
Part-of-Speech Tagging Using Evolutionary

Computation

Ana Paula Silva1, Arlindo Silva1, and Irene Rodrigues2

1 Escola Superior de Tecnologia do Instituto Politécnico de Castelo Branco, Portugal
{dorian,arlindo}@ipcb.pt

2 Universidade de Évora, Portugal
ipr@uevora.pt

Abstract. Part-of-speech tagging is a task of considerable importance
in the field of natural language processing. Its purpose is to automatically
tag the words of a text with labels that designate the appropriate parts-
of-speech. The approach proposed in this paper divides the problem into
two tasks: a learning task and an optimization task. Algorithms from the
field of evolutionary computation were adopted to tackle each of those
tasks. We emphasize the use of swarm intelligence, not only for the good
results achieved, but also because it is one of the first applications of
such algorithms to this problem. This approach was designed with the
aim of being easily extended to other natural language processing tasks
that share characteristics with the part-of-speech tagging problem. The
results obtained in two different English corpora are among the best
published.

Keywords: Part-of-speech Tagging, Disambiguation Rules, Evolu-
tionary Algorithms, Particle Swarm Optimization, Natural Language
Processing.

1 Introduction

The words of a language are usually grouped in lexical categories or parts-of-
speech (POS). A tagger is a system that should receive a text, made of sentences,
and, as output, should return the same text, but with each of its words associated
with the correct POS tag. These tags are acronyms for the lexical categories
chosen for labeling the words. The process of classifying words into their POS,
and labeling them accordingly, is known as POS tagging, or, simply, tagging.
In most languages, each word has a set of lexical categories that represent the
roles that they can assume in a sentence. When the cardinality of this set is
greater than one, we say that the word is ambiguous. The context of a word,
i.e., the lexical categories of the surrounding words, is the fundamental piece of
information for determining its role in a sentence. For instance, the word wind
can assume the function of a verb, if it follows the word to, or can be used as a
noun if it is preceded by a determiner like the. According to this, most taggers
take into consideration the context of a word to decide which should be its tag.

G. Terrazas et al. (eds.), Nature Inspired Cooperative Strategies for Optimization 167

(NICSO 2013), Studies in Computational Intelligence 512,

DOI: 10.1007/978-3-319-01692-4_13, © Springer International Publishing Switzerland 2014



168 A.P. Silva, A. Silva, and I. Rodrigues

However, each of the words belonging to a word’s context can also be used in
different ways, and that means that, in order to solve the problem, a tagger
should have some type of disambiguation mechanism that allows it to choose
the proper POS tags for all the words of a sentence.

The methods used for solving the POS tagging problem can be divided into
two distinct groups, based on the information they use. In one group, we can
gather the approaches that use statistical information about the possible con-
texts of the various word tagging hypotheses. Most of the stochastic taggers are
based on hidden Markov models. In the other group, we find rule based taggers
[1–3]. The rules are usually discovered automatically, and its purpose is to cor-
rect errors resulting from an initial basic tagging. Brill’s tagger [1] is perhaps
the most popular tagger based on rules.

More recently, several works following an evolutionary approach have been
published. These taggers can also be divided by the type of information they use
to solve the problem: statistical information [4, 5], and rule-based information
[2]. In the former, an evolutionary algorithm is used to assign the most likely tag
to each word of a sentence, based on a training table that basically has the same
information that is used in the traditional probabilistic approaches. The later is
inspired by Brill’s rule based tagger. In this case a genetic algorithm (GA) is used
to evolve a set of transformations rules, which will be used to tag a text in much
the same way as in Brill’s tagger. While in [4, 5], the evolutionary algorithm is
used to discover the best sequence of tags for the words of a sentence, using an
information model based on statistical data, in [2] the evolutionary algorithm is
used to evolve the information model itself, in the form of a set of transformation
rules.

Although the POS tagging problem is a task that has had a special attention
in the field of natural language processing (NLP), the evolutionary approach de-
serves, in our opinion, a more thorough study. We believe that this study should
include the application of other algorithms from the evolutionary computation
field. Moreover, previous work suggest the exploitation of these algorithms on
two key aspects of the task: the information gathering and the automatic process
to perform the tagging, according to the information collected. In this paper, we
present a new evolutionary approach to the POS tagging problem. Our strategy
implies a division of the problem into two different tasks: a learning task and
an optimization task. These are tackled using not only evolutionary algorithms,
but also particle swarm optimization (PSO), resulting, as far as we know, in
the first attempt to approach this problem using swarm intelligence. Although
focusing mainly on the POS tagging problem, we believe that this work may be
the foundation for a new paradigm to solve other NLP tasks. This paradigm is
based, however, in two fundamental assumptions:

– With the help of a classification algorithm, it is possible to generalize, from
linguistic resources, the information typically used in the probabilistic ap-
proach, by learning a set of disambiguation rules. These rules will not play
the role of a classifier, instead they will be used as an heuristic to help solve
the task in question.



Part-of-Speech Tagging Using Evolutionary Computation 169

– It is possible to formalize the main problem as a search problem and use the
rules discovered in the first phase as an heuristic to guide the search for a
solution in the problem state space.

The field of evolutionary computation includes a set of global optimization
algorithms that have been applied, with recognized success, to a vast and varied
set of problems in areas such as optimization, search and learning. These algo-
rithms are characterized by being easily adapted to different representations and
tasks. They are also global optimization algorithms, hence outperforming many
of the greedy approaches. Therefore, they present themselves as a suitable tool
to integrate the approach we propose here, since they can be used in both phases
of the strategy. Also the inherent versatility of these algorithms contributes to
strengthen the possibility of applying this approach to other NLP tasks.

2 Rules Discovery Using Evolutionary Computation

It is our belief that the information stored in the training tables of the proba-
bilistic approach can be interpreted as a set of instances. Each of these instances
is typically described by a set of measurable attributes related to the tags of the
surrounding words, and is associated with a numerical value that identifies the
number of times each one occurs in the training corpus. Naturally, this infor-
mation is specific to the corpus from which it was collected and does not show
any degree of generalization, instead it can easily be interpreted as an extensive
and comprehensive collection of information. Hence we are convinced that it is
admissible to investigate the possibility of generalizing this information using a
classification algorithm. From this generalization we expect to be able to reduce
the amount of information needed to solve the problem and also to improve the
tagging accuracy. The learned rules may be used, in a similar way to the train-
ing table, to guide the search of the POS tagging problem state space. They
aim not to classify a given word, but rather assess the quality of a particular
classification.

Previous experience with classification rules discovery [6, 7], using evolu-
tionary computation, has led us to define the classification algorithm based
on a covering algorithm. The outline of the algorithm used is defined in
Algorithm 1. As we can see, the set of rules is obtained by executing the search
algorithm m times. This algorithm is responsible for determining the best clas-
sification rule for the set of training examples it receives as input. At each ex-
ecution, the rule obtained is stored, along with its quality value, and the set
of positive examples is updated by eliminating all the instances covered by the
rule. The search algorithm will be executed as many times as necessary, so that
all positive examples are covered, i.e., the set of positive examples is the empty
set. We divided the problem into n distinct classification problems, n being the
number of different tags used in the annotated corpus, from which the rules will
be learned and that define the tag set E. Each tag e ∈ E presented in the cor-
pus determines a classifying object, with possible classes taking values from the



170 A.P. Silva, A. Silva, and I. Rodrigues

discrete set Y = {Y es,No}. Two different search algorithms were tested: one
based on a GA and another based on a PSO. A more detailed description of the
implemented algorithms can be found in [8, 9].

Algorithm 1. Covering Algorithm

Require: PosExemples, NegExemples
Ensure: RulesSet

while PosExemples �= ∅ do
〈BestRule, Quality〉 ← SearchAlgorithm(PosExemples, NegExemples)
PosExemples ← Remove(PosExemples,BestRule)
RulesSet ← Add(RulesSet, 〈BestRule, Quality〉)

end while

2.1 Prediction Attributes and Representation

The use of rules allows, in addition to the grammatical categories of the sur-
rounding words, the consideration of other aspects. Although a word context is
perhaps the most determinant piece of information to identify its lexical cate-
gory, there are also some other aspects that can be helpful. The internal structure
of a word may give useful clues as to the word’s class [10]. For example, -ing is
a suffix that is most commonly associated with gerunds, like walking, talking,
thinking, listening. We also might guess that any word ending in -ed is the past
participle of a verb, and any word ending with ’s is a possessive noun. Taking
these observations into account, we considered as prediction attributes two dis-
tinct groups. The first group includes six attributes related with the context: the
lexical categories of the third, second and first words to the left, and the lexical
categories of the first, second, and third words to the right of a particular word.
The second group comprises the following information about the words: if the
word is capitalized, if the word is the first word of the sentence, if the word has
numbers or ‘.’ and numbers, and some words’ terminations like ed, ing, es,
ould, ’s, s. The possible values for each of the first group’s attributes are the
values of the corpus tag set from which the search algorithm will learn the rules.
This set will depend on the annotated corpus used, since the tag set will vary for
different annotated corpora. The remaining attributes were defined as boolean.

The training sets were built from the Brown corpus. For each word of the cor-
pus, we collected the values of every attribute in the rule’s antecedent, creating
a specific training example. Next, for each tag of the tag set, we built a training
set made by positive and negative examples of that tag. The building process
used to define each of the training sets was the following: for each example ei of
the set of examples, with word w and tag t, if w is an ambiguous word, with S
the set of all its possible tags, then put ei in the set of positive examples of tag
t, and put ei in the set of negative examples of all the tags in S, except t.

We used a binary representation for the rules. The attributes related with the
context were codified, each one, by six bits. The first bit indicates whether the
attribute should or should not be considered, and the following five bits represent



Part-of-Speech Tagging Using Evolutionary Computation 171

the assumed value of the attribute in question. We adopted a table of 20 entries
to store the tag set, and used the binary value represented by five bits to index
this table. If the value exceeds the number 20, we used the remainder of the divi-
sion by 20. The remaining attributes were encoded by 18 bits, two bits for each of
the nine attributes. In the same way, the first bit indicates if the attribute should
or shouldn’t be considered, while the second bit, indicates whether the property
is, or is not, present. We adopted a Michigan approach, thus, in both implemen-
tations of the search algorithm, each particle/individual represents a rule using
the codification described. In short, each particle/individual was composed by
6× 6 + 2× 9 = 54 bits.

2.2 Search Algorithm

For the PSO based search algorithm we adopted the binary version presented by
Kennedy [11]. The genetic algorithm based version follows the classical GA with
binary representation [12]. We used, as genetic operators, the two point crossover
(with 0.75 probability) and the binary mutation (with 0.01 probability). The
selection scheme used was a tournament selection with tournaments of size two
and k = 0.8.

The formula used to evaluate each rule, and therefore to set its quality, is
expressed in Equation 1. This formula penalizes a particle/individual that rep-
resents a rule that ignores the first six attributes, which are related with the
word’s context, forcing it to assume a more desirable form. The others are eval-
uated by the well known Fβ-measure (see Equation 2). The Fβ-measure can be
interpreted as a weighted average of precision and recall. We used β = 0.09,
which means we put more emphasis on precision than recall.

Q(X) =

{

Fβ(X) if X tests at least one of the first six attributes
−1 otherwise

(1)

Fβ(X) = (1 + β2)× precision(X)× recall(X)

β2 × precison(X) + recall(X)
(2)

3 POS-Tagger

By definition, a POS-tagger should receive as input a non annotated sentence,
w, made of n words, wi, and should return the same sentence, but now with all
the wi marked with the appropriate tag. Assuming we know all the possibilities,
Wi, of tagging each of the words wi of the input sentence, the search space of the
problem can be defined by the set W1 ×W2 × · · · ×Wm. Therefore the solution
can be found by searching the problem state space. We believe that this search
can be guided by the disambiguation rules found earlier. We tested two different
global search algorithms: a genetic algorithm (GA-Tagger) and a binary particle
swarm optimizer (PSO-Tagger).

The taggers developed were designed to receive as inputs a sentence, w, a
set of sets of disambiguation rules, Dt, and a dictionary, returning as output



172 A.P. Silva, A. Silva, and I. Rodrigues

the input sentence with each of its words labeled with the correct POS tag.
The search algorithm evolves a swarm/population of particles/individuals, that
encode, each of them, a sequence of tags for the words of the input sentence. The
quality of each particle/individual is measured using the sets of disambiguation
rules given as input. Again, a more detailed description of the implemented
taggers can be found in [8, 9].

3.1 Representation

The representation used in the two implemented algorithms is slightly different.
In the GA-Tagger, we adopted a symbolic representation. An individual is rep-
resented by a chromosome g made of a sequence of genes. The number of genes
in a chromosome equals the number of words in the input sentence. Each gene,
gi, proposes a candidate tag for the word, wi, in the homologous position. The
possible alleles for gene gi, are the elements of the set Wi.

Since we adopted the binary version of the PSO algorithm, we used, in this
case, a binary representation. To encode each of the tags belonging to the tag
set, we used a string of 5 bits. Therefore, a particle that proposes a tagging for
a sentence with n ambiguous words will be represented by n× 5 bits. Each five
bits of a particle encode a integer number that indexes a table with as much
entries as the possible tags for the correspondent ambiguous word. If the integer
number, given by the binary string, exceeds the table size, we use as index the
remainder of the division by the table size value.

3.2 Tagging Evaluation

The quality of the overall tagging, t, is given by the sum of the evaluation results
of each tag assignment, ti for each word wi. A particle/individual representing
a sequence of n tags, t, for a sentence with n words will give rise to a set of n
pairs 〈xi, ti〉, with xi denoting the correspondent 15-tuple collecting the values
of the 15 attributes presented in the antecedent of the disambiguation rule. The
quality of each tag assignment, ti, is measured by assessing the quality of the
pair 〈xi, ti〉, with xi using Equation 3.

h(〈xi, ti〉) =
{

qk If 〈rk, qk〉 ∈ Dti and rk covers xi

0 Otherwise
(3)

The quality of a particle/individual is given by Equation 4, with T represent-
ing the set of all n pairs 〈xi, ti〉.

Quality(T ) =
n∑

j=1

h(Tj) (4)

4 Experimental Results

We developed our system in Python and used the resources available on the
NLTK (Natural Language Toolkit) package in our experiences. The NLTK



Part-of-Speech Tagging Using Evolutionary Computation 173

package provides, among others, the Brown corpus and a sample of 10% of
the WSJ corpus of the Penn Treebank. It also provides several Python modules
to process those corpora. The experimental work was done in two phases. First
the disambiguation rules were discovered and, after that, the POS taggers were
tested. The results achieved in each phase are presented in the next subsections.

4.1 Disambiguation Rules

As we said before, tagged corpora use many different conventions for tagging
words. In order to be able to use the disambiguation rules learned from the Brown
corpus to tag text from other corpora, we used the simplify tags=True option
of the tagged sentence module of NLTK corpus readers. When this option is set
to True, NLTK converts the respective tag set of the corpus used to a uniform
simplified tag set, composed by 20 tags. This simplified tag set establishes the
set of classes we use in our algorithm. We ran the covering algorithm for each
one of these classes and built, for each one, the respective sets of positive and
negative examples.

We processed 90% of the Brown corpus in order to extract the training exam-
ples, and, for each word found, we built the corresponding instance. The total
number of examples extracted from the corpus equaled 929286. We used 6 sub-
sets of this set (with different cardinality) to conduct our experiments. We used
sets of size: 3E4, 4E4, 5E4, 6E4, 7E4 and 8E4, which we identified with labels
A, B, ..., F. For each subset, we built the sets of positive and negative examples
for each tag, using the process described in the previous section.

We tested the classification algorithm both with the GA and the PSO im-
plementation of the search algorithm. We ran the classification algorithm two
times with each different implementation for each of the training sets. The GA
was run with populations of size 200 for a maximum of 80 generations and the
PSO with swarms of 20 particles over 200 generations. In Table 1 we present
the average number of rules achieved by both algorithms and the correspondent
reduction, considering the total number of positive examples (+) adopted.

Although the publications describing previous evolutionary approaches, based
on training tables, do not clearly indicate the number of entries of those tables,
their size is explicitly mentioned as a sensitive point concerning the algorithm

Table 1. Average number of rules discovered by the classification algorithm

Average number of rules
Set + GA Reduction PSO Reduction

A 25859 2719 89.49% 2715.5 89.49%
B 33513 3081 90.81% 3124.5 90.68%
C 41080 3358.5 91.82% 3327.0 91.90%
D 48612 3735.5 92.32% 3696.5 92.39%
E 55823 4137 92.59% 4033.0 92.78%
F 63515 4399 93.07% 4288.5 93.25%



174 A.P. Silva, A. Silva, and I. Rodrigues

time execution [4]. While unknowing these values, the total number of positive
examples considered from each of the training sets adopted, can give us an idea
of the size of these tables, since the information used is similar. However, while
the large training set in our case has a total of 8E4, the previous approaches
use sets with typically more than 1.5E5. As we can see in Table 1, the rules
discovered by both algorithms, allowed a significant reduction (around 90%) in
the number of positive examples considered. The results also show that there
are no significant differences in the number of rules discovered by the GA and
the PSO.

In order to evaluate the quality of the heuristic represented by each of the
discovered rules sets, we use them as input for the implemented taggers. At this
point, our goal was to compare the accuracy results given by the taggers for
each of the rules sets, but at the same time confirm the second hypothesis of our
approach. We executed 10 times each of the taggers for each of the rules sets
with the same test set. We ran the GA-Tagger with 50 individuals during 10
generations and the PSO-Tagger with swarms of 10 particles during 50 genera-
tions. The best accuracy results were systematically achieved by the PSO-Tagger
and they are presented in Tables 2 and 3. We observed that the best tagging
was achieved with the rules discovered from the set F during the first execution
of the classification algorithm based on a GA (GA F.1)). The best set of rules
discovered by the classification algorithm based on a PSO was achieved from the
training examples of set C during the first run (PSO C.1).

Table 2. Tagging accuracy results achieved using the rules discovered by the GA

Set Number of rules Average Best Standard deviation

GA A.1 2740 0.9655128 0.9659605 2.3120E − 4
GA A.2 2698 0.9647239 0.9652956 3.7227E − 4

GA B.1 3059 0.9651449 0.9654286 2.6196E − 4
GA B.2 3103 0.9644358 0.9649854 2.4651E − 4

GA C.1 3355 0.9664569 0.9667583 2.6329E − 4
GA C.2 3362 0.9654596 0.9658718 2.6350E − 4

GA D.1 3742 0.9664258 0.9667139 1.7882E − 4
GA D.2 3362 0.9661023 0.9664480 3.2624E − 4

GA E.1 4166 0.9669666 0.9672458 1.7858E − 4
GA E.2 4108 0.9666209 0.9669356 2.4496E − 4

GA F.1 4440 0.9672369 0.9677334 2.3248E − 4
GA F.2 4358 0.9671128 0.9677334 2.7878E − 4

This first set of experiments enable us to identify the best heuristic and also
to confirm that it is possible to formalize the POS tagging problem as a search
problem and use the disambiguation rules as an heuristic to guide the search
for a solution in the state space of the problem. We also concluded that the
classification algorithm based on a GA was more successful than the one based on
a PSO. Also we can observe, from the results achieved with the rules discovered



Part-of-Speech Tagging Using Evolutionary Computation 175

Table 3. Tagging accuracy results achieved using the rules discovered by the PSO

Set Number of rules Average Best Standard deviation

PSO A.1 2695 0.9635227 0.9641876 2.5759E − 4
PSO A.2 2736 0.9629022 0.9633011 2.8265E − 4

PSO B.1 3148 0.9628668 0.9631682 2.6163E − 4
PSO B.2 3101 0.9649366 0.9651183 1.5132E − 4

PSO C.1 3385 0.9669356 0.9673345 2.3172E − 4
PSO C.2 3269 0.9650962 0.9654286 2.3937E − 4

PSO D.1 3664 0.9655749 0.9660048 2.3643E − 4
PSO D.2 3729 0.9661378 0.9664923 2.4005E − 4

PSO E.1 3958 0.9650740 0.9654286 2.0365E − 4
PSO E.2 4108 0.9654286 0.9658275 2.4809E − 4

PSO F.1 4309 0.9655394 0.9658718 2.1435E − 4
PSO F.2 4268 0.9656901 0.9660934 2.0836E − 4

by the GA, a correlation between the size of the training examples set and
increasing accuracy values. This allows us to expect that better heuristics could
be learned by the GA using larger training sets.

4.2 POS Tagging Results

We tested the PSO-Tagger and the GA-Tagger on a test set made of 22562
words of the Brown corpus using the best set of rules found (AG F.1). We ran
the PSO-Tagger 20 times with swarms of 10 and 20 particles during 50 and 100
generations. The GA-Tagger was also executed 20 times with populations of 50
and 100 individuals during 10 and 20 generations. These values were chosen so
that we could test both algorithms with similar computational effort, considering
the number of necessary evaluations the effort measure.

The results achieved are shown in Table 4. As we can see, the best average ac-
curacy was achieved with the PSO-Tagger using a swarm of 20 particles evolving
during 50 generations. The best accuracy result returned by the GA-Tagger is

Table 4. Tagging accuracy results achieved by both POS-taggers on a test set made
of 22562 words of the Brown corpus using as heuristic the set GA F.1

Tagger Part/Ind Generations Average Best Standard Deviation

PSO-Tagger 10 50 0.9672658 0.9679550 2.6534E − 4
100 0.9673123 0.9676004 1.9373E − 4

20 50 0.9674896 0.9678220 1.9158E − 4
100 0.9673921 0.9678663 2.1479E − 4

GA-Tagger 50 10 0.9672170 0.9675561 1.9200E − 4
20 0.9672968 0.9674231 1.1707E − 4

100 10 0.9672591 0.9675561 1.4097E − 4
20 0.9672835 0.9675117 1.0978E − 4



176 A.P. Silva, A. Silva, and I. Rodrigues

worst than the best result obtained with the PSO-Tagger and it needs the dou-
ble number of evaluations required by the PSO-Tagger. However, the accuracy
values displayed by the GA-Tagger are still very competitive when compared
with others published using similar approaches.

We also tested the taggers on a test set of the WSJ corpus of the Penn
Treebank made of 1000 sentences, in a total of 25184 words, using the rules
discovered from the Brown corpus (see Table 5). As expected, the results achieved
by the two taggers on the WSJ corpus, using as heuristic the disambiguation rules
learned from the Brown corpus, are inferior to the ones obtained on the Brown
corpus. However, we believe that they allow us to conclude that the discovered
rules are sufficiently generic so that they can be used in different corpora. This
conviction emerges from comparing the obtained results with those published by
other evolutionary approaches (see Table 6). Indeed, we found that the accuracy
achieved is comparable with the best published results. It is also important to
stress that this values are achieved with no previous training on this corpus. The
accuracy values for the WSJ corpus presented in Table 6 were achieved using all
the corpus available in the NLTK package, in a total of 100676 words, setting
the parameters of the algorithm with the values that provided the best results
in the initial set of experiments presented in Table 5.

Table 5. Best tagging accuracy results achieved by both POS-taggers on a test set
made of 25184 words of the WSJ corpus using as heuristic the set AG F.1

Tagger Part/Ind Generations Average Best Standard Deviation

PSO-Tagger 20 50 0.9659943 0.9668837 3.1277E − 4
GA-Tagger 100 20 0.9660598 0.9663675 2.4541E − 4

An overview of the accuracy values achieved by the taggers in both English
corpora used, is presented in Table 6, along with the results published by works
using similar approaches. These results only reveal that the accuracy values
obtained by the two taggers are competitive with those of past approaches. We
can not directly compare our results with those published since we have no access
to the test set used in the experiments made in the cited works. Nevertheless, we
may conclude that for comparable size words sets (in the case of the evolutionary
approaches), taken from the same corpora, the results obtained in this work
are among the best published. The values shown in Table 6 were converted to
percentage values and rounded to the second decimal place, so that they could
be more easily compared with the ones presented in the publications cited.



Part-of-Speech Tagging Using Evolutionary Computation 177

Table 6. Results achieved by the two taggers on two english corpora along with the
ones published by similar approaches. (Araujo - [4]; Alba, Alba-GA, Alba-PGA, Alba
- [5]; Wilson - [2]; Brill - [1])

Corpus Tagger Training set Test set Best

Brown PSO-Tagger 80000 22562 96.78
GA-Tagger 80000 22562 96.76
Araujo 185000 2500 95.40
Alba-GA 165276 17303 96.67
Alba-PGA 165276 17303 96.75

WSJ PSO-Tagger ∅ 100676 96.67
GA-Tagger ∅ 100676 96.66
Wilson 600000 =Training 89.80
Brill 600000 150000 97.20
Alba 554923 2544 96.63

5 Conclusions

We described a new evolutionary approach to the POS tagging problem, which
we tested using two distinct algorithms from the evolutionary computation field:
a GA and a PSO. We would like to emphasize the fact that, to the best of
our knowledge, this was the first attempt to apply a PSO to solve the POS
tagging problem, and that, in general, there are few approaches based on swarm
intelligence to solve NLP tasks.

The experimental work carried out in order to study the influence of the al-
gorithms’ parameters in the taggers’ output, namely the number of generations
and the number of particles/individuals, allowed us to conclude that the algo-
rithms can find promising solutions even with reduced resources. In fact, we
could not identify a clear trend of improving accuracy with increasing number
of evaluations. We also observed that the best tagging accuracy was displayed
by the PSO-Tagger, which allows us to conclude that swarm intelligence based
algorithms can also show good results when applied to NLP problems. The re-
sults displayed by the GA-Tagger also proved to be competitive with the best
ones published in previous works following a evolutionary approach.

The experiments made using the WSJ corpus and the disambiguation rules
extracted from the Brown corpus gave us an idea of the degree of generalization
achieved by the adopted classification algorithm. From those results, we were
able to confirm that the rules obtained are sufficiently generic to be applied on
different corpora. The attained generalization also reflected a substantial reduc-
tion in the information volume needed to solve the problem, while contemplating,
besides the typical context information, other aspects related, not to the POS
tags, but to the characteristics of the words. Although we did not present any
example of the learned rules, we would like to point out the advantages of repre-
senting the information in the typical classification rule format, when compared



178 A.P. Silva, A. Silva, and I. Rodrigues

to the numerical values used in the probabilistic approaches. The comprehensi-
bility of the learned rules, which can be represented by predicate logic, allows
its easy application in different contexts.

It is our conviction that the presented approach can be viewed as a new
paradigm for solving a set of NLP tasks that share some of the features of
the POS tagging problem and that are currently mainly solved by probabilistic
approaches. Therefore, we are planning to extend this method to other tasks that
also need some kind of disambiguation in the resolution process, like noun-phrase
chunking, the named-entity recognition problem, sentiment analysis, etc.

References

[1] Brill, E.: Transformation-based error-driven learning and natural language pro-
cessing: a case study in part-of-speech tagging. Comput. Linguist. 21, 543–565
(1995)

[2] Wilson, G., Heywood, M.: Use of a genetic algorithm in brill’s transformation-
based part-of-speech tagger. In: Proceedings of the 2005 Conference on Genetic
and Evolutionary Computation, GECCO 2005, pp. 2067–2073. ACM, New York
(2005)

[3] Nogueira Dos Santos, C., Milidiú, R.L., Renteŕıa, R.P.: Portuguese part-of-speech
tagging using entropy guided transformation learning. In: Teixeira, A., de Lima,
V.L.S., de Oliveira, L.C., Quaresma, P. (eds.) PROPOR 2008. LNCS (LNAI),
vol. 5190, pp. 143–152. Springer, Heidelberg (2008)

[4] Araujo, L.: Part-of-speech tagging with evolutionary algorithms. In: Gelbukh, A.
(ed.) CICLing 2002. LNCS, vol. 2276, pp. 230–239. Springer, Heidelberg (2002)

[5] Alba, E., Luque, G., Araujo, L.: Natural language tagging with genetic algorithms.
Inf. Process. Lett. 100(5), 173–182 (2006)

[6] Sousa, T., Neves, A., Silva, A.: Swarm optimisation as a new tool for data mining.
In: Proceedings of the 17th International Symposium on Parallel and Distributed
Processing, IPDPS 2003, p. 144. IEEE Computer Society, Washington, DC (2003)

[7] Sousa, T., Silva, A., Neves, A.: Particle swarm based data mining algorithms for
classification tasks. Parallel Computing 30(5), 767–783 (2004)

[8] Silva, A.P., Silva, A., Rodrigues, I.: Biopos: Biologically inspired algorithms for
pos tagging. In: Proceedings of the 1st International Workshop on Optimization
Techniques for Human Language Technology, OPTHLT/COLING 2012, Mumbai,
India, pp. 1–16 (December 2012)

[9] Silva, A.P., Silva, A., Rodrigues, I.: Tagging with disambiguation rules: A new
evolutionary approach to the part-of-speech problem. In: Proceedings of the 4th
International Conference on Evolutionary Computation Theory and Applications,
IJCCI 2012, Barcelona, pp. 5–14 (2012)

[10] Steven Bird, E.K., Loper, E.: Natural Language Processing with Python. O’Reilly
Media (2009)

[11] Kennedy, J., Eberhart, R.C.: Swarm intelligence. Morgan Kaufmann Publishers
Inc., San Francisco (2001)

[12] Holland, J.: Genetic Algorithms. Scientific American 267(1) (July 1992)


	Part-of-Speech Tagging Using Evolutionary Computation 
	1 Introduction
	2 Rules Discovery Using Evolutionary Computation
	2.1 Prediction Attributes and Representation
	2.2 Search Algorithm

	3 POS-Tagger
	3.1 Representation
	3.2 Tagging Evaluation

	4 Experimental Results
	4.1 Disambiguation Rules
	4.2 POS Tagging Results

	5 Conclusions
	References




