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Preface

This volume is the first of a new series by Springer entitled: Advances in Delays
and Dynamics. We are honored that Silviu-Iulian Niculescu as the Founding Editor
of the Series, has entrusted us with the responsibility to compose this first volume
which, like with any initialization of series, is of particular importance.

The purpose of this new series is to bring together recent results on the study of
dynamics associated with the explicit consideration of delays in the models of sys-
tems, where delays arise in general due to the time needed to transmit energy and/or
information among subsystems of systems. This research field is very rich and has
been heavily explored over the past twenty years as progresses in automatic control
have led engineers to be confronted with more and more complex and large-scale
systems with delays, for which explicit consideration of delays is crucial in order to
thoroughly understand and improve such systems. Networked systems are good il-
lustrations of this, and their actual development significantly and critically overlaps
with time-delay systems research area that then directly affects the modern society
across applications such as telecommunications, health care operations, transporta-
tion systems, supply chains and logistics, population dynamics, etc. Many theoreti-
cal advances are now converging towards these applications, for which solutions are
sought and from which new problems as well as novel methodologies arrive. It is
also equally important not to lose sight of the applicability of such methodologies.
That is why, even if many contributions collected in this volume concern the anal-
ysis of continuous time-delay systems, we have also included some new trends on
sampled data systems as well as recent results on computational and software tools.

This volume presents the most recent trends as well as new directions in the
field of modelling, analysis and control synthesis of time delay systems. Most of
the chapters are based on preliminary contributions presented at the IFAC (Interna-
tional Federation of Automatic Control) workshops with the focus on Time Delay
Systems (TDS), particularly at 2012 IFAC TDS Workshop held in Boston, USA, and
2013 IFAC TDS Workshop held in Grenoble, France, organised within the IFAC
Joint conference with the 5th Symposium on System Structure and Control and 6th
Workshop on Fractional Differentiation and Its Applications. Moreover, some chap-
ters are incorporated based on the results from time delay sessions organized within
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the 2011 IFAC World Congress held in Milan, Italy, and some other are invited. It
is worthy to note that the contents of this volume do not have significant overlap
with those presented at IFAC events since the authors contributing in this volume
extended their contributions beyond what they presented at the past IFAC events.

The book is collected under the following five parts:

Part I - Stability Analysis and Control Design
Stability analysis and control design for systems with delays have long been pur-
sued, and this topic has many rich examples in the literature, yet it never lost its
critical role in the field. This first part of the book covers recent results in various
aspects of stability theory and control design methods:

In the first chapter by CARLOS CUVAS, ADRIAN RAMÍREZ, ALEXEY EGOROV

and SABINE MONDIÉ, the authors exclusively utilize the Lyapunov matrix of the
delay system in order to prove necessary conditions for the exponential stability
of a one-delay linear system. The results are based on the substitution of a special
initial function into a Lyapunov-Krasovskii functional. An illustration example is
included to show the effectiveness of the proposed conditions.

The second chapter by NICOLE GEHRING, JOACHIM RUDOLPH, and FRANK

WOITTENNEK addresses the control of linear time-invariant systems with incom-
mensurate lumped and distributed delays, for which the authors design a prediction-
free tracking controller that assigns an arbitrary finite spectrum to the closed loop
system. An illustrative example of a heat accumulator is provided to demonstrate
the application of results.

In the third chapter by ALEXANDRE SEURET and FRÉDÉRIC GOUAISBAUT,
new useful inequalities in combination with a simple Lyapunov-Krasovskii func-
tional lead to new stability criteria for linear time delay systems expressed in terms
of LMIs. On numerical examples, improvements are demonstrated.

Fourth chapter is authored by ALI FUAT ERGENC, where a matrix method is in-
troduced for determining robust-stability zones of the general linear time invariant
discrete-time dynamics with large delays against parametric uncertainties. The tech-
nique employs Kronecker Product and unique properties of palindrome polynomials
by which a sufficient condition for robust stability and dominant pole assignment is
possible.

Chapter five, which is contributed by PAVEL ZÍTEK, JAROMÍR FIŠER and
TOMÁŠ VYHLÍDAL presents a novel method for dominant pole placement for a time
delay PID control loop, while minimizing the absolute error integral. The quality of
the disturbance rejection response is taken as the decisive criterion in the presented
design of the time delayed plant control.

In the sixth chapter, stability of linear delayed systems subjected to digital control
is analyzed by the authors DAVID LEHOTZKY and TAMAS INSPERGER, using the
semi-discretization method. Different approaches are presented and discussed based
on the number of discretization points and on the order of the approximation of the
delayed term. In case studies, stability charts using the method are obtained.
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Part II - Networks and Graphs
In the past decade, many studies focused on understanding the effects of networks,
graphs, and dynamical systems. This research can reveal interesting findings about
how the interactions between these parameters/concepts are interrelated, and these
findings can be used to better understand coupled systems, their functionality, and
to better engineer such systems. To capture this important trend in the field, this part
presents six chapters:

The first chapter is by ALEXANDRE KRUSZEWSKI, BO ZHANG and JEAN-
PIERRE RICHARD and considers the problem of teleoperation over an unreliable
communication network. The authors study both the stability of the two inter-
connected systems in the teleoperation application, and also ensure some per-
formances and robustness based on a robust control design via delay-dependent
Lyapunov-Krasovskii framework.

In the second chapter, authored by WEI QIAO and RIFAT SIPAHI, the authors
explore how various graph operations can be used to create large-scale graphs for
interconnected dynamical systems while still keeping the delay margin of the arising
graphs as large as possible.

In section three, a leaderless consensus control protocol for double integrators
with multiple time delays is studied by RUDY CEPEDA-GOMEZ and NEJAT OLGAC,
where stability analysis is performed using a recent technique called the Cluster
Treatment of Characteristic Roots (CTCR), and a much different stability display is
created using the Spectral Delay Space (SDS) as an overture to the CTCR. Examples
are provided to display the application of CTCR and SDS.

In chapter four, authored by MEHMET EREN AHSEN, HITAY ÖZBAY and
SILVIU-IULIAN NICULESCU, a dynamical model of a gene regulatory network
(GRNs) with a time delay in the feedback path including static nonlinearities with
negative Schwarzian derivatives is analyzed under positive feedback. A set of con-
ditions is derived for the global stability of the class of GRNs considered, extending
the results in cyclic biological processes involving time delayed feedback.

In chapter five, contributed by TOSHIKI OGUCHI and EIICHI UCHIDA, forma-
tion of oscillatory patterns in networks of identical nonlinear systems with time-
delays is considered. Both linear and nonlinear analysis are presented, and the au-
thors propose a design method of networks to achieve prescribed oscillation profiles
from these networks.

In chapter six authored by WENLIAN LU, FATIHCAN M. ATAY and JÜRGEN

JOST, the authors present an analysis of consensus problem in networks of multi-
agents systems. The study involves both the linear linear consensus dynamics as a
special example, as well as the case when the multi-agent systems at hand become
random dynamic systems. Particularly, sufficient conditions for both consensus at
uniform value and synchronization at periodic trajectories are developed.

Part III - Time Delay and Sampled-Data Systems
Application of control algorithms in real time systems is one of the main goals, which
would inevitably invite discrete time systems and sampling. In such cases, while the
dynamical system can be continuous, the peripherals around it can be digital, creating
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a mix type closed loop system, in which various questions about stability and control
need to be answered. This part of the book is dedicated for this type of problems,
and is inspired from the invited session Time Delay and Sampled-Data Systems held
at the IFAC World Congress 2011, which was organized by EMILIA FRIDMAN. The
only chapter outside this session is chapter three.

The first chapter is contributed by KUN LIU, EMILIA FRIDMAN, LAURENTIU

HETEL and JEAN-PIERRE RICHARD, where the authors analyze the exponential
stability of Networked Control Systems (NCSs), in particular using a static output
feedback controller for linear systems with sensor nodes distributed over a network.
The approach here presents the closed-loop system at hand as a switched system
with multiple delayed samples, which ultimately enables exponential stability con-
ditions derived using Lyapunov framework. The efficiency of the method is illus-
trated on the classical cart-pendulum benchmark problem.

The second chapter contributed by ERIK I. VERRIEST proposes two approaches,
namely, lossless and forgetful causalization, for modeling discrete delay systems
with time varying delay. While tackling the problem of the potential ill-posedness
due to rapidly increasing delay in the system, the approach utilized here considers
the time delay system using an extension of the state space. Structural problems,
such as stability and reachability, are investigated using time-invariant theory, and
a special reflecto-difference equation is analyzed in more detail as an example of a
system with unbounded nonlocal behavior.

The third chapter by HIROSHI ITO, PIERDOMENICO PEPE and ZHONG-PING

JIANG deals with interconnected systems described by retarded nonlinear equations
with discontinuous right-hand side. The problem of feedback control redesign to
achieve input-to-state and integral input-to-state stability is solved. It is shown that
it is possible to design a decentralized controller accomplishing the robustification
whenever a small-gain condition is satisfied.

In the fourth chapter, MATTHEW M. PEET and ALEXANDRE SEURET consider
the problem of global stability of nonlinear sampled-data systems. A recently in-
troduced Lyapunov approach is used to derive stability conditions for both the
synchronous and asynchronous cases. This approach requires the existence of a
Lyapunov function which decreases over each sampling interval. To enforce this
constraint a form of slack variable over the sampling period is used allowing the
Lyapunov function to be temporarily increasing. Several numerical examples are
included to illustrate this approach.

Chapter five is authored by PASQUALE PALUMBO, PIERDOMENICO PEPE, SI-
MONA PANUNZI and ANDREA DE GAETANO, where a closed-loop control law for
the glucose-insulin system is proposed based on a delay differential equation model
of the system. Asymptotic tracking of a desired time evolution for the blood glucose
concentration is achieved by means of the derived nonlinear control law, and the
results are also supported by simulations.

Part IV - Computational and Software Tools
Advancements in the field of time delay systems are also heavily dependent on our
ability to reliably produce numerical results, simulations, design approaches, etc.
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Therefore, progress in computational and software tools is extremely important in
order to support the field and potentially move it towards real-world implementation.
For this purpose, this part brings together five chapters:

In the first chapter contributed by WIM MICHIELS and SUAT GUMUSSOY, an
eigenvalue based framework is developed for the stability analysis and stabilization
of coupled systems with time-delays, investigating the spectral and stability prop-
erties, while taking into account the effect of small delay perturbations. Authors
also briefly address numerical methods for stability assessment and for designing
stabilizing controllers for such systems.

In the second chapter by SUAT GUMUSSOY and PASCAL GAHINET, Computer
Aided Control System Design (CACSD) of complex interconnected time delay sys-
tems is addressed together with the illustration of the functionality of Control Sys-
tem Toolbox in MATLAB. The chapter serves well as an tutorial on CACSD func-
tionalities and opens effective directions in computer algorithm design for control
of time delay systems.

The third chapter by SUN YI, SHIMING DUAN, PATRICK W. NELSON and A.
GALIP ULSOY provides an overview of the Lambert W function approach for analy-
sis and control of time delay system with a constant delay. The use of the MATLAB-
based open source software in the LambertWDDE Toolbox is also introduced using
numerical examples.

In chapter four, a Matlab toolbox YALTA for the H∞-stability analysis of classical
and fractional systems with commensurate delays is presented by the authors DAVID

AVANESSOFF, ANDRÉ R. FIORAVANTI, CATHERINE BONNET and LE HA VY

NGUYEN, covering both the neutral and retarded systems. Four detailed examples
are included to demonstrate how to use the toolbox.

In chapter five, an updated QPmR algorithm implementation for computation and
analysis of the spectrum of quasi-polynomials is presented by the authors TOMÁŠ

VYHLÍDAL and PAVEL ZÍTEK. The authors demonstrate how QPmR is able to com-
pute all the zeros of a quasi-polynomial located in a given region of the complex
plane, and also analyse the spectrum distribution feature of both retarded and neu-
tral type quasi-polynomials, along with case studies.

Part V - Applications
Many problems studied in the field of time delay systems are actually derived and
inspired from real-world problems. This part aims to present a glimpse of the many
applications studied in the community, bringing together six chapters encompassing
applications from biology, human-in-the-loop control, neural networks, control in
the context of automotive engines, haptic control, and synthetic biology:

This part starts with the chapter presenting results on modeling of cell dynamics
in Acute Myeloid Leukemia contributed by JOSE LOUIS AVILA, CATHERINE BON-
NET, JEAN CLAIRAMBAULT, HITAY ÖZBAY, SILVIU-IULIAN NICULESCU, FATEN

MERHI, ANNABELLE BALLESTA, RUOPING TANG and JEAN-PIERRE MARIE. In
the chapter, the dynamical model is reduced to two coupled nonlinear equations
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with four internal sub-systems involving distributed delays. Equilibrium and local
stability analysis of this model are performed and several simulations illustrate the
results.

In the second chapter, JOSHUA VAUGHAN and WILLIAM SINGHOSE focus on
the influence of time delays on crane operator performance. The work is motivated
by remote control of cranes where the operator controls the oscillatory payload
while suffering from decreased perception of the environment and the potential time
delays caused by remote operation. Input shaping control is shown to improve oper-
ator completion times over a large range of operating conditions and communication
time delays.

The third chapter is on the effects of time delays on nonlinear dynamics of neu-
ral networks, authored by GÁBOR OROSZ. A decomposition method is utilized
to derive modal equations that allow one to analyze the dynamics around syn-
chronous states. It is shown that for sufficiently strong coupling there exist delay
ranges where stable equilibria coexist with stable oscillations which allow neural
systems to respond to different environmental stimuli with different spatiotemporal
patterns.

In the fourth chapter, DELPHINE BRESCH-PIETRI, THOMAS LEROY, JONATHAN

CHAUVIN and NICOLAS PETIT provide an overview and study of the low-pressure
burned gas recirculation in spark-ignited engines for automotive powertrain. It is
shown, that a linear delay system permits to capture the dominant effects of the sys-
tem dynamics. The modeled transport delay is defined by implicit equations stem-
ming from first principles and can be calculated online. This model is shown to
be sufficiently accurate to replace a sensor that would be difficult and costly to
implement on commercial engines.

The fifth chapter contributed by QUOC VIET DANG, ANTOINE DEQUIDT, LAU-
RENT VERMEIREN and MICHEL DAMBRINE deals with the issues of design and
control for a force feedback haptic device in the case of interaction with a virtual
wall. The results, derived from Linear Matrix Inequality conditions, are utilized in
optimal design method for an electromechanical haptic device with high perfor-
mances, followed by observer-based force feedback architecture used to improve
the stability of haptic system taking into account variations of the communication
delay.

In the last chapter EDWARD LAMBERT, EDWARD J. HANCOCK and ANTONIS

PAPACHRISTODOULOU discuss how oscillators of the first type can be designed to
meet frequency and amplitude requirements. The authors also discuss how coupling
heterogeneous populations of delayed oscillators can produce oscillations with ro-
bust amplitude and frequency. The analysis and design is rooted in techniques from
control theory and dynamical systems. The motivation for the work comes from the
emerging field of synthetic biology, where oscillators are one of the best studied
synthetic genetic circuits.

Last but not least, we would like to thank the editors of the ADD@S book se-
ries at Springer for handling this volume. Besides, we would like to express full
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Prague, Tomáš Vyhlı́dal
Nantes, Jean-François Lafay
Boston, Rifat Sipahi

June 2013



Contents

Part I Stability Analysis and Control Design

Necessary Stability Conditions for One Delay Systems: A Lyapunov
Matrix Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Carlos Cuvas, Adrian Ramı́rez, Alexey Egorov, Sabine Mondié
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David Avanessoff, André R. Fioravanti, Catherine Bonnet, Le Ha Vy Nguyen

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
2 Functionalities of YALTA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

2.1 Asymptotic Axes and Poles of High Modulus . . . . . . . . . . 288
2.2 Stability Windows and Root Locus . . . . . . . . . . . . . . . . . . . 288
2.3 Approximation of Poles of Small Modulus . . . . . . . . . . . . 288
2.4 H∞-stability Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

3 Practical Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
3.1 Continuation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
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José Louis Avila, Catherine Bonnet, Jean Clairambault, Hitay Özbay,
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Necessary Stability Conditions for One Delay
Systems: A Lyapunov Matrix Approach

Carlos Cuvas, Adrian Ramı́rez, Alexey Egorov, and Sabine Mondié

Abstract. Necessary conditions for the exponential stability of one delay linear
systems are proved. These conditions depend exclusively on the Lyapunov matrix
of the delay system, thus improving previous results which were expressed not only
in terms of the Lyapunov matrix, but also on system matrices. They are obtained
via the substitution of a special initial function into a Lyapunov-Krasovskii func-
tional whose existence, when the system is exponentially stable, is established. An
illustrative example shows the effectiveness of the proposed conditions in determin-
ing candidate stability regions in the space of parameters. Finally, a procedure for
improving these necessary conditions is outlined.

1 Introduction

The form of the functional having a prescribed derivative associated to exponentially
stable linear delay systems have been studied, in the Lyapunov Krasovskii frame-
work [11], in the work of Repin [19] and Datko [2], followed by the contributions
of Infante and Castelan [6], Huang [5], where a cubic lower bound was found, and
Louisell [12], where substantial advances were achieved.

During the past decade, Kharitonov and Zhabko [7], Kharitonov [8], [10] clarified
fundamental concepts and results of this approach: the Lyapunov matrix delay func-
tion is obtained as the solution of the dynamic, symmetric and algebraic properties
which are the analogue of the Lyapunov equation; the existence and uniqueness of
solutions, provided a spectrum Lyapunov like condition is satisfied, is established in
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Kharitonov and Plischke [9]. This lead to the presentation of a functional, named of
complete type, that satisfies a quadratic lower bound if the system is exponentially
stable.

These results represent indeed an extension of the well known Lyapunov theory
for delay free case, where the Sylvester criteria allows the characterization of the
stability of the system in terms of the positivity of the Lyapunov matrix. The idea
of extending such a powerful result to linear delay systems has produced a number
of stability results in recent contributions. Conditions establishing, for the one delay
scalar equation, the coincidence of the well known stability region with Lyapunov
function conditions were recently obtained in [17]. Instability conditions were de-
termined in [15] for retarded, neutral type and distributed delay systems. Finally,
necessary conditions in terms of the Lyapunov matrix are reported in [14] for the
case of single delay systems. These conditions are significantly conservative when
matrix A1 is singular. The fact that this situation often arise in control, as in the prob-
lem of delayed output feedback, or in the proportional retarded control of systems
studied respectively in [13] and [20], is a strong motivation for looking for better
suited conditions.

In this contribution, we analyze the stability of linear time delay systems of the
form

ẋ(t) = A0x(t)+A1x(t− h), (1)

where A0, A1 ∈ R
n×n, h≥ 0 is the delay and the initial condition is

x(θ ) = ϕ(θ ), − h≤ θ ≤ 0, ϕ ∈PC [−h,0].

The organization of this contribution is as follows: in section 2, preliminaries
on the theoretical framework of Lyapunov Krasovskii functionals with prescribed
derivative are recalled, and some technical results are introduced. The main contri-
bution of this work, necessary conditions that depend on the Lyapunov matrix, is
proved in section 3. In section 4, a nontrivial illustrative example suggests a pro-
cedure for improving the necessary conditions. The contribution ends with some
concluding remarks.

Notation: the Euclidian norm for vectors is denoted ‖·‖. For a given initial
condition ϕ(θ ) in the set of piecewise functions defined on the interval [−h,0],
PC ([−h,0],Rn), xt(ϕ) = {x(t +θ ,ϕ),θ ∈ [−h,0]} denotes the restriction of the
solution x(t,ϕ) of system (1) to the interval [t− h, t]. When the initial condition is
not crucial, the argument ϕ is omitted. The set of piecewise functions is equipped
with the norm ‖ϕ‖h = sup

θ∈[−h,0]
‖ϕ(θ )‖ .

For a symmetric matrix Q ∈R
n×n, the notation Q > R (Q≥ R) means that Q−R

is positive definite (positive semidefinite).
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2 Preliminaries

In this section stability results on Lyapunov Krasovskii functionals with prescribed
derivative for one delay systems are recalled and some auxiliary results are
introduced.

2.1 Theoretical Framework

System (1) is said to be exponentially stable if there exist constants γ ≥ 1 and
β > 0 such that for every initial function ϕ ∈PC ([−h,0],Rn), the solution x(t,ϕ)
satisfies ‖x(t,ϕ)‖ ≤ γe−β t ‖ϕ‖h .

The basic functional v0(xt) with prescribed time derivative −xT (t)W x(t), which
is crucial in our developments, was introduced in [5].

Lemma 1. Given a positive definite matrix W, the functional v0(xt) whose time
derivative along the trajectories of system (1) is equal to −xT (t)Wx(t), is of the
form

v0(ϕ) = ϕT (0)U(0)ϕ(0)+ 2ϕT(0)
∫ 0

−h
UT (h+θ )A1ϕ(θ )dθ

+
∫ 0

−h
ϕT (θ2)

∫ 0

−h
AT

1 U(θ2−θ1)A1ϕ(θ1)dθ1dθ2. (2)

Then, if system (1) is exponentially stable, the matrix function U(θ ), θ ∈ [−h,h], is
the unique solution of the dynamic equation

U ′(θ ) =U(θ )A0 +U(θ − h)A1, θ ≥ 0, (3)

with boundary conditions, called symmetric and algebraic properties,

U(−θ ) =UT (θ ), θ ≥ 0, (4)

AT
0 U(0)+U(0)A0+AT

1 U(h)+UT (h)A1 =−W. (5)

It was shown in [5], [4], that this functional admits a local cubic lower bound:

Theorem 1. If the system (1) is exponentially stable, then for any α > 0 there is a
constant c > 0 such that

v(ϕ)� c‖ϕ(0)‖3, ‖ϕ‖h � α.

Moreover, examples showing that the functional (2) does not admit a quadratic lower
bound leading to the presentation of a functional named complete that satisfies one
in [7].

Here, we consider a particular case of the additional term introduced in [7]. In
this case the functional is not of complete type, yet it satisfies a quadratic lower
bound.
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Theorem 2. Let the delay system (1) be exponentially stable and let a positive defi-
nite matrix W be given. Then, for any 0 < Q <W, the functional

v(ϕ) = v0(ϕ)+ ṽ(ϕ),

where v0 is the basic functional introduced in Lemma 1 and ṽ is defined as

ṽ(ϕ) =
∫ 0

−h
ϕT (θ )Qϕ(θ )dθ ,

is such that there exist positive scalars β (Q), α1(Q) and α2(Q) such that

d
dt

v(xt)≤−β (Q)‖x(t)‖2 ,

α1(Q)‖ϕ(0)‖2 ≤ v(ϕ)≤ α2(Q)‖ϕ‖2
h . (6)

In addition, α1(0) = 0.

Proof. See [16] for a detailed proof.

Next, we remind some useful properties of the Lyapunov delay matrix.

Lemma 2. [9] The matrix U(θ ), θ ∈ [−h,0] is infinitely many times differentiable
on (−h,0). Its first derivative has a jump discontinuity at θ = 0.

Lemma 3. [7] The first derivative of the Lyapunov matrix satisfies

U ′(θ ) =U(θ )A0 +UT (h−θ )A1, θ ≥ 0, (7)

U ′(θ ) =−AT
0 U(θ )−AT

1 U(h+θ ), θ < 0. (8)

Proof. The expression (7) follows straighforwardly from (3) and (4). The symmet-
ric property implies that −U ′(−τ) = [U ′(τ)]T , τ > 0. The result follows from the
dynamic property and a change of variable.

We also prove the following equality.

Lemma 4. For θ ∈ [−h,h] the Lyapunov matrix satisfies

U
′′
(θ ) = U ′(θ )A0−AT

0 U ′(θ )+AT
0 U(θ )A0−AT

1 U(θ )A1 (9)

+δ (θ )
[
U(θ )A0 +UT (h−θ )A1 +AT

0 U(θ )+AT
1 U(h+θ )

]
,

where δ (θ ) is the Dirac delta function.

Proof. The expressions (7) and (8) can be summarized as

U ′(θ ) = χ(θ ≥ 0)
[
U(θ )A0 +UT (h−θ )A1

]
+(1− χ(θ ≥ 0))

[
−AT

0 U(θ )−AT
1 U(h+θ )

]
,
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where χ(θ ≥ 0) denotes the Heaviside step function whose value is zero for negative
arguments and one for arguments greater or equal to zero. The second derivative is

U
′′
(θ ) = χ(θ ≥ 0)

[
U ′(θ )A0−

[
UT (h−θ )

]′
A1

]

+(1− χ(θ ≥ 0))
[
−AT

0 U ′(θ )−AT
1 U ′(h+θ )

]
+δ (θ )

[
U(θ )A0 +UT (h−θ )A1+AT

0 U(θ )+AT
1 U(h+θ )

]
. (10)

Notice that for θ ∈ [0,h]

U ′(θ )A0−
[
UT (h−θ )

]′
A1

= U ′(θ )A0−
[
U(h−θ )A0+UT (θ )A1

]T
A1

= U ′(θ )A0−AT
0 U ′(θ )+AT

0 U(θ )A0−AT
1 U(θ )A1 (11)

and that for θ ∈ [0,h]

−AT
0 U ′(θ )−AT

1 U ′(h+θ )
= −AT

0 U ′(θ )−AT
1

[
U(h+θ )A0+UT (−θ )A1

]
= −AT

0 U ′(θ )+U ′(θ )A0 +AT
0 U(θ )A0−AT

1 U(θ )A1. (12)

Finally, (9) follows by substituting (11) and (12) into (10).

2.2 Auxiliary Results

Next, we present some useful technical results concerning matrix U(θ ), θ ∈ [−h,h].

Proposition 1. The following equality holds for nonnegative scalars a,b

IIa
b = 2

∫ −a

−b
eAT

0 θAT
1 U(h+θ )dθ =−2e−AT

0 aU(−a)+ 2e−AT
0 bU(−b). (13)

Proof. Using (8) yields

IIa
b = −2

∫ −a

−b
eAT

0 θ
[
U ′(θ )+AT

0 U(θ )
]

dθ =−2
∫ −a

−b

d
dθ

(
eAT

0 θU(θ )
)

dθ .

Integration by parts leads to

IIa
b =−2 eAT

0 θU(θ )
∣∣∣−a

−b

and (13) follows.

Proposition 2. The following equality holds for nonnegative scalars a,b,c,d such
that (a,b)∩ (c,d) is a set of measure zero:
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IIIa,c
b,d =

∫ −a

−b
eAT

0 θ1

∫ −c

−d
AT

1 U(θ1−θ2)A1eA0θ2dθ2dθ1

= e−AT
0 aU(−a+ c)e−A0c− e−AT

0 aU(−a+ d)e−A0d

−e−AT
0 bU(−b+ c)e−A0c + e−AT

0 bU(−b+ d)e−A0d . (14)

Proof. In this case, θ2−θ1 does not vanish hence (9) yields

IIIa,c
b,d =

∫ −a

−b
eAT

0 θ1

∫ −c

−d

[
U ′(θ 1−θ2)A0−AT

0 U ′(θ 1−θ 2)

+AT
0 U(θ1−θ2)A0−U

′′
(θ 1−θ2)

]
eA0θ2dθ2dθ1,

equivalently,

IIIa,c
b,d =

∫ −a

−b

∂
∂θ1

(
eAT

0 θ1

∫ −c

−d

∂
∂θ2

(
U(θ 1−θ 2)e

A0θ2
)

dθ2

)
dθ1.

Integration by parts with respect to θ2 yields

IIIa,c
b,d =

∫ −a

−b

∂
∂θ1

(
eAT

0 θ1

{
U(θ1−θ2)e

A0θ2

∣∣∣−c

−d

})
dθ1

=

∫ −a

−b

∂
∂θ1

(
eAT

0 θ1

{
U(θ1+c)e−A0c−U(θ1+d)e−A0d

})
dθ 1.

Integration by parts with respect to θ1 yields

IIIa,c
b,d= eAT

0 θ1

{
U(θ1+c)e−A0c−U(θ1+d)e−A0d

}∣∣∣−a

−b

and (14) follows.

Proposition 3. The following equality holds for nonnegative scalars a,b

∫ −a

−b
eAT

0 θ1

∫ −a

−b
AT

1 U(θ1−θ2)A1eA0θ2dθ2dθ1 = IIIa(1)
b + IIIa(2)

b ,

where

IIIa(1)
b = e−AT

0 aU(−a+ c)e−A0c− e−AT
0 aU(−a+ d)e−A0d

−e−AT
0 bU(−b+ c)e−A0c + e−AT

0 bU(−b+ d)e−A0d

and

IIIa(2)
b =−

∫ −a

−b
eAT

0 θWeA0θdθ .
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Proof. The equality (9) yields

IIIa(1)
b =

∫ −a

−b
eAT

0 θ1

∫ −a

−b

[
U ′(θ 1−θ2)A0−AT

0 U ′(θ 1−θ2)

+AT
0 U(θ1−θ2)A0−U

′′
(θ 1−θ2)

]
eA0θ2dθ2dθ1

and

IIIa(2)
b =

∫ −a

−b
eAT

0 θ1

∫ −a

−b
δ (θ 1−θ2)

[
U(θ 1−θ2)A0+UT (h−θ1+θ2)A1

+AT
0 U(θ 1−θ2)+AT

1 U(h+θ1−θ2)
]

eA0θ2dθ2dθ1.

The term IIIa(1)
b is obtained by following the steps in Proposition 2.

Next, IIIa(2)
b reduces to

IIIa(2)
b =

∫ −a

−b
eAT

0 θ1
[
U(0)A0 +UT (h)A1 +AT

0 U(0)+AT
1 U(h)

]
eA0θ1dθ1.

Substituting (5) yields

IIIa(2)
b =−

∫ −a

−b
eAT

0 θWeA0θdθ .

3 Necessary Conditions

Necessary conditions for the exponential stability of system (1), that also hold when
A1 is singular are presented. They are obtained by substituting into the functional a
set of initial functions of exponential form, and using the results of the previous sec-
tions allowing the elimination of matrix A1. Integration by parts, and the quadratic
lower bound of Theorem 2 are also substantial elements of the proof.

Lemma 5. If the delay system (1) is stable then the matrix

K (τ) =

⎛
⎝ U(0) U(τ) U(h)

UT (τ) U(0) U(h− τ)
UT (h) UT (h− τ) U(0)

⎞
⎠ (15)

is such that
K (τ)≥ 0, τ ∈ [0,h], (16)

and

U(0)> 0, (17)

with U(τ) the solution of (3), (4) and (5).



10 C. Cuvas et al.

Proof. We start with the functional (2) and we consider the special initial function

ϕ̄(θ ) =

⎧⎨
⎩

eA0θ μ , θ ∈ [−h,−τ),
eA0θη , θ ∈ [−τ,0),
γ, θ = 0,

τ ∈ (0,h), μ ,η ,γ ∈ R
n. (18)

The first term of v0(ϕ) reduces to

vI(ϕ̄) = ϕ̄T (0)U(0)ϕ̄(0) = γTU(0)γ. (19)

The simple integral term in v0(ϕ) can be written as

vII(ϕ) = 2ϕT (0)
∫ 0

−h
UT (h+θ )A1ϕ(θ )dθ

= 2
∫ −τ

−h
ϕT (θ )AT

1 U(h+θ )dθϕ(0)+ 2
∫ 0

−τ
ϕT (θ )AT

1 U(h+θ )dθϕ(0).

Substituting the initial function (18) yields

vII(ϕ̄) = 2
∫ −τ

−h
μT eAT

0 θAT
1 U(h+θ )dθγ+ 2

∫ 0

−τ
ηT eAT

0 θAT
1 U(h+θ )dθγ

and Proposition 1 implies that

vII(ϕ̄) = −2μT e−AT
0 τU(−τ)γ+ 2μT e−AT

0 hU(−h)γ

−2ηTU(0)γ+ 2ηT e−AT
0 τU(−τ)γ. (20)

The double integral, is decomposed as

vIII(ϕ) =
∫ 0

−τ
ϕT (θ1)

∫ −τ

−h
AT

1 U(θ1−θ2)A1ϕT (θ2)dθ2dθ1

+

∫ −τ

−h
ϕT (θ1)

∫ 0

−τ
AT

1 U(θ1−θ2)A1ϕT (θ2)dθ2dθ1

+
∫ 0

−τ
ϕT (θ1)

∫ 0

−τ
AT

1 U(θ1−θ2)A1ϕT (θ2)dθ2dθ1

+

∫ −τ

−h
ϕT (θ1)

∫ −τ

−h
AT

1 U(θ1−θ2)A1ϕT (θ2)dθ2dθ1.
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Substituting the initial function (18) yields

vIII(ϕ̄) = ηT
∫ 0

−τ
eAT

0 θ1

∫ −τ

−h
AT

1 U(θ1−θ2)A1eA0θ2dθ2dθ1μ

+μT
∫ −τ

−h
eAT

0 θ1

∫ 0

−τ
AT

1 U(θ1−θ2)A1eA0θ2 dθ2dθ1η

+ηT
∫ 0

−τ
eAT

0 θ1

∫ 0

−τ
AT

1 U(θ1−θ2)A1eA0θ2dθ2dθ1η

+μT
∫ −τ

−h
eAT

0 θ1

∫ −τ

−h
AT

1 U(θ1−θ2)A1eA0θ2dθ2dθ1μ .

Using Proposition 2 in the two first terms and Proposition 3 in the two last ones
gives vIII(ϕ̄) = vIII1 (ϕ̄)+ vIII2(ϕ̄), with

vIII1 (ϕ̄) = η
T
{

U(τ)e−A0τ −U(h)e−A0h

−e−AT
0 τU(0)e−A0τ + e−AT

0 τU(h− τ)e−A0h
}
μ

+ μT
{

e−AT
0 τU(−τ)− e−AT

0 τU(0)e−A0τ

−e−AT
0 hU(−h)+ e−AT

0 hU(−h+ τ)e−A0τ
}
η

+ηT {
U(0)−U(τ)e−A0τ

−e−AT
0 τU(−τ)+ e−AT

0 τU(0)e−A0τ
}
η

+ μT
{

e−AT
0 τU(0)e−A0τ − e−AT

0 τU(h− τ)e−A0h

−e−AT
0 hU(τ− h)e−A0τ + e−AT

0 hU(0)e−A0h
}
μ (21)

and

vIII2 (ϕ̄) =−μT
∫ −τ

−h
eAT

0 θWeA0θdθμ−ηT
∫ 0

−τ
eAT

0 θWeA0θdθη . (22)

Next, observe that substituting the initial function (18) into ṽ gives

ṽ(ϕ̄) = μT
∫ −τ

−h
eAT

0 θQeA0θdθμ+ηT
∫ 0

−τ
eAT

0 θQeA0θdθη . (23)

Now, adding the terms (19), (20), (21) and (22) corresponding to v0 with (23) cor-
responding to ṽ, and rearranging yields

v(ϕ̄) = v0(ϕ̄)+ ṽ(ϕ̄) =ΦT M (τ)Φ+ vIII2 (ϕ̄)+ ṽ(ϕ̄),

where

Φ =
(
γT ηT e−AT

0 τ μT e−AT
0 h −ηT −μT e−AT

0 τ
)T
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and

M (τ) =

⎛
⎜⎜⎜⎜⎝

U(0) U(τ) U(h) U(0) U(τ)
UT (τ) U(0) U(h− τ) UT (τ) U(0)
UT (h) UT (h− τ) U(0) UT (h) UT (h− τ)
U(0) U(τ) U(h) U(0) U(τ)

UT (τ) U(0) U(h− τ) UT (τ) U(0)

⎞
⎟⎟⎟⎟⎠ .

The above can be written as

v(ϕ̄) =ΨT {
H T (τ)K (τ)H (τ)

}
Ψ + vIII2(ϕ̄)+ ṽ(ϕ̄)

with

Ψ =

⎛
⎝ γ

e−A0τη
e−A0hμ

⎞
⎠ , H (τ) =

⎛
⎝ I −eA0τ 0

0 I −eA0(h−τ)

0 0 I

⎞
⎠

and K (τ) is defined in (15). As 0 < Q <W , the quadratic term

vIII2 (ϕ̄)+ ṽ(ϕ̄) = μT
∫ −τ

−h
eAT

0 θ (Q−W)eA0θdθμ+ηT
∫ 0

−τ
eAT

0 θ (Q−W)eA0θdθη

is negative, therefore, in view of the quadratic lower bound (6), if the system (1) is
stable it necessary holds that

ΨT {
H T (τ)K (τ)H (τ)

}
Ψ ≥ 0 for τ ∈ [0,h].

As the vectors γ,η ,μ are arbitrary and the exponential terms inΨ are non singular

H T (τ)K (τ)H (τ)≥ 0 for τ ∈ [0,h].

Finally, as the orthogonal transformation H (τ) is nonsingular for all τ, the condi-
tion (16) follows. In addition, for the special case η = 0,μ = 0, the condition (17)
is satisfied.

Remark 1. It is worthy of mention that it was shown in [1]that for the scalar case
(n = 1) the conditions (16-17) provide a stability criterion, i.e. they are necessary
and sufficient conditions.

4 Illustrative Example and Additional Considerations

In this section, an example illustrates the fact that the new conditions improve
previously obtained results. The imaginary axis crossing loci of the characteristic
quasipolynomial of the system are determined using the well known D-subdivision
techniques, see [18]. These boundaries are depicted, along with points in the para-
metric space for which the necessary conditions reported in [14] or the new condi-
tions (16-17) hold. Notice that the matrix A1 is singular. Additional examples are
available in [16].
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Example 1. Let us consider the σ -stabilization of a second order system via propor-
tional retarded output feedback analyzed in [20]. The closed loop system is in the
form (1) with

A0 =

(
0 1

−(σ2 +ν2− 2δνσ+ bkp) −2(δν−σ)

)
, A1 =

(
0 0

bkrehσ 0

)
.

Here ν and δ are the frequency and the damping coefficient of the second order
system, σ is the desired exponential decay and kr,kp,h are the controller parameters.
The closed loop quasipolynomial of this system is

p(s) = s2 + 2(δν−σ)s+
(
σ2 +ν2− 2δνσ+ bkp

)
− bkre

hσe−hs.

The exact stability domain is delimited by the boundaries described by the paramet-
ric equations

kr (ω) =−2ω (δν−σ)/behσ sin(h(ω)ω) ,

h(ω) = (1/ω)cot−1

(
−ω2 +σ2 +ν2− 2δνσ + bkp

)
(−2ω (δν−σ)) + n

π
ω
, n = 0,1,3,4,

and by kr = (σ2 +ν2−2δνσ+bkp)/behσ . On Figures 1 and 2, the fixed parameter
values are σ = 2,b = 31,ν = 17.6,δ = 0.0128 and kp = 22.57.

A few comments concerning the above example are in order: clearly, the conditions
(16-17) improve the upper estimate of the stability region obtained with the condi-
tions in [14], yet the shaded region does not match the known stability region, hence
we conclude that these conditions are not sufficient.

On the one hand, as the number of unstable roots in a given region resulting
from the partition of the space of parameters delimited by imaginary axis crossing
hypersurfaces in the space of parameters is constant, see [18], the necessary stability
conditions must hold at all points of a given region. As a consequence, one can
conclude that if at least one point does not satisfy the necessary conditions, such a
region in the partitioned space of parameters is actually an instability region.

0 0.1 0.2 0.3 0.4
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0

20

40

60

h

k
r

Fig. 1 Example 1, conditions in [14]
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Fig. 2 Example 1, conditions (16, 17)
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Fig. 3 Example 1, conditions (17, 24)

On the other hand, a natural query is wether or not it is possible to refine these
necessary conditions. One observes that further improvements may be achieved by
employing the initial condition

ϕ̃(θ ) =

⎧⎪⎪⎨
⎪⎪⎩

eA0θ γ4, θ ∈ [−h,−τ2),
eA0θ γ3, θ ∈ [−τ2,−τ1),
eA0θ γ2, θ ∈ [−τ1,0),
γ1, θ = 0,

τ1,τ2 ∈ (0,h),
τ1 < τ2,

γ1,γ2,γ3,γ4 ∈ R
n.

The steps of the proof presented in this contribution lead to the new necessary con-
ditions (16) and

K4(τ1,τ2)≥ 0, τ1 ∈ [0,h], τ2 ∈ [0,h], τ2 > τ1, (24)

with

K4(τ1,τ2) =

⎛
⎜⎜⎝

U(0) U(τ1) U(τ2) U(h)
UT (τ1) U(0) U(τ2− τ1) U(h− τ1)
UT (τ2) UT (τ2− τ1) U(0) U(h− τ2)
UT (h) UT (h− τ1) UT (h− τ2) U(0)

⎞
⎟⎟⎠ .

For these conditions, as shown on Figure 3, the estimate of the stability regions for
Example 1 is improved compared to conditions (16,17).
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Moreover, one can obtain in a similar manner the necessary conditions (17) and

K6(τ)≥ 0, τ ∈
(

0,
h
3

)
, (25)

where

K6(τ) =⎛
⎜⎜⎜⎜⎜⎜⎝

U(0) U(τ) U( h
3 ) U(τ+ h

3 ) U( 2h
3 ) U(τ+ 2h

3 )

UT (τ) U(0) U( h
3 − τ) U( h

3) U( 2h
3 − τ) U( 2h

3 )

UT ( h
3 ) UT ( h

3 − τ) U(0) U(τ) U( h
3) U(τ+ h

3 )

UT (τ+ h
3 ) UT ( h

3 ) UT (τ) U(0) U( h
3 − τ) U( h

3)

UT ( 2h
3 ) UT ( 2h

3 − τ) UT ( h
3 ) UT ( h

3 − τ) U(0) U(τ)
UT (τ+ 2h

3 ) UT ( 2h
3 ) UT (τ + h

3) UT ( h
3 ) UT (τ) U(0)

⎞
⎟⎟⎟⎟⎟⎟⎠
,

as in [3], which improves the above results (see Figure 4).
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r

Fig. 4 Example 1, conditions (17, 25)

5 Concluding Remarks

In this contribution, necessary stability conditions (16-17) for linear one delay sys-
tems that are also valid when matrix A1 is singular are presented. They are ex-
pressed in terms of the Lyapunov matrix of the system, thus extending fundamental
results on delay free systems. Although the obtained conditions are shown not to
be sufficient, a procedure that provides a better estimate of the stability region is
outlined.

Acknowledgements. The presented research has been supported by Conacyt, grant
180725.
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17. Mondié, S.: Assessing the exact stability region of the single delay scalar equation via
its Lyapunov function. IMA J. of Math. Control Info. 29(4), 459–470 (2012)

18. Neimark, J.: D-subdivisions and spaces of quasi-polynomials. Prikl. Mat. Meh. 13,
349–380 (1949)

19. Repin, M.Y.: Quadratic Lyapunov functionals for systems with delay. Prik. Mat. Meh. 29,
564–566 (1965)
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Control of Linear Delay Systems:
An Approach without Explicit Predictions

Nicole Gehring, Joachim Rudolph, and Frank Woittennek

Abstract. The control of linear time-invariant systems with incommensurate lumped
and distributed delays is addressed. Using a module-theoretic point of view where
these systems are modules over the ring of entire functions in R(s)[e−τττs] necessary
and sufficient conditions for the freeness of these modules are presented. If these
conditions hold a module basis can be used to design a tracking controller that as-
signs an arbitrary finite spectrum to the closed loop. Though the controller is infinite
dimensional, in general, it does not involve any explicit predictions. This generalizes
the so-called reduction approach, by which for certain state representations predic-
tions can be calculated exactly and thus finite spectrum assignment can be achieved.
Examples illustrate the main results.

1 Introduction

Most commonly, linear time-invariant systems with lumped (or pointwise) delays
are expressed in terms of a representation (e.g. [13])

ẋxx(t)−
r

∑
i=1

Ciẋxx(t− τi) = A0xxx(t)+
r

∑
i=1

Aixxx(t− τi)+B0uuu(t)+
r

∑
i=1

Biuuu(t− τi) (1)

with xxx(t) ∈ R
n and input uuu(t) ∈ R

m, where Ai ∈ R
n×n, Bi ∈ R

n×m, i = 0, . . . ,r, and
Ci ∈ R

n×n, i = 1, . . . ,r are matrices of constants. The delay amplitudes 0 < τi ∈ R,
i = 1, . . . ,r are commensurate if there exists a common divisor τ such that τi = αiτ ,
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αi ∈ Z, and incommensurate otherwise. The latter more general case is addressed
here. For linear systems with both lumped and distributed delays, weighted integrals
of xxx and uuu over finite intervals, such as

∫ τi

0
F(σ)xxx(σ)dσ , (2)

appear in addition to the terms on the right-hand side of (1).
Equation (1) is a retarded delay system if all matrices Ci, i = 1, . . . ,r are identical

to zero. Otherwise it is called a neutral delay system1.
More generally, a lumped delay system is simply a set of difference-differential

(and difference-algebraic) equations. As in [21], in the present setting, such a system
is a finitely generated module over the polynomial ring2

R[ d
dt ,δδδ ] = R[ d

dt ,δ1, . . . ,δr]
with r delay operators δi, i = 1, . . . ,r, where for every f : R→R one has (δi f )(t) =
f (t−τi). A ringR[s,e−τττs] =R[s,e−τ1s, . . . ,e−τrs] is defined by the mappings d

dt 	→ s,
δi 	→ e−τis, i= 1, . . . ,r, where s is the parameter of the Laplace transform. This yields
a ring isomorphism between R[ d

dt ,δδδ ] and R[s,e−τττs]. By the Paley-Wiener Theorem
(e.g. [25]), the Laplace transform of a distributed delay, i.e., a linear convolution
operator with kernel of bounded support (as (2) for example), is an entire function3.
A typical example has the form

1− e−τi(s+β )

s+β
.

It is not an element of R[s,e−τττs] but it belongs to an extended ring comprising all
entire functions in R(s)[e−τττs], the ring of polynomials in e−τis, i = 1, . . . ,r with
coefficients that are rational in s. Denoting by O the ring of all entire functions,
linear systems with distributed (and lumped) delays are modules over the ring

Hr = R(s)[e−τττs]∩O,

the subring of entire functions in R(s)[e−τττs]. In the following, the notion of a module
is used as a synonym for a system [7].

In order to represent a module a matrix notation is used, as in [21]. For that, let
R be a ring (e.g. R = Hr) and M a finitely presented4 R-module. Then M can be
expressed by a set of q̄ equations in terms of

PM www = 000 (3)

1 A retarded system may always be transformed into neutral form. Since the inverse is not
true, a more prudent way of characterizing a delay system (1) is by considering its charac-
teristic equation (w.r.t. xxx) which is a quasi-polynomial in s and e−τis, i = 1, . . . ,r. Then, the
system is neutral if the coefficient of sn is not a real number but instead depends on e−τis.

2 All discussions are restricted to the field R of real numbers, though they still hold for C.
3 More precisely, it is an entire function of exponential type satisfying certain growth con-

ditions on the imaginary axis.
4 All modules introduced in the following are assumed to be finitely presented.
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with system variables www = (w1, . . . ,wl)
T , where PM is a (q̄× l)-matrix with entries

from R. Note that input and output variables may be included in www. In general, the q̄
equations cannot be assumed to be R-linear independent [26]. Hence q= rkRPM ≤
min(q̄, l).

When it comes to the control of delay systems (1) the so-called reduction ap-
proach presents a valuable tool. Based on a retarded state representation with
lumped and distributed delays of both inputs and states, the well-known works
[1, 17, 19] showed that exact predictions can be obtained by invoking the systems
solution5. The basic idea is to transform the state of a delay system such that a state
representation without delays is obtained. By applying methods known for linear
systems without delays, a stabilizing or tracking controller assigning a potentially
finite spectrum to the closed loop can then be designed in a straightforward man-
ner. The control law can be characterized as being prediction-free in that no explicit
predictions occur.

Spectral controllability has been shown to be necessary in order for the reduction
approach to work (e.g. [6]). Over the years, the thought of explicitly calculating a
predicted value has been extended to other classes of systems such as those involv-
ing multiple incommensurate delays [24]. A rather recent detailed overview can be
found in [18].

All the previously mentioned contributions base their results on retarded state
representations. However, several technological processes, including networked
control systems and population dynamics, are modeled by neutral delay systems,
a more general class of delay systems [14, 15]. In the module-theoretic framework,
both classes of delay systems are simply modules over Hr. This more general per-
spective on delay systems is chosen here. The main observation is that if a module
over Hr satisfies certain controllability conditions corresponding to freeness of as-
sociated modules, a basis (or basic or flat output) can be derived. This allows one to
design a prediction-free tracking control, i.e., one without (explicit) predictions. The
results are independent of a specific system representation (e.g. state representation
or transfer function) and the choice of a control input.

In particular, first, essential controllability properties are given in Section 2. Be-
fore presenting the necessary and sufficient conditions for a prediction-free control
in Section 4, some seminal remarks on modules over the ring K[δδδ ] concerning the
choice of appropriate delay operators δδδ are outlined in Section 3. Different config-
urations of a heat accumulator serve as illustrative examples in Section 5.

2 Controllability Properties

As in the case of delay-free systems, certain controllability properties are of special
significance in the design of stabilizing (or tracking) controllers. In the context of
linear delay systems, spectral controllability is well known and rather popular (see
e.g. [21] and references therein). It can be considered as one possible extension of

5 This idea possibly originated in [20], where linear systems with lumped delays were
considered.
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the controllability concept for linear systems without delays. A generalized Hautus
test is usually used for its characterization [2,3]. The definition given below is based
on the one in [21] and generalizes this characterization to Hr-modules with a matrix
representation as in (3).

Definition 1. A Hr-module Σ is spectrally controllable iff

rkCPΣ (s,e
−τ1s, . . . ,e−τrs) = q, ∀s ∈ C. (4)

In the module-theoretic framework controllability properties are closely related to
concepts like torsion-freeness and freeness of certain modules, and by that to the ex-
istence of a basis. While for linear finite-dimensional systems many of these module
properties coincide, the situation changes for delay systems. An extensive study of
the subject was performed in [9, 21].

In general, an R-module M is called torsion-free if the set tM of all so-called
torsion-elements 0 �= z∈M with αz = 0, α ∈R is void [5]. Simply speaking, an R-
module M is torsion-free if for a representation (3) there does not exist an R-linear
combination of system variables www satisfying an autonomous equation.

A basis of an R-module M is an R-linear independent family of elements which
spans M [5]. Hence, for a representation (3) a basis vvv = Mwww, M ∈R(l−q)×l is an
R-linear combination of the system variables www such that one has www = T vvv, T ∈
R l×(l−q). A module M which has a basis is called free.

Modules over the ring R(s)[e−τττs] are particularly important in the following. Be-
low, generalized Hautus tests are given that allow one to check a representation (3)
of an R(s)[e−τττs]-module for freeness and a special case of the so-called π-freeness6.
The definitions are adapted from [9, 21].

Proposition 1. An R(s)[e−τττs]-module Σ is free iff

rkCPΣ(z1, . . . ,zr) = q, ∀(z1, . . . ,zr) ∈ C
r.

Proposition 2. Let π = e−μ1τ1s−···−μrτrs, μ1, . . . ,μr ∈ N. An R(s)[e−τττs]-module is
π-free iff

rkCPΣ (z1, . . . ,zr) = q, ∀(z1, . . . ,zr) ∈ C
r,zk �= 0,k ∈ { j = 1, . . . ,r|μ j �= 0}.

In contrast to the concept of spectral controllability these characterizations do not
account for the algebraic dependence between the delay operators δi and the dif-
ferentiation operator d

dt that are linked by the mappings δi 	→ e−τis and d
dt 	→ s

(see [21]). Instead, the operators are replaced by complex numbers zi and s. Note that
due to the isomorphism between K[e−τττs] and K[δδδ ] (with a field K) Propositions 1
and 2 also characterize K[δδδ ]-modules that are basically discrete-time systems.

6 In [9, 21, 22] the liberation polynomial π is an element of R[e−τττs] (or R[δδδ ]). Here, π
denotes a monomial from that ring. This specific class of π-free systems is often called
δ -free (e.g. [22]).
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3 Remarks on Modules over the Ring K[δδ ]

Modules over the ring K[δδδ ], where K is an arbitrary field, can be represented by
difference equations. However, when faced with such equations the question arises
of how to define the incommensurate delay amplitudes τi in order to obtain a K[δδδ ]-
module. While in some physical systems the choice of the delay amplitudes might
seem natural, the freeness of a K[δδδ ]-module strongly depends on their definition.

Example 1. An R[δ1,δ2]-module represented by

δ1w1 + δ2w2 = 0

is δ1-free (or δ2-free) with a δ1-basis w2 (or a δ2-basis w1). Assuming that τ1 <
τ2 and introducing new delay operators δ̄1 = δ1, δ̄2 = δ−1

1 δ2 with positive delay
amplitudes τ̄1, τ̄2 a relation

δ̄1w1 + δ̄1δ̄2w2 = δ̄1(w1 + δ̄2w2) = 0

is derived. The correspondingR[δ̄1, δ̄2]-module has a torsion-element z =w1+ δ̄2w2

with δ̄1z = 0. However, allowing for a simple time shift, i.e., a multiplication with
δ̄−1

1 , results in an R[δ̄1, δ̄2]-module that is torsion-free. The case where τ1 > τ2 can
be treated in a similar way.

The previous example motivates the concept of the so-called δ -equivalence (see
[22]). Basically, two modules are called δ -equivalent if they can be represented by
the same set of equations up to a multiplication with an operator in the monoid
S = {δ μ1

1 · · ·δ μr
r |μ1, . . . ,μr ∈ N}. Then by localization S−1K[δδδ ] = K[δδδ ,δδδ−1].

Definition 2. Two K[δδδ ]-modulesΛ1 and Λ2 are called δ -equivalent if

K[δδδ ,δδδ−1]⊗K[δδδ ]Λ1 = K[δδδ ,δδδ−1]⊗K[δδδ ]Λ2.

Hence, Λ1/tSΛ1 = Λ2/tSΛ2 where tSΛi is the kernel of the mapping Λi →
S−1K[δδδ ]⊗K[δδδ ]Λi, i = 1,2, i.e., the torsion-submodule w.r.t. the monoid S.

Example 2. Consider the system

δ1w1 +(1+ δ2)w2 = 0.

The correspondingR[δ1,δ2]-module is δ1-free with a δ1-basis w2. However, assum-
ing τ1 < τ2 new operators δ̄1 = δ1, δ̄2 = δ−1

1 δ2 with positive delay amplitudes τ̄1,
τ̄2 can be introduced, with which the system equation can be rewritten as

δ̄1w1 +(1+ δ̄1δ̄2)w2 = 0.

The resulting R[δ̄1, δ̄2]-module is free with basis w1 + δ̄2w2.
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A similar approach can be taken in the case where τ1 > τ2. First, introduce oper-
ators δ̃1 = δ1δ

−γ
2 , δ̃2 = δ2 with γ maximal in the sense that 0 < τ̃1 < τ̃2:

δ̃1δ̃
γ
2 w1 +(1+ δ̃2)w2 = 0.

Then, defining δ̄1 = δ̃1, δ̄2 = δ̃−1
1 δ̃2 yields a free R[δ̄1, δ̄2]-module represented by

δ̄1(δ̄1δ̄2)
γ w̄1 +(1+ δ̄1δ̄2)w̄2 = 0.

(The determination of a basis depends on the value of γ .)

The basic idea in introducing new delay operators δ̄i, i = 1, . . . ,r is to make use
of the knowledge of the delay amplitudes τi of the operators δi and to allow for
multiplications with δ−1

i , i.e., the inverse of δi, as long as the resulting product of
delay operators has a strictly positive (delay) amplitude τ̄i. This idea was previously
proposed in [11] and is stated here without proof. Implicitly, it has also been used
in other contributions (e.g., [16]).

As above, let δ̄δδ = (δ̄1, . . . , δ̄r) be delay operators with strictly positive amplitudes
τ̄i where for every f : R→ R one has (δ̄i f )(t) = f (t− τ̄i), i = 1, . . . ,r. Then for a
ring K[δ̄δδ ] it follows K[δδδ ] ⊆ K[δ̄δδ ] ⊂ K[δδδ ,δδδ−1]. Also, define the K[δ̄δδ ]-module Λ̄ =
K[δ̄δδ ]⊗K[δδδ ]Λ and the monoid S̄ = {δ̄ μ1

1 · · · δ̄ μr
r |μ1, . . . ,μr ∈ N} (in the same manner

as S above).

Lemma 1. If a K[δδδ ]-module Λ is π-free with π ∈ S, then there exists a ring K[δ̄δδ ]
such that the K[δ̄δδ ]-module Λ̄/tS̄Λ̄ is free.

Lemma 1 makes use of the concept of δ -equivalence. In a very natural way, for
a π-free K[δδδ ]-module, π ∈ S, it allows one to use an extension of scalars to pro-
duce a free K[δ̄δδ ]-module. By the mapping δi 	→ e−τis the results directly translate to
modules over K[e−τττs] and thus to modules over R(s)[e−τττs].

4 Prediction-Free Control

In this section necessary and sufficient conditions for the freeness of an Hr-module
are stated, both for the commensurate and for the incommensurate case. If these
conditions hold, the design of a prediction-free tracking controller is rather straight-
forward. Due to page limitations, only a sketch of proof is given for all theorems
presented. In particular, constructive proof elements are skipped. These details will
be given elsewhere.

4.1 Conditions in the Commensurate Case

Systems with commensurate delays are modules over H1 =: H , the subset of entire
functions in R(s)[e−τs]. In [4] it was proven that in the commensurate case H is
a Bézout domain, i.e., any finitely generated ideal in this domain is principal. The
same result was obtained independently in the behavioral context [12].
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Theorem 1. Let Σ be an H -module. The following statements are equivalent:

1. Σ is torsion-free.
2. Σ is free.
3. Σ is spectrally controllable and R(s)[e−τs]⊗H Σ is free.

While the equivalence between the first two statements is due to H being a Bézout
domain, the equivalence to the third one can be shown in a constructive manner. In
the context of the reduction approach, especially the property of spectral controlla-
bility has been proven to be necessary in order to assign an arbitrary finite spectrum
to a closed loop (see e.g. [6]). While this property is also sufficient for a broad class
of state representations this is no longer the case for general representations (3).
As a matter of fact, spectral controllability of Σ is necessary and sufficient for a δ -
equivalent module of Σ to be free, i.e., the condition of freeness of R(s)[e−τs]⊗H Σ
can be dropped if δ -equivalence is employed.

4.2 Conditions in the Incommensurate Case

As presented in [11], in contrast to the subset of entire functions in R(s)[e−τs], the
set Hr =R(s)[e−τττs]∩O does no longer have the Bézout property, in general. Hence,
torsion-freeness of an Hr-module does not imply freeness of that module.

Theorem 2. An Hr-module Σ is free iff R(s)[e−τττs]⊗Hr Σ is free and Σ is spectrally
controllable.

The necessity of the two conditions is rather obvious. Since Hr ⊂ R(s)[e−τττs], free-
ness of an Hr-module Σ implies freeness of R(s)[e−τττs]⊗Hr Σ . Also, by contradic-
tion, if Σ were not spectrally controllable then Hr-torsion-elements would exist and
Σ could not be free. As in the commensurate case, the sufficiency can be shown
constructively.

Taking into account Lemma 1 for modules over the ring K[δδδ ], Theorem 2
can be extended to π-free modules R(s)[e−τττs]⊗Hr Σ with π = e−μ1τ1s−···−μrτrs,
μ1, . . . ,μr ∈ N. For that, denote by H̄r = R(s)[e−τ̄ττs]∩O the subring of entire func-
tions belonging to R(s)[e−τ̄ττs], e−τ̄ττs = (e−τ̄1s, . . . ,e−τ̄rs) where delay amplitudes τ̄ττ
are defined based on Lemma 1. Furthermore, let Σ̄ be the H̄r-module H̄r ⊗Hr Σ
and S̄e the monoid following from S̄ (see Section 3) by the mapping δi 	→ e−τis.

Theorem 3. The H̄r-module Σ̄/tS̄e
Σ̄ is free iff R(s)[e−τττs]⊗Hr Σ is π-free with π =

e−μ1τ1s−···−μrτrs, μ1, . . . ,μr ∈ N and Σ is spectrally controllable.

4.3 Control Design

If the conditions in Theorems 1 for the commensurate case and 2 resp. 3 for the
incommensurate case hold, an Hr-basis of Σ can be found (respectively an H̄r-
basis of Σ̄ ). In the commensurate case [4, 12, 23] solved Bézout equations in order
to determine a basis. Alternatively, new system variables can be introduced in (3)
simplifying the structure of the system equations. This approach corresponds to the
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transformation of a matrix into an appropriately defined row Hermite form where a
basis is obtained as a byproduct. Note that the idea of the reduction approach also
is to transform the state of a delay system such that a state representation without
delays is obtained.

Since a basis parametrizes all system variables, including the input variables,
both, an open-loop and a closed loop tracking controller can be designed in a
straightforward manner7. A resulting controller will not involve any (explicit) pre-
dictions but instead it will incorporate distributed delays, basically representing the
exact predicted values. Thus, the controller is of infinite dimension, in general.

5 Example: A Heat Accumulator

The heat accumulator8 sketched in Figure 1 is basically a fluid-filled tank with some
piping. The tank is constantly fed through an inlet pipe of length L1 > 0. An outlet
pipe is controlled such that the volume in the tank remains constant. The fluid in the
tank is assumed to be ideally mixed, with temperature T . By a loop of length L2 > 0,
the fluid is recycled. While the tank and the pipes are isolated, the temperature T0 of
the inlet pipe’s jacket can be freely assigned.

T2

Tin

T

T1

T0

Fig. 1 Schematics of a heat accumulator with a recycle loop

Assuming constant specific heat capacity for the fluid in the heat accumulator
and a constant cross-section of the pipes, from a heat balance transport equations
for the temperature θ1 in the inlet pipe and θ2 in the recycle loop are obtained:

7 For nonlinear systems this concept is known as flatness-based control [8].
8 This example was previously studied in [11].
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∂θ1

∂ t
(z, t)+ν1

∂θ1

∂ z
(z, t) = β1T0(t), z ∈ [0,L1] (5a)

∂θ2

∂ t
(z, t)+ν2

∂θ2

∂ z
(z, t) = 0, z ∈ [0,L2], (5b)

with the constant velocities ν1,ν2 > 0. Since all temperatures are defined relative to
the ambient temperature, the boundary conditions read

θ1(0, t) = β2Tin(t), θ2(0, t) = T (t).

The quantities
T1(t) = θ1(L1, t), T2(t) = θ2(L2, t)

denote the temperatures at the end of the inlet pipe and at the end of the recycle
loop, respectively. Finally, the heat balance for the tank together with the solution
of (5) (under homogeneous initial conditions) gives the system equations

T1(t) = β2Tin(t− τ1)+β1

∫ τ1

0
T0(t−σ)dσ (6a)

T2(t) = T (t− τ2) (6b)

Ṫ (t) = α1
(
T1(t)−T(t)

)
+α2

(
T2(t)−T(t)

)
, (6c)

with αi ∈ R, τi = Li/νi, i = 1,2. Parameters β1,β2 ∈ {0,1} are introduced in order
to activate or deactivate the control inputs T0 and Tin.

While a controller for (6) can be designed using the reduction approach, the aim
here is to illustrate the general results from Section 4. Therefore different configura-
tions of inputs are addressed. For more complex examples of neutral delay systems,
the reader is referred to [10, 11].

5.1 Control via the Jacket Temperature T0

In order to consider the case where the jacket temperature T0 is the (only) control
input, set β1 = 1 and β2 = 0. By that the inlet temperature Tin equals the ambient
temperature (and is thus zero). Furthermore, assume that no recycle loop is present,
i.e., α2 = 0. Then, from (6) a relation between the jacket temperature T0 and the
temperature T in the reactor is obtained:

Ṫ (t) =−α1T (t)+α1

∫ τ1

0
T0(t−σ)dσ . (7)

This equation is equivalent to (6) (for β1 = 1, β2 = 0) and can be viewed as a delayed
state representation w.r.t. the input T0.

The Laplace transform of (7) (with zero initial condition) reads9

(s+α1)T̂ −α1
1− e−τ1s

s
T̂0 = 0

9 All transformed system variables are written with a hat.
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and yields an H1-module Σ . Both conditions in Theorem 1 are fulfilled: Σ is spec-
trally controllable and R(s)[e−τ1s]⊗H1 Σ is free with basis T̂ . Thus Σ is free.

As to determine an H1-basis it is helpful to eliminate the exponential function
e−τ1s, corresponding to the delay operator δ1, from the representation. Introducing

ŵ1 =
1
α1

T̂0 (8a)

ŵ2 = T̂ − α1(1− e−τ1s)− s(eτ1α1− 1)
s(s+α1)

T̂0 (8b)

by a unimodular transformation over H1 between (T̂ , T̂0) and (ŵ1, ŵ2) gives

(s+α1)ŵ2− (eτ1α1 − 1)ŵ1 = 0. (9)

Note that the factor of T̂0 in (8b) is an entire function and thus belongs to H1. Then,
from (9) it is obvious that ŵ2 =: ŷ is an H1-basis, defined by (8b) in terms of T̂ and
T̂0. Taking the inverse Laplace transform of (8b), in the time domain one has

y(t) = T (t)+
eα1τ1

α1

∫ τ1

0
(e−α1σ − e−α1τ1)T0(t−σ)dσ . (10)

The parameterizations of T and T0 in terms of the basis y follow from (8b) and (9):

T (t) =
α1

eτ1α1− 1

∫ τ1

0
y(t−σ)dσ (11a)

T0(t) =
1

eτ1α1− 1

(
ẏ(t)+α1y(t)

)
. (11b)

Equation (11b) can be viewed as a state representation w.r.t. the input T0. It is a linear
system without delays that is equivalent to the original one (7). Note that the basis
(10), which is the state in this case, is the same variable that would be introduced in
the reduction approach (e.g., see example 5.3 in [1] with x(t) ∈R).

In order to design a controller that tracks a reference trajectory t 	→ yr(t) a first-
order dynamics (corresponding to the order of the system (11b))

ė+ ke = 0, k > 0 (12)

for the error e = y− yr is prescribed. Replacing ẏ using (11b) yields a control law
that does not require any predictions and that assigns a finite spectrum to the closed
loop:

T0(t) =
1

eτ1α1 − 1

(
ẏr(t)− ke(t)+α1y(t)

)
.

Though this controller makes use of the knowledge of a basis, which is usually not
directly measurable, y can be calculated from (10) if T is measured and T0 is known
on the interval [−τ1,0). In that case, the controller involves distributed delays and
is thus infinite dimensional.
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5.2 Control via the Inlet Temperature Tin

Let the inlet pipe be isolated, i.e. β1 = 0, and the temperature Tin serve as the control
input. For convenience, the parameter β2 = 1 is normalized. In this case (6) can be
written as

Ṫ (t) =−(α1 +α2)T (t)+α2T (t− τ2)+α1Tin(t− τ1) (13)

and is a system with lumped delays only. Note that for τ2 > τ1 a control law defining
Tin requires a predicted value of T . The Laplace transform of (13) (with zero initial
condition) reads

(s+α1 +α2−α2e−τ2s)T̂ −α1e−τ1sT̂in = 0 (14)

and yields an R[s,e−τ1s,e−τ2s]-module. However, in the present context the system
is considered as an H2-moduleΣ , a system with both lumped and distributed delays.

An inspection of (14) reveals that the H2-module Σ is spectrally controllable
since the exponential function e−τ1s has no zeros in C. Also, the R(s)[e−τ1s,e−τ2s]-
module R(s)[e−τ1s,e−τ2s]⊗H2 Σ is e−τ1s-free with e−τ1s-basis T̂ . Hence, according
to Theorem 3 there exists a H̄2-basis. For the purpose of determining such a basis,
first, new system variables

ŵ1 = T̂ (15a)

ŵ2 = α1T̂in +α2e−(τ2−τ1)sT̂ = α1T̂in +α2e−τ̄2sT̂ (15b)

are introduced such that (14) can be written as

(s+α1 +α2)ŵ1− e−τ1sŵ2 = (s+α1 +α2)ŵ1− e−τ̄1sŵ2 = 0. (16)

In order to avoid negative delay amplitude in (15b), i.e. predictions, assumptions
concerning the delay amplitudes had to be made. Here, the previously mentioned
case with τ2 > τ1 was chosen. New delay operators e−τ̄1s and e−τ̄2s with delay am-
plitudes τ̄1 = τ1 and τ̄2 = τ2− τ1 are specified in (15b) and (16) resulting in a free
H̄2-module (cf. Lemma 1).

In a second step the exponential function e−τ̄1s can be eliminated from (16) by
defining

ˆ̄w1 = ŵ1 +
eτ̄1(α1+α2)− e−τ̄1s

s+α1 +α2
ŵ2 (17a)

ˆ̄w2 = ŵ2. (17b)

From the resulting system equation

(s+α1 +α2) ˆ̄w1− eτ̄1(α1+α2) ˆ̄w2 = 0,
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it can easily be verified that ˆ̄w1 is a basis, or ŷ := e−τ̄1(α1+α2) ˆ̄w1. The basis ŷ can
be expressed in terms of the original system variables T̂ and T̂in by inverting the
transformations (15) and (17). Then, taking the inverse Laplace transform gives

y(t) = α1

∫ τ1

0
e−(α1+α2)σTin(t−σ)dσ + e−(α1+α2)τ1T (t)

+α2

∫ τ2

τ2−τ1
e−(α1+α2)(σ+τ1−τ2)T (t−σ)dσ . (18)

The temperatures in the tank and at the inlet are defined as

T (t) = y(t− τ1)

Tin(t) =
1
α1

(
ẏ(t)+ (α1 +α2)y(t)−α2y(t− τ2)

)
.

Obviously, the basis y is simply a predicted value of T in which the prediction is
calculated from past values of T and Tin (see (18)). As in the previous section where
T0 was the input, the expression of the input Tin in terms of the basis yields a linear
system that can easily be controlled. The close relation to the reduction approach is
evident. Based on a first-order error dynamics (12) a control law without predictions
can be obtained.

5.3 Two Control Inputs

Even though the single input case is more challenging (at least for this example), a
configuration with two control inputs is interesting in order to emphasize the gen-
erality of the results in Section 4. For simplicity assume β1 = β2 = 1. Then, the
Laplace transform of (6) (with zero initial condition) reads

(
s+α1 +α2−α2e−τ2s)T̂ −α1e−τ1sT̂in−α1

1− e−τ1s

s
T̂0 = 0.

Some inspection of this equation reveals that the H2-module Σ is spectrally control-
lable and that R(s)[e−τ1s,e−τ2s]⊗H2 Σ is free. Without longer calculations a (two-
component) basis

ŷ1 := T̂0− sT̂in, ŷ2 :=
1
α1

T̂

can be found giving the parameterization

Tin(t) =−
∫ τ1

0
y1(t−σ)dσ −α2y2(t− τ2)+ ẏ2(t)+ (α1 +α2)y2(t) (19a)

T0(t) = y1(t− τ1)−α2ẏ2(t− τ2)+ ÿ2(t)+ (α1 +α2)ẏ2(t) (19b)

T (t) = α1y2(t) (19c)

in the time domain.
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Therefore, using Tin and T0 as the input variables, desired trajectories t 	→ y1,r(t)
and t 	→ y2,r(t) can be tracked by choosing a second order error dynamics

ë2 + 2δ ė2 +(δ 2 +ω2)e2 = 0 (20)

for e2 = y2− y2,r with real parameters δ > 0 and ω as well as e1 = y1− y1,r = 0.
The control laws directly follow from (19a) and (19b) by replacing y1 with y1,r and
ÿ2 using (20).

References

1. Artstein, Z.: Linear systems with delayed controls: A reduction. IEEE Trans. Autom.
Control 27, 869–879 (1982)

2. Bartosiewicz, Z.: Approximate controllability of neutral systems with delays in control.
J. Differ. Equ. 51, 295–325 (1984)

3. Bhat, K.P.M., Koivo, H.N.: Modal characterizations of controllability and observability
in time delay systems. IEEE Trans. Autom. Control, 292–293 (1976)
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New Integral Inequality and Its Application
to Time-Delay Systems

Alexandre Seuret and Frédéric Gouaisbaut

Abstract. In the last decade, the Jensen’s inequality has been intensively used in
the context of time-delay or sampled-data systems since it is an appropriate tool
to obtain tractable stability conditions expressed in terms linear matrix inequalities
(LMI). However, it is also well-known that this inequality unavoidably introduces
an undesirable conservatism in the stability conditions and looking at the literature,
reducing this gap is still an open problem. In this paper, we propose an alternative
inequality based on the Fourier Theory, more precisely on the Wirtinger’s inequal-
ities. It is showed in this chapter that they allow deriving a new integral inequality
which is proved to encompass the Jensen’s inequality. In order to illustrate the po-
tential gain of employing this new inequality with respect to the Jensen’s one, an
application to time-delay analysis is provided.

1 Introduction

The last decade has shown an increasing research activity on time-delay systems
analysis and control due to both emerging adapted theoretical tools and also prac-
tical issues in the engineering field and information technology (see [20], [14] and
references therein). In the case of linear system, many techniques allow to derive
efficient criteria proving the stability of such systems. Among them, two frame-
works, different in their spirits have been recognized as a powerful methodologies.
The first one relies on Robust Analysis. In this framework, the time delay/sampled
data system is transformed into a closed loop between a stable nominal system
and an uncertainty depending either on the delay or the sampling process (which
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is also modelled by a time varying delay). The perturbation element is then em-
bedded into some norm-bounded uncertainties and the use of scaled small gain
theorem [5, 15], IQCs [13], or separation approach [2] allows then to derive effi-
cient stability criteria. The challenge is then to reduce the conservatism either by
constructing elaborated interconnections which generally include state augmenta-
tion [1] or by using finer L2 induced norm upperbound evaluation [15], often based
on Cauchy-Schwartz inequality [2]. Another popular approach is the use of a Lya-
punov function to prove stability. For sampled-data systems and time delay systems
as well, the last decade has seen a tremendous emergence of research devoted to the
construction of Lyapunov-Krasovskii functionals which aim at reducing the inher-
ent conservatism of this approach. Several attempts have been done concerning the
choice of the structure of V by choosing extended state based Lyapunov-Krasovskii
functional [1, 11], discretized Lyapunov functionals [8] or discontinuous Lyapunov
functions [18]. Apart the choice of V , an important source of conservatism relies
also on the way to bound some cross terms arisen when manipulating the derivative
of V . According to the literature on this subject (see [9, 17, 21] for some recent pa-
pers), a common feature of all these techniques is the use of slack variables [10] and
more or less refined Jensen inequality [14, 21, 22]. At this point, it is clear that for
both the two frameworks - Robust Analysis and Lyapunov functionals, a part of the
conservatism comes from the use of Jensen inequality or Cauchy Schwartz inequali-
ties, usually used to get tractable criteria. The objective of the present chapter is then
to show how to use another class of inequalities called Wirtinger inequalities, which
are well known in Fourier Analysis. Notice that this class of inequalities has been
recently used to exhibit a new Lyapunov function to prove stability of sampled-data
system [14]. In this paper, its use combined with some special properties of sampled
data systems has led to some interesting criteria expressed in terms of LMIs, which
are less conservative at least on examples. In the present paper, contrary to the work
of [14], we do not construct some new Lyapunov functional. We aim rather at de-
veloping new inequalities to be used to reduce the conservatism when computing
the derivative of V . Wirtinger inequalities allow to consider a more accurate inte-
gral inequalities which can include the Jensen’s one as a special case. The resulting
inequality depends not only on the state x(t) and the delayed or sampled state but
also on the integral of the state over a delay or sampling interval. This new signal is
then directly integrated into a suitable classical Lyapunov function, highlighting so
the features of Wirtinger inequality. Hence, it results some new stability criteria for
time delay systems directly expressed in terms of LMIs.

Notations: Throughout the paper R
n denotes the n-dimensional Euclidean space

with vector norm | · |, Rn×m is the set of all n×m real matrices, and the notation
P� 0, for P∈R

n×n, means that P is symmetric and positive definite. The symmetric

matrix

[
A B
∗ C

]
stands for

[
A B

BT C

]
. Moreover, for any square matrix A ∈ R

n×n, we

define He(A) = A+AT .



New Integral Inequality and Its Application to Time-Delay Systems 33

2 Preliminaries

In the sequel, the following notations will be considered. For any real numbers a< b,
we consider a differentiable function ω : [a, b]→ R

n and the vector Ω(a,b) given
by

Ω(a,b) =
[
ωT (b), ωT (a), 1

b−a

∫ b
a ωT (u)du

]T
.

2.1 Jensen’s Inequality

Let recall the well-known Jensen’s inequality.

Lemma 1. For given symmetric positive definite matrices R > 0 and for any differ-
entiable signal ω in [a, b]→ R

n, the following inequality holds:

∫ b
a ω̇(u)Rω̇(u)du ≥ 1

b−a

(∫ b
a ω̇(u)du

)T
R
(∫ b

a ω̇(u)du
)

≥ 1
b−aΩ

T (a,b)WT
1 RW1Ω(a,b),

(1)

where W1 =
[

I −I 0
]
.

The proof is omitted and can be found in several reference books (see [8,16]). In the
context of time-delay systems and sampled-data systems, this inequality has been
the core of several important contributions (see [8,9] for time delay systems or [14]
and references therein for sampled data systems) : it is usually used to bound some
integral terms of the form

∫ b
a ω̇(u)Rω̇(u)du which arise when calculating the deriva-

tive of Lyapunov function. Naturally, it is likely to entail some inherent conservatism
and several works have been devoted to the reduction of such a gap [3, 7]. In the
present paper, we propose to use a different class of inequalities called Wirtinger in-
equalities in order to obtain new bounds for this integral and therefore to improve the
results for the stability analysis of time-delay and/or sampled-data systems. In [19],
a first result on the use of Wirtinger inequality was presented. The present paper
proposes a more accurate analysis of this class of inequalities and its application to
a larger class of problems.

2.2 Different Wirtinger Inequalities

In the literature [12], Wirtinger inequalities are referred as inequalities which esti-
mate the integral of the derivative function with the help of the integral of the func-
tion. Often proved using Fourier analysis, it exists several versions which depend
on the characteristics or constraints we impose on the function. Let firstly recall the
Wirtinger inequalities adapted to our purpose.

Lemma 2. Let z be a continuous functions and which admits a piecewise continuous
derivative and for all matrix R = RT > 0 in R

n×n, the following inequalities holds
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• If z(a) = z(b) and
∫ b

a z(u)du = 0, then,

∫ b

a
żT (u)Rż(u)du≥ 4π2

(b− a)2

∫ b

a
zT (u)Rz(u)du, (2)

and the equality holds when z(u) = a1 sin
(

2π(u−a)
b−a

)
+ b1 cos

(
2π(u−a)

b−a

)
, for any

a1 and b1 in R
n.

• If z(a) = z(b) = 0, then

∫ b

a
żT (u)Rż(u)du≥ π2

(b− a)2

∫ b

a
zT (u)Rz(u)du, (3)

and equality holds when z(u) = a1 sin
(
π(u−a)

b−a

)
for any a1 in R

n.

• If z(a) = 0, then

∫ b

a
żT (u)Rż(u)du≥ π2

4(b− a)2

∫ b

a
zT (u)Rz(u)du, (4)

and equality holds when z(u) = a1 sin
(
π(u−a)
2(b−a)

)
for any a1 in R

n.

Proof. The proofs are based on the one-dimensional Wirtinger inequality provided
in [12] and adapted to the case of vector function using the same method as in [14].

Remark 1. The inequality (4) has been already employed in [14], leading to a new
type of Lyapunov-Krasovskii functionals for sampled-data systems. Our approach
differs significantly from [14] since we only use this inequality for estimating an
upper-bound of the derivative of the Lyapunov functional. An interesting future fea-
ture should the extension of our work by considering the techniques proposed by
Fridman et al [14].

Finally, we have proposed three different inequalities which are very closed to
Jensen’s inequality in its essence. Nevertheless, the function has to meet several
constraints which are not generally satisfied if, for instance, the function z is related
to the states of a dynamical system. The next section shows how to overcome such
a problem and how to construct relevant new inequalities.

3 Application of the Wirtinger’s Inequalities

The objective of this section is twofold. On the first hand, based on Lemma 2 and the
inequalities (2), (3) and (4), we aim at providing new tractable inequalities, which
can be easily implemented into a convex optimization scheme. On the other hand,
we propose some inequalities which are proved to be less conservative than Jensen’s
one. Indeed, recall that the objectives of the present paper are to obtain new lower
bounds of the integral

∫ b
a ω̇(u)Rω̇(u)du, in order to be consistent with the Jensen’s

inequality. Thus a first step consists in defining appropriate function z such that this
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integral appears naturally in the developments. Thus a necessary condition is that
the function z as the following form

z(u) = γω(u)− y(u), (5)

where ω ∈ W [a,b] is the vector function which was employed in the original
Jensen’s inequality in Lemma 1, γ is a constant and y(u) is a function of u and
are chosen so that the function z satisfies the different constraints imposed in the
first inequality of Lemma 2.

Based on the first Wirtinger inequality and choosing an appropriate function z,
we propose a first corollary:

Corollary 1. For a given symmetric positive definite matrix R> 0, any differentiable
function ω in [a,b]→ R

n, then the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du≥ 1

(b− a)
ΩT (a,b)W T

1 RW1Ω(a,b), (6)

where W1 =
[

I −I 0
]
.

Proof. The main contribution here is to propose an appropriate interesting signal z
of the form given in (5) which satisfies the conditions of of the first inequality of
Lemma 2. Consider the following signal

z(u) = ω(u)− 1
b− a

∫ b

a
ω(u)du−

[
u− a
b− a

− 1
2

]
(ω(b)−ω(a)),

which has been built in order to satisfy the condition of Lemma 2. Then, computing
inequality (2) leads to

∫ b

a
żT (u)Rż(u)du =

∫ b

a
ω̇T (u)Rω̇(u)du− 1

b− a
(ω(b)−ω(a))T R(ω(b)−ω(a)).

Furthermore, applying the Jensen’s inequality to the righthand side of (2) leads
to ∫ b

a
zT (u)Rz(u)du≥ 1

b− a

∫ b

a
zT (u)duR

∫ b

a
z(u)du.

Noting that
∫ b

a z(u)du = 0 allows to conclude the proof.

Remark 2. It is important to stress that the previous corollary is equivalent to the
classical Jensen’s inequality. Indeed the Jensen’s inequality is included in the left-
hand-side of the original Wirtinger’s inequality when using the proposed signal
z. Consequently, the use of this lemma seems not relevant as it is presented now.
However it can be noticed that the previous corollary provides another proof of the
Jensen’s inequality.

The main problem comes from the constraint
∫ b

a z(u)du = 0 which does not allow
to give a lower bound of the left-hand side of (2). In the following corollary, we
propose to use inequality (3) in which this constraint has been removed.
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Corollary 2. For a given symmetric positive definite matrix R> 0, any differentiable
function ω in [a,b]→ R

n, then the following inequality holds:

∫ b

a
ω̇(u)Rω̇(u)du≥ 1

b− a
ΩT (a,b)

[
W T

1 RW1 +π2W T
2 RW2

]
Ω(a,b), (7)

where W1 is given in Lemma 1, and W2 =
[

I/2 I/2 −I
]
.

Proof. For any function ω ∈W [a,b], consider a signal z given by

z(u) = ω(u)− u− a
b− a

ω(b)− b− u
b− a

ω(a), ∀u ∈ [a, b].

By construction, the function z(u) satisfies the conditions required to satisfy the
inequality (3), i.e. z(a) = z(b) = 0. The computation of the left-hand-side of the
inequality stated in the second inequality of Lemma 2 leads to:

∫ b
a żT (u)Rż(u)du =

∫ b
a ω̇T (u)Rω̇(u)du− 1

b−a(ω(b)−ω(a))T R(ω(b)−ω(a))
=

∫ b
a ω̇T (u)Rω̇(u)du− 1

b−aΩ
T (a,b)W T

1 RW1Ω(a,b).
(8)

Consider now the right-hand side of the inequality (3). Applying the Jensen’s in-
equality, it yields

π2

(b− a)2

∫ b

a
zT (u)Rz(u)du≥ π2

(b− a)3

(∫ b

a
z(u)du

)T

R

(∫ b

a
z(u)du

)
. (9)

The last step of the proof consists in the computation of the integral
∫ b

a z(u)du, which
is obtained as follows

∫ b
a z(u)du = −

(∫ b
a

(u−a)
(b−a)du

)
ω(b)−

(∫ b
a

(b−u)
(b−a)du

)
ω(a)+

∫ b
a ω(u)du

= −(b− a)
[

1
2 (ω(b)+ω(a))−

1
b−a

∫ b
a ω(u)du

]
= −(b− a)W2Ω(a,b).

(10)

Then applying (3), we obtain

∫ b
a ω̇T (u)Rω̇(u)du ≥ 1

b−aΩ
T (a,b)W T

1 RW1Ω(a,b)

+ π2

b−aΩ
T (a,b)W T

2 RW2Ω(a,b),

which concludes the proof of Corollary 2.

Remark 3. The previous corollary has been already presented in [19]. However its
proof has been remarkably shorten.

Remark 4. The inequality (7) encompasses the Jensen’s inequality since the ma-
trix π2W T

2 RW2 is positive definite and the term 1
b−aΩ

T (a,b)W T
1 R W1Ω(a,b) is

exactly the right-hand of the Jensen’s inequality. It is also worth noting that this
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improvement is allowed by using an extra signal
∫ b

a ω(u)du and not only the sig-
nals ω(b) and ω(a). Therefore, it suggests that in order to be useful, this inequality
should be combined with a Lyapunov functional where the signal

∫ b
a ω(u)du appears

explicitly.

The following corollary is based on the third inequality showed in Lemma 2, where
only one constraint is imposed.

Corollary 3. For a given symmetric positive definite matrix R> 0, any differentiable
function ω in [a,b]→ R

n, then the following inequality holds:

∫ b

a
ω̇T (u)Rω̇(u)du≥ π2

4(b− a)
ΩT (a,b)WT

3 RW3,Ω(a,b) (11)

where W3 =
[

0 −I I
]
.

Proof. As proposed in [14], consider the signal z(u) = ω(u)−ω(a). This function
satisfies the condition of Lemma 2c. Then, we have

∫ b

a
ω̇T (u)Rω̇(u)du≥ π2

4(b− a)2

∫ b

a
(ω(u)−ω(a))T R(ω(u)−ω(a))du.

Applying the Jensen’s inequality yields the results.

Remark 5. It is relevant to try a comparison between Jensen’s inequality and the
previous one. But, since the matrix π2

4 W T
3 RW3−W T

1 RW1 is not definite positive, the
quantity

ΩT (a,b)

(
π2

4
W T

3 RW3−WT
1 RW1

)
ΩT (a,b),

may be positive or negative, depending on the components of Ω(a,b). In that case,
we cannot state that we improve Jensen’s inequality. Consequently, this inequality
will not be consider in the sequel.

4 Appropriate Inequalities for Robust Stability Analysis

In all the three inequalities (6), (7) and (11), the resulting lower bound is rational
with respect to (b− a), which is ill-posed when this quantity tends to zero. At a
price of an increasing computational burden, an equivalent formulation depending
linearly on b−a can be drawn as follows. Noting that, for all matrices Yi, i∈{1,2,3}
in R

n×3n, the matrix 1
b−a(RWi− (b− a)Yi)

T R−1(RWi− (b− a)Yi) is positive for all
i ∈ {1,2,3}, it yields

1
(b−a)W

T
i RWi ≥ Y T

i Wi +WT
i Yi− (b− a)YT

i R−1Yi, i ∈ {1,2,3}.

This inequality turns out to be relevant in the context of time-delay systems or
sampled-data systems as it will be explained in Section 5. Applying the same
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inequality to the second term of the inequalities (6), (7) and (11) , one modifies
the previous corollaries as follows.

Corollary 4. For any matrix R > 0, any differentiable signal ω in [a,b]→ R
n and

for any matrices Y1 in R
n×3n, the following inequality holds:

• for any matrices Y1 in R
n×3n, the following inequality holds:

∫ b
a ω̇(u)Rω̇(u)du≥ΩT (a,b)

[
He{Y T

1 W1}− (b− a)
(
Y T

1 R−1Y1
)]
Ω(a,b). (12)

• for any matrices Y1 and Y2 in R
n×3n, the following inequality holds:

∫ b
a ω̇(u)Rω̇(u)du≥ ΩT (a,b)

[
He{Y T

1 W1 +π2Y T
2 W20}

−(b− a)
(
Y T

1 R−1Y1 +π2Y T
2 R−1Y2

)]
Ω(a,b).

(13)

• for any matrices Y3 in R
n×3n, the following inequality holds:

∫ b
a ω̇(u)Rω̇(u)du≥ π2

4 Ω
T (a,b)

[
He{Y T

3 W3}− (b− a)
(
Y T

3 R−1Y3
)]
Ω(a,b).

(14)

Remark 6. In the literature, several by-products of the Jensen’s inequality have been
proposed and employed (see for example [11,17] and references therein). Obviously,
the same by-products could be derived from the Corollaries proposed in this section
and therefore will not be presented in the present chapter.

In the following, we will show how these inequalities can be applied to the stability
analysis of time-delay systems. As expected, we will show that the use of these new
inequalities reduces the conservatism of the stability conditions. It has to be noticed
that, in theses new inequalities, the functions to be considered are ω(b), ω(a) and

1
b−a

∫ b
a ω(u)du. The two first signals appear naturally in the context of discrete time-

delay or sampled-data systems but not the last one. It only appears in the context of
distributed time-delay systems. At first sight, an expected consequence is that these
new inequalities only help in the context of distributed time-delay systems. However
we will present two solutions dealing with the context of discrete-time delay. The
objective will be to show how this third signal is in relation with these classes of
systems.

5 Application to the Stability Analysis of Time-Delay Systems

Before entering into the details of this section, it is important to stress that the
present paper does not focus on the development of new Lyapunov-Krasovskii func-
tionals. The present section on the stability analysis of time-delay systems highlights
the potential gains of applying the inequalities showed in the previous section. In
particular the following basic problems are under consideration:

- Stability analysis of systems with discrete and distributed constant delays,
- Robust stability analysis of systems with unknown delays,
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5.1 Systems with Constant and Known Delay

We present in this sub-section a first stability result for time delay systems, which
is based on the use of the Wirtinger inequalities developed in Sections 3 and 4.
This approach is based on a slightly modified Lyapunov-Krasovskii functional and
allows us to establish the main theorem for the robust delay range stability analysis.
Consider a linear time-delay system of the form:

{
ẋ(t) = Ax(t)+Adx(t− h)+AD

∫ t
t−h x(s)ds, ∀t ≥ 0,

x(t) = φ(t), ∀t ∈ [−h,0],
(15)

where x(t) ∈ R
n is the state vector, φ is the initial condition and A, Ad , AD ∈ R

n×n

are constant matrices. The delay is assumed to be known and constant.

Remark 7. In the literature, systems with discrete and distributed delays are subject
to different delays, i.e., the value of the discrete delay and the distributed delay
are not considered equal. Despite, in the present article we will only consider the
case of a single value of the two delays. The motivation to this restrictive choice
comes form the following statement. Our goal is to show that a generic structure of
Lyapunov-Krasovskii functionals can deal with these two problems with the same
efficiency.

Based on the previous inequality and classical results on Lyapunov-Krasovskii func-
tionals, two stability theorems are provided.

Theorem 1. For a given constant delay h, assume that there exist n× n matrices
P = PT > 0, S = ST > 0, R = RT > 0, Q and Z = ZT such that the following LMIs
are satisfied

Π1(h) =

[
P Q
∗ Z+ S/h

]
> 0, (16)

Π 1
2 (h) = Π 0

2 (h)− 1
h

[
W T

1 RW1 +π2W T
2 RW2

]
< 0, (17)

where

Π 0
2 (h) =

⎡
⎣Δ

0
2 PAd−Q h(PAD+AT Q+Z)
∗ −S h(AT

d Q−Z)
∗ ∗ h2(ADQ+QT AT

D)

⎤
⎦+ h

⎡
⎣ AT

AT
d

hAT
D

⎤
⎦R

⎡
⎣ AT

AT
d

hAT
D

⎤
⎦

T

,

and Δ0
2 = PA+AT P+S+Q+QT . Then the system (21) is asymptotically stable for

the constant delay h.

Proof. Consider a Lyapunov-Krasovskii functional of the form

V (xt , ẋt) =

[
x(t)∫ t

t−h x(s)ds

]T [
P Q
∗ Z

][
x(t)∫ t

t−h x(s)ds

]
+

∫ t
t−h xT (s)Sx(s)ds

+
∫ t

t−h(h− t+ s)ẋT (s)Rẋ(s)ds
(18)

The previous functional refers to a classical type of functionals to derive delay-
dependent stability conditions (see for instance [8]). It is interesting to note that this
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class of functionals employed a signal of the form
∫ t

t−h x(s)ds which is related to
the third signal introduced in the previous section. If the matrices Q and Z are set
to zero, one recovers the usual functional employed in the literature. First of all,
following [8] and using Jensen inequality, a lower-bound for V can be easily found:

V (xt , ẋt) ≥
[

x(t)∫ t
t−h x(s)ds

]T

Π1(h)

[
x(t)∫ t

t−h x(s)ds

]

+
∫ t

t−h(h− t+ s)ẋT (s)Rẋ(s)ds,
(19)

and it is clear that the positive definiteness of the matrices P, S, R andΠ1(h) implies
the positive definiteness of the functional V . Classical computations show that the
derivative of the functional along the trajectories of the system (15) satisfies

V̇ (xt , ẋt) = ξ T (t)Π 0
2 (h)ξ (t)−

∫ 0
−h ẋT (t + s)Rẋ(t + s)ds.

where Π 0
2 is defined in Theorem 1 and

ξ (t) =

⎡
⎣ x(t)

x(t− h)
1
h

∫ t
t−h x(s)ds

⎤
⎦ .

Applying Corollary 2, respectively, the following upper-bounds of the derivative
of the functional is then obtained:

V̇ (xt , ẋt) ≤ ξ T (t)Π 1
2 (h)ξ (t), (20)

where Π 1
2 (h) is defined in (17). Then if the stability condition from Theorem 1 is

satisfied, the system (15) is asymptotically stable.

5.2 Systems with Constant and Unknown Delay: Delay Range
Stability

Consider the case of a system with a single discrete delay (i.e. AD = 0). Then we
have {

ẋ(t) = Ax(t)+Adx(t− h) ∀t ≥ 0,
x(t) = φ(t) ∀t ∈ [−hmax,0],

(21)

The delay h is a positive constant scalar which satisfies, from now on, the constraint
h ∈ [hmin,hmax] where hmin, hmax are given positive constants. In the following, we
aim at assessing stability of system (21) with the delay constraints described above
via the an appropriate Lyapunov-Krasovskii functional. The following result holds.

Theorem 2. For an uncertain constant delay h ∈ [hmin, hmax], assume that there
exist n× n-matrices P = PT > 0, S = ST > 0, R = RT > 0 Q and Z = ZT and two
3n× n-matrices Y1 and Y2, such that Π1(hmax)> 0 and
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Π3(h) =

⎡
⎣Π

0
3 (h)−He{Y1W1 +π2Y2W2} hY1 π2hY2

∗ −hR 0
∗ ∗ −π2hR

⎤
⎦< 0, (22)

for all h∈ {hmin,hmax}whereΠ1 is given in (16) whereΠ 0
3 =Π 0

2 with AD = 0. Then,
the system (21) is asymptotically stable for all constant delay h ∈ [hmin, hmax].

Proof. The proof uses the same Lyapunov-Krasovskii functional as in Theorem 1.
Similar calculations lead to

V̇ (xt , ẋt) = ξ T (t)Π 0
3 (h)ξ (t)−

∫ 0
−h ẋT (t + s)Rẋ(t + s)ds.

Applying Corollary 4 and the Schur complement ensure that the derivative of the
Lyapunov-Krasovskii functional along the trajectories of (21) is negative definite if
Π3(h) is negative definite for this h. Since the matrix Π3 is affine with respect to
h. The conditions Π3(hmin) < 0 and Π3(hmax) < 0 ensures that Π3(h) < 0 for all
h ∈ [hmin, hmax].

5.3 Examples

The purpose of the following section is to show how the inequalities given in Sec-
tion 3 leads to a relevant reduction of conservatism in the stability condition. In it is
important to stress that, our goal is not to find the best result on several examples.
Our goal is to show the gap between existing results based on the Jensen’s inequality
and the ones proposed in the article.

5.3.1 Constant Discrete Delay Case

In this section, we will consider the two following examples. On the first hand, the
linear time-delay systems (21) with the matrices with the matrices

A =

[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
, AD =

[
0 0
0 0

]
. (23)

is under consideration. This system is a well-known delay dependent stable
system, that is the delay free system is stable and the maximum allowable
delay hmax = 6.1721 can be easily computed by delay sweeping techniques.
To demonstrate the effectiveness of our approach, results are compared to
the literature and are reported in Table 1. All papers except [13] use Lya-
punov theory in order to derive stability criteria. Many recent papers give the
same result since they are intrinsically based on the same Lyapunov func-
tional and use the same bounding cross terms technique i.e. Jensen inequality.
Some papers [2, 22], which use an augmented Lyapunov can go further but
with a numerically increasing burden, compared to our proposal. The robust ap-
proach [13] gives a very good upper-bound with a similar computational complexity
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than our result. The discretized Lyapunov functional proposed by [8] gives a de-
lay upperbound very closed to the maximum allowable delay with an increasing
numerical complexity.

Table 1 Results for Example (23) for constant delay h

Theorems hmax number of variables

[6] 4.472 1.5n2 +1.5n
[9] 4.472 3n2 +3n

[21] 4.472 2.5n2 +1.5n
[22] 4.472 3n2 +3n
[13] 6.1107 1.5n2 +9n+9
[2] 5.120 7n2 +4n

[22] 5.02 18n2 +18n
[11] 4.97 69n2 +5n

[8] (N=1) 6.059 5.5n2 +2.5n
[1] 5.120 6.5n2 +3.5n

Th.1 5.901 3n2 +2n
Th.1 with Q = Z = 0 4.472 1.5n2 +1.5n

Theorem 2 addresses also the stability of systems with interval delays, which
may be unstable for small delays (or without delays) as it is illustrated with the
second example.

A =

[
0 1
−2 0.1

]
, Ad =

[
0 0
1 0

]
, AD =

[
0 0
0 0

]
. (24)

As Re(eig(A+Ad)) = 0.05 > 0, the delay free system is unstable and in this case,
the results to assess stability of this system are much more scarce. They are often
related to robust analysis [2] or discretized Lyapunov-Krasovskii functionals [8].
The results are reported in Table 2. In this example, our result gives better result
than [8] and [2] with a fewer numbers of variables to be optimized. Notice that
with the discretization technique from [8], increasing N yields to a better result
approaching the analytical bound.

Table 2 Results for Example (25) for constant delay h

Theorems hmin hmax number of variables

[9] /0 /0 3n2 +3n
[2] 0.102 1.424 7n2 +4n

[8] (N=1) 0.1006 1.4272 5.5n2 +2.5n

Th.1 0.1006 1.473 3n2 +2n
Th.1 with Q = Z = 0 /0 /0 1.5n2 +1.5n
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5.3.2 Constant Distributed Delay Case

Consider the linear time-delay systems (15) with the matrices taken from [23]

A =

[
0.2 0
0.2 0.1

]
, Ad =

[
0 0
0 0

]
, AD =

[
−1 0
−1 −1

]
(25)

In [23], stability is guaranteed for delays over the interval [0.209, 1.194]. The
stability conditions proposed in [4] ensures stability for any constant delay h ∈
[0.2001, 1.633]. Using our new inequality, Theorem 1 ensures stability for all con-
stant delay which belongs to the interval [0.200, 1.877] which is much larger than
the interval found in the literature. Note that an eigenvalue analysis provides that
the system remains stable for all constant delays in the interval [0.200, 2.04]. This
shows the potential of the new inequality.

6 Conclusions

In this paper, we have provided new useful inequalities which encompass the
Jensen’s inequality. In combination with a simple Lyapunov-Krasovskii functional,
this inequality leads to new stability criteria for linear time delay system systems.
This new result has been expressed in terms of LMIs and has shown on numeri-
cal examples a large improvement of existing results using only a limited number
of matrix variables. More generally, this new inequality could be coupled to more
elaborated Lyapunov functionals.
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A Matrix Technique for Robust Controller
Design for Discrete-Time Time-Delayed Systems

Ali Fuat Ergenc

Abstract. A matrix method is introduced for determination of robust-stability zones
of the general linear time invariant discrete-time dynamics with large delays against
parametric uncertainties. The technique employs Kronecker Product and unique
properties of palindrome polynomials, which are subset of self-inversive polynomi-
als. These polynomials possess interesting features on the distribution of its zeros.
The main motivation in this chapter is to develop a practical tool for determina-
tion of robust stability zones against parametric uncertainties and dominant pole
assignment of systems in discrete-time domain. A sufficient condition for robust
stability and dominant pole assignment is presented. The procedure for the solution
is demonstrated via some example case studies.

1 Introduction

In industry, most of the processes and systems incorporate unavoidable time de-
lays originated from the nature of the system or the feedback mechanisms. Sev-
eral decades, many researchers have investigated over the design of controllers to
tackle the stability and performance of the closed-loop systems with time-delays.
In many studies, the controllers are designed in continuous time domain and then
discretized to be programmed on digital controllers such as industrial computers
and Programmable Automation Controllers(PAC). Another way is to discretize the
mathematical model of the process with a sampling period of realization and de-
sign the controllers in z-domain [1, 17]. Wide use of computers lead to design of
digital controllers for various processes, which is a very well studied topic in the
literature [11–14, 22, 28, 29]. In many studies, Lyapunov based approaches are used
to guarantee the stability of the time delayed systems [7, 27]. Linear Matrix Inqual-
ity(LMI)’s solutions are also utilized to solve robustness problems in discrete-time
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time delayed systems [8, 9, 15]. Digital Smith predictors may provide nondelayed-
feedback to overcome the time delay effects in the processes [1, 13], but they are
very sensitive to the structural variations of the system. There are also some studies
with pre-chosen controller types such as PID controllers for time delayed systems in
the literature [6, 17, 25, 26, 28, 29]. In industry PID controllers are widely used due
to its vast literature and already built in libraries in commercial controllers. Most
of the time, sampling period is chosen with respect to dynamics of the systems,
where time delays are relatively small. Since the degree of the discrete-time system
is a function of the delay and the sampling period, it drastically increases when the
delays are larger with respect to the sampling period. Some of the methods, using
state space approach for the stability analysis, offer a technique that assigns addi-
tional states that corresponding delayed states [17]. In these methods, the size of
the state-space matrices increases excessively when the delay is large. Even though
there are relatively simple and effective methods in the literature, their approaches
are conservative [19–21]. Furthermore, the main concern behind these studies is to
keep the stability of the system intact. The location of the dominant poles of such
systems is not very well studied. Linear time-invariant single time delayed system
(LTI-STDS) with parametric uncertainties is presented in state space as follows,

ẋc(t) = Ac(q)xc(t)+Bc(q)xc(t− τ) (1)

where xc ∈ R
n, Ac(q), Bc(q) are matrices in R

n×n , q ∈ R
p and the time delay

τ ∈ R
+.

In this study, we address the dominant pole placement problem of linear time
invariant, discrete-time time delayed system (LTI-DTDS), which is derived by dis-
cretization of (1), in the general form of following,

x(k+ 1) = A(q)x(k)+B(q)x(k−m) (2)

where x ∈ R
n, A(q), B(q), are matrices in R

n×n , q ∈ R
p and the time delay is m ∈

Z
+. The time delay m, which denotes the value of the delay in terms of the number

of sampling period (Ts, (m)Ts ≤ τ < (m+ 1)Ts is subset of integer numbers. We
indicate vector and matrix quantities in boldface capital notation. In the text, open
unit disc, unit circle and outside of unit circle are referred as D,T,S, respectively.
Therefore, D

⋃
T
⋃
S= C represents the entire complex plane.

The problem of dictating stability and dominant pole assignment is transformed
into assignment of a certain number of zeros in D of a polynomial derived from the
system equations. The novelty in this method is that the dominant pole assignment
problem of high degree discrete-time system is reduced to a problem of root
distribution of a polynomial with a smaller degree. The vector q includes both
uncertainties of the system and the feedback controller parameters. The method is
based on unique properties of palindrome polynomials which are natural outcomes
of the Kronecker Product operations on the state-space matrices. In the procedure
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described in following sections, the polynomial, which is derived from state matri-
ces, presents interspersed zeros on the unit-circle under certain conditions.

The paper is divided in five sections. In section 2 problem statement of the study
is given. In section 3 robust-stability criteria for LTI-DTDS under parametric uncer-
tainties is presented. Section 4 is on dominant-pole assignment. In the final section,
section 5, illustrative example case studies are given.

2 The Problem Statement

The characteristic equation of the discrete-time system in (2) is,

CE(z,q) = det [zI−A(q)−B(q)z−m] = ∑m+n
j=1 a jz j

= am+nzm+n + am+n−1zm+n−1 . . .a1z+ a0 = 0
(3)

where A(q) and B(q) are the system matrices with the parametric uncertainties
and tunable feedback controller parameters, m is the order of the delay in terms of
the sampling period Ts and n is the dimension of the dynamics.

Definition 1. The stability posture of the system in (2) is determined by the number
of characteristic roots of discrete-time system (3) in D. This number is naturally a
function of the delay, the parametric uncertainties and controller parameters, which
are the parameters in (2). The system is stable when all of the roots of (3) is on D.
For any stability switching, a characteristic root z must exist on T. This is a known
fact of the root continuity argument in the parametric space. In our study, we assume
that the delay is constant, thus the order of the polynomial is fixed

In order to asses the stability of the system we have to determine all the control pa-
rameter set which present robustness against parametric uncertainties. Furthermore,
we aim to assign a boundary for the dominant poles of the system to obtain desired
performance of closed-loop system. The desired performance of the system here is
described as the upper bound of the settling time of the output to the reference. In
continuous-time domain (s− domain), the measure of settling time is the distance
of the dominant pole from the imaginary axis. In other words, the real part of the
dominant pole determines the settling time. In discrete-time domain (z− domain),
it is the distance from the unit circle T. Strictly saying, the dominant poles of the
discrete-time system should lie on predetermined circle with a radius of r < 1. If
the radius is chosen as unit length (r = 1) this problem is only a stability problem.
In order to achieve this, first, we convert the problem of examining crossing of
characteristic roots of the system of the unit circle into crossing a predetermined
circle with radius r. Naturally, if the delay is too large compared to sampling
period(Ts) the number of the roots to be determined is excessively large. At this
point, we utilize Kronecker Multiplication to reduce the number of the roots to ease
the procedure for dominant pole assignment.
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Kronecker Product of Two Matrices:

Kronecker Product of two square matrices A(n1× n1) and B(n2× n2) is defined
as [2, 3],

A⊗B =

⎡
⎢⎢⎢⎣

a1,1B · · · a1,n1B
a2,1B · · · a2,n1B

...
. . .

...
an1,1B · · · an1,n1B

⎤
⎥⎥⎥⎦

where A ∈ R
n1×n1 ,B ∈ R

n2×n2 . Here ⊗ denotes Kronecker product operation. The
important property of the Kronecker Product of A and B is that this new square
matrix

A⊗B ∈R
(n1·n2)×(n1·n2)

has n1·n2 eigenvalues which are indeed pair-wise combinatoric multiplications of
the n1 eigenvalues of A and n2 eigenvalues of B. That is, the Kronecker product
operation, in fact, induces the ”eigenvalue multiplication” character to the matrices.
This property is used in the core of our technique.

Definition 2. Adjunct Equation (AE) of the system in (2), is defined as follows :

AE(z,q) = det
[
(zI−A(q))⊗ (z−1I−A(q)−B(q)⊗B(q))

]
= 0 (4)

Theorem 1. For the system given in (2) if the system is switching stability the fol-
lowing findings are equivalent:

1. At least a pair of unitary complex numbers z =
{

z j
}
∈ T, |z|= 1, satisfies AE.

2. There exists at least one pair of unitary characteristic roots, z, of (3).
3. There exists a corresponding parameter vector q ∈ R

p, where 〈q,z〉 holds.

Proof. Proof of the theorem can be found in [5]

Equation (4) is a necessary condition for a unimodular eigenvalue (z ∈ T) of (2)
for a certain q ∈ Q

p generating a stability switching. The equation has a degree of
2n2 << (n+m) for large delays and it is smaller sized than original characteristic
equation (e.g.,τ > 10Ts. The procedure is now considerably simplified to find z∈ T

solutions of (4) with respect to certain q.
After stating the basis, we propose a new approach for the determination of the

parameter space Q
p where the system (2) has dominant poles on a predetermined

disk with the radius r.

3 Robust Stability Analysis

A linear time delayed discrete-time system is ”robust stable” when all the character-
istic roots of (3) lie on the D for ∀q ∈Q

p. Determination of the characteristic roots
of (2) for all q ∈ R

p is very hard and almost impossible when the system has high



A Matrix Technique for Robust Controller Design 49

degree due to large time-delay in the system. In this study, we present a relatively
simple method which states the sufficient conditions for robust stability of (2).

Theorem 2. (Robust Stability) A system given in (2) is stable for ∀q ∈Q
p if

1. There exists a parameter vector q ∈ Q
p that renders all of the roots of the fol-

lowing equation lie on D ( ∀z ∈ D)

det [zI−A(q)− z−mB(q)] = 0

2. AE(z,q) has no roots z =
{

z j
}
∈ T for any q ∈Q

p.

Proof. Proof of the theorem can be derived using unitary root crossing concept. In
the first item, we state initial condition for the stability of the system for existence
of such set. In the second item, stating that AE has no roots on T, we guarantee that
characteristic equation (3) has no |z|= 1 roots on the unit-circle.

This is a conventional theorem for robust-stability. The main idea is that if AE does
not have any unimodular roots then CE has no stability switching roots. In rest of
the paper, we emphasize on some distinctive properties of AE which will ease the
robustness analysis of the time delayed discrete-time systems against parametric
variations. AE belongs to exceptional class of polynomials called palindromes (i.e.
reciprocal polynomials). Furthermore, it is generated by Kronecker Multiplication,
thus it has the even degree n = 2k (k = 1,2, ...l). In order to explain the structural
properties, we formally rewrite the AE in terms of z :

AE(z,q) =
2n2

∑
j=0

b j (q) z j
k (5)

It is necessary to state some definitions and lemmas for analysis of this polyno-
mial.

Definition 3. A polynomial P is called palindrome if

Pr(z) = znP(1/z) = P(z) f or ∀z �= 0. (6)

Equivalently, writing P(z) = ∑p
j b jz j we have for a palindrome polynomial

p

∑
j=0

bp− jz
j =

p

∑
j=0

b jz
j f or ∀z �= 0. (7)

and therefore bp− j = b j for 0≤ j ≤ p.

This type of the polynomials are special kind of self-inversive polynomials where
the coefficients (b j) are real numbers [4]. Inherently, (5) is a palindrome polynomial
in terms of z j’s as mentioned above. The zeros of this class of polynomials lie either
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on the unit circle T or occur in pairs conjugate to T (symmetric pair of roots wrt
unit circle). This is a distinctive feature of AE that we take advantage when we
determine crossing roots of (3). Inversely, for robust stability we demand that none
of the roots of (5) lie on the unit circle. Our objective is to determine control and
uncertainty parameter space which satisfies this condition. Although it seems as a
straightforward analysis, determination of q space for which (5) have no unimodular
zeros is not trivial. In the literature, there are several methods derived from Schur-
Cohn criteria to find roots whereabouts wrt to T, however they fail in this problem
due to the nature of palindrome polynomials [18].

At the current standpoint, it is very useful to mention some of the friendly prop-
erties of palindrome polynomials. Critical points of the polynomial P (i.e. zeros of
P
′
, which is the derivative of P wrt z) and the zeros of P have a relationship which

is stated as in the theorem below [24].

Theorem 3. Let P be a palindrome polynomial of degree n. Suppose that P has
exactly β zeros on the unit circle T (multiplicity included) and exactly μ critical
points in the closed unit disc U (counted according to multiplicity). Then

β = (2μ+ 1)− n. (8)

Proof. The proof of this theorem can be found in [24] in details.

Combining this theorem with the theorem taken from [23] and [19], which is given
below can provide us a sufficient condition for robust stability.

Theorem 4. Let P(z) a polynomial equation,

P(z) =
p

∑
j=0

b jz
j (9)

where b j ∈C and bp �= 0 If

|bk|>
p

∑
j �=k

|b j| (10)

then P(z) has exactly k zeros in the unit circle and noting that P(z), under the above
condition has no unimodular zeros (i.e. z ∈ T).

Proof. Proof of this theorem is easily achieved by substituting r = R = 1 in Pel-
let’s Theorem which can be found in [18]. The proof is also given in the studies of
Rajan&Reddy [23] and Mori [19].

Following the theorem, the derivation of the following corollary for the conditions
of robust stability is simple.
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Corollary 1. A linear time invariant time delayed discrete time system described in
(2) is robust stable if

1. There exists a parameter vector q ∈ Q
p that renders all of the roots of the fol-

lowing equation lie on D ( ∀z ∈ D)

det [zI−A(q)− z−mB(q)] = 0

2. Critical equation D(z,q) of AE(z,q) satisfies

|bμq)|>
p

∑
j �=μ

∣∣b jq
∣∣ (11)

where μ ≤ (p/2)− 1 and μ is an integer number.

In the theorem, it is stated that if the inequality condition is satisfied the AE has no
unimodular roots. It is a handy condition for our goal considering that we desire to
find μ number of critical roots of AE in the unit circle. Although the theorem can
be used to obtain sufficient conditions for robust stability, it is very conservative. In
addition, finding the set Qp that satisfies the condition is unlikely. This method is
used in previous work of the author in [4] for delay-independent stability of LTI-
TDS but it is less effective for discrete-time systems, especially for the dominant
pole assignment problems.

Since the method above may not derive a valuable set Qp it is necessary to state
less conservative approach using other features of palindrome polynomials. The
condition for an arbitrary palindrome polynomial having unimodular roots is stated
in the theorem below.

Theorem 5. Let P(z) be a palindrome having even degree n. The polynomial P(z)
has a unimodular root if and only if the following cosine polynomial has real roots.

f (x) = bn/2 +
n/2−1

∑
j=0

2b jcos((n/2− j)x); (12)

Proof. Proof of this theorem is given in [10].

A necessary and sufficient condition for robust stability can be attained by using the
theorem above. Followed by the theorems we shall collect the steps of the design as
a procedure to clarify the method.

Procedure:

1. Compute AE of the system using Kronecker Matrix Method as described in (4)
2. Find an initial point for q that satisfies ∀z ∈ D roots of (3)
3. Evaluate (10) for q ∈Q

p and check if the inequality is satisfied
4. If previous step fails, evaluate (12) for q ∈ Q

p and check if (12) has roots be-
tween 0≤ x < 2π

The procedure above is a tool to investigate the parameter space q∈Q
p that discrete

time system is stable.
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4 Dominant Pole Assignment

In previous chapter, we stated how to attain the parameter space for robust stability.
Employing a simple transformation as following

z = r.t (13)

where r ∈R and t ∈ T turns this robust stability problem into dominant pole assign-
ment problem. This transformation reduces the diameter of the circle of interest by
selecting a diameter r < 1. Because, the dominant poles of discrete time systems
are the characteristic roots which are the closest to the unit circle T. The problem of
the right most root assignment in continuous systems is the dual problem with the
largest modulus root assignment in discrete time systems. Thus, if we can achieve
that the largest modulus eigenvalues of (2) lie in a circle with radius r < 1 then re-
stricted settling time of the response of the system is achieved. We will elaborate on
that in the example section for the better explanation.

5 Example Case Studies

Example 1: A second order (n = 2) discrete time system with sampling period of
T = 0.01s is considered. The state space equation of the system is

x(k+ 1) = Ax(k)+G(α,η)x(k−m) (14)

where,

A =

[
0.997 0.0099

−0.1584 0.9826

]
B =

[
0 0

−0.0134η −0.0122α

]
(15)

Let’s set the time delay to τ = 200ms which corresponds m = 20. The characteristic
equation of the system is constructed as

CE(z,α,η) = z22−1.9796z21 +0.98129z20 +0.01224α z−0.0122α +0.000133379η .

It is a 22nd order polynomial and root finding is cumbersome. Notice that, if the
sampling period Ts = 0.001s for the same delay the order of the CE would be equal
to 202. The conservative conditions can be applied for the robust stability derived
by [19, 21] but it is unlikely that a satisfactory outcome would be achieved. On the
other hand, converting every delayed state into a new state as in [17] would enlarge
the size of the system matrices drastically. If we apply Kronecker Product method
described in previous sections we have the corresponding adjunct characteristic
equation
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AE(z,α,η) = 0.962938z8 +(−7.69788+0.00014658α2 −0.0000016ηα)z7+

(26.9286−0.000879α2 +0.00000959ηα −0.000000017η2 )z6+

(−53.8402+0.002197α2 −0.0000239ηα +0.000000069η2)z5+
(67.2933+0.0000319ηα −0.000000104η2 −0.00292912α2)z4+
(−53.8402+0.002197α2 −0.0000239ηα +0.000000069η2)z3+

(26.9286−0.000879α2 +0.00000959ηα −0.000000017η2 )z2+
(−7.6979+0.00014658α2 −0.0000016ηα)z+0.962938

Keeping in mind that AE is 8th order, the number of roots of D(z,α,η) that
should lie in unit circle is equal to 3 (using (8)). The inequality (1) can be con-
structed for k=3. But for this system there is no parameter set Qp that satisfies this
inequality. Due to this reason, it is necessary to utilize less conservative technique.
In our procedure, third step fails so we pursue to fourth step. We form the cosine
function for AE as

f (x,α ,η) = 67.29331−0.0000001046η2 −0.0029291α2 +0.000031956ηα+
21.9258769cos(4x)+(−0.000001602ηα −7.6978848+0.000146584α2)cos(3x)+
2(−0.00000001745η2 +0.000009598ηα −0.0008790778α2 +26.92855)cos(2x)+
2(−53.84+0.00219α2−0.000024ηα +0.0000000698η2 cos(x)

Fig. 1 Region of parameters (α,η) where roots of AE z �∈ T

Here, the system given is stable for the < α,η > values those don’t create real
roots (x �∈R) for the f (x,α,η). Fig.1 exhibits the region for non-real roots for func-
tion f which also corresponds to the region no unimodular roots (z �∈ T) of AE . The
system is guaranteed to be stable for < α,η > parameters valued from shaded re-
gion. The algebraic manipulations are done using MAPLE 14TM. MatlabTMR14 is
utilized for numerical computations on a PC equipped with Intel CoreTMI3 2.4MHz
processor and Windows 7TM32 bit edition.
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Example 2: The system in the first example is considered for dominant pole
placement. Our desired settling time for this system is Tset < 2.5s within 2% band.
The corresponding dominant root of CE should lie in circle with a radius r = 0.984.
If we apply the transformation (13) to the AE of our system we have

AE(z,α,η) = 0.9028z8 +(−7.2173−0.00000290ηα +0.000266α2)z7+

(−0.0000000322η2 +0.0000175ηα +25.247−0.00159α2 )z6+

(−50.4777+0.000000128η2 −0.00004388ηα +0.00398α2)z5+
(−0.00000019η2 +0.0000585ηα −0.005316421α2 +63.09)z4+
(−0.00004388ηα −50.4777+0.00398α2 +0.000000128η2)z3+

(−0.0000000322η2 −0.00159α2 +25.247+0.0000175ηα)z2+
(−7.2173−0.00000290η α+0.000266α2)z+0.9028

The corresponding f (x,α,η) again evaluated for r = 0.984 and stability map of the
system wrt parameters is obtained as in Fig. 2. Noticed that the parameter space
has shrunk. That was an expected outcome as we contract the region for the root
locations.

Fig. 2 The parameter space (α,η) for roots of CE |z|< r = 0.984

6 Conclusion and Discussion

In this study, a new matrix solution of robust stability problem against parametric
uncertainties for linear time invariant discrete-time time delayed systems is pre-
sented. The method reduces the size of polynomial of interest which decreased
computation time drastically compared to other methods. Furthermore, although the
method presents a sufficient condition, the conservatism is much less than the other
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techniques mentioned in the introduction section. The unique properties of palin-
drome polynomials are used to construct the main idea. Characteristic equation of
the LTI discrete-time systems with large time delay is associated with a palindrome
polynomial and their coinciding roots distribution relative to the unit-circle is inves-
tigated. It is shown that the relationship between the palindromic polynomial and its
”cosine function” is a very useful tool to analyze root locations of the adjunct equa-
tion of the system. A practical condition is presented which, in turn, resolves the
stability robustness of LTI discrete-time systems with large delays against paramet-
ric uncertainties. An easy transformation is also incorporated to locate the dominant
poles of the system.
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Dominant Trio of Poles Assignment in Delayed
PID Control Loop

Pavel Zı́tek, Jaromı́r Fišer, and Tomáš Vyhlı́dal

Abstract. Besides its original use in the state space based design the pole assign-
ment is also applied to tuning the PID controllers. However, infinite spectrum of
poles caused by the usual assumption of a time delay in the plant model highlights
the requirement that the prescribed pole positions have to result in the dominant pole
assignment to be effective in tuning the control loop with time delay. With respect to
three parameters of PID controller just three poles can be placed by the assignment
and a dominance guarantee of their prescription is crucial in this tuning method. A
novel method of selecting a trio of numbers p1,2,3 to make them the dominant poles
of the control loop is dealt with in the chapter with an additional minimizing the ab-
solute error integral. The dominance of each of the placement trials is checked by an
argument increment criterion and an optimum of relative damping of the response
is assessed to minimize the control error integral. The quality of the disturbance re-
jection response is taken as the decisive criterion in the presented design of the time
delay plant control.

1 Introduction

Pole assignment is a widely-used approach to state space system design that has also
been widely applied in the last two decades in methods for tuning PID controllers.
Three parameters of the PID controller principle can handle the assignment of just
three poles, and this makes assumptions of sophisticated, detailed or higher- order
process models unrealistic. The time delay effect can be assumed to be a general
process property, but this leads to the appearance of an infinite spectrum of control
loop poles, and to a need to investigate their dominance as a crucial issue in pole
placement.
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The dependence of the dominant pair of closed-loop poles on the controller pa-
rameters was first investigated by Hwang and Chang [1] by means of the Taylor
series expansion about the critical gain. Instead of dominant, the term leading poles
was preferred in this paper. Dominant pole placement design was introduced some-
what differently by Persson and Åström [2] and was further explained in Åström
and Hägglund [3]. At about the same time, Hwang and Fang [4] published an exten-
sive optimization study on dominant pole placement for first and second order time
delay plants. Numerous methods with modified specifications of tuning conditions
were presented subsequently, and a survey was presented by O’Dwyer [5].

Applying the pole assignment approach to systems with a delay (i.e. with an in-
finite spectrum of poles) has led to the specific problem of how to select a proper
prescription of pole positions so that they will be capable candidates for becom-
ing dominant poles that really do determine the behaviour of the system. Any pole
placement in a time delay system is always connected with a risk that, although the
prescribed poles are achieved in the system spectrum, they may lose any meaning
because some other poles spontaneously assume the dominant role in the infinite
system spectrum. Consequently, any result of a pole assignment of this kind can be
approved as valid only after checking that the placed poles really have assumed the
dominant positions. To the best of the authors knowledge, no general theorem is yet
available that guarantees in advance that a chosen prescription of poles for a time
delay system will reliably result in the group of system dominant poles.

The pole placement approach in a control loop with delay is to be considered
only for placing a small group of dominant poles either a complex conjugate pair
or a three-pole group, usually one pair with a real pole. The key issue for this design
is to select the prescribed poles in a way that guarantees their dominant position [6].
Because of the number of three-controller parameters, only the three-pole option
p1,2,3 can reasonably be prescribed in applying the pole assignment to tuning the
PID controller for a time delay plant. However, in a considerable number of papers,
the dominant pole placement in PID tuning has also been considered for a single
pair of complex conjugate poles p1,2 = −α ± jΩ , α > 0, assigned to take up the
rightmost position in the system spectrum and satisfying an additional requirement
of the frequency response specification of control synthesis [7], [8]. The case of
placing three prescribed poles, a complex conjugate pair p1,2and a real pole p3 =
−β , as dominant was solved by Hwang and Fang [4]. A guarantee of dominance in
pole placement based on the root locus and Nyquist plot applications was presented
by Wang et al. [6]. Dominant pole placement may also be performed in an iterative
way, as a series of attempts that shift the prescribed poles to the left as in [9], [10],
or a modified optimization in [11].

The contribution of our work we envisage in the following three aspects. First,
unlike the usual approach the tuning is focused on the disturbance rejection as usu-
ally the primary task in industrial process control. Secondly, integral absolute error
(IAE) minimization is applied simultaneously with checking the dominance of the
assigned poles. Finally, the use of the same value of real parts for all the three poles
is proved as well-preventing the assignment from the loss of dominance.



Dominant Trio of Poles Assignment 59

The rest of the paper is organized as follows. In Section 2 the selection of the
prescribed candidate trio of dominant poles is discussed. The procedure of placing
the poles is described in Section 3 and a novel method of checking the achievement
of their dominant position is presented in Section 4. The complete procedure of
solving the dominant pole assignment and two application examples are presented
in Section 5 and several concluding remarks are added in Section 6.

2 Selecting the Candidate Group of Dominant Poles

In order really to achieve the dominant position for the poles to be placed the pre-
scribed values of p1,2,3 are to be selected with a careful respect to the specific dy-
namic properties of the plant controlled. As Åström and Hägglund [3] revealed
particularly the ultimate frequency ωK of the control loop – usually obtained by
means of the ideal relay feedback application – has to be taken into account. The
ultimate frequency at which the relay feedback control loop is oscillating deter-
mines the bounds within which the attainable frequency of the control loop can be
expected. Let the following three poles be considered for the pole assignment

p1,2 =−α± jΩ =Ω(−δ ± j), p3 =−β =−κ δ Ω (1)

where α,β ,Ω are supposed positive and introducing the ratios δ = α/Ω (relative
damping) and κ = β/α helps to characterize the p1,2,3 group. The assignment of
these poles can be accepted as valid only if besides p1,2,3 the whole rest of the
system spectrum lies to the left of the prescribed poles. Note that the following
consideration serves only for a relative comparison of various versions of p1,2,3

group selection, not for particular finding the response.

Lemma 1. Consider a stable time delay plant described by a transfer function

G(s) =
k

A(s)
exp(−sτ), A(s) =

n

∑
i=0

ais
i (2)

fitting only the dominant modes of the plant, with n ≥ 2. Assume that in the PID
control loop on this plant the pole placement of p1,2,3 has been as successful that no
of the other poles influence substantially the control loop response. With regard to
the integral action in the PID controller the disturbance rejection response – shifted
by the dead time – is then generally composed of the following three functions

h(t + τ) = exp(−α t) [C1 cosΩ t +C2 sinΩ t]+C3 exp(−β t) (3)

t ≥ 0, where the coefficients C1,2,3 are to satisfy the initial conditions

h(0) = 0, h′(0) = 0, h′′(0) =−p1 p2 p3 (4)



60 P. Zı́tek, J. Fišer, and T. Vyhlı́dal

(with respect to the disturbance derivative in the control loop equation). For this type
of the response the absolute error integral IAE =

∫ ∞
0 |h(t)|dt for κ ≤ 1 is independent

of the parameters δ , Ω and κ and equal to 1 and is larger than 1, IAE > 1, for κ > 1.

Proof. From the first condition h(0) = 0 the equality C3 = −C1 easily results. The
condition h′(0) = 0 leads to the equation C2 = −C1δ (κ − 1) pointing out that with
the choice κ = 1 the middle term in (3) will disappear. After exploiting the last
condition h′′(0) = −p1 p2 p3 = β (α2 +Ω 2) the following relationship is obtained
for C1 and C3

C3 =−C1 =Ω
κ δ (1+ δ 2)

1+ δ 2(κ − 1)2 (5)

Let us take the integral Ĩ =
∫ ∞

0 h(t)dt as an auxiliary evaluation means. This integral
can be expressed analytically with constant result

Ĩ =
∫ ∞

0 {exp(−α t) [C1 cosΩ t +C2 sinΩ t]+C3 exp(−β t)}dt = (6)

=
C1κδ 2 +C2κδ +C3(1+ δ 2)

κ δ Ω (1+ δ 2)
=

1+ δ 2(κ− 1)2

1+ δ 2(κ− 1)2 = 1 =

∫ ∞

0
h(t)dt

independent of κ , δ ,Ω values. However, the auxiliary integral Ĩ is equal to IAE in
case that h(t) is free of negative overshoots, i.e. if h(t)≥ 0, ∀t ≥ 0. With respect to
the values of C1,2,3 this type of function (3) is obtained only for κ ≤ 1. On the con-
trary for κ > 1 the function (3) is oscillating with alternating sgnh(t) and therefore
the absolute error criterion IAE =

∫ ∞
0 |h(t)| dt is larger than Ĩ, IAE > Ĩ. QED

On the other hand it is apparent that the choice of κ < 1 brings about an over-
damped response with dominating role of p3 with a slower rejection of the distur-
bance. That is why the choice of κ = 1 is to be considered as the most preferable
option for the three pole assignment from the point of view of the disturbance rejec-
tion making the function (3) as simple as h(t + τ) =C exp(−α t)(1− cosΩ t).

Concluding this section one has to realize the very approximate character of the
above speculation. In spite of a successful tuning of the PID controller the control
loop keeps its time delay and therefore the infinite nature of its spectrum. Hence
the assumed response (3) can be applied as an auxiliary specimen pointing out the
essential role of p1,2,3 in the control loop response. Only in case the poles p1,2,3

prove to be the dominant ones their choice is confirmed as proper, the better the
dominance of the poles p1,2,3, the more justifiable the use of pattern (3). Of course
the result of the pole placement primarily depends on the plant (2) dynamics.

3 Three Pole Dominant Placement in Delayed PID Feedback
Loop

Consider a PID control loop composed of the time delay plant as in (2) with the
controller transfer function

C(s) =
KPs+KI +KDs2

s
(7)
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Fig. 1 Comparison of responses (3) for κ = 0.5,1.0,1.5

and with the closed loop characteristic equation

1+C(s)G(s) = 0 (8)

The aim is to select and position three poles p1,2,3 in order to achieve the control
loop approaching in its response the character given by (3). Due to the delay in G(s)
the equation (8) is transcendental and as such it admits an infinite spectrum of roots.

Suppose equation (8) to be satisfied by the roots p1,2,3. By inserting p1 =−α+
jΩ into (8) one obtains – after a slight rearrangement – the complex valued equality

KP(−α+ jΩ)+KI +KD(α2−Ω 2− j2αΩ) =− p1

G(p1)
(9)

This equation can be decomposed into two particular equations for the real and
imaginary parts respectively

−KPα+KI +KD(α2−Ω 2) =−Re

(
p1

G(p1)

)
(10)

KPΩ −KD2αΩ =−Im

(
p1

G(p1)

)
(11)

Similarly for the third prescribed pole p3 =−β the following equality is obtained

−KPβ +KI +KDβ 2 =− p3

G(p3)
(12)

From the three conditions (10), (11) and (12) the three controller parameters can be
easily determined. However, the essential aim of the controller adjustment is really
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met only in case these roots finally become the rightmost ones from the whole infi-
nite spectrum. On the contrary, if these poles do not assume the rightmost position
the fulfilling of the equations (10), (11) and (12) is of no effect, the behaviour of the
loop becomes different from the design requirement. Typically, inadequately high
prescribed frequency Ω and its damping α , would unavoidably lead to missing the
design aim including even the possible loss of stability.

It is well known that the upper boundary of the frequencies of the system response
is near to the ultimate frequency ωK appropriate to G(s) [12]. That is why it is
possible to prescribe the frequency Ω as ωK , Ω = ωK and α as the damping of the
appropriate oscillations to set by the requirement of an acceptable relative damping
ratio δ = α/Ω , providing the response with a satisfactory decay rate. In Section 2
as the most preferable selection of pole p3 the equality β = α was recommended.
In this way the acceptable proposal of p1,2,3 can be derived from an assessment of
the ultimate frequency ωK only.

3.1 Ultimate Frequency Assessment

In order to assess the ultimate gain and the corresponding ultimate frequency a pro-
portional gain KP = KK is used instead of C(s). From the characteristic equation of
the control loop 1+KKG(s) = 0 the ultimate gain is obtained if the stability margin,
i.e. non-damped oscillations at frequency ωK arise, i.e. for

1+KKG( jωK) = 0 (13)

The decomposition into the equalities of real and imaginary parts yields

KK cosωKτ =−Re

(
1

G0( jωK)

)
=−R0(ωK) (14)

KK sinωKτ = Im

(
1

G0( jωK)

)
= I0(ωK) (15)

The ultimate gain KK can be excluded evaluating the tangent function

tanωKτ =−
I0(ωK)

R0(ωK)
(16)

where the ultimate frequency can be determined from. The only unknown in this
equation is ωK and due to the periodicity of tangent function and with respect to
the strict properness of G(s) this equation has infinitely many real roots. But the
ultimate frequency ωK is to be the smallest of positive roots of (16).

Using the assessed ωK the proposal of p1,2,3 and appropriate computation of the
controller parameters KP,KI ,KD can be made. However, a prompt checking proce-
dure is necessary to prove whether some other undesirable poles do not take over the
role of dominant poles. This can be verified by direct assessment of the rightmost
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part of the spectrum, using e.g. the algorithm proposed in [13]. A simpler way of
verifying the dominance is presented below.

4 Argument Increment Based Check to Prove the Dominance

This section deals with a method of checking the dominance of the prescribed p1,2,3.
The necessary condition for this dominance is that the whole rest of M(s) spectrum
except p1,2,3 lies to the left of the prescribed poles. This configuration of the poles
can be proved by an application of the argument increment rule.

Lemma 2. Consider the characteristic quasi-polynomial of a PID control loop

M(s) = sn+1 +
n

∑
i=0

[ci + di exp(−sτ)] si, n≥ 2 (17)

where d0 = KIk, d1 = KPk, d2 = KDk and let s be fixed to the straight line L parallel
to Im axis s =−ξ+ jω , ξ > β is optional. If the argument increment of M(s) along
this straight line from the starting point M(−ξ ), (ω = 0), for ω growing from zero
to infinity, ω → ∞, reaches the following limit

lim
ω→∞

argM(s)
∣∣
s=−ξ+ jω − argM(−ξ ) = (n− 5)

π
2

(18)

then the whole rest of the M(s) spectrum lies to the left of the prescribed p1,2,3.
Proof. Assume that poles p1,2,3 lie inside a region enclosed by a Jordan curve

composed of

• a circle arc C of radius R, s = R exp( jϕ), where ϕ ∈ 〈−0.5π− γ, 0.5π+ γ〉,
γ = arcsin(ξ/R),

• and a straight line L , s =−ξ + jω , where ω ranges from −Rcosγ to Rcosγ

If just only p1,2,3 zeros of M(s) lie inside the considered region the total argument
increment along C and L is 6π . To evaluate this argument increment let M(s) be
factorized as follows

M(s) = sn+1

[
1+

n

∑
i=0

(ci + di exp(−sτ))si−n−1

]
= sn+1m(s) (19)

For the first factor sn+1 the argument increment along C is

Δ
C

argM(R exp( jϕ)) = (n+ 1)2
(π

2
+ γ

)
(20)

where γ approaches zero for R → ∞ and therefore the limit of this increment for
R→ ∞ is (n+ 1)π . For the second factor m(s), s = R exp( jϕ) the values of each of
its terms except 1 is vanishing for R→ ∞ due to negative powers of R. Therefore
for R→∞ factor m(R exp( jϕ))→ 1 and the appropriate argument increment is zero.
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Hence the whole argument increment of M(R exp( jϕ)) along C is given by (20) and
for R→ ∞ it holds

lim
R→∞

ΔC argM(R exp( jϕ)) = (n+ 1)π (21)

If there are just only three zeros p1,2,3 inside the Jordan curve the argument incre-
ment along L has to be given by the difference between 6π and (21), i.e. (5−n)π , if
L is oriented downwards. Finally, if for practical use and with respect to the symme-
try the original interval ω ∈ 〈−Rcosγ, Rcosγ〉 is replaced by only the positive half
oriented upwards ω ∈ 〈0, Rcosγ〉 the required argument increment is of half value
and opposite sign, i.e. (n− 5)π/2 as in (18). QED

The application of this criterion is as follows. For α and β in p1,2,3 a value of
ξ > β is chosen and M(−ξ + jω) is computed for ω growing from zero to some
ω = ωm, ωm >> ωK . In principle, the starting real value M(−ξ ) for ω = 0 may
happen to be both negative and positive for various types and orders of M(s). The
argument increment is evaluated in an analogous way as in Mikhaylov criterion
application but its value can result both negative (n < 5, clock-wise direction) and
positive (n > 5). In case of n = 5 the argument increment is zero. The higher ratio
ξ/β for which the condition (18) is satisfied, the stronger the dominance of p1,2,3.
In the next sections two examples of application are demonstrated.

5 Relative Damping Optimization in the PID Parameter Setting

As shown above only for κ ≤ 1 the auxiliary function (3) is free of negative over-
shoots and the equality between the integrals Ĩ = IAE holds. However, after closing
the PID feedback with the plant model (2) the disturbance step response hM(t) dif-
ferent from (3) results. Its Laplace transform is the following meromorphic function

HM(s) =
k exp(−sτ)

sA(s)+ k exp(−sτ)(KI +KPs+KDs2)
(22)

As in (6) the integral ĨM =
∫ ∞

0 hM(t)dt (different from the absolute error integral
IMAE ) can be investigated. Using the limit theorem the following value of the integral
is obtained

ĨM = lim
s→0

k exp(−sτ)
sA(s)+ k exp(−sτ)(KI +KPs+KDs2)

=
1
KI

(23)

i.e. independently of the model G(s) it is given by the inverse of controller inte-
gration gain KI . In case of no negative overshoots on hM(t) this integral is equal to
the absolute error criterion IMAE again and the value of ĨM = 1/KI can be used for
evaluation of the obtained disturbance rejection response: the higher KI the smaller
the error integral ĨM .
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5.1 Damping Optimization

The difference between the integrals ĨM and Ĩ can be viewed as a criterion of sat-
isfying the ideal assumption given by (3). Anyway the lower ĨM the better the PID
tuning – if simultaneously the argument increment check (18) and the condition
hM(t) ≥ 0, ∀t > 0, are satisfied. Since the p1,2,3 position parameters Ω , κ are al-
ready fixed as Ω = ωK and κ = 1, only the damping δ is left to optimize the p1,2,3

selection i.e. to finding a minimum of ĨM or the maximum of KI . In this optimization
the interval of δ admissible values is relatively close, δ ∈ 〈0.25, 0.6〉. The following
examples will demonstrate this optimization.

5.2 Example 1 - Controlling Second Order System

Consider a second-order oscillatory time delay plant described by the transfer func-
tion

G(s) =
exp(−0.5s)
s2 + s+ 2

, (24)

Using the equation (16) the following ultimate frequency is determined ωK =
1.84 s−1. On the basis of this primary knowledge let Ω = 1.84 s−1and the poles
p1,2,3 let be prescribed as p1,2 = 1.84(−δ ± j) and p3 = −1.84 δ . Now repeat the
pole placement for varying values of δ beginning, say from δ = 0.3 and increasing
it by 0.01, and comparing the obtained values of KI . The optimization procedure is
recorded in Fig. 2 where the optimum damping as δ = 0.38 is assessed. The corre-
sponding setting of the controller is the following KP = 1.175, KI = 1.227s−1, KD =
0.976s.

0.3 0.4 0.5
1.1

1.15

1.2

1.25

δ

K
I

Fig. 2 Damping optimization in Example 1

The obtained controller setting is immediately tested on satisfying the dominance
requirement by argument increment procedure with ξ = 1.5β . For δ = 0.38 the
dominance check is recorded in Fig. 3 where the argument increment decreases



66 P. Zı́tek, J. Fišer, and T. Vyhlı́dal
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Fig. 3 Argument increment check of pole dominance, Example 1
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Fig. 4 Disturbance rejection (h) and plant step response (dashed), Example 1

from the initial 180◦ to -90◦, i.e. its total change is -270◦. For drawing the contour
in Fig. 3 instead of M(s) the following modification is applied

Mp(s) =
M(s)

1+ |M(s)|1.1
, (25)

which does not change argM(s) but reduces the module,
∣∣Mp(s)

∣∣ < |M(s)| [14].
This confirms that the whole rest of the system spectrum lies to the left of p1,2,3.
Due to ξ = 1.5β it is even proved that the dominance is as strong that the rest of
poles is distributed to the left of the straight line s =−1.5β+ jω . At last the control
loop response is evaluated for the obtained controller setting in Fig. 4. Comparing
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this response with that of κ = 1 in Fig. 2 one can see that the dominance of the poles
is very satisfactory since the qualitative agreement of both of them is obvious and
no substantial further influence is noticeable in this response.

5.3 Example 2 - Controlling Third Order System

Consider a third-order time delay plant given by the transfer function

G(s) =
exp(−3s)

(s+ 1)2 (2s+ 1)
(26)
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0
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p
)

Im
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p)

ω = 0

ω = Ω

Fig. 5 Argument increment check of pole dominance, Example 2

Beginning with the ultimate frequency again we obtain for the imaginary part
of p1,2 the frequency ωK = 0.49 s−1 = Ω . Prescribing p1,2,3 in the same way, i.e.
p1,2 = 0.49(−δ± j) and p3 =−0.49δ the relative damping α/Ω = δ is optimized.
In this case the maximum of KI is found at δ = 0.34 and the controller setting is then
as follows KP = 0.920, KI = 0.169 s−1, KD = 1.120 s. The dominant position of
the prescribed poles is tested by the argument increment with the confirming result
in Fig. 5. The dominance of p1,2,3 is also confirmed by the disturbance rejection
response recorded in Fig. 6. With respect to the third order of (26) the argument
increment is -180◦ now. In Fig. 7 Nyquist plot is recorded with the phase margin
equal to 66◦. Thus the achieved phase margin is safely higher than usually required
value 60◦ in practice [7].
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Fig. 6 Disturbance rejection (h) and plant step response (dashed), Example 2
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Fig. 7 Nyquist plot L( jω) = C( jω)G( jω) resulting with crossover frequency ωc =
0.201 s−1 and phase margin 66◦, Example 2

6 Concluding Remarks

The presented method of dominant pole placement is specific by the aim to op-
timize the disturbance rejection response which is critical for time delay control
loops. As any approach using the ultimate gain to identifying the process dynam-
ics the proposed method can be applied only to stable processes both aperiodical
and oscillatory. Although the final response is not exactly identical with the nomi-
nal response (3) its employment in selecting the prescribed p1,2,3 is justified by the
checking up on the argument increment. Moreover, due to the selection κ ∼= 1 the
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degree of the similarity of the response with the ideal pattern (3) can be evaluated by
a simple comparison of h(t) and hM(t) in approaching the time axis after each period
of the achieved response. Compared to other methods dealing with dominant pole
placement the IAE minimization is based on a simple analytical condition. From
the IAE evaluation it turns out that the damping ratio near δ ∼= 0.35 is a common
optimum value particularly from the point of view of the dominance warranty. A
comparison of the IAE criterion graphs for various values of δ and κ led to an im-
portant finding that IAE values vary greatly in parts of these graphs where they are
irrelevant for controller setting due to loss of dominance of the prescribed poles.
However, the IAE graphs unexpectedly concur with each other even for various δ
and κ if the prescribed p1,2,3 are fully dominant, i.e. determine the control loop re-
sponse. Due to this finding the values of κ ∼= 1.3±0.1 and δ ∼= 0.35±0.05 may be
recommended universally for any stable plant with an essential delay. This finding
makes the method of dominant pole assignment presented here practically uniform
in application.
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Agency of the Czech Republic under the Competence Centre Project TE01020197, Centre
for Applied Cybernetics 3.
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Stability of Systems with State Delay Subjected
to Digital Control

David Lehotzky and Tamas Insperger

Abstract. Stability of linear delayed systems subjected to digital control is ana-
lyzed. These systems can typically be written in the form

ẋ(t) = Ax(t)+Bx(t− τ)+Cx(t j−1) , t ∈
[
t j, t j+1

)
,

where t j = jΔ t with Δ t being the sampling period for the digital controller. The
point-delay term x(t−τ) is assumed to be inherently present in the governing equa-
tion of the uncontrolled system, while the term x(t j−1) is present due to the digital
controller. Since the term x(t j−1) can be represented as a term with a piecewise
linearly varying time delay, the system is time-periodic at period Δ t. The stabil-
ity analysis for the system is performed using the semi-discretization method. As
case studies, the stability charts of the delayed oscillator and the turning process are
determined for a digital PD controller.

1 Introduction

Time delays are often inherently present in mechanical systems due to physical
interactions between different elements of the system or due to a feedback mecha-
nism. For instance, in wheel shimmy models, the contact between elastic tires and
the road is described by a delay-differential equation (DDE) with distributed de-
lay [29]. In car following traffic models, time delay arise due to the reflex delay
of the drivers [17]. Machine tool chatter is also modeled by DDEs, where the de-
lay appears due to the regenerative effect as result of the contact of the tool and
the workpiece. For simple tool geometry, the regenerative delay can be modeled
by a point delay [1], while for more complex tool geometry, such as a milling tool
with varying helix angle, the surface regeneration can be described by a distributed

David Lehotzky · Tamas Insperger
Budapest University of Technology and Economics,
Department of Applied Mechanics, Budapest, Hungary
e-mail: lehotzkydavid@gmail.com,insperger@mm.bme.hu

T. Vyhlı́dal, J.-F. Lafay, and R. Sipahi (eds.), Delay Systems, 71
Advances in Delays and Dynamics 1,
DOI: 10.1007/978-3-319-01695-5_6, c© Springer International Publishing Switzerland 2014

lehotzkydavid@gmail.com, insperger@mm.bme.hu


72 D. Lehotzky and T. Insperger

Fig. 1 Representation of the sampling effect as time-varying delay

delay [4]. In these examples, time delays inherently arise due to the structure of
the mechanical system and the delayed terms in the governing equations are con-
tinuous in time. If these systems are subjected to a digital feedback controller, then
discrete-delay terms (i.e., terms with piecewise constant argument) also arise due to
the sampling effect [18, 24]. The goal of this chapter is to analyze the stability of
systems, where both continuous- and discrete-time delayed terms appears.

Here, we consider Newtonian systems with point delay in the position term sub-
jected to a digital proportional-derivative (PD) controller. The governing equation
of such systems can be given in the form

Mq̈(t)+Cq̇(t)+Kq(t) = Hq(t− τ)+Kpq(t j−1)+Kdq̇(t j−1) , t ∈
[
t j, t j+1

)
,

(1)

where q ∈ R
n is the vector of the general coordinates, M, C and K are the mass,

the damping and the stiffness matrices, H is a matrix describing the delay effect, τ
is the system delay, Kp and Kd are the proportional and derivative control matrices,
Δ t is the sampling step of the digital controller and t j = jΔ t are the discrete sam-
pling instants. Thus, the system contains two types of delay terms, the continuous-
time point-delay term q(t−τ) and the discrete-time delay terms q(t j−1) and q̇(t j−1)
with piecewise constant argument over the sampling interval

[
t j, t j+1

)
. Actually, the

terms q(t j−1) and q̇(t j−1) can be represented as terms with periodic time delay in
the form q(t − ρ(t)) and q̇(t − ρ(t)), where the time delay is a piecewise linear
function given as ρ(t) = t +Δ t − t j, t ∈

[
t j, t j+1

)
(see Fig. 1). According to this

interpretation, sampling in the feedback loop presents a parametric excitation in the
time delay and the period of the parametric excitation is equal to the sampling period
Δ t. Consequently, the governing equation is a periodic DDE, and the stability anal-
ysis can be performed according to the Floquet theory of DDEs [5, 7]. There exists
several numerical methods for the stability analysis of periodic DDEs, the semi-
discretization [9, 10], the Chebyshev polynomial approach [2], the spectral element
method [11], the method of characteristic matrices [22, 28], Hill’s method [12], the
full-discretization method [3,19] or the continuous time approximation [25,26] can
be mentioned as examples. In this chapter, the stability analysis of equation (1)
is presented using the semi-discretization method according to [9, 10]. As a new
concept, one- and two-point methods with different order of approximations are
introduced in the discretization scheme.
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2 Semi-discretization

The first-order representation of equation (1) reads

ẋ(t) = Ax(t)+Bx(t− τ)+Cx(t j−1) , t ∈
[
t j, t j+1

)
, (2)

where

x(t) =
(

q(t)
q̇(t)

)
, A =

(
0 I

−M−1K −M−1C

)
, B =

(
0 0
H 0

)
, C =

(
0 0

Kp Kd

)
. (3)

Semi-discretization is a numerical technique which can be used for the stability
analysis of time-periodic DDEs [9, 10]. The method gives a finite dimensional ap-
proximation for the infinite dimensional eigenvalue problem of time-delayed sys-
tems. The description presented here is valid for the case when the system delay τ
is integer multiple of the sampling period Δ t, i.e., when κ = τ/Δ t ∈ Z. The semi-
discretization is based on the discrete time scale ti = ih, where h is the discretization
step determined as τ = rh and Δ t = ph. Here, r is the delay resolution, p is the
period resolution. Clearly, r/p = τ/Δ t = κ . Note that subscript i is used for the dis-
crete time scale of the semi-discretization, while subscript j is used for the discrete
time scale t j = jΔ t due to the sampling of the controller. In the next two subsec-
tions, two types of discretization schemes, the one-point method and the two-point
method are detailed.

2.1 One-Point Methods

One-point methods approximate the delayed value of the state variables with values
taken from one discrete past time instant. The approximation of equation (1) for the
time interval t ∈ [ti, ti+1) can be given as

ẋ(t) = Ax(t)+D(t)xi−r +Cxi−p , (4)

where D(t) is a weighting matrix which depends on the method and the order
of the approximation. Short hand notation is used for x(ti−r) = xi−r and respec-
tively for the similar terms. The sketch of the semi-discretization for the case of
the zeroth-order one-point method for different steps is shown in Fig. 2 for r = 20,
p = 5 and, consequently, κ = 4. The initial condition for equation (4) is x(ti) = xi,
which provides the continuity of the displacement and velocity functions at time
instant t = ti. Using the variation of constants formula, the solution for (4) can be
given as

x(t) = eA(t−ti)xi +

∫ t−ti

0
eA(t−ti−s) (D(s)xi−r +Cxi−p)ds. (5)
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Fig. 2 Sketch of the discretization for the case of zeroth-order one-point method at different
steps

Hence the relation between the two end points of the discretization interval is

xi+1 = Pxi +R1xi−r +RCxi−p, (6)

where

P = eAh , R1 =
∫ h

0
eA(h−t)D(t)dt , RC =

∫ h

0
eA(h−t)Cdt . (7)

If A−1 exist, then
RC =−A−1

(
I− eAh

)
C , (8)

where I denotes the unit matrix. Equation (6) implies the discrete map

Xi+1 = G1Xi , (9)

where
Xi =

(
xi xi−1 . . . xi−r

)T
(10)
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is an augmented state vector, and the coefficient matrix for this first step reads

G1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P 0 . . . 0 RC 0 0 . . . 0 0 R1

I 0 . . . 0 0 0 0 . . . 0 0 0
0 I 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 I 0 0
0 0 . . . 0 0 0 0 . . . 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (11)

Note that this matrix consists of submatrices of size 2n× 2n, namely, P, RC, R1,
the 2n× 2n unit matrix I and the 2n× 2n zero matrix 0. Matrix RC is located at the
(p+ 1)th block in the first row of G1.

Since the control force is constant over the sampling period [ti, ti+p), the approx-
imate differential equation for the second discretization step is

ẋ(t) = Ax(t)+D(t)xi−r+1 +Cxi−p , t ∈ [ti+1, ti+2) . (12)

Solving this differential equation similarly to (4), the difference equation between
the endpoints of the second discretization is obtained in the form

Xi+2 = G2Xi+1 , (13)

where the state vector is Xi is defined as in (10), and the coefficient matrix for the
second step reads

G2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P 0 . . . 0 0 RC 0 . . . 0 0 R1

I 0 . . . 0 0 0 0 . . . 0 0 0
0 I 0 0 0 0 0 0 0
...

...
0 0 0 0 0 0 I 0 0
0 0 . . . 0 0 0 0 . . . 0 I 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (14)

Here, matrix RC is located at the (p+ 2)th block in the first row of G2. The only
difference between matrices G1 and G2 is the location of the sub-matrix RC. While
in G1, RC is located at the (p+ 1)th block in the first row, in G2, matrix RC is
located at the (p+ 2)th block in the first row.

For the next discretization interval [ti+2, ti+3), matrix RC is located at the
(p+ 3)th block in the first row, etc. With the induction of this phenomena the struc-
ture of the first row of G is shown in Fig. 3 for different discretization steps.

For the stability analysis of the approximate system (4), the solution should be
determined over the period Δ t = ph of the parametric excitation (i.e., over the prin-
cipal period). The monodromy mapping for the initial state Xi is given as

Xi+p =ΦΦΦXi, (15)
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Fig. 3 Top row of G matrices for one-point methods

whereΦΦΦ =Gp Gp−1 . . .G2 G1 is the monodromy matrix (Floquet transition matrix).
The condition for asymptotic stability is that all eigenvalues of ΦΦΦ must be in mod-
ulus less then 1, formally

|μmax|< 1 , (16)

where μmax = max(μi) with μi, i = 1,2, . . . ,(n+ 1)r being the eigenvalues of ΦΦΦ .
As it was mentioned earlier, semi-discretization of different orders can be rep-

resented by the weighting matrix D(t). In the next points, the zeroth-order and the
first-order approximations will be presented for the one-point method.

2.1.1 Zeroth-Order Approximation

This method uses only the discrete vector q(ti−r) of general coordinates to approxi-
mate q(t− τ) (see Fig. 4). The weighting matrix has the form

D =

(
0 0
H 0

)
(17)

Note that this case corresponds to the standard zeroth-order semi-discretization
method given in [10].

2.1.2 First-Order Approximation

This method uses the discrete vector q(ti−r) and its derivative q̇(t j−r) to approx-
imate q(t − τ) (see Fig. 4). It can be seen from the structure of the step matrix
G that the derivatives of q are introduced to the augmented state vector only be-
cause the velocity is present in the control force. These derivatives can be used to

Fig. 4 Sketch of the zeroth- and the first-order one-point methods
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give a better approximation for the delayed state variables, which give rise to the
first-order approximation, where the delayed term is approximated as q(t − τ) ≈
q(ti−r)+ q̇(ti−r)(t− ti−r). The corresponding weighting matrix reads

D(t) =

(
0 0
H Ht

)
(18)

Note that this first-order approximation is different from the one presented in [10].
Here the first-order approximation of the past state is obtained using q(t j−r) and
its derivative q̇(t j−r), while in [10], the first-order approximation is obtained using
two subsequent discrete state variables q(t j−r) and q(t j−r+1). This latter case here
is called as two-point method.

2.2 Two-Point Methods

Two-point methods take the past values from two subsequent discrete time instants
for the approximation of the delayed function. The approximation of equation (2)
for the time interval t ∈ [ti, ti+1) can be given as

ẋ(t) = Ax(t)+D1(t)xi−r +D2(t)xi−r+1 +Cxi−p, (19)

where the weighting matrices D1(t) and D2(t) depend on the order of the approxi-
mation and on the weighting between the past values. Similarly to equation (4) the
solution of equation (19) can be determined by the variation of constants formula.
The relation between the two endpoints of the discretization step is

xi+1 = Pxi +R1xi−r +R2xi−r+1 +RCxi−p, (20)

where
P = eAh, R1 =

∫ h
0 eA(h−t)D1(t)dt,

R2 =
∫ h

0 eA(h−t)D2(t)dt, RC =
∫ h

0 eA(h−t)Cdt.
(21)

The coefficient matrices G for two-point methods have similar forms as the ones
for the one point methods. The only difference is that one more sub-matrix appears
on the right end of the top row. The location of the sub-matrix RC for different
discretization steps is the same, after each discrete step, this matrix jumps to the
right by one, as it is shown in Fig. 5. In the next points, semi-discretization schemes
of different orders are presented for the two-point method.

Fig. 5 Top row of G matrices for two-point methods
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2.2.1 Zeroth-Order Approximation

This method takes the average of the state variable q(t) at two past time instants,
namely at q(ti−r) and q(ti−r+1) to approximate q(t− τ) (see Fig. 6). The weighting
matrices are

D1 = D2 =

(
0 0

1
2 H 0

)
. (22)

Note that this case corresponds to the improved zeroth-order semi-discretization
used in [10].

2.2.2 First-Order Approximation

In this method, the delayed term q(t−τ) is approximated as a linear function of time
using the discrete values q(ti−r) and q(ti−r+1) (see Fig. 6). The weighting matrices
are

D1(t) =

(
0 0

(1− t/h)H 0

)
, D2(t) =

(
0 0

t/hH 0

)
. (23)

Note that this case corresponds to the first-order semi-discretization used in [10].

2.2.3 Second-Order Approximation

This method approximates the state variable values between two past time in-
stants by using not only the past values of the function but also their derivatives.
Namely, q(t − τ) is approximated by a second-order function using the values
q(ti−r), q(ti−r+1) and q̇(t j−r) or q̇(t j−r+1) (see Fig. 6). The second order function
is constructed by the linear interpolation between two first order one point approxi-
mations at time instants ti−r and ti−r+1. The weighting matrices read

D1(t) =

(
0 0

(1− t/h)H tH

)
, D2(t) =

(
0 0

t/hH (t− h)t/hH

)
. (24)

Note that this discretization concept is different from the ones presented in [10].

Fig. 6 Sketch of the zeroth-, the first-, the second- and the third-order two-point methods
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2.2.4 Third-Order Approximation

In this method, the delayed term q(t − τ) is approximated by the discrete values
q(ti−r), q(ti−r+1) of the state variables and its derivatives q̇(t j−r) and q̇(t j−r+1) (see
Fig. 6). The weighting matrices are

D1(t) =

(
0 0(

1− 3
(

t
h

)2
+ 2

(
t
h

)3
)

H t
(

1− 2 t
h +

(
t
h

)2
)

H

)
, (25)

D2(t) =

(
0 0(

3
(

t
h

)2− 2
(

t
h

)3
)

H t
(
− t

h +
(

t
h

)2
)

H

)
. (26)

This discretization concept is different from the ones presented in [10].
Comparison of the above methods for different period resolutions shows that

the third-order two-point method provides the fastest convergence. Therefore, this
method will be used for the for the forthcoming examples.

3 Example: The Delayed Oscillator

Consider first the delayed oscillator subjected to a digital PD controller [13]. The
governing equation can be written in the form

ẍ(t)+ a1ẋ(t)+ a0x(t) = b0x(t− τ)−Px(t j−1)−Dẋ(t j−1), t ∈
[
t j, t j+1

)
(27)

where t j = jΔ t are the sampling instants for the controller,Δ t is the sampling period,
P is the proportional gain and D is the derivative gain. The stability chart of this
DDE for P = 0 and D = 0 is well known in the literature (see the diagrams P = 0
and D = 0 in Figures 7 and 8).

The first order representation of equation (27) reads

ẋ(t) = Ax(t)+Bx(t− τ)+Cx(t j−1) , t ∈
[
t j, t j+1

)
, (28)

where

x(t) =
(

x(t)
ẋ(t)

)
, A =

(
0 1
−a0 −a1

)
, B =

(
0 0
b0 0

)
, C =

(
0 0
−P −D

)
. (29)

Figures 7 and 8 present a series of stability diagrams for different (both neg-
ative and positive) proportional and derivative control gains for κ = 2 and 20.
The horizontal and vertical axes are a0 and b0 parameters, respectively. The charts
were determined by the third-order two-point semi-discretization method. Note that
κ = r/p = τ/Δ t, which describes the ratio of the time delay τ and the sampling pe-
riod Δ t. The stability diagrams were obtained numerically by analyzing the eigen-
values of the transition matrix ΦΦΦ for a series of fixed parameters.

For large κ values, the sampling period Δ t of the digital controller is much
smaller than the system delay τ . In these cases, the PD controller practically results
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Fig. 7 Stability charts for equation (27) with κ=2, a1=0, τ = 2π for delay resolution r=40

Fig. 8 Stability charts for equation (27) with κ=20, a1=0, τ = 2π for delay resolution r=40

in an artificial stiffness and a damping in the system, since a0x(t) + Px(t j−1) ≈
(a0 + P)x(t) and a1ẋ(t) +Dẋ(t j−1) ≈ (a1 + D)ẋ(t) if t ∈ [t j, t j+1), t j = jΔ t and
Δ t � 1. This tendency can be observed in Fig. 8 (for the case κ = τ/Δ t = 20):
positive proportional gains result in a shift of the stability diagram to the left, while
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positive derivative gains increase the area of the stability domains. An interesting
feature in this case is that the stabilizing effect of the positive derivative gains is
stronger for negative proportional gains than for positive ones.

For smaller κ values (see Fig. 7), the connection between the control gains and
the stability of the system is not so trivial. In these cases, the sampling period Δ t of
the digital controller and the system delay τ is commensurate, and the combination
of the two kind of time delays results in intricate stability charts.

4 Example: Application to Turning Processes

Regenerative machine tool chatter is one of the main limitations of increasing
the material removal rate in machining processes [14]. There are several meth-
ods and ideas to suppress machine tool chatter, such as the vibration absorber [23],
impedance modulation [20], spindle speed variation [21,30] or active control [8,15].
Here, the single degree-of-freedom model of a turning process subjected to a digital
PD controller is analyzed. The mechanical model with modal mass m, stiffness k
and damping c can be seen in Fig. 9. The linearized governing equation forms as

ξ̈ (t)+ 2ζωnξ̇ (t)+ (H +ω2
n)ξ (t) = Hξ (t− τ)− kpξ (t j−1)− kdξ̇ (t j−1) , (30)

where t ∈ [t j, t j+1) , ξ (t) = x(t)− x0 is the displacement around the trivial equi-
librium point x0, ωn =

√
k/m is the undamped natural frequency of the tool,

ζ = c/(2mωn) is the damping ratio of the tool , H is the specific cutting-force co-
efficient, Q/m = kpξ (t j−1)+ kdξ̇ (t j−1) is the specific control force and kp and kd

are the proportional and derivative control gains [13]. Equation (30) has the same
form as (27), hence the stability chart for equation (30) can be analysed by semi-
discretization in the same way as for (27). Fig. 10 presents a series of stability dia-
grams for different (both negative and positive) proportional and derivative control

Fig. 9 Sketch of the mechanical model
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Fig. 10 Stability charts for turning processes with different control parameters for κ=20,
r=20 and ζ=0.05

gains for κ = τ/Δ t = 20. The horizontal axis is the dimensionless spindle speed
Ω/(60 fn), where the spindle speed is Ω = 60/τ and the natural frequency of the
tool is fn = ωn/(2π). The vertical axis is the dimensionless specific cutting-force
coefficient H/ω2

n . In this diagram the exact stability boundaries of the turning pro-
cess without any control are presented by gray line. The stability diagrams were
obtained in the same way as for equation (27). It can be seen that the most impor-
tant control parameter is the derivative gain kd. Positive derivative gains result in a
kind of artificial damping parameter in the system. The effect of the proportional
gain kp on the stability is not so significant. Similarly to the delayed oscillator, the
stabilizing effect of the positive derivative gains is stronger for negative proportional
gains.

5 Conclusions

Dynamical systems with continuous point delay terms in the form x(t− τ) and dis-
crete delayed terms in the form x(t j−1), t ∈ [t j, t j+1), t j = jΔ t were analyzed using
the semi-discretization method. These systems typically arise if a delayed system
is subjected to a digital feedback controller. Different approaches were presented
based on the number of the discretization points and based on the order of the ap-
proximation of the delayed term. Stability diagrams were determined for the delayed
oscillator with digital controller and, as a practical application, stabilization of turn-
ing processes with digital feedback controller was analyzed.
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The results related to the delayed oscillator are shown in Figures 7 and 8. The
results for the stabilization of the turning process is presented in Fig. 10. The main
conclusion is that if the feedback controller is fast enough compared to the time
delay in the uncontrolled system, then, since x(t j−1) ≈ x(t) and ẋ(t j−1) ≈ ẋ(t) on
t ∈ [t j, t j+1), t j = jΔ t, positive proportional and derivative gains act as a kind of
artificial stiffness and damping in the system. Therefore if κ � 1 then, considering
stability, an analogue PD control approximates well the digital PD control. In this
case, it was observed that the stabilizing effect of the positive derivative gains is
stronger for negative proportional gains. If the sampling period Δ t of the feedback
controller is commensurate to the system delay τ , then the combination of the two
kind of time delays result in an intricate stability picture.

In the equations analyzed in this paper, two types of delays were present: the
continuous delay x(t−τ) and the discrete delay x(t j−1). While the continuous delay
attributes an infinite dimensional nature to the system, the discrete delay presents
a kind of intermittence or discontinuity in the system. This combination of time
delays may also be important in human balancing models with reflex delay, where
the human motor control is often modeled as a system with discontinuous feedback
[6, 16, 27].
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Control Design for Teleoperation over Unreliable
Networks: A Predictor-Based Approach

Alexandre Kruszewski, Bo Zhang, and Jean-Pierre Richard

Abstract. This chapter considers the problem of teleoperation over an unreliable
communication network. Roughly, teleoperation applications are two systems com-
municating trough a communication network, the goal of which is to synchronize
some variables. This problem is closely related to network control theory, where
not only the stability of the two systems has to be ensured but also some per-
formances and robustness. This chapter proposes a robust control design based
on delay-dependent Lyapunov-Krasovskii conditions, where the performances are
guaranteed through an H∞-like optimization.

1 Introduction

Bilateral teleoperation are systems composed with two parts: the master and the
slave part. The master part is an human operated low torque robotic arm (haptic
interface) used to provide a reference to the slave part and to give some force feed-
back to the human operator. The salve part is a high torque robotic arm which has to
follow the references provided by the master and return back the constraints coming
from its environment. The two parts communicate trough a network which intro-
duces in most case a non negligible delay.
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So from a control point of view, a bilateral teleoperation system is a closed-loop
structure with data transmission over a network where the main problem is to de-
sign a control structure ensuring the stability and performance (position tracking and
force feedback fidelity). These goals can be achieved by modeling the network with
time-varying delays for the network part and by considering the non-linear behav-
ior of the robotic arms as time-varying model uncertainties ([7] and the references
therein).

Many recent methods have addressed the stability and performance problems of
bilateral teleoperation:

• Passivity-based control under variable delays: The survey [10] revisits many
passivity-based controllers for bilateral teleoperation systems, including scattering
and wave variables. Based on the energy and power considerations, time domain
passivity control [13], [16] without the transformation of wave variables have also
been proposed. Overall, the latest passivity-based results can solve the stabilization
problem under time-varying delays, but the system performance is not guaranteed
in terms of tracking quality.
• Non-passive control: Various control strategies have been proposed for a non-

passive environment under constant or time-varying delays. The readers can refer
to [1], [2] for more details on these methods. However, very few of them focus on
perturbations and model uncertainties.

Apart from the stability of teleoperation systems under time-varying delays, there
are also two kinds of performances for bilateral teleoperation, which are not that
much addressed [14]:
• Position tracking (or position coordination): The slave robot should follow the

motion of the master robot maneuvered by the human operator.
• Force tracking (or force coordination): The environmental force acting on

the slave (when it contacts the external environment) should be accurately and
real-time transmitted to the master. This can be achieved by the force-reflecting, in
which the human operator feels haptic sensations as if he/she was actually present
at the slave side.

[17], [18] introduced a force-reflecting, predictor-based control scheme (a pre-
dictor of the master’s state is located on the slave side). The control design presented
in these papers guarantees the stability and the position/force tracking of the closed-
loop system under time-varying delays and uncertainties. These results are based on
Lyapunov-Krasovskii functionals (LKF) and H∞ control techniques [4, 8, 15]. The
main results are given as a set of Linear Matrix Inequalities (LMI) to be solved [3].
H∞ is used to minimize the position tracking error despite the unknown inputs (hu-
man operator, environment) and the LKF to ensure the robustness with respect to
time varying delays.

In the continuity of this LKF-H∞ coupling approach, this chapter presents differ-
ent control structures and discuss about their differences.
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Fig. 1 Bilateral state feedback control scheme

2 A Delay Formulation for Teleoperation Problems

Following [17], it is considered a bilateral state-feedback control scheme. Note
that, ignoring the details of master and slave controllers, this scheme corresponds
to a general teleoperation system with five entities (human operator, master robot,
communication medium, slave robot, environment). In this general scheme [1]:

• Master controller and slave controller are the global controllers we should de-
sign so to ensure both the asymptotic stability of the whole system and the posi-
tion/force tracking between the master and the slave (in Figure 1, C1 and C2 are the
global controllers that we should design).
• Fm(t) and Fs(t) are the actuated inputs of the master and of the slave.
• Fh(t) and Fe(t) are the forces of the human operator and of the environment.

Note that, in an H∞ context, these forces can be considered as the perturbations in
the sense that the global controllers have to minimize their effects on the output
tracking error.
• τ1(t) (from the master to the slave) and τ2(t) (from the slave to the master) are

the delays resulting from the communication, access time, and packet loss effects
[9]. They are time-varying and asymmetric (τ1(t) �= τ2(t)).
• θ̇m(t)/θm(t) and θ̇s(t)/θs(t) are the velocities/positions of the master and the

slave.
• The information transferred between the master and the slave can be the posi-

tions, the velocities or the estimated forces of the human operator and environment
(in Figure 1, the velocities/positions of the master and the slave).

According to the general scheme, the following assumptions are made.

Assumption 1. The master and slave robots can be locally controlled so to be mod-
eled by linear systems with uncertainties. It is reasonable to consider linear model
for the two sides in many teleoperation situations because most of the used robots
are serial ones. These robots are easily linearized by choosing the right controller
with a linear reference model, as soon as the trajectories respect the systems bound-
aries (control saturation, joints not close to a physical limits or singularities ...). The
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use of the calculated torque control (for low friction) or a sliding mode control (for
high friction) are examples of how it could be done. Whatever the choice made for
this linearizing local control, it will be considered in the following that both sides
are disturbed, and the global control will be design so to ensure good performances
despite those disturbances/uncertainties. The master and slave dynamics are given
by:

(Σm) ẋm(t) = ((Am +ΔAm(t))− (Bm +ΔBm(t))K
0
m)xm(t)

+ (Bm +ΔBm(t))(Fm(t)+Fh(t)),

(Σs) ẋs(t) = ((As +ΔAs(t))− (Bs+ΔBs(t))K
0
s )xs(t)

+ (Bs +ΔBs(t))(Fs(t)+Fe(t)),

(1)

where xm(t)= θ̇m(t), xs(t)= θ̇s(t), and K0
m, K0

s are the local controllers of the master
and slave ensuring the speed stability.

Assumption 2. The communication delays are bounded: τ1(t), τ2(t) ∈ [h1,h2],
h1 > 0, h2 < ∞. The communication delays over unreliable networks (such as the
internet or wifi) are not bounded, but in any teleoperation process, a delay limit
is chosen to avoid dangerous situations: If the delay goes out of this bound, the
teleoperation is stopped in a safe, frozen position.

Assumption 3. Master and slave clocks are perfectly synchronized and the data
packets include a time-stamp indicating their sending time. This allows the Mas-
ter (Slave) to compute the Slave-to-Master (Master-to-Slave) delay: τ̂1(t) = τ1(t),
τ̂2(t) = τ2(t). The clocks of both sides can be synchronized. Even if it is impossible
to get perfect synchronization, it is possible to get a close enough result to consider
it as perfect. It is needed to get an error of synchronization negligible with respect to
the delay. For small networks with a low traffic, it could be achieved using a network
time protocol (NTP) or a GPS clock [19].

Assumption 4. The external forces Fh(t) and Fe(t) are accessible. The external
forces can be obtained either by using sensors (strain gauge) or a unknown input
observer. The choice between these two solutions depends on the degree of fidelity of
the models: The result obtained using strain gauges is independent on the model fi-
delity but can be mechanically hard to adapt. The unknown input observer technique
is only suitable if the model is really good and does not present too much friction.
Usually, strain gauges are used at the slave side, and observer at the master side.

3 Force-Reflecting Emulator Control Scheme

3.1 System Description and Problem Formulation

The force-reflecting emulator control scheme is presented in Figure 2. Let us give
a description of the control scheme: Fm(t) and Fs(t) are the actuated inputs of the
master and the slave; Fh(t) and Fe(t) are the forces of the human operator and en-
vironment on the system; F̂h(t) and F̂e(t) are the estimations of these two forces,
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Fig. 2 Force-reflecting emulator control scheme

which can be obtained by adding the perturbation observers in reality; θ̇m(t)/θm(t),
θ̇s(t)/θs(t) are the velocities/positions of the master and the slave.

The communication delays τ1(t), τ2(t) ∈ [h1,h2], h1 ≥ 0. τ̂1(t) is the estimated
network delay, thanks to time-stamped data packet exchanges using a network time
protocol as in [9] between the master and slave, the master and slave clocks are
synchronized and τ̂1(t) is available at slave’s side: τ̂1(t) = τ1(t).

From the master to slave, the information transferred are the velocity/position of
the master and the estimated force F̂h(t). However, from the slave to the master, only
the estimated force F̂e(t) is transferred, so the force tracking Fm(t) = F̂e(t− τ2(t))
is realized if the stability of the whole system is verified.

Note that, in both the master and slave, there exist norm-bounded and time-
varying model uncertainties (ΔAm(t), ΔBm(t), ΔAs(t), ΔBs(t)) as follows:

(Σm) ẋm(t) = ((Am +ΔAm(t))− (Bm +ΔBm(t))K
0
m)xm(t)

+ (Bm +ΔBm(t))(Fm(t)+Fh(t)),
(2)

(Σs) ẋs(t) = ((As +ΔAs(t))− (Bs+ΔBs(t))K
0
s )xs(t)

+ (Bs +ΔBs(t))(Fs(t)+Fe(t)),
(3)

where xm(t) = θ̇m(t), xs(t) = θ̇s(t). K0
m and K0

s , to be designed later, are the local
controllers of the master and slave ensuring the speed stability.

In the slave controller, the emulator of master is like a remote observer of the
master, which is introduced at the slave side in order to reduce the impact of the
time-varying delays. Thus, the model used for this emulator is the same as the mas-
ter. Since the master model is a nonlinear one put in the form an uncertain linear
model, the remote emulator will follow the same treatment. The main difference
between a classical state observer and this structure is in the way states are synchro-
nized. Here, the emulator state is synchronized with a control-like structure. This
will provide a more realistic behavior of the emulator state during the convergence
stage (acceleration, speed and position trajectory are still consistent).
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(Σp) ẋp(t) = ((Am +ΔAp(t))− (Bm +ΔBp(t))K
0
m)xp(t)

− (Bm +ΔBp(t))Fp(t)

+ (Bm +ΔBp(t))(F̂e(t− τ̂1(t))+ F̂h(t− τ1(t))),

(4)

where xp(t) = θ̇p(t) is the speed of the remote copy of the master. The gain L =(
L1 L2 L3

)
is used to synchronize the position between the master and the proxy of

master,

Fp(t) = L

(
θ̇p(t−τ̂1(t))
θ̇m(t−τ1(t))

θp(t−τ̂1(t))−θm(t−τ1(t))

)
. (5)

Next, K =
(
K1 K2 K3

)
is the gain of the controller C,

Fs(t) = K

(
θ̇s(t)
θ̇p(t)

θs(t)−θp(t)

)
. (6)

In the following, the model uncertainties are considered with the following struc-
ture:

ΔAi(t) = GiΔ(t)Di, ΔBi(t) = HiΔ(t)Ei, (7)

where i = {m,s, p} and Gi, Di, Hi, Ei are constant matrices of appropriate dimen-
sions. Δ(t) is a time-varying matrix satisfying Δ(t)TΔ(t)� I.

The controller design is made by solving three distinct problems and check the
global stability/performance index. Note that at the moment, no solution are known
to solve everything in a single step because the control gain matrix in the global
problem has some strong constraints. For example: the current master state is not
available at slave side, which imposes various control gains to be zero. The solv-
ing steps are described in the next sections. The conditions provided hereafter are
obtained by applying the robustness approach described in [20] on the result of [18].

3.2 Problem 1: Local Controller Design

The local controllers are designed by solving the following LMI conditions for pairs
(A,B) given it the systems equations (2) and (3) :

Find P > 0, N matrices with suitable dimensions and ρA, ρB two positive scalars
such that [20]:

⎛
⎜⎜⎝

AP+PAT−NT BT−BN GP HP NT ET PDT

� − 1
ρA

I 0 0 0

� � − 1
ρB

I 0 0

� � � −ρBI 0
� � � � −ρAI

⎞
⎟⎟⎠< 0 (8)

The control gains are given by NP−1. Note that if the local controller performance
needs to be improved, it is possible to use pole placement techniques such as D-
stability or decay rate techniques.
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3.3 Problem 2: Master-Emulator Synchronization

Synchronizing the emulator state to the master state is a control problem where it is
considered the following system:

⎧⎪⎪⎨
⎪⎪⎩

ẋmp(t) = (A+ΔA(t))xmp(t)
+(B1 +ΔB1(t))Lxmp(t− τ1(t))
+(B+ΔB(t))wmp(t),

zmp(t) =Cxmp(t),

(9)

xmp(t) =

(
θ̇p(t)

θ̇m(t)
θp(t)−θm(t)

)
, wmp(t) =

(
F̂e(t−τ̂1(t))+F̂h(t−τ1(t))

Fm(t)+Fh(t)

)
,

zmp(t) =
(
θp(t)−θm(t)

)
,

(10)

A =

(
Am−BmK0

m 0 0
0 Am−BmK0

m 0
1 −1 0

)
,

ΔA(t) =

(
ΔAp(t)−ΔBp(t)K0

m 0 0

0 ΔAm(t)−ΔBm(t)K0
m 0

0 0 0

)
,

B1(t) =

(
−Bp(t)

0
0

)
,

ΔB1(t) =

(
−ΔBp(t)

0
0

)
= H1Δ(t)E1,

B =

(
Bm 0
0 Bm
0 0

)
=

(
B1

mp B2
mp

)
,

ΔB(t) =

(
ΔBp(t) 0

0 ΔBm(t)
0 0

)
= HΔ(t)E, C =

(
0 0 1

)
.

(11)

The synchronization is achieved by designing the emulator control gain L so that
the quadratic error between the emulator output and the master output zmp(t)2 is
minimized according to the disturbance wmp(t)2 coming from the human interac-
tion and the environment. This system is stable and satisfies J(w) =

∫ ∞
0 (z(t)T z(t)−

γ2w(t)T w(t))dt < 0, with the control gains MP−1
2 for any time-varying delays

τ1(t) ∈ [h1,h2] if the following LMI problem is feasible:
Minimize γ with P > 0, P2, M, Q1, Q2, R1, R2 matrices with suitable dimensions

and ξ , ξ1,ξ2,ξ3, ρA, ρB two positive scalar such that [20]:

Γ =

⎛
⎜⎝
Γ 1

11+Γ
2

11+Γ
2

11
T Γ12 Γ13 e1PT

2 CT Γ15

� Γ 1
22−ξP2−ξPT

2 ξB 0 Γ25

� � −γ2I 0 Γ35
� � � −I 0
� � � � Γ55

⎞
⎟⎠< 0,

(
R2 S
ST R2

)
� 0, (12)

Γ 2
11 =

(
PT

2 AT ξ1PT
2 AT ξ2PT

2 AT ξ3PT
2 AT

−MT B1
T −ξ1MT B1

T −ξ2MT B1
T −ξ3MT B1

T

0 0 0 0
0 0 0 0

)
, (13)
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Γ12 = e1P+ ξ

(
PT

2 AT

−MT B1
T

0
0

)
−
( P2
ξ1P2
ξ2P2
ξ3P2

)
, Γ13 =

(BP2
ξ1B
ξ2B
ξ3B

)
. (14)

Γ T
15 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 DP2 0 0
0 −E1M 0 0

GT ξ1GT ξ2GT ξ3GT

HT
1 ξ1HT

1 ξ2HT
1 ξ3HT

1
0 −E1M 0 0

DP2 0 0 0
0 0 0 0
0 0 0 0

HT ξ1HT ξ2HT ξ3HT

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Γ T

25 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
ξHT

ξGT

0
0
ξHT

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Γ T

35 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

EP2
0
E

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (15)

Γ55 = diag
( −1
ρA

I, −1
ρB1

I, ρAI, ρB1
I, −1
ρB1

I, −1
ρA

I, ρB1
I, ρAI, ρBI, −1

ρB
I
)
, (16)

e1 = col{I,0,0,0}, e2 = col{0, I,0,0},
e3 = col{0,0, I,0}, e4 = col{0,0,0, I}.

(17)

Γ 1
11 = e1Q1eT

1 −e3Q1eT
3 +e1Q2eT

1 −e4Q2eT
4

− (e1−e3)R1(e1−e3)
T

−
(

e3−e2 e2−e4

)(R2 S
ST R2

)(
eT

3−eT
2

eT
2−eT

4

)
,

Γ 1
22 = h2

1R1 +(h2−h1)
2R2.

(18)

3.4 Problem 3: Slave-Emulator Synchronization

If the emulator is synchronized with the master, then synchronizing the slave state to
the emulator state is a control problem where it is considered the following system:

{
ẋps(t) = (A+ΔA(t))xps(t)+ (B+ΔB(t))wps(t),
zps(t) =Cxps(t).

(19)

with:

xps(t) =

(
θ̇s(t)
θ̇p(t)

θs(t)−θp(t)

)
, zps(t) =

(
θs(t)−θp(t)

)
,

wps(t) =
(

Fe(t)
F̂e(t−τ̂1(t))+F̂h(t−τ1(t))−Fp(t)

)
,

(20)
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where:

A =

(
As−BsK0

s −BsK1 −BsK2 −BsK3

0 Am−BmK0
m 0

1 −1 0

)
,

ΔA(t) =

(
ΔAs(t)−ΔBs(t)K0

s −ΔBs(t)K1 −ΔBs(t)K2 −ΔBs(t)K3

0 ΔAp(t)−ΔBp(t)K0
m 0

0 0 0

)
,

B =

(
Bs 0
0 Bm
0 0

)
=

(
B1

ps B2
ps

)
,

ΔB(t) =

(
ΔBs(t) 0

0 ΔBp(t)
0 0

)
, C =

(
0 0 1

)
.

(21)

The synchronization is achieved by designing the slave control gain K in such a
way that the quadratic error between the slave output and the emulator output zps(t)2

is minimized according to the disturbance wps(t)2 coming from the environment
and the emulator-Master synchronization control. This can be done by solving the
following LMI problem:

Minimize γ with P > 0, N matrices with suitable dimensions and ρA, ρB two
positive scalar such that:

⎛
⎜⎜⎜⎜⎜⎝

AP+PAT−NT BT−BN GP HP NT ET PDT B PC
� − 1

ρA
I 0 0 0 0 0

� � − 1
ρB

I 0 0 0 0

� � � −ρBI 0 0 0
� � � � −ρAI 0 0
� � � � � −γ2I 0
� � � � � � −I

⎞
⎟⎟⎟⎟⎟⎠

< 0 (22)

The control gains are given by NP−1.

3.5 Global Stability and Performance Analysis

The objective of this subsection is to provide the stability and performance anal-
ysis by designing the emulator of master and the controller C under time-varying
delays and uncertainties. Firstly, the emulator of master, L, is designed by means
of Lyapunov-Krasovskii functional, H∞ control and LMI, so to synchronize the po-
sition between the master and the emulator. The objective is to ensure the global
stability and tracking performance of the whole system described by:

⎧⎪⎪⎨
⎪⎪⎩

ẋmps(t) = (A+ΔA(t))xmps(t)
+(A1 +ΔA1(t))xmps(t− τ1(t))
+(B+ΔB(t))wmps(t),

zmps(t) =Cxmps(t),

(23)
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with:

xmps(t) =

⎛
⎜⎜⎝

θ̇s(t)
θ̇p(t)

θ̇m(t)
θs(t)−θp(t)
θp(t)−θm(t)

⎞
⎟⎟⎠ ,wmps(t) =

(
Fe(t)

F̂e(t−τ̂1(t))+F̂h(t−τ1(t))
Fm(t)+Fh(t)

)
,

zmps(t) =
(
θs(t)−θp(t)
θp(t)−θm(t)

)
.

(24)

A =

⎛
⎜⎝

As−BsK0
s −BsK1 −BsK2 0 −BsK3 0
0 Am−BmK0

m 0 0 0
0 0 Am−BmK0

m 0 0
1 −1 0 0 0
0 1 −1 0 0

⎞
⎟⎠ ,

ΔA(t) =

⎛
⎝

(1,1) −ΔBs(t)K2 0 −ΔBs(t)K3 0
0 (2,2) 0 0 0
0 0 (3,3) 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎠ ,

(25)

(1,1) = ΔAs(t)−ΔBs(t)K
0
s −ΔBs(t)K1,

(2,2) = ΔAp(t)−ΔBp(t)K
0
m,

(3,3) = ΔAm(t)−ΔBm(t)K
0
m,

(26)

A1 =

( 0 0 0 0 0
0 −BmL1 −BmL2 0 −BmL3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

)
= GΔ(t)D, (27)

ΔA1(t) =

⎛
⎝

0 0 0 0 0
0 −ΔBp(t)L1 −ΔBp(t)L2 0 −ΔBp(t)L3
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞
⎠= G1Δ(t)D1, (28)

B =

⎛
⎝

Bs 0 0
0 Bm 0
0 0 Bm
0 0 0
0 0 0

⎞
⎠ , ΔB(t) =

⎛
⎝
ΔBs(t) 0 0

0 ΔBp(t) 0
0 0 ΔBm(t)
0 0 0
0 0 0

⎞
⎠ ,C =

(
0 0 0 1 0
0 0 0 0 1

)
. (29)

The goal here is to compute the global ratio between the quadratic tracking er-
ror zmps(t)2 and the disturbance wps(t)2 coming from the environment and the hu-
man operator. If the new H∞ bound is not satisfied, the global approach needs to
be rerolled with new performance indices (better bounds, another local controller
performance...).

Minimize γ with P > 0, P2, P3, P4, P5, M, Q1, Q2, R1, R2 matrices with suitable
dimensions , ρA, ρA1 , ρB two positive scalar such that the following conditions are
feasible:

Γ =

⎛
⎜⎜⎝
Γ 1

11+Γ
2

11+Γ
2

11
T Γ12 Γ13 e1CT Γ15

� Γ 1
22−P3−PT

3 P3B 0 Γ25

� � −γ2I 0 Γ35
� � � −I 0
� � � � Γ55

⎞
⎟⎟⎠< 0,

(
R2 S
ST R2

)
� 0, (30)
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Γ 2
11 =

(
PT

2 AT PT
3 AT PT

4 AT PT
5 A1

T

PT
2 A1

T PT
3 A1

T PT
4 A1

T PT
5 A1

T

0 0 0 0
0 0 0 0

)
, (31)

Γ12 = e1P+

(
AT P3
A1

T P3
0
0

)
−

⎛
⎜⎝

PT
2

PT
3

PT
4

PT
5

⎞
⎟⎠ , Γ13 =

(
P2B
P3B
P4B
P5B

)
. (32)

Γ T
15 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 D 0 0
0 D1 0 0

PT
2 GT PT

3 GT PT
4 GT PT

5 GT

PT
2 GT

1 PT
3 GT

1 PT
4 GT

1 PT
5 GT

1
0 D1 0 0
D 0 0 0
0 0 0 0
0 0 0 0

PT
2 HT PT

3 HT PT
4 HT PT

5 HT

0 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Γ T

25 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0

GT
1

GT

0
0
ξH
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,Γ T

35 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
0

EP3
0
E

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
, (33)

Γ55 = diag
(
−1
ρA

I, −1
ρA1

I, ρAI, ρA1
I, −1
ρA1

I, −1
ρA

I, ρA1
I, ρAI, ρBI, −1

ρB
I
)
, (34)
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3.6 Tracking in Abrupt Changing Motion

Figure 3 shows the position tracking between the master and slave under time-
varying delays and uncertainties, where the human operator (Fh(t)) is modeled as
the pulse generator.

From the Figure, it can be seen that the method achieves the position tracking,
especially at the mutation point (amplified part in Figure 3). Good position conver-
gence between the master and slave has been presented.

3.7 Tracking in Wall Contact Motion

Similarly, the position tracking in wall contact motion is presented Figure 4. Here,
the slave is driven to the hard wall with a stiffness of Ke = 30kN/m located at the
position x = 1.0m.

Based on H∞ control, the time-varying model uncertainties are handled by the
proposed emulator of master with the controller C. The force tracking Fm(t) = F̂e(t−
τ2(t)) can be seen in the smaller figure of Figure 4.
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4 Conclusions

It was shown how a teleoperation application can be solved by using a time-varying
delay framework. The controller proposed is based on predictor-like approaches (the
so-called ‘emulator’) and guarantees some performance in term of force feedback
fidelity and position tracking. These results could be enhanced if more informa-
tion on the environment were available, but also if the design procedure could be
achieved globally. This last improvement is still open, since no known result allows
for solving this problem in one step.
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Graph Laplacian Design of a LTI Consensus
System for the Largest Delay Margin: Case
Studies�

Wei Qiao and Rifat Sipahi

Abstract. The dynamics of a LTI consensus system with homogeneous inter-
agent delays is the focus here where we design, via graph synthesis and our
Responsible Eigenvalue (RE) concept, its Graph Laplacian associated with agents’
heterogeneous coupling strengths, with the aim to maximize the system’s delay mar-
gin - the largest delay it can withstand before losing its stability. Over case studies,
we present how this calculation can be done.

1 Introduction

Many dynamical systems in biology [11], social networks [1], neural networks [4,
35], vehicular traffic flow [6,29], and supply chains [30] can be seen as systems with
coupled agents interacting with each other, some with after effects, i.e., delays [15,
18–20, 32]. In such systems, the network aspect of the system allows coupling the
so-called agents, which can be seen as interacting sub-dynamical systems, whereas
delay often times arises via the communication medium that facilitates information
exchange between the agents. Since in many cases, communication between the
agents is necessary, delay effects are inevitable in agents’ decision making prepared
based on the information received from other agents. Under delays, however, the
coupled system can become unstable thereby destroying system functionality. In
other words, network connectivity (topology) and time delay together affect the
stability of the system [10, 21–24, 27, 33].

Studying the relationship between delays, topology and stability is however chal-
lenging since the infinite dimensionality of delay-differential equations cannot be
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directly correlated to graph properties. In this reverse problem, our work starts in
2007 with the work in [29], as well as [28, 30] including a study in 2008 in which
three independent delays is considered – the first study on this topic with multiple
delays, to the best of our knowledge. Moreover, along these lines again, since 2009,
the authors have been working on a class of broadly studied LTI consensus sys-
tem represented by a set of delay-differential equations with homogeneous delays
but with heterogenous agent coupling strengths [21, 22, 33, 34]. From these efforts,
the responsible eigenvalue (RE) concept arose. In summary, the RE concept can be
used to calculate the scalar quantity the delay margin τ∗ of the corresponding infi-
nite dimensional delay-differential equation only by checking the finite number of
eigenvalues of the graph Laplacian of that system.

With the RE concept and inspired by Cartesian product operation on graphs [2],
we established some rules with which large scale graphs can be synthesized for the
type of delayed systems at hand, while guaranteeing sufficient delay margin [24].
Moreover, we recently proposed some design rules for such systems, while even
relaxing their consensus condition, where one can tailor two graphs using Cartesian
products and calculate the maximum delay margin possible in the system with the
arising large graph [25]. This study also enabled us to design the graph Laplacians,
and thereby allowing us to establish a link to designing multiple heterogeneous
agent-coupling strengths all at once. In this chapter, we revisit these design rules
and use them to solve various case studies, in order to demonstrate both the syn-
thesis approach and the numerical technique used to calculate the maximum delay
margin based on RE [33, 34].

Notations are standard. We use C+, C−, jR for right half, left half and the imag-
inary axis of the complex plane, respectively. R represents the set of real numbers,
j is the imaginary unit, and λk(A) is an eigenvalue of the square matrix A ∈ R

n×n,
k = 1, . . . ,n. Matrices, vectors and sets are denoted by bold face, while scalar enti-
ties are with normal font. The vector v ∈ R

L
+ defines an L-dimensional vector with

positive real entries.

2 Preliminaries

We first present the dynamical system studied in our previous work, briefly explain
our RE concept, and next provide background information on Cartesian products,
as well as our recent results on “design rules” to calculate the maximum possible
delay margin.

2.1 Consensus Dynamics

In [24, 33], we studied the following LTI consensus dynamics:

dxi(t)
dt

=
n

∑
k=1,k �=i

αik [xk(t− τ)− γikxi(t− τ)] , (1)
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where xi(t) is the state of agent i, i = 1, . . . ,n, αik ≥ 0 are the coupling strengths,
γik = 1, and τ ≥ 0 is the constant time delay. Eq. (1) can be re-written as,

dx(t)
dt

= Ax(t− τ), (2)

where x(t)= (x1(t), . . . ,xn(t))
T ∈R

n is the state vector, and the corresponding graph
Laplacian is defined by L (G) = −A, which is determined by whether or not αik is
zero. Moreover, we assume that A is diagonalizable.

Eq.(1) and its similar forms have been studied extensively in the context of
synchronization [7, 9, 15, 18], traffic flow [3, 6, 29, 31], and autonomous agents
[5, 12, 16, 19, 26]. In the previous work, the focus was however on consensus, i.e.,
γik = 1, hence matrix A was constrained to have zero row-sum. This, along with the
assumption that each agent is connected to the other agents with directed links, leads
to a single zero eigenvalue λ1(A) = 0, as per the nature of consensus. Moreover, it is
common practice to take αik as non-negative, which then sets the remaining eigen-
values stable, λ2, . . . ,λn ∈ C−, see the cited references. Here, we shall relax these
assumptions, following our study in [25] and let γik �= 1 and αik ∈R in general. This
relaxation indicates that the problem is neither limited to consensus nor to positive
coupling strengths, hence system (1) represents a broader class of systems, possibly
A having unstable eigenvalues, λk ∈ C.

2.2 Stability, Responsible Eigenvalue (RE), Graph Synthesis

Stability of (1) is determined by the delay parameter τ . In order to find out how
large the delay τ can be, while keeping (2) stable, one should study the eigenvalues
of (2). In the presence of delay, the dynamics in (2) has infinitely many eigenvalues.
For this dynamics to be stable, it is necessary and sufficient that all these eigenvalues
have negative real parts [36]. To be consistent with this stability property, negative
Laplacian is defined here as Q(G) =−L (G) = A.

For γik ∈ R in (1) and so long as A has stable eigenvalues, there exists an upper
bound on the delay value, known as the delay margin τ∗, less than which (2) is
stable, see [14, 33] for the special of γik = 1 case. Calculation of τ∗ can as a matter
of fact be done even without analyzing the infinitely many eigenvalues of (2) as
stated in the following lemma:

Lemma 1. [22, 23, 33] Either one real or one pair of complex conjugate eigen-
value(s) of A determines the delay margin τ∗.

The eigenvalue of A that computes τ∗ in Lemma 1 is defined as the RE, which was
defined in [22, 23, 33, 34] for γik = 1 and αik ≥ 0. However, since γik and αik do
not affect the main structure of (2), the RE concept holds regardless of what the
numerical values of these parameters are. The only slight addition to Lemma 1 for
the case of γik �= 1 and αik ∈ R is to state that the delay margin of (2) does not exist
if there exists at least one eigenvalue of A with a non-negative real part.



104 W. Qiao and R. Sipahi

With RE, one analytically and precisely computes τ∗. RE also enables a visual tool:
the Delay Margin Contour Map (DMCM), see Figure 1 [22,23,33,34]. On DMCM,
one superposes all λk of A and identifies the eigenvalueλk that resides on the contour
with the smallest contour value, which is τ∗. This eigenvalue is the RE. We shall use
DMCM in the next section to calculate the maximum possible delay margin in (2),
which we will synthesize by Cartesian Product graph operations, as defined next.

Fig. 1 Eigenvalues (dots) of a representative matrix A superposed on the Delay Margin Con-
tour Map (DMCM). The label on each contour represents the corresponding τ∗k value. The RE
is the eigenvalue residing on the contour with the smallest contour value, which is τ∗ = 0.125
in this example.

Definition 1. [8] The Kronecker sum,
⊕

, is the matrix sum

Q(GA)
⊕

Q(GB) = Q(GA)
⊗

InB + InA

⊗
Q(GB), (3)

where
⊗

denotes the Kronecker product operation, the dimension of Q(Gi), i =
1,2, is ni, which is also the number of vertices of Gi, and Iq is the q× q identity
matrix. The eigenvalues of Q(GC) found from Q(GC) = Q(GA)

⊕
Q(GB) are all

possible sums of the eigenvalues of Q(GA) and Q(GB) [2, 13].

×

Fig. 2 In this chapter, the Cartesian product of two graphs GA and GB is denoted by GC =
GA×GB
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2.3 Design Rules

Here, we summarize the four design rules we introduced in [25]. These rules lay out
the conditions under which the delay margin of the system with graph GC can be
computed as a parameter of one of the eigenvalues of either GA or GB. The idea is
to exploit the property in Definition 1 to manage the migration of eigenvalues on C,
due to Kronecker sum property, and use this in connection with DMCM in Figure 1
to compute the delay margin of the system with graph GC.

Lemma 2. [25] Given a stable Q(GA) with a RE λ ∗(Q(GA)) that is either complex
conjugate or real, the largest achievable delay margin τ∗GC

in GC can be attained by
satisfying the condition ∀λk(Q(GB)) ∈R.

Lemma 2 indicates that in order to build a large-scale system corresponding to GC

with a delay margin τ∗GC
as large as possible, the first rule is to have ∀λk(Q(GB)) ∈

ℜ−. This is because if one of λk(Q(GB)) were complex, the eigenvalue of the sys-
tem with GC would migrate diagonally on C, away from the origin, and then due to
the specific shape of DMCM contours, the arising delay margin would be guaran-
teed to be smaller, see contour values in DMCM.

Property 1. Inspecting DMCM in Figure 1, one can find that there exists a threshold
on τ∗ value for a fixed ω = ℑ(λk). Moreover, the largest possible τ∗ is monotoni-
cally decreasing as ω increases for a fixed real part σ =ℜ(λk)< 0. In other words,
for a given system Q(GA) with multiple eigenvalues and assuming that the eigen-
values of Q(GC), where GC = GA×GB, move horizontally on the complex plane
as per the real eigenvalues of Q(GB) (see Lemma 2), the maximum possible delay
margin τ∗ that can be attained in the system with GC is determined by the eigenvalue
of Q(GA) with the largest imaginary part [25].

Take the system with GA as described in (2), where A = A1. Let A1 have more than
one eigenvalue in general, and define

sup{ℜ(λ )|λ = eig(Q(GA))} = c1.

Let another system be defined with graph GB and A = A2 in (2). Assume that A2

is scalar A2 = Δ ∈ R, i.e., the corresponding system has only one real eigenvalue,
which is Δ . Using Cartesian product, let GC be obtained as GC = GA×GB. Keeping
A1 fixed, the following design rules hold for the parameter Δ of Q(GB), in relation
to the maximum delay margin that can be obtained for the system with graph GC:

Design Rule 1. If c1 > 0 and thus A1 is unstable, then for designing a stable delay-
free dynamics corresponding to GC, it is necessary that Δ ≤−c1.

Design Rule 2. For Q(GA) and Q(GB) stable, a larger τ∗GC
of GC exists, for some

Δ = Δ∗ ∈ [Δ0,0], where τ∗(λk(Q(GA))+Δ0) = τ∗(λk(Q(GA))). This τ∗GC
is com-

puted as τ∗(λk(Q(GA))+Δ∗) corresponding to the eigenvalue λk(Q(GA))+Δ∗.
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Design Rule 3. Let the RE of Q(GA) reside on the left-hand side of a contour arc
in DMCM. Then there exists a Δ = Δ∗ ∈ [0,Δ1], where τ∗(λk(Q(GA))+Δ1) = 0,
for which a larger delay margin τ∗GC

is computed as τ∗(λk(Q(GA))+Δ∗).

Design Rule 4. Given an unstable Q(GA), there exists a larger τ∗GC
of GC, for some

Δ = Δ∗ ∈ [Δ0,−c1], where c1 > 0, and Δ0 satisfies that ∀(λk(Q(GA))+Δ0) lie on
the left hand side of a contour arc or on the peak point of a contour arc in DMCM.
This τ∗GC

can be attained as τ∗(λk(Q(GA))+Δ∗).

3 Case Studies

We relax the consensus assumption here by allowing arbitrary entries in A, where
αik ∈ℜ and γik �= 1 in (1). That is, the entries of A can be either negative, zero, or
positive, as long as a node is not disconnected from all the remaining nodes. This is
a case with heterogeneous inter-agent couplings, where we may in general have both
real and complex conjugate eigenvalues λk(A), some of which may be unstable, see
an application of this in [3].

We further note here that, in the sequel, the graphs GA and GB are combined to-
gether using Cartesian product, giving rise to GC = GA×GB, where Q(GB) is first
assumed to have a single eigenvalue Δ ∈ R. Then the design rules summarized in
Section 2 are applied to compute the best Δ selection for which τ∗GC

can be maxi-
mal. Next, pole placement technique [17] is used to increase the dimension of GB

by placing its eigenvalues in the vicinity of Δ , by which τ∗GC
calculation does not

significantly lose accuracy.

3.1 Tailoring Stable Q(GA) with Stable Q(GB)

The system in (2) corresponding to GA has eigenvalues satisfying c1 < 0. With the
knowledge of Lemma 2, we can incrementally add Δ ≤ 0 to the eigenvalues of
Q(GA) where Δ ∈ [Δ0,0], and Δ0 satisfies τ∗(λk(Q(GA))+Δ0) = τ∗(λk(Q(GA))).
These conditions indicate that τ∗GC

can be maximized by selecting a location for
λk(Q(GA))+Δ as λk(Q(GA)) migrates horizontally away from the imaginary axis
from one point, and before reaching another point that is on the same contour in
DMCM. This makes sense; delay-margin contour values are larger inside of any of
the contours, see Figure 1. If Δ0 = 0, then the largest achievable delay margin is
τ∗(Q(GA)) since there is no room for improvement, otherwise, one can refer to the
following examples:

Example 1: A stable Q(GA) is given with the eigenvalues: −2± 3.5 j,−0.9±
1.3 j,−1.5± 3 j. Design Rule 2 renders Figure 3, in which we identify the largest
achievable delay margin as τ∗GC

= 0.1603, where Δ = Δ∗ =−2.07. That is, by shift-
ing the real parts of λk(Q(GA)) away from the imaginary axis at an amount of 2.07
units, we obtain the delay margin τ∗GC

= 0.1603. In other words, if the eigenvalue Δ
of Q(GB) is equal to −2.07, then the system in (2) with GC has a delay margin of
τ∗GC

= 0.1603.
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Fig. 3 Example 1: Delay margin τ∗ of GC with respect to the eigenvalue Δ of Q(GB)

We now design a large dimensional graph GC corresponding to the dynamics with the
largest achievable delay margin. In other words, we also want to increase arbitrarily
the system dimension associated with GC. To achieve this, we can use the well-known
pole-placement technique [17] to place all the poles of Q(GB) on the real axis around
Δ∗ = −2.07. This is possible as long as the place command in MATLAB yields a
feasible solution. To be able to execute the command, we first generate a matrix V =
(vi j)∈R

6×6 where vi j are randomized in [0,1]with uniform distribution, and generate
another matrix W = wi j ∈ R

6×1, where wi j = 1. Next, we select the eigenvalues of
Q(GB) in close proximity toΔ∗, at−1.92,−2.02,−2.07,−2.12,−2.22, see Figure 4.
Then, using the place command, it becomes possible to compute a matrix Y ∈R

1×6,
similar to a control matrix, by which one can then calculate Q(GB) = V −WY in
R

6×6. With this six-dimensional matrix Q(GB), the delay margin is calculated again,
which is found as τ∗GC

= 0.1602. Notice that the tradeoff for eventually utilizing a large
dimensional GB is to have an infinitesimally small decrease in the largest achievable
delay margin for the system with GC, in this case from τ∗GC

= 0.1603 down to 0.1602.
If the eigenvalues of Q(GB) were significantly spread away fromΔ∗, then the largest
achievable delay margin would be much smaller than τ∗GC

= 0.1602.
Finally, we note that the above procedure designs the entries of the matrix

Q(GB), which is formed by the coupling strengths in this system, such that the aris-
ing system with Q(GC) can have the maximal delay margin. The coupling strengths
of the agents in the arising system are related to Q(GC), which can be found by
utilizing the Kronecker sum defined in (3).

Example 2: A stable Q(GA) is given with the eigenvalues: −0.4650, −1.5307±
2.2208 j, −3.2104± 1.4406 j, −4.1838± 0.2521 j, −2.9173. We again use Design
Rule 2 which yields Figure 5, where we identify the largest achievable delay margin
as τ∗GC

= 0.2526, and Δ = Δ∗ = −1.05. In other words, if λk(Q(GB)) = −1.05
holds, then the system in (2) with GC has a delay margin of τ∗GC

= 0.2526. Larger
dimensions of Q(GB) can be acquired by pole placement procedure as discussed
above in Example 1.
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Fig. 4 Example 1: Eigenvalues of Q(GA) (stars) and Q(GC) (circles)

Fig. 5 Example 2: Delay margin τ∗ of GC with respect to the eigenvalue Δ of Q(GB)

3.2 Tailoring an Unstable System with a Stable System

We now analyze the largest achievable delay margin when combining an unstable
negative Laplacian and a stable one using Cartesian product. There are two possible
cases that fall into this category, either the system corresponding to GB is unstable
(use Design Rule 3), or the designed system corresponding to GA is unstable (use
Design Rule 4). For the latter case, interestingly, due to the unstable eigenvalues of
Q(GA), we show that there is more room for obtaining a larger achievable delay
margin for the system with Q(GC).

3.2.1 Case 1: Q(GB) Is Unstable

If an eigenvalue of Q(GA) resides on the left-hand side of a contour arc in DMCM,
it can be seen from Figure 1 that the delay margin decreases monotonically as the
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eigenvalue migrates away from the imaginary axis while its real part decreases at
an amount of |Δ |. In this case, Δ0 = 0, that is, the largest attainable delay margin
is where the eigenvalue already resides, not where it migrates to, as it moves away
from the imaginary axis.

Example 3: As shown in Figure 6(a), the delay margin of Q(GC) is monotoni-
cally decreasing as we decrease Δ from 0 to −5 where λk(Q(GA)) are at −4.2731,
−7.1597, −6.1532± 0.5879 j, −6.6820, −6.3555, −5.6477, −4.9577, −5.1771.
However, we find that, if Δ is allowed to be positive, then by applying Design Rule
3, the delay margin can be increased even more than the case with Δ = 0, and can
reach its optimal largest achievable value, which is τ∗GC

= 0.5435, as shown in Fig-
ure 6(b). The corresponding Δ∗ is Δ∗ = +4.27, which is the only eigenvalue of
Q(GB).

(a) τ∗GC
vs. the eigenvalue Δ < 0 of Q(GB). (b) τ∗GC

vs. the eigenvalue Δ > 0 of Q(GB).

Fig. 6 Example 3: Delay margin τ∗ of GC with respect to the eigenvalue Δ of Q(GB)

3.2.2 Case 2: Q(GA) Is Unstable

For the case of ℜ(λk(Q(GA)))> 0, where the delay margin of the system does not
exist since Q(GA) is unstable, the design rule is a combination of Design Rule 1
and Design Rule 4.

Example 4: Let λk(Q(GA)) be 1.1834± 2.2497 j, −0.8599± 1.1108 j, 2.7120,
−0.4037± 0.8177 j, −0.6003. By applying Design Rule 4, the largest achievable
delay margin is computed as τ∗GC

= 0.249, which corresponds to Δ∗ = −3.8, see
Figure 7. This indicates that the only eigenvalue of Q(GB) is Δ∗ =−3.8.

Example 5: Let λk(Q(GA)) be 1.3714± 3.3323 j, 1.6620, −1.5845± 1.8130 j,
−2.3915,−1.7505,−1.1474,−0.0374± 0.3552 j. By applying Design Rule 4, the
largest achievable delay margin is computed as τ∗GC

= 0.1684, corresponding to
Δ∗ =−5.25, see Figure 8.
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Fig. 7 Example 4: Delay margin τ∗ of GC with respect to the eigenvalue Δ < 0 of Q(GB)

Fig. 8 Example 5: Delay margin τ∗ of GC with respect to the eigenvalue Δ < 0 of Q(GB)

4 Conclusion

A class of coupled LTI dynamical systems with a time delay representing the de-
layed communication among the subsystems is studied. A numerical procedure
developed earlier is utilized to study several problems, in which we calculate the
largest achievable delay margin arising from tailoring, via Cartesian product, stable
and/or unstable Laplacians of graphs representing the dynamical system at hand.
The calculation becomes possible with the analytical and graphical nature of the
authors’ previously developed Responsible Eigenvalue concept, and enables us to
reveal a relationship with the heterogeneous coupling strengths of multiple agents.
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Second-Order Leaderless Consensus Protocols
with Multiple Communication and Input Delays
from Stability Perspective

Rudy Cepeda-Gomez and Nejat Olgac�

Abstract. A leaderless consensus control protocol for double integrators with mul-
tiple, rationally-independent time delays is studied in this paper from two intriguing
and novel perspectives. First, the crucial stability analysis of time delayed system is
performed using a recent technique known as the Cluster Treatment of Character-
istic Roots (CTCR). CTCR method is pursued after a block-diagonalization (mode
decoupling) transformation on the system. This treatment produces a unique stabil-
ity outlook for the dynamics in the space of the delays. Furthermore they are non-
conservative and exhaustive. Secondly, a much different stability display is created
using the Spectral Delay Space as an overture to the CTCR for the determination of
the needed potential stability crossing (switching) hypersurfaces in the delay space.
Examples are provided to display the effectiveness of this new stability analysis
mechanism.

1 Introduction

Within the broad field of cooperative control, the consensus problem for multi-agent
systems has received a great deal of attention in recent years. After the work of
Olfati-Saber and Murray [1], many researchers have contributed to the knowledge in
this area. Some of these studies are limited to the systems with first order agents [1],
others focus on second order agent behavior [2], yet others include time delays in the
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communication channels [3, 4]. However, very few works such as [6, 13, 20] offer a
practicable procedure for the non-conservative assessment of the stability properties
of a consensus system with respect to the delays.

This chapter uses a consensus protocol which is presented by Meng et al. in [16],
and applies to it a recent stability analysis methodology [13], which is expanded
to handle the case of directed topologies. The agents operating under this protocol
are affected by two time delays: a communication delay, which affects only the
information coming from other agents, and an input delay, which affects all the
state feedback including that of own states of agents. These delays are assumed to
be constant and uniform. The stability analysis used in [16] is based on Razhumikin
theorem, therefore it is conservative. The new technique performed here, the CTCR,
on the contrary, provides non-conservative and exhaustive stability tables.

In this chapter, bold face notation is used for vector quantities, bold capital letters
for matrices and italic symbols for scalars.

2 Problem Statement

We focus this study on a group of n agents driven by second order dynamics,
ẍ j (t) = u j (t). Here x j(t) represents the scalar position of the agent and u j(t) the
control input. We show a one dimensional case in this text, but the treatment can
be easily expanded to higher dimensional dynamics by using the Kronecker product
representation [5]. We declare consensus when the agents reach a common position,
i.e., when limt→∞ (x j (t)− xk (t)) = 0 for any j and k. In order to achieve this ob-
jective, the members of the group share their positions and velocities with a limited
number of neighbors, through one-directional communication channels. The peers
from which agent j receives information are called the informers of agent j, and this
set of δ j < n agents is denoted by N j.

The inter-agent communication topology in this protocol is described by a di-
rected graph with n vertices. We use AΓ =

[
a jk

]
∈ R

n×n to denote the adjacency
matrix of this graph. Its components are a jk > 0 whenever agent k is an informer
of agent j and a jk = 0 otherwise. The diagonal elements are also taken as zero:
a j j = 0. Notice that this matrix is, in general, not symmetric. The in-degree matrix
of the graph is ΔΔΔ =

[
Δ jk

]
∈ R

n×n, with Δ j j = ∑n
k=1 a jk = δ j and Δ jk = 0 if j �= k. It

is obviously a diagonal matrix.
The control logic followed by the agents is taken from the common literature,

with specific parametric selections from [16]:

u j (t) =−
1
δ j

n

∑
k=1

a jk (x j (t− τin)− xk (t− τin− τcom))

− γ
δ j

n

∑
k=1

a jk (ẋ j (t− τin)− ẋk (t− τin− τcom))

(1)
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where τin and τcom are the input and communication delays, respectively, and γ is a
positive gain. It is also assumed that each agent has at least one informer, i.e., δ j �= 0
for j = 1, 2, . . .. The control logic (1) can be expressed in state space as

ẋ(t) =
(

In⊗
[

0 1
0 0

])
x(t)+

(
In⊗

[
0 0
−1 −γ

])
x(t− τ1)

+

(
C⊗

[
0 0
1 γ

])
x(t− τ2)

(2)

where x = [x1 ẋ1 x2 ẋ2 · · · xn ẋn]
T ∈ R

2n is the state vector. In (2), In represents the
identity matrix of order n, ⊗ is the Kronecker product [5] and C = ΔΔΔ−1AΓ . The
delays have been renamed here, as τ1 = τin and τ2 = τin + τcom. The characteristic
equation of (2) is a 2n degree quasi-polynomial in which the delay terms appear
with up to 2n degree of commensuracy and with cross-talk terms. Obviously, the
complexity of this equation increases rapidly with the number of agents. The only
paradigm that provides a non-conservative determination of the stability posture of
such systems with respect to the time delays is the Cluster Treatment of Characteris-
tic Roots, CTCR [8,9,12]. The direct deployment of CTCR to (2) in its original form
is still very cumbersome as the general problem of multiple time delay systems also
known to be NP-hard: it becomes numerically intractable as the order of the char-
acteristic equation increases [22]. We circumvent the complication following the
methodology described in [13]. It consists of a factorization procedure followed by
the application of CTCR to the simplified system.

Lemma 1. Factorization Property. The characteristic equation of system (2) can
always be expressed as the product of a set of second and fourth order factors:

Q(s,γ,τ1,τ2) = det
(
sI2n−A−B1e−τ1s−B2e−τ2s)=

�+m

∏
j=1

q j (s,γ,τ1,τ2,λ j) =
�

∏
j=1

[
s2 +(γ s+ 1)

(
e−τ1s−λ je

−τ2s)]

×
�+m

∏
j=�+1

[
s4 + 2s2 (γ s+ 1)

(
e−τ1s−ℜ(λ j)e−τ2s)+

(γ s+ 1)2
(

e−2τ1s− 2ℜ(λ j)e−(τ1+τ2)s +
∣∣λ j

∣∣2 e−2τ2s
)]

(3)

where A, B1, and B2 matrices are self-evident from (2), λ j, j = 1, 2, · · · , n represent
the eigenvalues of C matrix. It is assumed that this matrix has � real eigenvalues,

denoted by j = 1, 2, · · · , �, and m complex conjugate eigenvalue pairs,
(
λ j,λ ∗j

)
,

j = �+ 1, �+ 2, · · · , m, n = �+ 2n. We assume, for simplicity, that each eigenvalue
has multiplicity one.

Proof. Let T to be the nonsingular similarity transformation matrix that converts C
into its Jordan canonical form:ΛΛΛ =T−1CT. The matrixΛΛΛ ∈R

n×n is block diagonal
of the form:
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ΛΛΛ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ1 0 · · · 0 0 · · · 0
0 λ2 · · · 0 0 · · · 0
0 0 · · · λ� 0 · · · 0
0 0 · · · 0 J�+1 · · · 0
...

...
...

...
...

. . .
...

0 0 · · · 0 0 · · · J�+m

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(4)

where λ j, j = 1, 2, · · · , �, are the (size 1) Jordan blocks corresponding to the real
eigenvalues and

J j =

[
ℜ(λ j) −ℑ(λ j)
ℑ(λ j) ℜ(λ j)

]
, j = �+ 1, �+ 2, . . . , �+m (5)

are the 2×2 Jordan blocks corresponding to the complex conjugate eigenvalue pairs.
A state transformation x(t) = (T⊗ I2)ξξξ (t) in (2) results in:

ξ̇ξξ (t) =
(
T−1⊗ I2

)(
In⊗

[
0 1
0 0

])
(T⊗ I2)ξξξ (t)

+
(
T−1⊗ I2

)(
In⊗

[
0 0

−1 −γ

])
(T⊗ I2)ξξξ (t− τ1)

+
(
T−1⊗ I2

)(
C⊗

[
0 0
1 γ

])
(T⊗ I2)ξξξ (t− τ2)

(6)

A convenient property of the Kronecker product [5] is (U⊗V)(W⊗Z) = UW⊗
VZ, where the matrix pairs (U, W) and (V, Z) are of the same dimensions. Using
this property, (6) becomes:

ξ̇ξξ (t) =
(

In⊗
[

0 1
0 0

])
ξξξ (t)

+

(
In⊗

[
0 0

−1 −γ

])
ξξξ (t− τ1)+

(
ΛΛΛ ⊗

[
0 0
1 γ

])
ξξξ (t− τ2)

(7)

Since In and ΛΛΛ are diagonal and block diagonal matrices, respectively, (7) is block-
diagonalized, thus it can be represented as a set of �+m dynamically decoupled
subsystems as:

ξ̇ j (t) =

[
0 1
0 0

]
ξ j (t)+

[
0 0
−1 −γ

]
ξ j (t− τ1)

+λ j

[
0 0
1 γ

]
ξ j (t− τ2) , j = 1, 2, · · · , �

(8a)

ξ̇ξξ j (t) =

(
I2⊗

[
0 1
0 0

])
ξξξ j (t)+

(
I2⊗

[
0 0
−1 −γ

])
ξξξ j (t− τ1)

+

(
J j⊗

[
0 0
1 γ

])
ξξξ j (t− τ2) , j = �+ 1, �+ 2, . . . , �+m

(8b)
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The characteristic equation of the complete system, therefore becomes a product of
�+m individual subsystems which are:

q j (s,γ,τ1,τ2,λ j) = s2 +(γ s+ 1)
(
e−τ1s−λ je

−τ2s)= 0 (9a)

q j (s,γ,τ1,τ2,λ j) = s4 + 2s2 (γ s+ 1)
(
e−τ1s−ℜ(λ j)e−τ2s)+

(γ s+ 1)2
(

e−2τ1s− 2ℜ(λ j)e−(τ1+τ2)s +
∣∣λ j

∣∣2 e−2τ2s
)
= 0

(9b)

corresponding to (8a) and (8b) respectively. ��

Lemma 1 simplifies the problem considerably, by transforming it from a 2n order
system with time delays of commensuracy degree up to n and delay cross-talk, into
� second order and m fourth order systems with highest commensuracy of 2 (e.g.,
e−2τ1s) and single delay cross-talk (e.g., e−(τ1+τ2)s). Notice that, since the only dis-
criminating element from one factor to the other is the eigenvalue λ j, the stability
analysis in the domain of the delays can be performed two times, once for a generic
real λ and once for a generic complex λ . These tasks are detailed later. The problem
is now considerably simplified to determine the specific eigenvalues of a known ma-
trix C, superpose the stability outlook of each factor to obtain the ensemble stability
tableau for the system in (3).

We wish to direct the discussion now, to the special features of the eigenvalues
of the matrix C. From the way this matrix is created, sum of the elements of any
row (which are all non-negative) always add up to 1. This property makes C a row-
stochastic matrix [14]. Using Gershgorin’s disk theorem [15], it can be shown that
the norm of the eigenvalues of such matrices is always equal to or less than 1. Fur-
thermore, it has been proven [18] that if the topology is connected and has at least
one spanning tree, λ = 1 is one of the eigenvalues of the matrix C with multiplicity
1. Then, the corresponding

q j (s,γ,τ1,τ2,λ j) = s2 +(γ s+ 1)
(
e−τ1s− e−τ2s)= 0 (10)

is always a factor in the characteristic quasi-polynomial (3). Without loss of general-
ity, we will assign this eigenvalue to the state ξ1. It can be shown that the normalized
eigenvector corresponding to this state is always t1 = 1/

√
n [1 1 · · · 1], and it is se-

lected as the first column of the earlier defined transformation matrix T. Factor (10)
governs the dynamics of ξ1, which is proven, in Lemma 2 below, to be nothing other
than a weighted average of the positions of the agents. Thus we call ξ1, the weighted
centroid, which is topology dependent, since the weights for the computation of ξ1

arise from the first row of the inverse of the matrix T. Furthermore, it is evident that
s = 0 is a stationary root of (10) independent of the delays, τ1 and τ2, which implies
that the weighted centroid dynamics is at best marginally stable. The other factors
of the characteristic equation in (3) are related to the disagreement dynamics. When
these are stable the agents reach consensus among themselves.

If the communication topology does not have a spanning tree, 1 is a multiple
eigenvalue of C and equation (10) appears as a factor multiple times within (3).
These factors represent the dynamics of the centroids of the subgroups created by
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the subgraphs that are spanned by a tree. If all the disagreement factors are stable the
swarm members within a subgroup reach stationary positions which are generally
different. Thus the consensus is not achieved. These facts are stated in the following
lemmas.

Lemma 2. Group behavior. Assume the communication topology has at least one
spanning tree. Then, the agents in the group reach a consensus if and only if the
factor (10) is marginally stable and all the remaining factors of (3) are stable. Fur-
thermore, the group consensus value is x̄=(1/

√
n)ξ1 (t → ∞) = (1/

√
n) ξ̄ , whereas

the other states ξ j (t → ∞) = 0 for j = 2, 3, . . . , n.

Proof. First, we prove the necessity condition. From the definition of the state, ξξξ =
[ξ1 (t) ξ2 (t) · · ·ξn (t)]

T =T [x1 (t) x2 (t) · · · xn (t)]. If consensus is reached, the agents
have a common steady state value. This implies limt→∞ x j (t) = x̄, j = 1, 2, 3, . . . , n.
Then:

lim
t→∞

[ξ1 (t) ξ2 (t) · · · ξn (t)]
T = x̄T−1 [11 · · · 1]T (11)

Since the communication topology is assumed to have a spanning tree, 1 is a sim-
ple eigenvalue of C, corresponding to the eigenvector t1 = 1/

√
n [11 · · · 1]T , the

first column of the earlier defined transformation matrix T. Since T−1 [11 · · · 1]T =√
nT−1t1 =

√
n [10 · · · 0]T , equation (11) leads to limt→∞ ξ1 (t) =

√
nx̄, which indi-

cates marginal stability for (10) and limt→∞ ξ1 (t) = 0 for j = 2, 3, . . . , n, indicating
asymptotic stability in the other factors of (3).

Next the sufficiency condition is proven. If (10) is marginally stable and all
the other factors in (3) are stable, the steady state value of ξ1 (t) will be con-
stant whereas the remaining ξ j (t) will tend to zero as t goes to infinity. Then,

limt→∞ [ξ1 (t) ξ2 (t) · · · ξn (t)]
T =

[
ξ̄1 0 · · · 0

]T
. Going back to x domain using the

inverse transformation:

lim
t→∞

[x1 (t) x2 (t) · · · xn (t)]
T = T

[
ξ̄1 0 · · · 0

]T

= ξ̄1t1 =
√

nx̄t1 = [x̄ x̄ · · · x̄]T
(12)

implying the agents reach consensus. ��

Lemma 3. Topologies without spanning trees. If the given communication topology
does not have a spanning tree, the control logic described by (1) can not result in
consensus.

The proof of this lemma is omitted here due to space considerations. It can be found
in [21].

3 Stability Analysis Using CTCR Paradigm and SDS Domain

The factors given in (9a) and (9b), which dictate the dynamics of the swarm, have
the general formations of:
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g11 (s)+ g12 (s)e−τ1s + g13 (s)e−τ2s = 0 (13)

for (9a), and

g21 (s)+ g22 (s)e−τ1s + g23 (s)e−τ2s

+ g24 (s)e−(τ1+τ2)s + g25 (s)e−2τ1s + g26 (s)e−2τ2s = 0
(14)

for (9b). In fact, the class of quasi-polynomials given in (13) is a degenerate case of
(14). Therefore we will focus the stability treatment of the generic quasi-polynomial
(14) with rationally independent time delays. This task is performed deploying a
unique methodology, called the Cluster Treatment of Characteristic Roots (CTCR)
[12]. The main philosophy behind it is the clustering of all possible imaginary root
crossings in the (τ1, τ2) domain. The method starts with their exhaustive determi-
nation. For this we follow a novel approach over a new domain which is called the
Spectral Delay Space (SDS). The following paragraphs present some preparatory
definitions and key propositions of CTCR paradigm.

Definition 1. Kernel hypercurves ℘0: The curves that consist of all the points
(τ1 τ2)∈R

2+ exhaustively, which cause an imaginary root s =ω i, ω ∈R and satisfy
the constraint 0 < τkω < 2π are called the kernel curves. The points on this curves
contain the smallest delay compositions which correspond to all possible imaginary
roots.

Definition 2. Offspring curves℘: The curves obtained from the kernel curve by the
following pointwise nonlinear transformation:

〈
τ1 +

2π
ω

j1, τ2 +
2π
ω

j2, . . . ,τp +
2π
ω

jp

〉
, jk = 1,2, . . . (15)

are called the offspring hypercurves.

Definition 3. Root Tendency, RT : The root tendency indicates the direction of tran-
sition of the imaginary root as only one of the delays, τ j , increases by ε , 0< ε << 1,
while all the others remain constant:

RT |τ j
s=ωi = sgn

[
ℜ
(
∂ s
∂τ j

∣∣∣∣
s=ωi

)]
(16)

There are two overarching propositions which support the CTCR paradigm which
are stated here from [9] without proof.

Proposition 1. Small number of kernel hypercurves: The number of kernel hyper-
curves is manageably small. To be specific for a LTI-TDS of state dimension n, the
maximum possible number of kernel hypercurves is n2 [11].
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Proposition 2. Invariant root tendency property: Take an imaginary characteristic
root, s = ω i, caused by any one of the infinitely many grid points on the kernel and
offspring hypercurves in (τ1 τ2) ∈ R

2+ defined by the expression (15). The root ten-
dency of these imaginary roots remains invariant from one offspring hypercurve to
the other when one of the delays is kept constant. That is, the root tendency with re-
spect to the variations of τ1 (or τ2) is invariant from the kernel to the corresponding
offspring as τ2 (or τ1) is fixed.

Spectral Delay Space (SDS): A new procedure is described in this segment for de-
termining the kernel (and offspring) curves. It is a formalized treatment from a re-
cent thesis work [12, 17]. The procedure is developed on a new domain: SDS. It
is defined by the coordinates ν j = τ jω for every point (τ1 τ2) on the kernel or the
offspring curves. This is a conditional mapping: if a delay set (τ1 τ2) creates an
imaginary root s = ω i, (i.e., if the point is on the kernel or the offspring curves)
then (τ1ω τ2ω) forms a point in the SDS. On the contrary, (τ1 τ2) points that do not
generate an imaginary root have no representation in the SDS.

The main advantage of SDS is that the representation of the kernel curve in the
SDS, denoted as℘SDS

0 and called the building curve, is confined into a square of
edge length 2π . Then, it is only necessary to explore a finite domain to find the
representation of the building curves in the SDS. This finite domain is known as the
building block (BB), i.e., 2π× 2π squares, as per (15). Another advantage of these
coordinates is that the transitions from the building to the reflection curves (i.e., the
representation of the offspring curves in the SDS) is achieved simply by stacking the
copies of the BB as opposed to using the pointwise non-linear transformation (15),
which results in an undesirable shape distortion. There are several other intriguing
properties of the SDS and BB concepts which can be found in [12].

With these definitions and propositions, we now return to the mentioned prepara-
tory stage of CTCR method. It is the exhaustive determination of all the imaginary
roots, s = ω i, for the generic factor of the characteristic equation in (14) within the
semi-infinite quadrant of (τ1 τ2) ∈ R

2+. We follow the mathematical procedure de-
scribed in the appendix of [17] which evaluates the building curves. Accordingly, in
(14), the exponential terms are replaced by:

eτkω i = cos(νk)+ i sin(νk) , νk = τkω , k = 1,2 (17)

and the sine and cosine functions are expressed in terms of half-angle tangent func-
tion:

cos(νk) =
1− z2

k

1+ z2
k

, sin(νk) =
2zk

1+ z2
k

, zk = tan
(νk

2

)
(18)

Equation (14) can now be written as a polynomial in ω with complex coefficients
ck parameterized in z1 and z2:

q j (ω ,z1,z2) =
2

∑
k=0

ck (P, D, λ j, z1, z2)(ω i)k = 0 (19)
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If there is a solution to (19), both its real and imaginary parts must be zero simulta-
neously:

ℜ(q j (ω ,z1,z2)) =
2

∑
k=0

fk (z1, z2)ωk = 0 (20a)

ℑ(q j (ω ,z1,z2)) =
2

∑
k=0

gk (z1, z2)ωk = 0 (20b)

The condition for (20a) and (20b) to have a common root is simply stated using a
Sylvester’s resultant matrix:

M =

⎡
⎢⎢⎣

f2 (z1, z2) f1 (z1, z2) f0 (z1, z2) 0
0 f2 (z1, z2) f1 (z1, z2) f0 (z1, z2)

g2 (z1, z2) g1 (z1, z2) g0 (z1, z2) 0
0 g2 (z1, z2) g1 (z1, z2) g0 (z1, z2)

⎤
⎥⎥⎦ (21)

In order for (20) to be satisfied, M should be singular. This results in the following
expression in terms of z1 and z2:

det(M) = F (z1, z2) = F (tan(ν1) , tan(ν2)) (22)

which constitutes a closed form description of the kernel curves in the SDS (ν1, ν2),
i.e., the building curves. To obtain its graphical depiction, one of the parameters, say
ν2, can be scanned in the range of [0, 2π ] and the corresponding ν1 values are cal-
culated again in [0, 2π ]. Notice that every point (ν1, ν2) on these curves brings an
imaginary characteristic root at ±ω i which can be evaluated from (20a) or (20b),
noting that they share the same imaginary root. That is, we create a continuous se-
quence of (ν1, ν2, ω) sets all along the kernel curves. We then back transform from
the (ν1, ν2) domain of SDS to the (τ1, τ2) delay space, using the inverse transforma-
tion of (17) with the appropriate ω values. This generates the kernel and offspring
curves.

The kernel and offspring curves divide the (τ1, τ2) domain in regions of possible
stability and instability. To determine these regions we start from the non-delayed
system (i.e., τ1 = τ2 = 0). It is trivial to prove that the factors in (3) are stable for
the non-delayed case provided that the control gain satisfies the following necessary
and sufficient condition:

γ > γ̄ = max
λ j �=1

√√√√ ℑ(λ )2

(1−ℜ(λ j))
(
(ℜ(λ j)− 1)2 +ℑ(λ j)

2
) (23)

The root tendency invariance property is deployed from one region to the other,
resulting in the complete and non-conservative stability outlook of the system. An
example of this construction is presented in the following section, for clarity.
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1

2 3

4 5

6

Fig. 1 Communication topology used in the example cases

4 Deployment on a Case Study

We take the communication topology presented in Fig. 1 with the communication
weighting factors described in the adjacency matrix:

AΓ =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 3 2.5 2 2.5
3 0 3 0 2 2
0 2 0 2 3 3
1 3 0 0 2 4
0 2.2 0 1.8 0 5
0 6 0 2 2 0

⎤
⎥⎥⎥⎥⎥⎥⎦

(24)

The eigenvalues of the C matrix created from (24) are 1,−0.072,−0.363,−0.286,
and −0.140± 0.379. With this set of eigenvalues, the minimum control gain that
guarantees stability for the non delayed case is γ̄ = 0.3281, defined by (23). A value
of γ = 0.5, which is larger than the lowerbound, is used in the following examples.

After proceeding with the steps presented in the previous section, the building
curve (dark) and reflection curves (light) in SDS are obtained. Fig. 2 shows these
curves for λ = 1 only, we do not present the other eigenvalues to avoid overcrowd-
ing the figure. The stability switching curves are then transformed to the (τ1, τ2)
domain, and then to the original (τin, τcom) space. After superposing the curves
obtained, and intersecting their stable regions, the stability map for the complete
system is obtained as displayed in Fig. 3.

To validate this stability analysis, we executed several dynamic simulations for
specific cases. Figure 4 shows the traces of the agents, using the initial conditions
x0 = [−0.4 0.5 0.7 0.4 1.2 0.3]T and ẋ0 = [−0.1 0.2 0.7 0.4−0.1 0.3]T and a delay
combination of τin = 0.03s and τcom = 0.3s, which is marked by point a in Fig. 3.
The behavior is stable as declared by the stability map. Furthermore, Fig. 5 shows
the traces for delay values selected at point b in Fig. 3. This point, outside the shaded
region, corresponds to an unstable case, as it is demonstrated by the traces in Fig. 5.



Leaderless Consensus with Multiple Time Delays 123

Building block

Fig. 2 SDS representation of the stability switching curves created by λ = 1

a

b

c

Fig. 3 Stability map in (τin, τcom) domain for the complete system. The shaded region rep-
resents the stable zone.

Certainly, Fig. 3 is an exhaustive and non-conservative stability result, in contrast
with those presented by [16] (Theorem 5.1), which provide only a conservative up-
per bound for the admissible delay. This non-conservative and exhaustive stability
map, is made possible by deploying the unique features of the CTCR paradigm. This
combination forms the contributory point of this study.

A more intriguing observation that can be made from Fig. 3 is that although the
delay combination in point b represents an unstable behavior, the stability of the
system can be recovered by increasing τcom from 1 to 2 seconds, i.e., moving the
delay selection to point c. This is a counter-intuitive proposition: no one expects an
increase in the delay will result in improved performance. The technique of increas-
ing the delays to obtain better tracking results is called Delay Scheduling, and it has
been successfully used recently for trajectory tracking [23].
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Fig. 4 Traces of the agents corresponding to a delay combination of τin = 0.03s and τcom =
0.3s, corresponding to point a in Fig. 2
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Fig. 5 Traces of the agents corresponding to a delay combination of τin = 0.07s and τcom =
1s, corresponding to point b in Fig. 3

5 Conclusions

We elaborated further on a consensus protocol for a multi-agent system dynamics
which has been attracting attention earlier. Interagent communication is governed
through a directed network. Their dynamics is, however, influenced by a commu-
nication and a separate input delay. These two delays are assumed to be rationally
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independent. The first delay is on the information coming from the informer agents,
whereas the effect of the second one is in both the own state and the state of the
informers.

A state-of-the-art and broadly accepted treatment of such complex stability prob-
lem is performed using the Razhumikin theorem in some earlier studies. This proce-
dure is replaced here with a novel technique that ultimately decouples the dynamics
into a number of second and fourth order subsystems. The CTCR paradigm is then
deployed on these primitive subsystems. They are differentiated from each other
only by a single scalar parameter. These parameters happen to be the eigenvalues
of a certain matrix related to the communication topology. As such, they can be
calculated off-line.

The first step in the CTCR establishes an exhaustive display of the potential sta-
bility switching hypercurves. For this task, an intriguing domain, Spectral Delay
Space, is used here. The efficiency and practicality of the combined deployment is
displayed via a case study.

The analysis presented here shows that CTCR is a more powerful tool for the
stability analysis of systems with multiple, rationally-independent time delays.
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Analysis of Gene Regulatory Networks
under Positive Feedback

Mehmet Eren Ahsen, Hitay Özbay, and Silviu-Iulian Niculescu

Abstract. In this chapter of the book, a dynamical model of the gene regulatory net-
works (GRNs) under positive feedback is analyzed. The model considered involve
static nonlinearities with negative Schwarzian derivatives, and a time delay in the
feedback path. A set of conditions are derived for the global stability of the class of
GRNs considered. As a special case, homogenous GRNs are also analyzed and an
appropriate stability condition is obtained; that depends only on the parameters of
the nonlinearity function, which is assumed to be a Hill type function. In particular,
conditions leading to bistability of the system are obtained. The results presented
here naturally extend to similar classes of cyclic biological processes involving time
delayed feedback.

1 Introduction

Gene regulation is a tool for the cell to communicate with its environment. Cells
respond to certain environmental stimuli by decreasing or increasing the produc-
tion of certain genes. For example, when grown in a glucose deficient but lactose
rich environment, the genes that are responsible for the digestion of lactose is ex-
pressed [22]. This way lactose is able to be digested into glucose. In [7] a synthetic
oscillatory network have been produced by using gene products, which was very
important for the newly emerging field, namely, synthetic biology. By using tools
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from synthetic biology, it is envisioned that one will be able to use plants as sen-
sor chemicals in order to produce clean and renewable fuels, or even to recognize
cancer cells and destroy them [15]. Therefore, accurate modeling and analysis of
gene regulatory networks (GRNs) are important for building synthetic networks for
specific functions such as oscillatory networks with a predefined period. Another
important concept in biology is bistability. Bistability is important in cell functions
such as cellular differentiation and apoptosis. Bistability can be generated by adding
a positive feedback loop in the circuit and it is a strong network motif especially in
developmental circuit [4]. In this work we will give easy conditions that leads to
bistability of the homogeneous (GRN), when the nonlinearities are taken as Hill
functions.

The present work is based on [2] and concerned with the asymptotic stability of
a dynamical model of the GRNs under positive feedback. The model considered
involve static nonlinearities with negative Schwarzian derivatives, and a time de-
lay in the feedback path, (see, e.g. [19, 20] for the justification of this model and
discussions on the alternative models).

Basically, a GRN can be described as the interaction of DNA segments with
themselves and with other biological structures such as the enzymes in the cell.
Therefore, it can be thought as an indicator of the genes transcription rates into
mRNA, which is used to deliver the coding information required for the protein
synthesis, [11]. The model proposed in [6] consists of a set of differential equations
in the following form:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ṗ1(t) = −kp1 p1(t)+ fp1(gm(t− τgm))
ġ1(t) = −kg1g1(t)+ fg1(p1(t− τp1))

...
ṗm(t) = −kpm pm(t)+ fpm(gm−1(t− τgm−1))
ġm(t) = −kg1gm(t)+ fgm(pm(t− τpm)),

(1)

where pi and gi represent the protein and mRNA concentrations respectively.
Models similar to (1) are frequently encountered in the modeling of biological
processes such as mitogen-activated protein cascades and circadian rhythm gen-
erator [10], [16] and [21]. For instance, in [6], a simplified version of the system
(1) is analyzed and a local stability result is given. An explicit computation of the
allowable upper bounds on the delay value can be found in [13].

The system (1) under single time-delay and negative feedback has been studied
and discussed in [8], where a simple condition for asymptotic stability has been
obtained. By using a Hopf bifurcation approach [8] showed the existence of oscilla-
tions in some cases. The arguments of [12], [5] are used in [8] to embed the system
(1) to a discrete time system. The present work gives and analysis of the GRNs un-
der positive feedback using some of the results of [1]. The techniques similar to the
ones used here are employed in [3] for the negative feedback case.

In the rest of this chapter, the functions fpi and fgi are taken as static nonlinearities
having negative Schwarzian derivatives. As a special case, homogenous GRNs are
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also analyzed and a sufficient condition is obtained for asymptotic stability of the
system; that depends only on the parameters of the nonlinearity function.

The chapter is organized as follows: The problem formulation and some prelim-
inary results are given in the next section. The main results are stated in Section 3.
Illustrative examples are given in Section 4, and concluding remarks are made in the
last section.

2 Notation, Preliminaries and Problem Formulation

In this section, first, some basic definitions and notations are given. Then, certain
properties of Schwarzian derivatives are presented. These are commonly used in
the analysis of cyclic nonlinear feedback systems, which are similar to the system
considered here, see e.g. [14].

Let a function f be defined from R+ to R+. Suppose it is at least three times con-
tinuously differentiable. Then, the Schwarzian derivative of the function f , denoted
as S f (x), is given by the following expression (see [17])

S f (x) =

⎧⎨
⎩
−∞ if f ′(x) = 0
f ′′′(x)
f ′(x)

− 3
2

(
f ′′(x)
f ′(x)

)2

if f ′(x) �= 0 .

The notation f m is used to denote the function obtained by m compositions of f . For
a function f , the point x is a fixed point if f (x) = x.

In the sequel, the simplified system shown below (2) is analyzed; this is equiva-
lent to (1), where the delays are lumped into the feedback channel:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ẋ1(t) = −λ1x1(t)+ g1(x2(t))
ẋ2(t) = −λ2x2(t)+ g2(x3(t))

...
ẋn(t) = −λnxn(t)+ gn(x1(t− τ)).

(2)

Note the following relation between τ and τgi, τpi:

τ =
m

∑
i=1

(τpi + τgi). (3)

Conditions for the asymptotic stability and existence of oscillations regarding
the nonlinear time delayed feedback system (2) will be given in Section 3, under the
following simplifying assumptions.

Assumption 1. For all i = 1,2, ...,n, the parameters λi satisfy λi > 0 . �

Assumption 2. For all i = 1,2, ...,n, the nonlinearity functions gi satisfy:
(i) gi(x) is a bounded function defined on R+;
(ii) the derivatives satisfy g′i(x)< 0 or g′i(x)> 0 for all x ∈ (0,∞). �
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Assumption 2 means that each gi is a monotone function and takes positive values.
The nonlinearity functions have R+ as their domain since their domain represents
biological variables which take positive values. Also note that g′i(0) = 0 is allowed,
since it does not violate the monotonicity of gi. Now define a new function

g = (
1
λ1

g1)◦ (
1
λ2

g2)◦ ...◦ (
1
λn

gn). (4)

Definition 1. The gene regulatory network is said to be under positive feedback if

g′(x)> 0 ∀x ∈ (0,∞).

Conversely, the gene regulatory network is said to be under negative feedback if the
above inequality is reversed. In this work, the positive feedback case is studied. For
the negative feedback case see [1, 3].

The system is said to be bistable, if it has two locally stable equilibrium points.
Depending on the initial conditions and external input, the system can switch from
one equilibrium point to the other one. The most famous example of bistability is
the regulation of lac operon in the Bacteria Escherichia coli, [22]. When there is
enough glucose in the environment, the genes responsible for digesting lactose are
not expressed (the low state). When glucose is absent and lactose is present in the
environment, the bacteria will express genes responsible for digesting lactose into
glucose to meet its need for energy (the high state).

Theorem 1 ([18]). Consider the system (2) under positive feedback. Any solution of
(2) with any nonnegative initial condition converges to one of its equilibrium points.

The above result is very important in the sense that the solution does not diverge
or show oscillatory behavior. However, the system may have a number of
equilibrium points; so, which one is the attractor for a given initial condition is
not specified. Moreover, it is important to identify the conditions under which
there is a single equilibrium point (or multiple equilibrium points). The present
work deals with these issues.

First obvious consequence of Theorem 1 is that when there is single equilibrium
point, the system is globally stable (all non-negative initial conditions are brought to
the equilibrium point). In the following Corollary a condition for single equilibrium
is given.

Corollary 1. Consider system (2) under positive feedback. If the function g defined
in (4) has a unique fixed point, then the system (2) has a unique equilibrium point xeq

and any solution of the system with a non-negative initial condition will converge to
its unique equilibrium point xeq.
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Proof. If g has a unique fixed point, then it is shown in [1] that the system has
a unique equilibrium point. The global convergence result follows directly from
Theorem 1. �

3 Analysis of the Cyclic Network under Positive Feedback

In the sequel, the system (2) is assumed to be under positive feedback. The nonlin-
earity functions are assumed to have negative Schwarzian derivatives and Assump-
tions 1 and 2 are satisfied.

3.1 General Conditions for Global Stability

The result below gives a general condition on the existence of unique equilibrium
point for (2) by using the function g defined in (4).

Proposition 1. Consider the system (2) under positive feedback and assume that g
defined in (4) has negative Schwarzian derivative. Then, the following results hold.

(i) The function g has at most three fixed points.

(ii) If g′(x) < 1 for all x ≥ 0, then g has a unique fixed point. In this case, the
system defined by (2) has a unique equilibrium point xeq which is globally
attracting.

(iii) If g′(0)> 1 then g has a unique positive fixed point.

Proof. Due to page limitations the proof is omitted here; it can be found in [1]. �

Therefore, if g satisfies conditions (ii) or (iii) of Proposition 1, then the unique equi-
librium point of the system (2) is globally attractive. When the system has three
equilibrium points, which one(s) of these is (are) stable equilibrium point(s) has to
be determined. Several results are given in the next section along these directions.

3.2 Analysis of Homogenous Gene Regulatory Networks

In this section homogenous gene regulatory networks of the form (2) are studied;
i.e., it is assumed that λi = 1 and there exists a function f such that

gi(x) = f (x), ∀i = 1,2, ...,n.

Note that no special structure is assumed for f yet. The following result plays a
crucial role in the remaining parts of this section.

Lemma 1. Let k(x) : R+ → I ⊆ R+ be a three times continuously differentiable
function satisfying k′(x) > 0 for all x ∈ (0,∞). Let h be defined on R+ as h(x) =
km(x). Then, any fixed point of h is a fixed point of k.
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Proof. Suppose that h(0) = 0 and k(0)> 0 then we have

h(0) = kn(0)> ... > k(k(0))> k(0)> 0

which is contradiction. Therefore, k(0) = 0 and 0 is a fixed point of the function k.
Let x > 0 be a fixed point of the function h and suppose k(x) �= x. Then we have
either x < k(x) or k(x)< x. If x < k(x), then since k is a strictly increasing function,

h(x) = kn(x)> ... > k(x)> x,

which gives us a contradiction. Similarly, if we have k(x)< x then

h(x) = kn(x)< ... < k(x)< x

which is again a contradiction. Therefore, we should have k(x) = x. Also, it is easy
to see that any fixed point x of k is a fixed point of h. Thus we conclude that the
functions k and h have the same fixed points. �

Remark 1. The homogenous system is under positive feedback if
(i) f ′(x)> 0 for all x ∈ (0,∞), or
(ii) f ′(x)< 0 for all x ∈ (0,∞) and n = 2m for some positive integer m. �

First consider the case (ii) of Remark 1. From linear algebra, every positive number
has a unique prime decomposition. Also, it is clear that n is an even integer. Then,
one of the following must hold:
(a) n = 2l for some positive integer l or
(b) n = 2l1 pl2

2 ....p
ln
n , where p2, p3, ..., pn are distinct odd primes and li > 0.

The following result considers the case (ii) of Remark 1:

Lemma 2. Consider the homogenous gene regulatory network (2) under positive
feedback with f ′(x)< 0. Moreover, suppose that f has negative Schwarzian deriva-
tive. Then, f has a unique fixed point, say x0 > 0, and one of the following holds:
(a) We have n = 2l . In this case

g(x) = f n(x) (5)

has the unique fixed point x0 provided that | f ′(x0)| < 1. If | f ′(x0)| > 1, then g has
exactly three equilibrium points.
(b) When n = 2l1 pl2

2 ....p
ln
n , define h(x) = f (P)(x), where P =∏n

i=2 pli
i . In this case h

has a unique fixed point x0 which is also the unique fixed point of f . If | f ′(x0)|< 1
then |h′(x0)| < 1 and g defined in (5) has the unique fixed point x0. If | f ′(x0)| > 1,
then |h′(x0)|> 1 and g defined in (5) has exactly three equilibrium points.

Proof. Firstly, since f is monotonically decreasing it has a unique fixed point
x0. Suppose n = 2l and let g(x) = f n(x). Now, let h1(x) = f 2l−1

(x), then g(x) =
h1(h1(x)) and h′1(x) > 0 for all x ∈ (0,∞). From Lemma 1 with m = 2, it can
be concluded that any fixed point x of g is a fixed point of the function h1. Let
h2(x) = f 2k−2

(x), then h1(x) = h2(h2(x)) and again from Lemma 1, any fixed point
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of h1 is a fixed point of h2. Since n = 2l , g has as many fixed points as hl−1, which
is defined as hl−1(x) = f ( f (x)). If | f ′(x0)| < 1 at the unique equilibrium point x0

of f , it can be concluded that hl−1 has a unique equilibrium point. Therefore, from
Lemma 1, g has a unique fixed point. Lemma 1 also implies that if | f ′(x0)|> 1, then
the function hl−1(x) has exactly three fixed points. Therefore, from Lemma 1, the
function g(x) has three fixed points.

Now for the second part, consider n = 2l1 pl2
2 ....p

ln
n and let P = pl2

2 ....p
ln
n and

h(x) = f P(x). Since P is an odd number, h′(x)< 0 for all x ∈ (0,∞). It is also known
that h has negative Schwarzian derivative by the convolution property of Schwarzian
derivatives, see [17]. Therefore, h has a unique fixed point. Since f is decreasing it
has a unique fixed point x0. Also note that

h(x0) = f P(x0) = x0,

from which we conclude that the unique fixed point x0 of f is the unique fixed point
of h. Also note that |h′(x0)|< 1 if and only if | f ′(x0)|< 1. Similarly, |h′(x0)|> 1 if

and only if | f ′(x0)|> 1. Note that g(x) = h2l1 (x). Then the rest of the arguments are
the same as the proof of the first part. �

Now consider the case where the function f is given as follows:

f (x) =
a

b+ xk , a,b > 0, k ∈ {1, 2, 3, . . .}. (6)

Note that f ′(x)< 0. In this case, the following proposition holds.

Proposition 2. Consider the homogenous gene regulatory network (2) under posi-
tive feedback with f given as in (6). If k = 1 or and a, b, k satisfy

(
a
k
)k < (

b
k− 1

)k+1, (7)

then the system has a unique equilibrium point which is globally attractive. Other-
wise, the system exhibits bistable behavior.

Proof. Since f has negative derivative, it has a unique fixed point. Let x0 be the
unique fixed point of f . If k = 1 or (7) holds, then | f ′(x0)|< 1. Otherwise, we have
| f ′(x0)| > 1. The proof of this fact can be found in [3]. Now, if | f ′(x0)| < 1, then
from Lemma 2, the system has a unique fixed point which is globally attractive. On
the other hand, suppose | f ′(x0)| > 1, and let n = 2m be the size of the feedback in
the system. Now, let h(x) = f m(x) and g(x) = h ◦ h(x). Then, again from Lemma 2
the function g has three fixed points, one of which is x0. Let the fixed points of the
function g satisfy x1 < x0 < x2. We know h(x0) = f m(x0) = x0, since x0 is a fixed
point of f . Now, suppose h(x1) �= x2. Then,

g(h(x1)) = h ◦ h ◦ h(x1) = h(g(x1).

Therefore, h(x1) is a fixed point of the function g. But since h(x1) �= x2, then we have
h(x1) = x1. But if m is an odd integer, then h(x) = f m(x) has the unique fixed point
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x0, but we know x0 �= x1, so we get a contradiction. If m is even then, by a similar ar-
gument we can show h(x1) �= x1 which gives another contradiction. Hence, we have
h(x1) = x2 and h(x2) = x1. Therefore, g′(x1) = g′(x2). We know that |g′(x0)| > 1,
so, the equilibrium point associated with it is locally unstable. But from Theorem 1
we know that the solution of the system converges to one of its equilibrium points.
Therefore, |g′(x1)| = |g′(x2)| < 1 and the equilibrium points associated with them
are locally stable. Therefore, we have two stable equilibrium points. �

Bistability is an important network motif in biological network models. In fact, the
construction of the first synthetic toggle switch in bacteria is considered as one of
the milestones in synthetic biology [9]. Therefore, Proposition 2 has implications in
biology and this result is illustrated with examples in the next section.

Now consider case (i) of Remark 1, where f satisfies

f ′(x)> 0 ∀x ∈ (0,∞). (8)

Lemma 3. Consider the homogenous gene regulatory network (2) under positive
feedback with the nonlinearity function f satisfying (8). Then, the function g(x) =
f n(x) has as many fixed points as f . In particular, if f has a unique fixed point, then
system (2) has a unique equilibrium which is globally attractive.

Proof. Lemma 1 and Proposition 1 gives us the desired result. �

The above results reduce the whole analysis to the investigation of the fixed points
of f . If f has a negative Schwarzian derivative then, it has one, two or three fixed
points. As an example, consider the following Hill type of functions and try to find
some conditions regarding its fixed points:

f (x) =
axm

b+ xm + c, a, b, c > 0. (9)

Note that zero is ruled out as a fixed point by taking the constant c strictly positive.
Then x > 0 is a fixed point of the function defined in (9) if x is a root of the following
polynomial:

h(x) = xm+1− (a+ c)xm+ bx− bc. (10)

Some interesting cases regarding the function (10) may occur. For example, consider
the following numerical values: a = 3.6, b = 5, m = 2 and c = 0.4, then

h(x) = xm+1− (a+ c)xm+ bx− bc= (x− 1)2(x− 2)

which implies that the function f has exactly two fixed points.
Let us now try to find a sufficient condition depending on the parameters a, b, c

and m so that the function f defined in (9) has a unique equilibrium point. First note
that for arbitrary positive constants a, b, c and m, the following holds:
h(0) =−bc < 0. Therefore, if we have

h′(x)≥ 0 ∀x ∈ R+, (11)



Analysis of Gene Regulatory Networks under Positive Feedback 135

then h can have at most one positive root so f has a unique fixed point. For m > 1,

h′(x) = (m+ 1)xm− (m)(a+ c)xm−1+ b

= xm−1((m+ 1)x−m(a+ c))+ b = h1(x)+ b.

In order to guarantee (11), we should have h1(x)≥ −b for all x ∈ R+. But h1 takes
its minimum at the point y where

h′1(y) = 0. (12)

As a result of (12), we get the following equations:

h′1(x) = (m+ 1)(m)xm−1− (m)(m− 1)(a+ c)xm−2

= xm−2(m)(m+ 1)(x− m− 1
m+ 1

(a+ c)) ;

⇒ h′1(y) = 0⇔ y =
m− 1
m+ 1

(a+ c) ;

⇒ min
x≥0

h1(x) = h1

(
m− 1
m+ 1

(a+ c)

)
= −

(
m− 1
m+ 1

)m−1

(a+ c)m.

Combining this with (11) and (12), the following result is obtained:

(
m− 1
m+ 1

)m−1

(a+ c)m ≤ b⇒ h1(x)≥−b⇒ h′(x)≥ 0.

Proposition 3. Let f be given as a function in the form (9). Then the following hold:
(i) If m = 1, then for any positive a, b and c, the function f has a unique fixed point.
(ii) If m = 2, 3, ... and the positive constants a, b and c satisfy

(
m− 1
m+ 1

)m−1

(a+ c)m ≤ b,

then f has a unique fixed point.

Proof. We already proved the case (ii). For the case where m = 1, let a, b and c be
arbitrary positive constants. If y is a fixed point of the function f , we have

h(y) = y2 +(b− a− c)y−bc= 0.

But h can have at most two roots. Since h(0) < 0 and h(−∞) = ∞, the function h
has only one positive root; so, f has a unique fixed point. �

It is stated in Theorem 1 that under positive feedback, the solution converges to one
of the equilibrium points independent of delay, see also [18]. Therefore, there should
always exist at least one equilibrium point which is locally stable. The following
result establishes this property.
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Proposition 4. Consider the system (2) under positive feedback, i.e., g defined in
(4) satisfies: g′(x) > 0 for all x ∈ R+. Suppose that g is bounded and continuously
differentiable, then g has a fixed point x1 ∈R+ such that g′(x1)≤ 1. Thus, the system
is locally stable around the equilibrium point xeq = (x1,x2, ...,xn), where

xn = gn(x1)/λn, . . . ,x2 = g2(x3)/λ2.

Proof. Since the function g is bounded, the following supremum is well-defined:

a = sup
x∈R+

(g(x)). (13)

It is clear that if x is a fixed point of g, then x≤ a. Let the set S be defined as

S = {x ∈ R+ : g(x) = x},

then, because of (13), b = sup(S) exists. Note that since g is bounded and positive,
the set S is nonempty. Since b = sup(S), there exists a sequence xi ∈ S such that

g(xi) = xi and lim
i→∞

(xi) = b.

Since g is continuous, we have g(b) = b. Suppose that for all fixed points x of g, we
have g′(x)> 1. Then, g(b) = b and g′(b)> 1, but since g bounded then ∃z > b such
that g(z) = z. But this is contradiction to (13), so there exists some x1 ∈ R+ such
that

g′(x1)≤ 1. (14)

The system has the following linearized transfer function around the equilibrium
point xeq:

G(s) =

(
1+

g′(x1)∏n
i=1(λi)e−τs

∏n
i=1(s+λi)

)−1

.

The system is locally stable around xeq if the roots of G(s) are in the left half plane.
Combining (14) and the fact that the system is under positive feedback, we can
verify the following:

0≤ g′(x1)≤ 1.

By applying small gain argument, we can see that the system is locally stable inde-
pendent of the delay value τ . �

4 Examples

The bistable toggle switch in [9] is analyzed here. As in [9], assume that two proteins
mutually repress the expression of each other, and the system can be described as:

ẋ1(t) = −x1(t)+ f (x2(t))

ẋ2(t) = −x2(t)+ f (x1(t− τ)), (15)
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where the function f is given as follows:

f (x) =
a

b+ xk , a,b > 0, k ∈ {1, 2, 3, . . .}. (16)

Example 1. Suppose that in (16) the parameters are: a = 1, b = 1 and k = 2. Apply-
ing the inequality in Proposition 2, one sees that

(
a
k

)k

= 0.25 < (
b

k− 1
)k+1 = 1.

The unique fixed point of the function f can be found as x0 = 0.6823. It can
be easily verified that the unique equilibrium point of the system is given as
xeq = (0.6823,0.6823). From Proposition 2 we expect that the system has a unique
equilibrium point which is stable independent of delay. Simulation results of Fig-
ures 1 and 2 illustrate that the solutions of the system converge to xeq under different
initial conditions independent of the value of the delay.
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Fig. 1 Simulation of the system in Example 1 with x(0) = [1.0 0.2]T and τ = 0

Example 2. Now consider the following parameters for f defined in (16): a = 3,
b = 1 and k = 3. Again, applying the inequality in Proposition 2, it is observed that
(a/k)k = 1 >

(
(b/(k− 1)

)k+1
= 0.0625.

One can find the unique fixed point of f as x0 = 1.164 and the three equilibrium
points of the system can be found as x1 = (0.1075,2.9963), x2 = (1.164,1.164) and
x3 = (2.9963,0.1075). From Proposition 2 we expect the system to show a bistable
behavior. Simulations for different initial conditions and delay values are illustrated
in Figures 3 and 4.
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Fig. 2 Simulation of the system in Example 1 with x(0) = [0.4 0.8]T and τ = 2
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Fig. 3 Simulation of the system in Example 2 with x(0) = [0.4 0.6]T and τ = 1.0
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Fig. 4 Simulation of the system in Example 2 with x(0) = [2.0 0.5]T and τ = 0.5

5 Conclusions

In this work gene regulatory networks are modeled as cyclic nonlinear dynamical
systems with time delayed feedback. Analysis of this model of the gene regulatory
network is done for the positive feedback case, under the assumption that the non-
linearity functions have negative Schwarzian derivatives.

Conditions for the existence of single positive equilibrium point are derived. In
such a case the system is globally asymptotically stable independent of delay. In
some cases there are more than one equilibrium point. For these situations, it is also
shown here how the equilibrium points are computed and how stability of these
points are determined. The homogenous network under positive feedback is also
analyzed and sufficient conditions are derived for asymptotic stability. As a spe-
cial case, homogenous gene regulatory networks with Hill type of nonlinearities
are considered and sufficient conditions depending only on the parameters of the
nonlinearity, are derived for the asymptotic stability independent of delay.

In this chapter, it is shown that multiple stable equilibrium points may exists for
the system (2). An interesting question as a future extension of the current work to
find a way to estimate the radius of convergence of each stable equilibrium point.
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3. Ahsen, M.E., Özbay, H., Niculescu, S.-I.: On the analysis of a dynamical model repre-
senting gene regulatory networks under negative feedback. Int. J. Robust and Nonlinear
Control (2013), doi:10.1002/rnc.2947

4. Alon, U.: An introduction to systems biology: design principles of biological circuits.
Chapman Hall//CRC (2007)

5. Angeli, D., Sontag, E.D.: Multistability in monotone input/output systems. Systems Con-
trol Letters 51, 185–202 (2004)

6. Chen, L., Aihara, K.: Stability of genetic regulatory networks with time delay. IEEE
Transactions on Circuits and Systems I: Fundamental Theory and Applications 49(5),
602–608 (2002)

7. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators.
Nature, 335–338 (2000)

8. Enciso, G.A.: On the asymptotic behaviour of a cylic biochemical system with delay.
In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2388–2393
(2006)

9. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Es-
cherichia coli. Nature 403(6767), 339–342 (2000)

10. Goldbeter, A.: Biochemical Oscillations and Cellular Rythms. The Molecular Basis of
Periodic and Chaotic Behavior. Cambridge University Press (1996)

11. Levine, M., Davidson, E.H.: Gene regulatory networks for development. Proceedings of
the National Academy of Sciences 102(14), 4936–4942 (2005)

12. Liz, E., Pinto, M., Robledo, G., Trofimchuk, S., Tkachenko, V.: Wright type delay dif-
ferential equations with negative Schwarzian. Discrete and Continuous Dynamical Sys-
tems 9(2), 309–321 (2003)

13. Morarescu, C.I., Niculescu, S.-I.: Some remarks on the delay effects on the stability of
biochemical networks. In: 16th Mediterranean Conference on Control and Automation,
pp. 801–805 (2008)

14. Müller, S., Hofbauer, J., Endler, L., Flamm, C., Widder, S., Schuster, P.: A generalized
model of the repressilator. Journal of Mathematical Biology 53, 905–937 (2006)

15. Purnick, P.E.M., Weiss, R.: The second wave of synthetic biology: from modules to
systems. Nature Reviews Molecular Cell Biology 10(6) (2009)

16. Scheper, T.O., Klinkenberg, D., Pennartz, C., van Pelt, J.: A mathematical model for the
intracellular circadian rhythm generator. The Journal of Neuroscience 19, 40–47 (1999)

17. Sedeghat, H.: Nonlinear Difference Equations. Kluwer Academic Publishers (2003)
18. Smith, H.: Monotone Dynamical Systems: An introduction to the theory of competitive

and cooperative systems. American Mathematical Society (2008)
19. Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling transcriptional control in gene networks

– Methods, recent results and future directions. Bull. Math. Biol. 62, 247–292 (2000a)
20. Smolen, P., Baxter, D.A., Byrne, J.H.: Mathematical modeling of gene networks. Neu-

ron 26, 567–580 (2000b)
21. Sontag, E.D.: Asymptotic amplitudes and Cauchy gains: a small-gain principle and

an application to inhibitory biological feedback. Systems Control Letters 47, 167–179
(2002)

22. Tozeren, A., Byers, S.W.: New biology for engineers and computer scientists. Prentice
Hall (2003)



Analysis and Design of Pattern Formation
in Networks of Nonlinear Systems with Delayed
Couplings

Toshiki Oguchi and Eiichi Uchida

Abstract. In this chapter, we consider formation of oscillatory patterns in networks
of identical nonlinear systems with time-delays. First of all, by applying the har-
monic balance method, we derive the corresponding harmonic balance equations
for networks of identical nonlinear systems with delay couplings. Then, solving the
equations by reducing to the stability problem of linear retarded systems, we esti-
mate the oscillation profile such as the frequency, amplitudes and phases of coupled
systems. Based on this analysis method, we also develop a design method of net-
works for nonlinear systems that can achieve prescribed oscillation profiles. The
effectiveness of the proposed methods is shown by numerical examples

1 Introduction

In recent years, network systems have attracted attention in applied physics,
mathematical biology, social sciences, control theory and interdisciplinary fields. In
particular, synchronization and pattern formation of coupled systems have been the
subject of intense study. From the standpoint of control engineering, synchroniza-
tion and pattern formation of coupled systems are important notions to realize de-
centralized control techniques and bio-mimetic control approaches in increasingly
complex applications. For instance, central pattern generators (CPGs), which pro-
duce rhythmic movements such as locomotion, breathing and scratching, are con-
sidered to consist of a group of neurons. Studies on CPGs have been carried out not
only in the understanding of biological behavior but also for the purpose of produc-
ing rhythmic locomotion of multi-legged robots.

The behaviors of coupled identical systems and networks have been studied by
a large number of researchers in various fields ( [3, 6] and so on). Golubitsky et al.
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showed the existence of periodic solutions in symmetric coupled systems and the
pattern classification of gaits based on the symmetric network structure of the CPG.
Pogromsky et al. [10, 11] analyzed the synchronization problem in symmetric net-
works of chaotic systems and derived sufficient conditions for partial synchroniza-
tion in networks and the existence of periodic solutions. However this research has
focused on only the symmetric structure of networks. Iwasaki [4] proposed a sys-
tematic approach for the analysis and synthesis of CPGs by applying the multivari-
able harmonic balance method. The proposed approach has no restriction on the
network structure.

On the other hand, research interest on synchronization of coupled systems has
shifted to the synchronization problem in delayed networks in recent years [5, 8, 9,
12]. Since time-delays caused by signal transmission affect the behavior of coupled
systems in practical situations, it is therefore important to study the effect of time-
delay in network systems [13]. In this chapter, we attempt to extend the systematic
approach based on the harmonic balance method [4] to delayed network systems.

This chapter is organized as follows. Following this introduction, Section 2 de-
rives harmonic balance equations for networks of identical nonlinear systems with
delay couplings, and then by solving the equations based on the stability problem
of linear retarded systems, we show an estimation method of the oscillation pro-
files such as the frequency, amplitudes and phases of coupled systems. In Section 3,
based on the estimation method, we also develop a design method of networks of
nonlinear systems that can achieve prescribed oscillation profiles. Finally, Section 4
provides the summary of this chapter.

2 Analysis of Oscillatory Patterns in Networks of Nonlinear
Systems with Delayed Couplings

2.1 Nonlinear Network Systems with Delayed Couplings

We consider n identical nonlinear systems interconnected as follows

vi = ψi(qi),qi = f (s)ui,ui =
n

∑
r=1

μir(s)vr, (1)

where ui and vi are the input and output of system i, ψi is a static nonlinear function
defined by ψi(x) = tanh(x) and μir means a transfer function denoting a connection
from oscillator r to oscillator i, which is given by μir(s) = kire−τms. Here kir ∈ R

denotes a coupling gain from system r to system i, and τm is a commensurate delay
of τ , i.e. τm = mτ for m = 1, . . . ,h. f (s) is a linear time-invariant part of system
given by

f (s) =
ω0

s+ω0
. (2)

Then the network of N coupled systems is summarized as the following equations.
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v =Ψ(q) = (ψ1, · · · ,ψn)
T

F(s) = diag{ f (s), · · · , f (s)} = F(s)In

q = F(s)M(s)Ψ (q) =

⎡
⎢⎣

f (s)μ11(s)ψ1(q1)+ · · ·+ f (s)μ1n(s)ψn(qn)
...

f (s)μn1(s)ψ1(q1)+ · · ·+ f (s)μnn(s)ψn(qn)

⎤
⎥⎦

where M(s) is the transfer matrix whose (i, j) entry is μi j(s). For the above system,
we deal with the following two problems in a similar way to [4]:

(I) Analysis problem: Given a network system with delays, determine whether
the coupled systems have oscillatory trajectories, and if so, estimate the oscil-
lation profile (frequency, amplitudes, phase) without actually simulating the
differential equations.

(II) Synthesis problem: Given a network structure with delays and a desired os-
cillation profile, determine the coupling strength kir in the coupling transfer
function μir(s) so that the resulting network system achieves the given profile.

2.2 Analysis of Periodic Solutions

We assume that system (1) has a periodic solution. The Fourier series expansion of
qi(t) is described by

qi(t) =
∞

∑
k=0

ak sin(ωkt)+ bk cos(ωkt)

where ak,bk ∈R
n and ω ∈R. Supposing that ω is sufficiently higher than the band-

pass frequency of f (s), qi(t) can be approximated by

qi(t)� αi sin(ωt +φi), i = 1, . . . ,n

where αi and φi denote the amplitude and phase, respectively. Furthermore, using a
describing function κi, ψi can be approximated by

ψi(qi)� κi(αi)qi, κi(x) :=
2
πx

∫ π

0
ψi(xsinθ )sinθdθ .

The describing function κi(x) is a monotonically decreasing function satisfying
κi(0) = 1 and κi(∞) = 0 since ψi(x) = tanh(x). Using these approximations, we
obtain the corresponding multivariable harmonic balance equation for nonlinear de-
lay network systems as follows.

(M( jω)K (α)− 1/ f ( jω)In)q = 0 (3)
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where j denotes the imaginary unit, In the n× n identity matrix, qi := αie jφi and
K (α) := diag(κi(αi)). The triplet (ω ,α,φ) satisfying equation (3) is the oscillation
profile to be solved. In this case, however, the solution is not unique in general, and
there may exist infinite number of solutions due to the existence of time-delays.
Among the solutions, we have to choose a triplet (ω ,α,φ) so that the estimated
oscillation is stable. Here, replacing K (α) with a constant matrix K(α) :=K (|q|),
the stability of oscillation can be expected by checking if the following characteristic
quasi-polynomial of linear system has a pair of solutions s =± jω on the imaginary
axis and the rest in the open right left plane.

det
(

M(s)K(α)− 1/ f (s)In

)
= 0. (4)

If the couplings have no delay, the stability analysis can be reduced to the eigenvalue
problem of the constant matrix MK(α) since the matrix M(s) is a constant matrix.
However, if the couplings have delays, then the entries of M(s) are not constant but
functions of e−sτm . Therefore the stability analysis cannot be done in the same way
as the delay-free case.

Now we decompose the transfer function matrix M(s) into a constant matrix part
and the rest, i.e.

M(s) = M0 +
h

∑
m=1

Mme−sτm (5)

where M0 and Mm ∈ R
n×n for m = 1, . . . ,h are constant coupling matrices. Substi-

tuting (2) and (5) into the quasi-polynomial (4) and setting Mc =−In+M0K(α), we
obtain

det

(
h

∑
m=1

Mme−λω0τmK(α)+Mc−λ In

)
= 0 (6)

where λ := s/ω0. The root λ satisfying equation (6) is identical to the pole of the
linear retarded system

ẋ(t) = Mcx(t)+
h

∑
m=1

MmK(α)x(t− τm). (7)

Therefore, seeking the rightmost characteristic roots of system (7), we can confirm
whether the characteristic quasi-polynomial (4) has at least one pair of solutions on
the imaginary axis and the rest in the open left half plane. If there exists a solution
λ on the imaginary axis, it is a solution of the modified harmonic balance equation
given by

(
h

∑
m=1

Mme−λω0τmK(α)+Mc−λ In

)
q= 0. (8)
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Assuming that there exists a q ∈ C
n satisfying (8), we can expect that the trajectory

of each oscillator qi(t) has a phase φi and a frequencyω , i.e. qi(t)� αi sin(ωt +φi),
where a triplet (ω ,αi,φi) is determined by

jω/ω0 = λ , qi = αie
jφi ,ω > 0 (9)

The analysis on the oscillation profile can be accomplished by finding q ∈ C
n

satisfying equation (4) , but K(α) depends on q. Therefore in this paper, extending
the algorithm introduced by Iwasaki [4] to delay systems, we propose the following
calculation algorithm.

Algorithm:

Step 1. Set the initial values k = 0 and vk = [1, . . . ,1] .
Step 2. Let Kk = K (|vk|) and find the rightmost roots λk which has the maximum

imaginary part and satisfies the following characteristic quasi-polynomial:

det

(
h

∑
m=1

Mme−λkω0mτKk +Mc−λkIn

)
= 0

Step 3. Find the corresponding eigenvector xk to λk obtained in Step 2:
(

h

∑
m=1

Mme−λkω0mτKk +Mc−λkIn

)
xk = 0

‖xk‖= 1

Step 4. Update the eigenvector

vk+1 = eσk yk, σk :=ℜ(λk), yk := xkx∗kvk

Step 5. If ‖vk+1− vk‖ ≤ ε , then the algorithm terminates, and q := vk+1 is the so-
lution of equation (8). So, we obtain a triplet (ω ,α,φ) from (9). Otherwise
go to Step 2 and iterate.

Remark 2.1. Note that in this analysis, network structures are not assumed to be
symmetric. Therefore this analysis method is also available for unidirectional net-
work systems.

Remark 2.2. For computing the rightmost roots of the characteristic quasi-
polynomial, several numerical techniques and some useful softwares like DDE-
BIFTOOL [2] are available.
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2.3 Numerical Examples

2.3.1 Example 1

To show the availability of the proposed analysis method for complex network sys-
tems, we consider a network with n = 15 oscillators shown in Fig. 1. Each vertex
denotes a oscillator and the number i inside of each vertex indicates the i-th oscil-
lator. The edge (i, j) represents the existence of coupling from the j-th oscillator to
the i-th oscillator.
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Fig. 1 A scale free network with n = 15

Now we assume that all coupling has identical delay τ and the matrix M(s) in (5)
is given by M(s) = M1e−sτ , where

M1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 1 0 1 1 1 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−1 0 0 0 0 0 0 0 0 1 1 1 0 1 1
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 −1 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Table 1 Comparison between
the estimated values and the
simulation result of the fre-
quency of coupled oscillators for
each delay

Delay τ frequency
0.2 Estimation 2.21

Simulation 2.22

0.3 Estimation 1.79
Simulation 1.79

By applying the proposed analysis algorithm for this network system, we esti-
mate the profiles of oscillators for the following two cases: (i) τ = 0.2, (ii) τ = 0.3.
Figure 2 shows comparisons between the estimated amplitudes and phases for qi

and those obtained by numerical simulations for τ = 0.2 and τ = 0.3, respectively.
Here phase φi means the phase difference between the first oscillator and the i-th
oscillator. In addition, the estimated frequency ω for each delay is summarized in
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Fig. 2 Estimated and simulated profiles of each oscillator (a) for τ = 0.2 (b) for τ = 0.3

Table 1. These results show that although the oscillations of delay coupled systems
depend on the length of time-delay, the proposed method can estimate the profiles
successfully.

2.3.2 Example 2

Consider n= 5 identical nonlinear systems with delay couplings. The network struc-
ture is shown in Fig. 3. Each vertex denotes a oscillator, and the directed edge (i, j)
means that there exists a coupling from the i-th oscillator to the j-th oscillator. In
particular, the dashed edges mean delay-free couplings and the solid edges are cou-
plings with delay τ = 0.3. Now the transfer function matrix of the coupling M(s) is
assumed to be given by M(s) = M0 +M1e−sτ , where

M0 =

⎡
⎢⎢⎢⎢⎣

0 0 −1.5991 0 0
0 0 0 0 0
0 0 0 0 0

−0.6566 0 0 0 0
0 0 1.6206 0 0

⎤
⎥⎥⎥⎥⎦,M1 =

⎡
⎢⎢⎢⎢⎣

0 1.2728 0 0 0
−1.2875 0 −0.5615 0 0

0 −1.7732 0 0.0875 0
0 0 −1.2973 0 −1.1642
0 0 0 0.7016 0

⎤
⎥⎥⎥⎥⎦.

The nonzero entries of these matrices are given by random numbers. Figure 4 shows
the steady state behaviors of coupled oscillators q(t) and the oscillation of each
system is stable. Then, applying the foregoing algorithm, we estimate the profile of
each oscillator. The comparison between the estimated values and the simulation
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results is summarized in Table 2. From Table 2, we can conclude that the estimation
of a triplet (ω ,α,φ) can be almost perfectly accomplished.

4

5

1

2

3

Fig. 3 Network structure in Example 2
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Fig. 4 Oscillatory trajectories in Example 2

Table 2 Estimated and simulated oscillation profiles in Example 2

q1 q2 q3 q4 q5
α1 φ1 α2 φ2 α3 φ3 α4 φ4 α5 φ5

Estimation 0.73 0.0 0.40 94.0 0.46 -151.0 0.47 -58.1 0.56 180.6
Simulation 0.70 0.0 0.39 95.1 0.46 -151.1 0.47 -57.1 0.56 180.7

3 Synthesis of Networks with Delays

3.1 Design Method

In the previous section, we considered how to estimate the profile of the coupled
oscillators under given network systems with delayed couplings. In this section,
we consider how to design the coupling gain ki j to achieve given specifications of
oscillation profile.

From the discussion in the foregoing section, it is necessary that the coupling gain
matrices M0, . . . ,Mh satisfy equation (4) for a given triplet (ω ,α,φ). Furthermore,
the roots of equation (6) or equivalently the poles of linear retarded system (7) have
to be on the imaginary axis and in the left half-plane of the complex plane only.

Based on the above idea, we obtain the following results on the design of coupling
gains.

Theorem 3.1 Let ω ∈ R, α ∈ R
n,φ ∈ R

n and mτ ∈ R for m = 1, . . . ,h be given,
where ω > 0, αi > 0 for i = 1, . . . ,n and 0≤ τ < 2π/ω . Furthermore, assume that
φ is chosen such that there exists at least one φi satisfying |φi− φ j| �= kπ for any
j �= i and k ∈ Z. Then the delay-coupled oscillators are expected to have oscillatory
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behaviors if there exist Mi ∈ R
n×n for i = 0, . . . ,h and a positive symmetric matrix

P satisfying

[
ℜ(Aq) ℑ(Aq)

]
= RΩ (10)

BT P+PB < 0 (11)

where

A :=
h

∑
m=1

Mme− jωτmK(α)+M0K(α)− I

B :=
h

∑
m=1

MmK(α)+M0K(α)− In

R :=
[
c s

]
∈ R

n×2, ci := αi cosφi,si := αi sinφi

Ω :=

[
0 ω/ω0

−ω/ω0 0

]
,q =

⎡
⎢⎣
α1 cosφ1 + jα1 sinφ1

...
αn cosφn + jαn sinφn

⎤
⎥⎦

Proof. For given ω , αi, φi and τm, the coupling gain matrices Mi for i = 0, . . . ,h
must satisfy the following harmonic balance equation:

(
h

∑
m=1

Mme− jωτmK(α)+Mc

)
q= λq

where λ = jω/ω0 and Mc =−In +M0K(α). Now if we suppose that the character-
istic quasi-polynomial has the characteristic roots at ± jω , the following equation
equivalently holds:

(
h

∑
m=1

Mme− jωτmK(α)+Mc

)
q= j

ω
ω0

q

Paying attention to that qi = αie jφi = αi cosφi + jαi sinφi and rewriting the above
equation, we obtain equation (10).

On the other hand, if system (7) with τ = 0, i.e. linear delay-free system

ẋ(t) =
(

Mc +
h

∑
m=1

Am

)
x(t)

is asymptotically stable, the corresponding matrix pencil Λ is regular. Then Theo-
rem A.1 shows the necessary and sufficient condition for the quasi-polynomial

∣∣∣∣∣λ In−Mc−
h

∑
m=1

Mme−λkω0mτKk

∣∣∣∣∣= 0
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to have at least one nonzero root on the imaginary axis and the corresponding delay
values. From this result, if we choose the minimum value in the delay values, the
characteristic quasi-polynomial has at least one pair of roots± jω on the imaginary
axis and the rest on the left half plane. Therefore it is necessary that τ < 2π

ω and
there exists a positive definite matrix P satisfying BT P+PB < 0. ��

3.2 Examples

In what follows, we consider two network systems with the same network structure
given in Figure 5. The first example is a case in which all edges mean delayed
coupling and the second one is a case in which a part of edges have time-delays.

4

5

1

2

3

Fig. 5 Network structure in Examples 3 & 4

3.2.1 Example 3

First, we consider a case in which all couplings have the same length of time-delay
τ1. Then we design the coupling gain matrix M1 so that the coupled oscillators meet
the specification given in Table 3.

Table 3 Specifications and simulation results (Example 3)

Period α1 α2 α3 α4 α5 φ1 φ2 φ3 φ4 φ5

Specification 3.14 0.60 0.80 1.00 1.20 1.40 0 40.0 100.0 170.0 250.0
Case 1) 3.13 0.61 0.78 0.99 1.20 1.42 0 39.7 99.5 168.3 251.4
Case 2) 3.13 0.61 0.78 1.00 1.20 1.42 0 43.4 101.2 169.1 250.1

It should be noted that the structures of Mi have been already fixed due to the
network structure. Solving the LMI (11) with respect to M1 subject to the specified
structure and equation (10), we can obtain the following matrix M1 for τ1 = 0.2 and
0.3, respectively.
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Fig. 6 Behaviors of coupled oscillators (τ1 = 0.2)

1) Case τ1 = 0.2:

M1 =

⎡
⎢⎢⎢⎣

0 0.5258 1.3822 0 0
−1.4632 0 1.8025 0 0

0 −1.1858 0 1.785 0
0.3872 0 −1.2293 0 1.7656

0 0 −0.9671 −3.0635 0

⎤
⎥⎥⎥⎦

2) Case τ1 = 0.3:

M1 =

⎡
⎢⎢⎢⎣

0 0.0841 1.6164 0 0
−2.0205 0 1.5026 0 0

0 −1.9642 0 1.2158 0
0.3392 0 −1.5932 0 1.5297

0 0 −0.1546 −3.4073 0

⎤
⎥⎥⎥⎦

The comparison between the given specification and the simulation results with M1

mentioned above is summarized in Table 3. Figure 6 shows the behavior of each os-
cillator in case of τ1 = 0.2. From these results, we see that the design specifications
are almost fulfilled.

3.2.2 Example 4

Consider a case in which the network has both delay-free couplings and time-delay
couplings with delay τ1 = 0.2. As in Example 2, we assume that the edges
{(3,1),(1,4),(3,5)} are delay free couplings and others time-delay couplings.
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Fig. 7 Behaviors of coupled oscillators (Example 4)

Based on the specifications given in Table 4, the coupling gain matrices M0 and M1

are obtained by applying Theorem 3.1 as follows.

M0 =

⎡
⎢⎢⎢⎣

0 0 1.2062 0 0
0 0 0 0 0
0 0 0 0 0

−0.5250 0 0 0 0
0 0 −1.2412 0 0

⎤
⎥⎥⎥⎦

M1 =

⎡
⎢⎢⎢⎣

0 1.1601 0 0 0
−1.4632 0 1.8025 0 0

0 −1.1858 0 1.785 0
0 0 −1.2572 0 1.7656
0 0 0 −2.6024 0

⎤
⎥⎥⎥⎦

The comparison between the given specification and the design result is summarized
in Table 4 and the simulation result is shown in Figure 7. Although the proposed de-
sign method contains approximation, the simulation results satisfy almost the given
specifications.

Table 4 Specifications and simulation results (Example 4)

Period α1 α2 α3 α4 α5 φ1 φ2 φ3 φ4 φ5

Specification 3.14 0.60 0.80 1.00 1.20 1.40 0 40.0 100.0 170.0 250.0
Simulation 3.13 0.61 0.80 1.02 1.29 1.46 0 41.3 101.9 172.1 251.9
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4 Conclusions

In this chapter, we considered pattern formation in networks of nonlinear systems
with delayed couplings. The approach employed in this paper is based on the har-
monic balance method and the obtained results are extensions of the results obtained
in the reference [4] for delayed networks. In a similar way to the reference [4], we
dealt with the analysis problem and the synthesis problem for delayed network sys-
tems. Although the proposed method for each problem contains approximations, the
validity of the both proposed methods was supported with numerical examples.

Appendix

Regarding to the characteristic roots on the imaginary axis, the following result
holds regarding to the stability of linear retarded systems ( [1], [7]).

Consider the following linear systems with commensurate delays:

ẋ(t) = A0x(t)+
m

∑
i=1

Aix(t− iτ) (12)

The corresponding characteristic function is given by

p(λ ;τ) = det
(
λ In−A0−

m

∑
i=1

Aie
−λ iτ

)

For system (12), the matrix pencil is defined by Λ(z) := zM +N, where M,N ∈
R
(2mn2)×(2mn2) are given by

M :=

⎡
⎢⎢⎢⎢⎢⎣

In2 0 · · · 0 0
0 In2 · · · 0 0

. . .
0 0 · · · In2 0
0 0 · · · 0 Bm

⎤
⎥⎥⎥⎥⎥⎦
, N :=

⎡
⎢⎢⎢⎢⎢⎣

0 −Ln2 0 · · · 0
0 0 −In2 · · · 0

. . .
0 0 0 · · · −In2

B−m B−m+1 B−m+2 · · · Bm−1

⎤
⎥⎥⎥⎥⎥⎦

and B−k for k = 1, . . . ,m and Bi for i = 1, . . . ,m are defined by

B−k = In⊗AT
k ,Bi = Ai⊗ In,B0 = A0⊕AT

0 .

Here the operators ⊗ and ⊕ denote the Kronecker product and sum, respectively.
Then the following theorem holds ([7]).

Theorem A.1. Assume that the matrix pencil Λ is regular. Then the quasi-
polynomial p(λ ;τ) = 0 has a crossing root on the imaginary axis for some positive
delay value τ if and only if there exists a complex number z0 ∈ σ(Λ)∩C (0,1) such
that
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jω0 ∈ σ
(

A0 +
m

∑
i=1

Aiz
i
o

)

where σ(A) denotes a point spectrum of A. Furthermore, for some z0 satisfying the
condition (ii) above, the set of delays corresponding to the induced crossing is given
by

T (z0) =
{∠z̄0

ω0
+

2π�
ω0

> 0 : jω0 ∈
(

A0 +
m

∑
i=1

Ai

)
, � ∈ Z

}
.
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Consensus in Networks of Discrete-Time
Multi-agent Systems: Dynamical Topologies
and Delays

Wenlian Lu, Fatihcan M. Atay, and Jürgen Jost

Abstract. A stability analysis of general consensus algorithms in discrete-time
networks of multi-agents is presented. Here, the networks can have time-varying
topologies and delays, as well as nonlinearities. The Hajnal diameter approach is
developed for synchronization analysis and sufficient conditions for both consen-
sus at uniform value and synchronization at periodic trajectories are derived, which
show how the periods depend on the transmission delay patterns.

1 Introduction

Consensus problems have been recognized to be important in coordination of dy-
namic agent systems and are widely applied in distributed computing [1], manage-
ment science [2], flocking/swarming theory [3], distributed control [4], and sensor
networks [5]. In these applications, the multi-agent systems need to agree on a com-
mon value for a certain quantity of interest that depends on the states of the interests
of all agents or is a preassigned value. In this chapter, we consider the following
dynamical system of multi-agents:

xt+1
i = φ t

i

(
xt−τi1(t)

1 , . . . ,xt−τim(t)
m

)
, i = 1, . . . ,m; t ∈ Z≥0, (1)
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where xt
i ∈ R denotes the state of agent i at time t, φ t

i : Rm → R is a differentiable
map for each t τi j(t) is the time-varying delay from agent j to agent i and Z≥0

denotes the discrete time, the set nonnegative integers. We suppose that the delays
are uniformly bounded, i.e., supi, j,t τi j(t) = τM for some finite τM > 0.

Let xt = [xt
1, . . . ,x

t
m]
 ∈R

m and w(t) = [xt ,xt−1 , . . . ,xt−τM ] ∈R
m(τM+1). We

first rewrite (1) in the more abstract form

w(t + 1) =Φt(w(t)) (2)

with Φt (·) = [Φt
0(·)

 , . . . ,Φt
τM (·)

 ] , where

{
Φt

0(w) = [φ t
1(w), . . . ,φ

t
m(w)]

 

Φt
τ (w) = xt−τ+1 τ ≥ 1.

We assume that all φ t
i (·), i = 1, · · · ,m, are C1+α continuous for some α > 0 and

φ t
i (s, . . . ,s) = s (3)

for all s ∈D(⊂R), i, and t. Eq. (2) is an abstraction and simplification of consensus
algorithm/protocol, an interaction rule specifying the information communication
between each agent and its neighborhood. In the present work, we address the ques-
tion of consensus when the right-hand side of (2) contains time variations in both
couplings and delays.

The condition (3) guarantees that global consensus is a solution of (1). A concept
related to consensus, namely synchronization [6–8] , indicates that the system’s di-
agonal, i.e. the set

S =
{

u ∈R
m : ui = u j ∈R, for all i, j = 1, . . . ,m

}

is invariant under the dynamics and asymptotically attracting. Due to fact that the
transmission delays τi j(t) from agent j to agent i depend on the receiver agent i, the
scenario is different from the systems without delays. To specify the argument, let

S=
{

w = [w0 , · · · ,wτM ] ∈ R
m(τM+1) : wτ ∈S , ∀ τ = 0,1, . . . ,τM

}
.

Under hypothesis (3), S may contain subsets that are invariant with respect to (2).
However, the more general condition used in [9], namely φ t

i (s, . . . ,s) = φ(s) for
some function φ independent of index i, does not guarantee that S contains invari-
ant subsets with respect to Eq. (1).

Actually, the trajectory of system (2), constrained on S, depends on the pattern
of the delays. First, let

S1 =
{

w = [w0 , . . . ,wτM ] ∈ S : wτ = wτ ′ , for all τ,τ ′ = 0, . . . ,τM

}
.
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Each s∗ = [s, · · · ,s] ∈S is an equilibrium of system (2). Next, if

P = gcd{τi j(t)+ 1 : i, j = 1, . . . ,m; t ∈ Z≥0}> 1, (4)

where gcd stands for the greatest common divisor, then the set

SP =
{

w = [w0 , . . . ,wτM ] ∈ S : wk = wk+P, ∀ k = 0,1, . . . ,τM−P
}

consists of invariant periodic solutions of system (2) (with period P). It can be seen
that S1 is a special case of SP when P = 1. In addition, restricting S on a local
region, for example, the region D where (3) holds, we define

S (C) =
{

u ∈ R
m : ui = u j ∈C, for all i, j = 1, · · · ,m

}

for some C ⊂ R. In the same fashion, we define S(C), S1(C) and SP(C) as well.
The relationship and difference between consensus and synchronization was pre-

sented in [10]. The question we consider is whether the invariant set S0 or SP (ac-
cording to the delays’ gcd) is attracting for dynamical states [xt

m, . . . ,x
t
m] outside of it,

at least locally. First, this question can be translated into synchronization problem
as we did in [9]. Then, upon reaching synchronization, hypothesis (3) guarantees
that the synchronized trajectory should be an equilibrium or a periodic trajectory
(depending of the delay patterns), instead of a general attractor on S.

The motivation for studying (1) (or its abstract form (2)) comes initially from the
basic discrete-time consensus algorithm:

xt+1
i =

m

∑
j=1

Gi jx
t
j, i = 1, · · · ,m, (5)

where xt
i ∈R denotes the state variable of the agent i and Gi j ≥ 0 is the nonnegative

coupling strength from agent j to agent i and satisfies: ∑m
j=1 Gi j = 1. Define G =

[Gi j]
m
i, j=1, which is related to the underlying connecting graph of the system, in the

sense that Gi j > 0 if there is a link from node (agent) j to i and Gi j = 0 otherwise.
It can be seen that G is a stochastic matrix. Then, (5) can be rewritten as

xt+1 = Gxt , (6)

where xt = [xt
1, . . . ,x

t
m]
 . Eq. (6) is a general model of the consensus algorithm on a

network with fixed topology, which can be a directed graph and may have weights.
Additionally, in many real-world applications, the connection structure may change
in time, for instance when the agents are moving in physical space. One must then
consider time-varying topologies under link failure or creation. Furthermore, delays
occur inevitably due to limited information transmission speed. To sum up, the linear
model of consensus with transmission delays can be described as

xt+1
i =

m

∑
j=1

Gi j(t)x
t−τi j(t)
j , (7)
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where τi j(t), i, j = 1, · · · ,m, denotes the time-dependent delay from agent j to agent
i. We say that a link from j to i is instantaneous if τi j(t)≡ 0, and delayed otherwise.
We will associate G(t) = [Gi j(t)]mi, j=1 with a directed graph sequence (see Sec. 3).

Stability analysis of the consensus in multi-agent networks (the special forms
of (7) for discrete-time model) has been intensively investigated in control the-
ory [11–19]. In our recent work [20], we have investigated consensus in dynamic
networks and delays under a general stochastic framework, which provides a the-
oretical method to analyze stability of Eq. (7), and applied the results to analyze
consensus in a mobile agent network model [21]. In this paper, we shall address this
problem in the context of the general form (1).

The time variation of the connections and delays can be either deterministic or
stochastic, which may have a special form, or may be driven by some other dynam-
ical system. Let Y = {Ω ,F ,P(·),θ t} denote a metric dynamical system, where Ω
is the metric state space, F is the σ -algebra, P(·) is the probability measure, and θ t

is a measure-preserving shift satisfying: θ t+s = θ t ◦ θ s and θ 0 = id, where id de-
notes the identity map. Then Eq. (7) can be regarded as a random dynamical system
(RDS) driven by Y :

xt+1
i =

m

∑
j=1

Gi j(θ tω)xt−τi j(θ tω)
j , i = 1, . . . ,m, t ∈ Z≥0;

or the abstract form (2) can be rewritten as:

wt+1 =Φ(wt ,θ tω), t ∈ Z≥0,ω ∈Ω . (8)

The consensus problem under this scenario is defined in forward and almost-sure
sense, i.e., convergence is attained except for a subset of ω of zero probability. For
details on random dynamical systems and attractors, we refer the reader to [22].

2 Stability Analysis

In this section we present a linear stability analysis of the invariant sets S1 and
SP according to delay patterns. We first consider S1 in the deterministic time-
varying case. We start with a boundedness condition of system (1). The notation
πA(·) denotes the orthogonal projection operator from R

m(τM+1) onto a subset A.
B1: There exists a neighborhood U containing S1(D) such that any trajectory

w(t) of (2) starting in U is bounded and πS1(w(t)) ∈S1(D) for all t.
Due to hypothesis (3), each point s∗ = [s, . . . ,s] ∈ S is an equilibrium of (1).

Using the approach in [9] the variational equations of z(t) = x(t)− s∗ near an equi-
librium point s∗ ∈S are

zt+1
i =

m

∑
j=1

∂φ t
i

∂x j
(s∗)z

t−τi j(t)
j , i = 1, . . . ,m. (9)

Hypothesis (3) implies that
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m

∑
j=1

∂φ t
i

∂x j
(s∗) = 1, i = 1, . . . ,m,

for all t and s∗ ∈S (D). However, the Jacobian matrix J(t) = [
∂φ t

i
∂x j

(s∗)]mi, j=1 is not

necessary a stochastic matrix since some elements may be negative.
With τM = supi, j,t τi j(t), assumed to be finite as above, partition J(t) into

J0(t),J1(t), . . . ,JτM(t), according to the delays, such that J(t) = ∑τMτ=0 Jτ(t), and (9)
can be rewritten in the general form

zt+1 =
τM
∑
τ=0

Jτ(t)z
τ , (10)

where z(t) = [z1(t), . . . ,zt
m]
 . Eq. (10) can further be rewritten as

yt+1 = B(t)yt ,

where yt = [zt ,zt−1 , . . . ,zt−τM ] and

B(t) =

⎡
⎢⎢⎢⎢⎢⎣

J0(t) J1(t) J2(t) · · · JτM (t)
Im 0 0 · · · 0
0 Im 0 · · · 0
...

...
...

. . .
...

0 0 · · · Im 0

⎤
⎥⎥⎥⎥⎥⎦

with all row sums equal to 1. To state the main results, we use the concept of the
Hajnal diameter introduced in [23, 24]: For a matrix A with row vectors a1, . . . ,am

and a vector norm ‖ · ‖ in R
m, the Hajnal diameter of A is defined by diam(A) =

maxi, j ‖ai− a j‖ . The Hajnal diameter of an infinite product of a deterministically
time-varying matrix sequence {B(t)} is defined as [9]:

diam(B(·)) = lim
T→∞

sup
t0≥0

[
diam(

t0+T

∏
t=t0

B(t))

]1/T

.

From Theorem 3.1 in [9], the following result can be concluded.

Theorem 1. Under the hypothesis B1, if sups∗∈S1(D) diam(B(·)) < 1, then system
(1) is (locally) stable with respect to S1(D), that is, there exists a sufficiently small
neighborhood U of S1(D) such that for any initial condition in U, the trajectory
converges to an equilibrium in S1(D).

In fact, Theorem 3.1 in [9] assumes that there exists an attractor for the system
restricted to S1, which is needed to guarantee that the projection of the trajectory
on S1 are kept in the bounded region defined by the attractor. Here, condition B1

guarantees that the projection of the trajectory of Eq. (2) with initial condition in U
onto S1 is still in D. So, the proof of Theorem 3.1 in [9] is valid for this theorem, and
in addition, this condition also guarantees that hypothesis (3) holds for the system
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restricted to S1. When (1) converges to S1(D), according to the form of (3), the
synchronized trajectory should be an equilibrium. In other words, system (2) reaches
consensus, as all agents converge to a uniform value.

If the time-variation is driven by a stochastic process, then the system (1) or (2)
becomes the random dynamical system (8). Let

Vt
λ =

{
ω ∈Ω :

[
diam(

t

∏
k=0

B(θ kω))
]1/t

< λ

}
.

From Theorem 4.3 in [25], we have:

Theorem 2. Under hypothesis B1, if there exists some λ ∈ (0,1) such that
∑∞t=0 P(Vt

λ ) < +∞, then (8) is (locally) stable with respect to S1(D) in the almost
sure sense, that is, for almost every ω ∈Ω , there exists a sufficient small neighbor-
hood U(ω) (possibly depending on ω) of S1(D) such that for any initial condition
in U, the trajectory of (8) converges to an equilibrium in S1(D).

We note that the equilibrium depends also on ω . In [25], a sufficient condition was
stated in terms of the normal Lyapunov exponent, which was proved to be equivalent
to the Hajnal diameter in [9].

We next consider synchronized periodic solutions under condition (4). Note that
each t ∈ Z≥0 can be written as t = kP+ l for some k≥ 0 and l = 0, . . . ,P−1. Eq. (1)
implies that the state at t+1 depends on the states at t−τi j(t), i, j = 1, . . . ,m. We can
write τi j(t) = zi j(t)P− 1, owing to hypothesis (3). Therefore, mod(t− τi j(t),P) =
l+1, which is equal to mod(t + 1,P) (if l =P−1, then l+1 equals to 0 in modulus),
where mod(a,b) denotes the remainder of a divided by b. In other words, hypothesis
(4) implies that the state of node at time t+1 depends only on those states at the time
points that have the same remainder with respect to P. Therefore, after permutation
of the τM+1 components in wt = [xt , . . . ,xt−τM ] such that the time with the same

remainder with respect to P are brought together, i.e., w̃t =
[
(w̃t

0)
 , . . . ,(w̃t

P−1)
 ] 

with w̃t
k =

[
(xt−k) ,(xt−P−k) , . . . ,(xt−(τM+1)+P−k) 

] 
for all k = 0, . . . ,P−1, sys-

tem (2) has the following block form:

w̃t+1
k = Φ̃t

k

(
w̃t

k

)
, k = 0, . . . ,P− 1, t ∈ Z≥0,

with Φ̃t
k =

[
Φ̃t

k,0, . . . ,Φ̃
t
k,n

] 
(n = (τM + 1)/P− 1), and

Φ̃t
k,z =

{
[φ t−k

1 (·) , . . . ,φ t−k
m (·) ] z = 0,

xt−zτ0−k z > 0.

By linearization, with the same permutation of yt with that of wt , we can bring
the variational equation near each periodic solution w∗ into the form

ỹt+1 = B̃(t)ỹt (11)
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with block-diagonal B̃(t) :

B̃(t) = diag[B̃r(t)]
P−1
r=0 .

Thus, after a partition of ỹ = [ỹ 0 , · · · , ỹ P−1]
 , (11) has the block form

ỹt+1
r = B̃r(t)ỹt

r, r = 0, . . . ,P− 1. (12)

A similar hypothesis to B1 can be stated as
B2: There exists neighborhoodU containing SP(D) such that any trajectory w(t)

of (2) starting in U is bounded and πSP(w(t)) ∈SP(D) for all t ∈ Z≥0.
Then, from Theorem 3.1 in [9], we have

Theorem 3. Under the hypothesis B2, if supw∗∈SP(D) maxr=0,...,P−1 diam(B̃r(·)) <
1, then system (2) is (locally) stable with respect to SP(D), that is, there exists a
sufficiently small neighborhood U of SP(D) such that from any initial condition in
U, the trajectory converges to a periodic trajectory in SP(D).

In a similar fashion as in Theorem 2, if the time-variation is driven by a metric
dynamical system (Ω ,F ,P,θ t ), i. e., Eq. (10) becomes a RDS:

ỹt+1 = B̃(θ tω)ỹt , (13)

then letting

Ṽ t
λ =

{
ω ∈Ω : max

r=0,...,P−1

[
diam(

t

∏
k=0

B̃r(θ kω))
]1/t

< λ

}
,

we can state the following result.

Theorem 4. Under hypothesis B2, if there exists some λ ∈ (0,1) such that
∑∞t=0 P(Ṽ t

λ ) < +∞, then (8) is (locally) stable with respect to SP(D) in the almost
sure sense, that is, for almost every ω ∈Ω , there exists a sufficient small neighbor-
hood U(ω) (possibly depending on ω) of SP(D) such that for any initial condition
in U, the trajectory of (8) converges to a periodic trajectory in SP(D).

Theorems 1 and 2 can be regarded as special cases of Theorems 3 and 4, respec-
tively, when P = 1.

Remark 1. Hypotheses B1,2 can be satisfied if system (2) is essentially bounded, i.e.,
there exists a bounded region Q⊂R

m(τM+1) such that any trajectory enters Q for all
t ≥ T for a sufficiently large T . Then the set D can be derived by projecting the
convex closure of Q onto S1 or SP, respectively.

3 Linear Model

Eq. (7) can be regarded as a special case of (1) withΦt
i =∑

m
j=1 Gi j(t)x

t−τt
i j

j . However,
in such a linear model the stability is always global, instead of local for nonlinear
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systems. In this section, we provide the main results in terms of matrix and graph
theories for linear models (7) or (8). The link between stochastic matrices and graphs
is an essential feature here.

A stochastic (or simply nonnegative) matrix A = [ai j]
m
i, j=1 ∈R

m,m defines a graph
G = {V ,E }, where V = {1, . . . ,m} denotes the node (agent) set with m nodes and
E denotes the link set where there exists a directed link from node j to i (i.e., e(i, j)
exists) if and only if ai j > 0. We denote this graph corresponding to the stochastic
matrix A by G (A). The node i is said to be self-linked if e(i, i) exists, i.e., aii > 0.
The node i can access the node j, or equivalently, the node j is accessible from the
node i, if there exists a path from i to j. The graph G has a spanning tree if there
exists a node i which can access all other nodes. The graph G is said to be strongly
connected if each node is a root. We refer the interested reader to the book [26] for
more details. Due to the relationship between nonnegative matrices and graphs, we
can call upon and switch between their respective properties as needed. For example,
the indecomposability of a nonnegative matrix A is equivalent to that G (A) has a
spanning tree, and the aperiodicity of a graph is associated with the aperiodicity of
its corresponding matrix [27]. For a sequence of nonnegative matrices A(t), we can
define a graph sequence associated with A(t): G (t) = G (A(t)). The union of several
graphs {Gi, i = 1, . . . , p} on the same node set is the union of their link sets.

For a nonnegative matrix A and a given δ > 0, the δ -matrix of A, denoted by Aδ ,
is defined as

[Aδ ]i j =

{
δ , if Ai j ≥ δ ;
0, if Ai j < δ .

The δ -graph of A is the directed graph corresponding to the δ -matrix of A. We can
then state the following result for the stability of S1 (noting that in the linear model,
D = R).

Theorem 5. [12] Suppose there exist μ > 0, L∈Z≥0, and δ > 0 such that G0(σ)>
μIm for all σ ∈ Ω and the δ -graph of ∑n+L

k=n+1 G(k) has a spanning tree for all
n ∈ Z≥0. Then system (7) is (globally) stable with respect to S1, i. e., it reaches
consensus.

In fact, with D = R, if the condition in this theorem is satisfied, there exist a suffi-

ciently large integer T and λ ∈ (0,1) such that diam
(
∏n+T ′

k=n+1 G(k)
)
< λ T ′ for any

T ′ > T . Hence, the conditions in Theorem 1 hold.
We rewrite system (7) in the general form

xt+1
i =

τM
∑
τ=0

m

∑
j=1

Gτi j(t)x
t−τ
j , i = 1, . . . ,m, (14)

by partitioning the inter-links according to delays, as well as in the matrix form

xt+1 =
τM
∑
τ=0

Gτ(t)xt−τ , (15)
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where Gτ(t) = [Gτi j(t)]
m
i, j=1. In some cases delays occur at self-links, for example

when it takes time for each agent to process its own information. Suppose that the
self-linking delay for each node is identical, that is, τii = P−1> 0. We classify each
integer t in the discrete-time set Z≥0 (or the whole integer set Z) via mod(t + 1,P)
as the quotient group of (Z+ 1)/P. As a default set-up, we denote 〈i〉P by 〈i〉. Let
Ĝi(·) = ∑ j∈〈i〉G

j(·). We have the following result for the stability of SP.

Theorem 6. Assume that
(1) Hypothesis (4) holds for P > 0;
(2) τii(t) = P− 1 for all i = 1, . . . ,m;
(3) GP−1(t)> μIm for some μ > 0 and all t ∈ Z≥0.

Suppose further that there exist L ∈ Z≥0 and δ > 0 such that the δ -graph of
∑n+L

k=n+1 Ĝ0(k) is strongly connected for all n ∈ Z≥0. Then system (14) is (globally)
stable with respect to SP, i. e., it synchronizes to a P-periodic trajectory.

This theorem can be proved as a consequence from Theorem 3 in a similar fashion
as the proof of Theorem 3.4 in [21], but by removing the discussion of randomness,
since here we consider deterministic time-variation.

The time-variation can be random, e. g., induced by a stochastic process σ t .
In [20, 21], we considered the case when {σ t} is an adapted stochastic process:
Let {Ak} be a stochastic process defined on the basic probability space {Ω ,F ,P},
with the state space Ω , the σ -algebra F , and the probability function P. Let {F k}
be a filtration, i. e., a sequence of nondecreasing sub-σ -algebras of F . If Ak is mea-
surable with respect to (w.r.t.) F k, then the sequence {Ak,F

k} is called an adapted
process. Let E(·|F t ) denote the conditional expectation with respect to σ -algebra
F t . Then, Eq. (15) becomes

xt+1 =
τM
∑
τ=0

Gτ(σ t)xt−τ . (16)

This adapted process can be regarded as a metric dynamical system with invariant
probability, {ΩΩΩ ,F,P,θ t}, where ΩΩΩ = ΩZ≥0 , i. e., each element is the sequence
{σ t}t≥0, F = FZ≥0 is the infinite Cartesian product of F , P coincides with the
intrinsic probability P, and θ t is the shift map: θω = {σ t}t≥1. The following results
are the stochastic versions of Theorems 5 and 6.

Theorem 7. [20, 21] Suppose there exist μ > 0, L ∈ Z≥0, and δ > 0 such that
G0(σ)> μIm for all σ ∈ Ω and the δ -graph of E{∑n+L

k=n+1 G(σ k)|F n} has a span-
ning tree for all n∈Z≥0 almost surely. Then (16) is stable with respect to S1 almost
surely (i.e. with probability one).

Theorem 8. [20, 21] Assume that
(1) Hypothesis (4) holds;
(2) τii(t) = P− 1 for all i = 1, . . . ,m;
(3) GP−1(t)> μIm for some μ > 0 and all t ∈ Z≥0.

Suppose further that there exist L ∈ Z≥0 and δ > 0 such that the δ -graph of
E{∑n+L

k=n+1 Ĝ0(σ k)|F n} is strongly connected for all n ∈ Z≥0 almost surely. Then
(16) is stable with respect to SP almost surely (i.e. with probability one).
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4 Multi-agent Model with Nonlinear Coupling

In this section, we present a stability analysis of a class of nonlinear multi-agent
models

xt+1
i =

m

∑
j=1
ψt

i j

(
x

t−τi j(t)
j − xt−τii(t)

i

)
x

t−τi j(t)
j , i = 1, . . . ,m, t ∈ Z≥0, (17)

where ψt
i j(·) is a (time-dependent) nonlinear function that denotes the coupling

strength from agent j to agent i, acting on the difference between the states of the
two nodes under the presence of delays. We assume that ψt

i j(s) is C1+α continuous
for some α > 0 and attains its maximum value, which is assumed to be nonzero, at
s = 0. In other words, the coupling strength is maximum when the (delayed) states
are equal. Thus, dψt

i j(s)/ds|s=0 = 0 for all i, j = 1, . . . ,m and t ∈ Z≥0. For example,
ψt

i j(·) can be chosen from a class of Gaussian-type kernel functions. In addition, to
guarantee that (3) holds, we also assume that ∑m

j=1ψt
i j(0) = 1 for all i and t.

The variational equation near S1 or SP under the assumption (4) is:

δxt+1
i =

m

∑
j=1

ψt
i j(0)δx

t−τi j(t)
j , i = 1, · · · ,m , t ∈ Z≥0. (18)

It has the similar form of (7). LetΨ0(t) = [ψt
i j(0)]

m
i, j=1 and Ψ̃0

r (t) be defined in the
same fashion as done in Eqs. (11) and (12). Then we have the following result.

Theorem 9. Assume all conditions mentioned above for ψt
i j(·) hold.

(1) Under hypothesis B1 for some D⊂R, if diam
(
Ψ0(·)

)
< 1, then system (17)

is (locally) stable with respect to S1(D);
(2) Under the hypothesis B2 for some D ⊂ R, if diam

(
Ψ̃0

r (·)
)
< 1 for all r =

0, . . . ,P− 1, then system (17) is (locally) stable with respect to SP(D).

In addition, if ψt
i j(0) are all nonnegative, then {Ψ0(t)} are stochastic matrices, and

the conditions in Theorem 9 can be “translated” in terms of graphs associated with
the stochastic matrix sequence {Ψ0(t)}, namely, into the conditions in Theorems 6
and 7.

When the time-variation is induced by a stochastic process, or generally by a
metric dynamical system, the results of Theorems 2 and 4 can be applied to derive
sufficient conditions for consensus in the almost surely sense for system (17). Com-
bined with the graph theory used in [20], if {Ψ0(t)} are stochastic matrices, we can
derive sufficient conditions for consensus like Theorem 7 and 8. We omit the details
due to space constraints.
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5 Numerical Examples: Dynamical Networks for Random
Waypoint Model

We perform numerical examples to illustrate the results by the “random waypoint”
(RWP) model, which is a widely used model in performance evaluation of protocols
of ad hoc networks, first introduced in [29]. We use the same set-up of the model as
done in [21] to mimic time-varying graph topologies and realize the random way-
point model in a 1000× 1000 (m2) square area, where the agent i moves towards a
randomly selected target in this area following the uniform distribution. The velocity
of movement is also random, with a uniform distribution in [10,20] (m/sec). After
approaching the target, the agent waits for a random time period following the uni-
form distribution in [1,5] (sec). Moreover, each agent’s behavior is stochastically
independent of the others. The links between agents are generated such that each
agent is linked to the agents whose distance is not more than R. We take R = 120
(m). There are 50 independent mobile agents in the network, whose location and
status of the agents can be modeled as a homogeneous Markov chain [21].

We set up two models of multi-agent systems on the RWP network. The first one
is a linear model (stated in the form of (7)):

xt+1
i =

1
#N t

i
∑

j∈Ni(t)

x
t−τt

i j
j , i = 1, . . . ,m, (19)

where Ni(t) denotes the neighborhood of agent i at time t and #F denotes the num-
ber of the elements in a finite set F . The second model is a special case of (17) with
coupling functions:

ψt
i j(s) =

1
#Ni(t)

exp(− s2

2
). (20)

It can be verified that all conditions of ψt
i j(·) in Section 4 are satisfied. We assume

that the self-links exist for all nodes. Thus Ni(t) is always nonempty.
We consider discrete time with a 0.01 (sec) time interval. Each agent operates

according to the algorithm (19). Transmission delays exist due to finite information
transmission speed and storage buffer. Since the speed of information transmission
is typically much higher than the movement of agents, we omit the displacement
of the information transmission caused by the movement of agents and define the
delays (0.01 sec) as:

τi j(σ t ) = λ#
dt

i j

vs
$+ τ0, (21)

where dt
i j (m) denotes the distance between agents i and j in the two-dimensional

space at time t, vs denotes the transmission speed of information, #·$ denotes the
floor function, i.e., the largest integer less than or equal to its argument, λ is a
scaling parameter representing the ratio of the time scale of movement of the agents
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and that of the information transmission and processing among agents, and τ0 (0.01
sec) denotes the identical self-linking delay.

Following the arguments in [21], the network has a positive probability of be-
ing a complete network, with respect to the stationary probability distribution. This
implies that the expectation, with respect to the stationary probability distribution,
of the graph topology is a complete graph. Hence, for the case of existence of self-
links, the conditions of Theorems 7 and 8 are satisfied. In the absence of self-links,
for any initial network graph, there are a path of finite length and a positive prob-
ability such that all agents enter a disc with radius less than R. So, the conditional
expectation of product of the matrices has a positive probability of being complete.
This implies that the conditional expectation is complete. In a similar way, condi-
tions for consensus can be verified for system (17) with (20) as well.
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(a) Convergence of (19) with λ = 1 and τ0 =
0.
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(b) Convergence of (17) with (20), λ = 1 and
τ0 = 0.
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(c) Convergence of (19) with λ = 2 and τ0 =
1.
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(d) Convergence of (17) with (20), λ = 2 and
τ0 = 1.
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(e) Convergence of (19) with λ = 2 and τ0 =
2.
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(f) Convergence of (17) with (20), λ = 2 and
τ0 = 2.

Fig. 1 Convergence dynamics of the multi-agent systems (19) (left column) and (17) with
(20) (right column) in RWP networks. The insets show the terminal synchronous orbits.
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We fix vs = 3000 (m/sec) and pick different values of τ0 and λ to illustrate the
synchronous or consensus dynamics as mentioned in Theorems 7, 8, and 9.

First, we choose λ = 1 and τ0 = 0. Theorem 7 indicates that the multi-agent
system (19) reaches consensus. Fig. 1(a) depicts the consensus dynamics of (19)
with the delays (21) with respect to S1. We also observe that system (17) with
coupling function (20) reaches consensus, as shown in Fig. 1(b).

We next take λ = 2 and τ0 = 1. Thus, the delays can be picked only in the set
{1,3,5,7,9} and each value in this set can be a possible delay in (21). One can see
that gcd(τi j + 1 : i, j = 1, . . . ,m; t ∈ Z≥0) = 2. Theorem 8 yields that (19) cannot
reach consensus but must instead synchronize to a 2-periodic trajectory. The same
conclusion holds also for system (17) with coupling function (20). Fig. 1(c) and 1(d)
show the synchronous dynamics of systems (19) and (17) with (20) and the delays
(21), λ = 2, and τ0 = 1.

Finally, we choose λ = 2 and τ0 = 2. Thus, the delays can be picked only from
the set {2,4,6,8,10}. We have gcd(τi j + 1) : i, j = 1, . . . ,m; t ∈ Z≥0) = 1. From
Theorem 8, similar arguments indicate that (19) reaches consensus, i. e., synchro-
nizes at a periodic trajectory with period P = 1. The same conclusion holds for the
system (17) with (20). Fig. 1(e) and 1(f) indicate the consensus dynamics with the
delays (21), λ = 2, and τ0 = 2.

6 Conclusion

We have presented an analysis of consensus problem in discrete-time networks of
multi-agent systems, based on our previous results in [9,20,21,25]. Here the model
is general, including the linear consensus model as a special example. When the
time variation is driven by a metric dynamical system, multi-agent systems become
random dynamic systems. Based on a Hajnal diameter approach that we developed
for synchronization analysis, we have presented sufficient conditions for both con-
sensus at a uniform value and synchronization at a periodic trajectory, and shown
how the periods depend on the transmission delay patterns. As special examples,
we have re-derived the stability results for the consensus of the linear model and de-
rived sufficient conditions for the stability of a class of delayed multi-agent systems
with nonlinear coupling. To illustrate the theoretical results, we have presented two
consensus algorithms in a mobile-agent model under transmission delays.
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Part III
Time-Delay and Sampled-Data Systems



Sampled-Data Stabilization under Round-Robin
Scheduling

Kun Liu, Emilia Fridman, Laurentiu Hetel, and Jean-Pierre Richard

Abstract. This chapter analyzes the exponential stability of Networked Control
Systems (NCSs) with communication constraints, variable sampling intervals and
constant delays. We focus on static output feedback controllers for linear systems.
The system sensors nodes are supposed to be distributed over a network. The
scheduling of sensor information towards the controller is ruled by the classical
Round-Robin protocol. We develop a time-delay approach for this problem by pre-
senting the closed-loop system as a switched system with multiple delayed samples.
By constructing an appropriate Lyapunov functional, which takes into account the
switched system model and the sawtooth delays induced by sampled-data control,
we derive the exponential stability conditions in terms of Linear Matrix Inequalities
(LMIs). Polytopic uncertainties in the system model can be easily included in the
analysis. The efficiency of the method is illustrated on the classical cart-pendulum
benchmark problem.

1 Introduction

Networked Control Systems (NCSs) are systems with spatially distributed sensors,
actuators and controller nodes which exchange data over a communication data
channel. Only one node is allowed to use the communication channel at once. The
communication along the data channel is orchestrated by a scheduling rule called
protocol. Using such control structures offers several practical advantages: reduced
costs, ease of installation and maintenance and increased flexibility. However, from
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the control theory point of view, it leads to new challenges. Closing the loop over
a network introduces undesirable perturbations such as delay, variable sampling in-
tervals, quantization, packet dropouts, scheduling communication constraints, etc.
which may affect the system performance and even its stability. It is important in
such a configuration to provide a stability certificate that takes into account the
network imperfections. For general survey papers we refer to [1, 23, 26]. Recent
advancements can be found in [6, 8, 13, 20, 24] for systems with variable sampling
intervals, [17] for dealing with the quantization and [2, 9, 14] for control with time
delay. Concerning NCSs, three main control approaches have been used: discrete-
time models (with integration step), input delay models (together with a Lyapunov-
Krasovskii theory) and impulsive/hybrid models.

In the present chapter, we focus on the stabilization of NCSs with communica-
tion constraints. We consider a linear (probably, uncertain) system with distributed
sensors. The scheduling of sensor information towards the controller is ruled by the
classical Round-Robin protocol. The Round-Robin protocol has been considered
in [12,21] (in the framework of hybrid system approach) and in [3,4] (in the frame-
work of discrete-time systems). In [21], stabilization of nonlinear system based on
the impulsive model is studied. However, delays are not included in the analysis.
In [12], the authors provide methods for computing the Maximum Allowable Trans-
mission Interval (MATI - i.e. the maximum sampling jitter) and Maximum Allow-
able Delay (MAD) for which the stability of a nonlinear system is ensured.

In [3], network-based stabilization of Linear Time-Invariant (LTI) systems with
Round-Robin protocol and without delay have been considered (see also [4] for
delays less than the sampling interval). The analysis is based on the discretization
and the equivalent polytopic model at the transmission instants. For LTI systems,
discretization-based results are usually less conservative than the general hybrid
system-based results. However, discrete-time models do not take into account the
system behavior between two transmissions and are not applicable to uncertain sys-
tems. Moreover, it is tedious to include large delays in such models and the stability
analysis methods may fail when the interval between two transmissions takes small
values (see e.g. [8]).

In the present chapter, a direct Lyapunov-Krasovskii approach is developed for
stabilization of NCSs with Round-Robin scheduling, constant delays and variable
sampling intervals. Discrete-time controllers are considered and the delay may be
larger than the sampling interval. We present the closed-loop system as a switched
continuous-time system with multiple delayed samples. By constructing appropriate
Lyapunov functionals, we derive LMIs for the exponentially stability with a given
decay rate.

We note that, till recently, only time-independent Lyapunov-Krasovkii func-
tionals (for systems with time-varying delays) were applied to NCSs (see e.g.
[7, 9]). These functionals did not take advantage of the sawtooth evolution of the
delays induced by sampled-and-hold. The latter drawback was removed in [6],
where time-dependent Lyapunov functionals for sampled-data systems were intro-
duced. In some well-studied numerical examples, the results of [6] approach the
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analytical values of minimum L2-gain and of maximum sampling interval, preserv-
ing the stability.

In the present chapter, we suggest two methods, which extend time-dependent
Lyapunov functional constructions developed in [6] and [18] to the switched sys-
tems with multiple samples and constant delays, respectively. Our results are appli-
cable to systems with polytopic type uncertainties. The efficiency of the method is
illustrated on the classical cart-pendulum example.

Notation: Throughout the chapter the superscript ‘T ’ stands for matrix transposi-
tion, Rn denotes the n dimensional Euclidean space with vector norm ‖ · ‖, Rn×m

is the set of all n×m real matrices, and the notation P > 0, for P ∈ Rn×n means
that P is symmetric and positive definite. The symmetric elements of the symmet-
ric matrix will be denoted by ∗. The space of functions φ : [a,b]→ Rn, which
are absolutely continuous on [a,b], have a finite limθ→b− φ(θ ) and have square
integrable first order derivatives is denoted by W [a,b] with the norm ‖φ‖W =

maxθ∈[a,b] ‖φ(θ )‖+
[∫ b

a ‖φ̇(s)‖2ds
] 1

2
. N denotes the set { 0, 1, 2, 3, · · · }.

2 Problem Formulation

Consider the following system controlled through a network (see Figure 1):

ẋ(t) = Ax(t)+Bu(t), (1)

where x(t) ∈Rn is the state vector, u(t) ∈Rm is the control input, A and B are sys-
tem matrices with appropriate dimensions. The system presents nodes correspond-
ing to different distributed continuous-time outputs and control computation node
situated next to the actuator. For the sake of simplicity, we consider here that the

system has two sensor nodes yi(t) =Cix(t), i = 1,2 and we denote C =
[

C1

C2

]
. We let

sk denote the unbounded monotonously increasing sequence of sampling instants,
i.e.

0 = s0 < s1 < .. . < sk < .. . , k ∈N , lim
k→∞

sk = ∞ (2)

At each sampling instant sk, one of the outputs yi(t) is sampled and transmitted
via the network. The choice of the active output node is ruled by a Round-Robin
scheduling protocol. The output yi(t) is transmitted only at the sampling instant
t = s2p+i−1, p ∈N . We assume that the transmission of the information over the
network is subject to a constant delay h and that data loss is not possible. We denote
by yi

k, i = 1,2, the buffers associated to the different system outputs at the controller
level. The evolution of these buffers according to the Round-Robin scheduling is
given by

yi
k =

{
yi(sk) =Cix(sk), k = 2p+ i− 1,

yi
k−1, k �= 2p+ i− 1,

p ∈N . (3)
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We assume that there exists a matrix K =
[

K1 K2
]
, K1 ∈Rm×n1 , K2 ∈Rm×(n−n1)

such that A+BKC is Hurwitz. Then the control law that we consider in this chapter
is a static output feedback of the form:

uk = K1y1
k +K2y2

k , k = 1,2, ... (4)

and u0 = K1y1
0.

We assume that the controller and the actuator act in an event-driven manner,
simultaneously, when data arrive at buffers, at instances tk = sk + h. Under these
hypothesis the control law is piecewise constant with

u(t) = uk, ∀t ∈ [tk, tk+1) . (5)

The closed-loop system can be presented in the form

ẋ(t) = Ax(t)+A1x(tk− h)+A2x(tk−1− h), t ∈ [tk, tk+1),
ẋ(t) = Ax(t)+A1x(tk− h)+A2x(tk+1− h), t ∈ [tk+1, tk+2),

(6)

where k = 2p, Ai = BKiCi, i = 1,2, x(t−1− h) = 0.
We assume that

tk+1− tk + h≤ τM, k ∈N (7)

where τM denotes the maximum time span between the time tk−h at which the state
is sampled and the time tk+1 at which next update arrives at the controller. So we
have tk+1− tk ≤ τM− h, k ∈N .

The objective of the present chapter is to derive exponential stability conditions
for system (6) in terms of LMIs via direct Lyapunov method. As a particular case,
we will also consider the case of h = 0 under the constant/variable sampling. For
the constant sampling (as in [20]), our results are less conservative.

PLANT

CONTROLLER

NETWORK
ZOH

2( )y t
( )u t

1( )y t

1
ky

2
ky

Fig. 1 System architecture
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3 Main Results

3.1 Stability Conditions for NCSs: Variable Sampling
and Constant Input/Output Delay

3.1.1 The First Approach

Extending the constructions of Lyapunov functionals for systems with non-small
or interval delay [5], we choose the following Lyapunov functional for exponential
stability with the decay rate α > 0:

V (t,xt , ẋt) = V̄ (t) =V0(xt , ẋt)+V1(t, ẋt)+V2(t, ẋt), (8)

where

V0(xt , ẋt) = [xT (t) xT (t− h)]P

[
x(t)

x(t− h)

]

+
∫ t

t−h e2α(s−t)xT (s)S0x(s)ds+ h
∫ 0
−h

∫ t
t+θ e2α(s−t)ẋT (s)R0ẋ(s)dsdθ

+
∫ t

t−h e2α(s−t)ẋT (s)W ẋ(s)ds, S0 > 0,R0 > 0,W > 0,

and

V1(t, ẋt) = (tk+2− t)
∫ t−h

tk−h e2α(s−t)ẋT (s)U1ẋ(s)ds, t ∈ [tk, tk+2),

V2(t, ẋt) =

{
(tk+1− t)

∫ t−h
tk−1−h e2α(s−t)ẋT (s)U2ẋ(s)ds, t ∈ [tk, tk+1),

(tk+3− t)
∫ t−h

tk+1−h e2α(s−t)ẋT (s)U2ẋ(s)ds, t ∈ [tk+1, tk+2),

U1 > 0, U2 > 0, k = 2p,

and

P =

[
P1 P2

∗ P3

]
> 0. (9)

Note that V0 is a ”nominal” augmented Lyapunov functional for the ”nominal”
system with a constant delay [15, 22]

ẋ(t) = Ax(t)+ (A1 +A2)x(t− h). (10)

The terms V1, V2 are extensions of the time-dependent term introduced in [6] for the
sampled-data control. These terms are continuous in time along (6) since

V1|t=t−k
=V1|t=t+k

= 0, V1|t=t−k+1
=V1|t=t+k+1

≥ 0,

V2|t=t−k
=V2|t=t+k

≥ 0, V2|t=t−k+1
=V2|t=t+k+1

= 0.
(11)

By the standard arguments for the switched systems [16,25], the following condition

˙̄V (t)+ 2αV̄(t)≤ 0 (12)
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guarantees the exponential stability of (6) with the decay rate α . Therefore, we
obtain the following result, the proof of which follows from [19].

Theorem 1. Given τM > h ≥ 0, α > 0 and K1, K2, the system (6) is exponentially
stable with the decay rate α , if there exist n×n matrices P1 > 0, P2, P3 > 0, R0 > 0,
S0 > 0, W > 0, Ui > 0 (i= 1,2) and Yi j, Zi j (i= 1,2; j = 1,2,3), Pi j (i= 2,3; j = 1,2)
such that (9) and the following four LMIs are feasible:

Ψ11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
11 φ1

12 φ1
13 (τM−h)ZT

11 φ1
15 φ1

16 P2

∗ φ1
22 φ1

23 (τM− h)ZT
12 φ1

25 φ1
26 0

∗ ∗ φ33 0 −Y13 −Z13 P3

∗ ∗ ∗ φ2
55 0 (τM− h)Z13 0

∗ ∗ ∗ ∗ Y13 +Y T
13 0 0

∗ ∗ ∗ ∗ ∗ Z13 +ZT
13 0

∗ ∗ ∗ ∗ ∗ ∗ φ1
77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (13)

Ψ12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ1
11 φ

1
12 φ

1
13 (τM−h)Y T

11 2(τM−h)ZT
11 φ1

15 φ1
16 P2

∗ φ1
22 φ

1
23 (τM−h)Y T

12 2(τM−h)ZT
12 φ1

25 φ1
26 0

∗ ∗ φ33 0 0 −Y13 −Z13 P3
∗ ∗ ∗ φ1

44 0 (τM−h)Y13 0 0
∗ ∗ ∗ ∗ 2φ2

55 0 2(τM−h)Z13 0
∗ ∗ ∗ ∗ ∗ Y13 +Y T

13 0 0
∗ ∗ ∗ ∗ ∗ ∗ Z13 +ZT

13 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ φ1

88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(14)

Ψ21 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ2
11 φ2

12 Φ2
13 (τM− h)Y T

21 φ2
15 φ2

16 P2

∗ φ2
22 φ2

23 (τM− h)Y T
22 φ2

25 φ2
26 0

∗ ∗ φ33 0 −Y23 −Z23 P3

∗ ∗ ∗ φ1
55 (τM− h)Y23 0 0

∗ ∗ ∗ ∗ Y23 +YT
23 0 0

∗ ∗ ∗ ∗ ∗ Z23 +ZT
23 0

∗ ∗ ∗ ∗ ∗ ∗ φ2
77

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
< 0, (15)

Ψ22 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ2
11 φ

2
12 φ

2
13 2(τM−h)Y T

21 (τM−h)ZT
21 φ2

15 φ2
16 P2

∗ φ2
22 φ

2
23 2(τM−h)Y T

22 (τM−h)ZT
22 φ2

25 φ2
26 0

∗ ∗ φ33 0 0 −Y23 −Z23 P3
∗ ∗ ∗ 2φ1

55 0 2(τM−h)Y23 0 0
∗ ∗ ∗ ∗ φ2

44 0 (τM−h)Z23 0
∗ ∗ ∗ ∗ ∗ Y23 +Y T

23 0 0
∗ ∗ ∗ ∗ ∗ ∗ Z23 +ZT

23 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ φ2

88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

< 0,

(16)

where
φ j

11 = AT P2 j +PT
2 jA+ S0−R0e−2αh + 2αP1,

φ j
12 = P1−PT

2 j +AT P3 j,

φ j
13 = R0e−2αh−YT

j1−ZT
j1 + 2αP2,
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φ j
15 = Y T

j1 +PT
2 jA1,

φ j
16 = ZT

j1 +PT
2 jA2,

φ j
22 =−P3 j−PT

3 j + h2R0 +W,

φ j
23 = P2−YT

j2−ZT
j2,

φ j
25 = Y T

j2 +PT
3 jA1,

φ j
26 = ZT

j2 +PT
3 jA2,

φ33 =−[S0 +R0]e−2αh + 2αP3,

φ j
44 =−(τM− h)Uje−2ατM ,

φ j
55 =−(τM− h)Uje−2α(2τM−h),
φ1

77 =−[W − 2(τM− h)U1− (τM− h)U2]e−2αh,
φ2

77 =−[W − (τM− h)U1− 2(τM− h)U2]e−2αh,

φ j
88 =−[W − (τM− h)Uj]e−2αh, j = 1,2.

3.1.2 The Second Approach

In this subsection we will adapt to the Round-Robin scheduling a time-dependent
Lyapunov functional construction of [18], which is based on the extension of
Wirtinger’s inequality [10] to the vector case.

Lemma 1. [18] Let z(t) ∈W [a,b) and z(a) = 0. Then for any n× n-matrix R > 0
the following inequality holds:

∫ b

a
zT (ξ )Rz(ξ )dξ ≤ 4(b− a)2

π2

∫ b

a
żT (ξ )Rż(ξ )dξ . (17)

We introduce the following discontinuous in time Lyapunov functional:

V (t,xt , ẋt) = V̄1(t) =V0(xt , ẋt)+V1(t,xt , ẋt)+V2(t,xt , ẋt), (18)

where

V0(xt , ẋt) = xT (t)Px(t)+
∫ t

t−h xT (s)S0x(s)ds+ h
∫ 0
−h

∫ t
t+θ ẋT (s)R0ẋ(s)dsdθ ,

V1(t,xt , ẋt) = 4(τM− h)2 ∫ t
tk−h ẋT (s)W1ẋ(s)ds

− π2

4

∫ t−h
tk−h[x(s)− x(tk−h)]TW1[x(s)− x(tk− h)]ds, t ∈ [tk, tk+2),

V2(t,xt , ẋt) =

⎧⎪⎪⎨
⎪⎪⎩

4(τM−h)2 ∫ t
tk−1−h ẋT (s)W2ẋ(s)ds

− π2

4

∫ t−h
tk−1−h[x(s)−x(tk−1−h)]TW2[x(s)−x(tk−1−h)]ds, t ∈ [tk, tk+1),

4(τM−h)2 ∫ t
tk+1−h ẋT (s)W2ẋ(s)ds

− π2

4

∫ t−h
tk+1−h[x(s)−x(tk+1−h)]TW2[x(s)−x(tk+1−h)]ds, t ∈ [tk+1,tk+2),

W1 > 0, W2 > 0, k = 2p.

The terms V1, V2 are extensions of the discontinuous constructions of [18]. We
note that V1 can be represented as a sum of the continuous in time term 4(τM −
h)2 ∫ t

t−h ẋT (s)W1ẋ(s)ds ≥ 0, t ∈ [tk, tk+2), with the discontinuous (for t = tk) one
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VW1 = 4(τM− h)2 ∫ t−h
tk−h ẋT (s)W1ẋ(s)ds

− π2

4

∫ t−h
tk−h[x(s)− x(tk− h)]TW1[x(s)− x(tk− h)]ds, t ∈ [tk, tk+2).

Note that VW1|t=tk = 0 and, by the extended Wirtinger’s inequality (17), VW1 ≥ 0 for
all t ≥ t0. Therefore, V1 does not grow in the jumps.

In a similar way, V2 can be represented as a sum of the continuous in time term
4(τM− h)2 ∫ t

t−h ẋT (s)W2ẋ(s)ds≥ 0, with the discontinuous for t = tk+1 term

VW2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− π2

4

∫ t−h
tk−1−h[x(s)− x(tk−1− h)]TW2[x(s)− x(tk−1− h)]ds

+4(τM− h)2 ∫ t−h
tk−1−h ẋT (s)W2ẋ(s)ds, t ∈ [tk, tk+1),

− π2

4

∫ t−h
tk+1−h[x(s)− x(tk+1− h)]TW2[x(s)− x(tk+1− h)]ds

+4(τM− h)2 ∫ t−h
tk+1−h ẋT (s)W2ẋ(s)ds, t ∈ [tk+1, tk+2).

We have VW2|t=tk+1
= 0 and, by the extended Wirtinger’s inequality (17), VW2 ≥ 0

for all t ≥ t0, i.e. V2 does not grow in the jumps. Therefore, V̄1 does not grow in the
jumps: limt→t−k

V̄1(t)≥ V̄1(tk) and limt→t−k+1
V̄1(t)≥ V̄1(tk+1) hold.

Theorem 2. Given τM > h≥ 0, the system (6) is asymptotically stable, if there exist
n×n matrices P > 0, R0 > 0, S0 > 0, Wi > 0 (i = 1,2), such that the following LMI
is feasible:

Ξ =

⎡
⎢⎢⎢⎢⎢⎣

Ψ1 R0 PA1 PA2 ATW

∗ Ψ2
π2

4 W1
π2

4 W2 0

∗ ∗ − π2

4 W1 0 AT
1 W

∗ ∗ ∗ − π2

4 W2 AT
2 W

∗ ∗ ∗ ∗ −W

⎤
⎥⎥⎥⎥⎥⎦
< 0, (19)

where
Ψ1 = PA+AT P+ S0−R0,

Ψ2 =− π
2

4 W1− π2

4 W2− S0−R0,
W = h2R0 + 4(τM− h)2(W1 +W2).

(20)

Remark 1. Compared to the stability LMI conditions of Theorem 1, the LMI of The-
orem 2 is essentially simpler (single LMI of 5n× 5n with fewer decision variables)
and is less conservative (see Example below).

Remark 2. Similar to [18], the decay rate of the exponential stability for (6) can
be found by changing the variable x̄(t) = x(t)eαt and by applying LMI (19) to the
resulting system with polytopic type uncertainty.

3.2 Stability Conditions for Sample-Data Systems: Constant vs
Variable Sampling

When there is no communication delay, i.e. h≡ 0, the problem for NCSs is reduced
to the one for sampled-data systems with scheduling, where the closed-loop system
has a form of (6), where h = 0.
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For h→ 0 the conditions of Theorems 1 and 2 become conservative (see Exam-
ple below). This is different from the stability conditions via conventional Lyapunov
functionals for systems with non-small delay τ(t) ∈ [h,τM], where for h → 0 the
conventional Lyapunov functionals recover the results derived by the correspond-
ing Lyapunov functionals for small delay [0,τM] [11]. Therefore, we will proceed
next with exponential stability conditions for (6) with h = 0 via time-dependent
Lyapunov functionals.

We start with the constant sampling, where tk+1− tk = τM, k ∈N . For this case
we choose Lyapunov functional of the form

V (t,xt , ẋt) = xT (t)P1x(t)+∑2
i=1 Vi(t, ẋt)+∑2

i=1 VXi(t,xt),
P1 > 0, t ∈ [tk, tk+2), k = 2p, p ∈N ,

(21)

where

V1(t, ẋt) = (tk+2− t)
∫ t

tk
e2α(s−t)ẋT (s)U1ẋ(s)ds,

V2(t, ẋt) =

{
(tk+1− t)

∫ t
tk−1

e2α(s−t)ẋT (s)U2ẋ(s)ds, t ∈ [tk, tk+1),

(tk+3− t)
∫ t

tk+1
e2α(s−t)ẋT (s)U2ẋ(s)ds, t ∈ [tk+1, tk+2),

VX1(t,xt) = (tk+2− t)ξ T
0 (t)

[
X+XT

2 −X +X1

∗ −X̄1

]
ξ0(t),

VX2(t,xt) =

⎧⎪⎪⎨
⎪⎪⎩

(tk+1− t)ξ T
−1(t)

[
X2+X T

2
2 −X2 +X3
∗ −X̄3

]
ξ−1(t), t ∈ [tk, tk+1),

(tk+3− t)ξ T
1 (t)

[
X2+X T

2
2 −X2 +X3
∗ −X̄3

]
ξ1(t), t ∈ [tk+1, tk+2),

with ξi(t) = col{x(t),x(tk+i)}(i = 0,±1), X̄1 = X1 +XT
1 − X+XT

2 , X̄3 = X3 +XT
3 −

X2+XT
2

2 , U1 > 0, U2 > 0, k = 2p.
The terms Vi and VXi(i = 1,2) are continuous in time along (6) with h = 0. The

condition V (t,xt , ẋt)≥ β‖x(t)‖2 holds for t ∈ [tk, tk+1), k = 2p, if

⎡
⎣P1 + τM(X +XT )+ τM

X2+XT
2

2 2τM(−X +X1) τM(−X2 +X3)
∗ −2τMX̄1 0
∗ ∗ −τMX̄3

⎤
⎦> 0, (22)

[
P1 + τM

X+XT

2 τM(−X +X1)
∗ −τMX̄1

]
> 0, (23)

and for t ∈ [tk+1, tk+2), k = 2p, if

⎡
⎣P1 + τM(X2 +XT

2 )+ τM
X+XT

2 τM(−X +X1) 2τM(−X2 +X3)
∗ −τMX̄1 0
∗ ∗ −2τMX̄3

⎤
⎦> 0, (24)
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[

P1 + τM
X2+XT

2
2 τM(−X2 +X3)

∗ −τMX̄3

]
> 0. (25)

Lyapunov functional V of (21) with X = Xi = 0 (i = 1,2,3) is applicable to sys-
tems with variable sampling tk+1− tk ≤ τM . Moreover, Lyapunov functional V of
(21) with X = XT > 0, X2 = XT

2 > 0 and X1 = X3 = 0 is applicable to systems with
constant sampling. In the latter case the resulting LMIs are convex in τM: if they
are feasible for τM , then they are feasible for any constant τ̄M ∈ (0,τM]. Similar to
Theorem 1, we arrive to the following result:

Corollary 1. (i) Given τM > 0, α > 0 and K1, K2, the system (6) with h = 0 is
exponentially stable with the decay rate α under the constant sampling tk+1− tk =
τM, if there exist n× n matrices P1 > 0, Ui > 0, Yi j, Zi j (i = 1,2; j = 1,2,3), Pi j

(i = 2,3; j = 1,2), X, Xi (i = 1,2,3) such that (22)-(25) and the following LMIs are
feasible:

Σ11 =

⎡
⎢⎢⎢⎢⎣

ϕ1
11 +X11

α ϕ11
12 τMZT

11 ϕ1
14 + 2X1α ϕ1

15 +X2α
∗ ϕ11

22 τMZT
12 ϕ11

24 ϕ11
25

∗ ∗ −τMU2e−4ατM 0 τMZ13

∗ ∗ ∗ ϕ1
44− 4ατMX̄1 0

∗ ∗ ∗ ∗ ϕ1
55− 2ατMX̄3

⎤
⎥⎥⎥⎥⎦< 0,

Σ12 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ1
11 +X12

α ϕ12
12 τMY T

11 2τMZT
11 ϕ1

14 +X1α ϕ1
15

∗ ϕ12
22 τMY T

12 2τMZT
12 ϕ12

24 ϕ12
25

∗ ∗ −τMU1e−2ατM 0 τMY13 0
∗ ∗ ∗ −2τMU2e−4ατM 0 2τMZ13
∗ ∗ ∗ ∗ ϕ1

44−2ατMX̄1 0
∗ ∗ ∗ ∗ ∗ ϕ1

55

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0,

Σ21 =

⎡
⎢⎢⎢⎢⎣

ϕ2
11 +X21

α ϕ21
12 τMY T

21 ϕ2
14 +X1α ϕ2

15 + 2X2α
∗ ϕ21

22 τMY T
22 ϕ21

24 ϕ21
25

∗ ∗ −τMU1e−4ατM τMY23 0
∗ ∗ ∗ ϕ2

44− 2ατMX̄1 0
∗ ∗ ∗ ∗ ϕ2

55− 4ατMX̄3

⎤
⎥⎥⎥⎥⎦< 0,

Σ22 =

⎡
⎢⎢⎢⎢⎢⎢⎣

ϕ2
11 +X22

α ϕ22
12 2τMY T

21 τMZT
21 ϕ2

14 ϕ2
15 +X2α

∗ ϕ22
22 2τMY T

22 τMZT
22 ϕ22

24 ϕ22
25

∗ ∗ −2τMU1e−4ατM 0 2τMY23 0
∗ ∗ ∗ −τMU2e−2ατM 0 τMZ23
∗ ∗ ∗ ∗ ϕ2

44 0
∗ ∗ ∗ ∗ ∗ ϕ2

55−2ατMX̄3

⎤
⎥⎥⎥⎥⎥⎥⎦
< 0,
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where

ϕ j
11 = AT P2 j +PT

2 jA−Yj1−Y T
j1−Zj1−ZT

j1 + 2αP1− X+XT

2 − X2+XT
2

2 ,

ϕ11
12 = P1−PT

21+AT P31−Y12−Z12 + τM(X +XT )+ τM
X2+XT

2
2 ,

ϕ12
12 = P1−PT

21+AT P31−Y12−Z12 + τM
X+XT

2 ,

ϕ21
12 = P1−PT

22+AT P32−Y22−Z22 + τM(X2 +XT
2 )+ τM

X+XT

2 ,

ϕ22
12 = P1−PT

22+AT P32−Y22−Z22 + τM
X2+XT

2
2 ,

ϕ j
14 = Y T

j1 +PT
2 jA1−Yj3 +X−X1,

ϕ j
15 = ZT

j1 +PT
2 jA2−Zj3 +X2−X3,

ϕ11
22 =−P31−PT

31+ 2τMU1 + τMU2,
ϕ12

22 =−P31−PT
31+ τMU1,

ϕ21
22 =−P32−PT

32+ τMU1 + 2τMU2,
ϕ22

22 =−P32−PT
32+ τMU2,

ϕ11
24 = Y T

12 +PT
31A1 + 2τM(−X +X1),

ϕ12
24 = Y T

12 +PT
31A1 + τM(−X +X1),

ϕ21
24 = Y T

22 +PT
32A1 + τM(−X +X1),

ϕ22
24 = Y T

22 +PT
32A1,

ϕ11
25 = ZT

12 +PT
31A2 + τM(−X2 +X3),

ϕ12
25 = ZT

12 +PT
31A2,

ϕ21
25 = ZT

22 +PT
32A2 + 2τM(−X2 +X3),

ϕ22
25 = ZT

22 +PT
32A2 + τM(−X2 +X3),

ϕ j
44 = Yj3 +Y T

j3 + X̄1,

ϕ j
55 = Zj3 +ZT

j3 + X̄3,

X11
α = 2ατM(X +XT )+ατM(X2 +XT

2 ),
X12
α = ατM(X +XT ),

X21
α = ατM(X +XT )+ 2ατM(X2 +XT

2 ),
X22
α = ατM(X2 +XT

2 ),
X1α = 2ατM(−X +X1),
X2α = 2ατM(−X2 +X3), j = 1,2.

(ii) If the above LMIs are feasible for X = Xi = 0 (i = 1,2,3), then the system (6)
with h = 0 is exponentially stable with the decay rate α under the variable sampling
tk+1− tk ≤ τM.

(iii) If the above LMIs are feasible for X =XT > 0, X2 =XT
2 > 0 and X1 =X3 = 0,

then the system (6) with h = 0 is exponentially stable with the decay rate α under
the constant sampling tk+1− tk = τ̄M ∈ (0,τM].

Remark 3. LMIs of Theorems 1, 2 and Corollary 1 are affine in the system matrices.
Therefore, in the case of system matrices from the uncertain time-varying polytope

Ξ = ∑N
j=1μ j(t)Ξ j, 0≤ μ j(t)≤ 1, ∑N

j=1 μ j(t) = 1, Ξ j =
[

A( j) B( j)
]
,

one have to solve these LMIs simultaneously for all the N vertices Ξ j, applying the
same decision matrices.
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4 Example

Consider the following linearized model of the inverted pendulum on a cart:

⎡
⎢⎢⎣

ẋ
ẍ
θ̇
θ̈

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

0 1 0 0
0 0 −mg

M 0
0 0 0 1

0 0 (M+m)g
Ml 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x
ẋ
θ
θ̇

⎤
⎥⎥⎦+

⎡
⎢⎢⎣

0
a
M
0
−a
Ml

⎤
⎥⎥⎦u (26)

with M = 3.9249kg, m = 0.2047kg, l = 0.2302m, g = 9.81N/kg, a = 25.3N/V.
In the model, x and θ represent cart position coordinate and pendulum angle from
vertical, respectively.

Ideally, the pendulum can be stabilized by a state feedback u(t) = K
[

x ẋ θ θ̇
]T

with the gain
K = [5.825 5.883 24.941 5.140],

which leads to the closed-loop system eigenvalues {−100,−2+2i, −2−2i, −2}.
In practice the variables θ , θ̇ and x, ẋ are not accessible simultaneously. We consider

C1 =

[
1 0 0 0
0 1 0 0

]
, C2 =

[
0 0 1 0
0 0 0 1

]
.

The applied control is obtained from the following blocks of K

K1 =
[

5.825 5.883
]
, K2 =

[
24.941 5.140

]
.

For the values of h given in Table 1, applying Theorem 1 with α = 0 and Theorem
2, we find the maximum values of τM that preserve the asymptotic stability (see
Table 1).

Table 1 Example: Max. value of τM for constant delay h

τM\h 1.0 ×10−3 2.0 ×10−3 3.0 ×10−3 4.0 ×10−3

Theorem 1 3.7 ×10−3 4.5 ×10−3 5.2 ×10−3 6.0 ×10−3

Theorem 2 4.9 ×10−3 5.5 ×10−3 6.1 ×10−3 6.8 ×10−3

For h = 0, by applying Corollary 1 with α = 0, the system remains stable for all
variable samplings up to 5.3×10−3 and for all constant samplings up to 6.4×10−3.
Using the classical discretization-based model for the case of constant sampling, it
can be shown that the system is stable up to 6.8×10−3, which is close to our result.
Moreover, by Corollary 1 with α = 0 and X = XT > 0, X2 = XT

2 > 0, X1 = X3 = 0,
the system remains stable for all constant samplings up to 6.2× 10−3. Application
of Theorems 1 and 2 for h→ 0 leads to essentially smaller variable samplings up to
3.0× 10−3 and 4.3× 10−3, respectively.
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Choosing further τM = 5.0× 10−3, h = 3.0× 10−3 and applying Theorem 1,
we find that the system is exponentially stable with the decay rate α = 1.50. Con-
sidering next h = 0, τM = 5.0× 10−3 and applying Corollary 1, the system is ex-
ponentially stable with a greater decay rate α = 1.86 for the constant sampling
tk+1− tk = 5.0× 10−3. For the variable sampling, the decay rate is reduced to 1.39.
By Corollary 1 with X = XT > 0, X2 = XT

2 > 0 and X1 = X3 = 0, the system is expo-
nentially stable with decay rate α = 1.68 for all constant samplings up to 5.0×10−3.

5 Conclusions

In this chapter, a time-delay approach has been introduced for the exponential sta-
bility of NCSs with Round-Robin scheduling, constant input/output delays and
variable sampling intervals. By constructing appropriate time-dependent Lyapunov
functionals, that take into account the switched system model and the sawtooth de-
lays induced by sampled-data control, we derive the exponential stability conditions
in terms of LMIs. In the absence of input and output delays, our results for the
constant sampling intervals are less conservative than those for the variable ones.

Acknowledgements. This work was supported by Israel Science Foundation (grant No
754/10).
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Structure of Discrete Systems with Variable
Nonlocal Behavior

Erik I. Verriest

Abstract. We clarify, for discrete time systems, two notions of a system with time
variant delay, and explore their structural properties. The ultimate purpose is to shed
some light on the potential ill-posedness associated with problems with rapidly in-
creasing delay (delay increment greater than one system update step). The main ap-
proach is to consider the time delay system using an extension of the state space. For
the case of periodically varying delays, this problem becomes a special case of the
lifting for periodic systems. Structural problems, such as stability and reachability,
can then be investigated using time-invariant theory. For instance, the property that
the quotient space of reachable periodic delay systems modulo state space similarity
is a smooth manifold, is inherited. A special reflecto-difference equation is analyzed
in more detail as an example of a system with unbounded nonlocal behavior.

1 Introduction: Behavioral Approach

In line with recent investigations on continuous time systems with time variable de-
lay [11], especially in view of inconsistencies arising where the delay rate exceeds
one, we report similar problems in the discrete time case. Parts of this chapter ap-
peared in preliminary form in preprint and on-line [12]. The present version delves
in more detail. We present our ideas in the behavioral approach towards discrete
time systems as expounded in [7]. A brief synopsis, together with some new defini-
tions follows. Let T denote the time set. For discrete systems T = Z. Let W be the
set where the signals assume their values, say for some n ≥ 1, W = R

n. As usual,
W

T denotes the set of all maps from T to W. A dynamical system Σ is defined as
a triple Σ = (T,W,B), where B is called the behavior, which is an appropriately
restricted subset of WT. We define the evaluation functional σk operating on se-
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quences by σk(w) = wk. The (left-) shift operator T is defined by σk(Tw) = σk+1w.
Hence Tn corresponds with an n-step shift to the left.

The dynamical system Σ = (T,W,B) is said to be linear if W is a vector space
over R or C, and the behavior B is a linear subspace of WT. The dynamical system
Σ = (T,W,B) is said to be shift invariant if w ∈B implies Tτw ∈B for all τ ∈ T.

A sequence in W
T is said to be �2-locally bounded if∑p

i=m ‖wi‖2 <∞ for all finite
m < p. The space of all locally bounded sequences in the �2 norm is denoted �loc

2 .
This space is a separable Hilbert space. Any bounded operator defined everywhere
on a separable Hilbert space H1 and mapping to a separable Hilbert space H2 ad-
mits a matrix representation which uniquely defines this operator. Hence, without
loss of generality, any discrete time behavior can be represented by a infinite ma-
trix. A behavioral description restricts the trajectories that are allowed by the sys-
tem. Thus, a global (timeless) viewpoint of the behavior can be characterized by the
nullspace of some infinite matrix. For causal systems, this matrix is upper triangular
(using the convention that scrolling the vector down the signal vector means going
back in time). For a time invariant system, the matrix is (block)-Toeplitz. Such a
global matrix approach is taken in [2] and other work referenced therein.

A behavior is called autonomous if for all w(1),w(2) ∈B the condition w(1)
k =

w(2)
k for k≤ 0 implies w(1)

k = w(2)
k for all k. For an autonomous system, the future is

entirely determined by its past.
The notion of controllability is an important concept in the behavioral theory, as

in all of system theory. Let B be the behavior of a linear time invariant system. This
system is called controllable if for any two trajectories w(1) and w(2) in B, there
exists a 0≤ τ ∈ Z and a trajectory w ∈B such that

σk(w) =

{
σk(w(1)) k ≤ 0
σk(T−τw(2)) k ≥ τ ,

i.e., one can switch from one trajectory to the other, with perhaps a delay of τ steps.
Note that an autonomous system cannot get of a trajectory once you are on it. Hence
an autonomous system is not controllable.

We define some new operators, which will be useful in the sequel: LetΠ : RZ→
R
Z denote the future-time projection operator characterized by

σkΠw =

{
σkw if k ≥ 0

0 if k < 0.

This induces a mapping to the one sided sequences Π̂ : RZ → R
Z+ such that

Π̂{wk}∞k=−∞ = {wk}∞k=0, i.e., the past gets forgotten under application of Π̂ . Intro-
duce also R, the parity or reflection operator, defined by: R{wk}∞k=−∞= {w−k}∞k=−∞.

Denote by δ� the unit pulse sequences with σkδ� = 1 if k = � and 0 else, then the
following commutation relations are readily established

ΠT = TΠ − δ−1σ0

RT = T−1R,
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and by induction on the first, for all k > 0

ΠTk = TkΠ − δ−kσ0− δ−(k−1)σ1− . . .− δ−1σk−1.

2 Discrete Delay System

In this paper we are interested in a simple interconnected system (Figure 1) de-
scribed locally (in time) by

xk+1 = Axk + zk + buk (1)

zk = Bxk−n. (2)

Let us first consider the case where the delay, n, is fixed. For simplicity, we consider
the single input case. The vectors xk and zk are in R

m, hence A and B are in R
m×m.

Furthermore, we assume that at time k, the variables xk and uk are available (full
observability).

We first make a preliminary observation. If rank(B) < m, not all components of
the m-vector xk need to be memorized. Indeed, a simple similarity transformation
(in Glm(R)), x 	→ [ξ ,η ] may recast the system as

ξk+1 = A1ξk +A2ηk +B1ηk−n + b1uk (3)

ηk+1 = A3ξk +A4ηk +B2ηk−n + b2uk (4)

where now dimξk =m− rankB, dimηk = rankB and [B 1 ,B
 
2 ]∈R

rank (B)×m. It is ob-
vious from these equations that in order to evolve the system forward in time, from k
onward, we will need accessibility to the variables ξk, and ηk−n,ηk−n+1, . . . ,ηk This
means: (m− rankB)+ (n+ 1) rankB = m+ n rankB real variables suffice to predict
the future behavior, if also the future inputs, uk,uk+1, . . . , are known. We call this
sufficient information a “state” of the system at time k, as this is indeed a sufficient
statistic replacing full knowledge of the past behavior.

+

A B

xk xk−n

buk

Fig. 1 Representation of delay system
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Figure 1 gives a realization of such a delay system for the case when B has full
rank. The shift register on the top is the memory device, and operates by right shift-
ing the content from each cell (here an m-vector) to the one on its right at each clock
pulse. The data in the rightmost cell is subsequently lost, and the new item gener-
ated by the adder is loaded in the leftmost cell. We observe that the true state space
of such a system is in general a vector space of dimension larger than m.

3 Time-Variant Delay

Let now the delay in this model at step k depend on k, then one might think that
m+ n(k)rankB variables would suffice to characterize future behavior, and worse,
associate a time-varying state space to the system. However, this is nonsense. A state
space must itself have a fixed structure, otherwise one cannot talk about evolution
or trajectories (or rather sequences in this discrete case) in it. Even more to the
point, without trajectories it cannot be clear what would be meant by stability or
convergence. In what follows, two causal interpretations of discrete systems with
time-variant delays are presented For notational and display purposes, we assume
that the minimal delay is at least 1. The other case can easily be handled as well.

3.1 Causal Models

In the first interpretation, we envision that each memory cell connects to a copy of
the B-matrix, but a switching device chooses which one to connect to the adder.
Only one connection is made at each step. This is shown in Figure 2. Here nmax

is the maximal anticipated delay, but this could in principle be unbounded. In this
form, the buffer has a fixed size. Hence, the state space dimension is constant, but
this may not be a minimal state space. Effectively, the system is a special case of a
distributed time delay system, but with time variant delay distribution. This is the
discrete time equivalent of the lossless causalization discussed for continuous time
delay systems in [8, 10]. The fact that the buffer length depends on future memory

+

A

xk xk−nmax

b
uk

BB B

Fig. 2 Interpretation with fixed register
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sizes makes this system noncausal in a certain sense. In many cases this required
(buffer size) information may be known a priori, but there are situations, such as
with state dependent buffer size (see [4]), where this cannot be anticipated. This
problem can be resolved by defining the information structure of the model. Guided
by the notion of a filtration in the theory of stochastic processes, this was presented
in [10].

The second interpretation considers at each step k a system as in figure 1 but with
n = n(k), thus with k-dependent buffer size (see Figure 3). At each step, the input
for the B-matrix is taken from the rightmost register in the buffer. In particular, this
implies that if nk+1 ≥ nk + 1, no information is available to store in the added cells
on the right, except for the leftmost of these cells, where thus xk−n = x(k+1)−(n+1)
will be stored. On the other hand, if nk+1 < nk, the buffer gets shortened, and the
information that was stored in the deleted cells is now irretrievably lost. No antici-
pation of the future delays is needed here. For this reason, this system causalization
was called the forgetful causalization in [8, 10]. Of course both causalization mod-
els will differ in their outcome if the delay is allowed to increase by more than one
step at a time, and it makes no sense to determine which is right or wrong. We just
point out that the physics behind both models is different, and therefore which one
is appropriate depends on the phenomenon to be studied. We caution that a blind
use of a mathematical model may lead to inconsistencies (see [11]).

+

A B

xk xk−n(k)

buk

variable

Fig. 3 Interpretation with variable length register

3.2 State Space and Trajectories

The main difference in the causal interpretations given above is that for the first, the
memory size stays constant, but not everything stored in memory may be used at
any time. This version of the time-varying delay systems may be lifted to a large
dimensional time-invariant system, but perhaps at the expense of resulting in a non-
minimal model. With the second interpretation, the memory size changes with k. As
mentioned, this creates a problem with the conventional notion of a state space.
This problem can be resolved by casting the model in the class of multi-mode,
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multi-dimensional (M3D) systems. In [9] we studied the continuous version of this
problem, and discussed their structure and aspects of optimal control further in [13].

Characterize each physically different buffer size as a mode of the system. The
state space of such a M3D system is then represented by a sheaf over a discrete space
(the mode set). In [9, 13], the state space was defined as a fiber bundle, which is in
error as the fibers cannot be isomorphic if modes have different dimensions. If B has
full rank (m), the stalk over j is a vector space of dimension (n j + 1)m where n j is
the delay in phase j. In general, the dimension of the j-th stalk is d j = n j rankB+m.
The stalks correspond to the state space restricted to the different modes. In addition,
at the switches, the state transition from one buffer to the next is simply given by
projection (to the lower dimensional stalk) or embedding (in the higher dimensional
stalk), where empty cells are loaded with the zero state (the equilibrium). Hence the
inter-mode is specified by sections in the sheaf. In contrast, the intra-mode behavior
is defined by the affine structure on the stalks. We emphasize that a sheaf structure
is necessary as we want a stationary structure for the state space. If that were not
the case we could not reasonably talk about trajectories in the state space.

4 Periodic Time Delay System

For a periodically varying delay, the previous models simplify considerably. Let
the system have delay sequence n(k);k = 1,2, . . . ,N which repeats periodically. Let
nmax be their maximum. With the first interpretation of lossless causalization, the
system can be lifted to a system of dimension (nmax + 1)m.

χk+1 =

⎡
⎢⎢⎢⎢⎢⎣

A β (k)
1 · · · β (k)

nmax

I 0 0
0 I 0
...

. . .
...

0 · · · · · · I 0

⎤
⎥⎥⎥⎥⎥⎦
χk +

⎡
⎢⎢⎢⎢⎢⎣

b
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

uk. (5)

where only one of the β (k)
i in the top block row equals B at any time, the other

entries being zero. Denote this compactly by

χk+1 = A[k]χk + bduk, (6)

where the subscript [k] denotes [k] = ((k− 1)modN) + 1. This determines an N-
period system of fixed state space dimension. Its stability is completely determined
by the monodromy matrix F = A[N]A[N−1] · · ·A[1], and its reachability properties
by the monodromy systems (Fi,Gi) with Fi = A[i−1]A[i−2] · · ·A[1]A[N] · · ·A[i], and
Gi = [bd,A[i−1]b

d,A[i−1]A[i−2]b
d ,. . .,A[i−1]A[i−2]· · ·A[i−N+1]b

d ]. The monodromy
system (Fi,Gi) is the system that describes how all inputs over one past period
contribute to χi. If the i-th monodromy system is reachable, then the full memory
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state χi can be made arbitrary, and thus as a special case, can be zeroed. The time-
invariant nature of the monodromy systems implies that if this is possible at all, it
will require at most Nm(nmax + 1) steps. However it may still be possible to con-
trol to zero, even if the monodromy system is not reachable: Reachability implies
controllability (accessibility of the zero state), but is not implied by it in the discrete
time case [5, p. 100].

With forgetfull causalization, the individual mode systems have dimension (nk +
1)m. Let χk denote the entire contents of the shift register, by concatenating the state
in each cell. Thus χ k = [x k ,x

 
k−1, . . . ,x

 
k−nk

]. Represent the system in phase k by

χ−k+1 =

⎡
⎢⎢⎢⎢⎢⎣

A 0 · · · 0 B
I 0 0
0 I 0
...

. . .
...

0 · · · · · · I 0

⎤
⎥⎥⎥⎥⎥⎦
χ+k +

⎡
⎢⎢⎢⎢⎢⎣

b
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎦

uk (7)

which we shall denote as

χ−k+1 = A[k]χ+k + b[k]uk, (8)

with [k] as before. In addition, if the delay switches from n(k) at step k to n(k+ 1)
at step k+ 1, this transition involves a mode change, which induces a change in the
dimension of the delay system representation. This requires additional transitions

χ+k = [ I 0 ]χ−k , if nk < nk−1 (9)

χ+k =

[
I
0

]
χ−k , if nk > nk−1. (10)

These matrices are respectively a projection and an embedding. Denote this transi-
tion matrix from k to k+1 by Sk+1,k. Combining, we set Ak = Sk+1,kA[k] as the total
transition from the m(nk+1)-dimensional state at k to the m(n[k+1]+1)-dimensional
state at k+ 1, and likewise, let Sk+1,kb[k] = bk be the effect of the input uk to χk+1.
In general, these Ai are no longer square matrices.

Every N-periodic system is therefore completely described by a periodic se-
quence of matrices

(Ak,Bk)N = ((A1,B1),(A2,B2), . . . ,(AN ,BN)) (11)

Again noting that dimχk = m(n[k] + 1), we see that the j-th phase matrix A j is in

R
m(n j+1+1)×m(n j+1). The system (Ak,Bk)N is now purely periodic, and the structure

of such systems was described in [3, 14].
With every N-periodic system (Ak,Bk)N a time-invariant linear system is associ-

ated as follows. Let (Ae,Be) denote the extended system defined as follows:
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Ae : =

⎡
⎢⎢⎢⎣

0 . . . 0 AN

A1 . . . 0 0
...

. . .
...

...
0 . . . AN−1 0

⎤
⎥⎥⎥⎦ (12)

Be : =

⎡
⎢⎢⎢⎢⎣

bN . . . . . . 0
... b1

...
...

. . .
...

0 . . . . . . bN−1

⎤
⎥⎥⎥⎥⎦ . (13)

This extended system has dimensions ne = m
N
∑

k=1
(nk +1) and me = N. If we use the

time-varying state space transformations and input transformations as in [6]

(xk) 	−→ (zk) , (uk) 	−→ (vk)

then the system with periodically varying delay is equivalent to the extended time-
invariant dynamics

zk+1 = Aezk +Bevk , k ∈ Z.

We shall now relate the reachability properties of the periodic system to the
extended system. But first we need to define what these concepts mean for systems
with variable dimensions.

Definitions
(i) The periodic system is reachable at phase j if the state x j can be made arbitrary
by applying suitable inputs prior to j, regardless the initial state.
(ii) The periodic system is reachable, iff it is reachable at all phases j = 1, . . . ,N.

In the literature a stronger notion of reachability is defined for systems of con-
stant dimension (n), sometimes referred to as unform reachability. This notion is
equivalent to reachability in n steps. In [1, p. 115] a characterization of uniform
reachability is given via the existence of a periodic rational canonical form. In [3],
we proved the extension:

Theorem 1. The periodic system is reachable if and only if the extended system is
reachable.

Various invariant theoretic characterizations of reachability are given in [3], and
it was shown that the quotient space of reachable periodic systems modulo state
space equivalence is a smooth manifold. An embedding into a Grassman manifold
can be given, extending the well-known Kalman embedding of reachable pairs. The
analysis of observability proceeds by duality. Hence all of this will carry over for
discrete periodic delay systems. A simple scalar example was shown in [12].
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5 Reflecto-difference Equation

So far we focused on systems with finite delay. In this section, we consider the
behavior

B = {w |Tw = Aw+BRw},

as an example of a system with unbounded delay (and advance).
It corresponds to the system with time varying delay, n(k) = 2k, for k≥ 0, wk+1 =

Awk +Bwk−2k. However, for k > 0 it poses an additional restriction on the behavior
restricted to [−|k|, |k|]. How is one to interpret such a relation involving the shift
and the parity operator? The continuous time equivalent is somewhat simpler and
was analyzed in [11]. The idea is to resolve the behavior in an even and an odd
sequence, with respect to k = 0. Then the doubly infinite sequence w is completely
characterized by the one sided sequences Π̂Ew and Π̂Odw, where also σ0Odw = 0.
The even and odd part of a sequence w are respectively defined as

Ew =
1
2
(w+Rw) (14)

Odw =
1
2
(w−Rw), (15)

and note that, since RT = T−1R, it holds for all k and x that

σkE(TEx) =
1
2
(σk(TEx)+σk(RTEx))

=
1
2
(σk(TEx)+σk(T

−1REx))

=
1
2
(σk(TEx)+σk(T

−1Ex))

=
1
2
(σk+1(Ex)+σk−1(Ex))

=
1
2
(σk+1 +σk−1)Ex. (16)

Consequently, the operator identity ETE = 1
2

(
T+T−1

)
E follows. Likewise, the

following relations are established

ETOd =
1
2

(
T−T−1)Od (17)

OdTOd =
1
2

(
T+T−1)Od (18)

OdTE =
1
2

(
T−T−1)E (19)

These identities are needed since we note that TEx is neither odd nor even in gen-
eral. Combining (16) and (17) with the system behavior, we find:

(T+T−1)E+(T−T−1)Od = 2(A+B)E. (20)
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Likewise, equations (18) and (19) give with the system behavior

(T−T−1)E+(T+T−1)Od = 2(A−B)Od. (21)

Evaluation of the latter at k = 0 is not informative since σ0Odx = 0 and σ0TEx =
σ0T−1Ex. On the other hand the evaluation of (20) at 0 yields the relation

σ1Ex+σ1Odx = (A+B)σ0Ex. (22)

Unlike the situation for one sided sequences, the operator T is invertible on R
Z.

Equivalently, kerT = 0, and Tw = 0 implies w = 0. This implies further that with
a polynomial representation in R[ξ ,ξ−1], besides the usual elementary row and
column operations of elimination theory, another operation: multiplication of any
row or column by a monomial ξ k, k ∈ Z is allowed as well. Hence (20) and (21)
may be combined as

[
T2− 2(A+B)T+ I T2− I

T2− I T2− 2(A−B)T+ I

][
E

Od

]
= 0. (23)

This can be unimodularly reduced to
[
(A+B)T− I I− (A−B)T

T2− I T2− 2(A−B)T+ I

][
E

Od

]
= 0. (24)

Specific forms for A and B allow then further unimodular reduction. For simplicity,
we consider in what follows the case of a scalar reflecto-difference equation, and
thus set A = a, B = b. We consider three cases:
Case 1: a = b = 0: This is the trivial case, having only the null solution w = 0 as
consistent solution in R

Z.
Case 2: a =−b �= 0: The system (24) is unimodularly equivalent to

[
1 2aT− 1
0 T2− 1

a T+ 1

][
E

Od

]
= 0. (25)

Note that the general solution of (T2− 1
a T+ 1)x = 0 is xk = αλ k + βλ−k, where

λ = 1
2a

(
1−

√
1− 4a2

)
. Hence the space of odd solutions is restricted to the one-

parameter set Odxk = α(λ k−λ−k). The even part follows from

Ex = (1− 2aT)Odx,

which gives then the one dimensional solution set (α is free).

σkEx = α
√

1− 4a2 (λ k +λ−k).
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Combining, the solutions to the scalar reflecto-difference equation are in this case

wk = 2αa(λ k−1−λ 1−k) =
α

(2a)k−2

[
(1−

√
1− 4a2)k−1− (1+

√
1− 4a2)k−1

]
.

Note that all solutions satisfy w1 = 0.
Case 3: a+ b �= 0: This case is notationally quite involved, and we shall omit the
details here. If a �= 0, a+b �= 0 and (a+b)2−1 �= 0, then the array(24) is equivalent
to [

1 2a(a+b)T2+2(b3+ab2−a2b−a3)T+(a+b)2−1
1−(a+b)2

0 T2 + b2−a2−1
a T+ 1

][
E

Od

]
= 0. (26)

The odd part is determined by the roots of λ 2 + b2−a2−1
a λ + 1, whose product is

one, so that the odd solution always exists. The even part is determined by the first
equation of (26), giving upon reconstitution a one dimensional solution set.
The excluded case a = 0 is rather special. For instance with b = 1, the array in (24)
reduces to [

T− 1 I+T
0 0

][
E

Od

]
= 0. (27)

This implies that ΠOdw may be chosen completely arbitrary, and then ΠEw and
hence w follow. This gives infinite dimensionality to the solution set. For instance,
the choice σkOdw = k yields w(k) = k2−k+1. On the other hand, for a = 0,b = 2,
the array (24) reduces to the identity matrix, so that Odw = 0 and Ew = 0 giving
only the trivial solution.

Adding the relations (20) and (21) and separating odd and even parts gives

(Ex)k+1− (A+B)(Ex)k =−[(Odx)k+1− (A−B)(Odx)k].

Let −uk be the common value in the above equation, then we can write, for k ≥ 0

(Ex)k+1 = (A+B)(Ex)k− uk (28)

(Odx)k+1 = (A−B)(Odx)k + uk. (29)

The solutions are readily obtained, noting that Odx0 = 0 and Ex0 = x0.

(Ex)k = (A+B)kx0−
k−1

∑
i=0

(A+B)iuk−i−1 (30)

(Odx)k =
k−1

∑
i=0

(A−B)iuk−i−1. (31)

Note however that this is not a reachable system if uk is considered as a generating
input. Indeed, the PBH-test yields

rank

[
zI− (A+B) −I

zI− (A−B) I

]
= rank

[
zI−A B 0

0 0 I

]
,
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so that the Odd/Even system (28-29) is only reachable iff the pair (A,B) is reachable.
Even and odd parts of xk can be uniquely determined from {xk},k ≥ 0 also if and
only if the pair (A,B) is observable, as easily shown by the dual PBH

rank

⎡
⎣ zI− (A+B)

zI− (A−B)
I I

⎤
⎦= rank

⎡
⎣0 zI−A

0 B
I 0

⎤
⎦ .

Clearly, the odd and even parts are related through the sequence {uk}. Subtracting
equation (21) from (20) gives, after stepping up the index by one, and substituting
the relations (28) and (29):

[I− (A+B)2](Ex)k + 2Auk = [I− (A−B)2](Odx)k. (32)

This implies that u0 may not be chosen freely, since for k = 0, one gets the relation

[I− (A+B)2]x0 + 2Au0 = 0.

In fact other restrictions apply. Unlike the continuous time case, where solutions
can be shown to exist for arbitrary x0 (see [11]), the discrete time situation is quite
different. For instance, for A = 0, it is easily seen that the given behavior should
imply xk+1 = Bx−k for k ≥ 0 and x−k+1 = Bxk for k ≥ 1. But this implies xk = B2xk

for all k. Thus either all xk are eigenvectors of B, corresponding to an eigenvalue
±1, or xk ≡ 0 if B does not have such eigenvalues.

In the other extreme, where A has full rank, it is easily shown that there is no free-
dom whatsoever to choose a sequence uk, if the behavior is specified for all integers.
Indeed, it follows that, if we set x−k = yk for k ≥ 0, then the system defining behav-
ioral equation specifies that for k≥ 1 also x(−k)+1 = Ax−k +Bxk, which implies, for
k′ = k− 1

x−k′ = Ax−(k′+1) +Bxk′+1.

where now k′ ≥ 0. Thus the given behavior is equivalent to the one restricted for
k ≥ 0 and given by

xk+1 = Axk +Byk

yk = Ayk+1 +Bxk+1

with initial condition [x 0 ,y
 
0 ]
 = [x 0 ,x

 
0 ]
 . In turn this determines an autonomous

generalized system [
I 0
B A

][
xk+1
yk+1

]
=

[
A B
0 I

][
xk

yk

]
(33)

Full rankness of A implies invertibility of

[
A B
0 I

]
, hence [x k ,y

 
k ] is completely

specified by the initial condition x0.
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If one relaxes the behavior, and only requires satisfaction for nonnegative k, thus

Y = {x |Π̂Tx = AΠ̂x+BΠ̂Rx},

then all behaviors are represented by

Y = {x |Π̂Tx = AΠ̂x+BΠ̂u, Rx = u}.

If u ∈ �2 then Π̂x ∈ �2 if A is a Schur-Cohn (discrete time stable) matrix. Conse-
quently, x ∈ �2 for all �2 sequences u. Thus infinitely many trajectories are consis-
tent with this behavior if the state space for the system at time zero is chosen as Rm,
consistent with x1 = (A+B)x0, and noncausal behavior is allowed.

The growing buffer interpretation in the forgetful causalization makes the system
behavior equivalent to xk+1 = Axk, since at no time k > 0, the value of xk had been
preserved. Hence all trajectories of the system are of the form xk = Ak−1(A+B)x0

for k > 0. If A is Schur-Cohn stable, the system is stable.
If the infinite past constitutes the state space, then for time zero (lossless causal-

ization), there is no freedom in the choice of u, and the evolution of the system is
uniquely defined. Again, if A is Schur-Cohn stable, any �2 initial condition will give
an �2 bounded solution, and thus xk → 0, as k→ ∞.

6 Conclusions

Two approaches (lossless and forgetful causalization) for modeling discrete delay
systems with time varying delay were given. Which one should be used depends
on the physical nature of the memory or information storage and structure (e.g.
foresight in future delay) in the system. For systems with periodic time variation,
it was shown that with either system interpretation, the model may be embedded in
large dimensional periodic system, and thus the results on the structural properties
(parameterization and canonical forms) are inherited from the latter.

We have illustrated that the reflecto-difference equation, unlike its continuous
time counterpart, may not possess a nontrivial solution. If however the description
is limited to positive time, then nontrivial solutions exist, and we have contrasted
the noncausal behavior with the lossless and forgetful causalization.
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Decentralized Robustification of Interconnected
Time-Delay Systems Based on Integral
Input-to-State Stability

Hiroshi Ito, Pierdomenico Pepe, and Zhong-Ping Jiang

Abstract. This article deals with interconnected systems described by retarded
nonlinear equations with discontinuous right-hand side. The problem of feedback
control redesign to achieve ISS (input-to-state stability) and iISS (integral input-
to-state stability) with respect to additive disturbances acting on each subsystem is
solved. It is shown that it is possible to design a decentralized controller accom-
plishing the robustification whenever a small-gain condition is satisfied.

1 Introduction

Lyapunov redesign is an important strategy in nonlinear control, which allows us
to enhance system properties by additional feedback compensation exploiting the
knowledge of a Lyapunov function. The ISS feedback control redesign was intro-
duced by [14], for finite dimensional nonlinear systems. This methodology allows
to attenuate the actuator disturbance in terms of ISS. It has been extended to differ-
ent classes of systems with time-delays in [10], [11] and [12]. In particular, in [12],
systems described by nonlinear functional differential equations with discontinuous
right-hand side are considered, and the saturation problem of the input magnitude is
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addressed, in both an iISS and an ISS fashion. The problem of iISS (ISS) feedback
control redesign is based on the knowledge of a Lyapunov-Krasovskii functional
which needs to be constructed a priori for the unforced (disturbance equal to zero)
system. In [5], the construction of Lyapunov-Krasovskii functionals is addressed
for ISS and iISS of interconnected systems under a small-gain condition. The small-
gain condition allows to split the problem of finding an overall Lyapunov-Krasovskii
functional for the whole system, into the problems of finding Lyapunov-Krasovskii
functionals for each subsystem. This renders the original problem much easier. The
reader can refer to [7] for an application of a similar, but different small-gain char-
acterization to stabilization of a chemostat.

This article shows, for a class of nonlinear retarded interconnected systems, that it
is possible, under a small-gain condition, to achieve the iISS (ISS) feedback control
redesign by means of decentralized controllers. That is, the redesign allows us to
attenuate the effect of disturbances acting on each subsystem by means of a feedback
from the state of each subsystem itself. For this aim, we exploit the Lyapunov-
Krasovskii functional which is proved to exist when the global asymptotic stability
of the disturbance-free overall closed-loop is secured via a small-gain condition
in [5]. We cover multiple discrete as well as distributed time-delays, and the maps
describing the dynamics are allowed to be discontinuous. A preliminary version of
this article has been presented in [6].

Notations. The symbol R denotes the set of real numbers (−∞,+∞). R denotes the
extended real line [−∞,+∞]. We also use R+ := [0,+∞) and R+ := [0,+∞]. For a
positive integer n, Rn denotes the n-dimensional Euclidean space with norm | · |. A
function v : R+ → R

m, with positive integer m, is said to be essentially bounded if
esssupt≥0 |v(t)|< ∞. For given times 0 ≤ T1 < T2, we indicate with v[T1,T2) : R+→
R

m the function given by v[T1,T2)(t) = v(t) for all t ∈ [T1,T2) and = 0 elsewhere.
The function v is said to be locally essentially bounded if, for any T > 0, v[0,T ) is
essentially bounded. The essential supremum norm is indicated with the symbol ‖ ·
‖∞. For a positive integer n and a positive real Δ : Cn denotes the space of continuous
functions mapping [−Δ ,0] into R

n; Qn denotes the space of bounded, continuous,
except at a finite number of points, and right-continuous functions mapping [−Δ ,0)
into R

n. For φ ∈ Cn, φ[−Δ ,0) is the function in Qn defined as φ[−Δ ,0)(τ) = φ(τ),
τ ∈ [−Δ ,0). For a function x : [−Δ ,c)→R

n, with 0< c≤+∞, for any real t ∈ [0,c),
xt is the function in Cn defined as xt(τ) = x(t + τ), τ ∈ [−Δ ,0]. For given positive
integers n,m, a map f : Cn → R

n×m is said to be Lipschitz on bounded sets if,
for any positive real q there exists a positive real Lq such that, for any φ1,φ2 ∈ Cn

satisfying ‖φi‖∞ ≤ q, i = 1,2, the inequality holds | f (φ1)− f (φ2)| ≤ Lq‖φ1−φ2‖∞.
A function γ :R+→R+ is said to be: of class P if it is continuous, zero at zero, and
positive at any positive real; of class K if it is of class P and strictly increasing;
of class K∞ if it is of class K and it is unbounded; of class L if it is continuous
and it monotonically decreases to zero as its argument tends to +∞. A function
β : R+×R+→R+ is of class K L if β (·, t) is of class K for each t ≥ 0 and β (s, ·)
is of class L for each s ≥ 0. The symbols ∨ and ∧ denote logical sum and logical
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Fig. 1 Decentralized robustification with respect to disturbances

product, respectively. For x ∈ R, tanh(x) = (ex− e−x)/(ex + e−x). For x ∈ R \ {0},
sgn(x) = x/|x| and sgn(0) = 0. Proofs are omitted due to the space limitation.

2 Idea and Issues to Be Solved

Decentralized Robustification. Consider a finite-dimensional dynamical system
Σ consisting of two subsystems Σ1 and Σ2, and suppose that the trivial solution
x = 0 of the overall system Σ is globally asymptotically stable (GAS)1. If the GAS
property is characterized by a Lyapunov function in a desirable form, we can secure
robustness of the system Σ against the additional disturbances d1 and d2 shown in
Fig. 1(a) by introducing decentralized compensators. Such decentralized robustifi-
cation is to insert local feedback inputs in the places where the disturbances come
in as shown in Fig. 1(b). To illustrate this idea, let subsystems Σ1 and Σ2 be

ẋi(t) = fi(xi(t),x3−i(t)), i = 1,2 (1)

and define x = [xT
1 ,x

T
2 ]

T and f = [ f T
1 , f T

2 ]T . Let V (x) be a Lyapunov function de-
scribing the GAS of Σ , i.e., V (x) is a C1 function satisfying

α(|x|)≤V (x)≤ α(|x|), V̇ (t)≤−α(|x(t)|) (2)

along the trajectories of (1) for some α ∈P and α,α ∈K∞. To assess robustness
of the interconnected system Σ , we consider the disturbances d1 and d2 as

ẋi(t) = fi(xi(t),x3−i(t))+ gi(xi(t))di(t), i = 1,2. (3)

depicted in Fig. 1(a). Then along the trajectories of (3) with d = [dT
1 ,d

T
2 ]

T , we have

V̇ = Lf V (x)+LgV(x)d ≤−α(|x|)+LgV(x)d, (4)

where g = [gT
1 ,g

T
2 ]

T . A bounded α can yield a fair stability margin for GAS of the
original system (1) without disturbance. However, we cannot derive either the ISS

1 For brevity, a system without input is said to be GAS if an equilibrium of the system is
GAS.
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or iISS property of the system (3) with respect to the disturbance d for the bounded
α if LgV (x) is an unbounded function of x. To secure the robustness with respect to
d, we can introduce a control input ui at the place of di, i.e.,

ẋi(t) = fi(xi(t),x3−i(t))+ gi(xi(t))(di(t)+ ui(t)) , i = 1,2. (5)

Indeed, applying the “LgV -type” full state feedback

u(t) = [uT
1 (t),u

T
2 (t)]

T =−a(LgV (x(t)))T (6)

with a real number a > 0 to (5) we obtain

V̇ = Lf V (x)− a(LgV(x))(LgV (x))T +LgV(x)d ≤−α(|x|)+ 1
4a
|d|2 (7)

along the trajectories of (5) with the help of Young’s inequality. The disadvantage
of using (6) is its centralized structure. Since LgV (x) in (6) usually contain both x1

and x2, the control input ui(t) of subsystem i is based not only on the local state
xi, but also on the state x3−i of the other subsystem 3− i. To make the robustifying
compensation decentralized, instead of V (x), we consider C1 functions Vi(xi) which
only contain local information for i = 1,2. Applying the local version

ui(t) =−ai(LgiVi(xi(t)))
T , i = 1,2 (8)

with a real number ai > 0 to (5) we obtain

V̇i = LfiVi(xi,x3−i)− ai(LgiVi(xi))(LgiVi(xi))
T +LgiVi(xi)di

≤ LfiVi(xi,x3−i)+
1

4ai
|di|2, i = 1,2. (9)

At this point, the property (9) does not give us information about robustness of the
overall system (5) with the decentralized state feedback (8). Indeed, it is true in gen-
eral that a(LgV (x)) = [a1(Lg1V1(x1)),a2(Lg2V2(x2))] does not hold for any choice
of positive constants a, a1 and a2. If the function V (x) fulfilling (2) happens to be in
the form of V (x) =V1(x1)+V2(x2), then the property (9) implies (7) for the choice
a = a1 = a2. The larger the feedback gain ai is, the stronger the robustness with
respect to d is. However, general nonlinear systems consisting of (1) often disallow
any V in the form of V (x) = V1(x1)+V2(x2) to accomplish (2) even if the equilib-
rium x = 0 is GAS. In this way, the feedback input ui which uses only local state
xi as in Fig. 1(b) achieves the desired robustness of the overall system Σ with re-
spect to the disturbance d only if the construction of the Lyapunov function V (x)
and the selection of the local feedback control laws ui(xi) are judiciously coordi-
nated. Therefore, it is significantly useful to derive a condition under which such a
desirable pair V and u can be constructed, and to provide the formulas of V and u.

iISS. If α ∈K∞ holds in (2), the property (7) implies ISS of the system Σ with
respect to the disturbance d. In the case of α ∈P \K∞, the system Σ is iISS with
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respect to d. It is, however, not guaranteed to be ISS. The existence of V (x) satisfy-
ing (2) ensures the existence of another C1 function V (x) satisfying (2) with a class
K∞ function α . Indeed, replacing V (x) by F(V (x)) with an appropriate C1 function
F : R+ → R+ always allows us to achieve (2) with α ∈K∞. Here, it is important
to notice that this transformation into α ∈K∞ via redefinition of V (x) does not pre-
serve the decentralized structure of robustifying controllers. In fact, the redefinition
of V (x) yields the “LgV -type” feedback (6) as

u(t) =−a(LgF(V (x(t))))T = [uT
1 (x(t)),u

T
2 (x(t))]

T (10)

in which ui = uT
i (xi) does not hold true in general. The transformation by F results in

the centralized feedback ui = uT
i (x1,x2), i = 1,2, even if the original V is in the form

of V (x) = V1(x1) +V2(x2). In addition, there are a lot of GAS systems for which
no matter how we choose C1 functions F1,F2 : R+ → R+, the composite function
V (x) = F1(V1(x1)) +F2(V2(x2)) never achieves (2) with α ∈K∞. Such examples
are found in the iISS framework (see e.g. [2]). Hence, it is unreasonable to expect
that the interconnected system Σ achieves ISS with respect to the disturbance d. In
this way, allowing α �∈K∞ is imperative to avoid unreasonably stringent constraints
on systems Σi, and it is quite useful to develop a method of achieving iISS and
including ISS as a special case.

Limitation of Input Magnitude. The control laws (6) and (8) are unbounded un-
less a strong constraint is imposed on the system Σ . In practical situations where the
magnitude of control input is limited, the laws (6) and (8) need to be implemented
with saturation functions. Then the property (7) does not hold true. From (5) it is
obvious that, if |di(t)| becomes larger than the upper limit of |ui(t)| an actuator can
generate, such a control input cannot enhance the robustness against d. However, the
upper bound of |di(t)| is known and it is smaller than the actuator limitation, the ro-
bustness of Σ should be enhanced by applying appropriately saturated control input
ui(t). Therefore, it is practically important to clarify how robust the system Σ can
be by judiciously designing robustifying controllers meeting the input constraints.

LgV in the Presence of Delays and Discontinuities. In addition to the inevitabil-
ity of time delays in dynamical systems, discontinuity in the right-hand side often
arises in practical models of control and sliding mode control laws. Such delays
and discontinuities need to be incorporated into the right-hand side of (1), (3)
or (5). Moreover, the map V needs to be extended to a functional in order to
characterize the behavior of systems with delays whose solutions are defined as the
evolution of segments defined on the delay interval along the time axis. In (6) and
(8), the symbol LgV indicated the Lie derivative of the C1 function V along g, i.e.,
LgV = ∂V

∂x g(x). When V is a functional, this definition is inapplicable. Furthermore,
the relation between LgV and the estimation of the solutions x(t) to the system Σ
is not immediate at all for time-delay discontinuous right-hand side systems. It is
necessary to redefine LgV in accordance with a feasible estimation of the behavior
of Σ subject to time-delays and discontinuities.
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An Approach. To address the above issues, we take an new approach based on

• Invariantly differential functionals to characterize the robustification in the form
of LgV ;

• A sum-type construction of a Lyapunov-Krasovskii functional to obtain V lead-
ing to the decentralized robustification;

• An iISS small-gain condition to formulate the robustification in the iISS frame-
work in the presence of actuator limitations.

These tools have been investigated and developed very recently in [4, 5, 12]. This
article demonstrates how successfully the problem of decentralized robustification
for time-delay discontinuous right-hand side systems can be solved.

3 Invariantly Differentiable Functionals

This article borrows the definition of invariant differentiable functionals from [8]
(see Definitions 2.2.1, 2.5.2 in Chapter 2). In the subsequent sections, we will as-
sume that Lyapunov-Krasovskii functionals are invariantly differentiable. The for-
malism used in [8] is slightly modified here for the purpose of formalism uniformity
throughout this article. For any given x ∈ R

n, φ ∈Qn and any continuous function

Y : [0,Δ ]→ R
n with Y (0) = x, let ψ(x,φ ,Y )

h ∈Qn, h ∈ [0,Δ), be defined as

ψ(x,φ ,Y )
0 = φ

ψ(x,φ ,Y )
h (s) =

{
φ(s+ h), s ∈ [−Δ ,−h)
Y (s+ h), s ∈ [−h,0)

for h > 0. (11)

Definition 1. (see [8]) A functional V : Rn×Qn →R+ is said to be invariantly dif-
ferentiable if, at any point (x,φ) ∈ R

n×Qn:
i) for any continuous function Y : [0,Δ ]→R

n with Y (0) = x, there exists the finite

right-hand derivative ∂V
(

x,ψ(x,φ ,Y )
h

)
/∂h

∣∣∣
h=0

and such derivative is invariant with

respect to the function Y ;
ii) there exists the finite derivative ∂V (x,φ)/∂x; iii) for any z ∈ R

n, for any contin-
uous function Y : [0,Δ ]→R

n with Y (0) = x, for any h ∈ [0,Δ),

V
(

x+ z,ψ(x,φ ,Y )
h

)
−V(x,φ) =

∂V (x,φ)
∂x

z+
∂V

(
x,ψ(x,φ ,Y )

�

)

∂�

∣∣∣∣∣∣
�=0

h+ o

(√
|z|2 + h2

)
(12)

with lims→0+ o(
√

s)/
√

s = 0.

The first two terms in (12) serve as a differential of V (x,φ), and they are inde-
pendent of Y defining the increment of the second argument φ of the functional
V (x,φ). As explained in [12,16], due to the invariant differentiability, we can define
an appropriate derivative by which we can estimate the behavior of the trajectories
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of time-delay discontinuous right-hand side systems with a locally Lipschitz func-
tional V :Rn×Qn→R+ as in the classical Lyapunov theory for ordinary differential
equations. Lemma 6 in [12] provides a tool to rescale invariantly differentiable func-
tionals, which helps us evaluate robustness of interconnected systems effectively by
means of invariantly differentiable functionals.

4 Interconnected Time-Delay Systems with Discontinuous
Right-Hand Side

Consider an interconnected system Σ described by the following functional differ-
ential equations with discontinuous right-hand side

Σ
{
Σ1 : ẋ1(t) = f1(x1,t ,x2,t)+ g1(x1,t)(u1(t)+ d1(t))
Σ2 : ẋ2(t) = f2(x2,t ,x1,t)+ g2(x2,t)(u2(t)+ d2(t))

(13)

x1,0 = ξ1,0, x2,0 = ξ2,0,

where, for i = 1,2, xi(t) ∈ R
ni ; di(t) ∈ R

mi is a disturbance adding to the control
input (measurable, locally essentially bounded); ni and mi are positive integers. For
t ∈ R+, xi,t : [−Δ ,0]→ R

ni denotes the function xi,t(τ) = xi(t + τ), where Δ >
0 is the maximum involved delay. Suppose that ξi,0 ∈ Cni . The locally bounded
maps fi : Cni ×Cn3−i → R

ni are continuous with respect to the second argument,
and are allowed to be discontinuous with respect to the first argument, the maps
gi : Cni →R

ni×mi are assumed to be Lipschitz on bounded sets. We combine vectors
as x(t) = [x1(t)T ,x2(t)T ]T ∈ R

n, n = n1 + n2, u(t) = [u1(t)T ,u2(t)T ]T ∈ R
m, d(t) =

[d1(t)T ,d2(t)T ]T ∈ R
m, m = m1 +m2, ξ0 = [ξ T

1,0,ξ T
2,0]

T ∈ Cn, f () = [ f1()
T , f2()

T ]T ,
φ = [φT

1 ,φT
2 ]T ∈ Cn and g() = [g1()

T ,g2()
T ]T . We define xt as done for its i-th

component xi,t . It is assumed that fi(0,0) = 0, i = 1,2. We use semi-norms ‖ · ‖a,i :
Cni → R+ and ‖ · ‖a : Cn → R+, i = 1,2, respectively, for which there exist class
K ∞ functions γ

a,i
, γa,i, γa

and γa such that

γ
a,i
(|φi(0)|)≤ ‖φi‖a,i ≤ γa,i(‖φi‖∞), ∀φi ∈ Cni (14)

γ
a
(|φ(0)|) ≤ ‖φ‖a ≤ γa(‖φ‖∞), ∀φ ∈ Cn . (15)

The retarded inclusions corresponding to Σ represented by (13) are given by

ẋ1(t) ∈Ψ1(x1,t ,x2,t ,u1(t)+ d1(t)), t ≥ 0, a.e.,

ẋ2(t) ∈Ψ2(x2,t ,x1,t ,u2(t)+ d2(t)), t ≥ 0, a.e.,

x(τ) = ξ0(τ), τ ∈ [−Δ ,0], ξ0 ∈ Cn, (16)

where, for (φi,φ3−i,v) ∈ Cni ×Cn3−i×R
mi ,Ψi(φi,φ3−i,v) is the set given by

Ψi(φi,φ3−i,v) = {ξi + gi(φi)v, ξi ∈ Fi[ fi](φi,φ3−i)}, (17)
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and Fi[ fi](φi,φ3−i) is the convex closure of all limit values of the map fi at the
point (φi,φ3−i). We introduce here the following standard assumption on the maps
fi of subsystems in (13): For each (φi,φ3−i) ∈ Cni ×Cn3−i , the set Fi[ fi](φi,φ3−i)
is assumed to be compact in R

ni ; for each bounded set W ∈ Cni ×Cn3−i , the set
∪(φi,φ3−i)∈W Fi[ fi](φi,φ3−i) is assumed to be bounded; the multimap (φi,φ3−i) →
Fi[ fi](φi,φ3−i) is assumed to satisfy the Carathéodory conditions (see Sections 4.2,
4.3, pp. 121-126, in [9]).

For the system (13), as in [12], we consider situations where essential bounds of
the disturbance d(t) are known in the following sense:

di, j ≤ ess inf
t∈R+

di, j(t), di, j ≥ ess sup
t∈R+

di, j(t). (18)

Here, di, j,di, j ∈ R, i = 1,2, j = 1,2, ...,mi satisfying di, j ≤ 0 ≤ di, j are given a
priori. Note that, when do not have any a priori knowledge of the disturbance mag-
nitude at Σi, we let −di, j = di, j = ∞, i = 1,2 for j = 1,2, ...,mi. The notions of ISS
and iISS with the essential bounds are defined as follows:

Definition 2. The system (13) with u(t)≡ 0 is said to be input-to-state stable (ISS)
with respect to d with the essential bounds (18) if there exist a K L function β
and a K function γ such that, for any initial state ξ0 and any measurable, locally
essentially bounded input d satisfying (18), any corresponding solution in the sense
of (16) exists for all t ≥ 0 and furthermore it satisfies

|x(t)| ≤ β (‖ξ0‖∞, t)+ γ
(
‖d[0,t)‖∞

)
. (19)

Definition 3. The system (13) with u(t)≡ 0 is said to be integral input-to-state sta-
ble (iISS) with respect to d with the essential bounds (18) if there exist a K∞ func-
tion χ , a K L function β and a K function γ such that, for any initial state ξ0

and any measurable, locally essentially bounded input d satisfying (18), any corre-
sponding solution in the sense of (16) exists for all t ≥ 0 and furthermore it satisfies

χ(|x(t)|)≤ β (‖ξ0‖∞, t)+
∫ t

0
γ (|d(τ)|)dτ. (20)

It is stressed that, in the situation where we take −di, j = di, j = ∞ for i = 1,2 and
j = 1,2, ...,mi, the above definition reduces to the standard definitions of ISS and
iISS without any bounds of the disturbance d (see [1, 13–15]). For example, the
system (13) with u(t)≡ 0 is ISS with respect to d with the essential bounds (18) for
−di, j = di, j =∞, i = 1,2, j = 1,2, ...,mi, if and only if the system (13) with u(t)≡ 0
is ISS with respect to d. This equivalence also holds in the iISS case.

The following assumption is imposed on each unforced (ui(t) = di(t) ≡ 0) sub-
system in (13): For each subsystem Σi (i = 1,2) defined in (13) with ui(t) = di(t)≡
0, we assume the existence of a Locally Lipschitz invariantly differentiable func-
tional Vi : Rni ×Qni → R+ such that
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α i(‖φi‖a,i)≤Vi(φi(0),(φi)[−Δ ,0))≤ α i(‖φi‖a,i), (21)

D+Vi(φi,φ3−i)≤ ρi(φi,φ3−i), ∀ φ j ∈ C j, j = 1,2 (22)

hold, where α i,α i are K∞ functions and ρi : Cni ×Cn3−i → R is a continuous func-
tional given by

ρi(φi,φ3−i) =−αi(‖φi‖a,i)+σi,0(‖φ3−i‖a,i)+
h

∑
j=1

σi, j

(
γ

a,3−i
|φ3−i(−Δ j|)

)

+
h+hd

∑
j=h+1

∫ 0

−Δ j

σi, j

(
γ

a,3−i
|φ3−i(τ)|

)
dτ. (23)

Here, h and hd are non-negative integers, αi and σi, j are class K functions, and
Δ j ∈ (0,Δ ] for j = 0,1, . . . ,h+ hd. The left hand side of (22) is defined with

D+Vi(φi,φ3−i) = sup
ξi∈Fi[ fi](φi,φ3−i)

∂Vi(xi,φi)

∂xi

∣∣∣∣
xi=φi(0)

ξi +
∂Vi(φi(0),φi,h)

∂h

∣∣∣∣
h=0

(24)

φi,h(s) =

{
φi(s+ h), s ∈ [−Δ ,−h)
φi(0), s ∈ [−h,0]

for h ∈ [0,Δ). (25)

5 Decentralized iISS and ISS Feedback Redesign

We introduce a few notations and definitions. Define an operator α(i : R+→ R+ as

α(i (s) = sup{v ∈ R+ : s≥ αi(v)}. (26)

Thus, we have α(i (s) = ∞ for s ≥ limτ→∞αi(τ), and α(i (s) = α−1
i (s) elsewhere.

For a class K function ω : R+→ R+, this article uses the extension ω : R+→ R+

defined as

ω(s) := sup
v∈{w∈R+ :w≤s}

ω(v).

The reader may refer to [3] for the benefit of these extended operators. We define
the following set D(w,w) of continuous functions:

Definition 4. Given −∞ ≤ w < 0 < w ≤ +∞, a function ω : R→ R is said to be-
long to D(w,w) if it is a strictly increasing and locally Lipschitz function such that
ω(0) = 0 ∧ {lims→−∞ω(s)<w ∨ lims→−∞ω(s) =−∞} ∧ {w< lims→+∞ω(s) ∨
lims→+∞ω(s) = +∞}.

For a mapping ω ∈ D(w,w) from R onto (a,b) ⊆ R, the inverse of ω is a strictly
increasing continuous function denoted by ω−1 : (a,b)→ R. For ω ∈D(w,w), the
function ω−1(s)s : (w,w)→R is locally Lipschitz. For each i = 1,2, let Ni be
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Ni =
h+hd

∑
j=0

sgn(σi, j(1)) , (27)

which describes the number of non-zero functions among σi,0, ..., σi,h+hd , in (23).
The following achieves decentralized robustification under a small-gain condition.

Theorem 1. Define σi ∈K , i = 1,2, by

σi(s) = Ni max

{
max

j=0,1,...,h
σi, j(s), max

j=h+1,...,h+hd

Δ jσi, j(s)

}
. (28)

Suppose that there exist ci > 1, i = 1,2, such that

c1σ1 ◦α−1
2 ◦α2 ◦α(2 ◦ c2σ2(s)≤ α1 ◦α−1

1 ◦α1(s), ∀s ∈ R+ (29)

holds. Pick τi,μi > 0 and ϕ ≥ 0 such that

1 < τi <
ci

1+ μi
,

(
τi(1+ μi)

ci

)ϕ
≤ τi− 1, i = 1,2 (30)

are satisfied. Define class K functions λi, i = 1,2, by

λi(s) =

[
1
τi
αi(α−1

i (s))

]ϕ [
(1+ μi)σ3−i(α−1

i (s))
]ϕ+1

. (31)

Assume that the mapping

hi(φi) = [hi,1(φi),hi,2(φi), ...,hi,mi(φi)]

= λi(Vi(φi(0),(φi)[−Δ ,0))) ·
∂Vi(xi,(φi)[−Δ ,0))

∂xi

∣∣∣∣
xi=φi(0)

gi(φi) (32)

from Cni into R
mi is Lipschitz on bounded sets for i = 1,2. Define

pi(φi) =−[Yi,1(hi,1(φi)),Yi,2(hi,2(φi)), · · · ,Yi,mi(hi,mi(φi))]
T (33)

for Yi, j ∈D(di, j,di, j), i = 1,2, j = 1,2, ...,mi. Then the decentralized feedback con-
trol laws (i = 1,2)

ui(t) = pi(xi,t) (34)

render the closed-loop system consisting of (13) and (34) iISS with respect to the
disturbance d with the essential bounds (18). Moreover, if lims→∞αi(s) = ∞ holds
true for i = 1,2, then the closed-loop system is ISS with respect to the disturbance d
with the essential bounds (18).

For any ci > 1, there always exist τi,μi > 0 and ϕ ≥ 0 fulfilling (30). Note that The-
orem 1 establishes ISS and iISS even if −di, j = di, j =∞ for i = 1,2, j = 1,2, ...,mi.
In such a case, Yi, j’s are required to be unbounded and the magnitude of the
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robustifying inputs ui(t) become large arbitrarily for arbitrarily large disturbances
di, j(t). If time delays reside only in communication channels, the mappings Vi are
functions which do not involve any terms for time delays. In such cases, equations
(32), (33) and (34) yield the compensations ui(t) which are delay free. Theorem 1
is established by making use of the functional V : Rn×Qn → R+:

V (φ(0),(φ)[−Δ ,0)) =
2

∑
i=1

∫ Vi(φi(0),(φi)[−Δ ,0))

0
λi(s)ds

+
h

∑
j=1

∫ 0

−Δ j

Fi, j(τ)σ̃i, j

(
γ

a,3−i
(|φ3−i(τ)|)

)
dτ

+
h+hd

∑
j=h+1

∫ 0

−Δ j

Fi, j(τ)
∫ 0

τ
σ̃i, j

(
γ

a,3−i
(|φ3−i(θ )|)

)
dθdτ. (35)

where, for i = 1,2 and j = 1,2, ...,h+hd, the continuous functions Fi, j : [−Δ j,0]→
R and the functions σ̃i, j ∈K are given by

Fi, j(τ) =
−τ
Δ j

+(1+ μi)
τ+Δ j

Δ j
, σ̃i, j(s) = λi(θi, j(s))σi, j(s)

θi, j(s) =

{
α i ◦α(i ◦Niτiσi, j(s) , j = 0,1, ...,h
α i ◦α(i ◦NiτiΔ jσi, j(s) , j = h+ 1,h+ 2, ...,h+hd.

Let α , α ∈K∞ be such that α(‖φ‖a) ≤ V (φ(0),(φ)[−Δ ,0)) ≤ α(‖φ‖a). The func-
tional V in (35) plays the role of a Lyapunov-Krasovskii functional to estimate the
influence of the disturbance d on the resulting system as follows:

Corollary 1. Suppose that all the assumptions in Theorem 1 are fulfilled. Then the
closed-loop system consisting of (13) and (34) satisfies

D+V (φ ,d)≤−α(‖φ‖a)+σ(|d|), (36)

where α ∈K is given by (37), and σ is any class K function satisfying (38):

α(s) = min
{φ=[φT

1 ,φT
2 ]T∈Cn:s=‖φ‖a}

{ n

∑
i=1

h

∑
j=1

μi

Δ j

∫ 0

−Δ j

σ̃i, j

(
γ

a,3−i
(|φ3−i(τ)|

)
dτ+

h+hd

∑
j=h+1

μi

Δ j

∫ 0

−Δ j

∫ 0

τ
σ̃i, j

(
γ

a,3−i
(|φ3−i(θ )|

)
dθdτ+

(
1− τi

ci

)
(τi− 1)

τi
λi(Vi(φi(0),(φi)[−Δ ,0)))[αi ◦α−1

i (Vi(φi(0),(φi)[−Δ ,0)))]

}
(37)

σ(s)≥ sup
{d∈Rm:s≥|d|, di, j∈(di, j ,di, j)}

2

∑
i=1

mi

∑
j=1

Y−1
i, j (di, j)di, j. (38)
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Furthermore, a pair of χ and γ in (20) is given by χ(s) = α ◦ γ
a
(s) and γ(s) =

2σ(s). Moreover, if lims→∞αi(s) = ∞ holds for i = 1,2, a function γ satisfying (19)
is γ(s) = γ−1

a
◦α−1 ◦α ◦α−1(2σ(s)).

Equation (31) is a special case of the more general formula of λi presented in [4].
The free parameters in [4] allow us to replace (31) by the one presented in [5].

6 An Example

Consider the interconnection of two scalar subsystems:

ẋ1(t) =−
sgn(x1(t))
1+ |x1(t)|

+
γ1

1+ |x1(t)|
x2(t−Δ)+ cos(x1(t))(u1(t)+ d1(t)) (39)

ẋ2(t) =−x2(t)(2+ sgn(x2(t)− 1))+ γ2
x1(t−Δ)

1+ |x1(t−Δ)|
+ x2(t)(u2(t)+ d2(t)),

where Δ > 0 is a channel delay, γi ∈ R, i = 1,2, are interaction parameters. Choose
Vi(φi(0),(φi)[−Δ ,0)) = φi(0)2, i = 1,2. For ui(t)≡ 0, di(t)≡ 0, we obtain

D+V1 ≤−
2|φ1(0)|

1+ |φ1(0)|
+ 2|γ1||φ2(−Δ)|, D+V2 ≤−|φ2(0)|2 + γ2

2

(
|φ1(−Δ)|

1+ |φ1(−Δ |)

)2

.

If |γ1γ2| < 1, (29) is satisfied. For example, in the case of |γ1| = |γ2| = 1/2, the
formula (31) gives λ1(s) =

1
4 (
√

s/(1+
√

s))2 and λ2(s) =
√

s for ϕ = 0 and τi(1+
μi) = 17/8, i = 1,2. Assume that |d1(t)| ≤ 2 and |d2(t)| ≤ 7 hold for all t ≥ 0.
Setting d1,1 = d1,1 = 2 and d2,1 = d2,1 = 7, we can choose Y1,1(s) = 3tanh(s) and
Y2,1(s) = 10tanh(s). Thus, equations (32)-(34) yield

u1(t) =−3tanh(λ1(x2
1(t))2x1(t)cos(x1(t)))

u2(t) =−10tanh(λ2(x2
2(t))2x2

2(t))
(40)

which achieve iISS of the overall system (39) with respect to di(t), i = 1,2. Figure
2(a) illustrates the effectiveness of (40) for (39) with ξ0(τ) = [−1,3]T , τ ∈ [−Δ ,0],
Δ = 2 and γ1 = γ2 = 0.5 in the presence of d = [2cos(2t),4+ 3cos(4t)]T which
satisfies |d1(t)| ≤ 2 and |d2(t)| ≤ 7 for all t ≥ 0. Compared with Fig.2(c), the local
feedback laws (40) with the input magnitude limitations significantly improve ro-
bustness with respect to the disturbance d. If no limitations of input magnitude are
necessary, Theorem 1 yields the unbounded local feedback laws

u1(t) =−3λ1(x2
1(t))2x1(t)cos(x1(t)),

u2(t) =−10λ2(x2
2(t))2x2

2(t)
(41)

which produce state trajectories shown in Fig.2(b). The robustness achieved by
the bounded control (40) is almost identical to the robustness achieved by the
unbounded control (41). For d = [7cos(2t),9+ 11cos(4t)]T exceeding the upper
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(a) With bounded decentralized feedback: (40) (b) With unbounded decentralized feedback: (41)
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(c) Without feedback: ui(t)≡ 0, i = 1,2

Fig. 2 State transition x(t) = [x1(t),x2(t)]T of (39) with d = [2cos(2t),4+3cos(4t)]T
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(a) With bounded decentralized feedback: (40)
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(b) With unbounded decentralized feedback: (41)

Fig. 3 State transition x(t) = [x1(t),x2(t)]T of (39) with d = [7cos(2t),9+11cos(4t)]T

bounds, the trajectories with the bounded laws (40) and the unbounded laws (41)
are plotted in Figs.3(a) and (b), respectively. The parameters Δ , γ1, γ2 and ξ0 are
the same as those used in Figs. 2(a), (b) and (c). The control inputs (40) fulfill the
magnitude constraints |u1(t)| ≤ 3 and |u2(t)| ≤ 10 for all t ≥ 0. However, they can-
not ensure the robustness the larger control inputs (41) can attain. In the case of no
control inputs, the simulation exhibited a vertical increase of x2 at t = 1.80.
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7 Conclusions

For interconnected systems described by retarded nonlinear equations with discon-
tinuous right-hand side, this article has proposed a methodology for decentralized
redesign. In the iISS framework that does not require subsystems to be ISS, input
magnitude limits and saturated decay rates of subsystems have been addressed. It
has been shown that, if dissipation inequalities of subsystems satisfy the small-gain
condition (29), the interconnected system can be rendered robust with respect to
disturbances by adding local state feedback inputs. The notion of invariantly differ-
ential functionals allows us to carry out the robust compensation in the form of LgV
for retarded nonlinear equations with discontinuities. The sum-type construction of
Lyapunov-Krasovskii functionals as in (35) enables us to obtain the robust compen-
sation as decentralized controllers. The proposed controllers become delay free if
time delays exist only in communication channels between subsystems.

Acknowledgements. The work of P. Pepe is supported by MIUR PRIN 2009 and DEWS.
The work of Z.P. Jiang has been supported by NSF grant ECCS-1230040.
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Global Stability Analysis of Nonlinear
Sampled-Data Systems Using Convex Methods

Matthew M. Peet and Alexandre Seuret

Abstract. In this chapter, we consider the problem of global stability of nonlinear
sampled-data systems. Sampled-data systems are a form of hybrid model which
arises when discrete measurements and updates are used to control continuous-time
plants. In this paper, we use a recently introduced Lyapunov approach to derive
stability conditions for both the case of fixed sampling period (synchronous) and
the case of a time-varying sampling period (asynchronous). This approach requires
the existence of a Lyapunov function which decreases over each sampling interval.
To enforce this constraint, we use a form of slack variable which exists over the
sampling period, may depend on the sampling period, and allows the Lyapunov
function to be temporarily increasing. The resulting conditions are enforced using
a new method of convex optimization of polynomial variables known as Sum-of-
Squares. We use several numerical examples to illustrate this approach.

1 Introduction to the Problem of Stability of Sampled-Data
Systems

Consider an aircraft in combat being remotely piloted by an operator. Directed en-
ergy or some other form of electronic warfare is used to deny portions of the electro-
magnetic spectrum and thus reduce the communication bandwidth between vehicle
and operator. The change in bandwidth restricts the rate at which information can be
transmitted to the vehicle. The question we ask is what is the minimum rate of trans-
fer of information the aircraft can tolerate before it becomes unstable. This situation
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is similar to the use of electronic countermeasures on an active radar-guided missile.
In both cases, there is a set of continuous-time dynamics representing the dynamics
of the controlled system. These continuous dynamics are regulated by continuous
real-time feedback using digital sensing and actuation. During normal operation, the
controller is updated continuously and so the digitization of the controller does not
affect the dynamics of the closed-loop system. When interference occurs, however,
the update rate of the controller may be sparse or unpredictable. In this case, the
system becomes neither discrete nor continuous, but rather a special type of hybrid
system referred to as a Sampled-Data system, modeled as

ẋ(t) = f (x(t),x(tk)) for t ∈ [tk, tk +Tk], k = 1, · · · ,∞.

where tk+1 = tk +Tk for all k and Tk is the sampling period which may be constant or
may depend on k. Typically, systems of this form arise when the dynamics depend
on external updates - often through the use of a controller so that f (x(t),x(tk)) =
f ∗(x(t),u(t)) with u(t) = k(x(tk)). The sampling period Tk may be thought of as the
time between updates from an external controller. In the scenarios described above,
Tk would vary with k - the so-called ‘asynchronous’ case. However, there are certain
situations when Tk may not vary from update to update - such as when the controller
is implemented using an A/D converter with step-times. We refer to this situation as
the ‘synchronous’ case.

Linear Sampled-Data systems have been well-studied in the literature [1–4], in-
cluding work on nonlinear systems in [5, 6]. One popular approach has been to
regard the system in continuous-time and use a discontinuous, time-varying delay
to represent the hybrid part of the dynamics [7]. Unfortunately, this approach has
not been completely successful, as the understanding of nonlinear systems with
time-varying delay is itself a difficult problem. An alternative approach has been
to regard the system in discrete time [8–10], where the update law is given by the
solution map of the continuous-time system over a period Tk. For a linear system,
this solution map is well-defined using matrix exponentials. For nonlinear systems,
it can be approximated over bounded intervals using methods such as the extended
Picard iteration [11]. The difficulty with this approach is that the update law is dif-
ferent for every sampling period - meaning that although the approach may work
well for a fixed sampling period, for unknown and time-varying sampling periods,
one has to verify stability over a family of potential solutions. Even in the linear
case, this means verification of stability with parametric uncertainty which enters
through the exponential. If we have a nonlinear sampled-data system, then even if
the vector field is polynomial, the extended Picard iteration yields a polynomial ap-
proximation to the solution map - meaning we must test stability of a complicated
polynomial vector field with parametric uncertainty - an NP-hard problem.

In this chapter, we consider the use of a new Lyapunov-based approach to sta-
bility analysis of sampled-data systems. Specifically, we rely on a Lyapunov result
which states that while Lyapunov functions must experience a net decrease over the
sampling period, it may be instantaneously increasing [12]. This constraint can be im-
plemented in a Lyapunov context through the use of ‘spacing functions’ - functions
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which are required to vanish at the endpoints of the sampling period. The main idea
behind these functions is that instead of requiring negativity of the Lyapunov function
over the entire sampling interval, we only require the sum of the Lyapunov function
and the spacing function to be decreasing for all time. The inspiration for this ap-
proach came from the previous work on spacing functions for Lyapunov-Krasovskii
functionals for stability of time-delay systems in [13]. In [14], we considered the use
of this approach for construction of quadratic Lyapunov functions for linear sampled-
data systems in both the synchronous and asynchronous cases. The contribution of
this chapter is to show how this approach can be extended to prove global stability of
nonlinear sampled-data systems.

This chapter is organized as follows. In Section 2, we introduce the sampled-data
system model and define our concepts of stability. We then give the Lyapunov theo-
rem whose conditions we will test. We then introduce the Sum-of-Squares approach
to optimization of polynomial variables, including the use of Positivstellensatz re-
sults to enforce local positivity. In Section 2, we show how the Sum-of-Squares
framework can be used to enforce the stability conditions of Section 2. Finally, in
Section 4, we apply the results of the chapter to several cases of nonlinear stability
analysis in both the synchronous and asynchronous cases.

2 Background

In this section we will first describe the Lyapunov theorem we will use and dis-
cuss the conditions that a Lyapunov function must satisfy. Following this, we will
briefly discuss the computational framework we will use to enforce the conditions
of the Lyapunov theorem. Specifically, we will give background on optimization of
polynomials using the Sum-of-Squares methodology (SOS).

2.1 Sampled-Data Systems

In this chapter, we consider the stability of solutions of equations of the form

ẋ(t) = f (x(t),x(tk)) for t ∈ [tk, tk +Tk], k = 1, · · · ,∞.
x(t) = x0 (1)

where t0 = 0, tk+1 = tk +Tk for all k ≥ 0 and Tk is the sampling period which may
be constant or may depend on k. We assume that Tk satisfies some upper bound
Tk ≤ Tmax for all k. When it exists, we define the continuous-time flow-map Γ (s)
to be any function which satisfies d

dsΓ (s)z = f (Γ (s)z,z) for all s ∈ [0,Tmax] and
Γ (0)z = z. If Γ exists, then the sampled-data system can be reduced to a discrete-
time system as xk+1 = Γ (Tk)xk. For the linear sampled-data system

ẋ(t) = A0x(t)+A1x(tk),
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we have the explicit solution

Γ (s)z =
(

eA0s +
∫ s

0
eA0(s−θ)A1dθ

)
z.

For a nonlinear system, the solution map Γ is difficult to find - although it may be
approximated using such methods as Picard iteration.

Definition 1. We say the Sampled-Data System (1) is globally exponentially stable
if there exist positive constants K,γ such that for any initial condition x0 ∈ R

n, and
any x satisfying (1), we have ‖x(t)‖ ≤ K‖x0‖e−γt for all t ≥ 0.

For a synchronous linear sampled-data system with period Tk, global exponential

stability is equivalent to ρ
(

eA0sTk +
∫ Tk

0 eA0(s−θ)A1dθ
)
< 1.

Definition 2. We say the Sampled-Data System (1) is locally exponentially stable
on domain X if there exist positive constants K,γ such that for any initial condition
x0 ∈ X , and any x satisfying (1), we have x(t) ∈ X and ‖x(t)‖ ≤ K‖x0‖e−γt for all
t ≥ 0.

2.2 A Lyapunov Theorem

In this theorem, we assume global existence and continuity of solutions.

Notation: For a given solution, x, of System (1), define the function xk(s) =
Γ (s)x(tk) for s ∈ [0,Tk]. Associated with xk ∈ C [0,Tk], we denote the supremum
norm ‖xk‖∞ = sups∈[0, Tmax]‖xk(s)‖.

Theorem 1. [12] Suppose V : Rn → R
+ is continuously differentiable and

μ1‖x‖2 ≤V (x)≤ μ2‖x‖2, for all x ∈ R
n. (2)

for positive scalars μ1,μ2 with μ1 > μ2 > 0. Then for any positive constants α,Tmin

and Tmax such that Tk := tk+1 − tk ∈ [Tmin,Tmax] for all k ∈ N, the following are
equivalent.

(i) There exists positive constants ε,α such that for all solutions x of Equation (1),
and for all k ≥ 0,

V (x(tk+1))< e−2αTkV (x(tk))− ε‖x(tk)‖2.

(ii) There exists a positive constants δ andα and continuously differentiable func-
tions Qk : [0,Tk]×C [0,Tk]→ R which satisfy the following for all k ≥ 0.

Qk(Tk,z) = e−2αTk Qk(0,z) for all z ∈ C [0, tk] (3)

and such that for all solutions of Equation (1), and for all t ∈ [tk, tk+1]

d
dt

[V (x(t))+Qk(t− tk,xk)]+ 2αV(x(t))+ 2αQk(t− tk,xk)<−δ‖xk‖∞. (4)
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Moreover, if either of these statements is satisfied, then System (1) is globally expo-
nentially stable about the origin with decay rate γ = α .

Note that the function Q is an operator on an infinite-dimensional vector space.
Parametrization of a dense subspace of such operators is impossible using digital
computation. However, in this paper, we avoid this difficulty by choosing the op-
erator Q to have the form of Q(s,z) = F(s,z(0),z(Tk),z(s)). This choice for the
structure of Q comes from the proof of Theorem 1 and is non-conservative.

2.3 Sum-of-Squares Optimization

Theorem 1 reduces the question of global exponential stability of sampled-data sys-
tems to the existence of a Lyapunov function V and a piecewise-continuous ‘spacing
function’ Q, which jointly satisfy certain pointwise constraints. Specifically, using
the structure Qk(s,z) = Fk(s,z(0),z(Tk),z(s)), we require

Qk(Tk,z) = Fk(Tk,z(0),z(Tk),z(Tk))

= e−2αTk Fk(0,z(0),z(Tk),z(0))

= e−2αTk Qk(0,z)

and

d
dt

[V (x(t))+Qk(t− tk,xk)]+ 2αV(x(t))+ 2αQk(t− tk,xk)

= ∇V (x)T f (x(t),x(tk))+∇xFk(t− tk,x(t),x(tk+1),x(tk))
T f (x)

+
d
dt

Fk(t− tk,x(t),x(tk+1),x(tk))+ 2αV(x(t))

+ 2αFk(t− tk,x(t),x(tk+1),x(tk))<−δ‖x(t)‖

for all x(t),x(tk+1),x(tk) ∈ R
n and t− tk ∈ [0,Tk].

To find the functions Fk and V and enforce these constraints, we must optimize
functional variables subject to positivity constraints. While this is a very difficult
form of optimization, there has been recent progress in this area through the use of
sum-of-squares variables. Specifically, we assume the functions F and V are poly-
nomials of bounded degree. The vector space of polynomials of bounded degree is
finite dimensional and can be represented using e.g. a set of monomial basis func-
tions. Specifically, if we define the vector of monomials in variables x of degree d
or less as Zd(x), then we can assume that Fk has the form

Fk(s,x,y,z) = cT Zd(s,x,y,z)

for some vector c ∈ R
n. To enforce the positivity constraints, we assume that any

positive polynomial, h can be represented as the sum of squared polynomials as

h(x) =∑
i

gi(x)
2.
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While this assumption is somewhat conservative, the conservatism is not significant,
as Sum-of-Squares polynomials are known to be dense in the set of positive poly-
nomials. The key advantage to requiring positive polynomials to be sum-of-squares
is that the set of sum-of-squares polynomials of bounded degree is precisely param-
eterized by the set of positive semidefinite matrices with size corresponding to the
degree of the polynomials. That is, a polynomial y(x) = cT Z2d(x) is SOS if and only
if

y(x) = cT Z2d(x) = Zd(x)
T QZd(x)

for some positive semidefinite matrix Q and where recall Zd is the vector of monomi-
als in variables x of degree d or less. Thus the constraint that y be a SOS polynomial
is equivalent to a set of linear equality constraints between the variables c and Q,
as well as the constraint that Q ≥ 0. Thus optimization of SOS polynomials is ac-
tually a form of semidefinite programming - for which we have efficient numerical
algorithms and implementations - e.g. [15, 16].

Notation: We denote the constraint that a polynomial p be Sum-of-Squares as p ∈
Σs.

While polynomials which are SOS will always be globally positive, we occa-
sionally would like to search for polynomials which are only positive on a subset of
R

n. This is typically accomplished through the use of SOS multipliers, formalized
through certain ‘Positivstellensatz’ results.

Lemma 1. Suppose that there exists polynomials ti and SOS polynomial si ∈ Σs such
that

v(x) = s0(x)+∑
i

si(x)gi(x)+∑
j

ti(x)h j(x)

Then v(x)≥ 0 for any x ∈ X := {x ∈R
n : gi(x)≥ 0, hi(x) = 0}.

Thus if we can represent the subset of interest X as a semialgebraic set, then we can
enforce positivity on this set using SOS and polynomial variables. Note that v in
Lemma 1 is not itself a Sum-of-Squares.

As an example, if we wish to enforce positivity of Fk(s,x,y,z) on the interval
s ∈ [0,Tk], then we can search for SOS functions s0,s1 such that

Fk(s,x,y,z) = s0(s,x,y,z)+ s1(s,x,y,z)g(s)

where g(s) = s(Tk− s). This function g was chosen because s ∈ [0,Tk] if any only if
g(s) ≥ 0. Positivstellensatz results [17–19] give conditions under which Lemma 1
is not conservative.

Polynomial positivity and Sum-of-Squares have been studied for some time. For
additional information, we refer the reader to the references [13, 20–23].

3 Main Results

Now that we have described our approach, the main results of the paper follow di-
rectly. We will describe both the synchronous and asynchronous cases and consider
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global exponential stability. Note that in the following theorems, we restrict Q to
have the structure

Qk(s,z) = Fk(s,x(0),x(s)).

That is, there is no dependence on x(Tk). This was done in order to be consistent
with our approach to linear Sampled-Data systems described in [14] and also to re-
duce the computational complexity of the stability conditions. This restriction may,
however, introduce additional conservatism and should be considered carefully by
the user.

3.1 The Synchronous Case

We first consider stability in the ‘synchronous’ case - that is, when Ti = Tj for all
i, j > 0. In this case, the updates to the state occur after regular intervals. As we have
argued before, this case is often unrealistic. However, there exist certain scenarios
where this model is relevant - such as in the case of an A/D converter. Synchronous
sampled-data systems are well-represented by conversion to a discrete-time system
as the resulting state update law

xk+1 = f (xk)

will not depend on k. However, as we mentioned before, derivation and stability
analysis of the resulting nonlinear discrete-time system are still difficult problems.
For this reason and others, the method we outline in this section will not rely on
conversion to discrete-time, but will use SOS programming to perform global expo-
nential stability analysis while retaining the full hybrid model of the dynamics.

Theorem 2. Suppose there exist polynomials V , F, s0, and s1 such that

V (x)− μ1‖x‖2 ∈ Σs (5)

∇V (z)T f (z,x)+∇zF(t,x,z)
T f (z,x)+

d
dt

F(t,x,z)+ 2αV(z)+ 2αF(t,x,z)

=−s0(t,x,z)− s1(t,x,z)t(T − t) (6)

F(T,x,y) = e−2αT F(0,x,x) (7)

then if Tk = T for all k > 0, System 1 is globally exponentially stable.

Proof. Using V as given and Qk(t,z) =F(t,z(0),z(t)) for all k > 0, we first get from
Condition (5) that

V (x(t))− μ1‖x(t)‖2 ≥ 0

and hence
V (x(t))≥ μ1‖x(t)‖2.

Furthermore, since V is a polynomial, it is upper bounded by some function μ2‖x‖p

for sufficiently large μ2 and p.
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Next, we see that from Condition (7),

Qk(Tk,z) = F(T,z(0),z(T ))

= e−2αT F(0,z(0),z(0))

= e−2αTk Qk(0,z).

Finally, we have from Condition (6) and Lemma 1 that

d
dt

[V (x(t))+Qk(t− tk,xk)]+ 2αV(x(t))+ 2αQk(t− tk,xk)

= ∇V (x(t))T f (x(t),x(tk))+∇3F(t,x(tk),x(t))
T f (x(t),x(tk))

+∇1F(t,x(tk),x(t))+ 2αV(x(t))+ 2αF(t,x(tk),x(t))

≤ 0

for all s ∈ [0,T ]. Thus the conditions for exponential stability in Theorem 1 are
satisfied. We conclude that System (1) is stable if T = Tk for all k > 0.

3.2 The Asynchronous Case

In this Subsection, we consider the case when the sampling period is time-varying,
yet is known to lie within some interval [Tmin,Tmax]. To illustrate, suppose that dur-
ing a Denial-of-Service attack the rate of controller updates is reduced, but still does
not drop below the rate of one packet per second. Thus implies a maximum sam-
pling period of Tmax = 1s. However, it is possible and even likely that the duration
between most of the updates during and after the attack may be significantly less
that this Tmax. Hence, there is also a minimum sample time determined to be either
Tmin = 0 or possibly to be the communication delay between controller and system
if the application is tele-operation.

To address the problem where we have Tk ∈ [Tmin.Tmax], we allow the ‘spacing
function’ F to vary with Tk. This is allowable since the spacing function is not part
of the storage function, V .

Note that we do not allow V to be a function of Tk. The restriction that V not
vary with k is similar to the Quadratic Stability condition for general classes of
switched systems. However, while quadratic stability is known to be conservative for
general classes of hybrid system, for sampled-data systems it is not known whether
quadratic stability is conservative.

Theorem 3. Suppose there exist constant α and polynomials V , F, s0, and s1 such
that
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V (x)− μ1‖x‖2 ∈ Σs (8)

∇V (z)T f (z,x)+∇zF(t,x,z,T )T f (z,x)+
d
dt

F(t,x,z,T )+ 2αV(z)

+ 2αF(t,x,z,T )

=−s0(t,x,z,T )− s1(t,x,z,T )t(T − t)− s2(t,x,z,T )(T −Tmin)(Tmax−T ) (9)

F(T,x,y,T ) = e−2αTmaxF(0,x,x) (10)

then if Tk ∈ [Tmin,Tmax] for all k > 0, System (1) is globally exponentially stable.

Proof. The proof is similar to the synchronous case. We use V (x) as given and
define Qk(t,z) = F(t,z(0),z(t),Tk) for all k > 0. From Condition (8) we have that

V (x(t))≥ μ1‖x(t)‖2.

As before, since V is a polynomial, it is upper bounded by some function μ2‖x‖p

for sufficiently large μ2 and p.
Next, we see that from Condition (10),

Qk(Tk,z) = F(Tk,z(0),z(Tk),Tk)

= e−2αTk F(0,z(0),z(0),Tk)

= e−2αTk Qk(0,z).

Finally, we have from Condition (9) and Lemma 1 that

d
dt

[V (x(t))+Qk(t− tk,xk)]+ 2αV(x(t))+ 2αQk(t− tk,xk)

= ∇V (x(t))T f (x(t),x(tk))+∇3F(t,x(tk),x(t),Tk)
T f (x(t),x(tk))

+∇1F(t,x(tk),x(t),Tk)+ 2αV(x(t))+ 2αF(t,x(tk),x(t),Tk)

≤ 0

for all s ∈ [0,Tk] and Tk ∈ [Tmin,Tmax]. Thus the conditions for exponential stability
in Theorem 1 are satisfied. We conclude that System (1) is stable if Tk ∈ [Tmin,Tmax]
for all k > 0.

4 Numerical Examples

To verify the algorithms described above, we performed global stability analysis on
a set of nonlinear sampled-data systems. In the examples considered here, we let
α ∼= 0, meaning that we are not interested in finding exponential rates of decay. For
a study of estimating exponential rates of decay as a function of sampling period for
linear systems, we refer to [14].
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4.1 Example 1: 1-D Nonlinear Dynamical System

For our first set of numerical examples, we consider the class of 1-D nonlinear
dynamical systems parameterized by

ẋ(t) = f (x(t)) = ax(t)3 + bx(t)2 + cx(t)

where we assume that the u(t) = cx(t) term represents negative feedback. Without
sampling, we know this system is globally stable if and only if x(t) f (x(t)) > 0 for
all x �= 0. It can be shown that this condition is satisfied if and only if a < 0 and
c < b2

4a . For this example, we initially chose a =−1, b = 2 and c =−1.1. Then, we
used a sampled signal for the term u(t) = cx(tk) to get the following dynamics.

ẋ(t) =−x(t)3 + 2x(t)2− 1.1x(tk).

In Table 1, we list the maximum verifiably globally stable sampling period for this
system as a function of the polynomial degree used for the variables V,F and s1.
These results were obtained using the conditions of Theorem 2 implemented using
SOSTOOLS coupled with SeDuMi. Due to the known potential for numerical inac-
curacies, all solutions were verified a-posteriori using SOS and via simulation. The
resulting Lyapunov function and function F are illustrated over a single sampling
period in Figure 1. The evolution of the system can be seen over multiple sampling
periods in Figure 2.
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−0.05
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0.1
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Time (s)

V(x(t))

V(x(t)) + F(x(t), x(tk),t)

F(x(t), x(tk),t)

Fig. 1 Evolution of V and F over one sampling period for Numerical Example 1

4.2 Example 2: Controlled Model of a Jet Engine

In our second example, we consider a controlled model of a jet engine with dynamics

ẋ(t) =−y(tk)−
3
2

x(t)2− 1
2

x(t)3

ẏ(t) =−y(t)+ x(t)
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Fig. 2 Evolution of x(t) over 30 sampling periods for Numerical Example 1 with Ts = 1.8

We consider the case where the negative feedback to the first state is provided using
a sampled-data controller. When Ts = 0, this system is known to be globally stable.
Figure 3 illustrates the trajectories of this system plotted against the level set of one
such Lyapunov function for Ts = .4.
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Fig. 3 Level Sets of a Lyapunov function for Example 2, with multiple trajectories simulated
over 30 sampling periods

Table 1 Maximum allowable sampling period Ts for Examples 1, 2, and 3 with T1 = 0

Degree N = 2 N = 4 N = 6 N = 8 N = 10

Example 1: Maximum Synchronous Ts /0 0.7901 1.5449 1.8192 1.8411

Example 2: Maximum Synchronous Ts /0 .171 .4599 N/A N/A

Example 3: Maximum Asynchronous Ts /0 .7891 1.542 N/A N/A
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4.3 Example 3: 1-D System, Unknown Sampling Period

In this example, we revisit the dynamics of Example 1.

ẋ(t) = f (x(t)) = ax(t)3 + bx(t)2 + cx(t)

However, in this case, we are interested in the case where the sampling period is
unknown and time-varying with upper and lower bounds, Tk ∈ [Tmin,Tmax]. Specifi-
cally, we choose the lower bound to be Tmin = 0 and determine the maximum upper
bound Tmax for which stability is retained for all time-varying sampling periods
which satisfy Tk ∈ [Tmin,Tmax]. The results are listed in Table 1. As we can see, in
this example, allowing the sampling period to vary with time does not significantly
affect the maximum sampling period - a surprising result which indicates that using
a Lyapunov function V which does not depend on Tk may not be conservative.

5 Conclusion

In this chapter, we have studied the question of global stability of nonlinear sampled-
data systems in both the synchronous and asynchronous cases. These systems arise
through the use of digitized sensing and actuation to control continuous-time dy-
namics where the controller updates may be irregular. Our approach has been to
exploit a new type of slack variable to find Lyapunov functions which experience
net decrease over each sampling period, but may be instantaneously increasing at
certain points in time. The stability conditions are implemented using a new form
of optimization (Sum-of-Squares) which allows us to search for polynomial func-
tions which satisfy pointwise positivity constraints. The result is a convex algorithm
which is able to assess global stability of nonlinear vector fields with sampled-data
signals in both the asynchronous and the synchronous cases. The effectiveness of
the algorithm is demonstrated on several numerical examples.

Acknowledgements. This work was supported by the National Science Foundation under
Grants CMMI 110036 and CMMI 1151018.
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DDE Model-Based Control of Glycemia
via Sub-cutaneous Insulin Administration

Pasquale Palumbo, Pierdomenico Pepe, Simona Panunzi, and Andrea De Gaetano

Abstract. Plasma glucose regulation is commonly attained in Type 1 Diabetes Mel-
litus (T1DM) patients, as well as in advanced Type 2 Diabetes Mellitus (T2DM),
by means of Sub-Cutaneous (SC) insulin administration. In order to study this ex-
tremely common and relevant clinical problem from a theoretical point of view, a
Delay Differential Equation (DDE) model of the glucose-insulin system has been
considered. The model extends a previous DDE model, already used for glucose
control, by endowing it with a SC Insulin compartment and by introducing modifi-
cations regarding insulin-independent glucose uptake and Hepatic Glucose Output
(HGO). Pancreatic insulin release (non-negligible in T2DM) is considered, in or-
der for the control method to address both T1DM and T2DM. The method of exact
input/output feedback linearization and stabilization is used, to ensure the local con-
vergence of the tracking error to zero. Numerical simulations show the effectiveness
of the proposed approach.

1 Introduction

Diabetes Mellitus comprises a group of metabolic diseases characterized by hyper-
glycemia. The chronic hyperglycemia of diabetes is associated with long-term dam-
age, dysfunction, and failure of different organs, especially eyes, kidneys, nerves,
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heart, and blood vessels. Patients with diabetes have an increased incidence of
atherosclerotic cardiovascular, peripheral vascular, and cerebrovascular diseases.

In a healthy person, blood glucose is maintained between 3.9 mmol/L and 6.9
mmol/L by means of a complex control system which ensures a balance between
glucose entering the bloodstream after liver gluconeogenesis and intestinal absorp-
tion following meals, and glucose uptake from the peripheral tissues. This balance
is regulated mainly by insulin, a hormone produced by the β -cells of the pancreas
when stimulated by rising level of plasma glycemia: insulin enhances glucose up-
take in muscles and adipose tissues and promotes the storage of excess circulating
glucose in the liver.

A pathological increase in blood glucose concentration (hyperglycemia) results
from defects in insulin secretion, insulin action, or both. In case of an absolute defi-
ciency of insulin secretion, caused by an autoimmune destruction of the pancreatic
β cells, Type 1 Diabetes Mellitus (T1DM) occurs: these patients require exogenous
insulin administration for survival. On the other hand, in case of hyperglycemia
caused by a combination of resistance to insulin action and inadequate compen-
satory insulin secretory response, Type 2 Diabetes Mellitus (T2DM) occurs: these
patients usually have a relative (rather than absolute) insulin deficiency, increased
levels of circulating glucose, and may or may not need supplemental insulin therapy.

Exogenous insulin administration is a basic procedure to cope with any malfunc-
tioning of the endogenous insulin feedback action (in T1DM only exogenous insulin
is available, while in T2DM exogenous insulin complements pancreatic production
of the hormone). Control of glycemia by means of subcutaneous insulin injections,
with the dose adjusted on the basis of capillary plasma glucose concentration mea-
surements, is by far the most widespread insulin therapy, since the dose is habitually
administered by the patients themselves (see [1] and references therein). In order to
design closed-loop control strategies in this case, insulin absorption from the sub-
cutaneous depot needs to be considered.

This note proposes to synthesize a closed-loop insulin administration according
to a model-based approach. The advantages of a model-based approach are evident
since, by using a glucose/insulin model of the subject, the control problem may
be treated mathematically and optimal strategies may be determined. Clearly, the
more accurate the model, the more effective is the control law. Different approaches
have been proposed in the literature, based on nonlinear models such as the Minimal
Model [2], or more exhaustive compartmental models [6,11,17,34]: see, e.g., papers
on Model Predictive Control, [10, 18, 29], on Parametric Programming, [7], on H∞
control [4,13,14,30,33]. It has to be stressed that most of these approaches are based
on the approximation of the original nonlinear model, provided by linearization,
discretization and model reduction (balanced truncation). An excellent review of
the available models presently adopted for blood glucose regulation as well as the
closed loop control methodologies and technical devices (blood glucose sensors and
insulin pumps) may be found in [3] and references therein.

Differently from previously mentioned model-based approaches, which use non-
linear Ordinary Differential Equation (ODE) models, the one presented here uses a
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nonlinear Delay Differential Equation (DDE) model to describe the glucose/insulin
regulatory system. Such a model consists of a slight modification of a previous
model already published, [23, 28]. In fact, it may be considered as an extension
of [28], modeling in more details the insulin-independent glucose uptake and the
Hepatic Glucose Output (HGO) in the glucose kinetics. On the other hand, the in-
sulin kinetics is not changed, with an explicit apparent delay allowing a better rep-
resentation of pancreatic Insulin Delivery Rate (IDR) (e.g. [16, 19] and references
therein). In fact, DDE models have been recently exploited with the aim of glucose
control in [24, 26, 27], where an intra-venous insulin administration was designed
to track a desired plasma glycemia. In that case the DDE model approach allowed
to synthesize a closed-loop control for virtual T2DM patients, where the IDR is not
absent, differently from T1DM. In this chapter we aim to achieve the same goal of
tracking a desired glucose reference, by means of subcutaneous (instead of intra-
venous) infusions. Therefore a linear model of the subcutaneous insulin absorption
has been considered, in order to design the closed loop (see [15, 21, 35] to have
a comprehensive review of the many different models of insulin absorption). The
model of insulin absorption here adopted refers to [32] with no insulin degradation
at the injection site. It has been recently analyzed in the papers of [35] and [5], and
it has been exploited with the aim of glucose control in [10], whose notation we use
in the present work.

The proposed control law is based on recent results on differential geometry for
time-delay systems (see [8], [9], [20], and [22]). An exactly linearized input/output
map is first obtained by a nonlinear inner feedback which makes use of the state
variables at the current and at delayed time. Tracking of the output (blood glucose
concentration) is then achieved by means of an outer feedback on the exactly linear
input/output map. No approximations have been used in this contribute. The control
law is obtained without linearizing the system equations (i.e. without first order
approximations). The control law here provided is meant to work also in case of
large deviations from the desired final level, and not only for small deviations.

Preliminary results have been presented in [25], where a different DDE model
has been used [28].

Numerical simulations show the effectiveness of the proposed control law, and
encourage further developments involving insulin infusion therapies more and more
constrained to real frameworks.

2 The Glucose-Insulin Model

Denote G(t), [mM], I(t), [pM], plasma glycemia and insulinemia, respectively, and
S1 [pmol], S2 [pmol] the insulin mass in the accessible and not-accessible subcuta-
neous depot, respectively. The model considered consists of a single discrete-delay
differential equation system:
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dG(t)
dt

=−Txg
G(t)

G(t)+ G̃
−KxgiG(t)I(t)+

Tghmax

VG
e−λG(t)I(t),

dI(t)
dt

=−KxiI(t)+
TiGmax

VI
f
(
G(t− τg)

)
+

1
VItmax,I

S2(t),

dS2(t)
dt

=
1

tmax,I
S1(t)−

1
tmax,I

S2(t),

dS1(t)
dt

=− 1
tmax,I

S1(t)+ u(t) (1)

where

• Txg, [mM/min], is the maximal insulin-independent rate constant for glucose
brain uptake;

• G̃, [mM], is the glycemia at which the insulin-independent rate is half of its
maximal value

• Kxgi, [min−1 pM−1], is the rate of glucose uptake by tissues (insulin-dependent)
per pM of plasma insulin concentration;

• Tghmax, [min−1(mmol/kgBW)], is the maximal hepatic glucose output at zero
glycemia, zero insulinemia;

• VG, [L/kgBW], is the apparent distribution volume for glucose;
• λ , [mM−1pM−1], is the rate constant for hepatic glucose output decrease with

increase of glycemia and insulinemia
• Kxi, [min−1], is the apparent first-order disappearance rate constant for insulin;
• TiGmax, [min−1(pmol/kgBW)], is the maximal rate of second-phase insulin re-

lease;
• VI , [L/kgBW], is the apparent distribution volume for insulin;
• τg, [min], is the apparent delay with which the pancreas varies secondary insulin

release in response to varying plasma glucose concentrations;
• tmax,I , [min], is the time-to-maximum insulin absorption;
• u(t), [pM/min], is the subcutaneous insulin delivery rate, i.e. the control input.

The nonlinear function f (·) models the pancreas Insulin Delivery Rate as:

f (G) =

(
G
G∗

)γ
1+

(
G
G∗

)γ , (2)

where γ is the progressivity with which the pancreas reacts to circulating glucose
concentrations and G∗ [mM] is the glycemia at which the insulin release is half of
its maximal rate.

Besides the presence of the subcutaneous insulin compartment, the model differs
from the DDE model [23,28] already used in glucose control [24,26,27] for the glu-
cose kinetics in (1). More in details, modifications concern the insulin-independent
glucose uptake, mainly due to the brain and the nerve cells, and the Hepatic Glu-
cose Output (HGO). As far as the first term, except very low cases of hypoglycemia,
it may well be approximated as a constant term (� −Txg) as, indeed, it has been
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done in the original DDE model [23, 28]. As far as the HGO, instead to be consid-
ered constant (like in [23, 28]), it is made dependent on circulating plasma glucose
and insulin, motivated by the fact that liver glucose production is suppressed and
glycogen synthesis is enhanced in the presence of high plasma glucose and insulin
concentrations. In the present formulation this indirect relationship has been repre-
sented by a decreasing exponential net glucose production for increasing glycemia
and insulinemia. Both these modifications have been considered also in a model
of the euglycemic hyperinsulinemic clamp [31], within a different mathematical
framework (stochastic instead of deterministic as the present one).

3 The Feedback Control Law

We make use here of the elementary theory of nonlinear feedback (see [12]) for
time-delay systems (see [8, 9, 20, 22]).

Let Gre f (t) be the desired glucose reference signal to be tracked, which we as-
sume to be smooth and bounded. Let

x(t) =

⎡
⎢⎢⎣

x1(t)
x2(t)
x3(t)
x4(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

G(t)
I(t)

S2(t)
S1(t)

⎤
⎥⎥⎦ , y(t) = G(t)−Gre f (t) (3)

and

z(t) =

⎡
⎢⎢⎣

z1(t)
z2(t)
z3(t)
z4(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

y(t)
y(1)(t)
y(2)(t)
y(3)(t)

⎤
⎥⎥⎦=

⎡
⎢⎢⎣

G(t)−Gre f (t)
Ġ(t)− Ġre f (t)
G̈(t)− G̈re f (t)

G(iii)(t)−G(iii)
re f (t)

⎤
⎥⎥⎦ (4)

with, by suitably exploiting the equations (1):

G̈(t) =−TxgG̃
Ġ(t)(

G(t)+ G̃
)2

−
(

Kxgi +λ
Tghmax

VG
e−λG(t)I(t)

)(
Ġ(t)I(t)+G(t)İ(t)

)
(5)

G(iii)(t) =−TxgG̃

(
G(t)+ G̃

)
G̈(t)− 2Ġ(t)2

(
G(t)+ G̃

)3

+λ 2 TiGmax

VG
e−λG(t)I(t)(Ġ(t)I(t)+G(t)İ(t)

)2

−
(

Kxgi +λ
TiGmax

VG
e−λG(t)I(t)

)(
G̈(t)I(t)+ 2Ġ(t)İ(t)+G(t)Ï(t)

)
(6)
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Ï(t) =−Kxiİ(t)+
TiGmax

VI
· d f (α)

dα

∣∣∣∣
α=G(t−τg)

· dG(θ )
dθ

∣∣∣∣
θ=t−τg

+
1

VItmax,I
Ṡ2(t)

(7)

Notice that z(t) does not depend of the input u(t).
The derivative of z4(t) is as follows

ż4(t) = μ(∗)−
(

Kxgi +λ
Tghmax

VG
e−λG(t)I(t)

)
G(t)

VIt2
max,I

u(t) (8)

with

μ(∗) =−Txg
G̃

(G+ G̃)4

(
(G(t)+ G̃)2G(iii)(t)− 4Ġ(t)G̈(t)(G(t)+ G̃)+ 6Ġ(t)3

)

+
λ 2Tghmax

VG
e−λG(t)I(t)(Ġ(t)I(t)+G(t)İ(t)

)

·
(
−λ

(
Ġ(t)I(t)+G(t)İ(t)

)2
+ 3(G̈(t)I(t)+ 2Ġ(t)İ(t)+G(t)Ï(t))

)

−
(

Kxgi +λ
Tghmax

VG
e−λG(t)I(t)

)

·
(
G(iii)(t)I(t)+ 3G̈(t)İ(t)+ 3Ġ(t)Ï(t)+β (∗)G(t)

)
−G(iv)

re f (t) (9)

and

β (∗) =−KxiÏ(t)+
TiGmax

VI

(
d2 f (α)

dα2

∣∣∣∣
α=G(t−τg)

(
dG(θ )

dθ

∣∣∣∣
θ=t−τg

)2

d f (α)
dα

∣∣∣∣
α=G(t−τg)

d2G(θ )
dθ 2

∣∣∣∣
θ=t−τg

)
+

1

VIt3
max,I

(
S2(t)− 2S1(t)

)
(10)

Without loss of generality we assume that, for θ ∈ [−τg,0],
dG(θ )

dθ
= 0.

Notice that, according to (1), it comes that
d2G(θ )

dθ 2

∣∣∣∣
θ=t−τg

depends of the de-

layed state components G(t− τg) and G(t− 2τg).
From (5), (6), (8), it follows that the dynamics of vector z(t) is given by:

ż(t) = Abz(t)+Bb

(
μ(∗)−

(
Kxgi +λ

Tghmax

VG
e−λG(t)I(t)

)
G(t)

VIt2
max,I

u(t)

)
(11)

where μ(∗), according to (8) is a suitable function of:

G(t), I(t), G(t− τg), S2(t), S1(t),
diG(θ )

dθ i

∣∣∣∣
θ=t−τg

, i = 1,2 (12)
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and of G( j)
re f (t), j = 0,1, . . . ,4. Thus, the (inner) feedback control law

u(t) =
μ(∗)− v(t)(

Kxgi +λ
Tghmax

VG
e−λG(t)I(t)

)
G(t)

VIt2
max,I

, (13)

where v(t) is a new (outer input), yields the following linear equation

ż(t) = Abz(t)+Bbv(t), (14)

with Ab and Bb a Brunowskii pair, given as follows:

Ab =

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ , Bb =

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ (15)

Finally, by choosing the new input v(t) as the (outer) feedback

v(t) = Γ z(t), (16)

with Γ a suitable row vector in IR4, the following equation is obtained,

ż(t) = (Ab +BbΓ )z(t) (17)

Thus, by designing Γ such that Ab +BbΓ is Hurwitz (this is possible since Ab,
Bb is a controllable pair), we get that z(t) goes to zero exponentially, which returns
the glucose to converge to the desired reference signal exponentially. From a math-
ematical point of view, the control law (13), (16) can always be computed, since the
variable G(t) (at the denominator of (13)) never vanishes: indeed, as it is required
from basic assumptions on the qualitative behavior of the solutions, the glucose dy-
namics is strictly positive whatever are chosen the initial conditions in the positive
orthant (see [23]). It follows that, from a mathematical point of view, the control law
(13), (16) can be used with any physically meaningful initial conditions. As well,
the equation (17) holds with any physically meaningful initial conditions.

Remark 1. In general, in the application of the elementary theory of nonlinear feed-
back for systems with time-delays, further dynamics, given by continuous time dif-
ference equations, must be taken into account (see [8,9]), even if the relative degree
is full (as in our case). In this case, no unstable zero dynamics occur, since the rela-
tionship between the variable x(t) and the variable z(t) does not involve any further
dynamics.
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4 Simulation Results

Simulations have been carried out on a virtual patient identified by the following
parameters:

Gb = 10.66

γ = 3.205

VG = 0.187

VI = 0.25

Ib = 49.29

G∗ = 9

Kxi = 1.211 ·10−2

Kxgi = 3.11 ·10−5

TiGmax = 0.236

τg = 24

Tghmax = 0.194

G̃ = 0.1

Txg = 0.0145

λ = 7.9 ·10−3

tmax,I = 55

(18)

Parameters tmax,I and λ have been taken from [10] and [31], respectively. As
far as Txg it is supposed to be about 0.19 mmol/min. In fact considering a daily
intake of 2000 Kcal corresponding to about a daily intake of 500 gr of glucose and
supposing that the brain consumption is the 10% of the total glucose amount, the
brain consumption can be estimated at 0.0145 mM/min (L = 0.19 · 70 Kg). The
other parameters refer to a Type 2 diabetic patient, with a substantial degree of
insulin resistance, see also [25].

In order to regulate the resulting hyperglycemia down to a safe level, we choose
matrix Γ such that the closed loop matrix A + BΓ has eigenvalues −0.0464,
−0.0512, −0.0496, −0.0480. The reference signal is chosen such to obtain the
plasma glycemia decreasing exponentially from the value of 10.66 to the new value
4.7:

Gref(t) = 4.7+(10.66− 4.7) ·exp(−0.01t). (19)

The subject is supposed to be at rest before the experiment begins, which means
that the initial state is given by G0(τ) = Gb, I0(τ) = Ib for τ ∈ [−τg,0]. Initial con-
ditions for the subcutaneous depot are S1(0) = 0 and S2(0) = 0.

As it clearly appears from Fig.1, a reasonably low plasma glycemia (i.e. < 6mM)
is reached within the first four hours of simulation.

Fig.2 shows the plasma insulin concentration, Fig.3 reports the insulin infusion
rate to be administered, according to the proposed control law and Fig.4 reports the
insulin in the subcutaneous depots.

Remark 2. While the control input cannot be negative, the proposed approach does
not consider, from a theoretical point of view, saturation problems for the control
law. We have taken into account this fact in the simulations: whenever the designed
control law becomes negative, a zero control input is given to the system. Note that
we have chosen the control parameters in order not to allow such a drawback, as it
appears from Fig.3.

Remark 3. As a final remark, we point out that the present chapter is a key starting
point for further, and more significant results. Indeed, the proposed control law
is based on the complete knowledge of the state vector, which means available
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Fig. 1 Plasma glycemia [mM], compared with the desired glucose reference; time is in hours
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Fig. 2 Plasma insulinemia [pM]; time is in hours

measurements from both glycemia and insulinemia, as well as from the subcuta-
neous depot. Of course, such assumptions are far to be reliable, especially for what
concerns the subcutaneous depot. The next step, which is a work in progress of the
authors, will be to design the feedback control by using only plasma glucose mea-
surements, by suitably exploiting a state observer for time-delay systems, as it has
already been presented in [27] for the case of intra-venous insulin administration.
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Fig. 3 Insulin infusion rate u(t), [pmol/min]; time is in hours
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Fig. 4 Insulin mass in the sc depots [pmol]; time is in hours

5 Conclusions

A closed-loop control law has been proposed for the glucose-insulin system, with
sub-cutaneous administration of insulin. A DDE-model based approach has been
adopted, with the mathematical model given by the extension of a recent DDE-
model. Asymptotic tracking of a desired time evolution for the blood glucose con-
centration is achieved by means of this nonlinear control law. The method of exact
input/output feedback linearization for nonlinear time-delay systems is used. No lin-
ear approximations are used. Numerical simulations show the good performance of
the proposed control law.
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Eigenvalue Based Algorithms and Software
for the Design of Fixed-Order Stabilizing
Controllers for Interconnected Systems
with Time-Delays�

Wim Michiels and Suat Gumussoy

Abstract. An eigenvalue based framework is developed for the stability analysis
and stabilization of coupled systems with time-delays, which are naturally described
by delay differential algebraic equations. The spectral properties of these equations
are analyzed and their stability properties are studied, taking into account the effect
of small delay perturbations. Subsequently, numerical methods for stability assess-
ment and for designing stabilizing controllers with a prescribed structure or order,
based on a direct optimization approach, are briefly addressed. The effectiveness of
the approach is illustrated with a software demo. The paper concludes by pointing
out the similarities with the computation and optimization of H∞ norms.

1 Introduction

We consider the stability analysis and stabilization of systems described by delay
differential algebraic equations (DDAEs), also called descriptor systems [3], of the
form

Eẋ(t) = A0x(t)+
m

∑
i=1

Aix(t− τi), x(t) ∈ R
n, (1)

where E is allowed to be singular. The time-delays τi, i = 1, . . . ,m, satisfy

0 < τ1 < τ2 < .. . < τm

and the capital letters are real-valued matrices of appropriate dimensions.
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The motivation for the system description (1) in the context of designing con-
trollers lies in its generality in modeling interconnected systems. For instance, the
feedback interconnection of the system

{
ż(t) = ∑Fiz(t− ri)+∑Giu(t− ri)
y(t) = ∑Hix(t− ri)+∑Liu(t− ri)

(2)

and the controller
{

żc(t) = ∑ F̂izc(t− si)+∑Ĝiy(t− si)
u(t) = ∑ Ĥizc(t− si)+∑ L̂iy(t− si)

(3)

can be directly brought in the form (1), where

x = [zT zT
c uT yT ], {τ1, . . . ,τm}= {ri}∪{si}.

In this way no elimination of inputs and outputs is required, which may even not
be possible in the presence of delays [4]. Another favorable property is the linear
dependence of the matrices of the closed-loop system on the elements of the ma-
trices of the controller. The increase in the number of equations, on the contrary,
is a minor problem in most applications because the delay difference equations or
algebraic constraints are related to inputs and outputs, as illustrated above, and the
number of inputs and outputs is usually much smaller than the number of state vari-
ables. Finally, we note that also neutral systems can be dealt with in this framework,
by introducing slack variables. The neutral equation

d
dt

(
z(t)+

m

∑
i=1

Giz(t− τi)

)
=

m

∑
i=0

Hiz(t− τi) (4)

can namely be rewritten as
{

v̇(t) = ∑m
i=0 Hiz(t− τi)

0 = −v(t)+ z(t)+∑m
i=1 Giz(t− τi)

, (5)

where v is the slack variable. Clearly (5) is of the form (1), if we set x(t) =
[v(t)T z(t)T ]T .

The stability analysis of the null solution of (1) in this work is based on a spec-
trum determined growth property of the solutions, which allows us to infer stability
information from the location of the characteristic roots. For instance, exponential
stability will be related to a strictly negative spectral abscissa (the supremum of
the real parts of the characteristic roots). As we shall see, the spectral abscissa of
(1) may not be a continuous function of the delays. Moreover, this may lead to a
situation where infinitesimal delay perturbations destabilize an exponentially stable
system. These properties are similar to the spectral properties of neutral equations.
Since in a practical control design the robustness of stability against infinitesimal
changes of parameters is a prerequisite, we will define the concept of strong sta-
bility, inspired by the common terminology for neutral equations [5], and we will
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introduce the notion of the robust spectral abscissa, which explicitly takes small
parametric perturbations into account. We will also provide explicit conditions and
expressions that eventually lead to numerical algorithms.

Numerical algorithms for the computation of characteristic roots and the robust
spectral abscissa are outlined, and subsequently applied to the design of stabilizing
controllers. Similarly to [12], a direct optimization approach towards stabilization
is taken, based on minimizing the (robust) spectral abscissa as a function of the pa-
rameters of the controller. In the example (2)-(3) these parameters may correspond
to elements of the controller matrices. In this way stabilization is achieved on the
moment that the objective function becomes strictly negative. This approach allows
us to design stabilizing controllers with a prescribed structure or order (dimension).
It is also possible to fix elements of the controller matrices, allowing to impose
additional structure, e.g., a proportional-integral-derivative (PID)-like structure, or
sparsity.

After a software demo of the stabilization algorithms we point out how the com-
putational and optimization of H∞ norm leads to similar problems as well as similar
solutions and algorithms.

2 Preliminaries and Assumptions

Let matrix E in (1) satisfy
rank(E) = n−ν,

with 1≤ ν < n, and let the columns of matrix U ∈R
n×ν , respectively V ∈R

n×ν , be
a (minimal) basis for the right, respectively left nullspace of E , which implies

UT E = 0, EV = 0. (6)

Throughout the paper we make the following assumption.

Assumption 1. The matrix UT A0V is nonsingular.

The equations (1) can be separated into coupled delay differential and delay differ-
ence equations. When we define

U =
[
U⊥ U

]
, V =

[
V⊥ V

]
,

a pre-multiplication of (1) with UT and the substitution

x = V [xT
1 xT

2 ]
T ,

with x1(t) ∈R
n−ν and x2(t) ∈R

ν , yield the coupled equations

E(11)ẋ1(t) = ∑m
i=0 A(11)

i x1(t− τi)+∑m
i=0 A(12)

i x2(t− τi),

0 = A(22)
0 x2(t)+∑m

i=1 A(22)
i x2(t− τi)+∑m

i=0 A(21)
i x1(t− τi),

(7)
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where
E(11) =U⊥T

EV⊥ (8)

and
A(11)

i =U⊥T
AiV⊥, A(12)

i =U⊥T
AiV,

A(21)
i =UT AiV⊥, A(22)

i =UT AiV, i = 0, . . . ,m.
(9)

In (7) matrix E(11) is invertible, following from

rank(E(11)) = rank(UT EV) = rank(E) = n−ν,

and matrix A(22)
0 is invertible as well, induced by Assumption 1.

3 Spectral Properties and Stability

3.1 Exponential Stability

Stability conditions for the zero solution of (1) can be expressed in terms of the
position of the characteristic roots, i.e., the roots of the equation

detΔ(λ ) = 0, (10)

where Δ is the characteristic matrix, Δ(λ ) := λE−A0−∑m
i=1 Aie−λτi . In particular,

we have the following result.

Proposition 1. The null solution of (1) is exponentially stable if and only if c < 0,
where c is the spectral abscissa, c := sup{ℜ(λ ) : detΔ(λ ) = 0} .

3.2 Continuity of the Spectral Abscissa and Strong Stability

We discuss the dependence of the spectral abscissa of (1) on the delay parameters
τττ = (τ1, . . . ,τm). In general the function

τττ ∈ (R+
0 )

m 	→ c(τττ) (11)

is not everywhere continuous, which carries over from the spectral properties of
delay difference equations (see, e.g., [1, 8, 10]). In the light of this observation we
first outline properties of the function

τττ ∈ (R+
0 )

m 	→ cD(τττ) := sup{ℜ(λ ) : detΔD(λ ; τττ) = 0} , (12)

with

ΔD(λ ; τττ) :=UT A0V +
m

∑
i=1

UT AiVe−λτi . (13)

Note that (13) can be interpreted as the characteristic matrix of the delay difference
equation
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UT A0V z(t)+
m

∑
i=1

UT AiVz(t− τi) = 0, (14)

associated with the neutral equation obtained by differentiating the second equation
in (7).

The property that the function (12) is not continuous led in [6] to the smallest
upper bound, which is ‘insensitive’ to small delay changes.

Definition 1. For τττ ∈ (R+
0 )

m, let CD(τττ) ∈ R be defined as

CD(τττ) := lim
ε→0+

cεD(τττ),

where
cεD(τττ) := sup{cD(τττ+ δτττ) : δτττ ∈ R

m and ‖δτττ‖ ≤ ε} .
Several properties of this upper bound on cD, which we call the robust spectral

abscissa of the delay difference equation (14), are listed below (see [9, Section 3]
for an overview).

Proposition 2. The following assertions hold:

1. the function
τττ ∈ (R+

0 )
m 	→CD(τττ)

is continuous;
2. for every τττ ∈ (R+

0 )
m, the quantity CD(τττ) is equal to the unique zero of the

strictly decreasing function

ζ ∈ R→ f (ζ ;τττ)− 1, (15)

where f : R→R
+ is defined by

f (ζ ;τττ) := max
θ∈[0, 2π ]m

ρ

(
m

∑
k=1

(UT A0V )−1(UT AkV )e−ζτk e jθk

)
; (16)

3. CD(τττ) = cD(τττ) for rationally independent 2

4. for all τττ1,τττ2 ∈ (R+
0 )

m, we have

sign(CD(τττ1)) = sign(CD(τττ2)) := Ξ ; (17)

5. Ξ < 0 (> 0) holds if and only if γ0 < 1 (> 1) holds, where

γ0 := max
θ∈[0, 2π ]m

ρ

(
m

∑
k=1

(UT A0V )−1(UT AkV )e jθk

)
. (18)

We now come back to the DDAE (1), more precisely, to the properties of the
spectral abscissa function (11). The following two technical lemmas make connec-
tions between the characteristic roots of (1) and the zeros of (13).

2 The m components of τττ = (τ1, . . . ,τm) are rationally independent if and only if
∑m

k=1 nkτk = 0, nk ∈ Z implies nk = 0, ∀k = 1, . . . ,m.
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Lemma 1. There exists a sequence {λk}k≥1 of characteristic roots of (1) satisfying

lim
k→∞

ℜ(λk) = cD, lim
k→∞

ℑ(λk) =∞.

Lemma 2. For every ε > 0 the number of characteristic roots of (1) in the half plane

{λ ∈C : ℜ(λ )≥CD(τττ)+ ε} (19)

is finite.

The lack of continuity of the spectral abscissa function (11) leads us again to an
upper bound that takes into account the effect of small delay perturbations.

Definition 2. For τττ ∈ (R+
0 )

m, let the robust spectral abscissa C(τττ) of (1) be defined
as

C(τττ) := lim
ε→0+

cε(τττ), (20)

where
cε(τττ) := sup{c(τττ+ δτττ) : δτττ ∈R

m and ‖δτττ‖ ≤ ε} .
The following characterization of the robust spectral abscissa (20) constitutes the
main result of this section. Its proof can be found in [9].

Proposition 3. The following assertions hold:

1. the function
τττ ∈ (R+

0 )
m 	→C(τττ) (21)

is continuous;
2. for every τττ ∈ (R+

0 )
m, we have

C(τττ) = max(CD(τττ),c(τττ)). (22)

In line with the sensitivity of the spectral abscissa with respect to infinitesimal delay
perturbations, which has been resolved by considering the robust spectral abscissa
(20) instead, we define the concept of strong stability3.

Definition 3. The null solution of (1) is strongly exponentially stable if there exists
a number τ̂ > 0 such that the null solution of

Eẋ(t) = A0 +
m

∑
k=1

Akx(t− (τk + δτk))

is exponentially stable for all δτττ ∈ (R+)m satisfying ‖δτττ‖< τ̂ and τk+δτk ≥ 0, k=
1, . . . ,m.

The following result provides necessary and sufficient conditions for exponential
stability.

Theorem 2. The null solution of (1) is strongly exponentially stable if and only if
C(τττ)< 0, or, equivalently, c(τττ)< 0 and γ0 < 1, where γ0 is defined by (18).

3 This terminology is borrowed from the theory of neutral delay differential equations [5,6].
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4 Robust Stabilization by Eigenvalue Optimization

We now consider the equations

Eẋ(t) = A0(p)x(t)+
m

∑
i=1

Ai(p)x(t− τi), (23)

where the system matrices linearly depend on parameters p ∈R
np . In control appli-

cations these parameter usually correspond to controller parameters. For example,
in the feedback interconnection (2)-(3) they may arise from a parameterization of
the matrices (F̂i, Ĝi, Ĥi, L̂i).

To impose exponential stability of the null solution of (23) it is necessary to
find values of p for which the spectral abscissa is strictly negative. If the achieved
stability is required to be robust against small delay perturbations, this requirement
must be strengthened to the negativeness of the robust spectral abscissa. This brings
us to the optimization problem

inf
p

C(τττ ; p). (24)

Strongly stabilizing values of p exist if the objective function can be made strictly
negative. By Theorem 2 the latter can be evaluated as

C(τττ; p) = max(c(τττ; p),CD(τττ; p)). (25)

An alternative approach consists of solving the constrained optimization problem

infp c(τττ; p), subject to γ0(p)< γ, (26)

where γ < 1. If the objective function is strictly negative, then the satisfaction of
the constraint implies strong stability. Problem (26) can be solved using the barrier
method proposed in [13], which is on its turn inspired by interior point methods,
see, e.g., [2]. The first step consists of finding a feasible point, i.e., a set of values
for p satisfying the constraint. If the feasible set is nonempty such a point can be
found by solving

min
p
γ0(p). (27)

Once a feasible point p = p0 has been obtained one can solve in the next step the
unconstrained optimization problem

min
p
{c(p)− r log(γ− γ0(p))} (28)

where r > 0 is a small number and γ satisfies

γ0(p)< γ ≤ 1.
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The second term (the barrier) assures that the feasible set cannot be left when the ob-
jective function is decreased in a quasi-continuous way (because the objective func-
tion will go to infinity when γ0→ γ). If (28) is repeatedly solved for decreasing values
of r and with the previous solution as starting value, a solution of (26) is obtained.

In [9] it has been shown that the objective functions for the optimization problem
(24) and for the subproblems (27) and (28) are in general not everywhere differ-
entiable. They might even be not everywhere Lipschitz continuous, yet they are
differentiable almost everywhere. These properties preclude the use of standard op-
timization methods, developed for smooth problems. Instead we use a combination
of BFGS with weak Wolfe line search and gradient sampling, as implemented in the
MATLAB code HANSO [11]. The overall algorithm only requires the evaluation
of the objective function, as well as its derivatives with respect to the controller pa-
rameters, whenever it is differentiable. The spectral abscissa can be computed using
a spectral discretization followed by Newton corrections. The quantities CD and γ0
can be computed using the characterizations in Theorem 2, where the (global) maxi-
mization problems in (16) and (18) are discretized, followed by local corrections. In
all cases derivatives can be obtained from the sensitivity of individual eigenvalues
with respect to the free parameters. For more details and expressions we refer to [9].

5 Illustration of the Software

A MATLAB implementation of the robust stabilization algorithms is available from

http://twr.cs.kuleuven.be/research/software/delay-control/stabilization/.

Installation instructions can be found in the corresponding README file.
As a first example we take the system with input delay from [12]:

ẋ(t) = Ax(t)+Bu(t− τ), y(t) = x(t), (29)

where

A =

⎡
⎣−0.08 −0.03 0.2

0.2 −0.04 −0.005
−0.06 0.2 −0.07

⎤
⎦ , B =

⎡
⎣−0.1
−0.2

0.1

⎤
⎦ , τ = 5. (30)

We start by defining the system:

>> A = [-0.08 -0.03 0.2;0.2 -0.04 -0.005;-0.06 0.2 -0.07];

>> B = [-0.1;-0.2;0.1];

>> C = eye(3);

>> plant1 = tds_create({A},0,{B},5,{C},0);

The uncontrolled system is unstable.

>> max(real(eig(A)))

ans =

0.1081
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We design a stabilizing dynamic controller of the form
{

ẋc(t) = Acxc(t)+Bcy(t),
u(t) = Ccxc(t)+Dcy(t), xc(t) ∈ R

nc ,
(31)

using the approach of Section 4, where we set p = vec

[
Ac Bc

Cc Dc

]
. Since the trans-

fer function from u to y is strictly proper, the robust spectral abscissa equals the
spectral abscissa, and the optimization problems (24) and (26) reduce to the (uncon-
strained) minimization of the spectral abscissa. In order to compute a controller we
first specify its order,

>> controller_order = 2;

and call a routine to minimize the robust spectral abscissa

>> [controller1,f1] = stabilization_max(plant1,controller_order);

The optimized robust spectral abscissa and corresponding controller are given by:

controller1 =

E: {[2x2 double]}

hE: 0

A: {[2x2 double]}

hA: 0

B1: {[2x3 double]}

hB1: 0

C1: {[0.2098 0.9492]}

hC1: 0

D11: {[0.8826 1.1548 0.6538]}

hD11: 0

where empty fields of the controller are omitted for space considerations.

f1 =

-0.2496

We define the closed-loop system

>> clp1 = closedloop(plant1,controller1);

and compute its rightmost characteristic roots (where the ”l1”-field refers to the
application of Newton corrections):

>> options = tdsrootsoptions;

>> eigenvalues1 = compute_roots_DDAE(clp1,options);

>> eigenvalues1.l1.’

ans =

-0.2496 + 0.0251i -0.2496 - 0.0251i

We can compute all eigenvalues with real part larger than −0.9 by the following
code, which leads to 37 returned eigenvalues.
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>> options.minimal_real_part = -0.9;

>> eigenvalues1 = compute_roots_DDAE(clp1,options);

>> size(eigenvalues1.l1)

ans =

37 1

We plot the closed-loop characteristic roots.

>> p1 = eigenvalues1.l1; plot(real(p1),imag(p1),’+’);

We now repeat the computations for a static controller:

>> controller_order = 0;

>> [controller2,f2] = stabilization_max(plant1,controller_order);

and add the optimized spectrum to our plot:

>> clp2 = closedloop(plant1,controller2);

>> eigenvalues2 = compute_roots_DDAE(clp2,options);

>> p2 = eigenvalues2.l1; hold on; plot(real(p2),imag(p2),’s’);

The result is displayed in Figure 1. Note that the extra degrees of freedom in the
dynamic controller lead to a further reduction of the spectral abscissa.
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Fig. 1 Characteristic roots of the first example (29) and (31), corresponding to a minimum
of the spectral abscissa, for a static controller (boxes) and a second order controller (pluses).

For the second example we assume that the measured output of system (29) is
instead given by

ỹ(t) = x(t)+
[

3 4 1
]T

u(t− 2.5)+
[

2/5 −2/5 −2/5
]T

u(t− 5). (32)

The difference with the previous example is that there are two feedthrough terms
which are both delayed. We define the plant object
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>> plant2 = setfield(plant1,’D11’,{[3;4;1],[2/5;-2/5;-2/5]});

>> plant2.hD11 = [2.5 5];

Once again we design a static controller, u(t) = Dcỹ(t). In this case there is a high-
frequency path in the control loop. Solving the optimization problem (24) leads to

C =−0.0309, Dc = [0.0409 0.0612 0.3837], (33)

as can be seen from

>> [controller1,f1] = stabilization_max(plant2,controller_order);

>> f1

f1 =

-0.0309

>> controller1.D11{1}

ans =

0.0409 0.0612 0.3837

We compute the rightmost characteristic roots of the closed-loop system.

>> clp1 = closedloop(plant2,controller1);
>> eigenvalues1 = compute_roots_DDAE(clp1,options);
Warning: case C_D>=c.
Spectral discretization with 16 points (lowered if maximum size of
the eigenvalue problem is exceeded)
N= 15
>> eigenvalues1.l1.’

ans =

-0.3740 + 7.6893i -0.3740 - 7.6893i -0.3788 + 5.1779i -0.3788 - 5.1779i
-0.3499 + 4.8863i -0.3499 - 4.8863i -0.3934 + 2.6712i -0.3934 - 2.6712i
-0.3336 + 2.3789i -0.3336 - 2.3789i -0.0309 -0.0309 + 0.0001i
-0.0309 - 0.0001i -0.3819 + 0.3603i -0.3819 - 0.3603i

We conclude that the optimum is characterized by three rightmost characteristic
roots. This might sound counter-intuitive because the number of degrees of freedom
in the controller is also three. The explanation is related to the issued warning: we
are in a situation where CD ≥ c. In fact the optimum of (24) is characterized by an
equality between CD and the spectral abscissa c, the latter corresponding to a right-
most root with multiplicity three. To illustrate this, we have recomputed the char-
acteristic roots where we set N, the number of discretization points in the spectral
method, to a high number in such a way that the high-frequency roots are captured.
In the left pane of Figure 2 we show the rightmost characteristic roots corresponding
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to the minimum of the robust spectral abscissa (33). The dotted line corresponds to
ℜ(λ ) = cD, the dashed line toℜ(λ ) =CD. In order to illustrate that we indeed have
c=CD we depict in the right pane of Figure 2 the rightmost characteristic roots after
perturbing the delay value 2.5 in (32) to 2.51.

With our software we can also solve the constrained optimization problem (26).
With the default parameters r = 10−3 and γ = 1−10−3 in the relaxation (28) we get
the following result:

>> [controller2,f2] = stabilization_barrier(plant2,controller_order);
>> controller2.D11{1}

ans =

0.0249 0.1076 0.3173
>> clp2 = closedloop(plant2,controller2);
>> eigenvalues2=compute_roots_DDAE(clp2,options);
Warning: case C_D>=c.
Spectral discretization with 16 points (lowered if maximum size of
the eigenvalue problem is exceeded)
N= 15
>> max(real(eigenvalues2.l1))
ans =

-0.0345

Compared to (33), where we had C = c = CD, a further reduction of the spec-
tral abscissa to c = −0.0345 has been achieved, at the price of an increased value
of CD (equal to −0.00602). This is expected because the constraint γ0 < 1 im-
poses robustness of stability, yet no bound on the exponential decay rate of the
solutions.
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Fig. 2 (left) Characteristic roots corresponding to the minimum of the robust spectral ab-
scissa of the second example (29) and (32), using a static controller. The rightmost character-
istic roots, λ ≈−0.0309, has multiplicity three. (right) Effect on the characteristic roots of a
perturbation of the delays (2.5,5) in (32) to (2.51,5).
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6 Duality with the H∞ Problem

In a practical control design the stabilization phase is usually only a first step in the
overall design procedure. Consider now the (subsequent) fixed-order H∞ synthesis
problem, where the aim is to optimize the H∞ norm of

G(λ ) =C(λE−A0−∑m
i=1 Aie−λτi)−1B

as a function of parameters on which the system matrices depend.
It turns out the function τττ 	→ ‖G( jω ; τττ)‖H∞ has a very similar behavior to the

spectral abscissa function (11). In particular it is not everywhere continuous. More-
over, the discontinuities are all related to the behavior of the transfer function at
large frequencies (analogous to the behavior of eigenvalues with large imaginary
parts in §3.2). This high frequency behavior is described by the associated asymp-
totic transfer function

Ga(λ ) := −CV(UT A0V +
m

∑
i=1

UT AiVe−λτi)−1UT B,

which takes the role of the associated delay-difference equation (14). Finally, the
sensitivity w.r.t. small delay perturbations leads to the definition of the strong H∞
norm (analogous to strong stability), defined as:

�G( jω ; τττ)�H∞ := lim
ε→0+

sup{‖G( jω ; τττ+δτττ)‖H∞ : δτττ ∈
(
R
+
)m

, ‖δτττ‖2 < ε}.

The computation of the strong H∞ norm involves a tradeoff between the behavior
of the transfer function at small and large frequencies, similar to the result of The-
orem 2 on strong stability, and it can be optimized using the same algorithms. For
the details, we refer to the article [4] and to the corresponding software available at

http://twr.cs.kuleuven.be/research/software/delay-control/hinfopt/.
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Computer Aided Control System Design
for Time Delay Systems Using MATLAB R©�

Suat Gumussoy and Pascal Gahinet

Abstract. Computer Aided Control System Design (CACSD) allows to analyze
complex interconnected systems and design controllers achieving challenging con-
trol requirements. We extend CACSD to systems with time delays and illustrate the
functionality of Control System Toolbox in MATLAB for such systems. We eas-
ily define systems in time and frequency domain system representations and build
the overall complex system by interconnecting subsystems. We analyze the overall
system in time and frequency domains and design PID controllers satisfying design
requirements. Various visualization tools are used for analysis and design verifica-
tion. Our goal is to introduce these functionalities to researchers and engineers and
to discuss the open directions in computer algorithms for control system design.

1 Introduction

Time delays are frequently seen in many control applications such as process con-
trol, communication networks, automotive and aerospace, [5, 9, 22]. Depending on
the delay length, they may limit or degrade the performance of control systems
unless they are considered in the design, [1,11]. Although considerable research ef-
fort is devoted to extend classical and modern control techniques to accommodate
delays, most available software packages for delay differential equations (DDE)
[4, 6, 8, 15] are restrictive and not developed for control design purposes.

We present the currently implemented framework and available functionality in
MATLAB for computer-aided manipulation of linear time-invariant (LTI) models
with delays. We illustrate this functionality for each important step in every practical
control design:
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• system representations in time and frequency domains,
• interconnections of complex systems,
• analysis tools and design techniques for time delay systems.

By introducing available functionality in Control System Toolbox, our goal is to
facilitate the design of control systems with delays for researchers and engineers.
Moreover, we discuss possible enhancements in CASCD for time delay systems, to
illustrate the gap between the desired analysis / design techniques and the current
control software implementation.

At the heart of this framework is a linear fractional transformation (LFT) based
representation of time delay systems [23]. This representation handles delays in
feedback loops and is general enough for most control applications. In addition most
classical software tools for analyzing delay-free LTI systems are extended to this
class of LTI systems with delays. Given the widespread use of linear techniques in
control system design, this framework and the accompanying software tools should
facilitate CACSD in the presence of delays, as well as stimulate more research into
efficient numerical algorithms for assessing the properties and performance of such
systems.

2 Motivation Examples

A standard PI control example is given in [16] where the plant is a chemical tank
and a single-input-single-output system with an input-output delay (i.e., dead-time
system),

P(s) = e−93.9s 5.6
40.2s+ 1

. (1)

In the classical feedback configuration in Figure 1, the standard PI controller is
chosen as

CPI(s) = K(1+
1

Tis
) (2)

where K = 0.1 and Ti = 100. The closed-loop transfer function from ysp to y is

TPI(s) =
4020s2 + 100s

4020s2 + 100s+(56s+ 0.56)e−93.9s .

This transfer function has an internal delay which can not be represented by input
or output delays. Therefore, the representation for time delay systems has to capture
this type of systems and to be closed under block diagram of operations. This plant
and the controller in MATLAB are defined as

P = tf(5.6,[40.2 1],’OutputDelay’,93.9); % plant

Cpi = 0.1 * (1 + tf(1,[100 0])); % PI controller

and the closed-loop system TPI is obtained by the feedback command:
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Fig. 1 Feedback loop with PI controller

Tpi = feedback(P*Cpi,1); % Closed-loop transfer, ysp -> y

Note that these commands are natural extensions of delay-free case and are used
for systems with delays without new syntax for the user.

The MIMO time delay systems may have different transport delays for each
input-output channel, i.e.,

H(s) =

(
e−0.1s 2

s e−0.3s s+1
s+10

10 e−0.2s s−1
s+5

)
.

We define such systems in MATLAB by the following commands:

s = tf(’s’);

H = [2/s (s+1)/(s+10); 10 (s-1)/(s+5)]; % delay-free system

H.ioDelay = [0.1 0.3; 0 0.2]; % transport delays

We see on our motivation examples that the representation of time delay systems
has certain challenges. Next section, we present the LFT-based representation of
time delay systems to address these challenges and discuss its advantages.

3 System Representation

We represent time delay systems by the linear-fractional transformation (LFT). Re-
call that the LFT is defined for matrices by

L (

(
M11 M12

M21 M22

)
,Θ) := M11 +M12Θ(I−M22Θ)−1M21 .

The LFT has been extensively used in robust control theory for representing models
with uncertainty, see [23] for details.

Consider the class generalized LTI (GLTI) of continuous-time LTI systems
whose transfer function is of the form
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H(s,τ) = L (

(
H11(s) H12(s)
H21(s) H22(s)

)
︸ ︷︷ ︸

H(s)

,Θ(s,τ))

Θ(s,τ) := Diag
(
e−τ1s, . . . ,e−τNs) (3)

where H(s) is a rational (delay free) MIMO transfer function, and τ = (τ1, . . . ,τN)
is a vector of nonnegative time delays. Systems in this class are modeled as the LFT
interconnection of a delay-free LTI model and a bank of pure delays (see Figure 2).
As such, they are clearly linear time-invariant. Also, pure delays are in this class

since e−τs = L (

(
0 1
1 0

)
,e−τs).

...

...

u y

H(s)...

H(s, τ )

e−τNs

e−τ1s

Fig. 2 LFT-based modeling of LTI systems with delays

This GLTI class has two key properties, [10]:

• Any block diagram interconnection of GLTI systems is a GLTI system. In other
words, the class of GLTI systems is closed under series, parallel, and feedback
connections as well as branching/summing junctions.

• The linearization of any nonlinear block diagram with time delays is a GLTI
system.

These two properties show that the GLTI class is general enough to model any
(linearized) system with a finite number of delays, including delays in the feedback
path. For further motivation of this representation and equivalent case of discrete
time systems, see [10].

The GLTI class is represented in state-space equations as follows. Let
(

H11(s) H12(s)
H21(s) H22(s)

)
=

(
D11 D12

D21 D22

)
+

(
C1

C2

)
(sI−A)−1 (B1 B2

)
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be a minimal realization of H(s) in (3). State-space equations for H(s,τ) =
L (H(s),Θ(s,τ)) are readily obtained as

⎡
⎣ ẋ(t)

y(t)
z(t)

⎤
⎦ =

⎡
⎣A B1 B2

C1 D11 D12

C2 D21 D22

⎤
⎦
⎡
⎣ x(t)

u(t)
w(t)

⎤
⎦ (4)

w(t) = (Δτz)(t)

where u(t), y(t) are the input and output vectors; w(t), z(t) are internal signals com-
mensurate with the vector τ of time delays; Δτz is the vector-valued signal defined
by (Δτz)(t) := (zT

1 (t− τ1), . . . ,zT
N(t− τN))

T .
Note that standard delay-free state-space models are just a special case of (4)

corresponding to N = 0, a handy fact when it comes to integrating GLTI models
with existing software for manipulating delay-free state-space models.

Delay LTI systems of the form

ẋ(t) = A0x(t)+B0u(t)+
M

∑
j=1

(A jx(t−θ j)+B ju(t−θ j))

y(t) = C0x(t)+D0u(t)+
M

∑
j=1

(Cjx(t−θ j)+D ju(t−θ j))

are often considered in the literature with various restrictions on the number and
locations of the delays θ1, . . . ,θM . It turns out that any model of this form belongs
to the class GLTI as shown in [10]. It is possible to define a large class of time delay
systems in MATLAB, both in time and frequency domains. For further details on
representation of time delay systems, see [24].

4 Interconnections

Control systems, in general, are built up by interconnecting other subsystems. The
most typical configuration is a feedback loop with a plant and a controller as shown
in Section 2; whereas more complex configurations may have distributed systems
with multiple plants, controllers and transport / internal delays.

A standard way to to obtain the closed-loop model of interconnections of systems
in MATLAB is to use the connect command. This function requires all systems
to have input and output names and summation blocks. It automatically builds the
resulting closed-loop system with the given inputs and outputs. Consider the Smith
Predictor control structure given in Figure 3 for the same dead-time system P(s) in
(1). The Smith Predictor uses an internal model to predict the delay-free response
yp(t) of the plant, and seeks to correct discrepancies between this prediction and the
setpoint ysp(t), rather than between the delayed output measurement y(t) and ysp(t).
To prevent drifting, an additional compensator F(s) is used to eliminate steady-state
drifts and disturbance-induced offsets.
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+

y0

yp y1

d

dp dy

Fig. 3 Feedback loop with Smith Predictor

We first assume that the prediction model Pp(s) = e−τpsGp(s) matches the plant
model P(s) in (1), and use the following compensator settings:

C(s) = 0.5(1+
1

40s
), F(s) =

1
20s+ 1

.

By defining summation blocks and input and outputs names of systems, we obtain
the closed-loop model TSP from the input signal ysp to the output signal y:

s = tf(’s’);

% LTI blocks

P = exp(-93.9*s) * 5.6/(40.2*s+1);

P.InputName = ’u’; P.OutputName = ’y’;

Gp = 5.6/(40.2*s+1);

Gp.InputName = ’u’; Gp.OutputName = ’yp’;

Dp = exp(-93.9*s);

Dp.InputName = ’yp’; Dp.OutputName = ’y1’;

C = 0.5 * (1 + 1/(40*s));

C.InputName = ’e’; C.OutputName = ’u’;

F = 1/(20*s+1);

F.InputName = ’dy’; F.OutputName = ’dp’;

% Sum blocks

Sum1 = ss([1,-1,-1],’InputName’,...

{’ysp’,’yp’,’dp’},’OutputName’,’e’);

Sum2 = ss([1,-1],...

’InputN’,{’y’,’y1’},’OutputN’,’dy’);

% Build interconnection model

Tsp = connect(P,Gp,Dp,C,F,Sum1,Sum2,’ysp’,’y’);
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We can also construct various types of connections such as in parallel and se-
ries (parallel and series); group systems by appending their inputs and outputs
(append); form the linear fractional transformation (lft). Standard system opera-
tions are also valid for time delay systems such as addition, subtraction, multiplica-
tion, division.

After we represent our subsystems and connect with each other, we easily con-
struct the closed-loop model with time delays. Our next goal is to analyze the char-
acteristics of the resulting closed-loop models with visualizations and compute their
system properties.

5 Time / Frequency Domain Analyses and Visualizations

We analyze a plant or a closed-loop model with various interconnections and sys-
tems to understand its characteristics and properties. By simulating its time-domain
response to certain inputs such as a step or tracking signals, we observe its time-
domain characteristics such as rise and settling times, overshoot. On the other hand,
frequency domain analysis gives us information on, for example, gain and phase
margins, bandwidth and resonant peak.

In Section 3, we obtained the closed-loop system TPI of the dead-time system (1)
and PI controller and in Section 4 we constructed the closed-loop system TSP of the
same plant and the Smith Predictor. We simulate the responses of TPI and TSP to the
tracking signal, ref by the following commands:

% time and reference signal

time = 0:.1:2000;

ref = (time>=0 & time<1000)*4 + (time>=1000 & time<=2000)*8;

% compare responses

lsim(Tsp,Tpi,ref,time);

The resulting responses are shown in Figure 4 (on the left). Simulation results
show that PI controller has a slower response time with oscillations and the Smith
Predictor has better tracking performance.

In practice, there is always a mismatch between the predicted and real plant mod-
els. We easily investigate robustness of our design to modeling uncertainties. For
example, consider two perturbed plant models

P1(s) = e−90s 5
38s+ 1

, P2(s) = e−100s 6
42s+ 1

.

To assess the Smith predictor robustness when the true plant model is P1(s) or P2(s)
rather than the prediction model P(s), simply bundle P,P1,P2 into an LTI array,
rebuild the closed-loop model(s), and replot the responses for the tracking signal:
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Fig. 4 (left) Responses of the Smith Predictor (–) and PI (- -) to the reference signal (gray
colored). (right) Robustness of the Smith Predictor (–) to Model Mismatch.

P1 = exp(-90*s) * 5/(38*s+1); % perturbed plants

P2 = exp(-100*s) * 6/(42*s+1);

Plants = stack(1,P,P1,P2); % bundle true and perturbed plants

T = connect(Plants,Gp,Dp,C,F,Sum1,Sum2,’ysp’,’y’); % construct closed-loop

lsim(T,Tpi,ref,time); % simulate closed-loop responses

The resulting responses in Figure 4 (on the right) show a slight performance degra-
dation, but the Smith predictor still retains an edge over the pure PI design.

We obtain the closed-loop frequency responses for the nominal and perturbed
plants by bode(T) and their visualizations as shown in Figure 5. Note that the phase
behavior of systems with internal delays is quite different than systems with I / O
delays.
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We numerically compute the bandwidth of the responses by bandwidth(T)

which returns 0.0695, 0.0565, 0.0767. The gain and phase margins of the responses
are calculated by [gm, pm] = margin(T) and their values are

gm= [1.0835; 1.1569; 1.0304], pm= [180; 180; 7.1433].

Other well-known frequency-domain based tools are also available for the GLTI
class such as bandwidth, dcgain, nyquist, allmargin.

6 Controller Design

We analyzed the closed-loop characteristics of the given PI controller and Smith
Predictor. Now we design a PID controller for finite dimensional and time delay
plants using pidtune function in The Control System Toolbox and compare its
performance with other controllers. This function aims to find a PID controller sta-
bilizing the closed-loop system and to satisfy certain performance and robustness
objectives. These objectives are tracking reference changes and suppressing distur-
bances as rapidly as possible; designing enough phase and margins for modeling
errors or variations in system dynamics.

The algorithm for tuning PID controllers helps us meet these objectives by auto-
matically tuning the PID gains to balance the response time as a performance ob-
jective and the stability margins as robustness objectives. By default, the algorithm
chooses a crossover frequency (loop bandwidth) based upon the plant dynamics,
and designs for a target phase margin of 60◦.

We can approximate the dead-time system P(s) by a finite dimensional transfer
function Pa(s) using the function pade based on Padé approximation. The function
pidtune designs a PID controllerCa(s) for the approximate finite dimensional plant
and we obtain the closed-loop system for this controller by the following commands:

Pa = pade(P,8); % approximate 8th order plant

Ca = pidtune(Pa,’pid’); % design PID for Pa

Ta = feedback(P*Ca,1); % closed-loop for Ca

Pidtune also designs a PID controller for time delay systems without any ap-
proximation,

[Cpid,info] = pidtune(P,’pid’); % design PID for P

Tpid = feedback(P*Cpid,1); % closed-loop for Cpid

>> info

info =

Stable: 1

CrossoverFrequency: 0.0067

PhaseMargin: 60.0000
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As shown in returned info structure, the designed controller Cpid stabilizes the
closed-loop and achieves 0.0067 rad/sec crossover frequency and 60◦ phase margin.
The closed-loop step response Tpid of the controller Cpid is given Figure 6 (on the
right with dashed line). Through step plot figure, we compute its transient response
characteristics. The step response for this controller has 5.45% overshoot, 136 and
459 seconds rise and settling times.

We compare the closed-loop responses of the Smith Predictor, the designed PID
controllers for the approximate plant Pa(s) and the original plant P(s) by

lsim(Tsp,Ta,Tpid,ref,time);

The responses in Figure 6 (on the left) show that the designed PID controller for
the original plant offers a good compromise between the simplicity of the controller
and good tracking performance compared to the Smith predictor.
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Fig. 6 (left) Responses of the Smith Predictor (–), PID (- -) for P(s) and PID (:) for Pa(s)
to the reference signal (gray colored). (right) Closed-loop step responses for the controllers
Cpid (–) and Cpidf (- -).

We can fine tune the PID controller depending on design requirements. If faster
response is required, we can increase the crossover frequency slightly and obtain
the controller Cpidf by

Cpidf = pidtune(P,’pid’,0.0074);

Tpidf = feedback(P*Cpidf,1);

step(Tpid,Tpidf);

The closed-loop step responses for the controllers Cpid and Cpidf are shown
Figure 6 (on the right). The new controller Cpidf has a faster response where its
rise and settling times are 109 and 394 seconds, almost 20% and 17% faster than
that of Cpid and its overshoot is slightly increased from 5.45% to 5.89%.
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7 Possible Enhancements in CACSD

We briefly summarized the available functionality in Control System Toolbox and
we discuss possible enhancements for CACSD regarding time delay systems in this
section. As illustrated before, most of the functions in Control System Toolbox are
extended for time delay systems. We focus on three important numerical compu-
tations for time delay systems and discuss on-going research directions on these
computations.

Stability of a Time Delay System

There are various numerical methods to determine the stability of LTI systems with
constant delays [5,11,21]. One idea is to compute the characteristic roots when time
delay is zero and to detect characteristic roots crossing the imaginary axis from zero
delay to desired time delay and determine the stability of the time delay system. This
approach is applicable to only systems with commensurate time delays and quasi-
polynomial form is required. Another approach is to approximate the right-most
characteristic roots in the complex plane using spectral methods further explained
in the next section. The computational cost in this method depends on the number of
discretization points for the time delay interval, i.e., from zero to maximum delay in
the system. There are some heuristic methods to choose this number and they may
result in poor choices at certain cases. Lyapunov theory is another tool to determine
the stability of time delay systems. The results are conservative and in general the
conservatism can be reduced in the expense of the computational cost of solving
larger linear matrix inequalities. Most methods in the literature can not handle time
delay systems with high orders.

System Poles and Zeros

The poles and zeros of time delay systems are computed by solving a nonlinear
eigenvalue problem, essentially same problem to compute the characteristic roots of
time delay systems. Therefore, approximating spectrum approach for characteristic
roots is also used to compute system poles and zeros.

The computations are based on either discretization of the solution operator of
a delay differential equation or the infinitesimal generator of the solution opera-
tor semigroup. The solution operator approach by linear-multi-step time integration
for retarded type delay differential equations is given in [6, 7]. The infinitesimal
generator approach discretizes the derivative in abstract delay differential equation
by Runge-Kutta or linear multi-step methods and approximates into a matrix [2, 4]
for retarded type delay differential equations with multiple discrete and distributed
delays. Extensions to neutral type delay differential equations and mixed-type func-
tional differential equations are done in [3]. Numerically stable implementation of
spectral methods with some heuristics is given in [28].

The computation of system poles and zeros is closely connected with the nonlin-
ear eigenvalue problem and an eigenvalue algorithm for this is presented in [18]. A
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numerical method to compute all characteristic roots of a retarded or neutral quasi-
polynomial on a large region in the complex-plane is proposed in [26]. The char-
acteristic roots are calculated by finding the intersection of real and imaginary part
of the characteristic equation on certain regions in complex-plane. This approach
is further improved and accelerated by removing the regions outside of asymptotic
chain roots in [27]. These methods consider the transfer function representation of
delay differential equations which can be written as a ratio of quasi-polynomials.
As noted in [27], when delay differential equations have state-space representations,
transforming these systems into transfer function representation is not numerically
desired, therefore in this case discretization approaches may be preferred.

H∞ and H2 norms

The computation of H∞ and H2 norms of time delay systems are quite new research
topics and there are few research papers on these topics. Similar to the computation
of system poles and zeros, H∞ norm computation is reduced solving a nonlinear
eigenvalue problem where the recent developments are applicable, [20]. The com-
putation of H2 norm requires solving the delay Lyapunov equation, [19].

Note that all three computation methods are mainly used for analysis of time
delay systems. Another challenging task is to design controllers and to extend clas-
sical control methods to time delay systems such as LQG, H2 control, H∞ control,
root-locus technique, model reduction methods.

There are continuing research efforts to solve these problems such as [12, 13, 17,
25]. The remaining main task is to determine numerically stable algorithms to solve
control design problems for high dimensional plant with the least user interactions.

8 Concluding Remarks

We have shown that the GLTI class is suitable for computer-aided manipulation
of time delay systems. We discussed various representations and interconnections
of time delay systems on MATLAB. We presented the MATLAB functionality to
analyze and design control systems with delays, regardless of the control structure
and number of delays. Most Control System Toolbox functions have been extended
to work on GLTI models, all this without additional complexity or new syntax for
the user. We hope that these new tools will facilitate the design of control systems
with delays and bring new insights into their behavior.

References

1. Atay, F.M. (ed.): Complex time delay Systems: Theory and Applications. Understanding
Complex Systems. Springer (2010)

2. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral differencing methods for character-
istic roots of delay differential equations. SIAM Journal on Scientific Computing 27(2),
482–495 (2005)



CACSD for Time Delay Systems Using MATLAB 269

3. Breda, D., Maset, S., Vermiglio, R.: Pseudospectral approximation of eigenvalues of
derivative operators with non-local boundary conditions. Applied Numerical Mathemat-
ics 56(3-4), 318–331 (2006)

4. Breda, D., Maset, S., Vermiglio, R.: TRACE-DDE: a Tool for Robust Analysis and Char-
acteristic Equations for Delay Differential Equations. In: Loiseau, J.J., Michiels, W.,
Niculescu, S.-I., Sipahi, R. (eds.) Topics in Time Delay Systems. LNCIS, vol. 388, pp.
145–155. Springer, Heidelberg (2009)

5. Dugard, L., Verriest, E. (eds.): Stability and control of time delay systems. LNCIS,
vol. 228. Springer, Heidelberg (1998)

6. Engelborghs, K., Luzyanina, T., Samaey, G.: DDE-BIFTOOL V. 2.00: a Matlab Pack-
age for Bifurcation Analysis of Delay Differential Equations. Technical Report TW330,
Department of Computer Science, K. U. Leuven, Leuven, Belgium (2001)

7. Engelborghs, K., Roose, D.: On stability of LMS methods and characteristic roots of de-
lay differential equations. SIAM Journal on Numerical Analysis 40(2), 629–650 (2002)

8. Enright, W.H., Hayashi, H.: A delay differential equation solver based on a continu-
ous Runge-Kutta method with defect control. Numerical Algorithms 16(3-4), 349–364
(1997)

9. Erneux, T.: Applied delay differential equations. Surveys and tutorials in the applied
mathematical sciences. Springer (2009)

10. Gahinet, P., Shampine, L.F.: Software for modeling and analysis of linear systems with
delays. In: Proceedings of the American Control Conference (2004)

11. Gu, K., Kharitonov, V., Chen, J.: Stability of time delay systems. Birkhuser, Boston
(2003)

12. Gumussoy, S., Michiels, W.: Fixed-Order H-infinity Control for Interconnected Systems
using Delay Differential Algebraic Equations. SIAM Journal on Control and Optimiza-
tion 49(2), 2212–2238 (2011)

13. Gumussoy, S., Michiels, W.: Root Locus for SISO Dead-Time Systems: A Continuation
Based Approach. Automatica 48(3), 480–489 (2012)

14. Gumussoy, S., Eryilmaz, B., Gahinet, P.: Working with Time-Delay Systems in
MATLAB. In: 10th IFAC Workshop on Time Delay Systems, June 22-24. IFAC-
PapersOnLine, pp. 108–113. Northeastern University, USA (2012),
doi:10.3182/20120622-3-US-4021.00041

15. Hairer, E., Wanner, G.: RETARD: Software for delay differential equations (1995),
http://unige.ch/~hairer/software.html

16. Ingimundarson, A., Hagglund, T.: Robust tuning procedures of dead-time compensating
controllers. Control Engineering Practice 9, 1195–1208 (2001)

17. Jarlebring, E., Damm, T., Michiels, W.: Model reduction of time delay systems using
position balancing and delay Lyapunov equations. Technical Report TW602, Department
of Computer Science, K. U. Leuven, Leuven, Belgium (2011)

18. Jarlebring, E., Michiels, W., Meerbergen, K.: A linear eigenvalue algorithm for the non-
linear eigenvalue problem. Technical Report TW580, Department of Computer Science,
K. U. Leuven, Leuven, Belgium (2011)

19. Jarlebring, E., Vanbiervliet, J., Michiels, W.: Characterizing and computing the L2 norm
of time delay systems by solving the delay Lyapunov equation. IEEE Transactions on
Automatic Control 56, 814–825 (2011)

20. Michiels, W., Gumussoy, S.: Characterization and computation of H-infinity norms of
time delay systems. SIAM Journal on Matrix Analysis and Applications 31(4), 2093–2115
(2010)

21. Michiels, W., Niculescu, S.I.: Stability and stabilization of time delay systems. An eigen-
value based approach. In: Advances in Design and Control. vol. 12. SIAM, Philadelphia
(2007)

http://unige.ch/~hairer/software.html


270 S. Gumussoy and P. Gahinet

22. Niculescu, S.I.: Delay effects on stability: A robust control approach. LNCIS, vol. 269.
Springer, London (2001)

23. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control. John Wiley (1996)
24. Control System Toolbox: MathWorks Inc., Natick (2011)
25. Vanbiervliet, J., Michiels, W., Jarlebring, E.: Using spectral discretization for the optimal

H2 design of time delay systems. International Journal of Control 84(2), 228–241 (2011)
26. Vyhlı́dal, T., Zı́tek, P.: Quasipolynomial mapping based rootfinder for analysis of time

delay systems. In: Proceedings of the 4th IFAC Workshop on Time Delay Systems, Roc-
quencourt, France, pp. 227–232 (2003)

27. Vyhlı́dal, T., Zı́tek, P.: Mapping based algorithm for large-scale computation of quasi-
polynomial zeros. IEEE Transactions on Automatic Control 54(1), 171–177 (2009)

28. Wu, Z., Michiels, W.: Reliably computing all characteristic roots of delay differential
equations in a given right half plane using a spectral method. Technical Report TW596,
Department of Computer Science, K. U. Leuven, Leuven, Belgium (2011)



Analysis and Control of Time Delay Systems
Using the LambertWDDE Toolbox

Sun Yi, Shiming Duan, Patrick W. Nelson, and A. Galip Ulsoy

Abstract. This chapter provides an overview of the Lambert W function approach.
The approach has been developed for analysis and control of linear time-invariant
time delay systems with a single known delay. A solution in the time-domain is
given in terms of an infinite series, with the important characteristic that truncat-
ing the series provides a dominant solution in terms of the rightmost eigenvalues.
A solution via the Lambert W function approach is first presented for systems of
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tion. Free and forced solutions are used to investigate key properties of time-delay
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1 Introduction

Time delay systems (TDS) arise in numerous natural and engineered systems, such
as processes with transport delays, traffic flow problems, biological systems, tele-
operation and many others. The literature on TDS is quite extensive, and includes
several excellent books and review papers, e.g. [2, 11, 12, 14, 17, 19, 20]. This chap-
ter focuses on a specific and recently developed approach, based on the classical
Lambert W function [5], for analysis and control of linear time invariant TDS with
a single known delay [27].

1.1 Motivation and Background

Consider a typical nth-order system of linear time invariant (LTI) ordinary differen-
tial equations (ODEs), without delay, in standard state equation form:

ẋ(t) = Ax(t)+Bu(t)

y(t) = Cx(t)+Du(t) (1)

the closed-form free and forced solutions can be obtained using the concepts of a
state transition matrix and a convolution integral [4]. As the system of ODEs in Eq.
(1) has a finite spectrum, the stability can be determined by examining the locations
of the finite number of eigenvalues in the s-plane.

The solutions are also used to derive the controllability and observability Grami-
ans. Then, controllability and observability can be determined by the rank of the
controllability and observability matrices, respectively. If the system is controllable,
a closed-loop controller can be designed by a variety of methods, including state
feedback control and eigenvalue assignment. Similarly, if a system is observable,
then a state estimator, or observer, can be designed, e.g., using eigenvalue assign-
ment.

These systematic steps for analysis and control are standard for LTI systems of
ODEs as in (1), because the closed-form solutions to Eq. (1) are obtained analyti-
cally. However, unlike ODEs, these steps are often difficult to achieve for LTI TDS
due to lack of analytical time-domain solutions to delay differential equations. Main
difficulty is due to their infinite spectrum arising from the delays. Recently methods,
based on the Lambert W function, have been proposed, developed and demonstrated
for the analysis and control of LTI TDS, which enable the analysis and control de-
sign steps outlined above to be applied in a manner analogous to LTI systems of
ODEs [1, 28]. The key characteristic of the method is that the solution is given in
terms of an infinite eigenvalue expansion, based on the branches of the Lambert W
function, such that truncating the series always yields a finite dimensional represen-
tation in terms of the rightmost (i.e., dominant) eigenvalues.

There are numerous natural and engineered systems where time delays are signif-
icant (e.g., biological systems, economic models, supply chains, traffic flow, teleop-
eration, networked control systems, automotive control systems) [19]. Thus, benefits
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from the extension of the system analysis and control tools, which are standard for
ODEs, to systems described by DDEs can be substantial.

1.2 Purpose and Scope

This chapter is intended to provide a succinct overview of the Lambert W function
approach to the analysis and control of LTI TDS with a single known delay and
introduction, via simple numerical examples, to the use of the open source software
LambertWDDE Toolbox, which is available for downloading from the web [7]. Ad-
ditional examples can be found at the same website [7] and numerous applications
of the method can be found in the references cited (e.g., [8,21,24–27,32]). Note that
a preliminary version of this chapter has been presented in [33].

2 Theory, Examples and Numerical Simulation

2.1 Lambert W Function

By definition [5, 10, 15], every function W (s) that satisfies:

W (s)eW (s) = s (2)

is called a Lambert W function. The Lambert W function, with complex argument
s, is a complex valued function with infinite branches, k = 0,±1,±2, ..,±∞, where
s is either a scalar (i.e., scalar Lambert W function) or a matrix (i.e., matrix Lambert
W function). The scalar Lambert W function is available as an embedded func-
tion in many computational software systems, e.g., see the function lambertw in
MATLAB. The matrix Lambert W function [27] can be obtained using a similarity
transformation and can be readily evaluated using the LambertWDDE Toolbox [7].
These functions are useful in combinatorics (e.g., the enumeration of trees) as well
as relativity and quantum mechanics. They can be used to solve various equations
involving exponentials (e.g. the maxima of the Planck, Bose-Einstein, and Fermi-
Dirac distributions) as well as in the solution of delay differential equations as dis-
cussed here.

2.2 Scalar Case

Consider the first-order TDS [1]:

ẋ(t) = ax(t)+ adx(t− h)+ bu(t) (3)

with constant known parameters a, b and ad , and where h is the constant known
delay. The initial condition x(t = 0) = x0 and preshape function x(t) = g(t) for
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−h ≤ t < 0, must be specified. The Lambert W function is applied to solve the
transcendental characteristic equation of Eq. (3), which can be written as:

(s− a)esh = ad (4)

Multiplying both sides of Eq. (4) by he−ah yields:

h(s− a)eh(s−a) = adhe−ah (5)

Based on the definition of the Lambert W function in Eq. (5) it is clear that

W (adhe−ah)eW (adhe−ah) = adhe−ah (6)

Comparing Eqs. (5) and (6)

h(s− a) =W (adhe−ah) (7)

Thus, the solution of the characteristic equation in Eq. (4) can be written in terms of
the Lambert W function as:

s =
1
h

W (adhe−ah)+ a (8)

The infinite spectrum of the scalar DDE in (3) is, thus, obtained using the infinite
branches of the Lambert W function, and is given explicitly in terms of param-
eters a, ad and h of the system. The roots of the characteristic equation (4), for
k = 0,±1,±2, ..,±∞, are:

sk =
1
h

Wk(adhe−ah)+ a (9)

Furthermore, for Eq. (3) stability is determined by the rightmost eigenvalue in the
s-plane, which has been shown in [18] to be obtained using only the principal (i.e.,
k = 0) branch of the Lambert W function. Consequently, to ensure stability, it is not
necessary to check the other eigenvalues in the infinite spectrum.

2.3 Example 1 - Spectrum and Series Expansion in the Scalar
Case

For a = −1, ad = 0.5, and h = 1 the characteristic roots are obtained using Eq.
(9) and the function lambertw in MATLAB, and are plotted in Fig. 1. It can also be
shown [28] that the total (i.e., free plus forced) solution to Eq. (3), can be represented
in terms of an infinite series based on the eigenvalues in Eq. (9) as:

x(t) =
+∞

∑
k=−∞

esktCI
k +

∫ t

0

+∞

∑
k=−∞

esk(t−η)CN
k bu(η)dη (10)
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where

CI
k =

x0 + ade−skh ∫ h
0 e−sktg(t− h)dt

1+ adhe−skh (11)

and

CN
k =

1
1+ adhe−skh (12)

Note that the coefficients CI
k are determined from the preshape function g(t) and the

initial state x0, and the coefficients CN
k are determined only in terms of the sys-

tem parameters a, ad and h. Thus, the total solution in Eq. (10) can be viewed
as the sum of the free and forced solutions. Conditions for convergence of such
a series solution form are discussed in [2]. A very practically important and useful
aspect of this particular series representation of the solution for x(t) is that trun-
cating the series, e.g., k = 0,±1,±2, ..,±n, yields an approximation of the solution
in terms of the (2n+ 1) rightmost, or most dominant, eigenvalues. Consequently,
a simple finite dimensional approximation of the system accurately represents its
dynamics.

2.4 Example 2 - Scalar Case Approximation Response

For a = −1, ad = 0.5, and h = 1 one can obtain the values of sk using Eq. (9) and
the function lambertw as in Ex. 1, and the values of CI

k and CN
k using Eqs. (11)-

(12), where x0 = 1 and g(t) = 1 for −h≤ t < 0. These are given in Table 1. Fig. 2
shows the total response to u(t) = sin(t) and a comparison between the Lambert W
function-based method (using the 7 terms in Table 1) and a numerical solution (using
the function dde23 in MATLAB). The two plots are essentially indistinguishable.
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Fig. 1 Eigenvalue of Eq. (3) when a =−1, ad = 0.5, and h = 1. The rightmost eigenvalue is
for k = 0, the next pair are for k =±1, the next for k =±2, to k =±9.
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Table 1 The eigenvalues and coefficients in the solution for Ex. 2

k sk CI
k CN

k

0 −0.3149 0.9422 0.5934
±1 −2.2211±4.4442i 0.0197±0.0111i −0.0112±0.2245i
±2 −3.0915±10.8044i 0.0038±0.0015i −0.0093±0.0916i
±3 −3.545±17.1313i 0.0016±0.0005i −0.0052±0.0579i

2.5 General Case

The approach presented in the previous section has been generalized in [27] to LTI
TDS of the form:

ẋ(t) = Ax(t)+Adx(t− h)+Bu(t)

y(t) = Cx(t)+Du(t) (13)

where x(t) is the state vector, u(t) is the input vector, y(t) is the output vector, A,
Ad, B, C and D are coefficient matrices, and h is the constant known scalar delay.
The initial condition x(t = 0) = x0 and preshape function x(t) = g(t) for−h≤ t < 0,
must also be specified. The total solution for the states is now given as:

Fig. 2 Total response to u(t) = sin(t), with x0 = 1 and g(t) = 1 for −h≤ t < 0, and compar-
ison between the 7-term (see Table 1) Lambert W function-based method and the numerical
method (function dde23 in MATLAB). Parameters are a =−1, ad = 0.5, and h = 1.
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x(t) =
∞

∑
k=−∞

eSktCI
k +

∫ t

0

∞

∑
k=−∞

eSk(t−η)CN
k Bu(η)dη (14)

where

Sk =
1
h

Wk(AdhQk)+A (15)

and Qk is obtained from numerical solution (e.g., using f solve in MATLAB) of:

Wk(AdhQk)e
Wk(Ad hQk)+Ah = Adh (16)

This generalization is dependent on the introduction of a matrix Lambert W func-
tion, Wk, as described in [27]. The quantities Qk, Wk, Sk, CI

k and CN
k in Eqs. (14)-

(16) can all be computed using the software in the LambertWDDE Toolbox in terms
of given h, A, Ad , g(t), x0, B and u(t). The main functions of the LambertWDDE
Toolbox [7] are summarized in Table 2.

Table 2 Main functions of the LambertWDDE Toolbox [7]

Name Description

lambertw matrix Calculate matrix Lambert W function
f ind Sk Find Sk and Qk for a given branch
f ind CI Calculate CI under specific initial conditions for a given branch
f ind CN Calculate CN for a given branch
pwcont test Controllability test for DDEs
pwobs test Observability test for DDEs
cont gramian dde Controllability Gramian for DDEs
obser gramian dde Observability Gramian for DDEs
place dde Rightmost eigenvalue assignment for DDEs
stabilityradius dde Calculate stability radius for DDEs
examples Lists examples for using this toolbox; each cell is a short exam-

ple and can be evaluated separately (Ctr+Enter)

2.6 Example 3 - General Case Approximation

To obtain Sk for a particular branch, k, one needs to solve Eq. (16) for Qk first,
then substitute the result into Eq. (15) to obtain Sk. The steps are carried out in the
function f ind Sk. Note that, the matrix Lambert W function Wk(·) in Eq. (15) and
(16) is calculated using the function lambertw matrix, which is based on a Jordan
canonical form transformation. To better understand the whole process, an example
is provided here. Given

A =

[
−1 −3
2 −5

]
;Ad =

[
1.66 −0.697
0.93 −0.33

]
;h = 1
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For the principal branch, k = 0, one obtains:

S0 =

[
0.3055 −1.4150
2.1317 −3.3015

]

The eigenvalues of which are −1.0119 and −1.9841. Next, using f ind CI and
f ind CN, one can obtain the coefficients for the series solution in Eq. (14). For ex-
ample, if u(t) = 0, g(t) = 0, and we have an abrupt change at t = 0 to x0 =

[
1 1

]T
,

we can obtain (using f ind CI) the coefficients for the free response for k = 0 as:

CI
0 =

[
0.2635
0.4290

]

Thus, the single branch approximation, for k = 0, for the free response is:

x(t) =
{

x1(t)
x2(t)

}
= e

[
0.3055 −1.4150
2.1317 −3.3015

]
t { 0.2635

0.4290

}

Note that in MATLAB the matrix exponential is evaluated using the function
expm, not the scalar exponential function exp. To improve the approximation, this
process can be repeated for additional branches, k, then an approximate series solu-
tion can be obtained using Eq. (14) with a finite number of k (see Fig. 3). For example,
including the branches k =±1 gives the additional complex conjugate Sk matrices:

S−1,+1 =

[
−0.399± 4.980i −1.6253± 0.1459i
2.4174± 0.1308i−5.1048± 4.5592i

]

with complex conjugate coefficients for the free response for k =±1 as:

CI
−1,+1 =

[
0.0909± 0.1457i
0.0435± 0.1938i

]

2.7 Observability and Controllability

In [25], the criteria for point-wise controllability and observability have been derived
as follows.

Point-wise Controllability: The system of DDEs in Eq. (13) is point-wise con-
trollable if, for any given initial conditions g(t) and x0, there exists a time t1,
0 < t1 < ∞, and an admissible (i.e., measurable and bounded on a finite time in-
terval) control segment u(t) for such that x(t1;g,x0,u(t)) = 0 [22]. For the scalar
DDE in Eq. (3) it is point-wise controllable if and only if, for all s not at the
poles of the system, s− a− ade−sh �= 0; similarly for Eq. (13) one must have lin-
early independent rows of (sI−A−Ade−sh)−1B. Furthermore, the controllability

Gramian C(0, t1) =
∫ t1

0

∞
∑

k=−∞
eSk(t1−η)CN

k BBT {eSk(t1−η)CN
k }T dη for Eq. (13) must

be full rank [27].
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Point-wise Observability: The system of DDEs in Eq. (13) is point-wise observable
in [0, t1] if the initial point x0 can be uniquely determined from the knowledge of
u(t), g(t), and y(t) [6]. For the scalar DDE in Eq. (3), it is point-wise observable if
and only if, for all s not at the poles of the system; similarly, for Eq. (13) one must
have linearly independent columns of C(sI−A−Ade−sh)−1. Furthermore, the ob-

servability Gramian O(0, t1) =
∫ t1

0

∞
∑

k=−∞
{eSk(t1−η)CN

k }T CT CeSk(t1−η)CN
k dη for Eq.

(13) must be full rank [27].

2.8 Example 4 - Piecewise Observability and Controllability

Consider Eq. (13), with A, Ad and h as given in Ex. 3, and

B =

{
1
0

}
and C =

[
0 1

]

The function pwcontr test can be used to establish that the system is piecewise
controllable. It examines the rank of the matrix (sI−A−Ad e−sh)−1B to determine
if the system is piecewise controllable, and will display the conclusion on the screen.
The Piecewise observability can be established using the function pwobs test in
a similar way. Furthermore, the controllability and observability Gramians over a
specific time interval can be approximately computed, for k = n branches, using the
functions contr gramian dde and obs gramian dde respectively.
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Fig. 3 Approximate (3-term) free response for the system in Ex. 3

2.9 Placement of Dominant Poles

In [28], a method for eigenvalue assignment via Lambert W function was proposed.
Consider the scalar LTI TDS in Eq. (3) with the generalized feedback structure

u(t) =−Kx(t)−Kdx(t− h)



280 S. Yi et al.

The closed-loop system becomes

ẋ(t) = (a− bK)x(t)+ (ad− bKd)x(t− h)

One can use the Lambert W function approach to assign the rightmost eigenvalues
of the system. The procedure for selecting the gains K and Kd can be described as:

1. Select desired rightmost eigenvalue λdesired

2. Set initial gains K = K0 and Kd = Kd0

3. while λ (S0 new−λdesired)> tolerance
4. Select K = Knew and Kd = Kd new

5. Let anew = (a− bKnew), ad new = (ad− bKd new), calculate
S0 new = 1

hW0(ad newhe−anewh)+ anew.
6. End

Due to the range limitation of the branches of the Lambert W function, the rightmost
poles cannot be assigned to any arbitrary location in the s-plane. For scalar time-
delay systems, as in Eq. (3), this can be easily seen by examining the principal
branch [27].

Re{1
h

W0(adhe−ah)+ a} ≥ Re{−1
h
+ a} ≥−1

h
+ a

since Re{W0(H)} ≥ −1. Thus the rightmost pole cannot be less than − 1
h + a. For

the matrix case, similar constraints apply but the relationship becomes more com-
plicated. This feasibility constraint has to be considered in the design process (e.g.,
in the selection of λdesired) for the method to succeed. The generalization of this
approach to systems of DDEs, as in Eq. (13), is presented in [27, 28] and applied to
both controller and observer design problems.

2.10 Example 5 - Rightmost Eigenvalue Assignment

For a = −1,ad = 0.5,b = 1, and h = 1 the rightmost eigenvalue can be assigned to
any value > −2. Here we consider λdesired =−1.5, and use the function place dde
to obtain the controller gains:

K = 1.1378,Kd = 0.3576

Thus, the closed-loop LTI TDS becomes:

ẋ(t) =−2.1378x(t)+ 0.1424x(t− 1)

and the rightmost eigenvalue can be found, using k = 0 in the function lambertw, as
in Ex. 1, to now be located at −1.4998 as desired.
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2.11 Robust Control and Time Domain Specifications

The assignment of rightmost eigenvalues for LTI TDS can also be used for observer
design, and extended to robust design in the presence of structured model uncertain-
ties. Since the response of the LTI TDS is dominated by the rightmost eigenvalues,
approximate specification of time domain characteristics (e.g., settling time, over-
shoot) can also be achieved [29]. The Toolbox function stabilityradius dde can be
used to calculate the stability radius for DDEs as described in [13, 27, 29].

2.12 Decay Function for TDS

Accurate estimation of the decay function for time delay systems has been a long-
standing problem, which has recently been addressed using the Lambert W function
based approach [8]. The goal is to find a tight upper bound for the decay rate, which
is referred to as α-stability, as well as an upper bound for the factor K, such that the
norm of the states is bounded:

‖x(t)‖ ≤ KeαtΦ(h, t0) (17)

whereΦ(h, t0) = sup
t0−h≤t≤t0

{‖x(t)‖} and ‖·‖ denotes the 2-norm. Based on the solu-

tion form in Eq. (14) in terms of the Lambert W function, an optimal estimate of α
can be obtained. The estimate of the factor K is also less conservative especially for
the matrix case. A less conservative estimate of the decay function leads to a more
accurate description of the transient response, and more efficient control strategies
based on the decay model [8].

2.13 Example 6 - Factor and Decay Rate

Consider the system in Eq. (13) with the same coefficients as in Ex. 3. From Eq.
(15), with k = 0, the rightmost pole is found to be:

α = max{Re(eig(S0))}
= max

{
Re(eig( 1

h W0(−AdhQ0)−A))
}
=−1.012

Thus the exact decay rate is obtained and, using the solution in Eq. (14) and the
approach in [8], one can also obtain a bound on K. As shown in Table 3, the results
are less conservative when compared to other methods [8].

Table 3 Comparison of results for Ex. 6

Factor, K Decay Rate, α

Matrix Measure Approach [12] 8.019 3.053
Lyapunov Approach [16] 9.33 −0.907
Lambert-W Approach [8] 3.8 −1.012
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3 Concluding Remarks

A summary of the recently developed Lambert W function approach for analysis
and control of LTI TDS with a constant delay was provided in this chapter. For
more details, readers are referred to the publications cited here (e.g., [27]) and the
web [7]. Several numerical examples are given to illustrate the use of the lambertw
function in MATLAB, as well as other useful functions available in the open source
LambertWDDE Toolbox software package for LTI DDEs [7].

The proposed approach can be used, just as for systems of LTI ODEs as in Eq.
(1), for a variety of important analysis and control tasks for LTI DDEs, such as
free and forced solutions, stability, observability and controllability, controller and
observer design via assignment of dominant eigenvalues, robust stability, determi-
nation of the decay function, etc. The open source software in the LambertWDDE
Toolbox, as well as the accompanying documentation and examples [7], we hope
will make the Lambert W function based approach more accessible and useful for
those interested in applications that are well modeled as LTI TDS with a single
constant delay. Numerous applications of the method (e.g., machine tool chatter,
engine control, HIV dynamics, decay function estimation, DC motor control, PID
control and robust control) can also be found in the references [8, 21, 24–28, 32].
Besides the LambertWDDE Toolbox, other useful software for time-delay sys-
tems based on a variety of algorithms is also available for downloading from the
web [3, 9, 23].
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H∞-Stability Analysis of (Fractional) Delay
Systems of Retarded and Neutral Type
with the Matlab Toolbox YALTA

David Avanessoff, André R. Fioravanti, Catherine Bonnet, and Le Ha Vy Nguyen

Abstract. YALTA is a Matlab toolbox dedicated to the H∞-stability analysis of
classical and fractional systems with commensurate delays given by their transfer
function, whose binary can be downloaded at http://team.inria.fr/disco/software/.
Delay systems of both retarded and neutral type are considered. The asymptotic
position of high modulus poles is given. For a fixed known delay, poles of small
modulus of standard delay systems are approximated through a Padé-2 scheme. For
a delay varying from zero to a prescribed positive value, stability windows as well
as root loci are given. We describe how we have circumvented the numerical issues
of algorithms developed in [6, 8] and several examples are given.

1 Introduction

In this paper, we describe YALTA, a Matlab toolbox dedicated to the H∞-stability
analysis of classical and fractional systems which has been presented at the 11th
IFAC Workshop on Time-Delay systems, Grenoble, 2012.

The aim of YALTA is to give a localization of unstable poles of standard and
fractional delay systems of the retarded or neutral types and a characterization of
the H∞-stability of the system.

Standard delay systems have been widely studied in the last decades (initial work
can be found in [25] and [2] and more recent advances can be found in [9, 20, 21]
and the survey paper [26]).
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Fractional order systems are also obtaining large attention in the literature of the
last years, mainly because they offer an excellent fit to the data in many practical
situations as, for example, in biophysics, electromagnetism, thermodynamics, rhe-
ology (see e.g. [11]). Fractional delay systems of retarded and neutral type have
been introduced and partially analyzed in [3].

Asymptotic stability tests for time-delay systems have been proposed in a few pa-
pers, such as [23, 29] and others. Some computer packages able to provide insights
into this question have been developed. The Quasi-Polynomial Mapping Based
Rootfinder (QPmR, [28]) is a Matlab function for computation and analysis of spec-
trum of characteristic quasi-polynomials of both retarded and neutral time-delay
systems, see also its update presented in the fifth chapter of this part of the book.
Another Matlab package available is the Tool for Robust Analysis and Characteris-
tic Equations of Delay Differential Equations (TRACE-DDE, [17]), which performs
numerical stability analysis of linear autonomous systems of DDEs with several
discrete and/or distributed delays. It allows for the numerical computation of the
characteristic roots and then it performs a two-parameters robust stability analysis
producing the so-called stability chart, i.e. the set of asymptotically stable/unstable
regions in the parameters plane. Finally, the Matlab package for bifurcation analysis
of delay differential equations (DDE-Biftool, [5]) can also be used for this purpose.

Most of the existing procedures for the stability study of delay systems tend to
spot the crossings of poles through the imaginary axis. This fact comes from two
important properties of time-delay systems, also valid for the class of fractional
systems. The first one is the root continuity argument, which means that for any
positive value of the delay, the position of the poles varies continuously with respect
to delay. This means that any root crossing from the left to the right half-plane will
need to pass through the imaginary axis. The second property is the invariance of
the tendency of roots crossing [22]. This implies that a manageable number of root
clusters can provide sufficient information to characterize the whole stability of the
system.

The case of fractional systems is much more involved, and normally cannot be
solved by the methods involving the Routh-Hurwitz table, as the one presented
in [22]. To the best of the authors’ knowledge, only the method of [29] can be suc-
cessfully expanded to cope with fractional systems with multiple delays, see [3], but
each extra commensurate term of the delay after the first one needs to be reduced,
and this process potentially doubles, at each step, the degree of the polynomial we
need to solve which can be a challenging and unreliable numerical problem.

Lately, there has been development of new methods dealing with the stability
of fractional order system with delays. In [13], a numerical procedure based on
Cauchy’s integral theorem was proposed to test the stability of such systems, and
in [12], a technique based on the Lambert W function was used for the same pur-
pose. But the complete characterization of all stability windows is difficult when
using those methods, and no information about the position of the unstable poles is
given.
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The paper is organized as follows. Section 2 contains the main functionalities
of the proposed algorithm. Section 3 brings some practical implementation aspects,
and in Section 4, some examples are fully presented. Finally Section 5 concludes
the work.

2 Functionalities of YALTA

YALTA considers the class of delay systems with transfer function of the type:

G(s) =

t(s)+
N′

∑
κ=1

tκ(s)e
−κsh

q0(s)+
N

∑
k=1

qk(s)e
−ksh

=
n(s)
d(s)

(1)

where h > 0, and t, q0, qk for all k ∈NN , and tκ for all κ ∈NN′ , are real polynomials
in the variable sα for 0<α ≤ 1 which satisfy deg p≥ degt, degq0≥ degtκ , degq0≥
degqk and such that degq0 = degqk for at least one k ∈ NN .

The case 0 < α < 1 corresponds to fractional systems with delays while the case
α = 1 is obviously the case of standard delay systems.

When 0 < α < 1 we define an analytic branch of sμ on the cut plane C\R− by
setting (re jθ )μ = rμe jμθ and choosing θ with −π < θ < π . The zero chains of d
have the following possible form [2, 7, 24]:

1. If degq0 = degqN , then there are only chains of neutral type;
2. If degq0 = degqk > degqN , for some k ∈ NN , then there are chains of both

neutral and retarded types (we recall that a neutral type chain is asymptotic to
a vertical axis in the complex plane and the second a retarded chain contains
poles with arbitrarily large negative real part).

Let z = e−sh, the coefficient of the highest degree term of q0(s)+
N

∑
k=1

qk(s)e
−ksh

can then be written as a multiple of the following polynomial in z

c̃d(z) = 1+
N

∑
i=1

αiz
i. (2)

From now on, we formulate the following hypotheses

Hypothesis (H1): The roots of c̃d are of multiplicity one.

Hypothesis (H2): The polynomials q0(s) and qk(s) satisfy

q0(0)+
N

∑
k=1

qk(0) �= 0.
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Hypothesis (H3): When dealing with neutral systems, in order to avoid the pos-
sibility of an infinite number of zero cancellations between the numerator and de-
nominator of G, we suppose that the numerator of G satisfies either

a) degt(s)> degtk(s); or
b) degtk(s) = degt(s) for at least one k and the polynomial c̃n defined as in (2)

relatively to the quasi-polynomial n(s) has no root of modulus less than or equal
to one, and no common root of modulus strictly greater than one with c̃d .

YALTA proposes an analysis of high modulus poles, stability windows as well as
a root locus when the delay varies from zero to a prescribed value τmax. For those
who are interested in the location of unstable small modulus poles of a classical
delay system given a fixed delay, YALTA proposes an approximation of those poles
through a Padé-2 scheme. This procedure allows to also determine a finite order
model approximation of the initial system. Finally, YALTA gives information on the
H∞-stability of a system with fixed delay.

2.1 Asymptotic Axes and Poles of High Modulus

As retarded systems only have a finite number of unstable poles in any right half-
plane, only the asymptotic location of poles of neutral delay systems is of interest.
This has been described in [4] for classical delay systems and in [7] for fractional
delay systems.

YALTA gives the position of the asymptotic axes in the complex plane and also
in most of situations (see [4, 7] for restrictions) the asymptotic position of poles
relative to the axis.

2.2 Stability Windows and Root Locus

In YALTA is implemented the numerical procedure proposed in [8] for the calcula-
tion of the so-called crossing table and root-locus. From the crossing table, stability
windows are displayed. Moreover, the list of all positions of poles calculated for a
set of delay values (between 0 and τmax) in the root-locus procedure is available.

As explained in the following section, the suggested method in [8] for imple-
menting root-locus has now been improved.

2.3 Approximation of Poles of Small Modulus

YALTA uses the finite-dimensional approximation (Padé-2) method proposed in
[16] for strictly proper (classical) dead-time systems (i.e. systems with α = 1).

Let δ = degq0. We consider d
(s+1)δ+1 which is a sum of strictly proper dead-time

systems and apply the Padé-2 finite-dimensional approximation to each term of the
sum.



H∞-Stability Analysis of (Fractional) Delay Systems 289

Let
Rk(s) =

qk

(s+ 1)δ
(3)

have relative degree mk and

S(n)Rk =

(
1− ksh

2n + 1
3

(
ksh
2n

)2

1+ ksh
2n + 1

3

(
ksh
2n

)2

)n

Rk. (4)

By [16] we have that

‖Rke−ksh− S(n)Rk‖∞ = max

(
O(n

−4mk
5 ),O(n−4)

)
(5)

and a bound is given on the approximation of unstable poles of Rke−ksh by those of
S(n)Rk.

2.4 H∞-stability Analysis

This function is of use for standard neutral systems which have the imaginary axis
as asymptotic axis.

For such a delay system with fixed delay, the function determines if the chain of
poles clustering the imaginary axis is left or right the axis as well as the poles of
small modulus (calling the Padé-2 function). The H∞-stability depends then on the
degrees of the polynomials of the system [4].

3 Practical Aspects

Most of the effort in the practical aspects concerned the management of the nu-
merical constraints. The development of the main algorithmic results presented
above was relatively straightforward. Due to the Matlab application, polynomials
are coded as coefficient vectors and thus quasi-polynomials are matrices whose rows
are the polynomials qi. To the matrix is joined a vector of delay multipliers to allow
a compact description of a system having by example only q0, q4 and q7 as non
zero polynomials. In this section, we will only develop the continuation algorithm
and the Padé approximation. The continuation algorithm first used a differential ap-
proach but we had some issues with a ds

dτ that could reach infinite values. We thus
have opted for a geometrical approach developed just below.

3.1 Continuation Algorithm

The continuation method chosen is inspired by [27]. This method is based on a
predictor that uses the preceding points to compute an estimate of the following
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point and a corrector that will modify the estimate to put the point on the curve. We
will not further develop the general details of this method.

The predictor is linear, that is the predicted point is on the line joining the two
preceding points. However, the distance to the last point is dynamically evaluated
depending on the results of the corrector. This will be explained in the corrector
explanation part. In case of a sign change of the imaginary part between the last
point and the estimated point – with some securities to avoid a simple oscillation
around the real axis –, the predictor proposes a point on the real axis with a rotation
in the direct sense of an angle of π/2. This allows the predictor to consider the
bifurcations at real values of the zeros.

For the corrector, different methods are used. The main one computes the local
minimum of the function associated to the quasi-polynomial around the predicted
point at a predetermined constant distance. If the result is higher than a precision
parameter, then the corrector sends back a failure and the predictor is called back
with an inferior distance to the last point. The adaptation of the predictor is stored
in a multiplier variable for the following predictions. If, this time, the result of the
comparator is valid, the multiplier variable is increased such that the algorithm has
an acceleration on almost linear parts of the curve. The second method exploits the
angle change of a complex analytical function at a zero to assure the existence of a
zero. Then, with the above local minimum method, we find the value of such zero.
This method is heavier and takes a lot of time, but at some points on a curve or
for some big systems, the evaluation of the value of the quasi-polynomial at a point
leads to big numerical errors. Thus, the check of the existence of a zero validates the
local minimum and avoids having too many rejections by the corrector. This second
method is triggered by the value of the multiplier variable exposed just above. If the
multiplier is inferior to some arbitrary value, then the second method is used up to
a point in the curve where there is less rejections from the corrector and an increase
of the multiplier variable.

3.2 Padé Approximation

Given a quasi-polynomial in matrix form as explained in the beginning of the sec-
tion, we compute its Padé-2 approximation. Then, we give an estimation of the
relative error in H∞-norm, that is, the H∞-norm of the difference between the quasi-
polynomial and the approximation divided by the H∞-norm of the quasi-polynomial.
It was an arbitrary choice to use this numerical estimation instead of the theoretical
error exposed above. The user may choose to have displayed the roots with posi-
tive real parts of the Padé approximation with an estimation of the absolute error
between those roots and the roots of the quasi-polynomial. To compute the roots of
the quasi-polynomial, we use the same idea as in the corrector explained above for
the continuation algorithm.
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4 Examples of YALTA Application

In this section we illustrate the use of YALTA. At the same time, they present limi-
tations of the toolbox regarding numerical precision and computation time. The first
three examples address stability analysis, and the last one shows the Padé approxi-
mation feature.

Computation time for all the examples are given by the use of an Intel Core i5
processor with the following specifications: processor speed: 2.3 GHz, total number
of cores: 2, L2 cache (per core): 256 KB, L3 cache: 3 MB, memory: 8 GB.

4.1 Example 1 - Bifurcation Analysis of a Small Degree System

The first example is of small degree and small delay. This same system has been
introduced and studied in [15] and [14]. Its main interest is in the bifurcation.

Below is the display of the Matlab command window for this example. Each
such command window displayed in this article is in verbatim format to quickly
distinguish it.

>> q = [6,-66,180;0,-2,12;0,6,30;0,0,-2]

q =

6 -66 180

0 -2 12

0 6 30

0 0 -2

>> DelayVector = [1,2,3]

DelayVector =

1 2 3

>> Ex1 = delayFrequencyAnalysisMin(q,DelayVector,1,1)

Ex1 =

AsympStability: ’There is(are) 2 unstable pole(s) in

right half plane’

Type: ’Retarded’

RootsNoDelay: [5.1667 + 3.1579i 5.1667 - 3.1579i]

RootsChain: ’Roots chains only computed for neutral

systems’

CrossingTable: ’No crossing’

ImaginaryRoots: []

StabilityWindows: [2x2 double]

NbUnstablePoles: [2x2 double]

UnstablePoles: [5.0027 + 0.0000i 5.9999 + 0.0000i]

Error: [1.0000e-11 1.0000e-12]

RootLoci: {2x1 cell}
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Figure 1 shows the figure of the complete curve from a zero delay up to the final
delay of 1 second. In Figure 2, the small zoom allows the user to get a better detail
at the bifurcation point. Figure 3, with a high zoom, shows the limitations of the
toolbox at bifurcation points where one can see the effect of the arbitrary rotation
in the predictor and its consequences when the points are connected. Of course, one
needs an important zoom to see these imperfections.
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Fig. 3 First example, high zoom

4.2 Example 2 - Stability of a Fractional System

This is a fractional system with α = 1/3.

>> q = ceil((rand(5,8)-0.5)*100)/100

q =

-0.4900 -0.0600 -0.2500 -0.2700 -0.0300 0.0800 0.1400 0.4900

0.2300 -0.4500 0.3500 -0.2700 0.1400 -0.0600 0.1300 -0.3700

-0.1400 -0.4500 0.3600 0.0400 0.4200 0.3900 -0.1700 -0.2600

0.2900 -0.4000 0.4700 0.2700 -0.3300 -0.1000 0.3100 -0.4700

-0.0600 0.1000 -0.0100 -0.1500 0.2200 -0.3200 0.5000 0.1100

>> DelayVector = [1,3,4,7]; a = 1/3; h = 2;

>> Ex2 = delayFrequencyAnalysisMin(q,DelayVector,a,h,1)

Ex2 =

AsympStability: ’There is(are) 4 unstable pole(s) in

right half plane’

Type: ’Neutral’

RootsNoDelay: [0.9362 0.1330]

RootsChain: [-0.0390 -0.0503 -0.1441 -0.3168]

CrossingTable: [3x4 double]

ImaginaryRoots: [2x3 double]

StabilityWindows: [2x2 double]

NbUnstablePoles: [2x3 double]

UnstablePoles: [0.0680 - 0.0000i 0.7288 + 0.0000i

0.0324 + 0.7368i 0.0324 - 0.7368i]

Error: [1.0000e-13 1.0000e-10 1.0000e-10

1.0000e-10]

RootLoci: {6x1 cell}
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The computation time for this example is 27.678s most of which, that is 23.961s
(86.4%), is spent for the root locus calculation.

In order to reduce the computation time, one can increase the advancement step
of the delay leading to a reduction of the precision. When the delay step goes
from 10−4, which was previously used, to 10−3, the computation time is lowered
to 14.550s of which the root locus calculation consumes 10.857s (74.6%) while the
errors are still of order 10−10.

The example illustrates that for some systems we can achieve a quick result by
lowering the precision of the root locus computation, yet keeping a good error level.

4.3 Example 3 - Computational Aspects

This example is of as high degree as the second one and has the same τmax. However
the computation is significantly longer (265.686s) even with lowered advancement
of delay (10−3). This is due to the fact that this system has a lot more destabilizing
crossing roots (see Figure 4), thus a lot more of root loci. A technical solution to
accelerate the calculation is to use parallel computation. Indeed, with the processor
mentioned earlier, the computation time by two parallel cores is reduced to 90.780s.

>> q = ceil(rand(5,8)*1e4)/1e4

q =

0.6232 0.6022 0.6588 0.1519 0.9665 0.4255 0.6136 0.2915

0.0264 0.3620 0.6754 0.3807 0.8063 0.4044 0.9881 0.1884

0.3188 0.1350 0.7446 0.8211 0.2222 0.4003 0.2200 0.0229

0.5330 0.9139 0.8422 0.1714 0.9998 0.1120 0.3541 0.4495

0.3268 0.6406 0.5167 0.3300 0.0638 0.4244 0.2663 0.2437

>> DelayVector = [1,3,5,8];

>> Ex3 = delayFrequencyAnalysisMin(q,DelayVector,1,5)

Ex3 =

AsympStability: ’There is(are) 10 unstable pole(s) in

right half plane’

Type: ’Neutral’

RootsNoDelay: [-0.5242 0.6043 + 0.7137i

-0.8953 - 0.8817i -0.1726 + 0.9349i

-0.1726 - 0.9349i 0.6043 - 0.7137i -0.8953 + 0.8817i]

RootsChain: [-0.0077 -0.0160 -0.0486 -0.0890]

CrossingTable: [15x4 double]

ImaginaryRoots: [16x3 double]

StabilityWindows: [2x2 double]

NbUnstablePoles: [2x10 double]

UnstablePoles: [1x10 double]

Error: [1.0000e-09 1.0000e-09 1.0000e-08

1.0000e-09 1.0000e-09 1.0000e-09 1.0000e-08 1.0000e-08

1.0000e-11 1.0000e-11]

RootLoci: {26x1 cell}



H∞-Stability Analysis of (Fractional) Delay Systems 295

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

2

4

6

8

10

Delay

S
ta

bi
li

ty

DelayN
um

be
r

of
un

st
ab

le
po

le
s

Fig. 4 Third example, stability window

4.4 Example 4 - Padé-2 Approximation

Here follows a Padé-2 approximation of the system introduced in [15] and [14] of
order 4. Computation time is 5.94 seconds.

>> q=[6,-66,180;0,-2,12;0,6,30;0,0,-2]

q =

6 -66 180

0 -2 12

0 6 30

0 0 -2

>> DelayVector=[1,2,3]

DelayVector =

1 2 3

>> Ex4 = computePade(q,3,1,DelayVector,4,’ORDER’,1)

Ex4 =

Numerator: [4x11 double]

Denominator: [4x12 double]

ErrorNorm: 8.7100e-04

PadeOrder: 4

Roots: [5.9996 5.0032]

RootsError: [2.9745e-04 4.9066e-04]

At this order, there is a relative precision in norm of 8.7× 10−4 and an absolute
error of the roots given in the last line of the example. One can see that a relatively
correct estimation of the quasi-polynomial can be obtained quickly.
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5 Conclusion

This paper presented a new Matlab toolbox characterizing the unstable poles of
standard and fractional delay systems of retarded and neutral type. Compared to
others toolboxes available to date, the method implemented in this toolbox deals
with polynomials of the same order as that of the original system, which can provide
a huge benefit from the computational cost point of view.

This is the first toolbox able to deal with the proposed problem both from clas-
sical and fractional systems in the same framework. This will help the scientific
community to obtain more insights about similarities and differences from those
classes of systems, and hopefully provide industrials and other researchers the tools
they need to include fractional systems in their working environment.

On going work to be included in this toolbox considers the case of delay systems
which admit several chains of poles asymptotic to the same vertical axis.
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QPmR - Quasi-Polynomial Root-Finder:
Algorithm Update and Examples

Tomáš Vyhlı́dal and Pavel Zı́tek

Abstract. An updated QPmR algorithm implementation for computation and anal-
ysis of the spectrum of quasi-polynomials is presented. The objective is to com-
pute all the zeros of a quasi-polynomial located in a given region of the com-
plex plane. The root-finding task is based on mapping the quasi-polynomial in the
complex plane. Consequently, utilizing spectrum distribution diagram of the quasi-
polynomial, the asymptotic exponentials of the retarded chains are determined. If
the quasi-polynomial is of neutral type, the spectrum of associated exponential
polynomial is assessed, supplemented by determining the safe upper bound of its
spectrum. Next to the outline of the computational tools involved in QPmR, its Mat-
lab implementation is presented. Finally, the algorithm is demonstrated by three
examples.

1 Introduction

Due to infinite dimensionality of time delay systems, the spectrum analysis and com-
putation have been challenging issues for decades. The spectrum properties of time
delay systems of both the retarded and neutral types have been mapped by Bellman
and Cooke, [1]. As for the computation of time delay system spectrum, several ap-
proaches have been proposed. A group of methods derived for approximating the
stability determining right-most roots of delay systems have been based on discretiza-
tion of the system solution operator, using e.g. Linear Multi-Step methods [9,20] or
Runge-Kutta methods [2]. The well known software tool DDE-BIFTOOL [10], see
also [20], is the key result of this direction. Another group of methods for spectrum
computation is based on a discretization of the system infinitesimal generator, using
e.g. Runge-Kutta methods [3] or pseudospectral techniques [4], [25]. This strategy
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is used in the software package TRACE-DDE [5]. Recently, based on the spectral
method, the algorithm for reliable computing of all the roots of delay systems lo-
cated in a given right half plane has been proposed [25] and implemented in a form
of Matlab tool. Let us also mention that for simple structure time delay systems, a
Lamber W function can be utilized for determining the root positions, see [26], [24]
and also [15]. Alternatively, the zeros of a characteristic function of time delay system
can be determined by numerical algorithms developed for computing zeros of general
analytic functions, [13,16]. The traditional approaches are the iterative schemes, e.g.
Newton’s method, or bisection based algorithms, see e.g. [7], [27]. The problem of
computing all zeros of an analytic function can also be solved using the quadrature
methods presented in [8, 16].

The results presented in this chapter are extensions of earlier works [21, 22] by
the authors. In [21], we designed the Quasi-Polynomial mapping based Root-finder
(QPmR) with the objective to compute all the zeros of a quasi-polynomial located
in a predefined region of the complex plane. The original implementation of this al-
gorithm (QPmR v.1) in Matlab was based on symbolic computations with the use of
Symbolic Math Toolbox. The involvement of symbolic computations was one of the
reasons of relatively large computational time. In the consecutive work [22], the al-
gorithm was optimized via reducing the regions to be scanned for the root positions.
With the help of spectrum distribution analysis [1] and the argument principle rule,
large sub-regions are determined that are free of roots. These subregions are then
omitted from the process of mapping the root positions. The SW implementation
of this algorithm extension is an aQPmR (advanced QPmR) Matlab function. Even
though a considerable reduction of computational time has been achieved, the com-
plexity of the algorithm has increased considerably. Combining the user-friendly
application of QPmR v.1 and some of the enhanced features of aQPmR, the QPmR
v.2 was recently proposed and implemented in Matlab. The updated QPmR algo-
rithm, which does not involve Symbolic Math Toolbox operations, is presented as
the main contribution of this chapter.

1.1 Problem Formulation

The primary objective is to compute all the zeros of the quasi-polynomial

h(s) =
N

∑
j=0

p j(s)e−sα j (1)

located in the complex plane region D∈C, with the boundaries βmin <ℜ(D)< βmax

and ωmin < ℑ(D) < ωmax, where α0 > α1 > ... > αN−1 > αN = 0 are the delays
and p j(s) = ∑

mj
k=0 p j,ksk are the polynomials with real coefficients of degree m j,

which is at most n for p j(s), j = 0, 1, ..N, where n is degree of the polynomial
pN(s). This task will be solved in Section 2, where the mapping based algorithm for
determining the root positions will be described. Notice that the function (1) can be
both a numerator and a denominator of a meromorphic transfer function of a time
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delay system. Thus, using the root-finding algorithm described in this chapter, both
the poles and zeros of a meromorphic transfer function can be computed.

As an additional objective, the asymptotic features of the spectrum of quasi-
polynomial (1) are to be determined. The definition of asymptotic exponentials of
the root chains together with the involved computational tools are given in Section
3. If the quasi-polynomial is of neutral type, i.e. at least one of the polynomials
p j(s), j = 0,1, ...,N−1 is of degree n, the spectrum of associated exponential poly-
nomial and its safe upper bound are to be determined, as also presented in Section 3.
In Section 4, the use of QPmR v.2 in Matlab is outlined, followed by three demon-
stration examples. The chapter is concluded by a brief summary section.

2 Algorithm for Spectrum Computation

The core algorithms of QPmR v.2 remain the same as in QPmR v.1 described in
[21]. Considering s = β + jω ,β ∈ R,ω ∈ R, the characteristic quasi-polynomial
h(s) can be split into two real functions R(β ,ω) = ℜ(h(β + jω)) and I(β ,ω) =
ℑ(h(β + jω)). Consequently the zero determining equation h(s) = 0 can be split
into

R(β ,ω) = 0 (2)

I(β ,ω) = 0. (3)

Notice that the root positions can easily be located as intersection points on the zero
level curves of the surfaces R(β ,ω) and I(β ,ω) given by (2) and (3). Subsequently,
the accuracy of the zeros is increased by Newton’s method. The overall algorithm
is given as follows:

Algorithm 1. Mapping the quasi-polynomial spectrum

1. The region of interest D is covered by a regular mesh grid

Γ =

⎡
⎢⎣
β0 + jω0 · · · βkmax + jω0

... βk + jωl
...

β0 + jωlmax · · · βkmax + jωlmax

⎤
⎥⎦ ,

βk = βmin + kΔg, k = 0, 1, .... , kmax

ωl = ωmin + lΔg, l = 0, 1, .... , lmax

(4)

with a grid step Δg.
2. The functions h(s) is evaluated at each grid point of (4) and split into real and

imaginary parts providing the matrices R̄(βk,ωl) and Ī(βk,ωl).
3. The zero level curves R(β , ω) = 0 and I(β , ω) = 0 are mapped applying the

contour plotting algorithm to the matrices R̄(βk,ωl) and Ī(βk,ωl).

4. The intersection points of R(β , ω) = 0 and I(β , ω) = 0 are determined as the
zeros of the function IR(β ,ω) = Im(h(s)) evaluated over the points on the curve
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Fig. 1 Zero-level contours given by (2) - thick line, and the curves IR(β ,ω) normalized with
respect its absolute value - thin line, • - root positions

R(β , ω) = 0, as shown in Fig. 1. Let us remark that using this approach, all the
zeros are assessed within the same accuracy determined by Δg.

5. Newton’s iteration method is applied to increase the accuracy of each zero.

�

More details on the particular steps of Algorithm 1 can be found in [21, 23].

2.1 Mapping the Zero Level Curves

For mapping the zero level curves R(β ,ω) = 0 and I(β ,ω) = 0, Matlab function
contour is used in QPmR implementation. As outlined in [6], the algorithm of Mat-
lab contour function is relatively simple. It is based on covering the region of in-
terest by a uniform grid of points. Then, for every cell of the grid, the function is
evaluated. Consequently, the sign based test is involved that decides whether the
contour passes the particular cell. Finally, the passing points are determined by in-
terpolation and joined together with a straight lines providing the contour approx-
imation segments. Obvious computational disadvantages of the contour algorithm
are the required regularity of the grid and the use of linear approximation of the level
segments over the given cell. Consequently, in order to achieve smooth zero-level
contours R(β ,ω) = 0 and I(β ,ω) = 0, the grid needs to be sufficiently dense.

2.1.1 The Grid Density Adaptation

As shown in [22], the grid step Δg = π
10α0

guarantees a sufficiently dense grid in
the high frequency regions of the complex plane. However, the density of the roots
close to the origin can be completely different. There can be regions with the roots
very close to each other or with even multiple roots. If the selected grid size is too
large, some roots can be omitted. On the other hand, if the grid size is too small, the
mapping by contour is too time consuming. Taking these aspects into consideration,
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a grid adaptation rule has been implemented in the QPmR v.2. The core of the
adaptation is based on independent checking the number of roots located in the
region D by the application of the argument principle rule [1, 19, 27]

Nϕ =
1

2π
Δ argh

ϕ
(s) =

1
2π j

∫
ϕ

h′(s)
h(s)

ds (5)

where ϕ is the counterclockwise oriented curve tightly enclosing the region bound-
ary, and Nϕ is the number of roots in the region enclosed by ϕ . In the QPmR code,
a numerical evaluation of the integral in (5) is performed on a considerably denser
grid compared to the grid used for the mapping the zero level curves. If the number
of roots detected by (5) is different from the number of roots determined by Algo-
rithm 1, it is likely that the mapping has not been performed well. Let us remark that
the initial grid size is selected with respect to the size of the region as well as with
respect to the spectrum distribution features so that the computation time of the first
try is small. If the argument increment based test fails, the grid size is reduced and
all the computations according to Algorithm 1 are performed again, including the
argument increment based test. If the result of the test is still negative, the region
D is split into four rectangular subregions and the QPmR algorithm is recursively
applied to each of the subregions. If the result of the subsequent test performed for
each of the subregions is still negative, the particular subregion is split into four
sub-subregions and the QPmR is applied in the second recursion level. If even this
does not help, the algorithm stops and the user is recommended to manually reduce
the region of interest D. Analogously, the grid size reduction procedure described
above is performed whenever the Newton’s iteration does not converge for any of
the roots.

3 Spectrum Analysis

The spectrum asymptotic distribution features of time delay systems have already
been studied already by Bellman and Cooke (1963), [1]. Determining the princi-
pal terms of the quasi-polynomial h(s), the distribution properties of the roots with
unlimitedly high magnitudes has been determined. As in [1, 22], let us define

g(s) =
N

∑
j=1

p j,mj s
mj (1+ εj(s))e

sϑ j (6)

which has the same distribution of zeros as (1), where ϑ j = α0 − α j,
0 = ϑ0 < ϑ1 < ... < ϑN−1 < ϑN , p j,mj �= 0 ( j = 0,1, ...,N) and the functions
ε j(s) have the property lim|s|→∞ |ε j(s)| = 0. As it has been shown in [1], with the
points Pj = (ϑ j ,m j), we can define the Distribution diagram as follows:

Proposition 1. Quasi-polynomial spectrum distribution diagram [1]. Given the
quasi-polynomial (1) transformed to the form (6), the spectrum distribution diagram
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is constructed as concave polygonal line L over the points Pj = (ϑ j ,m j), satisfying
the following features:

• joins P0 with PN

• has vertices only at points of the set P j

• is concave and is such that no points P j lie above it

Let the successive segments of L be denoted by L1, L2,....LM, numbered from left to
right, and let μr denote the slopes of Lr,r = 1..M. For each segment of the spectrum
distribution diagram Lr with μr > 0, a retarded chain with infinitely many roots
exists. The segments with μr = 0 correspond to the neutral part of the spectrum,
which is located in a vertical strip of the complex plane. �

Based on the Distribution diagram and utilizing further results by Bellman and
Cooke [1], the asymptotic exponentials of the retarded root chains can be derived
as follows:

Proposition 2. Asymptotic exponentials of the root chains [22]. For large magni-
tudes of s = β + jω ,β ∈R,ω ∈R

+, the asymptotic exponentials of the root chains
of (6) can be determined as

ω = exp

(
cr−β
μr

)
(7)

where cr = μr ln |wrk |, and wrk is a zero of the polynomial

fr(w) =
Nr

∑
j=0

p̄ jw
m̃ j (8)

where m̃ j = m̄ j − m̄0, m̄ j and p̄ j correspond to those points of the distribution di-
agram Pj = (ϑ j ,m j) defined according to Proposition 1 that lie on the particular
segment Lr. Nr + 1 is the number of points on the segment Lr. �

To sum up, first, within the spectrum analysis functionality of QPmR v.2, the
spectrum distribution diagram is constructed as described in Proposition 1. Conse-
quently, the asymptotic exponential functions (7) of the root chains are determined
as described in Proposition 2.

3.1 Spectral Features of Neutral Quasi-Polynomial

If the quasi-polynomial is of neutral type, we can define an associated exponential
polynomial as follows

D(s) =
NM

∑
j=0

p̄ je−sᾱj , (9)

where the coefficients p̄ j and delays ᾱ0 > ᾱ1 > ... > ᾱNM = 0 correspond to the
points Pj on the segment LM . The function D(s) can be derived very easily as the
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sum of the terms in (1) corresponding to the n powers of s. Let us remark that in
literature on neutral systems, the associated exponential polynomial is referred to
as the characteristic function of the associated difference equation defined for the
neutral system [12, 17, 18].

It can be easily proven, see e.g. [1,17], that the infinite spectrum of (9) lies within
a certain vertical strip of the complex plane. Due to this property, the function (9)
can have infinitely unstable zeros. Next, the fundamental feature of a neutral quasi-
polynomial of form (1) is that a part of its spectrum tends to match the spectrum
of (9). Thus, the stability of (9) is a necessary condition for the stability of (1).
Consequently, the neutral quasi-polynomial can have infinitely many unstable zeros,
which can never happen if the quasi-polynomial is retarded. Besides, it has been
shown [17] that the upper bound of the spectrum of (9) given by

cD(ααα) = sup{ℜ(s) : D(s) = 0} . (10)

can be extremely sensitive to small variations in the delays ααα = [ᾱ j], j = 1..NM−1.
This has led to the introduction of the concept of strong stability in [12]. The neutral
system is strongly exponentially stable if it remains exponentially stable subject
to small variations in the delays. In order to test the strong stability of the neutral
system, the ’safe’ upper bound C̄D(ααα) was defined in [17] as follows:

Definition 1. Safe upper bound of the spectrum of exponential polynomial [17]. Let
C̄D(α) ∈ R be defined as

C̄D(ααα) = lim
ε→0+

cε(ααα),

where
cε(ααα) = sup{cD(ααα+ δααα) : δααα ∈ R

m and ‖δααα‖ ≤ ε} .

�

Clearly, we have C̄D(ααα) ≥ cD(ααα). Based on the results presented in [17, 18], the
safe upper bound for the spectrum of (9) can be determined as follows

Proposition 3. Determining C̄D [17]. The safe upper bound C̄D of the spectrum
of the associated exponential polynomial (9) is determined as a single zero of the
strictly decreasing function

c ∈R→
NM−1

∑
j=0

∣∣∣∣ p̄ j

p̄NM

∣∣∣∣e−cᾱj− 1. (11)

Consequently, the neutral system with the characteristic functions (1) and (9) is
strongly stable if and only if C̄D < 0. �

Let us remark that by the test given in Proposition 3, the delays in (9) are considered
as mutually independent. Particularly, if the function (1) is derived as a characteristic
function of an interconnected system, there can be dependencies in the delays in
(9). In this case, the result by the Proposition 3 is too conservative. Instead, a test
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proposed in [18] can be applied. Let us remark that a SW tool for strong stability
test has recently been implemented in [14].

To sum up, in the QPmR v.2, first, the associated exponential polynomial (9) is
derived from (1). Consequently, the spectrum of (9) is computed by Algorithm 1.
Consequently, the safe upper bound C̄D is determined as described in Proposition 3.

4 Working with QPmR v.2 in Matlab

Below, we describe how to use the QPmR1 v.2 in Matlab. The full syntax of the
QPmR Matlab function is as follows

[R Y]=QPmR(Region,P,D,e,ds,gr)

where the function inputs are

• Region - the region of interest D defined as: [βmin,βmax,ωmin,ωmax]
• P - a matrix of size (N + 1)× n with coefficients of polynomials in (1)
• D - a vector of delays in (1)
• e - the computation accuracy (the default value, indicated by e=-1, is 10−6Δg

• ds - the grid step Δg. If ds=-1, the grid step is adjusted automatically as described
in Subsection 2.1.1.

• gr - parameter controlling graphical representation of the results. Only if gr=1,
the results are visualized in plots.

The function outputs are:

• R - the vector of computed zeros (NaN indicates the algorithm failure)
• Y - structured variable with summary of the QPmR results. Particularly, Y.flag

indicates the result correctness (flag: 1 - correct, 0 - failure indicated by the
argument based test, -1 - Newton’s iterations failure). Next, information on the
asymptotic features of the spectrum is provided. If the quasi-polynomial is neu-
tral, the zeros of the associated exponential polynomial and the value of the safe
upper bound of its spectrum are given. Additionally, information on the final grid
size and the accuracy estimates are outlined.

The quasi-polynomial can also be defined in the function handle form Fun. Then,
the function syntax is

[R Y]=QPmR(Region,Fun,e,ds,gr)

In this QPmR mode, only the roots are determined. No additional analysis of the
spectrum is performed. In this mode however, the QPmR can be used to com-
pute roots of general analytical functions, e.g. fractional polynomials or quasi-
polynomials. Let us also remark that not all the input and output arguments must
be assigned. The shortest forms of the commands are R=QPmR(Region,P,D) or
R=QPmR(Region,Fun). In the following subsection we provide three demonstra-
tion examples.

1 http://www.cak.fs.cvut.cz/algorithms/qpmr

http://www.cak.fs.cvut.cz/algorithms/qpmr
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4.1 Examples

The following numerical examples have been run in Matlab R2012d on PC Intel(R)
Core(M) i7-3632QM CPU @2.20GHz 2.20GHz, RAM 8.00GB, 64-bit Operating
System.

4.1.1 Example 1

As in the Introductory example of [21], the objective is to compute the roots of the
following simple quasi-polynomial

h(s) = s+ exp(s), (12)

located in the complex plane regionD= [−10,2]× [0,30]. Let us remark that in [21],
the quasi-polynomial maps have been obtained analytically. Besides, due to sim-
plicity of the quasi-polynomial, the spectrum can be determined using the Matlab
Lambert W function [26] as follows

sk =W (k,−1),k =−∞..− 2,−1,0,1,2, ..,∞ (13)

Using QPmR with automatic adjustment of the grid size and with the default accu-
racy, the following command performs the task of spectrum analysis and computa-
tion

[R Y]=QPmR([-10 2 0 30],[1 0;0 1],[0 1],-1,-1,1).

The graphical results are in Fig. 2. As can be seen, there is only one chain of roots.
For comparison, the spectrum computed by the Matlab Lambert W function com-
mand R=lambertw(0:5,-1) is shown in Fig. 2 too. If only the spectrum is of
interest, the following syntax of QPmR with function handle form definition of the
quasi-polynomial can be used

[R Y]=QPmR([-10 2 0 30],@(s)s+exp(-s),-1,-1,1),

providing the graphical results as shown in the right part of Fig. 2. Additionally,
the computation times of the old and the new versions of QPmR are compared with
the following results: QPmR v.1: 0.22sec, QPmR v.2: 0.25sec if both the spectrum
analysis and computation are performed, and 0.10sec if the spectrum is computed
only. Thus, for this simple example, the spectrum computation time was more than
halved by the new version of QPmR. Let us remark that in this comparison, the
adapted grid step Δg = 0.36 was used for all the cases. Let us also remark that
computation of the five roots by the Matlab Lamert W function took 0.035sec.

4.1.2 Example 2

As in the application example in [22], consider the retarded quasi-polynomial in the
form
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Fig. 2 Results of QPmR algorithm applied to quasi-polynomial (12). Left - upper part: spec-
trum distribution diagram; lower part: solid line - asymptotic exponential of the spectrum
chain, • - roots determined by QPmR, × - spectrum determined using Lambert W function.
Right: thick - maps of R(β ,ω) =ℜ(h(β + jω)) = 0, thin - I(β ,ω) = ℑ(h(β + jω)) = 0, • -
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.

h(s) = 0.2s8 +1.7s7−12.8s5 +0.01s2−1.8s+29.1exp(−4.61s)+

+(s7−1.1s5 +6.7s)exp(−8.52s)+(−8.7s4 +2.1s2 +19.3s)exp(−10.33s)+

+(0.8s6 +0.1s4−1.4s+7.2)exp(−13.52s)+

+(0.15s5 +0.2s4−0.9s3 +25.2s)exp(−18.52s)+0.5s3 exp(−19.9s)+

+(0.03s3 +0.04s2−0.1s+1.5)exp(−23.35s)+51.7exp(−24.99). (14)

As in [22], the grid step Δg = 0.0157, the accuracy of the roots 1e− 6 and the
region of interest D = [−4.5,3]× [0,100] are considered. The Matlab code for the
root computation and the spectrum analysis is as follows

D=[24.99;23.35;19.9;18.52;13.52;10.33;8.52;4.61;0]

P=[0 0 0 0 0 0 0 0 51.7; 0 0 0 0 0 0.03 0.04 -0.1 1.5;

0 0 0 0 0 0.5 0 0 0; 0 0 0 0.15 0.2 -0.9 0 25.2 0;

0 0 0.8 0 0.1 0 0 -1.4 7.2; 0 0 0 0 -8.7 0 2.1 19.3 0

0 1 0 -1.1 0 0 0 6.7 0; 0 0 0 0 0 0 0 0 29.1

0.2 1.7 0 -12.8 0 0 0.001 -1.8 0]

[Y A]=QPmR([-4.5 3 0 100],P,D,1e-6,0.0157,1);

The results are shown in Fig. 3. As can be seen, the spectrum consists of five retarded
chains. Overall number of roots in D is 390. Also in this example, the computation
time was compared with the old version of QPmR with the following result - QPmR
v.1: 18.9 sec.; QPmR v.2: 15.6 sec (7 sec. if no spectrum analysis is performed).
Thus, the spectrum computation by QPmR v.2 is almost three times faster compared
to its first version.
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Fig. 3 Results of QPmR algorithm applied to the quasi-polynomial (14). Left - upper part:
spectrum distribution diagram; lower part: solid line - asymptotic exponential of the spectrum
chain, • - roots determined by QPmR. Right: thick - maps of R(β ,ω) = ℜ(h(β + jω)) = 0,
thin - I(β ,ω) = ℑ(h(β + jω)) = 0, • - roots

4.1.3 Example 3

Consider a neutral quasi-polynomial

h(s) = s4 + 0.2s3 + 5s+ 2.1+(0.5s4− 2.1s)exp(−1.5s)+

+(0.3s4 + 3.2s2)exp(−2.2s)+ (1.2s2)exp(−4.3s)+ 3exp(−6.3s). (15)

The associated exponential polynomial is given by

D(s) = 1+ 0.5exp(−1.5s)+ 0.3exp(−2.2s). (16)

The task is to compute and analyze the spectrum in the region D= [−6,2]× [0,200].
The code to perform the task is as follows.

P=[1 0.2 0 5 2.1;0.5 0 0 -2.1 0;0.3 0 3.2 0 0;0 0 1.2 0 0;0 0 0 0 3]

D=[0;1.5;2.2;4.3;6.3]

[R Y]=QPmR([-6 2 0 200],P,D,-1,-1,1)
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Fig. 4 Results of QPmR algorithm applied to quasi-polynomial (15). Left - upper part: spec-
trum distribution diagram; lower part: solid lines - asymptotic exponentials of the retarded
spectrum chains and the safe upper bound of the spectrum of associated exponential poly-
nomial (16) (vertical line), • - quasi-polynomial roots, + - spectrum of the associated ex-
ponential polynomial (16). Right - thick - maps of R(β ,ω) = ℜ(h(β + jω)) = 0, thin -
I(β ,ω) = ℑ(h(β + jω)) = 0, • - roots

The results of the computations, which took 9.1sec. including the grid adaptation
(1.9sec. with the fixed grid size 0.1) are shown in Fig. 4. Next to the spectrum and
the asymptotic functions for the retarded root chains, the spectrum of associated
exponential polynomial (16) and its safe upper bound are computed and visualized
in Fig. 4.

5 Conclusions

As the main result, the updated QPmR v.2 algorithm for mapping and analyzing
the quasi-polynomial spectra was presented. Unlike the original QPmR described
in [21], no functions of Symbolic Math toolbox are used. Besides, the main addi-
tional functionalities are: i) the recursive adaptation procedure of the the grid mesh
for mapping the quasi-polynomial. ii) utilizing the results from [22], the spectrum
analysis is included. As demonstrated in the application examples, QPmR v.2 is
at least two times faster compared to the original QPmR version. A large part of
the computation time is consumed by the Matlab function contour for mapping the
quasi-polynomial. A possibility to further reduce the computation efficiency is to



QPmR - Quasi-Polynomial Rootfinder 311

use a more advanced mapping function, e.g. Level with the algorithm described
in [6], where an adaptive triangulation scheme is utilized. Another possibility is to
follow the same procedure as in [22], where the large areas free of roots are identi-
fied and omitted from the mapping procedure. As has been shown, next to the pos-
sibility to describe the quasi-polynomial by the matrix of polynomial coefficients
and the vector of delays, the Matlab function handle form can be used. In this sim-
pler mode of QPmR, no spectrum analysis is performed. However, in this mode,
the QPmR can be used for computing roots of any analytical (well-conditioned)
function, e.g. fractional order polynomials or quasi-polynomials with both real and
complex coefficients.
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tion of the Czech Republic under the project KONTAKT II - LH12066.
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Analysis of a New Model of Cell Population
Dynamics in Acute Myeloid Leukemia
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Abstract. A new mathematical model of the cell dynamics in Acute Myeloid
Leukemia (AML) is considered which takes into account the four different phases of
the proliferating compartment. The dynamics of the cell populations are governed
by transport partial differential equations structured in age and by using the method
of characteristics, we obtain that the dynamical system of equation can be reduced
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to two coupled nonlinear equations with four internal sub-systems involving dis-
tributed delays. Equilibrium and local stability analysis of this model are performed
and several simulations illustrate the results.

1 Introduction

Acute Myeloid Leukemia (AML) is a cancer of blood cells (myeloid lineage) for
which clinical progress has been quite slow in the last forty years, [13]. In this pa-
per, we propose a new model of cell dynamics in AML in order to understand its
dynamical behavior and ultimately improve its treatment in collaboration with doc-
tors at Saint-Antoine’s hospital in Paris (hematology section laboratory). The pro-
cess of formation and maturation of blood cells is called hematopoiesis. Blood cells
mature in the bone marrow from hematopoiteic stem cells (HSCs) until fully differ-
entiated cells are released in blood circulation (blood cells are transported through-
out the body by the plasma). The blood cell population has different components:
erythrocytes, or red blood cells; leukocytes, or white blood cells; and platelets.
HSCs can proliferate, self renew and differentiate into multiple lineages. The pro-
cess of cell division, called proliferation or cell cycle, consists of four phases: G1,
S, G2 and M. At the end of the M phase cell division occurs and two different
daughter cells are produced:either with the same biological properties as the par-
ent (self-renewal) or progenitors.The production of progenitors at cell division is
called differentiation. One of the first mathematical models on hematopoiesis was
proposed by [7].This model consists of a system of differential equations, describ-
ing haematopoietic stem cell dynamics, considering a rest (or quiescent) phase and a
proliferative phase during the cell division cycle. Most recent studies of various dy-
namical models of hematopoiesis have been proposed and studied in the literature,
see e.g. [2], [5], [6], [8] and references therein.

AML combines at least two molecular events: a blockade of the maturation and
differentiation leading to the accumulation of immature myeloid cells, and an ad-
vantage of proliferation leading to the flooding of bone marrow by immature and
proliferating immature cells. Recently, [2] has proposed a model for AML, that con-
sists of a system of delay-differential equations inspired by the model of [7] with
discrete maturity structure. The model takes into account the differentiation block-
ade that is frequently observed in AML. For the equilibrium and stability analysis
(linear and nonlinear system) of this model see [4], [11], [10] and their references.

In this chapter, we consider a mathematical model originally introduced in [1].
This model modified and enriched the model of [2] in the following sense: the
self-renewal phenomenon is written in two parts where fast and slow dynamics are
separated (this gives us two static nonlinearities in the system); and the dynamical
behavior of the proliferating cells is separated into four phases (namely the phases
G1, S, G2 and M).

In this chapter we first recall in Sections 2 and 3 the model proposed in [1]. The
equilibrium and stability analysis of this new system are performed in Section 4. A
detailed academic example is presented in Section 5. The chapter ends with con-
cluding remarks in Section 6.
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2 Mathematical Model of AML

Taking into account the aforementioned properties of AML, the mathematical model
may be obtained as follows. Let us consider two cell sub populations of immature
cells, proliferating (divided in G1, S, G2 and M phases) and quiescent (in phase G0)
cells. Between the exit of the M phase and the beginning of the G1 phase, a new
phase called G̃0, modelling the fast-renewal effect, is introduced here. We denote by
pi (t,a), li (t,a), ni (t,a), mi (t,a), ri (t,a) and r̃i (t,a) the cell populations of the G1,
S, G2, M, G0 and G̃0 phases, respectively, of the i-th generation of immature cells,
with age a≥ 0 at time t ≥ 0.

A schematic representation of the i-th compartmental model considered is shown
in Figure 1, where the subscript i is dropped for notational convenience.

Fig. 1 The i-th compartmental model of the AML cell dynamics

The dynamical behavior of the cell populations of each phase is represented by
the following system of transport equations dependent on age a:
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where the death rate in the resting phase is δi > 0, the re-introduction function from
the resting subpopulation into the proliferative subpopulation is βi, and the positive
constant death rates in the G1, S, G2 and M phases are γ1

i , γ2
i , γ3

i and γ4
i , respectively;

the amount of time spent in the G1, S, G2 and M phases are τ1
i , τ2

i , τ3
i and τ4

i ,
respectively; and, the division rates of the phases G1, S, G2 and M are functions that
depend upon a, denoted by gp

i , gl
i , gn

i and gm
i , respectively.

Here, only the death rate is included and the birth rate is not involved in the
equation; because, when individuals are born at a = 0, they are introduced into the
population through the boundary (renewal) condition. The re-introduction rates βi

and β̃i are strictly positive monotonically decreasing functions depending upon the
total population of resting and fast-self renewing cells denoted by xi (t) and x̃i (t),
respectively, where

xi (t) :=
∫ +∞

0
ri (t,a)da.

and

x̃i (t) :=
∫ +∞

0
r̃i (t,a)da.

Boundary conditions associated with the system (1) are given by
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pi (t,a = 0) = βi (xi (t))xi (t)+ β̃i (x̃i (t)) x̃i (t)
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0 gp

i (a) pi (t,a)da,
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mi (t,a = 0) =
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r̃i (t,a = 0) = L̃i
∫ τ4

i
0 gm

i (a)mi (t,a)da

where Li := 2σi (1−Ki), L̃i := 2(1−σi)(1−Ki). The positive constants Ki and
σi represent the probability of a cell of leaving, at the stage i, the M phase and
entering the phase G̃0 (same stage) and G0 (stage i + 1), respectively. The ini-
tial age-distribution of the populations of (1) are nonnegative age-dependent func-
tions and they are assumed to be known: pi (t = 0,a) = p0

i (a) , li (t = 0,a) = l0
i (a) ,

ni (t = 0,a) = n0
i (a) , mi (t = 0,a) = m0

i (a) , ri (t = 0,a) = r0
i (a) and r̃i (t = 0,a) =

r̃0
i (a). Additionally, the following assumptions are fulfilled:

1. The division rates gp
i , gl

i , gn
i and gm

i are continuous functions such that

∫ τ j
i

0
gk

i (a)da =+∞, for ( j,k) = (1, p), (2, l), (3,n), (4,m).

2. lim
a→+∞

ri (t,a) = 0 and lim
a→+∞

r̃i (t,a) = 0.

3. The re-introduction terms βi and β̃i are differentiable and uniformly decreasing
functions with βi (0)> 0, β̃i (0)> 0; βi (x)→ 0 and β̃i (x)→ 0 as x→ ∞.
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Typically βi and β̃i are Hill functions of the form

βi (x) =
βi (0)

1+ bixNi
and β̃i (x̃) =

β̃i (0)

1+ b̃ix̃Ñi
(2)

where Ni and Ñi are integers greater or equal to 2; bi > 0, b̃i > 0 and b̃i � 1. Some
examples of the βi function are illustrated in Figure 2.
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Fig. 2 Examples of three different βi functions with βi(0) = 1, bi = 1, and Ni = 2, 5, 9

Now, we shall show how a system of ordinary differential distributed delayed
equations is obtained from the PDE’s (1).

3 Model Transformation

Using the method of characteristics (see e.g [12]), one can easily obtain an explicit
formulation for pi (t,a), li (t,a), ni (t,a) and mi (t,a) given by

pi (t,a) =

{
p0

i (a− t)e−
∫ a

a−t(γ1
i +gp

i (w))dw, if t ≤ a,

pi (t− a,0)e−
∫ a

0 (γ1
i +gp

i (w))dw if t > a,

li (t,a) =

{
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i (a− t)e−

∫ a
a−t(γ2

i +gl
i(w))dw, if t ≤ a,

li (t− a,0)e−
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0 (γ2
i +gl

i(w))dw if t > a,

ni (t,a) =

{
n0

i (a− t)e−
∫ a

a−t(γ3
i +gn

i (w))dw, if t ≤ a,

ni (t− a,0)e−
∫ a

0 (γ3
1+gn

i (w))dw if t > a,

mi (t,a) =

{
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i (a− t)e−
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a−t(γ4
i +gm

i (w))dw, if t ≤ a,

mi (t− a,0)e−
∫ a

0 (γ4
i +gm

i (w))dw if t > a,

where
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pi (t− a,0) = βi (xi (t− a))xi (t− a)+ β̃i (x̃i (t− a)) x̃i (t− a) ,

li (t− a,0) =
∫ τ1

i

0
gp

i (θ1) pi (t− a,θ1)dθ1,

ni (t− a,a) =
∫ τ2

i

0
gl

i (θ2) li (t− a,θ2)dθ2,

mi (t− a,a) =
∫ τ3

i

0
gn

i (θ3)ni (t− a,θ3)dθ3.

Only the solutions t ≥ a are considered for the density cells pi (t,a), li (t,a), ni (t,a)
and mi (t,a) because we are mainly interested in the long time behavior of the popu-
lations; namely, the behavior of these phases is described by the second term of the
above solutions with the following initial conditions
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· f p
i (θ1)e−γ

i
1θ1dθ1

)
f l
i (θ2)e−γ

2
i θ2dθ2

]
· f n

i (θ3)e−γ
3
i θ3dθ3

where

f k
i (t) = gk

i (t)e−
∫ t

0 gk
i (w)dw if 0 < t < τ j

= 0 otherwise,

for ( j,k) = (1, p), (2, l), (3,n), (4,m), and the shift operator Δ is defined by

Δaxi (t) := xi (t− a) .

The functions f k
i , are density functions, i.e.

∫ τ1
i

0 f k
i (t)dt = 1, for k = p, l,n,m.
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Finally, integrating the last two equations in (1) with respect to the age variable
a, between a = 0 and a =+∞ one obtains:

ẋi (t) = −(δi +βi (xi (t)))xi (t)+Li

∫ τ4
i

0
gm

i (a)mi (t,a)da (3)

+ 2Ki−1

∫ τ4
i−1

0
gm

i−1 (a)mi−1 (t,a)da

and
˙̃xi (t) =−β̃i (x̃i (t)) x̃i (t)+ L̃i

∫ τ4

0
gm

i (θ1)mi (t,θ1)dθ1 (4)

where
mi (t,a) = mi (t− a,0)e−

∫ a
0 (γ4

i +gi
m(w))dw.

It is important to point out that equations (3) and (4) depend explicitly on
each other, because of the term mi (t− a,0), which contains the expressions
Δxa+θ1+θ2+θ3

i (t) and Δ x̃a+θ1+θ2+θ3
i (t); that is, the equations form a coupled sys-

tem.
Defining h1

i (t) := f p
i (t)e−γ

1
i t , h2

i (t) := f l
i (t)e−γ

2
i t , h3

i (t) := f n
i (t)e−γ

3
i t and

h4
i (t) := f m

i (t)e−γ
4
i t , we rewrite the equations (3) and (4) as

ẋi (t) = −(δi +βi (xi (t)))xi (t)+Li
(
h4

i ∗ h3
i ∗ h2

i ∗ h1
i ∗ωi

)
(t)

+ 2Ki−1
(
h4

i−1 ∗ h3
i−1 ∗ h2

i−1 ∗ h1
i−1 ∗ωi−1

)
(t)

˙̃xi (t) =−β̃i (x̃i (t)) x̃i (t)+ L̃i
(
h4

i ∗ h3
i ∗ h2

i ∗ h1
i ∗ωi

)
(t)

where ωi (t) := βi (xi (t))xi (t)+ β̃i (x̃i (t)) x̃i (t) and ∗ is the convolution operator.

4 Analysis of the i-th Compartmental Model

4.1 Equilibrium Points

Let us denote by xe
i and x̃e

i , the equilibrium points of (3) and (4), respectively;

namely, the trajectories that satisfy
dxe

i
dt = 0 and

dx̃e
i

dt = 0. The i-th equilibrium point
is the solution of

− ūi−1 =−(1−LiHi (0))βi (x
e
i )xe

i − δix
e
i +LiHi (0) β̃i (x̃

e
i ) x̃e

i (5)

0 = L̃iHi (0)βi (x
e
i )xe

i −
(
1− L̃iHi (0)

)
β̃i (x̃

e
i ) x̃e

i (6)

where

ūi−1 =

{
0 if i = 1

2Ki−1Hi−1(0)
(
βi−1

(
xe

i−1

)
xe

i−1 + β̃i−1
(
x̃e

i−1

)
x̃e

i−1

)
if i > 1
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and
Hi (s) = H1

i (s) ·H2
i (s) ·H3

i (s) ·H4
i (s)

with H j
i (s) =

∫ τ j
i

0 h j
i (t)e−stdt, for j = 1, . . . ,4.

We can readily note that the points xe
i = 0 and x̃e

i = 0 satisfy (5) and (6). We will
refer to this equilibrium point as the trivial equilibrium point. From (5) and (6), a
non-trivial equilibrium point satisfy

βi (x
e
i ) =

{ δ1
α1

if i = 1
δi
αi
−
(

ūi−1
αi

)
1
xe

i
if i > 1

(7)

β̃i (x̃
e
i ) =

⎧⎨
⎩
(
δ1xe

i
α̃1

)
1
x̃e

1
if i = 1(

δix
e
i−ūi−1
α̃i

)
1
x̃e

i
if i > 1

(8)

where

αi :=
2(1−Ki)Hi (0)− 1

1− 2(1−σi)(1−Ki)Hi (0)
and α̃i :=

2(1−Ki)Hi (0)− 1
2(1−σi)(1−Ki)Hi (0)

recall Li := 2σi (1−Ki) and L̃i := 2(1−σi)(1−Ki).
The result stated below deals with existence and uniqueness of positive equilib-

rium points xe
i .

Theorem 1. If 1 < 2(1−Ki)Hi(0) < 1
1−σi

for all i, and β1 (0) >
δ1
α1

, then we have
a unique positive equilibrium point xe

i .

Proof. First, note that αi is non-negative for every i by hypothesis. For i = 1,
β1 (xe

1) =
δ1
α1

; the existence and uniqueness is guaranteed if β1 (0) >
δ1
α1

. For i ≥ 2,

let ψi : R+ \ {0} → R be given by ψi(x̄) =
δi
αi
− bi
αi

1
x̄ . The non-negativeness of αi

implies the following: ψi is strictly increasing ( d
dx̄ψi(x̄) > 0), lim

x̄→+∞
ψi(x̄) =

δi
αi

is

positive, lim
x̄→0−

ψi(x̄) =−∞, and the difference βi−ψi is strictly decreasing with the

properties lim
x̄→0−

(βi (x̄)−ψi(x̄)) = ∞ and lim
x̄→+∞

(βi (x̄)−ψi(x̄)) = − δi
αi

. Therefore,

there is a positive real number x∗ such that βi (x∗)−ψi(x∗) = 0. In other words, (5)
has a unique positive solution for every i. �

We now discuss the existence and uniqueness conditions for x̃e
i . Since

β̃i (x̃
e
i ) =

1
x̃e

i

(
2(1−σi)(1−Ki)Hi (0)

(1− 2(1−σi) (1−Ki)Hi (0))
βi (x

e
i )xe

i

)
,

it is easy to see that for a suitable function β̃i, there will be an intersection point
between the functions x̃e

i 	→ β̃i (x̃e
i ) and x̃e

i 	→ c/x̃e
i where c is the constant

c =
2(1−σi) (1−Ki)Hi (0)

(1− 2(1−σi)(1−Ki)Hi (0))
βi (x

e
i )xe

i .
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If we assume that β̃i is a Hill function of the form (2) for every i, then x̃e
i is the

solution of

b̃i (x̃
e
i )

Ñi − β̃i(0)
c

x̃e
i + 1 = 0 . (9)

By applying Descartes rule of signs, we obtain that the maximum number of
positive solutions of (9) is two. In fact, the parameters of the system may be such
that we have, one, or two, or no equilibrium as the positive solution of (9) for x̃e

i .
Figure 3 illustrates this point by showing possible intersections of β̃i (x̃e

i ) and c/x̃e
i

for different numerical values. Thus, a positive equilibrium, when it exists, may not
be unique for the sub-compartments of x̃i. This poses an extra challenge for the
stability analysis.
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1.113/x

Fig. 3 Examples of intersections of β̃i
(
x̃e

i

)
and c/x̃e

i

4.2 Model Linearization and Stability

Let us define a perturbed trajectory around the equilibrium points of (3) and (4) by
Xi (t) := xi (t)− xe

i (t) and X̃i (t) := x̃i (t)− x̃e
i (t), for every i. The linearization of (3)

and (4) around their equilibrium points is

d
dt Xi (t) = −(δi + μi)Xi (t)

+Liμi
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗Xi
)))]

(t)
+Liμ̃i

[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i
)))]

(t)
+2Ki−1μi−1

[
h4

i−1 ∗
(
h3

i−1 ∗
(
h2

i−1 ∗
(
h1

i−1 ∗Xi−1
)))]

(t)
+2Ki−1μ̃i−1

[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i−1
)))]

(t)

(10)

and

d
dt

X̃i (t) = −μ̃iX̃i (t)+ L̃iμi
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗Xi
)))]

(t) (11)

+L̃iμ̃i
[
h4

i ∗
(
h3

i ∗
(
h2

i ∗
(
h1

i ∗ X̃i
)))]

(t)
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where

μi =
d
dx

(βi (x)x)

∣∣∣∣
x=xi

and μ̃i =
d
dx

(
β̃i (x)x

)∣∣∣∣
x=x̃i

Taking the Laplace transform of (10) and (11), we can see that the characteristic
equation of the system represented by (10) and (11) is given by

n

∏
i=1

Ai(s) = 0 (12)

where Ai(s) = d11
i (s)d22

i (s)− d12
i (s)d21

i (s) with

d11
i (s) = s+ δi + μi−LiμiHi (s) , d12

i (s) =−Liμ̃iHi (s) ,

d21
i (s) =−L̃iμiHi (s) , d22

i (s) = s+ μ̃i− L̃iμ̃iHi (s)

It is a simple exercise to see that each Ai(s) can be expressed in the form

Ai(s) = (s+ μ̃i)(s+ δi + μi) ·
(

1−Hi(s)

(
Liμi

(s+ δi + μi)
+

L̃iμ̃i

(s+ μ̃i)

))

Since hi(a) > 0 we have that ‖Hi‖∞ = Hi(0). Also note that when μi > −δi and
μ̃i > 0 the function (

Liμi

(s+ δi + μi)
+

L̃iμ̃i

(s+ μ̃i)

)

is a low pass filter whose H∞-norm is attained at s = 0. Thus, by the Nyquist stability
criterion, all the roots of Ai(s) = 0 are in the open left half plane if and only if

Hi(0)

(
Liμi

δi + μi
+ L̃i

)
< 1.

Using the definition of Li and L̃i, after some algebraic manipulations, this condition
can be re-written as

Hi(0)<
δi + μi

2(1−Ki)(μi +(1−σi)δi)
. (13)

An interesting observation is that (13) is independent of μ̃i.

5 Numerical Example and Simulation Results

In what follows we take d to be the unit of time. Hence the time delays τ1
i , τ2

i ,
τ3

i and τ4
i are in d and the rates δi, γi, βi(0) and β̃i(0) are in d−1. The remaining

parameters are normalized to have no unit. The parameters given below are chosen
to illustrate various possibilities for the equilibrium and stability properties.
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We consider the following general form for the division rates h j
i :

h j
i (a) =

m j
i

emj
i τ

j
i − 1

e(m
j
i−γ

j
i )a and γ j

i << m j
i , j ∈ {1,2,3,4}.

Let us study a system with two compartments with δ1 = 1.3, δ2 = 0.9, K1 = 0.05,
K2 = 0.1, σ1 = 0.9, σ2 = 0.8, and the other parameters as indicated in Table 1. The
resulting equilibrium points and computed values of μi, αi and other computed
values are shown in the third part of Table 1.

Table 1 Simulation parameters and resulting equilibrium points

i βi(0) β̃i(0) bi b̃i Ni Ñi m1
i m2

i m3
i m4

i

1 2 1 1 0.1 2 2 3 1 2 4
2 1 1 1 0.3 4 4 3 1 2 2

i τ1
i τ2

i τ3
i τ4

i γ1
i γ2

i γ3
i γ4

i

1 0.3 0.1 0.2 0.4 0.03 0.010 0.020 0.04
2 0.3 0.1 0.2 1.0 0.05 0.015 0.085 0.05

i Hi(0) xe
i x̃e

i αi α̃i μi μ̃i

1 0.982 0.7992 0.2249 1.0652 4.6420 0.2691 0.9849
2 0.950 0.8100 0.2950 1.0794 2.0763 −0.1424 0.9887

Time domain simulation, performed in Matlab Simulink, shows that with the
initial conditions

x1(τ) = 0.6 for all − 0.4≤ τ ≤ 0; x2(τ) = 0.1 for all − 1.0≤ τ ≤ 0;

and x̃1(τ) = x̃2(τ) = 0, for all τ ≤ 0, the states converge to the equilibrium points
[

xe
1 xe

2

]
=

[
0.7992 0.8100

]
and

[
x̃e

1 x̃e
2

]
=

[
0.2250 0.2950

]
(14)

see Figs. 4 and 5.
Indeed it can be verified that with the parameters in Table 1 the local stability

condition stated in (13) is satisfied for both i = 1 and i = 2 (note that μ̃i > 0 and
δi + μi > 0 for both compartments):

H1(0) = 0.982 <
δ1 + μ1

2(1−K1)(μ1 +(1−σ1)δ1)
= 4.1388

H2(0) = 0.950 <
δ2 + μ2

2(1−K2)(μ2 +(1−σ2)δ2)
= 22.3926
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Fig. 4 Trajectories of the states x1 and x̃1
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Fig. 5 Trajectories of the states x2 and x̃2

Note that with the above system parameters, we have multiple solutions of (9).
For x̃e

1 the other solution is 44.4544 and for x̃e
2 the other solution is 2.1374. Conver-

gence to any one of these depend on the local stability conditions at these points as
well as the initial conditions. Further simulations showed that (14) is the only stable
equilibrium point. For example, with the initial conditions

x1(0) = 1.4 x2(0) = 0.9 x̃1(0) = 1.5 x̃2(0) = 3.0

and x1(τ) = x2(τ) = x̃1(τ) = x̃2(τ) = 0, for all τ < 0, we observe that x̃2(t) di-
verges from its previous equilibrium 0.2950, that causes x2(t) to move away from
its equilibrium 0.8100; see Figures 6 and 7.
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Fig. 6 Trajectories of the states x1 and x̃1
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Fig. 7 Trajectories of the states x2 and x̃2

6 Conclusions

In this chapter we have re-visited the new model of cell population dynamics intro-
duced in [1] for AML. The new model was derived by using the PDEs representing
the cell dynamics for the phases G1, S, G2, M, G0 and G̃0 and by using a model
reduction. This gave us a pair of coupled nonlinear systems involving distributed
delays for the dynamical cell behavior in AML.

Here, we derived conditions for having positive equilibrium points and a linear
system is obtained around these positive solutions. It is observed that having pos-
sibly non-unique equilibrium makes the problem of finding the region of attraction
of locally stable equilibrium more challenging than the previous models considered
in [2] and [11].

The characteristic equation is derived for the local stability analysis; then by us-
ing classical methods of control theory we obtained a new local stability condition
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which depends on the parameters of the system. A simulation study of two compart-
ment system confirmed the results obtained here.

Currently, a parameter estimation of the model studied is been performed using
biological data.
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The Influence of Time Delay on Crane Operator
Performance

Joshua Vaughan and William Singhose

Abstract. Cranes are used extensively in many industries throughout the world.
These cranes operate in a wide array of environments, including some that are haz-
ardous to humans. The vast majority of cranes are directly controlled by human
operators. However, in some cases, it is necessary to remove the human operator
from hazardous operating conditions, creating a crane that must be remotely oper-
ated. This, however, introduces additional challenges for the operator. The operator
must now control the oscillatory payload while suffering from decreased perception
of the environment and the potential time delays caused by remote operation. A
number of studies of crane operator performance with varying time delays are pre-
sented here. The compiled results show that the type of crane control and duration
of the communication delay directly influence task completion time and difficulty.
Input shaping control is shown to improve completion times over a large range of
operating conditions and communication time delays.

1 Introduction

Cranes are essential to a large number of industries throughout the world. Bridge
cranes, like the one shown in Fig. 1, and gantry cranes serve as the primary heavy
lifters at ports and factories. Tower cranes and boom cranes, like the the one shown
in Fig. 2, often aid in the construction (and demolition) of buildings. Cranes typ-
ically have large delays between operator commands and payload response, stem-
ming from a combination of the large inertial properties of the crane structure and
the low natural frequency of payload oscillation. In addition, any movement of the
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Fig. 1 Bridge Crane at Logan Aluminum

overhead support point necessarily causes some oscillation of the payload. To accu-
rately and safely position the payload, operators must account for both the response
delays and the payload oscillation.

Fig. 2 Boom Crane Working on the Olympic Pool

Cranes are also used in places that are dangerous to human operators, such as
nuclear facilities, areas of high temperature, and disaster sites. In these areas, it is
desirable to remotely control the crane, distancing operators from the hazards. Re-
mote operation, however, increases the difficulty of accurately and safely moving
the crane payload. Communication delays increase the system lag, while the remote
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location limits the ability of the operator to survey the work area and plan a safe
payload path. In addition, remote operation makes it more difficult for the operator
to manually monitor and control payload oscillation. To allow the safe and efficient
operation of remote cranes, both the remote operation and payload oscillation chal-
lenges must be addressed.

Remote operation, or teleoperation, has been an active area of research for some
time. For a thorough review of teleoperation, the reader is pointed to three surveys
by Sheridan and the references contained within [23–25]. Other surveys of the field
are presented by Niemeyer [16] and Hokayem [6]. The recent research is a large
advancement from the first studies of Ferrell, who showed that human operators
would adopt a “move-and-wait” strategy in the presence of sufficiently large time
delays and that teleoperation task performance is a function of the delay time [3].
The results from one study suggested that not only is task performance a function
of the delay time, but the variance between repeated operations is as well (task
completion time and variance increased as delay time increased) [1].

Teleoperation via the Internet has been a topic of much recent research [4, 13,
15, 17, 20–22, 29, 36, 37]. The Internet provides a cheap, readily available medium
for teleoperation, but its packet-based nature presents additional challenges. For
example, the delay time can change greatly and rapidly. Despite this fact, numer-
ous systems have been successfully controlled via the Internet, including several
cranes [7, 11, 12].

The work presented here utilizes a different approach to teleoperation than con-
sidered in most previous papers. The vast majority of teleoperation research has
been conducted on systems where the communication path between the user and
the remote system is part of the system’s computerized feedback controller. A large
portion of this research has addressed the stability issues of the communication time
delay in the feedback loop. However, there are many systems for which bilateral op-
eration does not suit the system, such as teleoperated cranes. The approach presented
here seeks to improve teleoperated systems by reducing their dynamic complexity,
namely reducing the vibration of the remote system. This approach avoids the sta-
bility concerns of the force-feedback methods prevalent in the literature.

The method used to reduce the dynamic complexity of the remotely operated sys-
tem is input shaping. Input shaping limits system vibration by intelligently shaping
the reference command [26, 27, 30]. The original, unshaped reference command is
convolved with a series of impulses, called an input shaper. The resulting shaped
command moves the system with little residual oscillation. The process is shown
in Fig. 3. Input shaping has been successfully implemented on many vibratory sys-
tems including bridge [31, 32], tower [2, 12], and boom [18, 19] cranes, coordinate
measurement machines [8, 28], robotic arms [14, 26], and de-mining robots [5].

In addition, studies have been conducted that indicate input shaping improves
the performance of crane operators, both local [9,10] and remote [33,35]. The work
presented here investigates the factors that influence operator performance on tele-
operated cranes with input shaping.
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0

*

Fig. 3 The Input-Shaping Process

The next section will present a study of the influence of time delay on bridge
crane operator performance, with and without input shaping. Then, in Sect. 3 sev-
eral studies of human operators moving a tower crane payload through an obstacle
course under local and remote operation are presented and their data compiled and
analyzed. Finally, conclusions summarize the key results.

2 The Influence of Communication Delay on Bridge Crane
Operators

This section presents a study of the influence of pure time delays on crane operator
performance. The operators in this test controlled the crane directly, i.e. they were
local to the crane. However, their commands were artificially delayed to analyze
the influence of time delay on crane operator performance, while eliminating other
effects of remote operation. As such, this study attempts to isolate the effects of
the communication delay present in teleoperated systems, with and without input
shaping.

2.1 Experimental Protocol

Four operators completed a manipulation task using the 10-ton industrial bridge
crane shown in Fig. 4. The crane has a workspace that is 6 meters high, 5 me-
ters wide and 42 meters long. It is controlled using a Siemens programmable logic
controller (PLC), which receives operator commands from the control pendent.
Commands from the PLC are sent to Schneider Electric motor drives, which en-
sure accurate execution of the commands. To measure the payload response, the
crane is also equipped with a Siemens vision system.

The manipulation task that the users were asked to complete is shown schemat-
ically in Fig. 5. The task required the operator to move the crane payload from the
0.5m square start-zone around an obstacle to the 0.75m diameter circular end-zone
2.0m away. This motion is represented in the figure by “Nominal Path”. The ob-
stacle course was completed three times without input shaping, with time delays of
0s, 2s, and 4s. Each operator also completed the course ten times with input shap-
ing enabled, using both ZV [26, 30] and EI-shaped [27] commands. Time delays of
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Fig. 4 10-ton Industrial Bridge Crane at Georgia Tech

Fig. 5 The Manipulation Task for Bridge Crane Operator Study

0 – 4s, at 1s intervals, were used with both input shapers. For all commands, the
time delays were enforced as pure time delays of the operator commands. The
resulting control system is summarized in Fig. 6, where Gp represents the crane,
IS represents the input shaper, and Gh is the human operator. Notice that the hu-
man operates as a feedback controller, modifying the commands based on the error
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Fig. 6 Block Diagram of the Enforced Time Delay

between the desired crane location and its current position. The control inputs from
the human operator are delayed by τ before being passed to the input shaper for
modification and issue to the system.

For each test, the crane suspension cable length was set to 5.88m, creating a pay-
load oscillation frequency of approximately 0.205Hz (and a period 4.88s). For each
trial, the completion time, number of pendent button pushes, and obstacle collisions
were recorded. The completion time was measured from the time of the first operator
command to the time when the payload reached, and remained within, the circular
end-zone. Button pushes are used as an indicator of operator effort and stress. An
operator that pressed the buttons a larger number of times has made a larger num-
ber of control decisions, indicating a higher cognitive load than an operator who
completed the task with fewer button pushes.

2.2 Experimental Results

Figure 7 shows the average completion times as a function of delay time for un-
shaped, ZV-shaped, and EI-shaped commands. The error bars indicate the minimum
and maximum completion times for a given communication delay. For all values of
communication delay, the average completion times for the shaped commands were
less than the unshaped case. The average completion time of the ZV-shaped case
was also slightly lower than the EI-shaped over the range of communication de-
lays tested. Completion times also increased with communication delay for all three
methods of control. However, the degree of this dependence was much lower for the
unshaped cases. The average completion times for the shaped cases tended toward
that of the unshaped cases as communication delay was increased. In addition, the
variation between operators increased with communication delay time.

These results suggests that, for short delay times, the payload oscillation is the
primary factor limiting task completion time. However, as the time delay increases,
its influence on task completion difficulty increases. As the time delay increases
further, it eventually becomes the dominant limiting factor.

These results also suggest that input shaping provides some benefit for a large
range of communication time delays. Figure 8 overlays linear, least-squared curve-
fits for each control method. The linear curve-fits provide good agreement with the
data for all three control methods, with R2 ≥ 0.95 for all. Using these curve fits to
predict completion times for longer communication delay times, it is not until com-
munication delay time reaches nearly 8s that completion times with input shaping
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Fig. 7 Average Completion Time as a Function of Communication Delay
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Fig. 8 Extrapolated Completion Time for Higher Communication Delays

enabled equal those of the unshaped case. At delay times this high, the time delay is
the dominant factor determining task completion time.

The average number of button pushes needed to complete the maneuvers is shown
in Fig. 9. The error bars indicate the minimum and maximum number of button
pushes for a given communication delay. With short delay times, the number of
button pushes needed with input shaping was dramatically less than without shap-
ing. As delay time increased, however, the number of button pushes needed with
input shaping approached that of the unshaped case. Over the range of parameters
tested, there was a fairly linear relationship between the number of button pushes
and communication delay time for the two shapers tested.
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Fig. 9 Average Number of Button Pushes as a Function of Communication Delay

The data from these trials is similar to earlier findings that task completion time,
and its variation, will often increase linearly with communication delay time [1, 3].
In addition, increases in communication delay also increased the operator effort, as
measured by button pushes. These trials attempted to isolate the delay from other
issues common in remote operation, such as loss of “presence”. The next section will
present additional studies of crane operator performance while remotely operating
a tower crane via the Internet.

3 Remote Operation of a Tower Crane

This section will present a compilation of several operator studies conducted on the
tower crane shown in Fig. 10. It has teleoperation capabilities that allow it to be
operated in real-time from anywhere in the world via the Internet [12]. The crane is
approximately 2m tall with a 1m jib arm. It is actuated by Siemens synchronous, AC
servomotors. The jib is capable of 340◦ rotation about the tower. The trolley moves
radially along the jib, and a hoisting motor controls the suspension cable length. A
Siemens digital camera is mounted to the trolley and records the swing deflection of
the payload [12]. Table 1 summarizes the performance characteristics of the tower
crane.

This crane has been used in a number of crane operator studies [33–35]. Each of
these studies contained completion of tasks both local and remote to the tower crane,
often over a variety of controllers and crane payload configurations. The obstacle
courses used in the studies are shown in Fig. 11.

For each of these studies, the operators were asked to navigate from a start loca-
tion to some final position in the workspace. In [33] and [35], this move was a simple
point-to-point move through the crane workspace. For the studies in [34], the opera-
tors moved through the workspace, retrieved a payload, then moved this payload to
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Fig. 10 A Remotely Operable Tower Crane

Table 1 Mobile Tower Crane Performance Limits

Parameter Min Max Units

Cable Length 0.45 1.70 m
Slew Velocity -0.35 0.35 rad/s
Slew Acceleration -0.70 0.70 rad/s2

Radial Velocity -0.14 0.14 m/s
Radial Acceleration -1.20 1.20 m/s2

the final target location. As a result, the trials in this study are longer than the other
two. For all three studies, the task completion time was measured, beginning with
first operator command and ending when the payload reached and remained within
the end-zone. Button pushes and obstacle collisions were also recorded during each
trial. The payload configuration differed between the three studies.

These three studies represent 168 trials from 42 different operators over varying
operating conditions. Despite the differences between them, each of the studies con-
tained trials that were both local and remote from the tower crane. In addition, each
study also examined the performance with and without input shaping enabled. As
such, they provide a rich data set to examine the influence of remote operation on
crane operator performance.
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(a) Obstacle Course from [33]

(b) Obstacle Course from [34] (c) Obstacle Course from [35]

Fig. 11 Obstacle Courses for Crane Operator Studies

To enable comparison between the three operator studies, the task completion
times were normalized by the average unshaped completion time when the crane
was locally controlled for that study. Figure 12 shows the normalized completion
times for all 46 operators. This figure shows few operators completed any trial faster
without input shaping than with it (Using the symbols on the plot, there are very few
triangles above squares for a given locale.).

The task completion times are summarized in Fig. 13, which shows the normal-
ized average completion times. This plot highlights the local and remote unshaped
cases and the local and remote input-shaped cases for each study. Each operator
study examined at least two sub-tasks. These are displayed separately in the plot.

As seen in Fig. 13, for every operator study presented in [33–35], input shaping
reduced the average completion time from the unshaped control case. This occurred
both when the operators were local to the crane and when they were remote from it.
The percentage improvement in average completion time provided by input shap-
ing when the crane was controlled locally ranged from 13% to 94%. The smaller
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Fig. 12 Normalized Completion Times for All 46 Operators

Fig. 13 Normalized Average Completion Times

improvements came in the longer-duration tasks examined in [34]. Across all the
local-operation studies, input shaping reduced completion time by an average of
58%. The percentage reductions in completion time for the remote trials were re-
markably similar, ranging from 17% to nearly 95%. Input shaping reduced comple-
tion time by an average of 57% across all the remote trials.

4 Conclusions

This work investigated the influence of time delay on human-operated cranes. Two
sets of studies of crane operator performance in the presence of time delays were
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presented. Both sets included a comparison of manual, unshaped control, and input-
shaping control. The first study, conducted on a 10-ton bridge crane, attempted to
isolate the effects of the time delay by artificially increasing the delay of system
response. Average task completion time and operator effort, as measured by button
pushes, were both lower with input shaping. However, as the delay time increased,
the average completion time and number of button pushes approached that of the
unshaped case. The second set of studies was conducted on a portable tower crane,
where operators were asked to move a payload through various obstacle courses
within the crane workspace. Remote operation of the tower crane obstacle course
proved more difficult than local control, both with and without input shaping. How-
ever, input shaping enabled faster completion of these manipulation tasks, on aver-
age, across a variety of task and payload configurations, both local and remote.

Acknowledgements. The authors would like to thank Siemens Energy and Automation and
Boeing Research and Technology for their support of this work.

References

1. Ando, N., Lee, J.H., Hashimoto, H.: Study on influence of time delay in teleoperation.
In: IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM,
pp. 317–322 (1999)

2. Blackburn, D.F., Singhose, W., Kitchen, J.P., Petrangenaru, V.P., Lawrence, J., Kamoi,
T., Taura, A.: Advanced input shaping algorithm for nonlinear tower crane dynamics. In:
8th International Conference on Motion and Vibration Control, Daejeon, Korea (2006)

3. Ferrell, W.: Remote manipulation with transmission delay. IEEE Transactions on Human
Factors in Electronics HFE-6(1), 24–32 (1965)

4. Fiorini, P., Oboe, R.: Internet-based telerobotics: Problems and approaches. In: Proceed-
ings of the International Conference on Advanced Robotics, Monterey, CA, USA, pp.
765–770 (1997)

5. Freese, M., Fukushima, E.F., Hirose, S., Singhose, W.: Endpoint vibration control of a
mobile endpoint vibration control of a mobile mine-detecting robotic manipulator. In:
Proceedings of 2007 American Control Conference, New York, NY, United states, pp.
7–12 (2007)

6. Hokayem, P.F., Spong, M.W.: Bilateral teleoperation: An historical survey. Automat-
ica 42(12), 2035–2057 (2006)

7. Huey, J., Fortier, J., Wolff, S., Singhose, W., Haraldsson, H.B., Sasaki, S.K., Watari, E.:
Remote manipulation of cranes via the internet. In: Proceedings of International Confer-
ence on Motion and Vibration Control, Daejeon, Korea (2006)

8. Jones, S., Ulsoy, A.G.: An approach to control input shaping with application to coor-
dinate measuring machines. J. of Dynamics, Measurement, and Control 121, 242–247
(1999)

9. Khalid, A., Huey, J., Singhose, W., Lawrence, J., Frakes, D.: Human operator perfor-
mance testing using an input-shaped bridge crane. Journal of Dynamic Systems, Mea-
surement and Control 128(4), 835–841 (2006)

10. Kim, D., Singhose, W.: Performance studies of human operators driving double-
pendulum bridge cranes. Control Engineering Practice 18(6), 567–576 (2010)



Influence of Time Delay on Crane Operators 341

11. Kim, J.: A TCP/IP-based remote control system for yard cranes in a port container ter-
minal. Robotica 24, 613–620 (2006)

12. Lawrence, J., Singhose, W., Weiss, R., Erb, A., Glauser, U.: An internet-driven tower
crane for dynamics and controls education. In: 7th IFAC Symposium on Advances in
Control Education, Madrid, Spain (2006)

13. Lim, J., Ko, J., Lee, J.: Internet-based teleoperation of a mobile robot with force-
reflection. In: Proceedings of 2003 IEEE Conference on Control Applications, Istanbul,
Turkey, vol. 1, pp. 680–685 (2003)

14. Magee, D.P., Book, W.J.: Filtering micro-manipulator wrist commands to prevent flex-
ible base motion. In: Proceedings of the American Controls Conference, Seattle, WA,
vol. 2, pp. 474–479 (1995)

15. Munir, S., Book, W.J.: Control techniques and programming issues for time delayed
internet based teleoperation. Journal of Dynamic Systems, Measurement and Con-
trol 125(2), 205–214 (2003)

16. Niemeyer, G., Slotine, J.J.E.: Telemanipulation with time delays. International Journal
of Robotics Research 23(9), 873–890 (2004)

17. Oboe, R., Fiorini, P.: Design and control environment for internet-based telerobotics.
International Journal of Robotics Research 17(4), 433–449 (1998)

18. Parker, G., Groom, K., Hurtado, J., Feddema, J., Robinett, R., Leban, F.: Experimental
verification of a command shaping boom crane control system. In: American Control
Conference, San Diego, CA, USA, vol. 1, pp. 86–90 (1999)

19. Parker, G.G., Groom, K., Hurtado, J., Robinett, R.D., Leban, F.: Command shaping boom
crane control system with nonlinear inputs. In: Proceedings of IEEE Conference on Con-
trol Applications, Kohala Coast, HI, USA, vol. 2, pp. 1774–1778 (1999)

20. Rosch, O., Schilling, K., Roth, H.: Haptic interfaces for the remote control of mobile
robots. Control Engineering Practice 10(11), 1309–1313 (2002)

21. Schilling, K., Roth, H.: Control interfaces for teleoperated mobile robots. In: Proceedings
of 7th IEEE International Conference on Emerging Technologies and Factory Automa-
tion, Barcelona, Spain, vol. 2, pp. 1399–1403 (1999)

22. Schilling, K., Roth, H., Spilca, C.: A tele-experiment on rover motor control via internet.
J. Robot. Syst. 22(3), 123–130 (2005)

23. Sheridan, T.: Telerobotics. Automatica 25(4), 487–507 (1989)
24. Sheridan, T.: Teleoperation, telerobotics and telepresence: a progress report. Control En-

gineering Practice 3(2), 205–214 (1995)
25. Sheridan, T.B.: Space teleoperation through time delay: Review and prognosis. IEEE

Transactions on Robotics and Automation 9(5), 592–606 (1993)
26. Singer, N.C., Seering, W.P.: Preshaping command inputs to reduce system vibration.

Journal of Dynamic Systems, Measurement, and Control 112, 76–82 (1990)
27. Singhose, W., Seering, W., Singer, N.: Residual vibration reduction using vector dia-

grams to generate shaped inputs. ASME J. of Mechanical Design 116, 654–659 (1994)
28. Singhose, W., Singer, N., Seering, W.: Improving repeatability of coordinate measuring

machines with shaped command signals. Precision Engineering 18, 138–146 (1996)
29. Slawinski, E., Postigo, J.F., Mut, V.: Bilateral teleoperation through the internet. Robotics

and Autonomous Systems 55(3), 205–215 (2007)
30. Smith, O.J.M.: Posicast control of damped oscillatory systems. Proceedings of the

IRE 45, 1249–1255 (1957)
31. Sorensen, K., Singhose, W., Dickerson, S.: A controller enabling precise positioning and

sway reduction in bridge and gantry cranes. Control Engineering Practice 15(7), 825–837
(2007)



342 J. Vaughan and W. Singhose

32. Starr, G.P.: Swing-free transport of suspended objects with a path-controlled robot ma-
nipulator. Journal of Dynamic Systems, Measurement and Control 107, 97–100 (1985)

33. Vaughan, J., Kim, D., Singhose, W.: Control of tower cranes with double-pendulum pay-
load dynamics. IEEE Transactions on Control Systems Technology 18(6), 1345–1358
(2010)

34. Vaughan, J., Peng, K.C.C., Singhose, W., Seering, W.: Influence of remote-operation
time delay on crane operator performance. In: Proc. of 10th IFAC Workshop on Time
Delay Systems. IFAC Papers Online, Boston, USA, vol. 10, Part I, pp. 85–90 (2012)

35. Vaughan, J., Smith, A., Kang, S.J., Singhose, W.: Predictive graphical user interface
elements to improve crane operator performance. IEEE Transactions on Systems, Man
and Cybernetics, Part A: Systems and Humans 41(2), 323–330 (2011)

36. Wang, M., Liu, J.N.: Interactive control for internet-based mobile robot teleoperation.
Robotics and Autonomous Systems 52(2-3), 160–179 (2005)

37. Xue, X., Yang, S.X., Meng, M.Q.H.: Remote sensing and teleoperation of a mobile robot
via the internet. In: Proceedings of 2005 International Conference on Information Acqui-
sition, Hong Kong, China, pp. 537–542 (2005)



Decomposing the Dynamics of Delayed
Hodgkin-Huxley Neurons

Gábor Orosz

Abstract. The effects of time delays on the nonlinear dynamics of neural networks
are investigated. A decomposition method is utilized to derive modal equations that
allow one to analyze the dynamics around synchronous states. The D-subdivision
method is used to study the stability of equilibria while the stability of periodic or-
bits is investigated using Floquet theory. These methods are applied to a system of
delay coupled Hodgkin-Huxley neurons to map out stable and unstable synchronous
states. It is shown that for sufficiently strong coupling there exist delay ranges where
stable equilibria coexist with stable oscillations which allow neural systems to re-
spond to different environmental stimuli with different spatiotemporal patterns.

1 Introduction

Since Hodgkin and Huxley has constructed the first biophysical model of a neuron
more than six decades ago [6] the field of neuroscience has gone through a enor-
mous development. This led to detailed understanding of the dynamical phenomena
underlying signal generation and propagation on neural membranes [4]. When mod-
eling these processes, nonlinear ordinary differential equations (ODEs) are used to
describe the voltage changes and ion transport at a given location of the membrane,
while to describe the activity on the surface of the entire neuron partial differential
equations (PDEs) are required. Additional ODEs can be used to describe the chemi-
cal processes at the synapses where signals are transmitted between neurons. Indeed,
such detailed models are not feasible when modeling the behavior of populations of
neurons. In this case, simplifications are often made so that neurons are considered
to be “point-wise” and the couplings are considered to be instantaneous, that is, the
infinite-dimensional dynamics of signal propagation is neglected. In this paper, we
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consider an extended modeling framework for neural networks where neurons are
still point-wise but signal propagation is modeled by inserting time delays into the
coupling functions. This leads to delay differential equations (DDEs) which retain
the essential infinite dimensional dynamics of signal transmission while the models
remain scalable for large numbers of neurons and connections.

In order to understand the behavior of the resulting large interconnected delayed
systems, we decompose the dynamics and derive modal equations in the vicinity
of synchronous states. In particular, we focus on synchronous equilibria and peri-
odic oscillations. The decomposition method used here can also be extended to more
general cluster states [11] while other methods may be used when studying traveling
wave solutions [2,8]. Similar decomposition methods have been used to investigate
the synchronized states in neural networks and laser networks [3,5] and to study the
dynamics of communication protocols [1,9]. We remark that in the former case sta-
bility is usually determined numerically by calculating Lyapunov exponents while
the latter case focuses on linear systems. In this paper, we apply rigorous mathemat-
ical techniques from dynamical systems theory to analyze the nonlinear dynamics
of large interconnected systems.

As the result of the modal decomposition we obtain linear delay differential equa-
tions of small size. One of these modal equations describes the stability of syn-
chronous states within the infinite-dimensional synchronization manifold which is
called tangential stability. The other modal equations correspond to braking the syn-
chrony, that is, they describe the so-called transversal stability; see [11, 12]. When
considering the modal equations around equilibria, they have time-independent
coefficients and consequently the D-subdivision method and Stépán’s formulae
[15] can be used to derive analytical stability charts. Each modal equation pro-
duces a set of stability curves and crossing these curves lead to different oscil-
latory solutions. For periodic oscillations the modal equations have time-periodic
coefficients, that is, one needs to use Floquet theory [7] to evaluate stability. Tan-
gential stability can be evaluated by restricting the dynamics to the synchronization
manifold. For transversal stability, augmented systems are created so that each sys-
tem consists of the nonlinear synchronous equation and a linear transversal modal
equation.

In this paper, we apply these techniques to systems of delay coupled Hodgkin-
Huxley neurons considering different connectivity structures. We derive the bifur-
cation structure arising within the synchronization manifold and show that this
structure is independent of the connectivity and the number of oscillators in the sys-
tem when the coupling strength is scaled appropriately. On the other hand, transver-
sal bifurcations of equilibria and periodic orbits are influenced by the coupling struc-
ture. We demonstrate that for appropriate values of time delay and coupling strength,
stable synchronous equilibrium coexist with stable oscillations. In this case, apply-
ing different external perturbations the system approaches different spatiotemporal
patterns that can be exploited when encoding information.
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2 Decomposition of Delayed Networks around Synchronous
States

In this paper, we consider a system consisting of N identical oscillators coupled by
identical couplings:

ẋi(t) = f
(
xi(t)

)
+

1
N

N

∑
j=1

ai j g
(
xi(t),x j(t− τ)

)
, (1)

for i = 1, . . . ,N, where the internal state of node i is described by the vector xi ∈ R
n

and the internal dynamics consist of a set of nonlinear ODEs ẋi = f (xi). The cou-
plings are described by the function g(xi,x j) that depends on the states of the in-
teracting nodes. The time delay τ is the time needed for the signal transmission
processes to take places. The coupling structure of the system is captured by
a directed graph, whose elements are represented by the coefficients of the N-
dimensional adjacency matrix

ai j =

{
1 if node j is connected to node i,

0 otherwise,
(2)

for i, j = 1, . . . ,N. Referring to the graph representation of the network, the oscilla-
tors are often called nodes and the connections between them called edges. Here, we
use the abbreviated notation AN = [ai j] and assume that AN is diagonalizable, that is,
if an eigenvalue has algebraic multiplicity m then it also has geometric multiplicity
m, resulting in m linearly independent eigenvectors. The methods presented below
may still be used when this condition does not hold but the algebraic calculations
become more involved. We remark that equation (1) requires an infinite dimensional
state space and the initial conditions are functions on the time interval [−τ,0].

In this paper, we focus on the synchronous state

xi(t) = xs(t) , i = 1, . . . ,N . (3)

Substituting (3) into (1) results in the delay differential equation

ẋs(t) = f
(
xs(t)

)
+

M
N

g
(
xs(t),xs(t− τ)

)
, (4)

where the row sum

M =
N

∑
j=1

ai j , (5)

must be the same for every i to ensure the existence of synchronous solutions. We
remark that equation (3) still requires an infinite dimensional state space, that is, the
synchronization manifold defined by (3) is infinite dimensional. Equation (4) may
produce a variety of different behaviors, e.g., equilibria, periodic orbits, and even
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chaotic motion. Here we focus on the first two cases. Synchronized equilibria are
defined by

xs(t)≡ x∗s , (6)

and substituting this into (4) results in

0 = f
(
x∗s
)
+

M
N

g
(
x∗s ,x

∗
s

)
, (7)

that is, the delay does not influence the location of equilibria (but may influence
their stability). On the other hand, synchronous periodic oscillations satisfy

xp
s (t) = xp

s (t +Tp) , (8)

where Tp represents the period. These can be determined by solving the boundary
value problem comprised of (4) and (8) and the shape and stability of these orbits
are influenced by the delay.

We define the perturbations yi = xi− xs for i = 1, . . . ,N, so the linearization of
(1) about the synchronous solution (3) can be written as

ẏi(t) = Lyi(t)+R
N

∑
j=1

ai j y j(t− τ) , (9)

for i = 1, . . . ,N. When linearizing about the synchronous equilibrium (6), the n× n
matrices L,R are time-independent, that is,

L∗ = D f
(
x∗s
)
+

M
N

D(1)g
(
x∗s ,x

∗
s

)
, R∗ =

1
N

D(2)g
(
x∗s ,x

∗
s

)
, (10)

where and D(1) and D(2) represent derivatives with respect to the first and second
variables, respectively. In this case, (9) gives a linear time-invariant system allowing
the use of analytical techniques like the D-subdivision method and Stépán’s formu-
lae [15] to determine the stability of the equilibrium. However, when linearizing
about synchronous oscillations (8), the matrixes L,R in (9) become time-periodic
with period Tp, that is,

L(t) = D f
(
xp

s (t)
)
+

M
N

D(1)g
(
xp

s (t),x
p
s (t− τ)

)
= L(t +Tp) ,

R(t) =
1
N

D(2)g
(
xp

s (t),x
p
s (t− τ)

)
= R(t +Tp) .

(11)

Thus, one must use Floquet theory to evaluate the stability of oscillations. The corre-
sponding monodromy operators usually cannot be written in closed form and conse-
quently, numerical techniques like full discretization [14] or semi-discretization [7]
are needed.

Using y = col [y1 y2 . . . yN ] ∈R
nN the linear system (9) can be rewritten as

ẏ(t) = (IN⊗L)y(t)+ (AN⊗R)y(t− τ) , (12)
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where IN is the N-dimensional unit matrix and AN is the adjacency matrix. In order
to decompose system (12) we construct the coordinate transformation

y = (TN ⊗ I)z , (13)

where z = col [z1 z2 . . . zN ] ∈ R
nN , I is the n× n unit matrix, while TN =

[e1 e2 . . . eN ] where ei is the i-th eigenvector of the adjacency matrix AN . This
transformation yields the linear modal equations

żi(t) = Lzi(t)+Λi Rzi(t− τ) , (14)

for i = 1, . . . ,N, where Λi is the i-th eigenvalue of the adjacency matrix AN . Note
the due to the constant row sum (5), we have Λ1 = M and e1 = col[1 . . . 1 ]. The
corresponding modal equation is indeed the linearization of (4) and it describes the
tangential stability: stability against perturbations that keep the synchronous con-
figuration. The other modal equations for i = 2, . . .N describe transversal stability:
stability against perturbations that split the synchronous configuration; see [11, 12].
We remark that forΛi,i+1 = Σi± iΩi ∈C, defining ξi = Rezi,ηi =−Imzi and taking
the real and imaginary parts of (14) leads to the 2n-dimensional real system

[
ξ̇i(t)
η̇i(t)

]
=

[
L O
O L

][
ξi(t)
ηi(t)

]
+

[
ΣiR ΩiR
−ΩiR ΣiR

][
ξi(t− τ)
ηi(t− τ)

]
, (15)

where O represents the n-dimensional matrix with zero elements.
In this paper, we consider N = 5. For all-to-all coupling (without self coupling)

the adjacency matrix, its eigenvalues, and the transformation matrix (given by the
eigenvectors) can be written as

A5 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 1
1 0 1 1 1
1 1 0 1 1
1 1 1 0 1
1 1 1 1 0

⎤
⎥⎥⎥⎥⎦ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λ1 = 4 ,

Λ2 =−1 ,

Λ3 =−1 ,

Λ4 =−1 ,

Λ5 =−1 ,

TN =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 −1 0 0 0
1 0 −1 0 0
1 0 0 −1 0
1 0 0 0 −1

⎤
⎥⎥⎥⎥⎦ . (16)

Here the row sum is M = N − 1 = 4 (cf. (5)) and the transversal eigenvalue has
multiplicity M. We will also consider the adjacency matrix

A5 =

⎡
⎢⎢⎢⎢⎣

0 1 0 1 1
0 0 1 1 1
1 1 0 0 1
1 0 1 0 1
1 1 0 1 0

⎤
⎥⎥⎥⎥⎦ ⇒

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Λ1 = 3 ,

Λ2 = 0 ,

Λ3 =−1 ,

Λ4 =−1+ i ,

Λ5 =−1− i ,

TN =

⎡
⎢⎢⎢⎢⎣

1 1 1 1 1
1 −2 1 −2+6i

5
−2−6i

5
1 −2 1 −1−7i

5
−1+7i

5
1 1 1 −8−i

5
−8+i

5
1 1 −3 1 1

⎤
⎥⎥⎥⎥⎦ ,

(17)
where M = 3 and all eigenvalues are distinct.
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2.1 Stability of Synchronous Equilibria and Periodic Orbits

As mentioned above, when linearizing about synchronous equilibria (6), the matri-
ces L,R are time independent, cf. (10). Thus, in order to determine stability, the trial
solutions zi(t) = Zi eλ t , λ ∈ C, Zi ∈ C

n are substituted into (14), which result in the
characteristic equations

det
(
λ I−L−Λi Re−λτ

)
= 0 , (18)

for i = 1, . . . ,N. When all the infinitely many characteristic roots λ are located in the
left-half complex plane for i = 1 and i = 2, . . .N, the equilibrium is tangentially and
transversally stable, respectively. Substituting λ = iω , ω ≥ 0 into the above equa-
tion one may obtain the tangential and transversal stability boundaries that divide
the parameter space into stable and unstable domains. For each domain, stability
can be evaluated by applying Stépán’s formulae [15]. When crossing a tangential
stability boundary the synchronized configuration is kept by the arising oscilla-
tions while crossing a transversal boundary gives rise to asynchronous oscillatory
solutions.

When linearizing about the synchronized oscillations (8), the matrices L,R are
time-periodic with period Tp, cf. (11). Instead of exponential trial solutions one must
use Floquet theory to determine stability [7]. This requires the reformulation (14)
using the state variables zi,t (θ ) = zi(t + θ ), θ ∈ [−τ,0] that are contained by the
infinite-dimensional space of continuous functions. These states can be obtained
from the initial functions as

zi,t = Ui(t)zi,0 , (19)

using the solutions operators Ui(t) for i = 1, . . . ,N. The eigenvalues of the mon-
odromy operators Ui(Tp), called Floquet multipliers, determine the tangential and
transversal stability of oscillations. If all these multipliers are smaller than 1 in mag-
nitude, then the periodic solution is stable. As the monodromy operators cannot be
written into closed form, one needs to use numerical techniques to determine the sta-
bility boundaries. First, we compute the periodic orbit which is the solution of the
boundary value problem (4,8) using numerical collocation. Then using arc-length
continuation we find the orbit when parameters are varied; see [14] for details. For
i = 1, (14) is the linearization of (4) and collocations provide a discretization of the
monodromy operator U1(Tp) in (19) which allows the computation of the tangential
Floquet multipliers. However, for i = 2, . . .N, to obtain the transversal Floquet mul-
tipliers (i.e., the eigenvalues of Ui(Tp) for i = 2, . . .N), the matrices in (14) or (15)
have to be evaluated at the periodic solution. Thus, we create augmented systems
consisting of (4,8) and a chosen equation of (14) or (15). The corresponding 2n or
3n dimensional equations possess a periodic orbit: the first n variables are equal to
xp

s while zi ≡ 0 or ξi = ηi ≡ 0.
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3 Synchrony of Delay Coupled Hodgkin-Huxley Neurons

Since the original work of Hodgkin and Huxley [6] a large number different models
have been proposed to describe voltage activity and ion transport at the neural mem-
brane (e.g., FitzHugh-Nagumo model, Morris-Lecar model); see [4]. As a matter of
fact, these all originate form the Hodgkin-Huxley model which is still considered
to be an etalon in neuro-dynamics. Here we consider Hodgkin-Huxley neurons cou-
pled via direct electronic coupling called gap junctions; see [13]. (For the same
model with synaptic coupling see [8].)

The time evolution of the system is given by the delay differential equations

CV̇i(t) = I− gNam3
i (t)hi(t)

(
Vi(t)−VNa

)
− gKn4

i (t)
(
Vi(t)−VK

)

− gL
(
Vi(t)−VL

)
+
κ
N

N

∑
j=1

ai j
(
Vj(t− τ)−Vi(t)

)
,

ṁi(t) = αm
(
Vi(t)

)(
1−mi(t)

)
−βm

(
Vi(t)

)
mi(t) ,

ḣi(t) = αh
(
Vi(t)

)(
1− hi(t)

)
−βh

(
Vi(t)

)
hi(t) ,

ṅi(t) = αn
(
Vi(t)

)(
1− ni(t)

)
−βn

(
Vi(t)

)
ni(t) ,

(20)

for i = 1, . . . ,N, where the time t is measured in ms, the voltage of the i-th neu-
ron at the soma Vi is measured in mV, and the dimensionless gating variables
mi,hi,ni ∈ [0,1] characterize the “openness” of the sodium and potassium ion chan-
nels embedded in the cell membrane. The conductances gNa, gK, gL and the ref-
erence voltages VNa, VK, VL for the sodium channels, potassium channels and the
so-called leakage current are given together with the membrane capacitance C and
the driving current I in the appendix of [13]. The equations for mi, hi, ni are based
on measurements and the nonlinear functions αm(V ), αh(V ), αn(V ), βm(V ), βh(V ),
βn(V ) are also given in the appendix of [13]. The coupling term κ

N

(
Vj(t−τ)−Vi(t)

)
represents a direct electronic connection between the axon of the j-th neuron and
the dendrites of the i-th neuron. Here Vi(t) is the postsynaptic potential, Vj(t− τ) is
the presynaptic potential, κ is the conductance of the gap junction, and τ represents
the signal propagation time along the axon of the j-th neuron (dendritic delays are
omitted here). That is, the presynaptic potential is equal to what the potential of the
soma of the j-th neuron was τ time before.

For κ = 0 the neurons are uncoupled. In this case, there exist a unique stable
oscillatory state where neurons spike periodically (with period Tp ≈ 11.57 ms), see
the green curves in Fig. 1. The equation that describes the dynamics on the infinite
dimensional synchronization manifold can be obtained by substituting

[Vi mi hi ni ] = [Vs ms hs ns ] , i = 1, . . . ,N , (21)

into (20); cf. (3,4). In this case, the coupling term becomes κ M
N

(
Vs(t− τ)−Vs(t)

)
.

Notice that this term disappears for τ = 0, that is, the synchronized motion is the
same as the uncoupled one. However, this does not hold for τ > 0.
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Fig. 1 Stable periodic solution of model (20) without coupling κ = 0. Panel (a) shows the
periodic variation of the membrane voltage V as a function of time t (with period Tp ≈ 11.57
ms) while panel (b) depicts the periodic orbit in state space. The red dot represents the unsta-
ble equilibrium.

When linearizing (20) about (21) one obtains the matrixes

L =

⎡
⎢⎢⎣
−p− M

N
κ
C −a1 −a2 −a3

−b1 −c1 0 0
−b2 0 −c2 0
−b3 0 0 −c3

⎤
⎥⎥⎦ , R =

⎡
⎢⎢⎣

1
N
κ
C 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ , (22)

where

p = (gNam3
s hs + gKn4

s + gL)/C ,

a1 = gNa3m2
s hs(Vs−VNa)/C , b1 =−α ′m(Vs)(1−ms)+β ′m(Vs)ms ,

a2 = gNam3
s (Vs−VNa)/C , b2 =−α ′h(Vs)(1− hs)+β ′h(Vs)hs ,

a2 = gK4n3
s (Vs−VK)/C , b3 =−α ′n(Vs)(1− ns)+β ′n(Vs)ns ,

(23)

c1 = αm(Vs)+βm(Vs) , c2 = αh(Vs)+βh(Vs) , c3 = αn(Vs)+βn(Vs) ,

that appear in the linear equation (9,12) as well as in the modal equations (14,15).

3.1 Stability of Synchronous Equilibria

Let us consider synchronized equilibria, that is, [Vs(t) ms(t) hs(t) ns(t) ] ≡
[V ∗s m∗s h∗s n∗s ]. At this state the coupling term disappears and consequently the
synchronized equilibrium is the same as the equilibrium of an uncoupled neuron.
For parameters defined in [13] we have a unique equilibrium as shown by the red
dot in Fig. 1(b). Moreover, the matrices (22) become constant (cf. (10)) and the
characteristic equation (18) leads to

λ 4+d1λ 3+d2λ 2+d3λ +d4+
1
N
κ
C

(
M−Λieλτ

)(
λ 3+ c̃1λ 2+ c̃2λ + c̃3

)
= 0 , (24)
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where

c̃1 = c1 + c2 + c3 , c̃2 = c1c2 + c1c3 + c2c3 , c̃3 = c1c2c3 ,

d1 = p+ c̃1 ,

d2 = pc̃1 + c̃2−
(
a1b1 + a2b2 + a3b3

)
,

d3 = pc̃2 + c̃3−
(
a1b1(c2 + c3)+ a2b2(c1 + c3)+ a3b3(c1 + c2)

)
,

d4 = pc̃3−
(
a1b1c2c3 + a2b2c1c3 + a3b3c1c2

)
,

(25)

that are evaluated at Vs(t) ≡ V ∗s . Substituting λ = iω into (24), separating the real
and imaginary parts, and using some algebraic manipulations one may obtain the
stability boundaries in the (τ,κ)-plane parameterized by the angular frequency ω .
In particular, consideringΛ1 = M results in the tangential boundaries

τ =
2
ω

{
arctan

[
− α(ω)
β (ω)

]
+ �π

}
, �= 0,1,2, . . .

κ =−CN
2M

α2(ω)+β 2(ω)
α(ω)γ(ω)

,

(26)

where

α(ω) = (d1− c̃1)ω6 +(d2c̃1 + c̃3− d3− d1c̃2)ω4 +(d3c̃2− d2c̃3− d4c̃1)+ d4c̃3 ,

β (ω) =−ω7 +(d2 + c̃2− d1c̃1)ω5 +(d1c̃3 + d3c̃1− d4− d2c̃2)+ (d4c̃2− d3c̃3)ω ,

γ(ω) = ω6 +(c̃2
1− 2c̃2)ω4 +(c̃2

2− 2c̃1c̃3)ω2 + c̃2
3 .

(27)

Similarly for Λi ∈ R one may obtain the transversal boundaries

τ =
2
ω

{
arctan

[
1

M+Λi

α(ω)
β (ω)

(
−Λi±

√
Δ
)]

+ �π

}
, �= 0,1,2, . . .

κ =
CN

M2−Λ2
i

α(ω)
γ(ω)

(
−M∓

√
Δ
)
, (28)

where

Δ =Λ2
i −

(
M2−Λ2

i

)β 2(ω)
α2(ω)

. (29)

For Λi = Σi + iΩi ∈ C the first equation in (28) changes to

τ =
2
ω

{
arctan

[
1

M+Σi +Ωi
α(ω)
β (ω)

α(ω)
β (ω)

(
−Σi+Ωi

β (ω)
α(ω)

±
√
Δ
)]

+ �π

}
, (30)
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Fig. 2 Stability charts corresponding to the formulae (26,28,30,31) are shown in panels (a,c)
and the corresponding angular frequencies are shown in panels (b,d). The top and bottom
rows correspond the adjacency matrices (16) and (17), respectively. The stable domain is
shaded, black “lobe shaped” curves represent tangential boundaries for Λ1 = M, and colored
“wavy” curves represent transversal boundaries for Λ2 =−1 — thin blue, Λ3 = 0 — dashed
green, and Λ4,5 =−1± i — thick red.

and Λ2
i = Σ2

i +Ω 2
i . Finally, we remark that for Λi = 0 the boundary is given by

κ =−CN
M
α(ω∗)
γ(ω∗)

, (31)

where ω∗ is the solution of β (ω∗) = 0, that is, this boundary is delay independent.
The corresponding curves are plotted for N = 5 in the (τ,κ)-plane in Fig. 2(a)

and (c) for the coupling matrixes (16) and (17), respectively. The tangential stability
boundaries are shown as black curves and these form lobes. One may observe that in
(26) τ is independent of the number of oscillators N and the row sum M while κ is
proportional to N/M. Corresponding to this the lobes in Fig. 2(c) are the “stretched”
versions of the lobes in Fig. 2(a). The transversal boundaries are shown as colored
curves and for each transversal eigenvalue Λi the boundary appears as a “wavy”
curve. For all-to-all coupling there is only one transversal curve corresponding to
the multiplicity of the modal eigenvalues in (16). For general coupling (17) there are
four distinct curves: the horizontal dashed green line corresponds to the zero modal
eigenvalue, the thin blue curve corresponds to the real modal eigenvalue while the
thick red curves correspond to the complex conjugate pair of modal eigenvalues.
Notice that the larger the magnitude of the transverse modal eigenvalue is, the larger
the “amplitude” of the “wavy” curve is.
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The stability of the synchronized equilibrium changes via Andronov-Hopf bifur-
cation when crossing either a tangential or a transversal stability curve. That is a pair
of complex conjugate eigenvalues crosses the imaginary axis leading to oscillations.
The corresponding frequencies are shown in Fig. 2(b) and (d). One may observe that
along the tangential lobes the frequency changes with κ in the interval ω ∈ [0,∞).
On the other hand, frequencies along tangential boundaries are contained in a closed
interval that increases with the magnitude of the transversal eigenvalue. Applying
the analytical stability criteria [15], it can be shown that the system is tangentially
stable within in the leftmost lobe while transversal stability of each mode can be
guaranteed when choosing parameters above the corresponding “wavy” curve. Thus
the equilibrium is linearly stable in the shaded domain that appears to be larger for
the all-to-all coupled network.

3.2 Stability of Synchronous Periodic Orbits

As shown above, the modal equations (14,15) with matrices (22) allow one to de-
termine the stability of equilibria in a systematic way. However, neural systems
encode information using rhythmic patterns which correspond to periodic oscilla-
tions. To derive synchronous oscillations, one must solve (20,21) when considering
[Vs(t) ms(t) hs(t) ns(t) ] = [Vs(t +Tp) ms(t +Tp) hs(t +Tp) ns(t +Tp) ], where
Tp is the period of oscillations. We use the numerical continuation package DDE-
BIFTOOL [14] to follow branches of periodic solutions when varying parameters.
To evaluate the stability of these solutions we use the nonlinear equation describing
the dynamics on the synchronization manifold (i.e., (20) with restriction (21)) and
augment this with a modal equation from (14) or (15).

The left and right columns of Fig. 3 show the bifurcation diagrams for the ad-
jacency matrices (16) and (17), respectively. Each panel depicts the peak-to-peak
voltage amplitude |Vs| as a function of the time delay τ while the value of the
coupling strength κ is indicated on each panel. The horizontal axis represents the
synchronized equilibrium. Solid green and dashed red curves represent stable and
unstable states, respectively. Bifurcations are marked as stars (Hopf and Neimark-
Sacker), crosses (fold and pitchfork), and diamonds (period doubling). The color of
the marker indicates which mode becomes unstable: black symbols indicate tangen-
tial stability losses while green, blue and red symbols corresponds to zero, real and
complex conjugate modal eigenvalues, cf. Fig. 2. For simplicity we only mark the
bifurcations where the stability of a mode changes.

Notice that the structure of the bifurcation diagrams and the tangential stability
losses are the same for all-to-all and general coupling when rescaling the κ values
by 4/3; cf. (4). For weak coupling the equilibrium is tangentially unstable while
the periodic orbit is tangentially stable for all values of τ; see panels (a) and (f).
For stronger coupling the equilibrium may loose its tangential stability via Hopf
bifurcations (black stars) corresponding to the lobes in Fig. 2 and the arising oscil-
lations stay within the synchronization manifold; see panels (c–e) and (h–j). Oscil-
latory solutions may undergo tangential fold bifurcations (black crosses) leading to
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Fig. 3 Bifurcation diagrams showing the peak-to-peak voltage amplitude |Vs| of synchro-
nized oscillations as a function of the delay τ for different values of the coupling strength κ .
The left and right columns correspond to the adjacency matrices (16) and (17), respectively.
The horizontal axis represents the equilibrium. Stable and unstable states are depicted by solid
green and dashed red curves. Stars represent Hopf bifurcations of equilibria or Neimark-
Sacker bifurcations of periodic orbits, crosses represent fold or pitchfork bifurcations, and
diamonds denote period doubling bifurcations. The color of symbols distinguishes between
the modes; see the caption of Fig. 2.
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Fig. 4 Stable (solid green) and unstable (dashed red) periodic orbits corresponding to τ = 3
ms and κ = 1.2 mS/cm2; cf. Fig. 3(e). The corresponding periods are Ts ≈ 15.39 ms and
Tu ≈ 17.78 ms.

coexisting Tp-periodic solutions. For a range of κ a cascade of fold bifurcations is
observed that culminate in single point where Tp → ∞; see the spiral in panels (b)
and (g). Tangential period doubling (flip) bifurcations (black diamonds) give rise to
branches of 2Tp-periodic oscillations that are typically tangentially unstable. (These
are not depicted in the figures). Also, co-dimension two fold-flip bifurcations can be
observed when the coupling is sufficiently strong; see panels (b–e) and (g–h). For
strong coupling tangential Neimark-Sacker bifurcations (black stars) result in quasi-
periodic oscillations; see panels (e) and (j). (Such oscillations cannot be traced with
the current state-of-the-art techniques).

The equilibrium may also loose its transversal stability via Hopf bifurcations
(colored stars) corresponding to the “wavy” curves in Fig. 2. The oscillations aris-
ing trough these bifurcations brake the synchrony. For synchronous oscillations,
transversal stability losses may occur via pitchfork bifurcations (colored crosses),
via period doubling bifurcations (colored diamonds), and via Neimark-Sacker bi-
furcations (colored stars). Corresponding to the multiplicity of modal eigenvalues
each transversal boundary found for (16) splits into three for (17), so that stability is
typically lost to the mode with complex conjugate modal eigenvalues (that are the
largest in magnitude) via Neimark-Sacker bifurcation (red stars).

For strong coupling one may observe domains where stable synchronized equi-
librium coexist with stable and unstable synchronized oscillations. These domains
arise via subcritical Hopf bifurcations and, depending on the initial conditions, the
system may approach the equilibrium or the periodic solution. Such orbits are de-
picted in Fig. 4. When comparing this figure with Fig. 1 one may notice the changes
in the shape of the stable (solid green) periodic orbit. Moreover, the period of sta-
ble oscillations (Ts ≈ 15.39 ms) and the period of unstable oscillations (Tu ≈ 17.78
ms) exceed the period of the uncoupled oscillations (Tp ≈ 11.57 ms). We remark
that there exist additional stable periodic solutions corresponding to different clus-
ter states that can be approached by the system for certain initial conditions but these
are not investigated in this paper; see [11] for more details.
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4 Conclusion and Discussion

Systems of delay coupled Hodgkin-Huxley neurons were studied in this paper and
the dynamics of synchronized states were mapped out when varying the coupling
strength and the coupling delay. The dynamics were decomposed and modal equa-
tions of small size were derived that describe the tangential and transversal dynam-
ics in the vicinity of the synchronous equilibria and oscillations. These equations
allowed us to characterize the synchronous dynamics and determine the regions
where the system approaches synchronized states. The most important outcome of
the analysis is that when the coupling is strong enough there exist delay ranges
where stable synchronized equilibria coexist with stable oscillations. We remark
that for simplified neural models such multi-stability may not occur [10] which em-
phasizes the importance of models that are based on biophysical measurements.

While in this paper we only mapped out synchronous oscillations, detailed in-
vestigations show that many different cluster oscillations may also exist in these
domains [11]. That is, depending on the initial conditions, the neural system may
approach the synchronous equilibrium (which is a homogenous rest state) or differ-
ent oscillatory states corresponding to different spatiotemporal patterns. As external
stimuli can “reset the initial condition”, the multi-stable dynamics discovered allow
the neural system to respond to different external stimuli with different spatiotem-
poral patterns which is crucial for encoding environmental information. Note that
such domains only exist for sufficiently large time delays which emphasizes that
delays cannot be neglected when modeling neural networks. In fact, our results sug-
gest that nature may tune the delays in large interconnected biological systems so
that the information encoding capabilities of organisms are maximized.
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Practical Delay Modeling of Externally
Recirculated Burned Gas Fraction for
Spark-Ignited Engines

Delphine Bresch-Pietri, Thomas Leroy, Jonathan Chauvin, and Nicolas Petit

Abstract. In this chapter, the authors provide an overview and study of the low-
pressure burned gas recirculation in spark-ignited engines for automotive power-
train. It is shown, at the light of supportive experimental results, that a linear delay
system permits to capture the dominant effects of the system dynamics. The modeled
transport delay is defined by implicit equations stemming from first principles and
can be calculated online. This model is shown to be sufficiently accurate to replace
a sensor that would be difficult and costly to implement on commercial engines.

1 Introduction

In this chapter, the authors focus on an application problem in the area of automotive
powertrain control. Indeed, in the past decades, the still more stringent norms on
fuel consumption and pollutant emissions for automotive engines have substantially
increased the architecture of thermal engines and, consequently, the complexity of
the control task. In this context, the treatment of time-delay systems constitutes an
important design consideration, as delays are an often encountered phenomenon in
powertrain systems, as highlighted by numerous studies [9].
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Fig. 1 Scheme of a turbocharged SI engine equipped with direct injection, VVT and a low-
pressure EGR loop

In this chapter, the particular application under consideration is exhaust gas recir-
culation (EGR) through a low-pressure (LP) circuit for a Spark-Ignited (SI) engine.
It is shown in this chapter that this technology introduces a significant delay trans-
port which should be taken into account to accurately estimate and control the (dis-
tributed) composition of the gas inside the intake line. Before detailing this point, a
few elements of context are given to motivate the use of EGR.

1.1 Why Exhaust Gas Recirculation ?

One of the main issues when dealing with downsized1 SI engine is the prevention of
the malicious knock phenomenon. This unwanted self-ignition of the gaseous mix-
ture which appears at high load, due to high resulting thermodynamical conditions,
may cause the engine to stall and eventually damage the combustion chamber.

One of the solutions considered in the automotive industry to handle this phe-
nomenon consists in using EGR through a low-pressure circuit [8, 18]. In such a
configuration, exhaust burned gas are picked up downstream of the catalyst and
reintroduced upstream of the compressor. A typical implementation is represented
in Fig. 1. Indeed, the addition of exhaust gas into the gaseous blend leads to an
increase of the auto-ignition delay: intermixing the incoming air with recirculated
exhaust gas dilutes the mixture with inert gas, increases its specific heat capacity
and, consequently, lowers the peak combustion temperature. Then, the net effect of

1 Downsizing consists in the reduction of the engine size to operate on more efficient
points. To provide similar performances to much larger engines, these engines are usually
equipped with a turbocharger and direct injection devices. This technology has appeared
in the last decade as a major solution to reduce fuel consumption [14].
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EGR is a prevention of knock which leads to potential substantial improvements of
overall combustion efficiency [6].

1.2 Necessity of a Virtual Composition Sensor

Yet, EGR has some downsides. During tip-outs (defined as a transient mode dur-
ing which the torque demand is suddenly decreased), the presence of burned gases
in the intake manifold and later in the combustion chamber seriously impacts the
combustion process and may cause the engine to stall. Further, EGR has strong in-
teractions with simultaneously operating engine controllers such as the regulation
of Fuel-to-Air Ratio (FAR) to stoichiometry (see [9]) or the spark advance. Indeed,
EGR impacts the fresh air quantity which is aspirated inside the cylinder at each
stroke. Therefore, to counteract the impact of intake burned gas, a solution would
be to modify the feedforward action on the cascaded controllers (fuelpath controller
and ignition path controller) based on a real-time estimate x̂ of the intake burned
gas rate. Nevertheless, no real-time sensor of this variable is embedded in any real-
world vehicle and obtaining such an estimate is not an easy task. The approach that
we advocate here is to substitute one such sensor with a model2.

For the considered low-pressure gas recirculation circuit, the amount of reintro-
duced burned gases is controlled by the EGR Valve, an actuator which is located
upstream of the compressor. Consequently, the relative long distance between the
compressor and the inlet manifold leads to a large transport delay (up to several sec-
onds depending on the engine specifications). Most importantly, this delay depends
on the gas flow rate and therefore is time-varying to a large extent.

1.3 Comparison with Diesel EGR

In the seemingly similar context of automotive Diesel engines3, numerous solutions
for the discussed control issues have been developed in the last decades (see for ex-
ample [1,21,23] and the references therein). Yet, none of these strategies includes a
transport delay model, which as has been discussed is non-negligible for SI engines.
Indeed, on top of using a low-pressure EGR circuit configuration (which substan-
tially increases the transport lag compared to high-pressure configuration studied
in [12, 20]), SI engines combustion constraints significantly increase the scale of
the delay: (i) first, SI engines operations require a stoichiometric FAR, which re-
sults into a fraction of burned gas close to one in the exhaust line. Consequently,
to obtain a given intake fraction of burned gas, the amount of exhaust burned gas
to be reintroduced at steady state is substantially lower than the corresponding one
for Diesel engines; (ii) besides, on the contrary of Diesel engines, SI engines may

2 Other works (see [5]) investigate the potential of using a cylinder pressure sensor sig-
nal. Yet, due to stringent cost constraints, such a sensor is not currently commercially
embedded.

3 The use of EGR for Diesel engines has been widely investigated for a different purpose, to
decrease the emissions of nitrogenous oxides emissions.
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operate at intake pressure under atmospheric values (low loads). Then, on this oper-
ating range, the steady-state gas flow rates are considerably less important.

For these reasons, modeling this transport delay is a milestone in the design of
controllers for SI engines.

In this chapter, a model of the intake burned gas rate is presented, accounting
explicitly for transport time-varying delay and its dependency on the history of gas
flow rates in a way which compensates for thermal exchanges and induced gas ve-
locity changes. It is then used as a “software” sensor. This estimation is based on
a practical delay calculation methodology which is experimentally validated on a
test bench. The purpose of this chapter, based on the previous contribution [4], is to
present this model along with its practical validation, to enhance the role of the vari-
able transport delay in the modeling and to illustrate how this estimate can be used
to coordinate the controllers. Experimental FAR control tests stress the relevance of
the estimate.

This chapter is organized as follows. In Section 2, we present a model of the
intake burned gas rate dynamics, under the form of a linear time-varying system
with a time-dependent delay output. The practical usage of this model is discussed.
Implementation and experimental results are provided in Section 3. We conclude by
briefly sketching potential directions of work for combustion control improvements.

2 Modeling

Consider the airpath of a turbocharged SI engine equipped with intake throttle,
wastegate, dual independent VVT actuators and a low-pressure external gas re-
circulation (EGR) loop as depicted in Fig. 1. Such a setup is usually considered
for downsized engines (see [10]). Acronyms and notations used below are listed in
Table 1.

Formally, the in-cylinder burned gas fraction xcyl is defined as the ratio between
the in-cylinder burned gas mass originated from the EGR loop mbg and the total
mass of gas in the cylinder volume masp = mair +mbg in which mair is the aspirated
mass of fresh air, i.e.

xcyl =
mbg

mair +mbg

From now on, this variable is considered equal to x the intake burned gas fraction 4.

2.1 Dilution Dynamics and Transport Delay

Defining xl p as the burned gas rate upstream of the compressor, the EGR dynamics
can be expressed in terms of the mass flow rates of air Dair and recirculated burned
gas Degr as

4 Actually, this relation depends mainly on the VVT control strategy. We neglect this influ-
ence here for sake of clarity.
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ẋl p =α
[
−(Degr(t)+Dair(t))xl p(t)+Degr(t)

]
(1)

x(t) =xl p(t− τ(t)) (2)

where τ(t), the delay between this ratio and the intake composition, can be implic-
itly defined according to the integral equation (Plug-Flow assumption for the gas
composition along the intake line, see [16])

∫ t

t−τ(t)
vgas(s)ds =LP (3)

where LP is the pipe length from the compressor down to the intake manifold and
vgas stands for the gas velocity.

EGR Burned Gas

Fresh Air

Dilution(1)
xlp x

A B

Delay transport
(2)-(3)

(thermal contraction)

Fig. 2 Scheme of the intake burned gas fraction dynamics

Equation (1) is a balance equation on the volume downstream of the EGR valve,
using the fact that the EGR circuit is totally filled with burned gas5. Depending on
engine setups, the thermodynamics constant α appearing in (1) is either measured
or known.

The integral delay model (3) is representative of a wide class of systems involving
transport phenomena [2,17,22]. This delay can be understood as a propagation time
for a variable velocity vgas. In particular, one can observe that at steady-state this
delay is inversely proportional to the gas speed, which is a more intuitive modeling
one can think of. Alternatively, PDE models can be used to represent more accu-
rately the induced transport dynamics. However, the induced computational burden
discard them from real-time implementation.

In a nutshell, following the proposed model, which is pictured in Fig. 2, the intake
burned gas fraction is the result of a first order dynamics coupled with a transport
delay.

For sake of clarity, the approach used to model the mass flow rate quantities
(Degr,...) used through (1)-(3) is not detailed here and given in Appendix. Using the
approach presented in Appendix, one can now assume that they are known quan-
tities. To provide an implementable open-loop estimate of x based on the model
(1)-(3), a practical calculation methodology of the delay τ , using only real-time
measurements, remains to be developed. This point is now addressed.

5 For SI engines, the FAR is regulated to its stoichiometric value (see [7]), which results into
an exhaust burned gas fraction close to unity.
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2.2 Transport Delay Description

Equation (3) implicitly determines the delay according to the gas speed along the in-
take line, which, on top of being a distributed parameter, is not measured in practice.
Further, the thermodynamical transformations the gas is submitted to in the intake
line modify this distributed velocity. This complexity can be handled by a relatively
fair delay description.

Indeed, using the ideal gas law (as is classically done for engine gas flows, e.g.
in [7]), one can relate this speed to current thermodynamical conditions and mass
flow rates, which are measured/modeled. Namely,

∀t ≥ 0 , vgas(t) =
1

S(t)
rT (t)
P(t)

[Dair(t)+Degr(t)]

where S is the current pipe area, T,P are the current temperature and pressure values,
r is, as previously, the (common) ideal gas constant of both fresh air and burned gas.
In practice, the total mass flow rate which appears under the integral is estimated as
Dair(s)+Degr(s) = Ddc(s) (a model of the mass flow rate Ddc is provided in (7) in
Appendix).

A thermal contraction of the gas occurs inside the intake cooler, resulting in spa-
tial changes of the gas velocity vgas. To model this, we split the intake line into three
main sections with three respective and cumulative transport delays τ1, τ2 and τ3

such that τ = τ1 + τ2 + τ3. This decomposition, pictured in Fig. 3, is as follows:

Tdc
Tint

PdcCompressor
Intercooler Throttle

Distance in the intake line

Temperature

Tdc

Tint

Gas velocity
vgas (m/s) high gas speed decreased gas

speed
low gas speed

Ddc
(Mass flow rate)

Fig. 3 The intake line is split into three parts to account for the spatial differences of the
gas velocity. The temperature decreases, which results into an increase of velocity which is
analytically determined by the ideal gas low fed with measurements from temperature and
pressure sensors located along the line.
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• downstream of the compressor to the intercooler : in this part, the current pres-
sure and the temperature are measured and one can write

∫ t

t−τ1(t)

rTdc

Pdc
Ddc(s)ds =V1 (4)

with V1 the corresponding volume.
• inside the intercooler: considering boundary conditions, the pressure inside the

intercooler can reasonably be assumed as constant and equal to the input one Pdc.
Further, we assume that the spatial profile of the inside temperature is affine with
respect to the spatial variable, with measured boundary conditions Tdc and Tint

6.
Under this assumption, equation (3) can be reformulated on this section as

∫ t−τ1(t)

t−τ2(t)−τ1(t)

r
Pdc

Ddc(s)ds =S2

∫ L2

0

dx
T (x)

=
V2

Tint −Tdc
ln

(
Tint

Tdc

)
(5)

where L2,S2 and V2 are the corresponding length, area and volume.
• downstream of the intercooler to the intake manifold: in this section, the temper-

ature can be approximated by the intake manifold temperature, which yields

∫ t−τ2(t)−τ1(t)

t−τ3(t)−τ2(t)−τ1(t)

rTint

Pdc
Ddc(s)ds =V3 (6)

with V3 the corresponding volume.

Knowing intermediate volumes V1,V2 and V3, one can calculate the delay in a
very straightforward manner, solving, one after the other, (4), (5) and finally (6).
The transport delay is then simply deduced as τ(t) = τ1(t)+ τ2(t)+ τ3(t).

The involved numerical solving is based on the observation that the integrand is
strictly positive and that the integral is then an increasing function of the delay τi

(i∈{1,2,3}) appearing in its lower bound. Then, by simply sampling and evaluating
the integral at increasing values of τi starting from 0, one can obtain a numerical
evaluation of the corresponding delay. All these calculations are on-line compliant7.

2.3 Estimation Strategy with Practical Identification Procedure

An estimation strategy of the model above is summarized on Fig. 4. Real-time mea-
surements of temperatures and pressures serve to determine the value of the delay.
These information are commonly available using (cheap) embedded sensors. Values
for physical volumes (Vl p, V1, V2 and V3) can be used to calibrate the model.

It is worth noticing that splitting the intake line as has been proposed in the pre-
vious section has been motivated mainly by the engine embedded instrumentation
and in particular by the availability of temperature (and pressure) sensors. It can

6 i.e. T (x) = Tint−Tdc
L2

x+Tdc.
7 This approach is directly inspired of [17] for modeling plug flows in networks of pipes

problem.
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Fig. 4 Scheme of the proposed delay calculation strategy for intake burned gas fraction es-
timate x. The numerical solving of implicit integral equations (4)-(6) can be obtained by
sampling and calculating the integrals at increasing values of τi starting from 0, which are
real-time compliant calculations.

be easily adapted to any considered engine. In particular, if no temperature and no
pressure sensors are available downstream of the compressor, they can be efficiently
approximated by the intake ones at the expense of slight updates of the volumes
values in the fit. Indeed, the two pressures are sufficiently close and these equations
are of moderate temperature sensitivity. In such a case, the delay can be directly
determined by one equation of type (4).

3 Experimental Results

The proposed model is now used as a “software” sensor. The obtained estimate is
embedded into a real-time control target and employed at test-bench. The experi-
ments aim at validating the model presented in Section 2 and in particular the delay
modeling.

3.1 Experimental Setup and Indirect Validation Methodology
from FAR Measurements

The engine under consideration is a 1.8L four cylinder SI engine with direct injec-
tion (see [13] for details). The airpath consists of a turbocharger controller with a
wastegate, an intake throttle, an intercooler and a LP-EGR loop. This engine setup
is consistent with the scheme reported in Fig. 1.

To validate the proposed estimation strategy, as no real-time information of the
intake burned gas fraction is available for this engine, we focus on the open-loop
response of the normalized FAR. This quantity is formally defined in terms of the
fuel and fresh air mass aspirated inside the cylinder at each stroke as φ = 1

FARst

min j
mair

. It
has to be regulated to the unity to maximize the efficiency of after-treatment devices.
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Usually, this control is realized with the injection path8, using the measurements of
a dedicated sensor located downstream of the turbine (Lambda Sensor).

Here, the FAR is simply controlled by a feedforward strategy on the mass of fuel
injected in the cylinder, namely

min j = FARstmair

The additional feedback term that is usually used is purposely omitted.
When no burned gas is recirculated, the in-cylinder air mass is accurately es-

timated with the model presented in Appendix (see [15]), i.e. mair = masp. When
burned gas are reintroduced, one can formally write mair =masp−mbg =masp(1−x)
and, consequently, estimate the in-cylinder air mass as masp(1− x̂) where x̂ is the
intake burned gas fraction estimate provided by the proposed model.

With this setup, it is possible to qualitatively relate the FAR variations to the
intake burned gas fraction. Indeed, if the estimation is accurate, the normalized FAR
remains close to unity and, in turn, one then obtains an indirect validation of the
intake burned gas rate estimation. Any offset reveals a steady-state estimation error
while any temporary undershoot (or overshoot) reveals a mis-estimation of the delay.

3.2 First Validation : Variation of the Amount of Reintroduced
EGR (Constant Delay)

The first scenario under consideration here is a variation of the amount of reintro-
duced burned gas for a given operating point : constant engine speed Ne = 2000
rpm for a requested torque of 12.5 bar. This scenario is of particular interest for
validation as the intake mixture composition is the only varying variable.

Fig.5(c) pictures the intake burned gas fraction estimates corresponding to the
EGR valve variations pictured in (a). The corresponding delay is constant and sim-
ply not reported.

With Burned Gas Feedforward Correction, i.e. Considering mair = (1− x̂)masp

The corresponding normalized FAR evolution is pictured in black, in Fig.5(b). One
can easily observe that the normalized FAR remains satisfactorily close to the unity.
This behavior reveals a good fit between the real intake manifold burned gas rate
and the estimate one provided in Fig.5(c).

For sake of comparisons, the FAR response with a burned gas fraction estimate
computed neglecting the delay is also provided (red dotted curves). Neglecting the
delay leads to a transient overestimation of the burned gas fraction and, conse-
quently, to a significant FAR undershoot. This stresses the importance of the delay
into the burned gas rate dynamics and the relevance of the proposed model.

Without Burned Gas Correction, i.e. Considering mair = masp

In that case, as the in-cylinder mass air is overestimated, the injected mass of fuel
turns to be too large. This results into a deviation of the normalized FAR up to
1.09 (blue dotted curve in Fig.5). A feedback control would reasonably eliminate

8 The airpath being then dedicated to meet torque requests.
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(c) Burned gas fraction estimate

Fig. 5 Experimental results for constant engine speed (Ne = 2000 rpm) and torque request
(IMEP = 8 bar). The EGR valve position is pictured in (a). Blue dotted curve : gas compo-
sition transient without estimation. Black curve : gas composition transient with estimation
and feedforward correction.



Practical Delay Modeling for SI Engine EGR 369

this offset, but, as the obtained FAR measurement is delayed (see [3, 11] for a FAR
dynamics details), an important overshoot would still be present.

3.3 Second Validation : Torque Transients (Varying Delay)

The second scenario under consideration is a torque transient requested by the driver,
a step from 6 bar to 12.5 bar. This tip-in is a typical driving situation case study, which
defines an increase in the in-cylinder air mass set point and consequently on the total
gas flow rate. Then, both dilution dynamics (1) and the delay are varying.

Further, this also implies a variation of the requested amount of reintroduced
burned gas, as the initial operating point is low loaded and does not require any
EGR. Without dedicated control structure, we simply consider here the EGR valve
position either fully closed or fully opened. Its variations are pictured in Fig. 6(c).

The corresponding calculated delay is given in Fig. 6(d). As the total mass flow
rate increases during the transient, the delay decreases, as expected.

Finally, as in the previous scenario, the FAR remains close to the unity. This
validates the burned gas fraction estimate variations depicted in Fig. 6(b).
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Fig. 6 Experimental results for constant engine speed (Ne = 2000 rpm) and transient torque
request (step from IMEP= 6 bar to 12.5 bar), resulting into a delay variation. The normalized
FAR response pictured in (a) uses the intake burned gas fraction estimation pictured in (b),
obtained with the on-line estimation of the delay (d).

4 Conclusion and Perspectives

In this chapter, it has been shown that low-pressure burned gas recirculation for
SI engines can be accurately represented as a first order linear dynamics with a
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time-varying delay. The value of the delay is determined by an implicit integral rela-
tion in which data from commonly available sensors (temperatures, pressures) come
into play through the ideal gas law. Experiments conducted at test bench validate both
this model and the proposed delay calculation methodology and highlight the key rule
played by the delay in the overall dynamics.

This result opens new perspectives in term of engine control applications : coor-
dination of low-level controllers, advanced feedforward compensation (FAR, Spark
Advance),... Yet, because the delay is varying, new techniques are required, espe-
cially if one wishes to take advantage of the known source of delay variability.

In particular, the input-dependency of the delay brings new challenges in term
of control. As mentioned in [19], while a few number of works have investigated
open-loop tracking for input-dependent delay systems, closed-loop control is still
an open problem.

Appendix : Flow Rates Model

In-Cylinder and Downstream Compressor Mass Flow Rates
We use the model of in-cylinder gas mass presented in [15] to define mass flow
rates. In this model, Dasp is represented as a function of the engine speed Ne, the
manifold pressure Pint and the intake and exhaust VVT actuators positions. Using

Table 1 Nomenclature

Notations

Symbol Unit Description Symbol Unit Description
Dair kg/s Air mass flow rate up- VP m3 Pipe volume from the compressor

stream of the compressor to the intake manifold
Degr kg/s EGR mass flow rate r J/kg/K Specific ideal gas constant

through the EGR valve LP m Pipe length from the compressor
Ddc kg/s Mass flow rate down- to the intake manifold

stream of the compressor θegr % EGR Valve Position
Dasp kg/s In -cylinder mass mair mg/str In-cylinder air mass

flow rate mbg mg/str In-cylinder burned gas mass
vgas m/s Gas speed masp mg/str In-cylinder total gas mass
Tdc K Temperature downstream min j mg/str Injected mass of fuel

of the compressor FARst - Stoichiometric FAR
Pdc Pa Pressure downstream x - Intake burned gas fraction

of the compressor xlp - Burned gas fraction up-
Tatm K Atmospheric temperature stream of the compressor
Patm Pa Atmospheric pressure xcyl - In-cylinder burned gas fraction
Vlp m3 Volume between the EGR

valve and the compressor

Acronyms

EGR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exhaust Gas Recirculation
FAR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Fuel-to-Air Ratio
IMEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Indicated Mean Effective Pressure
SI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Spark Ignited
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the ideal gas law, this flow rate is dynamically related to the flow rates through the
throttle and downstream of the compressor as

Dthr =Dasp(Ne,Pint ,VVT )+
Vint

rTint
Ṗint , Ddc = Dthr +

VP

rTdc
Ṗdc (7)

where r = rair = rbg is the (common) ideal gas constant. The variables used in these
two last equations are either known or measured.

EGR Mass Flow Rate. Assuming that an intake mass air flow sensor is available
on the engine, only the mass flow rate Degr remains to be expressed. Neglecting
the mis-synchronization of the flows signals, we simply write (with a projection
operator forcing the flow rate to be zero when the valve is closed)

D̂egr(t) =Projθegr>0
{Ddc(t)−Dair(t)}
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Design and Control of Force Feedback Haptic
Systems with Time Delay

Quoc Viet Dang, Antoine Dequidt, Laurent Vermeiren, and Michel Dambrine

Abstract. Time-delay effects on the properties of stability and transparency for a
haptic device are well known and are far from to be negligible if high performances
are expected. This chapter deals with the issues of design and control for a force
feedback haptic device in the case of the interaction with a virtual wall. The sta-
bility condition expressed in term of Linear Matrix Inequality allows considering
the effects of a constant time-delay as well as other mechanical parameters such as
vibration mode. This result will be applied in the first part of the chapter to the opti-
mal design method for an electromechanical haptic device with high performances
(stability and low inertia). The second part will deal with the implementation of the
virtual wall and the observer-based force feedback architecture in order to improve
the stability of haptic system taking into account variations of the communication
delay.

1 Introduction

Haptic devices are used to produce a kinesthetic or tactile stimulus of the interaction
between a user and a virtual environment. This chapter is about a force feedback
haptic system that allows the user to manipulate objects in the virtual environment
while feeling a reaction force when there is contact with an obstacle, e.g. a virtual
wall. Stability and transparency are the two most important performance measures
for the design of a haptic device. Transparency implies low inertia, little friction,
and no constraints on motion imposed by the device kinematics so that the user
must have the impression of directly manipulating virtual objects without feeling
the dynamics of haptic device. Ideally, the weight, inertia, friction, etc. of haptic
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device should not be perceived by the user. In addition, the haptic system must be
able to reproduce a high contact stiffness so that the user should not have capacity to
go through the virtual wall. However, a too high contact stiffness of the virtual wall
can lead to a destabilization of the haptic device. Any unstable behavior occurring
during a virtual contact can damage the haptic device or injure the user. The worst
case of the stability study is the case of the contact between a manipulated object
and a virtual wall.

In free motion, the improvement of haptic device’s transparency can be obtained
by using a position feedback loop in order to reduce the device’s dynamics and
compensators are used to cancel friction forces and gravity [1]. In order to assure
the stability of the haptic device in the interaction with a virtual wall, the haptic
system is described as a sampled-data dynamic system in which the haptic device
is modeled by a one dimensional mechanical system consisting of a rigid mode (a
mass/inertia m and a damping coefficient b), the virtual wall is characterized by a
linear spring-damper system having virtual stiffness Kve and damping coefficient
Bve. In the traditional approach, the backward finite difference method is used to
estimate the velocity from the measured position. The linear inequality (1) has been
proposed by Colgate and Schenkel [2] as a guideline for engineers in choosing de-
sign specifications of haptic system:

b >
KveTs

2
+Bve (1)

where Ts is the sampling period. By using the analysis method on the basis of the
frequency domain criteria such as: Routh-Hurwitz or Nyquist, the stability region
of haptic system is defined in the virtual damping-stiffness plan. By linearizing the
stability region around the origin, Gil et al. [3] proposed a generalized stability con-
dition for the linear haptic system taking into account the effect of time-delay Td as
follows:

Kve <
b+Bve
Ts
2 +Td

(2)

Moreover, the human operator’s mechanical impedance can be modified over a wide
dynamics range [4], the stability of haptic systems depends on how the human op-
erator interacts with the haptic device. The stability condition

Bve + b+ bh >
(Kve + kh)Ts

2
(3)

given by Minsky et al. [5] includes the effects of the damping bh and stiffness kh of
the human operator. However, this condition was derived from the passivity criterion
of haptic system that is a very conservative design requirement [6] and the time
delay was ignored. The impedance model of human operator was also included in
some studies [7–9] to infer the evolution of stability condition. These results have
shown that the human operator tends to make the haptic system more stable.
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Fig. 1 Cable-driven 1DoF haptic device and mechanical model

The aim of this chapter is to address the issues of design and control for haptic
devices in the case of the interaction with a virtual wall. The main contribution is
firstly to present an optimal design method for an electromechanical haptic device
with high performances (stability and low inertia). Using the backward finite dif-
ference method, the necessary and sufficient stability condition in term of Linear
Matrix Inequality (LMI) is proposed to allow taking into account the effects of the
time-delay as well as other mechanical parameters such as vibration mode in the
same mechanical pre-design process. Next, an example for designing a cable-driven
haptic device using the optimal design method is presented. Finally, an augmented
state observer-based force feedback architecture will be considered for the imple-
mentation of the virtual wall in order to improve the haptic system stability. Time-
varying communication delays will be considered. The numerical analysis show that
the proposed force feedback architecture is quite efficient for expanding the stability
region of haptic system.

2 Optimal Design Method for Haptic Device

2.1 Dynamic Constraint

Cable-driven mechanisms have attracted the attention of researchers in the field of
haptics because of their advantages such as: low inertia, lost cost, large workspace,
etc. Previous studies [8, 10, 11] have shown that the stability of a haptic system
depends on the nature of flexibility of the haptic device’s transmission mechanism.
Thus, the dynamic behavior of haptic device taking into account the vibration modes
must be studied in the interaction of the haptic device with the virtual wall. In this
section, a cable-driven one degree-of-freedom(dof)haptic device as illustrated in Fig
1 is considered. The first transmission includes a motor and a cable spool mounted
on the motor shaft, the second transmission comprises a handle connected rigidly
with a semi-drum.
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The kinematic relationship between the input and the output of the transmission
mechanism is given by:

q̇ = Lθ̇2 , θ̇2 =
r1

r2
θ̇1 (4)

where θ̇i, ri are the angular velocity and the exterior radius of the ith part of trans-
mission mechanism (i=1,2), q̇ is the velocity of the end-effector (end of handle), L
is the handle’s length. The motor torque T (t) can be expressed as:

T (t) = J1θ̈1 + b1θ̇1 +
r1

r2

(
b2θ̇2 + J2θ̈2 +LFh

)
(5)

where Fh is the force applied from the user’s hand, Ji ,bi are the total inertia and
the total damping coefficient of the ith part of transmission (i=1,2), Fh is the force
applied by the human operator. It is noted that J1 = Jm+Jsp , Jsp =

1
2πρh

(
r4

1− rms
4
)

, r1 = rms + e; Jm and rms are the inertia of motor and the radius of motor shaft; Jsp,
ρ , e, and h are the inertia, mass density, thickness and height of cable spool; in
respectively. From (4) and (5), we have:

Fh (t) =
r
L

T (t)−Mappq̈−Bappq̇ (6)

where r = r2
r1

, Mapp =
J1r2+J2

L2 , Bapp =
b1r2+b2

L2 ; r is the transmission rapport, Mapp

and Bapp are the apparent mass and damping perceived by the user while manipu-
lating the handle of the haptic device.

For force feedback haptic systems, in steady-state regime with a stable contact
with the virtual wall, i.e. q̇ = 0, the motor must be able to generate an enough high
torque to equalize the force exerted by the user. This leads to following constraint:

Tm ≥
L
r

Fhmax (7)

where Fhmax is the allowable maximal force exerted by the user, Tm is the nominal
torque of motor.

2.2 Mechanical Model of the Haptic Device

The haptic device can be modeled using the following state-space representation:
{

ẋ = Acx+BcFm +EcFh

y = Ccx
(8)

where x=
[

q1eq q̇1eq q2eq q̇2eq
]T

is the state vector and y= q1eq is the output vector.
The matrices expressions are given by:
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Fig. 2 Contact model in the virtual environment and overall dynamic model of a force feed-
back haptic system

Ac =

⎡
⎢⎢⎢⎣

0 1 0 0

− kceq
m1eq

− b1eq+bceq
m1eq

kceq
m1eq

bceq
m1eq

0 0 0 1
kceq
m2eq

bceq
m2eq

− kceq
m2eq

− b2eq+bceq
m2eq

⎤
⎥⎥⎥⎦ ,

Bc =
[

0 1
m1eq

0 0
]T

Ec =
[

0 0 0 1
m2eq

]T

Cc =
[

1 0 0 0
]

where kc and bc are the stiffness and damping coefficient of transmission cable, and

m1eq = J1
(

r
L

)2
b1eq = b1

(
r
L

)2
q1eq =

L
r θ1 Fm = r

L T (t)

m2eq =
J2
L2 b2eq =

b2
L2 bceq = bc

( r1r
L

)2
kceq = kc

( r1r
L

)2

2.3 Necessary and Sufficient Stability Condition

The critical case for stability occurs when the manipulated object encounters a vir-
tual wall (or constrained motion). The penetration xve of the virtual wall is given
from the actuator position θ1 by using an encoder mounted on the motor shaft, the
velocity ẋve is approximated by using the backward finite-difference method. When
the virtual wall is penetrated, the human operator should feel the reaction force Fve

from this wall. The feedback force Fm is calculated from the virtual contact model.
The model of virtual contact includes a virtual stiffness Kve and a virtual damping
Bve, as shown in the left side of Fig 2. The reaction force Fve of virtual contact is
given by:

Fve =

{
Kvexve +Bveẋve if xve ≥ 0

0 if xve < 0
(9)

The right side of Fig 2 presents the overall dynamic model of the haptic system
including the continuous-time state-space representation (8) of the haptic device, the
sampler (Analog/Digital board) and the Zero-Order Holder (ZOH-Digital/Analog
board) with the sampling period Ts, and the time-delay Td = dTs is assumed here to
be constant, d is a positive integer. The discrete-time state-space representation of
the haptic device taking into account the effect of the ZOH can then be written:
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{

x(k+ 1) = Ad x(k)+Bd Fm(k)+Ed Fh(k)
y(k) = Cd x(k)

(10)

where: Ad = eAcTs , Bd =
∫ Ts

0 eAcτBc dτ, Ed =
∫ Ts

0 eAcτEc dτ, Cd = Cc and the feed-
back force Fm in discrete-time form is defined by:

Fm(k) =−Fve(k− d) =−(Kve +
Bve

Ts
)y(k− d)+

Bve

Ts
y(k− 1− d) (11)

The discrete state-space representation of the closed-loop haptic system is then:

⎧⎨
⎩

x(k+ 1) = Adx(k)− (Kve +
Bve
Ts
)Bd Cdx(k− d)

+Bve
Ts

Bd Cd x(k− 1− d)+Ed Fh(k)
y(k) = Cd x(k)

(12)

In the steady regime of stable contact with the virtual wall, the force Fh applied by
the user can be considered as an external signal. By introducing the augmented state
variable x(k)T =

[
x(k)T x(k− 1)T ... x(k− d)T x(k− 1− d)T ]

, the discrete-time
state-space representation of the closed-loop haptic system (12) can be rewritten:

{
x(k+ 1) = Ax(k)+Ed Fh(k)
y(k) = Cx(k)

(13)

where the augmented matrix A of the (d+ 2)n× (d + 2)n dimensions and C of the
1× (d + 2)n dimension are given by:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Ad 0n×n · · · 0n×n −(Kve +
Bve
Ts
)BdCd

Bve
Ts

BdCd

In×n 0n×n · · · 0n×n 0n×n 0n×n

0n×n In×n · · · 0n×n 0n×n 0n×n
...

...
. . .

...
...

...
0n×n 0n×n · · · In×n 0n×n 0n×n

0n×n 0n×n · · · 0n×n In×n 0n×n

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

and C=
[

Cd 01×(d+1)n
]

with n is the size of vector x. Based on Lyapunov’s stability
theorem, the discrete-time haptic system (13) is asymptotically stable if and only if
there exists a positive definite matrix P satisfying the LMI constraint :

A
T

PA−P < 0 (14)

2.4 Optimal Design Method for Haptic Device

For designing a haptic device, we would like to minimize the apparent mass Mapp

perceived by the user. The optimal design of subparts (e.g. the second transmission)
can be carried out independently as a local optimization process. So that, this section
proposes a global optimal design method from its mechanical subparts for choos-
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ing the motor (Jm, Tm, bm, rms) and the transmission rapport (r) of the haptic device.
The objective of this method is to obtain a haptic device that has a low inertia (trans-
parency performance) and must be able to keep stability during a contact to a virtual
wall having a desired stiffness Kve des for all virtual damping Bve ∈ [Bvemin,Bvemax].
Especially, this method allows to design a haptic device in the interaction to a virtual
wall taking into account the effects of the vibration mode and the time delay. The
optimal design problem of haptic device is described:

Original optimisation problem:

Finding: the motor (Jm, Tm, bm, rms) and the transmission rapport (r).

Objective: minimize Mapp =
J1r2+J2

L2 .
Constraints: dynamic constraint (7) and stability condition (14).

By denoting:
α = Tm√

J1
, β = r

√
J1 (15)

we have

Mapp =
β 2+J2

L2 kceq =
kc
J1

(
r1β
L

)2
m1eq =

(
β
L

)2
b1eq =

b1
J1

(
β
L

)2

q1eq =
L
√

J1
β θ1 bceq =

bc
J1

(
r1β
L

)2
m2eq =

J2
L2 b2eq =

b2
L2 Fm = β

L
√

J1
T (t)

(16)

Therefore, the optimal design problem can be transformed into :

New optimisation problem:

Finding: the value of α .
Objective: minimize β .
Constraints: dynamic constraint β ≥ LFhmax

α and stability condition (14)
with the physical parameters in (16).

In order to illustrate the proposed optimal design method, a list of motors in Table 1
is considered and the desired parameters are given in Table 2. A description for the
optimal design method is shown in Fig 3. Each upright line corresponds to a motor.
The intersection of each upright line with the limit curve gives a “feasible value” of
β . In addition, for each motor, a lowest “stability value” of β at which the haptic
device is stable in the case of the contact with a desired virtual wall is calculated
by using the stability condition (14). As a result, corresponding to each motor, we
obtain two values of β (i.e. a “feasible value” and a “stability value”). The maximum
of these two values gives a solution. And so, a set of solutions Si (i = 1, . . . ,nu)
including nu values of β from a list of nu motors is obtained. The minimum of these
values corresponds to the optimal solution. Obviously, from the optimal solution
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Table 1 List of motors

Model Torque(mNm) Inertia(gcm2) Damping (Ns/m) Shaft radius (mm)

283870 167 101 1.9536×10−3 3
393023 161 53.8 2.5742×10−3 3
136200 190 119 1.5909×10−3 3
305015 129 33.3 1.9821×10−3 2.5
370356 420 542 14.339×10−3 4
148867 170 139 2.9764×10−3 3
353295 485 1290 37.283×10−3 6
136209 347 209 5.4286×10−3 4
272765 63.8 21.9 0.5252×10−3 2
218013 189 123 2.9639×10−3 3

Table 2 Desired parameters for designing haptic device

Parameters Variable Value

Handle’s length(m) L 0.1
Total inertia(kgm2) J2 1.55×10−3

Total damping(Ns/m) b2 10−5

Mass density(kg/m3) ρ 7800
Thickness(m) e 0.002
Height(m) h 0.02
Stiffness(N/m) kc 5060
Damping(Ns/m) bc 0
Virtual stiffness(N/m) Kve des 5000
Minimal virtual damping(Ns/m) Bvemin 0
Maximal virtual damping(Ns/m) Bvemax 50
Maximal force applied by the user(N) Fhmax 10
Communication time-delay(ms) d 1
Sampling period(ms) Ts 1

Table 3 Optimal solution

Model Torque(mNm) Inertia(gcm2) Damping (Ns/m) Shaft radius (mm)

305015 129 33.3 1.9821×10−3 2.5

Transmission rapport r 11.54

of β , the designed parameters for the first transmission (i.e. motor parameters and
exterior radius of cable spool) are completely determined by choosing the value of
α . From the chosen motor and βopt , the transmission rapport r is derived by using
(15). The result of the optimal solution is given in the Table 3.
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Fig. 3 An illustration for the optimal design method

3 Proposed Force Feedback Architecture

3.1 Design of the Virtual Wall and the State Observer

In the case of contact to the virtual wall, most force feedback architectures of haptic
system in the literatures [3, 8, 12] took the measured position of the motor shaft θ1

in order to calculate the penetration depth xve of the virtual wall. Its velocity ẋve is
obtained by using the backward finite difference method. In order to improve the
stability of the discrete-time haptic system under the time-varying communication
delay, we consider an alternative force feedback architecture using an augmented
state observer (see Fig 4) instead of the backward finite difference method in Fig 2.
In the general case of interaction between a haptic device and a virtual environment,
the communication delay d(k) is a time-varying function that can be assumed to
vary between two integers dmin and dmax with dmin < dmax :

0 < dmin ≤ d(k)≤ dmax (17)

It is recalled that the force Fh applied by the user can be considered as a constant
external excitation signal in the steady regime of stable contact between the manip-
ulated object and a virtual wall. Denote

X(k) =

[
x(k)
Fh(k)

]
u(k) = Fm(k)

A =

[
Ad Ed

01×n 1

]
B =

[
Bd

0

]
C =

[
Cd 0

] (18)

Then, the augmented, discrete-time state representation of the haptic device can be
rewritten
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Fig. 4 Augmented state observer-based force feedback architecture for haptic system

{
X(k+ 1) = AX(k)+Bu(k)
Y(k) = CX(k)

(19)

So that, the dynamic model of the discrete-time state observer is the following one:
{

X̂(k+ 1) = AX̂(k)+Bu(k)+Kobs
(
Y(k)− Ŷ(k)

)
Ŷ(k) = CX̂(k)

(20)

where Kobs is the real gain matrix of the state observer to be determined. When this
state observer is used, the delayed feedback force can be set in the following form:

Fm(k) = u(k) =−
[

Kvw 0
]

X̂(k− d(k)) =−Kvwx̂(k− d(k)) (21)

where Kvw =
[

Kve Bve 01×(n−2)
]
, Kve and Bve are, respectively, the stiffness and the

damping coefficient of the virtual wall. Then, the discrete-time state-space repre-
sentation of the closed-loop haptic system can be written as:

{
x(k+ 1) = Ad x(k)−BdKvw x̂(k− d (k))+Ed Fh(k)
y(k) = Cdx(k)

(22)

As the global system is linear, the separation principle applies and so, the design
of gain matrices Kvw of the virtual wall and Kobs of the state observer can be done
separately. The gain matrix Kvw of the virtual wall is firstly chosen from the stability
analysis of the discrete-time system (23):

{
x(k+ 1) = Ad x(k)− Bd Kvw x(k− d (k))
x(k) = φφφ (k), k =−dmax,−dmax + 1, ..., 0

(23)

where φφφ (.) is the initial value sequence. The stability property of the system (23) is
checked in by using Theorem 1.
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Theorem 1. If there exists real symmetric positive definite matrices
P,Q1,Q2,R1,R2 and free-weighting matrices M1,M2,N1,N2 of appropriate
dimensions such that the following LMI conditions are feasible:

⎡
⎢⎢⎢⎢⎣

ΘΘΘ 11 ΘΘΘ 12 R1 +M1 −N1 dXi
1

∗ ΘΘΘ 22 M2 −N2 dXi
2

∗ ∗ Q2−Q1−R1 0n×n 0n×n

∗ ∗ ∗ −Q2 0n×n

∗ ∗ ∗ ∗ −dR2

⎤
⎥⎥⎥⎥⎦< 0, i = 1, 2 (24)

where X1 = M, X2 = N, and

ΘΘΘ11 = Ad
T PAd−P+Q1 +(Ad− In×n)

TΨΨΨ (Ad− In×n)−R1

ΘΘΘ12 =−Ad
T PBdKvw− (Ad− In×n)

TΨΨΨBdKvw−M1 +N1

ΘΘΘ22 = (BdKvw)
T P(BdKvw)+ (BdKvw)

TΨΨΨBdKvw−M2−M2
T +N2 +N2

T

ΨΨΨ = dmin
2R1 + dR2,d = dmax− dmin

then, the discrete-time system (23) is asymptotically stable for any time-delay d(k)
satisfying (17).

A complete proof of this result can be found in [13].
From Theorem 1, it is interesting to find the critical virtual stiffness Kec of virtual

wall at which the haptic system begins becoming unstable for each value of virtual
damping Bve. As a result, the stability boundary of haptic system can be recon-
structed in the virtual damping-stiffness (Bve-Kve) plan. The feedback gain matrix
Kvw can be determined from this stability region. Let the state observer error be

ηηη(k)T =
[
(x(k)− x̂(k))T (

Fh(k)− F̂h(k)
)T

]
. Then, the error dynamics of the state

observer can be written

ηηη(k+ 1) =
(
A−KobsC

)
ηηη(k) (25)

The design of the observer gain is standard. The observer gain matrix Kobs can
then be obtained by using the pole placement method [14].

3.2 Numerical Simulation Results

In this section, the designed haptic device with physical parameters in the Table 4
is examined. The sampling period is Ts = 1(ms). We consider first the case of a
constant delay (d = 1) for which necessary and sufficient stability conditions exist.
The stability boundaries of the haptic system using the backward finite difference
method and the augmented state observer in the force feedback architecture are
shown in Fig 5. This figure shows the interest of the proposed approach. In other
words, it allows considering a higher stiffness virtual wall with respect to the tra-
ditional backward finite difference method. In addition, the stability region of the
haptic system using the backward finite difference method validates the proposed
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Fig. 5 Stability boundaries of the haptic system in the case of the time-constant delay d=1,
BWFD: Backward finite difference method, OBS: Augmented state observer

optimal design method. Obviously, the haptic device with designed physical param-
eters is stable for the desired stiffness Kve = 5000(N/m) and all virtual damping
Bve ∈ [0,50] of the virtual wall.

Table 4 Physical parameters of the designed haptic device

Parameters Variable Value

First transmission’s mass(kg) m1eq 0.04553
First transmission’s damping(Ns/m) b1eq 26.381
Linkage stiffness(N/m) kceq 1363.7
Linkage damping(Ns/m) bceq 0
Second transmission’s mass(kg) m2eq 0.155
Second transmission’s damping(Ns/m) b2eq 0.001

The next section presents some numerical simulation results for the designed
haptic system using the augmented state observer in the force feedback architecture.
Based on Theorem 1, the feasibility region of the LMIs in the case of this haptic
system under the time-varying communication delay satisfied: 1 = dmin ≤ d(k) ≤
dmax = 10 is shown in Fig 6. This result was obtained by using LMI Toolbox in the
Matlab software. From the stability region in Fig 6, the parameters of virtual wall
corresponding to a point on the stability boundary can be chosen as follow:

KKKvw =
[

3000 4.41 0 0
]

(26)

Next, the gain matrix KKKobs of the augmented state observer is determined by
using the pole placement method. As a rule of thumb, the gain matrix of state
observer is chosen so that its transient response is faster than the one of haptic
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Fig. 6 Stability region of the haptic system under the time-varying communication delay:
1 = dmin ≤ d(k)≤ dmax = 10

Fig. 7 Time response of the haptic system

control system. One of possible solutions for observer poles can be chosen as PPPobs =
[0.4 0.3 0.35 0.25 0.5] giving:

KKKobs =
[

2.7286 2217.3 79.636 27870 699930
]T

(27)

The force and position responses of the haptic system are presented in Fig 7. For
the haptic system, the feedback force Fm generated by the motor should equalize to
the force Fh applied by the human operator in the steady regime of stable stiffness
contact between the manipulated object and the virtual wall. In addition, it is obvious
that the haptic system is stable for the chosen parameters of the augmented state
observer and of the virtual wall. Another noteworthy interest of using an augmented
state observer in the force feedback architecture is that the force Fh applied by the
human operator can also be reconstructed without the need of a force sensor.

4 Conclusions

In this chapter, the model of a haptic device in interaction with a virtual wall is pre-
sented where the effects of mechanical parameters such as vibration mode and of



386 Q.V. Dang et al.

tthe zero-order holder are taken into account. Stability condition in term of LMI for
analyzing the haptic system under a constant delay has been presented. From this
condition, an optimal design method for a stable haptic device that has low inertia.
The advantage of the LMI approach for analyzing stability of the haptic system un-
der the time-varying communication delay was considered. An observer-based force
feedback architecture has been proposed improving the traditional finite-difference
architecture. The proposed architecture is simple and easy to implement from a
practical point of view and permits also the reconstruction of the force applied by
the human operator without the need of a force sensor. This solution may contribute
to reduce the price of haptic devices in the application of telesurgery systems in the
future.
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Engineering a Genetic Oscillator Using Delayed
Feedback

Edward Lambert, Edward J. Hancock, and Antonis Papachristodoulou

Abstract. Oscillators are one of the best studied synthetic genetic circuits and a
focus of the emerging field of Synthetic Biology. A number of different feedback
arrangements that can produce oscillations have been proposed; the two most im-
portant constructs involve a single gene with negative feedback including delay and
three genes in negative feedback forming a structure called a repressilator. Each of
these has a different range of performance characteristics and different design rules.
In this book chapter we discuss how oscillators of the first type can be designed
to meet frequency and amplitude requirements. We also discuss how coupling het-
erogeneous populations of delayed oscillators can produce oscillations with robust
amplitude and frequency. The analysis and design is rooted in techniques from
control theory and dynamical systems.

1 Introduction

Oscillators are present in many biological systems in nature. Examples include the
circadian clock which regulates the activity of a wide variety of organisms with a
period of ∼24 hours. This is entrained, usually by varying light levels, to the real
day/night cycle. The presence of an underlying oscillator is suggested by the contin-
uation of this rhythm even in constant darkness [1]. The core oscillators are often but
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not exclusively comprised of transcription-translation feedback loops [1, 2]. These
natural systems are robust to temperature variation and other environmental distur-
bances and persist through generations of cells.

Synthetic Biology is a new field that uses an Engineering approach to design
biological circuits with predictable properties [3, 4]. A synthetic oscillator is an ex-
tremely useful component in this new field, for similar reasons to those in natural
biological systems or even electronic circuits: as a timing device, it can coordi-
nate other processes and the order in which they occur. Their ubiquity in nature
from plants to humans makes their utility apparent. Using oscillators to pace pro-
cesses, an engineered organism could be programmed to cease division during the
day to protect it from DNA damaging due to ultraviolet radiation or, combined with
a counter [5], to remain dormant for a fixed time period.

There are a number of different feedback arrangements that can produce oscilla-
tions. One approach is to have three genes, each one repressing the transcription of
the next one in feedback. This structure is called the repressilator and was the first
oscillator to be designed [6]. Another approach is to use a single gene, with negative
feedback including delay. This is the oscillator that we will consider in this paper,
and we will discuss ways to choose the delay to produce oscillations of desired fre-
quency and how the amplitude of the oscillations can be estimated. Moreover, we
will consider how coupling delayed oscillators together can produce more robust
oscillations.

This book chapter is organized as follows. Some background on modelling ge-
netic networks is given in Section 2. In Section 3 we will analyze the oscillator
frequency and amplitude for the case of a delay oscillator. In Section 4 we discuss
the mechanisms and benefits for coupling delay oscillators, before concluding this
book chapter.

2 Background

In this section we review briefly the modelling approach that will be used throughout
the book chapter.

Mathematical models can be used to describe the flow of information from DNA
to mRNA (transcription) and from mRNA to protein (translation) [7]. Transcription
refers to the process whereby RNA polymerase binds with the DNA, unwinding it
and creating a messenger RNA (mRNA). The mRNA (after diffusing out of the nu-
cleus in eukaryotes) then binds with a ribosome which builds the protein described
by the mRNA. This is called translation. Some proteins – called transcription fac-
tors – can bind the DNA at specific sites, the promoter region, regulating the rate at
which an associated gene is transcribed [7]. Figure 1 shows this process.

The concentration of a particular protein within a cell at any point in time is a
result of a continuous production through the transcription-translation process, di-
lution due to cell expansion, and protein degradation as proteins denature over time.
To model this mathematically, the rate of production of mRNA is assumed to consist
of a basal rate β0, an added rate dependent on the concentration of the transcription
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u 

Gene Y 

mRNA 

y 

Fig. 1 Transcription factor u binds to the promoter of Gene Y causing increased transcription
of mRNA and hence production of protein y

factor u and a dilution/degradation term. Moreover, the translation process can be
modelled using a first order process. For simplicity, a single non-linear equation (1)
is used to describe both transcription and translation:

ẏ = β0 +β
( u

k )
n

1+( u
k )

n −αy (1)

This standard form is widely used [7] as it corresponds well to experiments and it is
simple to compute and amenable to analysis: the non-linearities provide sufficient
complexity to give rise to interesting behaviour. In this model, y is the concentration
of the protein of interest, u is the concentration of the transcription factor, which in
this model is activating - otherwise the term in the middle (called the ‘Hill Function’)
would be replaced by β 1

1+( u
k )

n . Also, β0 is the basal production rate and β , k and n

describe the Hill function: the maximal activity, activation coefficient and steepness.
Finally, the constant α accounts for protein dilution and degradation.

A model that we will need to consider in the sequel is that of negative auto-
regulation. To achieve this, we can set u = y in the repressor model:

ẏ = β0 +β
1

1+( y
k)

n −αy (2)

3 Oscillations Using Delayed Negative Feedback

A single gene with delayed self-repression will oscillate, in much the same way that
a first order system with delayed negative feedback can oscillate if the delay is large
enough. This was demonstrated in a recent paper by [8], using the lacI gene.

A synthetic circuit based on this idea requires tunability of the frequency and
amplitude of the oscillations, which can be achieved by adding lengths of redundant
code or junk DNA, creating a time lag after activation before any mRNA is read out.
The negative autoregulator model can be modified by the introduction of τ , a time
delay, to create a delay differential equation of the form
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Fig. 2 Additional reaction steps for the lacI gene leading to delay between RNA transcription
and the tetrameric form which binds to the promoter [8]

ẏ(t) = β0 +β
1

1+
(

y(t−τ)
k

)n −αy(t) (3)

The effect of the delay parameter on the stability, period and amplitude is the subject
of the next section. The other parameters used in simulation are assumed fixed by
the type of gene chosen [9].

3.1 Period

We proceed by linearizing the delay differential equation around an equilibrium.
Our aim is to use the resulting linear delay differential equation to find the delay
required for instability (the delay value when a Hopf bifurcation occurs) as well as
the period of oscillation. The resulting model takes the form:

G(s) =
γe−sτ

s+α
(4)

with unity negative feedback, where γ is a lumped parameter that depends on the
rest of the parameters in the model. Using this model we can calculate the point of
instability as well as the frequency using the following two equations:

ω =
√
γ2−α2 (5)

τcr =
π− arctan ωα

ω
(6)

where τcr is the critical time delay andω is the frequency of oscillations. In practice,
and to ensure robustness of oscillations, the delay chosen should be larger than the
critical value.
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Fig. 3 The limit cycle using standard parameters and a delay equal to 2τc

3.2 Amplitude

One of the key questions in designing an oscillator, is to ensure robustness with
respect to the amplitude and the shape of the limit cycle. As mentioned above, the
limit cycle is a result of a Hopf bifurcation [10]. This limit cycle is stable, and to es-
timate its amplitude we consider two approaches: an iterative method and Linstedt’s
method.

3.2.1 Iterative Method

Assuming a periodic form for the solution, the amplitude can be approximated using
a simple iterative estimation algorithm, based on the fact that at the maxima and
minima of the periodic solution we must have ẏ = 0. Unlike for the case of an
equilibrium, when this condition needs to hold for all time, we consider an iteration
in which we assume that initially y(t + θ ) > 0 for all θ ∈ [−τ,0]. Denote by yL

the lower bound and by yU the upper bound of the periodic solution. To find an
improved estimate for yL we need to find the minimum of

y =
1
α

⎛
⎝β0 +

β

1+
(

y(t−τ)
K

)n

⎞
⎠ (7)

over all feasible values of y(t + θ ), θ ∈ [−τ,0]. Similarly, an improved estimate
of yU is given by the maximum of (7). These two updates form the basis of
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Fig. 4 Non-linear simulation results for large and small τ bounded by four iterations of the
amplitude estimate

Algorithm 1. The iteration can be initialized for large enough values of yU ; alter-
natively, the first assignment can be carried out by hand giving yL = β0/α .

The lines in algorithm 1 need only be evaluated once symbolically as thereafter
they involve a series of substitutions. This allows the algorithm to be reused for
any parameter values without recalculation. This would be advantageous if many
iterations are required but in our case, our algorithm converged within three or four
iterations for n = 2 and was much faster for higher n.

Algorithm 1. Iterative amplitude solution. yU and yL are the upper and lower bounds
respectively. We iterate for N steps to get the desired accuracy.

yU ← ∞
yL ← 0
for I = 1:N do

yU ← 1
α (β0 +β (1+( yL

K )n)−1)

yL ← 1
α (β0 +β (1+( yU

K )n)−1)
end for

The first observation is that there is no delay dependence in the expressions for
the bounds despite the fact that in simulation the amplitude increases at larger de-
lays. Figure 4 shows the upper bounds calculated in this way compared to simulation
results with large and small time delay. The bound is appropriate for large delays
but less useful close to the critical delay.
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Fig. 5 The amplitude estimation using Lindstedt’s method, from Equation (8), compared to
the output of the simulation for two different delays

3.2.2 Linstedt’s Method

An alternative method to obtain an analytical result for the amplitude involves the
use of Linstedt’s Method [10] [11]. This is a perturbation method where we assume
a sinusoidal form for the solution, which is substituted into the governing equation.
The additional information about amplitude can be extracted by setting the coeffi-
cients of unbounded terms to zero. See the Appendix for the full derivation. The
approximate solution for the amplitude A given in Equation (8) is dependent on the
applied delay τ .

A2 =
4(τ− τcr)γ1ω sin(ωτcr)

3γ1γ3τcr− (3γ3 + 4γ2ma)cos(ωτcr)+ 4γ2m1 sin(ωτcr)+ 4γ1γ2τcrma
(8)

In this expression, γ1,γ2 and γ2 are given by (15),(16) and (17) respectively, ma =
2m3 +m2 with m1, m2, m3 given by (24)–(26) and τcr is the critical time-delay,
given by (6). Lindstedt’s method is a clear improvement over the iterative method
for delays closer to critical.

4 Coupled Delay Oscillators

The approaches for estimating the oscillator amplitude and period reveal that both
are sensitive to uncertainties in parameters. One way of increasing the robustness
of oscillations in a population of cells, to parameter variation in each cell, is to
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introduce coupling and allowing them to synchronize. This approach is based on
synchronization – the phenomenon in which non-identical oscillators entrain in fre-
quency by weak coupling – which is widely observed in nature. In the case of syn-
thetic biological oscillators we require that (i) in isolation, cells are autonomous
oscillators, e.g. of the type already discussed in Section 3 and (ii) a process which
weakly links them exists.

4.1 Genetic Coupling

Possible mechanisms to achieve cell coupling involve direct cell contact or diffusion
of small signalling molecules through the cell wall.

Direct contact methods include gap junctions which allow synchronous firing of
heart muscle cells and notch signalling which is used in the control of cell differ-
entiation. Both of these processes are fairly complex to model and mainly occur in
multicellular eukaryotes.

Non-contact signalling involving a small diffusible molecule is used in a variety
of biological systems including some species of bacteria that detect the density of
the population of which they are a part. This process is known as quorum sensing.
Each component has a gene which expresses the signalling molecule and a gene
which is regulated by it. The detected levels of the gene are low until the population
reaches a certain density which allows the small molecule to move from cell to cell
in significant quantity. This process has been used experimentally to program an
artificial population control circuit [12].

As a possible mechanism for direct contact would be difficult to implement and
model, in this section we only consider the case of diffusion.

4.2 Coupled Delay Oscillators

The network of oscillators we will consider will consist of coupled delay oscillators
of the type discussed in Section 3. In order to couple them together, a diffusive
small molecule must be introduced which is driven by the oscillator in each cell.
The simplest way this could be achieved is if the protein product of the oscillator
gene or downstream of it is diffusible across the cell membrane [13].

4.2.1 Single Gene Delay Coupling

Assuming it is feasible to create a negative feedback delay oscillator which ex-
presses a diffusible molecule, the analysis in Section 3 can be used to predict its
frequency and amplitude.

To model coupled such oscillators, we extend the earlier model to include gene
product diffusion and coupling. The dynamics of the system shown in Figure 6 are
given by (9–10).



Engineering a Genetic Oscillator Using Delayed Feedback 397

Fig. 6 Schematic of the genetic circuit to achieve coupling. The core oscillator is the delay
type. The product y diffuses out of the cell providing the mechanism for coupling. ye is the
local mean field concentration outside the cell.

ẏi = β0i +
βi

1+
(

yi(t−τi)
K

)n −αiyi +Q(ye− yi); (9)

ye(t) =
1
N

N

∑
j=1

Ai jy j(t) (10)

Here Q is the strength of the coupling, which may be interpreted as the density
of the population of cells. In sparse cells, coupling strength and the density are
weakly coupled as the signalling molecules they produce will more diluted at a
greater distance.

In (10), A is a connection matrix describing the effect of other nearby internal
concentrations on the local signal ye. This allows different topologies to be investi-
gated while keeping the model simple. If the cells are well mixed then A will be full.
This indicates that every cell contributes to the local mean for every other cell. If the
cells were constrained to lie in a plane then this would form a lattice. Alternatively
the cells might lie in a channel and so have only two neighbours, corresponding to
a line graph. The connection strengths could also vary to represent cell distance.

4.2.2 Order Parameter

In order to evaluate the success of synchronization in a simulated group of cells a
measure of the variability in their time series is required. One such measure is the
mean field amplitude [14]. Consider N cells oscillating at the same frequency and
in phase; the sum of the amplitudes is equal to the amplitude of the sum of the time
series. If the oscillators are out of phase then for large N the mean field amplitude
will be zero. For different frequencies the mean field amplitude will again be close
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Fig. 7 Phase synchronization against coupling strength. Dotted: The value of the delay τi
for each oscillator is drawn from a normal distribution centred at the design value (τ = 3 hr)
with standard deviation 0.1τ . Other parameters were identical. Solid: The value of βi for each
oscillator is drawn from a normal distribution centred at the design value (β = 2 nM/h) with
standard deviation 0.3β . Other parameters were identical. Dashed: The value of αi for each
oscillator is drawn from a normal distribution centred at the design value (α = 0.7 /hr) with
standard deviation 0.3α . Other parameters were identical.

to zero. The order parameter R is therefore defined as the normalised mean field
amplitude. The calculation can be performed as follows:

m(t) =
N

∑
i=1

yi(t)
NPi

(11)

R = N
maxt(m(t))−mint(m(t))

∑N
i=1 Pi

(12)

where Pi is the amplitude of oscillator i, m(t) is the mean field and R is the order
parameter.

4.2.3 Connected Graph

Assuming that all cells are connected, ye is the global mean. In this case, simulation
was carried out on 25 cells with the time delay of each perturbed around the design
value with standard deviation of 10%. Figure 7 shows the variation of the Order
parameter with Q, the coupling strength. As we can see, synchronization occurs
for values of Q > 0.5 and this demonstrates that uncertainties in the parameters of
individual oscillators can be compensated for by coupling the oscillators together.
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5 Conclusion

In this book chapter we have used two methods for oscillator amplitude calculation
for delay differential equations, for the case of genetic oscillators. By coupling the
oscillators, uncertainties in the oscillator parameters can be compensated for and
robust oscillators can be obtained.

Appendix: Applying Lindstedt’s Method for Estimating the
Amplitude of the Delay Oscillator

The following analysis is based on Lindstedt’s Method as applied in [10]. Consider
the delay differential equation

ẏ = β0 +
β

1+
(

y(t−τ)
k

)n −αy (13)

We first approximate (13) with a third order Taylor expansion about its equilibrium
y∗. We set z = y− y∗, such that

ż =−γ1z(t− τ)+ γ2z2(t− τ)+ γ3z3(t− τ)−αz (14)

where γ1,γ2,γ3 are given by

γ1 =
βny∗(n−1)

kn(1+( y∗
k )

n)2
(15)

γ2 =

(
nβ
k2

)
(2n( y∗

k )
(2n−2)− (1+( y∗

k )
n)(n− 1)( y∗

k )
(n−2))

(1+( y∗
k )

n)3
(16)

γ3 =
4βn(n2− 1)( y∗

k )
2n−βn( y∗

k )
n(3n( y∗

k )
2n− 3n+(n2+ 2)(1+( y∗

k )
2n))

y∗3(( y∗
k )

n + 1)4
(17)

Scaling time using ρ = Ω t and setting ρ as the independent variable, then (14)
becomes

Ω
dz
dρ

=−γ1z(ρ−Ωτ)+ γ2z(ρ−Ωτ)2 + γ3z(ρ −Ωτ)3−αz(ρ) (18)

We introduce the small parameter ε with the scaling z = εu:

Ω
du
dρ

=−γ1u(ρ−Ωτ)+ εγ2u(ρ−Ωτ)2 + ε2γ3u(ρ−Ωτ)3−αu(ρ) (19)

The delay τ is chosen to be close to the critical value τcr such that τ = τcr + ε2δ ,
where the linear term is ignored due to later cancellation. We wish to determine
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Ω , which is the natural frequency of the solution to (19). Expanding Ω as series in
terms of ε with undetermined coefficient K2 then

Ω = ω+ ε2K2 +O(ε3) (20)

We similarly expand u as a power series in ε such that

u(ρ) = u0(ρ)+ εu1(ρ)+ ε2u2(ρ)+O(ε3) (21)

Expanding the delayed solution with (20) and τ− τcr = ε2δ then

u(ρ−Ωτ) = u(ρ−ωτcr)− ε2(K2τcr + δω)
du(ρ−ωτcr)

dρ
+O(ε4)

Expanding u(ρ−ωτcr) as a power series gives

uτ = uτ0 + εuτ1 + ε2uτ2 +O(ε3)

where uτ = u(ρ−ωτcr), uτ0 = u0(ρ−ωτcr), uτ1 = u1(ρ−ωτcr) and uτ2 = u2(ρ−
ωτcr). Substitution of expressions for ω , u(ρ) and u(ρ−Ωτ) into (19) gives

(
ω+ ε2K2

)(du0

dρ
+ ε

du1

dρ
+ ε2 du2

dρ

)
+α

(
u0 + εu1 + ε2u2

)

=−γ1
(

uτ − ε2 (K2τcr + δω)
duτ
dρ

)
+ εγ2u2

τ + ε
2γ3u3

τ +O(ε3)

Equating coefficients of ε terms results in

ω
du0

dρ
+αu0 + γ1uτ0 = 0

ω
du1

dρ
+αu1 + γ1uτ1 = γ2u2

τ0 (22)

ω
du2

dρ
+αu2 + γ1uτ2 = γ3u3

τ0−K2
du0

dρ
+ γ1

duτ0

dρ
(K2τcr + δω)+ 2γ2uτ0uτ1 (23)

We propose solutions

u0 = Âcos(ρ)

u1 = Â2(m1 sin(2ρ)+m2 cos(2ρ)+m3)

which we substitute into (22) and compare cosine and sine coefficients to obtain

2ωm1 +αm2− γ1m1 sin(2ωτcr)+ γ1m2 cos(2ωτcr) =
γ2
2

cos(2ωτcr)

−2ωm2 +αm1 + γ1m1 cos(2ωτcr)+ γ1m2 sin(2ωτcr) =
γ2
2

sin(2ωτcr)

αm3 + γ1m3 =
γ2
2
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Solving simultaneously for m1 and m2 gives m1, m2 and m3 in terms of τcr and ω

m1 =
γ2
2
(α sin(2ωτcr)+ 2ω cos(2ωτcr)

B
(24)

m2 =
γ2
2
(γ1 +α cos(2ωτcr)− 2ω sin(2ωτcr)

B
(25)

m3 =
γ2
2

1
(α+ γ1)

(26)

B = α2 + 4ω2 + γ2
1 + 2αγ1 cos(2ωτcr)− 4γ1ω sin(2ωτcr)

We similarly substitute the proposed solutions into (23), to obtain

RHS = K2Âsin(ρ)− γ1Â(K2τcr + δω)sin(ρ −ωτcr)

+γ2Â3(2m3 cos(ρ −ωτcr)+m1(sin(ρ−ωτcr)+ sin(3ρ− 3ωτcr))

+m2(cos(ρ−ωτcr)+ cos(3ρ− 3ωτcr)))

+
1
4
γ3Â3 (3cos(ρ−ωτcr)+ cos(3(ρ−ωτcr)))

We set any resonant terms from the singular perturbation (cos(ρ) and sin(ρ) terms)
to zero, such that

K2− γ1(K2τcr + δω)cos(ωτcr)+
3
4
γ3Â2 sin(ωτcr)

+ γ2Â2(2m3 sin(ωτcr)+m1 cos(ωτcr)+m2 sin(ωτcr)) = 0
(27)

γ1(K2τcr + δω)sin(ωτcr)+ γ2Â2(2m3 cos(ωτcr)

−m1 sin(ωτcr)+m2 cos(ωτcr))+
3
4
γ3Â2 cos(ωτcr) = 0

(28)

We solve (28) and (27) as simultaneous equations in Â2 and K2 to give

K2 =−
δγ1ω(3γ3 + 4γ2ma)

3γ1γ3τcr− (3γ3 + 4γ2ma)cos(ωτcr)+ 4γ2m1 sin(ωτcr)+ 4γ1γ2τcrma
(29)

Â2 =
4δγ1ω sin(ωτcr)

3γ1γ3τcr− (3γ3 + 4γ2ma)cos(ωτcr)+ 4γ2m1sin(ωτcr)+ 4γ1γ2τcrma

where ma = 2m3 +m2 with m1, m2, m3 given by (24)–(26). We finally recover the
initial amplitude A of the unscaled variable y = εu, where A = Âε . Using τ− τcr =
ε2δ , we finally obtain

A2 =
4(τ− τcr)γ1ω sin(ωτcr)

3γ1γ3τcr− (3γ3 + 4γ2ma)cos(ωτcr)+ 4γ2m1 sin(ωτcr)+ 4γ1γ2τcrma
(30)
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