19) (left column) and (17) with
(20) (right column) in RWP networks. The insets show the terminal synchronous orbits.
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We fix vs = 3000 (m/sec) and pick different values of τ0 and λ to illustrate the
synchronous or consensus dynamics as mentioned in Theorems 7, 8, and 9.

First, we choose λ = 1 and τ0 = 0. Theorem 7 indicates that the multi-agent
system (19) reaches consensus. Fig. 1(a) depicts the consensus dynamics of (19)
with the delays (21) with respect to S1. We also observe that system (17) with
coupling function (20) reaches consensus, as shown in Fig. 1(b).

We next take λ = 2 and τ0 = 1. Thus, the delays can be picked only in the set
{1,3,5,7,9} and each value in this set can be a possible delay in (21). One can see
that gcd(τi j + 1 : i, j = 1, . . . ,m; t ∈ Z≥0) = 2. Theorem 8 yields that (19) cannot
reach consensus but must instead synchronize to a 2-periodic trajectory. The same
conclusion holds also for system (17) with coupling function (20). Fig. 1(c) and 1(d)
show the synchronous dynamics of systems (19) and (17) with (20) and the delays
(21), λ = 2, and τ0 = 1.

Finally, we choose λ = 2 and τ0 = 2. Thus, the delays can be picked only from
the set {2,4,6,8,10}. We have gcd(τi j + 1) : i, j = 1, . . . ,m; t ∈ Z≥0) = 1. From
Theorem 8, similar arguments indicate that (19) reaches consensus, i. e., synchro-
nizes at a periodic trajectory with period P = 1. The same conclusion holds for the
system (17) with (20). Fig. 1(e) and 1(f) indicate the consensus dynamics with the
delays (21), λ = 2, and τ0 = 2.

6 Conclusion

We have presented an analysis of consensus problem in discrete-time networks of
multi-agent systems, based on our previous results in [9,20,21,25]. Here the model
is general, including the linear consensus model as a special example. When the
time variation is driven by a metric dynamical system, multi-agent systems become
random dynamic systems. Based on a Hajnal diameter approach that we developed
for synchronization analysis, we have presented sufficient conditions for both con-
sensus at a uniform value and synchronization at a periodic trajectory, and shown
how the periods depend on the transmission delay patterns. As special examples,
we have re-derived the stability results for the consensus of the linear model and de-
rived sufficient conditions for the stability of a class of delayed multi-agent systems
with nonlinear coupling. To illustrate the theoretical results, we have presented two
consensus algorithms in a mobile-agent model under transmission delays.
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