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Preface

The ability of computer scientist, engineers and practitioners to find sources
of inspiration in nature to abstract metaphors suitable for problem solving has
proven limitless. For instance, the rationale behind computational platforms such
as cloud computing, whereby users access distributed computing power to exploit
data sharing and information processing, has been observed in the lysogenic cycle
which is one of the ways virus operate within cell DNA machinery to reproduce
itself. Besides the already well-known applications on classification, learning and
robotics to name but a few, nature inspired strategies became increasingly im-
portant to address challenges ranging at all scales from molecular reactions to
social networks. As examples, we might mention that evolutionary algorithms
already represent indispensable tools for the design optimisation of biochemical
signalling pathways in synthetic biology and that cooperative spatio-temporal
architectures are suitable approximations for modelling complex emergent be-
haviour seen in micro-scaled biological systems.

This book is a collection of research works presented in the VI International
Workshop on Nature Inspired Cooperative Strategies for Optimization (NICSO)
held in Canterbury, UK. Previous editions of NICSO were held in Granada,
Spain (2006 & 2010), Acireale, Italy (2007), Tenerife, Spain (2008), and Cluj-
Napoca, Romania (2011). The aim of NICSO 2013 is to provide a place where
state-of-the-art research, latest ideas and emerging areas of nature inspired co-
operative strategies for problem solving are vigorously discussed and exchanged
among the scientific community. The contributions of this volume have under-
gone a strictly peer reviewed process by members of the international Programme
Committee. The breadth and variety of articles report on nature inspired meth-
ods and applications such as Swarm Intelligence, Hyper-heuristics, Evolutionary
Algorithms, Cellular Automata, Artificial Bee Colony, Dynamic Optimisation,
Support Vector Machines, Multi-Agent Systems, Ant Clustering, Evolutionary
Design Optimisation, Game Theory and other several Cooperation Models. In
this edition, NICSO had three plenary lectures delivered by Dr. Alex A. Freitas,
Automating the Design of Data Mining Algorithms with Genetic Programming,
Dr. Angel Goñi Moreno, Bacterial micromachines – Living logic circuits for com-
puting, and Dr. Leonardo Vanneschi, Applications of Genetic Programming to
Drug Discovery and Pharmacokinetics.

Of course, neither NICSO 2013 or this book would exist without the help of
many people and institutions. We wish to thank the authors for contributing with
valuable articles to publication and each of the Programme Committee mem-
bers for their dedicated time, suggestions and advice. In addition, we thank the
financial support received from the Spanish Ministry of Economy and Competi-
tiveness (project TIN2011-27696-C02-01), the Andalusian Government (project
P11-TIC-8001), the European Regional Development Fund (ERDF), the School
of Computing, University of Kent, and The European Commission FP7 Future
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and Emerging Technologies initiative (FP7/2012–2015) under grant agreement
number 318235 Training and Research in Unconventional Computation in Eu-
rope (TRUCE). Finally, we thank the School of Computing, University of Kent,
for providing both administrative and logistical assistance.

UK Germán Terrazas
UK Fernando E.B. Otero
Spain Antonio D. Masegosa
September 2013
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Jiawei Li University of Nottingham, UK



VIII Organization

Jim Smith University of the West of England, UK
Jon Timmis University of York, UK
Jorge Casillas University of Granada, Spain
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Plenary Lectures

Dr. Alex A. Freitas

University of Kent, United Kingdom

Automating the Design of Data Mining Algorithms with Genetic Programming

Rule induction and decision-tree induction algorithms are among the most pop-
ular types of classification algorithms in the field of data mining. Research on
these two types of algorithms produced many new algorithms in the last 30
years. However, all the rule induction and decision-tree induction algorithms
created over that period have in common the fact that they have been manu-
ally designed, typically by incrementally modifying a few basic rule induction
or decision-tree induction algorithms. Having these basic algorithms and their
components in mind, we describe the use of Genetic Programming (GP), a type
of evolutionary algorithm that automatically creates computer programs, to au-
tomate the process of designing rule induction and decision-tree induction algo-
rithms. The basic motivation is to automatically create complete rule induction
and decision-tree induction algorithms in a data-driven way, trying to avoid
the human biases and preconceptions incorporated in manually-designed algo-
rithms. Two proposed GP methods (one for evolving rule induction algorithms,
the other for evolving decision-tree induction algorithms) are evaluated on a
number of datasets, and the results show that the machine-designed rule in-
duction and decision-tree induction algorithms are competitive with well-known
human-designed algorithms of the same type.

Dr. Angel Goñi Moreno

National Center for Biotechnology, Spain

Bacterial micromachines – Living logic circuits for computing

Engineering Boolean logic circuits in bacteria is a major research theme of syn-
thetic biology. By using living technology as DNA blocks or molecular wires
we can mimic the behaviour of electronic devices. Examples of this engineering,
such as logic gates, clock signals, switches, multiplexers or half adders have been
successfully built inside bacteria. Just as the pioneers of computer technology
quickly incorporated the early transistor into larger circuits, researchers in syn-
thetic biology merge this genetic devices to achieve distributed computations
within a microbial consortia. The rapid development of bacterial-based devices
is accompanied by a need for computational simulations and mathematical mod-
elling to facilitate the characterisation and design of such systems. Therefore,
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computer sciences are mixed with synthetic biology (i.e. computational biology
and bioinformatics) for two closely related purposes: 1) the design of devices,
where the knowledge acquired in electronics since the beginning of computa-
tion is crucial; and 2) the desire to better understand the underlying biological
substrate, giving answers to questions impossible to solve in a wet-lab. Up to
now, bacterial micromachines are only in the form of basic computing devices.
However, this machines are alive. Where is this engineering going?

Dr. Leonardo Vanneschi

ISEGI, Universidade Nova de Lisboa, Portugal

Applications of Genetic Programming in Drug Discovery and Pharmacokinetics

The success of a drug treatment is strongly correlated with the ability of a
molecule to reach its target in the patients organism without inducing toxic ef-
fects. Moreover the reduction of cost and time associated with drug discovery
and development is becoming a crucial requirement for pharmaceutical industry.
Therefore computational methods allowing reliable predictions of newly synthe-
sized compounds properties are of outmost relevance. In this talk, I discuss the
role of Genetic Programming (GP) in predictive pharmacokinetics, considering
the estimation of adsorption, distribution, metabolism, excretion and toxicity
processes (ADMET) that a drug undergoes into the patients organism. In par-
ticular, I discuss the ability of GP to predict oral bioavailability (%F), median
oral lethal dose (LD50) and plasma-protein binding levels (%PPB). Since these
parameters respectively characterize the percentage of initial drug dose that
effectively reaches the systemic blood circulation, the harmful effects and the
distribution into the organism of a drug, they are essential for the selection of
potentially effective molecules. In the last part of the talk, I show and discuss how
recently defined geometric semantic genetic operators can dramatically affect the
performances of GP for this kind of application, in particular on out-of-sample
test data.
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Response Surfaces with Discounted Information for Global
Optima Tracking in Dynamic Environments . . . . . . . . . . . . . . . . . . 57

Sergio Morales-Enciso, Juergen Branke

Fitness Based Self Adaptive Differential Evolution . . . . . . . . . . . . 71
Harish Sharma, Pragati Shrivastava, Jagdish Chand Bansal,
Ritu Tiwari

Adaptation Schemes and Dynamic Optimization Problems:
A Basic Study on the Adaptive Hill Climbing Memetic
Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
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Extending the ABC-Miner Bayesian

Classification Algorithm

Khalid M. Salama and Alex A. Freitas

School of Computing, University of Kent,
Canterbury, CT2 7NF, UK

{kms39,A.A.Freitas}@kent.ac.uk

Abstract. ABC-Miner is a Bayesian classification algorithm based on
the Ant Colony Optimization (ACO) meta-heuristic. The algorithm
learns Bayesian network Augmented Näıve-Bayes (BAN) classifiers,
where the class node is the parent of all the nodes representing the
input variables. However, this assumes the existence of a dependency
relationship between the class variable and all the input variables, and
this relationship is a type of “causal” (rather than “effect”) relationship,
which restricts the flexibility of the algorithm to learn. In this paper, we
propose ABC-Miner+, an extension to the ABC-Miner algorithm which
is able to learn more flexible Bayesian network classifier structures,
where it is not necessary to have a (direct) dependency relationship
between the class variable and each of the input variables, and the
dependency between the class and the input variables varies from
“causal” to “effect” relationships. The produced model is the Markov
blanket of the class variable. Empirical evaluations on UCI benchmark
datasets show that our extended ABC-Miner+ outperforms its previous
version in terms of predictive accuracy, model size and computational
time.

Keywords: Ant Colony Optimization (ACO), Data Mining, Clas-
sification, Bayesian Network Classifiers.

1 Introduction

Ant Colony Optimization (ACO) is a meta-heuristic for solving combinatorial
optimization problems, inspired by the observation of the behavior of biological
ant colonies [6]. One of the fields in which ACO has been successfully applied is
data mining, which involves finding hidden patterns and constructing analytical
models from real-world datasets [20]. Classification is one of the widely studied
data mining tasks, where the aim is to discover, from labeled cases (instances),
a model that can be used to predict the class of unlabeled cases. While there
are several types of classification methods, such as decision tree and rule induc-
tion, artificial neural networks and support vector machines [20], our focus is on
Bayesian network (BN) classifiers.

BN classifiers model the (in)dependency-relationships between the input do-
main variables given the class variable by means of a probabilistic network [7],

G. Terrazas et al. (eds.), Nature Inspired Cooperative Strategies for Optimization 1
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2 K.M. Salama and A.A. Freitas

which is used to predict the class of a case by computing the class with the
highest posterior probability given the case’s predictor attribute values. Since
learning the optimal BN structure from a dataset is NP-hard [4], stochastic
heuristic search algorithms - such as ACO – can be a good alternative to build
high-quality models, in terms of predictive accuracy and network size, within an
acceptable computational time. Developing ACO-based algorithms to learn BN
classifiers is the research topic addressed in this work.

We have recently introduced ABC-Miner [19], as an Ant-based Bayesian Clas-
sification algorithm that learns the structure of a Bayesian network Augmented
Näıve-Bayes (BAN), where the class node is the parent of all the input variables,
and at most k parents are allowed for each variable in the network. The ABC-
Miner algorithm showed predictive effectiveness compared to other Bayesian
classification algorithms, namely: Näıve-Bayes, TAN and GBN [19].

In this paper, we propose ABC-Miner+, which extends our ABC-Miner algo-
rithm to learn more flexible BN classifier structures, where it is not necessary to
have a (direct) dependency relationship between the class variable and each of
the input variables. In addition, ABC-Miner+ allows the dependency between
the class and the input variables to vary from “causal” to “effect” relationships,
where the class variable can be a parent or a child of an input node. The pro-
duced model is called the Markov blanket of the class variable. Empirical results
on 18 UCI datasets show that ABC-Miner+ improves the performance of ABC-
Miner by producing simpler (smaller) BN classifiers that have higher predictive
accuracy in less computational time.

Note that we use the word “causal” in a loose sense in this work, simply
to refer to a direction of the dependency relationship between two variables.
The issue of whether or not Bayesian networks learned from observational data
represent truly causal knowledge is controversial (depending on how we define
causality) [15], and is out of the scope of this paper.

The rest of the paper is structured as follows. The next section gives some
background on BN classifiers. We briefly review the previously introduced ABC-
Miner algorithm in Section 3, to make this paper more self-contained. Our pro-
posed extension, ABC-Miner+ is described in detail in Section 4. We describe
our experimental methodology and show the results in Section 5. Finally, we
conclude with some general remarks and future research in Section 6.

2 Bayesian Network Classifiers

Bayesian networks (BNs) are knowledge representation and reasoning tools that
model probabilistic dependence and independence relationships amongst vari-
ables in a specific domain [5]. Learning a BN from a dataset (in which the
attributes are referred to as variables) consists of two phases: learning the net-
work structure, and then learning the parameters of the network. Parameter
learning is relatively straightforward for any given BN structure with specified
dependencies between variables. The task is to estimate a conditional probabil-
ity table (CPT), one for each variable, by computing the relative frequencies
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of the variable with respect to its parents directly from the dataset. The CPT
of variable Xi encodes the likelihood of each value of this variable given each
combination of values of the parents of variable Xi in the network.

There are two paradigms for learning the structure of a BN. The first one is
referred to as CI-based (Conditional Independence-based, or constraint-based)
algorithms [5, 8], which suggests learning the BN structure by identifying the
conditional independence relationships among the nodes, according to the con-
cept of d-separation. The second paradigm views the BN as a structure that
encodes the joint distribution of the attributes. Hence, the aim is to find the
graph that best fits a given dataset in terms of maximizing the value of a scor-
ing function, which led to the scoring-based algorithms [5, 8]. In the context of
data mining, the scoring-based approach has been (overall) more popular and
it is somewhat easier to be used than the CI-based approach, partly because
the former views the problem as a well-defined optimization task, where various
search and meta-heuristic techniques can be employed [3]. K2, MDL, KL, BDEu
and several other scoring functions can be used for this task [8].

A recent, very comprehensive review on BN-learning approaches and issues is
presented by Daly et al. in [5]. For further information about BNs, the reader is
referred to [8].

While BNs should perform inference to answer probabilistic queries about
any node(s) in the network, BN classifiers are a special kind of the probabilistic
networks, which focus on answering queries about the probability of a specific
node: the class attribute. Thus, the class node is treated as a special variable in
the network. The purpose is to compute the probability of each value c in the
class variable C given a case x (an instance of the input attributes X) using
classifier BNC, then label the case with the class having the highest probability,
as in the following formulas:

C(x) = argmax
∀ c∈C

P (C = c|x = x1, x2, ..., xn, BNC), (1)

posterior probability
︷ ︸︸ ︷

P (C = c|x = x1, x2, ..., xn) ∝
proir probability

︷ ︸︸ ︷

P (C = c)

n
∏

v=1

likelihood
︷ ︸︸ ︷

P (xv|Parents(Xv), BNC) , (2)

where C ∈ Parents(Xv)∀ Xv ∈ X.
Näıve-Bayes is the simplest kind of BN classifiers; it has a network structure

where the class node is the only parent node of all other nodes (input variables).
This structure assumes that all attributes are independent of each other given
the class. However, in many real-world application domains this assumption
is not satisfied, and more sophisticated types of BN classifiers, which consider
dependencies between the predictor attributes, can lead to higher predictive
accuracy. This led to the development of a general type of BN classifiers called
BN Augmented Näıve-Bayes (BAN).

In a BAN classifier, each node representing an input attribute not only has the
class node as a parent, but it is also allowed to have other parent nodes which
are also input attributes. Hence, the edges representing dependencies among
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input attributes can be regarded as a kind of BN, which justifies the name
“BN-augmented” Näıve-Bayes. Usually, however, each node representing a input
attribute is allowed to have a maximum number (k) of parents, in order to reduce
computational time and reduce the chances of over-fitting the BN to the data,
and in this case the algorithm is often referred to as a k-dependency BAN. Note
that when the maximum number of parents k is set to 1, the BAN is usually
referred to as a TAN (Tree-Augmented Näıve-Bayes), because in that type of
classifier each node representing an input attribute can have at most one parent
node (in addition to the class node), so that the dependencies among input
attributes are represented as a tree.

Figure 1 illustrates the various kinds of the BN classifiers. Friedman et al.
provided an excellent study of these algorithms in [7]. A comprehensive compar-
ison of these various Bayesian classifiers by Cheng and Greiner is found in [3].
Surveys on improving Näıve-Bayes for classification are found in [10, 11].

Fig. 1. Different types of BN classifiers: (a) Näıve-Bayes, (b) TAN, and (c) BAN

3 An Overview of the ABC-Miner Algorithm

ACO algorithms have been successful in solving several combinatorial optimiza-
tion problems, including classification rule discovery [12–14, 17, 18] and general
purpose BN construction [2, 16, 21]. However, ABC-Miner, introduced by the
authors in [19], is the first ACO algorithm that learns the structure of BAN
classifiers [19].

In ABC-Miner, the decision components in the construction graph (which
define the search space that an ant uses to construct a candidate solution) are
all the edges of the form X → Y where X �= Y and X,Y belong to the set
of input attributes. These edges represent the attribute dependencies in a con-
structed BN classifier – i.e., an edge X → Y means that the value of Y depends
(probabilistically) on the value of X .

In order to build the structure of a BN classifier, the maximum number of
parents for a node is typically specified by the user. However, the selection of
the optimal number of parents (dependencies) that a variable in the network
can have (in addition to having the class as a parent node) is automatically
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carried out in ABC-Miner [19]. To create a candidate solution, an ant starts
with the network structure of Näıve-Bayes, where every variable has only the
class variable as its parent. Then the ant expands that structure into a BAN
structure by adding edges to the network. The selection of the edges is performed
according to a probabilistic state transition formula that involves the pheromone
amount and the heuristic function value – measured by the conditional mutual
information [19] – of the edges. An edge is valid to be added to the BN classifier
being constructed if its inclusion does not create a directed cycle and does not
exceed the limit of k parents (chosen by the current ant).

After the ant adds a valid edge to the current candidate solution (BN classi-
fier), all the invalid edges are eliminated from the construction graph. The ant
keeps adding edges to the current solution until no valid edges are available.
When the structure is finished, the CPT of each variable is computed, produc-
ing a complete BN classifier. Then the quality of the solution is evaluated and
all the edges become available for constructing further candidate solutions. The
ABC-Miner algorithm evaluates the quality of the candidate constructed BN
classifier using a measure of predictive accuracy [19], since the goal is to build a
BN only for predicting the value of a specific class attribute, unlike conventional
BN learning algorithms whose scoring function does not distinguish between the
input (predictor) and the class attributes.

4 The Proposed ABC-Miner+ Extension

The motivation behind our proposed extension is the following. As mentioned
in the previous section, the structure of the BAN models constructed by ABC-
Miner has two limitations. First, it assumes that the class variable has depen-
dency relationships with all the input variables (the case’s attributes), which
means that the state of each input variable affects the posterior probability of
the class values, and consequently the class prediction. This assumption is not
necessarily valid in all applications domains. In some domains, some attributes
are irrelevant, or at least not directly related, to the prediction of the target
class. Including these irrelevant attributes in the computation of the posterior
probability of the class values, according to Equation 2, can be disadvantageous,
and may lead to incorrect predictions.

Second, in the BAN classifier constructed by ABC-Miner, the relationship
between the class and all the input variables is always a type of “causal” rela-
tionship, that is, the class variable can only be a parent of an input variable.
Such a property limits the flexibility of the algorithm to learn. Nonetheless,
in real-world domains, some input variables are “causes” (parents) of the class
variable, whereas others are “effects” (children) of the same class variable. For
example, in a cancer diagnosis domain, the state of the smoker variable can be
considered a cause of the state of the Cancer class variable, while the state of
the X-Ray variable can be considered an effect of the class variable.

Accordingly, we propose ABC-Miner+, which extends the ABC-Miner algo-
rithm to learn more flexible BN classifier structures, where it is not necessary
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to have a (direct) dependency relationship between the class variable and each
of the input variables. This means that an input variable may not have a direct
connection (edge) to the class node in the network, or an input variable may
not even be presented in the network. In this case, our proposed ABC-Miner+
performs an embedded feature selection during the construction of the BN clas-
sifier. In addition, ABC-Miner+ allows the type of dependency (edge) between
the class and the input variables to vary from “causal” to “effect” relationships,
where the class variable can be a parent or a child of an input node.

The advantage of allowing this kind of edges in the BN model is the possibil-
ity of capturing new conditional (in)dependency-relationships. For example, if
X and Y are input variables that are unconditionally independent of the class
variable C, then X and Y should be parents to C. This kind of (in)dependency-
relationship cannot be modeled by a BAN structure. Such a flexible BN classifier
structure should better represent the dependency-relationships between the in-
put variables, with respect to the class variable, and lead to higher classification
accuracy. The produced model is the Markov blanket of the class variable, which
consists of the class node’s parents, the class node’s children, and the parents of
class node’s children. Algorithm 1 shows the outline of ABC-Miner+.

Algorithm 1. Pseudo-code of ABC-Miner+.

Begin
BNCfinal = φ;STRbsf = φ;
sets = trainingSet.Split(); /* split training set into learning and validation sets */
learningSet = sets[0]; validationSet = sets[1];
Initialize(); t = 1;
repeat

STRtbest = φ; /* an empty network structure */
for i = 1 → colony size do

STRi = FindRelationshipTypes(anti); /* create a candidate solution */
LearnParameters(STRi, learningSet);
if Quality(STRi, validationSet) > Quality(STRtbest, validationSet)
then

STRtbest = STRi;
end if

end for
UpdatePheromone(STRtbest);
if Quality(STRtbest, validationSet) > Quality(STRbsf , validationSet) then

STRbsf = STRtbest;
end if t = t + 1;

until t = max iterations or Convergence();
STRfinal = PerformLocalSearch(STRbsf );
BNCfinal = ExecuteABCMiner(STRfinal); /* extend the final structure */
return BNCfinal;
End
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ABC-Miner+ executes in two sequential phases. First, it finds the dependency
relationship type between the class variable and each of the input variables. Sec-
ond, it finds the dependency relationships among the input variables. Each step
is considered a different ACO procedure and has a different construction graph.
In the first phase, the product is a BN structure STR that defines the edges
only between the input variables and the class variable, if any exists, and does
not contain edges between the input variables. The decision components in the
construction graph of the first phase are a set of relationship types between pairs
of variables (attributes). More precisely, there are three decision components for
each variable, representing the various relationship types that the variable can
have with the class node: 1) “cause”, where the class is a parent of the variable,
2) “effect”, where the class is a child of the variable, and 3) “none”, where there
is no relationship between the class and the variable in the network, so that the
algorithm can perform variable (feature) selection.

The idea is to find the best edges between the class and the input variables.
Each anti constructs a candidate solution (BN structure), via the FindRelation-
shipTypes() method, as follows. For each input variable, anti probabilistically
selects a relationship type, according to the pheromone amounts currently as-
sociated to the decision components in the construction graph, and adds its
corresponding directed edge to the current candidate BN structure STRi. Note
that no edge is added between a variable and the class node in the case of se-
lecting the “none” relationship type. The method returns a complete candidate
solution (i.e. a BN structure where all the relationships between the class and
the input variables are defined) before the BN parameters are learnt, and then
the quality of the solution is evaluated. The algorithm learns the BN parameters
using the learning set (containing 70% of the training cases), while the quality
is evaluated on a validation set (containing the remaining 30% of the training
cases), in order to try avoiding over-fitting to the training set. The quality of a
candidate solution is evaluated as a BN classifier, using classification accuracy
(Equation 3), before the iteration-best STRtbest is used to perform pheromone
update. The best-so-far STRbsf structure undergoes local search, and the opti-
mized STRfinal structure is produced to be used in the next phase.

Accuracy =
|Correctly Classified Cases|

|V alidation Set| (3)

In the second phase, the best constructed and optimized STRfinal structure
of the BN is extended to a complete class Markov blanket, by finding the de-
pendency relationships among the input variables. Note that the BN structure
discovered in the first step contains no edges between the input variables. To
include this type of edge in the network structure, we execute the original ABC-
Miner algorithm in this phase. However, in the context of ABC-Miner+, the
solution creation procedure starts with the STRfinal structure constructed in
the previous phase, rather than a Näıve-Bayes structure as in the original ABC-
Miner algorithm. The process of extending the BN structure to a candidate class
Markov blanket, which takes place in the second phase of ABC-Miner+, is de-
scribed in Algorithm 2. The algorithm shows just the process for each ant, for the



8 K.M. Salama and A.A. Freitas

Algorithm 2. ABC-Miner+’s Second Phase: Ant Solution Creation Procedure.

Begin CreateSolution(ant) /* initialize the candidate Markov blanket solution
with the structure of STRfinal discovered in phase 1 */
MB ← STRfinal ;
k = ant.SelectMaxParents();
while GetV alidEdges() �= φ do

{i→ j} = ant.SelectEdgeProbablistically();
MB = MB ∪ {i→ j};
RemoveInvalidEdges(MB,k);

end while
MB.LearnParameters(learningSet);
return MB;
End

sake of simplicity, since the overall pseudo-code of ABC-Miner has been already
described in [19].

The execution of the procedure shown in Algorithm 2 is more efficient than its
corresponding solution creation procedure in the original ABC-Miner algorithm
in several ways. First, the search space of this procedure in the context of ABC-
Miner+ is smaller than the search space in context of the original ABC-Miner.
The reason is that, in ABC-Miner, the initial structure is the Näıve-Bayes’ struc-
ture, where all the input variables are children of the class variable, so all the
candidate edges between the input variables are available for selection by an ant
(i.e. any variable can be a parent to any other variable). On the other hand, in
ABC-Miner+, the initial structure has some input variables as parents of the
class variable, and others are not even related to the class variable. In this case,
the candidate edges available for selection to be added to the network are only
the edges that satisfy two conditions, namely: the edge is connecting two input
variables (rather than connecting an input variable to the class), and the edge
is pointing to a child node of the class node. The algorithm does not consider
adding edges between the class variable’s parents because these edges do not
affect the predictions (posterior probability calculation) of the BN classifier.

Second, in the Markov blanket produced by ABC-Miner+, the size of the
CPT for the variables that do not have the class variable as parent is relatively
smaller compared to the CPT of the BN classifiers produced by ABC-Miner,
where the class node has to be a parent to all the variables, besides their other
parents. Smaller CPT size means less computational time.

Note that in the case of a Markov blanket (MB) classifier, both causal (parent)
variables, and the effect (child) variables of the class variable are used to compute
the posterior probability P (c|x) of class c given case x, along with the parents
of the class node’s children, according to the following formula:

P (c|x) ∝ P (c|Parents(c))
∏

v∈m

P (xv|Parents(Xv),MB), (4)

where m is the set of the input variables that have the class variable as parent.
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5 Experiments and Computational Results

We compared the performance of our proposed ABC-Miner+ with two other BN
classifier algorithms. The first one is basically the first phase of the ABC-Miner+
algorithm, where the BN classifiers produced have a structure only with the
relationships between the class and the input variables, without discovering the
dependency relationships among the input variables. The algorithm is denoted
as ABC. The second algorithm is the original ABC-Miner, which produces BN
classifiers with the structure of a BAN (where the class variable is a parent of all
the input variables). The evaluation criteria consist of the following three types
of performance measures: predictive accuracy (in general the most important
criterion in the classification task of data mining), model size (measured by the
total number of the edges in the network), and the running time.

The performance of the algorithms was evaluated using 18 public-domain
datasets from the University of California at Irvine (UCI) dataset repository.
The main characteristics of the datasets are shown in the URL in [1]. The exper-
iments were carried out using the well-known stratified 10-fold cross validation
procedure [20]. Since the ACO algorithms are stochastic, we run each 10 times –
using a different random seed to initialize the search each time – for each of the
10 iterations of the cross-validation procedure. As for the parameter configura-
tions, we set colony size to 10 and max iterations to 1000. Note than in the
case of ABC-Miner+, each phase is allocated half of the total maximum number
of iterations (i.e. 500 iterations in our experiments).

Table 1 shows the experimental results of the algorithms in three parts, one for
each type of performance measure: predictive accuracy, model size, and running
time. The entries in the table represent the mean values obtained by 10-fold
cross validation. For each performance measure, the best result for each dataset
is underlined.

In terms of predictive accuracy, the extended ABC-Miner+ algorithm ob-
tained the best results in 14 out of 18 datasets, while ABC-Miner and ABC
obtained the best results in 5 and 3 datasets, respectively. ABC-Miner+ out-
performed ABC-Miner in 13 datasets plus 1 tie, while ABC outperformed ABC-
Miner in 3 datasets. It is interesting to notice that ABC, which is only the
first phase of ABC-Miner+ can find the best BN classification model in some
datasets, and in those datasets the second phase of ABC-Miner+ does not im-
prove its performance. This can be noticed in datasets hayes, monk and pima,
where ABC and ABC-Miner+ have the same predictive performance and almost
the same model (size).

We used the matched-pair samples Wilcoxon Signed-Rank statistical test [9]
to compare the predictive accuracies of ABC-Miner+ and ABC-Miner, where
the samples are the datasets. According to the Wilcoxon test, the Z-value is
-2.2012, and the p-value is 0.0139. Therefore, the results of ABC-Miner+ are
statistically significantly better at the 5% significance level.

In terms of model size, ABC obviously produces the smallest BN models,
whose sizes are lower limits for the sizes of the models produced by ABC-Miner+,
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since the second phase of that algorithm can only add (and not remove) more
edges to the BNs learnt by ABC. Moreover, the maximum number of the edges
in a BN produced by ABC equals to the number of the input attributes (if all
the input variables have relationships to the class), which is also the minimum
number of edges that a BAN produced by ABC-Miner may have (if the local
search procedure removed all the edges between the input variables and reduced
the BAN to a Näıve-Bayes structure).

Besides, in terms of model size ABC-Miner+ outperformed the original ABC-
Miner in all the datasets, producing BN classification models with fewer edges.
The feature selection process implicitly performed by our extended algorithm
can be easily noticed in the results of ABC. In some datasets, such as breast-w,
credit-a, credit-g, and dermatology, the number of edges in the model pro-
duced by ABC-Miner+ is less than the number of input attributes in the corre-
sponding dataset. This means that the produced BN classification model does
not have all the input variables related to the class variable.

In terms of running time, as expected, ABC took the least amount of time
to finish its execution in all the datasets. On the other hand, the two-phase
ABC-Miner+ algorithm achieved a shorter execution time than ABC-Miner in
14 datasets. The reason behind that, as explained in Section 4, is that the first
phase of the ABC-Miner+ algorithm reduced the search space for the second
phase, after producing a BN structure with different dependency relationship
types defined between the input and the class variables, and the first phase
(ABC) does not consume a large amount of time, as shown in the results.

6 Concluding Remarks

In this paper, we have introduced ABC-Miner+ an extended version of an ACO
algorithm for learning BN classifiers. ABC-Miner+ builds class Markov blanket-
based BN classification models, in which it is not necessary to have an edge
between the class variable and each of the input variables, and the edges between
the class and the input variables may have different directions; unlike ABC-
Miner, which learns BAN models. Empirical results showed that, overall, the
ABC-Miner+ algorithm has an improved performance over the original ABC-
Miner in terms of predictive accuracy, model size, and running time.

As a future research direction, we would like to investigate a different approach
to learn the Markov blankets in a single integrated phase, rather than in two
sequential phases as in ABC-Miner+. Moreover, we would like to try techniques
to avoid over-fitting on the learning set during the training phase, like using
different random partitions of learning\validation sets each iteration.
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Abstract. Ant colony optimisation algorithms model the way ants use
pheromones for marking paths to important locations in their envi-
ronment. Pheromone traces are picked up, followed, and reinforced by
other ants but also evaporate over time. Optimal paths attract more
pheromone and less useful paths fade away. The main innovation of the
proposed Multiple Pheromone Ant Clustering Algorithm (MPACA) is
to mark objects using many pheromones, one for each value of each at-
tribute describing the objects in multidimensional space. Every object
has one or more ants assigned to each attribute value and the ants then
try to find other objects with matching values, depositing pheromone
traces that link them. Encounters between ants are used to determine
when ants should combine their features to look for conjunctions and
whether they should belong to the same colony. This paper explains the
algorithm and explores its potential effectiveness for cluster analysis.

Keywords: Ant Colony Algorithms, Swarm Intelligence, Emergent Be-
haviour, Cluster Analysis, and Classification.

1 Introduction

Making sense of large data sets can be approached from two directions. One
is to exploit existing knowledge, often using humans who are experts in the
domain. The alternative is to have no preconceptions and tackle the data from
the bottom up, which is how computational models of ants and other social
insects do it. Social insects do not have the sophisticated brain power of humans
but compensate by pooling their resources in very large numbers. The results
are impressive enough to inform human knowledge and understanding of the
world with, for example, architects using ideas from termite nests to incorporate
natural air conditioning into multi-storey buildings [1]. This paper investigates
how computer models of ant colony behaviours can help humans sort data into
meaningful classes.

The paper begins by reviewing current computational models of ants that
are applied to cluster analysis and classification models. Conclusions from the
literature review are used to introduce the main innovations of the proposed
model. The algorithm is then tested on a number of classical data sets [2]. The
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paper concludes with a discussion of the model, its effectiveness, and how it can
be applied to more varied data.

2 Background

Swarm intelligence (SI) describes how the interactions of multiple separate enti-
ties with limited individual cognitive capabilities can lead to more sophisticated
intelligent behaviour [3], [4], [5]. Many examples exist in the insect world in-
cluding the aforementioned termites and our particular focus on ant colonies.
There are several types of ant behaviour that have been used as metaphors for
computer science [6] but the two most relevant to the proposed model are how
ants sort larvae and corpses and how they forage for food.

The larvae or corpse-sorting metaphor is known as the Basic Model (BM)
[7], because it is purely about clustering ant bodies into piles, referenced as the
Standard Ant Clustering Algorithm (SACA). The key operator is a similarity
function, whereby the ants attempt to move items into areas where other similar
items are located. In contrast, the ant foraging metaphor simulates how ants lay
scent trails or pheromones to create paths that other ants follow. It has led to
Ant Colony Optimisation (ACO) algorithms where the build-up of pheromones
is used to optimise the shortest path on a fully connected graph [8]. The proposed
Multiple Pheromone Ant Clustering Algorithm, MPACA, is derived from forag-
ing behaviour, which has many computational variants described by researchers.
The following section explores those most relevant to the MPACA.

2.1 Algorithms Inspired by the Foraging Behaviour of Ants

The use of scent or pheromone to form paths is a form of stigmergy, where
information is placed in the environment for communication purposes [6] [23].
During foraging, real ants deposit a pheromone trace to mark the paths to food.
The pheromone is laid down at full strength but then evaporates over time. The
shorter the distance between the nest and food, the less time for evaporation to
occur and the faster the ants are able to reinforce the path. Hence, the shorter
paths tend to have higher levels of pheromone, which in turn attracts more ants,
and eventually the colony learns the best path to the food source. Stigmergy
thus works as a function of distance and evaporation rate. Whether or not an
ant follows a path is probabilistically related to the strength of the path; there
will always be a few ants that go off the beaten track, which is important for
learning new or changing situations. A coherent mathematical description is
given by [24], where they obtain encouraging results from applying ACO to the
real world domain of road safety at intersections.

Ant Clustering Algorithms Using Pheromones. Many ant colony
clustering algorithms such as ACLUSTER [20] and ANTCLUST [14], [15] use
pheromones to operationalise the process (see [13] for a full review). ANTCLUST
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constructs a colonial odour for determining an ant’s nest membership so that
ants can discriminate between nest mates and intruders. It accords with natural
ant societies and variants have been shown to separate noise from data [16],
conduct credit evaluation of small enterprises [17], and mine information on the
web [18].

Induction of multiple colonies within a graph space is proposed by [19],
where each colony is represented by a distinct colour. Ants travel along the
graph and lay pheromones corresponding to their colony colour. Colonies com-
pete to colonise separate sub-sections of the graph space, being attracted by
the pheromone representing their colour, and repulsed by pheromones of other
colours (colonies). Organisational information emerges from the global behaviour
of ants in their colonies.

Some clustering approaches widen the horizon within which ants can see or
sense the world such as the adaptive ant-based clustering algorithm (AACA) [21]
and the Aggregation Pheromone Density Based Clustering (APC) algorithm [22].
They allows ants to see further than the single step ahead, overcoming short-
sightedness of the BM and its derivatives.

The Adaptive Graphic Clustering (AGCM) algorithm [25] is based on a di-
graph where the similarity between objects in the space of object attributes is
calculated as weights on the directed edges of a pheromone map. The weight
on each edge is adaptively updated by the ants during the search process, in
relation to the pheromone being deposited.

The Ant-Miner algorithm [26] and its derivatives are also clustering algorithms
using pheromones but their output is a set of association rules defining the
clusters. This has the advantage that data representation is more comprehensible
to the user. The main loop of the algorithm consists of three key steps, namely
rule construction, rule pruning, and pheromone updating. Results show that
Ant-Miner has good classification performance on test data sets and the ability
to constrain the number of rules required [26], [27].

Multi-colony and Multi-pheromone Approaches. In real ant colonies,
there are subsets of ants within the same colony that have different objectives
and they may lay down distinctive pheromones accordingly [9]. However, com-
putational models of ACO usually exploit multiple pheromones to distinguish
between colonies, not ants within colonies. [10] provide an exception, but still
only use two pheromone types: a trailing pheromone for leading ants towards a
nest or clusters of other ants and a foraging pheromone for locating new food
sources.

In multi-colony models, ants are sub-divided into several colonies, each evolv-
ing independently of each other. ACO models use colonies to subdivide the
problem into separate elements with the various results integrated at the end to
provide the overall solution [11],[12].
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2.2 Conclusions from the Literature

ACO algorithms are powerful methods for analysing data without having any
prior knowledge of their inherent structure. They rely on independent entities
with minimal intelligence whose actions are governed by specific information
available within their immediate environment. Despite these limitations, the col-
lective behaviour of the ant population or colony provides emergent properties
that represent pattern-recognition information in the data.

The literature review shows many potential candidates that can enhance clus-
ter analysis. Some depend on ants picking up and dropping objects to generate
the clusters; others require ants to move themselves into positions reflecting
the structure. This paper focuses on the latter and, more specifically, those al-
gorithms where ants follow pheromone trails that keep them within a localised
area of the hyperdimensional space, which is often represented by a linked graph.

Although some previous ant models have multiple pheromones, none of them
have a different pheromone associated with each distinguishing feature of the
objects to be analysed. This is a key innovation for our proposed model, which
is why we have called it the Multiple Pheromone Ant Clustering Algorithm,
MPACA. It differs from alternative models by being both a multi-pheromone
and multi-colony ACO approach. It incorporates the ability of individual ants
to detect feature combinations and to form colonies based on the number of
encounters they have with other ants. Ants don’t stop when they reach some-
where they ‘like’, as in the ASM, and they don’t have nests to which they need
to return. Instead, their movements maintain a dynamic equilibrium where ants
that are interested in similar objects end up clustered together. The next section
will introduce the model and describe its operation in detail.

3 Method for MPACA

The MPACA behaviour depends on a number of system elements and their
parameters. These include the domain architecture, ant movements, pheromone
deposition, ant encounters, and the colony and feature merging processes.

3.1 Domain Architecture

The MPACA is applicable to multiple dimensions and can accommodate any
type of data, whether it is continuous or discrete, ordinal or nominal. However,
only ordinal dimensions are used to set up the hyperdimensional problem space.
Non-ordinal variables are still part of the feature set detected by ants but influ-
ence clustering behaviour through their pheromone trails rather then as part of
the domain architecture.

Ordinal dimensions are normalised to help prevent bias due to types of dis-
tributions and ranges. The values are converted into the number of standard
deviations (SDs) from the mean, z, where z = (x − μ)/SD, x, is the original
value and μ, is the mean. This provides all dimensions in the hyperdimensional
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space with equitable units based on their distributions. Object values are like-
wise normalised so that objects can be appropriately placed in the graph space,
after which they are joined by edges. The resulting graph, G, has a vertex, v,
for every object. In theory, ants should be able to move from any object to any
other object but the graph space is kept more manageable by connecting objects
with an edge, e, that is within a distance parameter, d: if two objects are beyond
that distance apart, then they are considered to be outliers and not joined.

Ants are placed on every vertex or object with at least one ant for each at-
tribute of the object. This means the value for each dimension of the object’s
graph location (e.g. length, width) and the value for each of its nominal features
(e.g. colour, shape) has one or more ants assigned to it. The ant’s own attribute
value becomes the distinctive pheromone for the ant, which it lays down on the
edges as it travels from objects with matching values. Edges therefore have mul-
tiple layers of pheromone placed on them corresponding to the different features
of objects and ants respond to the pheromones which are of interest to it. There
will be as many pheromone scents in the domain as there are distinct attribute
values, including nominal features and ordinal dimensions.

The Step Size. The granularity of differences between objects along a dimen-
sion is determined by how far the ant can travel in each time step, which is
the step size. A reasonable assumption is that four SDs from the mean (plus
or minus 2 SDs) covers most population values on that dimension except the
outliers. A step size of 0.1 SDs gives 40 steps along each dimension, which is
enough to detect meaningful differences between objects. Values are converted
into positive equivalents, which means 0, is the lowest negative deviation from
the mean and all other values are positive, measured from this point.

When joining objects by edges, the edge distance is the Euclidean function of
the individual dimension lengths. As the number of dimensions in the hyperdi-
mensional space increases, the edges between objects become longer by default.
To counteract this, the step length of the edge, EdgeStep, is calculated as the
Euclidean distance between points that are one step away along every dimension.

EdgeStep =

√
√
√
√

D∑

i=1

DimensionStep2i (1)

where D is the number of dimensions and DimensionStep is the step size along
each dimension in SDs from the mean. The length of each edge is thus its Eu-
clidean distance divided by EdgeStep, which is now normalised to ensure dimen-
sionality does not increase the edge length excessively compared to dimensions.

3.2 Ant Movement

Ants move one step at a time and each movement is recorded as one timestep
for the whole system. Ants on a vertex choose which edge to visit next using
a stochastic approach that distinguishes it from [6]. This mechanism does not
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require any foresight about the potential vertices that can be visited, and has
the single restriction that ants cannot go back along an edge they have just
traversed. The path or edge to follow is chosen as a probabilistic function of the
strength of matching pheromone on the first step of each edge leading from the
vertex: the higher the strength, the more likely the path will be chosen.

Whenever ants reach a vertex that has a feature set matching their own, they
will deposit a trail when leaving it but will go into non-deposit mode otherwise.
Vertices with similar feature values will tend to have connecting paths with higher
levels of pheromone traces than objects connecting different feature values. Ants
will lay trails in both directions for similar objects but only in one direction for
dissimilar ones. Pheromone trails are diminished by a parameterised amount due
to evaporation and must be reinforced if they are to be maintained. The longer
the path between objects, the weaker the connection, all things being equal.

3.3 The Multi-pheromone and Multi-colony Approach

The MPACA makes use of multiple pheromones and multiple colonies. Initially,
each ant belongs to its own distinct colony and carries only one feature value
for detection. Over time, colonies begin to merge but this does not change the
movements of the ants. Feature merging does, though, because ants then respond
only to objects that match their multiple feature set and lay down trails for all
of their features. The deposited pheromones are independent of the colony to
which the ant belongs but obviously ants looking for similar features are likely
to be in the same vicinity and thus become part of the same colony. Both colony
and feature merging are governed by meetings or encounters between ants.

3.4 Ant Encounters

Each ant records meetings or encounters with other ants in a list structure that
is only accessible by the individual ant. These encounters are used to determine
whether ants should share the same features or join the same colony.

On each encounter, the ant records the following information of the other ant:
the ant identifier (id), the colony id, the carried feature id, the timestep, and
a boolean flag holding the deposit mode of the encountered ant at that time
stamp. This is put into theAntSeenRecord, within the AntSeenList. The size of
the list structure is kept in check by the time stamp which is placed on it. On
exceeding the time-window parameter, this encounter is removed.

Encounters are only recorded for an ant when it is at a vertex. This ant will
be called the focus ant to prevent referential ambiguity; it is the only one that
has its AntSeenList updated when the encounters are recorded. Other ants are
recognised as an encounter if they are within the focus ant’s visibility range, v,
which is a parameterised number of steps from the vertex along its edges. The
focus ant’s AntSeenList is only updated if it is put in pheromone deposition
mode at the vertex. Ants in deposit mode and travelling on a path away from
the object are recorded as having encountered the ant as well as ants coming
towards the vertex the ant is on, irrespective of their deposit mode (both types
of ant must be within the visibility range).
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3.5 Colony and Feature Merging

Feature and colony merging are both triggered asynchronously at the ant level on
arrival at a vertex. The ant’s deposit mode is updated, ant encounters recorded
as described earlier, and the updated AntSeenRecord used to compute whether
to merge colonies and/or features. The colony memberships of encountered ants
in the focus ant’s AntSeenList are counted if those ants were in deposit mode.
If the number for the largest colony is more than the threshold parameter, the
ant joins this colony. A similar process applies to the feature merging except
that the encountered ants do not have to be in deposit mode. If the number of
ants with the same feature is above the feature-merging threshold, the focus ant
adds the feature to the one or more features it is already detecting and drops
any that are now below the threshold.

3.6 The MPACA Algorithm

Require: Graph space with connecting edges and ants assigned to each feature.

while (Termination not met) do
for (Each ant in antlist) do
Increment StepNumber against all encounters in AntSeenList by one
if (StepNumber > threshold) then
Remove encounter from AntSeenList

end if
if (Ant at vertex) then
Update AntSeenList counts;
if (Ant features match object) then
Activate pheromone deposition mode;
Process AntSeenList for colony and feature merging

else
Deactivate pheromone deposition mode;

end if
Choose next edge stochastically taking pheromone values into account;

end if
EdgeT raversal ← EdgeT raversal − 1;
if (Ant in deposition mode) then
deposit pheromone for each feature;

end if
end for
if (Stopping criterion reached) then
Output cluster definitions;

else
Perform system wide evaporation;

end if
end while
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In the MPACA, each step of the ants is a single time interval so edges which are
n steps long will take n timesteps to traverse. The MPACA terminates when ants
reach a stable dynamic equilibrium in the colonies they form. This is indicated
by a consistent number of colonies and a stable population number in each one.

Clustering begins when the stigmergy of pheromone trails draws ants towards
areas of the search space that have objects matching their features of interest.
When the density of ants goes over the colony threshold, ant colonies will merge.
If there are enough ants searching for a different feature in the same space,
because the vertices also match their feature values, an ant can take on this
feature in addition to its own. This enables ants to pick up feature combinations
and provides colonies with the ability to detect non-linear relationships. For
example, if an object of colour blue is always found next to a large object, then
features colour=blue, size=large can be merged into one; the ants are no longer
looking for just blue or large, but for the combined features blue AND large. In
theory, this means the algorithm can solve the XOR problem (see [29]), which
depends on knowing how values of two separate features occur together.

3.7 MPACA Parameters

The philosophy, properties, rationale, and operation of the MPACA model have
been introduced but its overall emergent behaviour is dependent on the param-
eters controlling colony and feature combination. The following list discusses
parameter functions in more detail.

Distance parameters
The distance parameters help ants sense the environment beyond their im-
mediate vicinity, similarly to AACA described earlier. The edge-length pa-
rameter, d, removes objects that are too far away to be worth exploring. The
visibility parameter, v, controls the range within which encounters between
ants are recorded. Together, they improve computational tractability and
the influence of social interactions.

Pheromone deposition and evaporation
If all the features being detected by an ant match those of an object, the ant
will lay a pheromone trail down for each matching feature on the path leading
away from the object. The same fixed amount is deposited for each feature
for all ants, as prescribed by a parameter, ph. In line with the natural ant
model, as soon as pheromone deposition takes place, evaporation occurs. A
maximum pheromone level, ph.max, is set to prevent the amount on a path
increasing indefinitely and overwhelming the influence of low-scent paths.

Ant path choice and pheromone parameters
A residual parameter r, determines the percentage of total matching
pheromone on all edges that is placed on each of them by default. It enables
ants to go down paths with little or no scent and explore new areas, which
helps prevent local minima and allows the system to evolve if the domain
knowledge changes. Given N potential paths from a vertex with pheromone
scent s on the first step of each path, where s is the pheromone matching
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the features of the ant, the probability of selecting a particular path, p, is
given by

P (p) = (s+r)
N∑

i=1

si+(r×N)

.

Detection range for continuous dimensions
The ant responds to (i.e. lays down a pheromone for) all values of a dimension
that are within a parameterised range of its own object’s value. The range
is based on the step size for the dimension.

Ant complement
The ant complement, ac, is the number of ants associated with each feature
of an object. This enables more sensitive detection of clusters and merging
decisions because of an increased population density but the trade-off is
greater computational load for each step. The optimal balance depends on
both the density of objects within the given domain space as well as it’s
dimensionality.

Merging thresholds
There are two merging thresholds, one for colonies and one for features.
The colony threshold, ct, determines when the population density of ants
is high enough to trigger the ant joining a colony. The feature threshold,
ft, is linked to the number of times a particular feature has been seen in
other ants. When features do merge, the number of objects matching the
ant’s detectors will reduce and this will concomitantly reduce the number of
paths laid by the ant. The consequence is a natural check on the combination
process: specialising detection reduces the number of matching objects and
the probability of an ant being in deposit mode, which is when it records
other ant encounters.

Time-window
All ant encounters are recorded within a time window, defined by the max-
imum number of steps that can be remembered. The time-window, tw,
parameter ensures two things: firstly, that the chances of over-fitting are
reduced and secondly, the system can evolve if the knowledge domain changes
structure.

3.8 Emergent Properties of MPACA

Emergent properties of the system as a whole come from analysing the state
of the ants at the end of the learning process. The two influential phenomena
are feature merging and colony formation. Most ants will have joined a colony,
apart from the outliers, and the specification of the colony’s membership criteria
is given by the relative frequencies of ants with different feature detectors. Some
will have single detectors, others will have multiple ones; together they provide
a precise description of the cluster. This description can be converted into a
classification algorithm for assigning unknown objects to classes. In this paper,
a simpler method was used. The centre of each colony was taken to be the
multivariate mean and each object was assigned to the colony with the centre
that had the shortest Euclidean distance.
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4 Evaluation and Results

The MPACA evaluation consists of a two-step process. First, the ant colonies and
their location clusters are formed. Then each object is assigned to the nearest
colony as described earlier. Table 1 shows the results of applying the MPACA
to three data sets from the Machine Learning Repository [2] that have com-
monly been used to compare ant algorithms. The Iris data have two non-linearly
separable classes, ‘versicolor’ and ‘virginica’, and one linearly separable class,
‘setosa’. The Wine data is a 13 dimension set having all three classes linearly
separable from each other. The reduced Wisconsin Breast Cancer (WBC) data
set has 9 dimensions in two overlapping classes of malignant and benign cases.

Accuracy of cluster formation was evaluated using the F-Measure and Rand
Index [31] standard metrics, which enabled results to be compared with other
cluster and classification techniques found in the literature. Table 1 shows the
mean and standard deviations of these indices for a variety of algorithms includ-
ing the MPACA, which also has the measures for its best fit at the bottom.

Table 1. Application of classifiers to the Iris, Wine, and WBC data sets, with mean
and standard deviations (in brackets) of runs. N/A means the results are not available;
ABC is a derivation of the Standard Ant Clustering Algorithm, SACA; Average link
is a hierarchical classifier; C4.5 is a decision-tree algorithm; RIPPER is an inductive
rule learner; 1NN is Nearest Neighbour analysis; Logit is based on regression; SVM is
a Support Vector Machine; and PB-ACA is a pheromone-based hybrid with SACA,
density based DBSCAN and distribution-based EM-Clustering.

Iris Wine WBC
Classifier F Rand F Rand F Rand

ABC [30] .82(.015) .83(.009) N/A N/A .97(.002) .94(.003)
K-Means[30] [34] .83(.085) .82(.101) .82(.034) .84(.090) .97(.000) .93(.065)
Average link [30],[34] .81(.000) .83(.000) .84(.000) .81(.000) .97(.000) .93(.000)
PACE [34] .82(.014) .82(.008) .88(.003) .82(.090) N/A N/A
Ant-Miner [28] N/A .77(.039) N/A .85(.057) N/A .91(.024)
Ant-Miner+ [28] N/A .95(.008) N/A .95(.017) N/A .96(.005)
Ant-Miner2 [28] N/A .82(.032) N/A .85(.064) N/A .92(.027)
Ant-Miner3 [28] N/A .77(.038) N/A .84(.050) N/A .91(.030)
RIPPER [28] N/A .93(.019) N/A .91(.049) N/A .95(.025)
C4.5 [28] N/A .94(.022) N/A .90(.050) N/A .95(.027)
1NN [28] N/A .91(.022) N/A .95(.018) N/A .96(.015)
Logit [28] N/A .94(.029) N/A .94(.026) N/A .97(.010)
SVM [28] N/A .95(.026) N/A .95(.035) N/A .93(.058)
PB-ACA [32] N/A .79 N/A N/A N/A N/A
DBSCAN [37] N/A .76(.000) N/A .73(.000) N/A .83(.000)
EM-Clustering [37],[38] N/A .91(.000) N/A .97(.000) N/A .96(.000)
MPACA .82(.036) .88(.023) .87(.045) .91(.029) .93(.037) .93(.036)

MPACA best run .88 .92 .95 .97 .97 .97
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Twenty MPACA runs were generated over 2000 time intervals. In this ex-
ploratory phase of testing, parameters were initialised with intuitively sensible
settings as explained for the domain architecture, where step size and dimension
ranges were based on covering the main population with enough granularity to
distinguish individuals appropriately (see Section 3.1). Other parameters were
manually adjusted to evaluate their impact and to approximate an optimal set-
ting. For each of the 20 runs, the same settings were applied to all three data
sets apart from the time window. The following list shows the mean parameter
values with standard deviations in brackets (see Section 3.7 for details of the
parameter operations).

– Detection range for continuous dimensions: 1.5 steps (0.5).
– Ant Complement: 3 (2.1).
– Pheromone evaporation on each timestep: 7.9 units (4.5).
– Pheromone deposition on each step of ants in deposit mode: 100 units (31.4).
– Residual percentage of pheromone placed on all steps: 3.5 (1.1).
– Max pheromone on a step, which is operationalised as a multiplier of the

pheromone deposition parameter (i.e. if deposition per step is 100 units, the
maximum allowed on a step is 150 if the multiplier is 1.5): 1.5 (0.5).

– Feature merging threshold: 5.9 (1).
– Colony merging threshold: 4 (1.0).
– Time-Window: Iris, 100 (32.4); Wine, 112.5 (26.3); WBC, 75 (16.2).

Preliminary results show that the MPACA generates sensible results that
are equitable with alternative approaches, both in general and compared to ant
colony optimisation models. At this stage, the results have provided support for
the MPACA principles but it is clear that a better method for testing model
parameters is required, along with more sophisticated assignation of objects to
colonies. These are undoubtedly reasons why, for example, the rule-extraction
approach of Ant Miner is giving it a better performance across all data sets.
The best fit for the MPACA suggests improvements can be made and that the
multiple pheromone approach is worth further investigation.

4.1 How the MPACA Compares to Other Clustering Techniques

It is not easy determining the “active ingredients” that distinguish one model
from another when they all have the same classification goal. This paper has tried
to show the high-level distinctions of the MPACA, which is around its use of
multiple pheromone deposition linked to separate object features. However, much
of the output performance depends on operational details of parameters and their
settings; it is unclear at this early stage how influential these are compared to
the overall mechanisms. For example, the MPACA is a bottom-up approach that
first puts neighbouring objects into the same cluster and gradually extends the
objects belonging to that cluster as colonies merge. This is not entirely disimilar
to hierarchical clustering in principle but the distance measures are very different,
being based on ant movements for the MPACA. Table 1 shows that the average-
link hierarchical clustering approach [30] does have similar output to the MPACA
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and further work would be needed to determine which operational elements are
distinguishing their behaviours.

The MPACA can be viewed both as a distribution-based (e.g. EM-clustering
[35]) and a density-based algorithm (e.g. DBSCAN [36]). Ants merge into clusters
depending on the density of other ants on surrounding objects. Like DBSCAN,
outliers in the MPACA will fail to form bigger clusters and can be ignored.
Similarities exist with EM-clustering when assigning objects to learned classes
on the basis of ant colonies and their demographics. For this paper, much more
work is needed on how to optimise this for the MPACA but the same caveats
for over-fitting will apply.

The MPACA ant density is controlled by pheromones which are in turn con-
trolled by the feature cues being sought. Unlike most other clustering algorithms,
where clusters form over dimensions, the MPACA allows for mixed types of data:
although nominal features do not contribute to the hyperdimensional space, they
are included in the pheromone deposition. The advantage is better exploitation
of all available clustering information.

5 Conclusion

This paper has described a new Ant Colony Clustering model called the Multi-
pheromone Ant Clustering Algorithm, MPACA. It is related to other ant models
by using pheromones within a graph domain space and, to some extent, by its use
of more than one pheromone for laying down information along a path. However,
no other algorithm has a pheromone for every attribute value of the objects in
the domain space, which is the core innovation of the MPACA. The ants are
able to link similar features of objects, to combine the features they detect, and
to form colonies based on local ant population densities. Together, these enable
ants to learn the feature profile for different clusters and for mapping colony
membership onto those clusters.

The remit of this paper was to describe the MPACA and compare it with
other ant models and standard classifiers to demonstrate the potential for its
new properties. However, much more work needs to be done on how to adapt
the parameter settings for optimising the final cluster analyses. This is non-
trivial because it is computationally time consuming for the ants to stabilise
their colonies and this process would have to be repeated many times if the
parameter settings are to be adapted to reduce errors by, for example, simulated
annealing. On the other hand, the algorithm has been deliberately prevented
from using any global operators, which means it is ideally suited to parallel
processing. At each timestep, for example, the data structure for recording ant
encounters is updated for an individual ant independently of the data structures
for any other ant and only using information that is in the local “visibility range”
of the ant.

The method for assigning objects to classes based on ant colonies can certainly
be improved because distance to single centroid points is not a very subtle mea-
sure. The next steps will be to investigate alternative classification methods, to



A Multiple Pheromone Ant Clustering Algorithm 25

optimise the program so that it can learn more quickly, and to apply the algo-
rithm to real-world, much larger, data sets. The idea is to see how the bottom-up
learning of ants compares to the top-down classification algorithms used in cog-
nitive modelling of human experts. Two domains where the authors already have
a cognitive model driving decision making are in mental-health risk assessment
[39] and hub-and-spoke logistics [40]. The domains have extremely high dimen-
sions (over 200 for the mental-health one) and extremely high numbers of cases
(many millions for the logistics domain). These present serious challenges for
the tractability of the MPACA but the rewards are high. If the MPACA can
form accurate clusters, these will have ant populations that represent a detailed
analysis of the relative importance of features and feature combinations required
for cluster membership. They can be used to output sophisticated classification
rules that complement decision making used in the cognitive models and may
even be able to improve those models.
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Abstract. The Feature Selection Problem is an interesting and impor-
tant topic which is relevant for a variety of database applications. This
paper applies a hybridized version of the Differential Evolution algo-
rithm, the Island Memetic Differential Evolution algorithm, for solving
the feature subset selection problem while the Nearest Neighbor Classi-
fication method is used for the classification task. The performance of
the proposed algorithm is tested using various benchmark datasets from
the UCI Machine Learning Repository. The algorithm is compared with
variants of the differential evolution algorithm, a particle swarm opti-
mization algorithm, an ant colony optimization algorithm and a genetic
algorithm and with a number of algorithms from the literature.
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1 Introduction

Recently, there has been an increasing need for novel data-mining methodologies
that can analyze and interpret large volumes of data. The proper selection of
the right set of features for classification is one of the most important problems
in designing a good classifier. The basic feature selection problem is to search
through the space of feature subsets to identify the optimal or near-optimal
subset with respect to the performance measure. However, as finding the opti-
mum feature subset has been proved to be NP-hard [27], many algorithms are,
thus, proposed to find suboptimum solutions in comparably smaller amount of
time [25].

Differential Evolution (DE) is a stochastic, population-based algorithm
that was proposed by Storn and Price [18]. Recent books for the DE can be
found in [18, 39]. DE has the basic characteristics of the evolutionary algorithms
as it is an evolutionary algorithm. It focuses in the distance and the direc-
tion information of the other solutions. In the differential evolution algorithms
[17], initially, a mutation is applied to generate a trial vector and, afterwards,
a crossover operator is used to produce one offspring. The mutation step sizes
are not sampled from an a priori known probability distribution function as in
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other evolutionary algorithms but they are influenced by differences between
individuals of the current population.

In this paper, a hybridized version of the Differential Evolution, the Island
Memetic Differential Evolution (IMDE) algorithm is applied, analyzed and
used for solving the feature selection problem. In order to give more exploration
abilities in the proposed algorithm, instead of a whole population, a number
of subpopulations are used. The interaction between the populations is realized
with a migration policy. These kinds of subpopulations are called Island models
and they are initially applied to genetic algorithms (Island Genetic Algorithms
[17]). Also, a local search phase is used in each individual in order to effectively
explore the solution space. It should be noted that a memetic strategy usually
improves the performance of the algorithm [34]. A number of Memetic Differen-
tial Evolution algorithms has be presented in the literature [6, 33, 35, 36, 46].
Also, island models have been incorporated in the past in a Differential Evolution
algorithm [3, 14, 24, 51, 52]. But, at least to our knowledge, there is no algorithm
that combines both of these characteristics and is applied to the feature selection
problem.

The proposed algorithm is compared with variants of the DE algorithm, with
a Genetic Algorithm [20], an Ant Colony Optimization [13] algorithm and a
Particle Swarm Optimization [26] algorithm and with the number of algorithms
from the literature. The rest of the paper is organized as follows. In the next
section, the Feature Selection Problem is presented while in the third section,
the Island Memetic Differential Evolution algorithm is presented and analyzed
in details. Afterwards, in the fourth section, computational results are given and
analyzed while the last section gives the conclusions.

2 Feature Selection Problem

Recently, there has been an increasing need for novel data-mining methodologies
that can analyze and interpret large volumes of data. The proper selection of the
right set of features for classification is one of the most important problems in
designing a good classifier. The basic feature selection problem is an optimization
problem with a performance measure for each subset of features to measure its
ability to classify the samples.

A formulation of the problem is the following [8]:

– V is the original set of features with cardinality m.
– d represents the desired number of features in the selected subset, X , where
X ⊆ V .

– F (X) is the feature selection criterion function for the set X .

Let us consider a high value of F to indicate a better feature subset. Formally,
the problem of feature selection is to find a subset X ⊆ V such that | X |= d
and

F (X) = max
Z⊆V,|Z|=d

F (Z) (1)
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In the literature, many successful feature selection algorithms have been pro-
posed. These algorithms can be classified into two categories. If feature selection
depends on learning algorithm, the approach is referred to as a wrapper model.
Otherwise, it is said to be a filter model. Filters, such as mutual information
(MI), are based on the statistical tools. Wrappers assess subsets of features ac-
cording to their usefulness to a given classifier [47]. Unfortunately, finding the
optimum feature subset has been proved to be NP-hard [27]. Many algorithms
are, thus, proposed to find suboptimal solutions in comparably smaller amount
of time [25].

Stochastic algorithms, including Simulated Annealing (SA) [29, 42], Scatter
Search algorithms [10, 19], Ant Colony Optimization [1, 2, 11, 23, 37, 41, 53],
Genetic Algorithms (GA) [4, 5, 7–9, 16, 21, 22, 40, 43, 44], Particle Swarm
Optimization [12, 28, 30, 38, 48–50], Greedy Randomized Adaptive Search Pro-
cedure [8] and Tabu Search [8] are of great interest because they often yield high
accuracy and are much faster.

3 The Proposed Island Memetic Differential Evolution
Algorithm for Feature Selection Problem

Initially, in the Island Memetic Differential Evolution (IMDE) algorithm, a po-
pulation is created at random as in the classic DE. Then, contrary to the classic
DE, the initial population in the IMDE algorithm is divided into a number of
islands, depending to the selection of the user (the number of islands is one of
the parameters of the algorithm). Each island represents a different population,
where the DE’s operators are applied independently to each other island. The
basic difference of the IMDE algorithm from the classic DE is the migration
policy of the population. The migration policy is used in order to exchange
information between different islands. There is a number of different ways to
realize the migration strategy [17]. In this paper, the user gives the percentage of
the population that will migrate in another island and the times that a migration
policy will be applied. A ring topology is used for the migration of the population,
which means that the migrants will migrate to the neighborhood island. The
migration occurs a number of times depending on the selection of the user. In
IMDE, a randomly selected migrant replaces a randomly selected individual and
the individual that will be replaced is not eliminated but it is used as a migrant
for another island.

For each island, each member of the population is randomly placed in the
d-dimensional space as a candidate solution (in the feature selection problem,
d corresponds to the number of activated features). Every candidate feature
in IMDE is mapped into a binary individual where the bit 1 denotes that the
corresponding feature is selected and the bit 0 denotes that the feature is not
selected. As the initial random values for every member of the population are
continuous values in the (0,1) interval, they are transformed into discrete values
using the following equations:



32 M. Marinaki and Y. Marinakis

sig(si(t)) =
1

1 + exp(−si(t)) (2)

xi(t) =

{

1, if rand1 < sig(si(t))
0, if rand1 ≥ sig(si(t))

(3)

where si(t) and xi(t) are the continuous and discrete values of each member of
the population, rand1 is a random number in (0,1) interval and t is the iteration
number. We use in each iteration both continuous and discrete values for each
individual as the whole procedure of IMDE is realized in the continuous space
and the Feature Selection Problem needs discrete values. Afterwards, the fitness
of each individual is calculated using the following equation:

OCA = 100

C∑

i=1

cii

C∑

i=1

C∑

j=1

cij

. (4)

The fitness function measures the quality of the produced members of the pop-
ulation. In this problem, the quality is measured with the overall classification
accuracy. Thus, for each individual the classifiers (1-Nearest Neighbor, k-Nearest
Neighbor or wk- Nearest Neighbor) are called and the produced overall classi-
fication accuracy (OCA) gives the fitness function. In the fitness function, we
would like to maximize the OCA. The previously mentioned formula for OCA
(Eq. 4) is defined taking into account that the accuracy of a C class problem
can be described using a C ×C confusion matrix. The element cij in row i and
column j describes the number of samples of true class j classified as class i,
i.e., all correctly classified samples are placed in the diagonal and the remaining
misclassified cases in the upper and lower triangular parts.

It should be noted that Nearest Neighbor methods [15] are among the most
popular for classification. The classic 1 - Nearest Neighbor (1-nn) method
works as follows: In each iteration of the feature selection algorithm, a number
of features are activated. For each sample of the test set, the Euclidean Distance
from each sample in the training set is calculated. With this procedure the
nearest sample from the training set is calculated. Thus, each test sample is
classified in the same class to which its nearest sample from the training set
belongs. The previous approach may be extended to the k-Nearest Neighbor
(k-nn) method, where we examine the k-nearest samples from the training set
and, then, classify the test sample by using a voting scheme. More weight is
attached to those members that are closer to the test samples in the Weighted
k Nearest Neighbor (wk-nn).

Then, in each island, separately, the operators of a classic DE are used as
described in the following. The mutation operator produces a trial vector for
each individual of the current population by mutating a target vector with a
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weighted difference. This trial vector will, then, be used by the crossover operator
to produce offspring. In the mutation phase, for each parent, si(t), the trial
vector, ui(t), is generated as follows: a target vector, the best vector of each
island, soptj (t), is selected from the population, where j is the number of island.
Then, two individuals, si1 and si2 , are selected randomly from the population
of the island such that i, i1 and i2 are all different. Using these individuals, the
trial vector is calculated by perturbing the target vector as follows:

ui(t) = soptj (t) + β(si1(t)− si2(t)) (5)

where β ∈ (0,∞) is the scale factor. The upper bound of β is usually the value
1 because as it has been proved if the β > 1 there is no improvement in the
solutions [17, 39] and the most usually utilized value is β = 0.5.

After the completion of the mutation phase of the algorithm a uniform
crossover operator [39] is applied. In this crossover operator, the points are
selected randomly from the trial vector and from the parent. Initially, a crossover
operator number (Cr) is selected [39] that controls the fraction of parameters
that are selected from the trial vector. The offspring s′i(t) is given by:

s′i(t) =
{

ui(t), if randi(0, 1) ≤ Cr
si(t), otherwise.

(6)

where randi(0, 1) is the output of a random number generator.
Then, the equations (2) and (3) are used in order to transform the conti-

nuous values calculated by equations (5) and (6) into discrete values. After the
crossover operator, the fitness function of the offspring s′i(t) is calculated. For
each individual, a local search phase is used. Initially, a local search number
(Lr) is selected that controls the fraction of bits that will be changed with the
local search. Thus, for all bits of the solution the value of Lr is compared with
the values of a random number generator randi(0, 1) that is calculated for each
bit of the solution. If the random number is less or equal to the Lr, then, the
corresponding bit will be changed, otherwise the corresponding bit will be the
same as before the local search. Thus, the choice of the Lr is very significant
because if the value is close or equal to 1, then, most of the bits will change in
the local search phase but if the value is close to 0, then, almost none of the bits
will change. Finally, the solution of the offspring s′i(t) and of the parent si(t) are
compared and the fittest survives in the next generation.

In the following, a pseudocode of the Island Memetic Differential Evolution
is presented.

Initialization
Initialize the control parameters β, Cr and Lr
Select the mutation operator
Select the number of islands
Select the number of generations
Select the number of migrations in the generations
Select the percentage of the population that migrates in another island
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Generate the initial population for each island
Calculate the initial cost function value

(fitness function) of each member of the population
Main Phase
Do while maximum number of generations has not been reached

For each island do
Select the parent vector si(t)
Create the trial vector ui(t) by applying the mutation operator
Create the offspring s′i(t) by applying the crossover operator
Perform local search in each individual
Calculate the cost function (fitness) of the offspring
if fitness(s′i(t)) ≥ fitness(si(t))

Replace the parent with the offspring for the next generation
else

Add the parent in the next generation
endif

endfor
if conditions for migration holds then

Perform migration strategy
endif

Enddo
Return the best individual (the best solution).

4 Computational Results

The performance of the proposed methodology is tested on 10 benchmark in-
stances taken from the UCI Machine Learning Repository. The datasets were
chosen to include a wide range of domains and their characteristics are given in
Table 1. In two cases (Breast Cancer Wisconsin, Hepatitis) the data sets are ap-
peared with different size of observations as in these datasets there is a number
of missing values. The problem of missing values was faced with two different
ways. In the first way where all the observations are used, we took the mean va-
lues of all the observations in the corresponding feature while in the second way
where we have less values in the observations, we did not take into account the
observations that they had missing values. Some data sets involve only numerical
features, and the remaining include both numerical and categorical features. For
each data set, Table 1 reports the total number of features and the number of
categorical features in parentheses. All the data sets involve 2-class problems and
they are analyzed with 10-fold cross validation. The algorithm was implemented
in Fortran 90 and was compiled using the Lahey f95 compiler on a Intel Core 2
DUO CPU T9550 at 2.66 GHz, running Suse Linux 9.1.
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Table 1. Data Sets Characteristics

Data Sets Observations Features
Australian Credit (AC) 690 14(8)
Breast Cancer Wisconsin 1 (BCW1) 699 9
Breast Cancer Wisconsin 2 (BCW2) 683 9
German Credit (GC) 1000 24 (13)
Heart Disease (HD) 270 13(7)
Hepatitis 1 (Hep1) 155 19 (13)
Hepatitis 2 (Hep2) 80 19 (13)
Ionosphere (Ion) 351 34
Spambase (spam) 4601 57
Pima Indian Diabetes (PID) 768 8

As it has already been mentioned, three approaches that use different classi-
fiers, the 1-nn, k-nn and the wk-nn, are used. In all algorithms, the value of k
is changed dynamically depending on the number of iterations. Each generation
uses different k. The reason why k does not have a constant value is that we
would like to ensure the diversity of solutions in each iteration of the algorithms.
The determination of k is done by using a random number generator with a
uniform distribution (0, 1) in each iteration. Then, the produced number is con-
verted to an integer k (e.g., if the produced number is in the interval 0.2− 0.3,
then k = 3).

The parameters of the proposed algorithms were selected after thorough te-
sting. A number of different alternative values were tested and the ones selected
are those that gave the best computational results concerning both the quality of
the solution and the computational time needed to achieve this solution. Thus,
the selected parameters for the IMDE are: The number of individuals is set equal
to 200, the number of generations is set equal to 1000, β = 0.5 and Cr = 0.8. Ten
different islands are used (10 different subpopulations). The times of migration
was set equal to 10, meaning that we use 100 generations before a percentage
of the population migrates to another population. Finally, the percentage of the
population that migrates in another population is set equal to 20% of random
chosen individuals. After the selection of the final parameters, 20 different runs
with the selected parameters were performed for each of the instances.

In the comparisons, three different variants of the DE algorithm are used,
the classic differential evolution with random target vector (DEr), the classic
differential evolution with the optimum individual as the target vector (DEo)
and the Island Differential Evolution (IDE) without the use of the memetic
operator (the local search phase). The parameters are the same with the ones
used in the proposed algorithm.

For comparison purposes, three other metaheuristic algorithms, a genetic
based metaheuristic (GA), an ant colony optimization (ACO) algorithm and a
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particle swarm optimization (PSO) algorithm, are used. For analytical descrip-
tion of these algorithms and how they are designed and applied for the solution of
the Feature Selection Problem please see ([31, 32]). We used two different sets of
parameters. In the first one we selected the parameters of these three algorithms
based on the fact that we would like to have the same function evaluations for
all the algorithms. Thus, when we ensured that the function evaluations will
be the same we optimized the other parameters of the algorithms separately.
In the second set of parameters we tried to find the best parameters for each
algorithm independently from the parameters of the other algorithms. The first
set of parameters for the genetic based metaheuristic is: The population size is
set equal to 200, the number of generations is set equal to 1000, the probability
of crossover is set equal to 0.8 and the probability of mutation is set equal to
0.25. The second set of parameters for the genetic based metaheuristic is: The
population size is set equal to 100, the number of generations is set equal to 200,
the probability of crossover is set equal to 0.7 and the probability of mutation
is set equal to 0.1. The first set of parameters for the ACO based metaheuristic
is: The number of ants used is set equal to 200. The number of iterations that
each ant constructs a different solution, based on the pheromone trails, is set
equal to 1000, and q = 0.5. The second set of parameters for the ACO based
metaheuristic is: The number of ants used is set equal to 50. The number of
iterations that each ant constructs a different solution, based on the pheromone
trails, is set equal to 500, and q = 0.9. Finally, the first set of parameters for
the PSO based metaheuristic is: The number of swarms is set equal to 1, the
number of particles is set equal to 200, the number of generations is set equal
to 1000, and c1 = 2, c2 = 2, wmax = 0.9, wmin = 0.01, while the second set of
parameters for the PSO based metaheuristic is: The number of swarms is set
equal to 1, the number of particles is set equal to 80, the number of generations
is set equal to 200, and c1 = 1.8, c2 = 1.7, wmax = 0.8, wmin = 0.01.

Table 2 shows the Overall Classification Accuracy (OCA and OCA1) and
the average selected features (SNF) for the proposed algorithm and for all al-
gorithms used in the comparisons. The difference between OCA and OCA1 is
that in the OCA1 the results with the second set of parameters for the ACO,
GA and PSO are presented. In this Table the best method for each dataset is
denoted with bold letters and the best method and the best classifier for each
dataset are denoted with bold and italic letters. The proposed algorithm per-
forms better than all the other algorithms used in the comparisons. The results
of the two classic versions of DE (DEr and DEo) and of the PSO and ACO are
almost identical. The results of the GA are slightly inferior from the results of
all other algorithms. The results of the PSO, ACO and GA using the second set
of parameters are improved, however, they are still inferior than the results of
the proposed method. The use of the Island model (IDE) improves the results
of the classic differential evolution. Finally, the use of the local search phase in
each solution of the algorithm improves even more the results (IMDE).
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Table 2. Classification Results (OCA(%)) for all algorithms

Clas- IMDE IDE DEr DEo GA ACO PSO

sifier OCA SNF OCA SNF OCA SNF OCA SNF OCA OCA1 SNF OCA OCA1 SNF OCA OCA1 SNF

Data Set: AC

1nn 90.15 7.17 89.28 7.35 87.12 7.45 86.35 7.28 86.42 87.17 8.12 87.88 88.58 8.21 86.95 87.35 8.17
knn 92.31 7.28 91.49 7.41 89.32 7.52 89.44 7.92 87.12 88.24 8.11 89.37 90.15 8.05 90.01 90.28 7.98
wknn 91.57 7.41 90.37 7.52 88.32 8.01 87.35 8.18 86.12 87.31 8.07 88.18 89.24 8.23 89.39 90.28 8.12

Data Set: BCW1

1nn 99.35 4.42 99.21 4.57 99.08 4.68 99.17 4.61 98.01 98.57 4.57 98.65 98.89 5.01 99.15 99.24 4.98
knn 99.28 4.51 99.15 4.72 98.96 4.57 99.01 4.76 97.37 97.58 5.12 98.41 98.85 5.07 98.85 99.01 4.95
wknn 99.45 4.58 99.08 4.71 98.23 4.88 97.85 4.79 97.48 98.15 5.01 98.08 98.47 5.18 99.05 99.18 4.84

Data Set: BCW2

1nn 99.52 4.93 99.12 5.17 99.15 5.08 98.77 5.23 98.55 98.87 5.34 99.17 99.24 5.21 99.23 99.35 5.15
knn 99.21 5.01 99.02 5.21 98.77 5.18 98.56 5.35 97.88 98.12 5.66 98.79 98.95 5.73 99.09 99.17 5.43
wknn 99.15 4.87 98.23 5.12 97.76 5.21 98.01 5.34 97.45 98.35 5.87 98.03 98.58 5.49 97.65 98.27 5.53

Data Set: GC

1nn 80.17 13.01 78.13 13.88 75.34 14.19 76.19 14.28 70.96 72.95 15.31 75.37 76.49 15.52 76.23 77.38 15.28
knn 82.81 13.17 80.28 13.76 80.19 14.52 79.24 14.47 76.01 76.57 14.87 77.57 78.95 15.01 78.01 78.92 15.31
wknn 80.98 13.21 80.27 13.98 79.34 14.42 78.29 14.78 77.35 78.95 14.32 78.27 79.18 15.12 77.11 78.37 15.31

Data Set: HD

1nn 96.18 6.51 93.21 6.72 91.29 6.67 90.88 6.84 88.45 89.74 6.91 90.38 91.28 6.92 90.49 91.82 6.88
knn 94.81 6.47 91.23 6.82 90.89 6.79 92.01 6.65 87.45 89.27 6.87 91.78 92.49 6.98 91.24 92.47 6.91
wknn 92.17 6.31 90.89 6.72 91.23 6.88 90.01 6.57 89.39 89.94 6.94 91.22 91.57 6.88 90.88 91.47 6.77

Data Set: Hep1

1nn 98.24 10.37 97.11 10.58 96.88 10.69 97.01 10.81 94.37 95.18 10.78 97.08 97.35 11.02 98.15 98.21 11.17
knn 97.56 10.42 96.49 10.88 96.35 10.79 96.11 10.95 94.32 95.14 11.12 96.23 96.74 10.88 96.92 97.15 10.79
wknn 97.55 10.23 96.89 10.87 96.11 10.88 96.08 11.01 95.31 95.89 11.23 96.23 96.47 11.09 97.12 97.21 10.98

Data Set: Hep2

1nn 100 9.75 100 9.88 100 9.95 100 10.01 98.85 99.35 10.88 100 100 9.85 100 100 9.88
knn 99.37 10.11 98.98 10.76 98.44 10.95 99.01 10.65 95.23 96.19 10.87 97.15 98.21 10.85 98.23 98.87 10.95
wknn 99.68 10.05 97.14 10.34 98.01 10.57 98.17 10.42 94.29 95.17 10.74 96.75 97.35 10.82 98.18 98.91 10.95

Data Set: Ion

1nn 98.54 15.12 98.32 15.88 97.88 15.75 96.14 16.12 95.08 96.15 16.05 97.12 97.31 16.34 98.17 98.35 16.21
knn 98.33 15.34 97.12 15.47 97.21 15.98 95.18 16.14 95.11 95.95 16.45 96.37 96.74 16.38 96.14 96.87 16.21
wknn 98.79 15.07 98.03 15.96 97.72 15.74 97.49 15.38 94.21 95.17 15.91 96.44 96.71 15.85 97.01 97.58 16.02

Data Set: spam

1nn 89.04 21.88 87.32 22.57 85.14 22.64 84.27 22.49 82.23 83.52 23.12 83.01 84.18 22.85 84.28 85.71 22.98
knn 86.59 21.57 85.11 22.01 83.28 23.55 84.01 22.47 81.32 82.51 22.76 83.44 84.47 24.65 83.79 84.95 24.32
wknn 84.57 21.40 83.12 21.98 82.11 22.05 81.23 22.88 81.18 81.87 25.01 82.11 82.57 24.97 83.18 83.87 23.88

Data Set: PID

1nn 79.55 4.02 74.14 4.11 73.18 4.15 72.21 4.13 71.57 72.81 4.21 74.11 75.49 4.37 75.18 76.27 4.28
knn 79.37 4.07 78.23 4.21 77.14 4.12 76.33 4.19 74.19 74.88 4.23 76.37 77.57 4.26 78.21 79.35 4.37
wknn 80.18 4.09 79.21 4.29 78.14 4.31 77.35 4.21 74.24 75.47 4.28 76.47 77.32 4.37 75.39 78.24 4.25

The purpose of feature variable selection is to find the smallest set of features
that can result in satisfactory predictive performance. Because of the curse of
dimensionality, it is often necessary and beneficial to limit the number of input
features in order to have a good predictive and less computationally intensive
model. In general, there are 2number of features−1 possible feature combinations.
The average selected features for all algorithms in all runs of the algorithms are
presented in Table 2. The significance of the solution of the feature selection
problem using the proposed method is demonstrated by the fact that with this
algorithm the best solutions were found by using less features than the other
algorithms used in the comparisons. More precisely, in the most difficult instance,
the Spambase instance, the proposed algorithm needed between 21.40 to 21.88
average number of features in order to find their best solutions while the other
algorithms needed between 21.98 - 25.01 average number of features to find their
best solutions.

A statistical analysis based on the Mann-Whitney U-test for all algorithms is
presented in Table 3. In this Table, a value equal to 1 indicates a rejection of
the null hypothesis at the 5% significance level, which means that the method
is statistically significant different from the other methods. On the other hand,
a value equal to 0 indicates a failure to reject the null hypothesis at the 5%
significance level, meaning that no statistical significant difference exists between
the two methods. As it can be seen from this Table, at the 5% significance level
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the results with the IMDE are statistically significant different from the results
with the GA and the ACO.

Table 3. Results of Mann - Whitney test for all algorithms

5% significance level

IMDE IDE DEr DEo GA ACO PSO

IMDE - 0 0 0 1 1 0

IDE 0 - 0 0 0 0 0

DEr 0 0 - 0 0 0 0

DEo 0 0 0 - 0 0 0

GA 1 0 0 0 - 0 0

ACO 1 0 0 0 0 - 0

PSO 0 0 0 0 0 0 -

The results of the algorithm are, also, compared (Table 4) with the results of
a number of metaheuristic approaches from the literature. In these implementa-
tions, the same databases are used as the ones we use in this paper and, thus,
comparisons of the results can be performed. More precisely, in Table 4 the re-
sults of the proposed algorithm are compared with the results of the following
algorithms:

1. The Parallel Scatter Search algorithm proposed by Garcia Lopez et al. [19].
In this paper, three different versions of Scatter Search are proposed, named
Sequential Scatter Search Greedy Combination (SSSGC), Sequential Scatter
Search Reduced Greedy Combination (SSSRGC) and Parallel Scatter Search
(PSS).

2. The Particle Swarm Optimization Linear Discriminant Analysis (PSOLDA)
proposed by Lin and Chen [28].

3. The Particle Swarm Optimization Support Vector Machines (PSOSVM1,
PSOSVM2) proposed by Lin et al. [30].

4. The Simulated Annealing Support Vector Machines (SASVM1, SASVM2)
proposed by Lin et al. [29].

5. A Particle Swarm Optimization algorithm with a Nearest Neighbour
(PSONN) classifier proposed by Pedrycz et al. [38].

6. A Genetic Algorithm using an adjacency matrix-encoding, GWC operator,
and fitness function based on the VC dimension of multiple ODTs combined
with naive Bayes (GOV - genetic algorithm for ODTs using VC dimension
upper bound) proposed by Rokach [40].

7. A Scatter Search (SS-ensemble) with different classifiers like Support Vec-
tor Machines (SVM), Decision Trees (DT) and Back Propagation Networks
(BPN) proposed by Chen et al. [10].

8. Three different metaheuristics (GRASP, Tabu Search and a Memetic algo-
rithm) proposed by Casado Yusta [8].
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Table 4. Comparison of the proposed algorithm with other metaheuristic approaches

Method Data Set

AC BCW GC HD Hep Ion Spam PID

IMDE-1nn 90.15 99.52 80.17 96.18 100 98.54 89.04 79.55
IMDE-knn 92.31 99.28 82.81 94.81 99.37 98.33 86.59 79.37

IMDE-wknn 91.57 99.45 80.98 92.17 99.68 98.79 84.57 80.18
SSSGC - 95.22 - 74.99 - 87.75 - 67.92

SSSRGC - 94.88 - 74.99 - 87.12 - 67.66
PSS - 95.11 - 74.91 - 87.35 - 68.10

PSOLDA 84.5 96.5 75.6 84.7 - 92.2 - 76.7
PSOSVM1 91.03 99.18 81.62 92.83 - 99.01 - 82.68
PSOSVM2 88.09 97.95 79.00 88.17 - 97.50 - 80.19
SASVM1 92.19 99.38 - 93.33 - 99.07 - 82.22
SASVM2 88.34 97.95 - 87.97 - 97.50 - 80.19
PSONN - - 74.7 83.9 - 94.6 - -

GOV 85.35 97.13 - - 81.29 - - -
SS-ensemble 91.74 99.46 85.49 96.24 97.46 - - 83.92

GRASP - 93 92.7 - - 90.4 84.6 -
Tabu Search - 92.6 92.7 - - 90.6 82.64 -

Memetic - 91.8 92.6 - - 89 79.76 -

As it can be seen from Table 4, the proposed algorithm gives better results
in four instances, the Australian Credit (AC), the Breast Cancer Wisconsin
(BCW), the spambase (Spam) and the Hepatitis. For the other four instances
the algorithms that perform better are: for the German Credit, the GRASP
and the Tabu Search proposed by Casado Yusta [8], for the Heart Disease and
for the Pima Indian Diabetes (PID), the Scatter Search ensemble proposed by
Chen et al. [10] and for the ionosphere, the Simulated Annealing Support Vector
Machines (SASVM1) proposed by Lin et al. [29].

5 Conclusions

In this paper, a hybridized version of Differential Evolution, the Island Memetic
Differential Evolution, is applied for solving the Feature Subset Selection Prob-
lem. Three different classifiers are used for the classification problem, based on
the Nearest Neighbor classification rule (the 1-Nearest Neighbor, the k-Nearest
Neighbor and the wk-Nearest Neighbor). The performance of the proposed algo-
rithm is tested using various benchmark datasets from UCI Machine Learning
Repository. The objective of the computational experiments, the desire to show
the high performance of the proposed algorithm in searching for a reduced set
of features with high accuracy, was achieved as the algorithm gave very efficient
results.
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Abstract. In this paper, we investigate the use of an heterogeneous
particle swarm optimizer, the scouting predator-prey optimizer, to train
support vector machines with non positive definite kernels, including
distance substitution based kernels. These kernels can arise in practical
applications, resulting in multi-modal optimization problems where tra-
ditional algorithms can struggle to find the global optimum. We compare
the scouting predator-prey algorithm with the previous best evolution-
ary approach to this problem and a standard quadratic programming
based algorithm, on a large set of benchmark problems, using various
non positive definite kernels. The use of cooperating scout particles allows
the proposed algorithm to be more efficient than the other evolutionary
approach, which is based on an evolution strategy. Both are shown to
perform better than the standard algorithm in several dataset/kernel in-
stances, a result that underlines the usefulness of evolutionary training
algorithms for support vector machines.

Keywords: particle swarm optimization, heterogeneous particle
swarms, support vector machines, non PSD kernels.

1 Introduction

Support vector machines (SVMs) are one of the most popular kernel based meth-
ods [1]. These use a problem dependent similarity measure between objects - the
kernel function or simply kernel - to implicitly map the original data onto a
feature space where simple linear relations can be found. In the case of SVMs, a
hyper-plane that maximizes a margin between data points of different classes is
learned and then used to classify new objects [2]. The low computational cost,
strong theoretical foundation (from statistical learning) and general applicability
have made SVMs the state-of-the-art approach in many domains.

The choice of an appropriate kernel function is essential to the application of
SVMs to a specific problem. In one hand, the generality of the approach results
from the possibly of using kernels to measure similarities in different domains,
which can range from simple vectorial data to general discrete structures. In the
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other hand, the kernel should embody as much problem dependent information
as possible, in order to guarantee the quality of the final classifier. Finally, the
algorithms used to train the SVM are quadratic programming based approaches,
which depend on the kernel function to be positive semi-definite (PSD) to find
the optimum solution, so this condition must be satisfied by every new kernel.

For many practical applications, specially in non vectorial domains, the re-
quirement for the kernel function to be PSD can be very strict. If a domain
specialized kernel doesn’t exist, it must be developed by the user, often based
on preexistent similarity or distance measures. One of the possibilities for kernel
construction is to imbed a distance measure on a previously existent PSD ker-
nel, e.g. the Gaussian radial basis function (RBF). Unfortunately, depending on
the distance function, the resulting kernel may not be PSD [3]. While with non
PSD kernels the SVM standard geometrical interpretation is lost, there are the-
oretical results that suggest alternative interpretations [4]. Traditional training
algorithms can still be used to train this SVMs, frequently with good empirical
results [5], but they may fail to find the optimal solution, since the training
problem may become multi-modal as a result of using a non PSD kernel.

Since evolutionary algorithms are (population based) global optimization al-
gorithms, they are natural candidates to tackle the non-convex problem resulting
from a non PSD kernel. In this paper, we investigate the usefulness of evolution-
ary computation, when applied to the training of SVMs with non PSD kernels,
by comparing the best evolutionary approach found in the literature and a spe-
cially tailored heterogeneous particle swarm optimizer (PSO), called scouting
predator-prey optimizer (SPPO), with a popular standard SVM training algo-
rithm (MySVM). The empirical comparison is done using a set of 10 classifica-
tion benchmark problems and three different non PSD kernels: the Epanechnikov
kernel, the Sigmoid kernel and a distance substitution kernel.

2 Support Vector Machines

Support vector machines are most frequently used in classification tasks [1, 2, 6].
As input, they receive a training set of n examples with m real attributes, T =
{(x1, y1), ..., (xn, yn)}, where xi ∈ R

m and yi ∈ {±1}. The algorithm learns
a hyperplane 〈w,x〉 + b = 0, with w ∈ R

m and b ∈ R, which separates the
positive from negative examples. Following this separation, new examples can
be classified using f(x) = sgn(〈w,x〉+ b).

One of the ways in which support vector machines differ from other classifica-
tion methods, is in the fact that their training doesn’t try to minimize just the
empirical risk. It is intuitive to consider that, of all hyperplanes that correctly
classify the training examples (thus minimizing empirical risk), the one most
distant from the closest examples, is also the one that will best generalize for new
data. By maximizing the distance from the hyperplane to the regions occupied
by each class, a greater tolerance is ensured when classifying new instances
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that are between these regions and the hyperplane. As a consequence, it can be
said that SVMs minimize, not only the empirical risk, but also the structural
risk of the classifier. Computing the hyperplane is typically done by finding the
α values that maximize equation (1), subject to restrictions (2) and (3).

maximize
∑

i

αi − 1

2

∑

i

∑

j

αiαjyiyjk(xi,xj), (1)

subject to
∑

i

αiyi = 0 (2)

and ∀i : 0 � αi � C (3)

The use of a kernel function k(xi,xj) in equation (1), instead of the inner
product 〈xi,xj〉, extends the SVM approach to problems where non-linear sep-
aration is needed. The kernel function performs an implicit mapping of the data
to a space with higher dimensionally, where the linear separation becomes possi-
ble. Kernels are problem dependent, and many different are used, with the radial
basis function (RBF) kernel being the most common for applications with real
valued data.

The optimization problem is usually solved using quadratic programming
based approaches, with mySVM [7] and LIBSVM [8] being probably the most
widely known. There approaches are successful (and very efficient) provided the
kernel function is positive definite. In this case, the objective function is concave
and possesses a single global optimum, which considerably simplifies the opti-
mization problem. The use of a non positive definite kernel can, however, result
in a multi-modal objective function, with several local optima, where traditional
algorithms can stagnate, producing sub-optimal classifiers. In this case, the clear
geometric interpretation presented is not valid and an alternative explanation
for the experimental success of such approaches is needed.

Recently, theoretical work by Haasdonk suggests such an alternative interpre-
tation for SVMs based on non PSD kernels [4]. In this work, instead of max-
imizing the margin in an induced Euclidean space, an optimal hyperplane is
computed by minimizing the distance between convex hulls in pseudo-Euclidean
spaces. One of the conclusions of this formulation is that traditional methods
(like MySVM and LIBSVM) can still find good solutions for optimization prob-
lems with non-PSD kernels, but there is no guarantee of the solution being op-
timal, since, while those methods will converge to a stationary point, since the
problem is non concave, that point may be only a local optimum. This conclusion
confirms previous work by other authors [5].

Since SVMs based on non PSD kernels can be of practical interest (see [9] for a
detailed discussion about learning with non PSD kernels and [4, 5, 10] on the use
of these kernels with support vector machines), the use of global optimization
algorithms, like the swarm based optimizer proposed in this work, constitutes
an interesting alternative to standard training methods.
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3 Evolutionary Computation and Support Vector
Machines

Most applications of evolutionary computation to SVMs have been centered on
the optimization of C and the kernels’ parameters. Genetic programming has
also been used to evolve new kernels for specific problems, often finding kernel
functions with promising performance. Recent examples of both approaches can
be found, respectively, in [11] and [12]. In this work, we are mainly interested in
the problem of training SVMs using evolutionary based approaches and, more
specifically, swarm optimization algorithms, since these approaches can facilitate
the training of SVMs based on non PSD kernels [10].

Training SVMs with non PSD kernels is not only an interesting practical
problem for evolutionary computation, with a high-dimensional, multi-modal
and non-separable objective function. It also constitutes an important research
area for several reasons: as we have already stated, traditional methods are not
guaranteed to find the global optimum on the resulting optimization problem;
proving a new kernel to be PSD can be a difficult task; some kernels that are
proven non PSD, e.g. the sigmoid kernel, can be of practical interest and show
promising empirical results [5]; some kernel learning approaches (including the
GP based methods) return kernels that are not guaranteed to be PSD [9].

Interestingly, the first evolutionary SVM training approach we found in the
literature was PSO based [13]. It combined a linear particle swarm optimizer
with a traditional decomposition based method to train a SVM with a PSD
kernel. It had some severe problems and experimental results were very limited.
Genetic algorithms were used to optimize the primal formulation of this prob-
lem [14], which has several drawbacks when compared with the more common
dual version. The most interesting work in the area, however, has been done by
Mierswa using evolution strategies (ES).

Mierswa initially compared several ES based algorithms with a standard PSO
optimizer on 6 benchmark problems and found that the ES methods were com-
petitive with the traditional quadratic programming based approaches in terms
of accuracy [15]. On the other hand, the PSO algorithm performed significantly
poorer than the other algorithms. The same author proposed a new multi-
objective evolutionary SVM formulation [16], which allows the simultaneous in-
dependent optimization of the classification error and model complexity. This
formulation was based on the best previously found ES approach, which was
then used to train a SVM with the Epanechnikov kernel, in the first reported
use of an evolutionary algorithm to train a SVM with a non PSD kernel [10].

4 The Scouting Predator-Prey Optimiser

While the past use of particle swarm optimizers in SVM training hasn’t been
particularly successful, we believe that the general characteristics of these algo-
rithms, when allied with problem specific customizations, should allow the devel-
opment of efficient swarm based SVM training algorithms. The standard PSO,
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described in [17], presented several limitations, mainly in balancing exploration
and exploitation, maintaining diversity in the swarm after local convergence and
solution fine-tuning. Since its introduction, a substantial amount of research has
been done to overcome those drawbacks [18], producing variants with successful
application to hard optimization problems in many domains [19].

The original PSO was based on the flocking behavior of birds. Individuals
(particles) were simultaneously attracted to the best solutions found by them-
selves and the group (swarm). In previous work [20], we presented a swarm op-
timizer that extended the metaphor by adding two other flock/swarm inspired
behaviors: predation and scouting. The scouting predator-prey optimizer is an
heterogeneous particle swarm algorithm, where the overall search behavior is the
result of the cooperation of various groups of particles with distinct roles and
update rules. A predator particle introduces an adaptive level of disturbance
in the swarm, allowing better control of diversity and exploration/exploitation
balance. Scout particles are used to add both general improvements and prob-
lem specific search strategies, while keeping the computational costs low. The
version of the SPPO described here was specifically tailored to the training of
SVMs. A more detailed description, together with comparative results for many
benchmark functions can be found in [20].

4.1 The Swarm

To optimize a function f(x) in R
m, each particle i in the swarm is represented

by three m-size vectors: the current position, xi; the best position food so far,
pi; and the the particle’s velocity vi. The position and velocity are updated
iteratively using equations (4) and (5), where the distance between a particle and
its previous best position is represented by (pt

i − xt
i), while (pt

g − xt
i) represents

the distance to the the swarm best position, pg. Vectors of uniformly distributed
random numbers, u(0, φ1) and u(0, φ2), control the strength of attraction in each
dimension (⊗ is a vector component-wise multiplication).

vt+1
i = wvt

i + u(0, φ1)⊗ (pt
i − xt

i) + u(0, φ2)⊗ (pt
g − xt

i) (4)

xt+1
i = xt

i + vt+1
i (5)

After a particle has moved, f(xi) is computed and xi is saved in pi if f(xi) >
f(pi). Collaboration between particles is ensured by the updating of g, the index
of the particle with the best solution (in all of the swarm or some neighborhood),
which allows for all other particles to orient their search to more promising areas
of the search space. In the SPPO all particles use the described representation,
but predators and scouts use different update rules.

4.2 The Predator

The role of the predator particle is similar to that of an adaptive mutation
operator and is used to maintain some diversity in the swarm, even when it
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has already converged, thus allowing it to escape possible local optima. It is an
useful tool to control the balance between global exploration of the search space
and the exploitation of promising areas, which was difficult to do in the original
PSO. The predator movement is controlled by equation (6), which effectively
makes it pursue the best particle in the search space.

vt+1
p = wvt

p + u(0, φ1)⊗ (xt
g − xt

p) + u(0, φ2)⊗ (pt
g − xt

p) (6)

The predator introduces a disturbance element in the swarm, which increases
with proximity, as described by equation (7), where u(−1, 1) and u(0, 1) are uni-
formly distributed random numbers, xmax and xmin are the upper and lower
limit to the search space and r is the user defined perturbation probability.
Equation (7) states that the velocity of particle i in dimension j can suffer a
perturbation with a probability that depends on the particles’s distance to the
predator in that dimension. When the distance is large, this effect is negligencia-
ble, but, as the the swarm converges and distance approximates 0, disturbance
probability becomes maximum (r). This mechanism allows for particles to es-
cape local optima even in the last phases of convergence and naturally adapts
its intensity to the current state of exploration/exploitation.

vt+1
ij = vtij + u(−1, 1)|xmax − xmin|, if u(0, 1) < r exp−|xij−xpj| (7)

4.3 Scout Particles

Scout particles are the second type of heterogeneous particles in the SPPO. Many
successful variants of the PSO algorithm are based in its hybridization with other
evolutionary or local search algorithms. Generally, however, the behavior of all
particles is changed by the hybridization, which makes it hard to understand an
control the effect of every algorithm component. Scouts are an inexpensive way of
introducing new behaviors in the swarm, as only a few particles are affected and
can easily be turned on and off to study their influence in the overall algorithm.
These particles are typically updated before the swarm main update cycle, where
they can cumulatively be updated using equations (4) and (7).

We chose two scout particles to tailor the SPPO to this specific problem. The
first is a local search scout which, from previous work [20], we know can be used
to increase the convergence speed without compromising the final results. For
this scout we choose the best particle at each iteration and perform a random
mutation on one of its dimensions j using the equation p′gj = pgj + N(0, σ),
where N(0, σ) is a a random number drawn from a normal distribution with
average 0 and standard deviation σ = xmax/10. The new p′

g will substitute pg

if f(p′
g) > f(pg). This allows for a local search to be made around pg over time.

Problem specific knowledge is incorporated into the second scout particle. In
a typical solution to the SVM training problem the majority of the αi will be
0. From the remaining, which correspond to the support vectors, most will have
the maximum value C. To explore this knowledge we change, at each iteration,
a random dimension of this particle to 0, with an 80% probability, or to C, with
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20% probability. As a consequence, this scout particle will, during the search
process, iteratively explore the limits of the search space, where we expect of
find the solution in most dimensions.

4.4 Application to SVM Training

The application of the previously described algorithm to the SVM training prob-
lem was straightforward. For a problem with m training examples, each particle
was represented by three m sized vectors, corresponding the particle’s current
position, best position and velocity in the m search dimensions. The search
space was limited, in each dimension, to the interval [0..C], where C is the SVM
regularization parameter. The position of a particle represents the α values in
equation (1). The particle swarm optimizer was used to search for the α vector
that maximizes the objective function (1). To to this, we embedded the algorithm
in a SVM training operator for the well known data mining software package
Rapidminer [21]. The software already included an evolutionary training opera-
tor for SVMs, which facilitated our implementation, since we could share some
functionalities, including SVM model management and evaluation.

Contrary to many other applications of evolutionary optimization, the indi-
vidual evaluation during the evolutionary process differs from the final quality
measure reported for the best individual found. The evaluation is done using
a process called cross-validation, where the training set is divided in k sets of
equal cardinality, called folds. The evolutionary algorithm is ran k times, each
time using the reunion of k − 1 folds to train the SVM. During this training,
a particle is simply evaluated using equation (1). When the training ends, the
α values corresponding to the best particle are used to build the final SVM. It
is then applied to the classification of the examples in the extra fold that was
not used during the training process. The classification error on this fold is the
final measure of the classifier quality. In the experimental work described in the
following section, we use the two different performance measures to compare
different elements of our approach. The final (averaged over the k folds) value of
the objective function is mainly used to compare the efficiency of the different
evolutionary approaches, when using similar computational resources. The final
classification accuracy is used to compare the quality of the classifiers generated
by the different algorithms (evolutionary and classical).

As a final implementation issue, it must be stressed that the evolutionary
implementations are significantly slower than the classical algorithms. This is
expected and was already noticed in previous approaches to the evolutionary
training of SVMs [15]. The main reason for this results from the the nature of
the problem: quadratic programming based approaches were developed to be
particularly efficient in the concave optimization function. However, this is also
their major weakness, when applied to problems with several optima. It is in
this class of training problems, resulting from the use of non PSD kernels, that
evolutionary approaches are useful, as we illustrate in the next section.

While the evolutionary training algorithms are slower, it should be stressed
that the temporal complexity is still in the same order of magnitude for both
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classes of approaches, and that there is still vast space for improvement in those
algorithms. E.g., while the standard SVM training algorithms use efficient stop
criteria, we always ran the evolutionary algorithms for a fixed number of gen-
erations. While this allows for an easier comparison between the evolutionary
algorithms, it also means that many iterations (and time) are wasted by the
faster algorithms.

5 Experimental Results

In previous work [22], we have shown that evolutionary approaches, more specifi-
cally the evolution strategy based algorithm proposed by [10] and the SPPO, are
competitive with traditional methods when training SMVs with PSD kernels. In
fact, in a set of 10 benchmark problems, both algorithms achieved results sim-
ilar, both in terms of classification accuracy and robustness, to the ones from
two very popular quadratic programming based methods, MySVM and LIBSVM.
These results demonstrate that the SPPO can efficiently tackle the uni-modal
SVM training problem, in opposition to past PSO based approaches, which were
found not to be competitive with the ES based approaches [15].

Table 1. Dataset and kernel parameters

Dataset Source n m err σE d a b σD

Checkerboard Synthetic 1000 2 48.60 0.92 6.54 1.258 1.452 0.006

Spirals Synthetic 500 2 50.00 0.12 3.84 1.119 -1.737 9.684

Threenorm Synthetic 500 2 50.00 61.60 9.38 0.110 1.746 0.018

Credit UCI MLR 690 14 44.49 564.62 0.65 0.378 -1.894 0.002

Diabetes UCI MLR 768 8 34.90 220.51 4.87 0.616 -0.065 0.001

Ionosphere UCI MLR 351 34 35.90 2.44 7.48 0.132 -0.318 0.247

Liver UCI MLR 345 6 42.03 61.59 6.90 0.116 0.770 0.052

Lupus StatLib 87 3 40.23 241.63 7.42 0.120 0.786 0.002

Musk UCI MLR 476 166 43.49 63.12 6.93 0.006 0.197 0.187

Sonar UCI MLR 208 60 46.63 61.63 6.90 0.025 0.752 0.063

As we already stated, there is no particular reason to use, in practical appli-
cations, the evolutionary training algorithms in the concave training problem,
where the quadratic programming based approaches are much faster. Conse-
quently, in this work, we further investigate the use of these algorithms with
several non PSD kernels. We are also interested in comparing the proposed PSO
based training algorithm with the best previous ES based approach [10], in terms
of both optimization efficiency and accuracy.

All the experiments described in this section were performed on a set of 10
benchmark problems, where the first three were synthetically generated and the
remaining seven are real world benchmark problems. Name, source, number of



Using a Scouting Predator-Prey Optimizer to Train Support Vector Machines 51

attributes n and number of instances m are listed, for each dataset, in Table 1.
In the same table, err represents the expected error of a 0-R classifier, i.e. an
algorithm that always returns the most frequent class in the training set. Also
listed are the parameters of the kernels presented in the following subsections.
Those were obtained using a short run of the evolutionary parameter optimizer in
the Rapidminer data mining software [21], which was used to run all experiments,
with additional operators written for that purpose.

We used C = 1 in all experiments. While we understand that this may not
be the ideal choice for some problem/kernel combinations, we chose to do this
because it eased comparison with previous work in the area (which already used
C = 1) and we were not interested in finding the best possible classifier for each
problem, but only in comparing the different algorithms in similar experimental
conditions. This choice also allowed thus to simplify the experimental setup by
saving us the optimization of an extra parameter.

While the goal of this paper is mainly to evaluate the usefulness of evolution-
ary SVM training algorithms on different non PSD kernels, while also compar-
ing the efficiency of ES and particle swarm based methods, the use of standard
benchmark problems like the ones described also allows for some level of compar-
ison with previous approaches using diverse machine learning techniques. E.g.,
Meyer presents an extensive empirical comparison of SVMs and 16 other clas-
sification algorithms using many of this datasets [23]. While the results cannot
be directly compared, as the experimental setups were not the same, they still
allow an assessment of the validity of the approaches described here.

We compare a classic SVM training approach (MySVM) with the SPPO and
the best previous ES based approach, which were implemented to search for
the vector α that maximizes equation (1). We report the error percentage aver-
aged over a 20-fold cross validation, as well as the standard deviation. For the
evolutionary approaches, we also present the average and standard deviation of
the highest objective function value found. Statistically significance tests were
performed for the classification accuracy (ANOVA and pairwise t-tests). The
evolutionary algorithms were ran for a fixed number of generations, different
for each kernel. The evolution strategy used 20 individuals, while the scouting
predator-prey algorithm was limited to 18, to compensate for the extra function
evaluations of the scout particles.

5.1 Learning with Non PSD Kernels

In the first two sets of experiments, we used common non PSD kernels, the
Epanechnikov kernel and the Sigmoid kernel. The Epanechnikov kernel is a non
PSD kernel which has already been used in previous work in the area of evolu-
tionary SVM training [10]. The Sigmoid kernel was popular in SVMs due to its
origin in neural networks, but can also be non PSD for a subset of its parameters
values [5]. Table 2 presents the results obtained for the Epanechnikov kernel in
the benchmark datasets, with the evolutionary algorithms being ran for 150 iter-
ations for the synthetic problems and 100 iterations for the real world problems.
The iteration limit was 30 for the sigmoid kernel and the results obtained are
listed in Table 3.
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Table 2. Experimental results (error percentage) using the Epanechnikov kernel

Dataset MySVM ES (f(α∗)) ES SPPO (f(α∗)) SPPO

Checkerboard 6.5 (4.6) -303.6 (32.6) 8.5 (4.3) 51.5 (9.2) 7.8 (4.4)

Spirals 7.2 (3.9) 163.5 (3.0) 13.6 (7.6) 188.4 (2.8) 7.8 (5.3)

Threenorm 14.0 (7.5) 24.5 (17.0) 15.2 (8.2) 133.7 (4.0) 14.0 (5.4)

Credit 14.2 (6.4) 253.4 (5.7) 13.3 (6.8) 300.8 (4.3) 13.8 (7.5)

Diabetes 24.2 (3.5) -114.4 (158.8) 26.9 (7.6) 296.1 (8.1) 25.3 (5.0)

Ionosphere 26.3 (10.3) 81.1 (3.7) 25.9 (10.2) 100.1 (1.9) 15.7 (5.9)*

Liver 42.1 (2.8) 180.1 (6.0) 36.8 (10.8) 228.9 (5.0) 35.4 (10.6)*

Lupus 28.2 (14.6) 49.0 (2.0) 22.5 (16.1) 58.5 (0.8) 19.5 (12.3)

Musk 7.8 (3.8) 101.8 (4.2) 11.3 (5.2) 117.4 (3.2) 8.7 (6.5)

Sonar 12.4 (11.4) 50.5 (1.9) 12.9 (10.2) 61.8 (1.56) 12.5 (11.0)

The first conclusion we can draw from the presented results is that all al-
gorithms were generally able to learn with the non PSD kernels. Classification
accuracy for the Lupus and Sonar datasets, using the Epanechnikov kernel and
the SPPO algorithms, was even superior to the accuracy obtained in previous
work using the PSD RBF kernel [22]. With the sigmoid kernel, there were three
problems for which the algorithms were not able to learn useful (i.e. superior to
0-R) classifiers (Checkerboard, Spirals and Liver). However, looking at previous
work using this kernel [5], this can possibly be attributed to the fact that we
didn’t optimize the C parameter.

Table 3. Experimental results (error percentage) using the sigmoid kernel

Dataset MySVM ES (f(α∗)) ES SPPO (f(α∗)) SPPO

Checkerboard 48.3 (0.8) 1086.6 (79.2) 48.5 (6.2) 1736.8 (115.2) 48.0 (7.1)

Spirals 51.6 (10.7) 1262.9 (353.5) 50.0 (8.0) 4334.9 (367.2) 49.8 (10.4)

Threenorm 16.6 (9.1) 231.8 (3.8) 16.8 (8.7) 261.7 (4.1) 17.0 (6.0)

Credit 22.2 (7.4) -7170.3 (593.6) 14.5 (5.5) -4843.0 (310.6) 14.1 (5.9)*

Diabetes 38.7 (5.3) -2119.7 (492.5) 30.5 (7.4) -682.0 (218.5) 27.2 (7.7)*

Ionosphere 19.9 (6.8) -557.3 (97.4) 25.9 (8.5) -175.7 (43.1) 12.8 (8.6)*

Liver 42.1 (2.8) 168.4 (7.1) 41.8 (5.8) 187.4 (4.9) 40.9 (6.3)

Lupus 26.7 (19.1) 42.1 (1.8) 28.0 (19.3) 49.4 (1.8) 21.8 (21.5)

Musk 24.5 (8.7) 181.3 (6.4) 29.9 (9.2) 204.5 (5.3) 25.6 (7.3)

Sonar 33.0 (14.6) 98.4 (3.12) 28.5 (14.1) 113.0 (2.7) 26.4 (15.8)
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We can also observe that the SPPO algorithm behaved substantially better
than the ES based approach. Classification error was similar or lower in all prob-
lems, while the optimization performance of the SPPO, measured by the best
value found for the objective function, was substantially higher for all prob-
lems. Looking at the convergence plots, it is possible to conclude that the swarm
based optimizer needed from 3× to 5× less iterations to achieve the optimiza-
tion values (and consequent classification accuracy) that the ES based approach
reached at the iteration limit. We present plots for the Cherkerboard and Liver
datasets (using the Epanechnikov kernel) in Figure 1 as typical examples of the
algorithms’ convergence behaviors.
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Fig. 1. Convergence plots for the SPPO and ES based algorithms, applied to the
Cherkerboard and Liver datasets and using the Epanechnikov kernel

Finally, over the two experiments sets, we can see seven dataset/kernel pairs
for which the classification accuracy is substantially better for the SPPO, when
compared with the MySVM results. These values are presented in bold in the
results tables. Since the differences are not very large (and, in some cases, the
standard deviation is high), we performed a statistical analysis of the average
error results, having found that the differences were statistically significant (p <
0.05) for six of the seven cases (marked with an asterisk in the results tables).
For the remaining pairs the classification error is similar. It should be noted that
the ES algorithm frequently produces lower quality classifiers, when compared
with the other algorithms, but this fact can be attributed to the strict iteration
limit. If this limit was higher, we could expect both evolutionary algorithms to
achieve similar results.

In previous experiments [22], classical SVM training approaches and evolu-
tionary algorithms consistently produced comparable classifiers in terms of clas-
sification accuracy, when the same kernels and parameters were used. We assume
the differences found in these latest results are a consequence of the non PSD
nature of the used kernels and the resulting multimodal optimization problems.
The classical training approaches may then be caught in local optima, failing
to find a competitive solution. These results confirm our initial proposition that
evolutionary algorithms could be useful tools in the training of SVMs when using
non PSD kernels.
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5.2 Learning with Distance Substitution Kernels

In this last set of experiments, we investigate a more practical issue, which can
lead to the necessity of training a SVM with a non PSD kernel. In many real
world problems, where specific distance data is available (e.g. as a result of a
physical measuring process), one of the possible approaches to using this in-
formation in a kernel method is to use the RBF kernel and substituting the
Euclidian distance by the problem specific distance data. This process has been
formalized and generalized to other kernels by Haasdonk [3]. The resulting ker-
nels are PSD if the used distance is isometric with the L2-norm. In practice,
however, non PSD kernels can easily result from specific distances, e.g. distances
which are non-metric or even Lp metrics with p �= 2 [3]. To simulate this situ-
ation, we repeated the previous experiments using a distance substitution RBF
kernel. We replaced the Euclidian distance by the L1 distance (frequently called
the Manhattan distance), which can result in a non PSD kernel matrix [4]. The
iteration limit was set at 300 for the synthetic datasets and 200 for the re-
maining. Results obtained for the distance substitution kernel are presented in
Table 4.

Table 4. Experimental results (error percentage) using the distance based kernel

Dataset MySVM ES (f(α∗)) ES SPPO (f(α∗)) SPPO

Checkerboard 4.5 (2.4) 45.6 (11.1) 5.8 (4.1) 135.9 (2.8) 4.7 (3.5)

Spirals 48.6 (0.9) 411.5 (3.1) 49.2 (1.5) 443.9 (1.9) 48.8 (1.2)

Threenorm 20.4 (6.7) 202.3 (1.3) 15.0 (6.6) 209.2 (0.7) 14.0 (8.9)*

Credit 30.3 (5.9) 235.0 (5.0) 30.0 (5.3) 269.6 (1.8) 29.5 (7.7)

Diabetes 29.3 (6.4) 211.7 (5.3) 29.7 (6.5) 269.8 (3.8) 27.6 (8.0)

Ionosphere 32.8 (5.6) 105.5 (1.7) 15.7 (8.6) 117.8 (0.9) 12.4 (9.4)*

Liver 40.6 (4.5) 105.5 (1.7) 37.7 (5.1) 117.8 (0.9) 36.3 (6.5)*

Lupus 30.2 (20.3) 40.9 (1.1) 27.0 (18.1) 43.3 (1.4) 28.5 (17.7)

Musk 45.6 (5.4) 199.6 (2.4) 43.5 (2.4) 218.5 (1.1) 43.5 (2.4)

Sonar 12.0 (8.8) 57.4 (1.3) 11.0 (9.0) 59.8 (0.8) 11.5 (9.6)

These results mirror the ones obtained for the previous kernels, with the
SPPO achieving better classification accuracy in three of the datasets, when
compared with the MySVM algorithm. Differences in the remaining datasets are
not statistically significant. Evolutionary approaches obtain similar results in
terms of classification error, but the SPPO consistently achieves higher values
for the objective function, which again implies that less iterations are needed by
this algorithm to find same quality classifiers. As we already found for other non
PSD kernels, evolutionary SVM training algorithms can be advantageous over
traditional approaches, when new kernels are created using distance substitution.
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6 Conclusions

The experimental results presented in this paper allow us to draw several con-
clusions. First, all algorithms were able to build successful classifiers for most
problems using the different kernels. This fact confirms previous theoretical [4]
and practical [10] results on the feasibility of learning with non PSD kernels and
SVMs. This conclusion can be of particular practical interest when using prob-
lem specific distance substitutions kernels. Second, while traditional approaches
(in this case MySVM) seem perfectly able to find good classifiers for most prob-
lems, there can be situations when they get stuck on sub-optima occurring in the
objective function. In these cases, evolutionary algorithms, with their global op-
timization abilities, can prove to be useful and robust SVM training tools. Third,
of the two evolutionary approaches in comparison, the newly introduced swarm
intelligence based approach consistently achieved better optimization values for
the objective function in the allotted iterations, which suggests that it this the
most computationally efficient of the two, requiring significantly less function
evaluations to produce similar or better classification accuracy.
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Abstract. Two new methods for incorporating old and recent infor-
mation into a surrogate model in order to improve the tracking of the
global optima of expensive black boxes are presented in this paper. The
response surfaces are built using Gaussian processes fitted to data which
is obtained through sequential sampling. The efficient global optimiza-
tion (EGO) algorithm applied to the generated response surface is used
to determine the next most promising sample (where the expected im-
provement is maximized). The goal is to find the global maxima of an
expensive to evaluate objective function which changes after a given num-
ber of function evaluations with as few samples as possible. Exploiting
old information in a discounted manner significantly improves the search,
which is shown through numerical experiments performed using the mov-
ing peaks benchmark (MPB).

1 Introduction

In dynamic environments, tracking global optima of expensive black box func-
tions has mainly been approached using evolutionary algorithms (EA) and par-
ticle swarm optimization (PSO), while in the static case response surfaces have
also been used widely. In this paper we introduce two methods to build response
surfaces for the dynamic version using Gaussian processes (GP). These tech-
niques build on the efficient global optimization (EGO) algorithm proposed in
[10], and aim to use old information efficiently either by resampling at previously
known good regions or by introducing sampling noise to discount it.

Dynamic optimization naturally arises when trying to optimize a problem in
which the environment constantly changes or new information constantly arrives.
For instance, in the vehicle routing problem it might be optimal to incorporate
a recently arrived delivery order into an already defined route. Another example
is dynamic pricing, where the overall revenue is to be maximized, but price
sensitivity has to be learned by quoting prices to the customers, taking into
account seasonality, market saturation, and trends [11].

The main contribution of this paper is a mathematical model for incorporating
discounted old information with new information to create a response surface
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using a Gaussian process. In Sect. 2, a literature review is presented first on the
static version of the problem and then on the dynamic one. Later, in Sect. 3, the
concepts and techniques of Gaussian processes and EGO are explained, which
are the basis for the proposed sequential sampling strategy detailed in Sect. 4.
Finally, some numerical experiments and results are provided and analysed in
Sect. 5, and the conclusions are presented in Sect. 6.

2 Related Work

2.1 Global Optimization of Black Box Static Functions

Global optimization tackles the problem of finding the best solution –over their
whole domain– to many different classes of problems [6]. This paper considers
global optimization in the context of expensive evaluations of black box dynamic
functions. Black box refers to the lack of analytic expression of the objective
function so methods requiring an analytic expression of the objective function
or of its gradient can not be applied. Expensive evaluation means that every
sample or observation taken from the objective function requires relatively large
amount of resources as compared to the additional cost of creating a model
to aid the search. This situation is likely to arise for instance when optimizing
parameters for engineering products or dealing with complex simulations [5].

The static version of this problem has been vastly studied. In [16] it is revealed
that current research does not focus on trying to directly model and understand
black boxes, but focuses instead on sampling strategies and finding clever uses
of the scarce observed data in order to determine promising areas to sample.

Response surfaces (or surrogate models) are approximations of a function of
interest created using available data, and are the output of some sort of regression
model. These models are used when a direct measurement of the function is not
practical, for instance if the outcome of interest is not easy to measure or if each
measurement is expensive to obtain in time, money, or any other cost unit. Some
of the most widely used response surface building techniques include, but are
not limited to, radial basis functions (RBF), support vector machines (SVM),
artificial neural networks (ANN), and Gaussian processes (GP) [9].

In global optimization the use of surrogates as a replacement for expensive
objective functions is a common practice. There are two standard approaches
for using surrogate models which might seem similar but are conceptually dif-
ferent. The first one is to generate a set of candidate solutions to be evaluated
and, instead of directly evaluating the objective function at each of these candi-
date solutions, the previously generated response surface is used to estimate the
fitness of each of the candidates. Then, only the most promising ones accord-
ing to the response surface in use are accurately evaluated using the objective
function. The most commonly used candidate generating techniques are evolu-
tionary algorithms (EA) (see [8] for a survey) and more recently particle swarm
optimization (PSO) [18]. The second approach is to explore and analyse the gen-
erated response surface to decide where to sample next, i.e., use the generated
model directly to propose the best candidate solution.
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One option to choose the next best (or most promising) sample, although not
the best technique, is to find the global optimum of the surrogate model and
choose it as the next sample to be taken. A far better use of the surrogate, as
shown in [10], is to sample where the expected improvement is maximized. This
technique is called efficient global optimization (EGO) and, due to its simplicity
in concept and good performance, has become a popular choice in literature with
many variations and adaptations.

2.2 The Dynamic Problem

The dynamic version of the problem deals with finding the global optima of
an expensive black box function changing over time, which calls for a more
sophisticated exploration strategy capable of keeping track of solutions close to
the optimum that might become useful at later times. In the general case, the
changes can happen each time the function is evaluated, after a given number
of evaluations, or after a given period of time. The frequency of the changes
depends on the nature of the problem to be solved, for instance, after a given
number of performed experiments, or at the beginning of every season. Some
studies focus on change detection [7],[15], but this paper assumes the frequency
of changes to be known in advance in terms of function evaluations, emulating
a fixed sampling budget.

A change in a function can be reflected in the number of modes (or peaks)
that it has, their location, and the height and width of each peak. If the mag-
nitude of the change is such that there are no similarities between the function
before and after the change, it is of no use to transfer any knowledge and a
restart of the optimizer is the best possible option since outdated information
would just mislead the search. If the changes are less dramatic, old samples (i.e.
samples taken before the change) can be reused so as to guide and accelerate the
search. Nevertheless, some considerations have to be taken into account when
introducing outdated information, which is the problem addressed in Sect. 4.

Like in the static case, most of the techniques used to track global optima in
dynamic environments are based on EA [8],[4],[17], and PSO [13],[2].

To the best knowledge of the authors, models which build a response surface
using old samples updated with new coming information are not found in the
literature. So, in the remainder of this paper, five techniques to track the global
optima of a dynamic expensive black box function based on a response surface
are described and compared.

3 Efficient Global Optimization (EGO) on Gaussian
Process (GP) Generated Response Surfaces

3.1 GP as a Surrogate Model

The advantage of GP as a technique to build response surfaces over other meth-
ods such as RBF, SVM, and ANN is the analytical tractability it provides not
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only for the predictions but also for the confidence on its predictions. Further-
more, it sets a natural framework to extend this technique to incorporate old
information for the dynamic case as it is shown in Sect. 4.

Consider the observed dataset D = {(xi, yi)
n
i=1} = {X,Y } of n

D−dimensional samples taken at xi = [xi,1, ..., xi,D] with corresponding re-
sponse value yi. The idea is to use a GP and the observed samples D to create
a response surface in order to have a cheap way to provide an estimate of the
objective function (make predictions) at any desired test point xp.

A GP is fully defined by a mean function which allows to introduce any prior
information available into the model, and a covariance function which expresses
the scaled correlation between the data points [14]. As a result of applying GP for
regression to a dataset, we obtain a distribution on the function that generated
the data, also called latent function f which is defined by a mean and a covariance
function. Throughout this paper, a zero mean prior function (1) and the squared
exponential covariance function (2) are used.

m(x) = 0 (1)

k(x,x′) = σ2
fexp

(

−
D∑

d=1

(xd − x′d)2
2�2d

)

+ σ2
nδ(x,x

′) (2)

Let K denote the matrix containing the covariances evaluated at all training
points, while Kp is the augmented covariance matrix containing K plus the
covariances between the testing point xp and all the other points.

Then, the best estimate for our prediction ŷp is given by (3), and the confi-
dence about that estimate by (4), where k(xp,X) denotes the last row of Kp.
This allows us to characterize the prediction on the outcome yp at the test point
xp with a normal distribution (5).

μ := ŷp = m(x) + k(xp,X)K−1Y (3)

σ := V ar[yp] = k(xp,xp)− k(xp,X)K−1k(xp,X)T (4)

yp ∼ N (yp|μ, σ) (5)

In the general case, there are D + 2 parameters in total which are learnt
from the available data D by using maximum likelihood estimation (MLE). σ2

f

is the maximum possible covariance. The characteristic length-scales for each
dimension ��� = [�1, ..., �D] represent how much each point influences one another
–independently for each dimension– as a function of the distance. Finally, σ2

n is
the noise associated to the sampling process. Since only deterministic objective
functions are considered in this paper, σ2

n will be set to zero except for our
proposed model as detailed in Sect. 4.5 where this parameter plays a major roll
as a proxy to discount reliability of old samples. However, even in that case σ2

n

will not be learnt from the data, so only D+1 parameters are to be inferred. A
complete and formal description on GP can be found in [14].
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3.2 Using the Surrogate Model Efficiently: EGO

Once the surrogate model is available, a sampling strategy such as EGO [10]
can be followed to determine where the next observation should be taken. EGO
looks for the sample that maximizes the expectation of improvement over the
currently known best sample, which is possible because the GP provides an
analytic expression of the probability distribution for each predicted value (5).

In order to calculate the expected improvement E[I(xp)] (6) at the test point
xp, the best observed value so far y∗ = maxni=1(yi), is taken as a reference. Then,
the expected improvement is given by the probability of the predicted value yp
(given by the GP prediction using 3 and 4) times the improvement, integrated
over all possible values better than y∗ which yields (6) [10].

E[I(xp)] = (yp − y∗)Φ
(yp − y∗

σ

)

+ σφ
(yp − y∗

σ

)

(6)

The next sample xn+1 is finally taken where the expected improvement is
maximized and, together with the observed response, is added to D. This sam-
pling strategy has proven to be successful in a variety of applications for static
problems [1].

4 Proposed Surrogate Models for the Dynamic Case

The following sequential sampling strategies for parameter optimization of dy-
namic black boxes build on the principles of the static version of the problem. So,
each time a new sample is obtained, the response surface is rebuilt by updating
the GP with the new observation as described in Sect. 3.1. Once the response
surface is built, the EGO algorithm is used to determine where to sample next.

The key difference when building response surfaces in dynamic environments
is that the age of the available data samples must be tracked and old data samples
should be considered less reliable than recent ones, however they must not be
entirely discarded because they still contain information of previous times.

As stated in Sect. 2.2, we address the problem where the objective function
changes after a known number of evaluations cf (change frequency), and the
periods in between changes are referred to as epochs (t) numbered in increasing
order. Nevertheless, it is not the epoch at which each sample was obtained that
is relevant to discount the reliability of the sample, but rather how long ago it
was taken with respect to the current epoch (tc). So instead of using the epoch
number, it is the age of a sample with respect to the present (τ = tc − t) that is
considered to reduce reliability of the samples.

Below, five sampling strategies are described. The first three are simple strate-
gies used as benchmarks. First, a random sampling strategy is proposed to com-
pare against the completely uninformed case. Second, two limiting cases are
presented: the reset strategy as a memoryless model which starts solving the
problem after every change, and the ignore strategy that dismisses all the changes
so that all the information is considered equally reliable. Finally, two strategies
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are proposed as different ways of reusing and transferring information from old
epochs to the new ones. These five methods are compared through numerical
experiments in Sect. 5.

In order to build a response surface using a GP, it is necessary to start with
at least λ = 2 data samples to be able to estimate the length-scale parameters
of the process. So, for the first epoch it is assumed that there are at least λ ≥ 2
observations previously obtained.

Let D be the set of all the samples collected throughout the history of the
experiment, and Dτ ⊂ D the set of data points of age τ .

4.1 Random Sampling Strategy

The random sampling strategy explores the parameter space x ∈ R
D by in-

dependently drawing a random number from a uniform distribution for each
dimension. This technique serves only as a benchmark in order to set a refer-
ence to asses the improvements of the other techniques, and there is no response
surface built.

4.2 Reset Sampling Strategy

This strategy dismisses all the previously obtained samples every time a change
on the objective function happens. This is equivalent to dismissing all the infor-
mation already gathered in previous epochs and starting to sample again as if
this were a new problem. So, at the current epoch (τ = 0), the response surface
will be estimated using only current information in D0 (see Sect. 3.1). Since pre-
vious samples are not considered, at the beginning of each epoch λ observations
need to be sampled in order to start building the response surface one more
time. The reset strategy also serves as a reference to measure the improvement
obtained by other sampling strategies. Besides, it is useful in the presence of
very drastic changes where there is no similarity between the objective function
before and after each change.

4.3 Ignore Sampling Strategy

As its name suggests, the ignore sampling strategy overlooks the fact that a
change has happened, which means that all the available samples in D are used to
fit the response surface. Not only is this a bad strategy to find the global optima
of a changing function because old information is taken to be as valid as new
one, which completely misguides the search, but also because it unnecessarily
increases the computational cost of generating the GP. This is the opposite
extreme to the reset strategy and serves as another benchmark. The ignore
strategy is useful when the magnitude of the changes is negligible close to the
static version of the problem.
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4.4 Reset* Sampling Strategy

Reset* differs from reset (Sect. 4.2) only in the way the first samples of a new
epoch (other than the first one) are taken. Instead of taking λ initial observations
at the beginning of a new epoch (τ = 0), reset* looks for the best response
found in the immediate previous epoch (τ = 1) and resamples at the same place
where this previously best response was obtained. Furthermore, the length-scale
parameters (���) found at the end of the immediate previous epoch are reused
in order to overcome the inability of fitting a GP with only one data point and
allow to take a second sample. Once the second sample is obtained, the sampling
process continues as the reset strategy (i.e. refitting the GP parameters from the
available data (D0) every time a new sample becomes available) until the next
function change.

4.5 Discounted Information through Noise Sampling Strategy
(DIN)

The idea behind this strategy is to consider newly obtained samples as determin-
istic –as it has been done throughout this paper–, but to introduce some artificial
measurement noise in order to discount the old samples. In this process, all the
information obtained so far (from the current epoch and from previous epochs)
is used to fit the GP, so no information is discarded.

The recent observations, being treated as deterministic (no noise added), force
the response surface to go exactly through the measured sample, while the old
observations, treated as noisy observations, allow the response surface to pass
within some distance of the actually observed response values (proportional to
the magnitude of the introduced noise) but not necessarily through them. By
considering old information but discounting its accuracy, the search is guided to
the regions where there used to be good responses in order to explore if that
is still the case, but it is acknowledged that the landscape might have changed.
GP provide a natural way of introducing noise in different magnitudes for each
data sample through the noise measurement term (σ2

n) in (2). Furthermore,
the introduced noise can be a function of the age of the observations. This
modification gives raise to (7) which is to be used to calculate the covariance
matrix used to generate the response surface for the DIN model. An illustration
of this model is provided in Fig. 1.

k(x,x′) = σ2
f exp

(

−
D∑

d=1

(xd − x′d)2
2�2d

)

+ σ2
n(τ)δ(x,x

′) (7)

σ2
n(τ) is now a function of the age of the samples and no longer a constant as

in (2), and can be any strictly increasing function in τ such that σ2
n(τc) = 0, for

instance (8), where s is some constant noise level.

σ2
n(τ) = τs2 (8)
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The introduced noise σ2
n(τ) increases as a function of the age of the samples

following a predefined functional form which is user defined rather than learnt.
Since DIN uses samples from previous epochs, it is not necessary to generate
any random sampling nor to reuse the GP parameters from previous epochs.
Nonetheless, the first sample of each epoch is taken where the best response
was obtained at the previous epoch, following the same procedure as in reset*
(Sect. 4.4).
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(b) First sample of epoch t+
1. Change in true function.
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(c) Second sample of epoch
t + 1

Fig. 1. Sequential sampling using DIN with (σ2
n = 0.1). Figure 1(a) shows the end of

an epoch, and the GP response surface (±σ) generated using samples obtained at t.
The vertical line shows where the next best sample is. In 1(b) the new sample has been
taken (square) after a change. The GP interpolates the new observation even if there
are other old samples in the region. But in the absence of recent information, old data
is used to guide the response surface. Figure 1(c) shows the next sample taken.

5 Experiments and Results

In order to compare the performance of the two proposed methods in Sect. 4
against the reference strategies, the MPB was implemented. In this Section, a
brief description of such benchmark along with two performance measures are
provided, followed by a description of the experiments performed to test the
performance of each of the presented models.

5.1 The Moving Peaks Benchmark (MPB)

Even though there are many real examples of objective functions evolving over
time, it is not easy to find cases which are both complex enough to present
a challenge and simple enough to analyse and make an interpretation of the
tuned parameters. The MPB provides a framework bridging this gap between
very complex, hard to understand real-world problems and all too simple toy
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problems [3]. This benchmark consists of a D dimensional continuous function
defined in a given interval with N peaks of different height and width. Each peak
(pi) is defined by its position xi ∈ R

D, height hi, and width wi (i ∈ [1, ..., N ]).
At every change, each of the peaks suffers a slight change in its position, of fixed
magnitude but in a random direction, and changes of a random magnitude in
height, and width. An extensive survey on methods applied to this benchmark
can be found in [12].

As described in [3], the average error (ε̄) measures the average deviation from
the (unknown) optimum of each function evaluation performed so far. This is,
the sum of the individual differences between the optimum value and each sam-
ple taken. The offline error (εo) is defined as the time average of the errors
between the best currently known sample for a given epoch (period since last
function change) and the optimum. Choosing which performance measure to use
is problem specific. Figure 2(b) shows typical convergence curves for the offline
error for the sampling strategies compared in this paper. The implementation
of the MPB simulates the sequential sampling process applying the strategies
described in Sect. 4 in the attempt of tracking the global optima of the moving
peaks objective function.

The parameters governing the dynamics of the objective function are detailed
in Table 1. All the simulations start with an initial number of λ = 4 samples, and
when applicable the same number of initial samples is used at the beginning of
later epochs. Then, one of the proposed strategies is followed to fit a GP to the
available data together with the EGO method. A local hill climber with random
multi-start is used to maximize the expected improvement.

Fitting a GP has computational complexity of O
(|D|3), so the process slows

down with each new sample incorporated to the data set. This has an indirect
implication on the scalability of the presented technique to problems with a large
number of dimensions given that the number of samples required would rapidly
increase. For efficiency purposes, only data from the immediate previous epoch
(i.e. τ = 1) was considered.

Table 1. Parameters governing the dynamics of the MPB

Parameter Value Parameter Value

Dimensions D 1 Min coordinate 0.0
Number of peaks 5 Max coordinate 100.0
Min peak height 30.0 Peak speed vL 1.0
Max peak height 70.0 Peak height severity hS 2.0
Min peak width 0.0001 Basis function used false
Max peak width 1.0 Peak movement drift 0.0
Initial peak width 0.1 Change frequency cf 25
Width change severity wS 0.01 Epochs 80
Peak function Inverse squared
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5.2 Numerical Results and Model Comparison

Since the DIN sampling strategy (Sect. 4.5) requires parameter tuning for the
noise level, each experiment has to be run in two steps. The first step is to
find out the optimal noise level s∗n by running a first set of simulations of the
optimizer using the DIN sampling strategy with different noise discount values,
and empirically choosing the one with best performance. In this case, offline
error is chosen as the preferred measure of performance, so the remainder of the
experiments focus mainly on this performance measure, but the same procedure
would apply to the average error. Since the changes of the objective function are
stochastic, several replications are required to provide statistical significance to
the interpretation of the results. So, RDIN = 64 replications were run in this
first part of the experiment. The results are shown in Fig. 2(a).
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Fig. 2. A parameter sweep for different noise levels using the DIN sampling strategy,
considering the offline error (εo), is shown in 2(a). The offline error for the compared
models throughout the 80 epochs of the simulation is shown in 2(b), where the legend
follows the same order as the lines.

Once the DIN strategy has been tuned, the remaining strategies can be run
to asses their performance. For this part of the experiment R = 128 replications
were run using common random numbers across strategies. The offline error af-
ter 80 function changes, each happening after 25 function evaluations, are shown
in Fig. 3. Finally, in order to better understand how the offline error behaves
throughout the simulation and to verify that the comparison of the final val-
ues happens after convergence, the whole evolution across time is presented in
Fig. 2(b). These offline convergence curves are the mean across the 128 replica-
tions, and for sake of clarity their confidence intervals are omitted.
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Fig. 3. Box plots showing the offline error (εo) of the five sampling strategies at the
end of 80 function changes, each happening after 25 function evaluations.

6 Discussion, Conclusions, and Further Research

Two new methods to build surrogate models in order to track the global optima
for dynamic expensive black box objective functions are presented in this paper.
The first proposed method, reset*, transfers information from one epoch to the
next one by resampling at the the previous best observation after each function
change. DIN, the second proposed method, exploits the property of GPs that
allows to control the noise level individually for each observation and discounts
old information with such noise in order to construct a response surface using
both old and new information. These new sampling strategies, together with
three other sampling strategies that are not tailored for the dynamic environ-
ment and serve only as reference, are compared through numeric simulations
implementing the MPB using the offline error as performance measure. Once
the surrogate model is available, the selection of the next location to be sampled
is determined by the well established EGO algorithm.

The poor performance of the random strategy confirms the advantages of
using informed selection of the points to be sampled. These experiments show as
well that sampling strategies using old information (reset*, and DIN) perform
better than those which either discard it (reset) or treat it in the same way as
recent information (ignore).

Because of how the offline error is defined, sampling at a good location at the
beginning of an epoch highly increases the performance. So, in order to remove
the component of the performance improvement coming from knowing where the
previous best observation was made, and to get a better insight into how much
the performance improves due only to the special treatment of old information,
reset* was implemented.
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The results presented in Fig. 3 show that discounting the information by
introducing the right amount of noise, as the DIN sampling strategy does, clearly
enhances the tracking of the global optima when considering the offline error
as performance measure. However, a drawback of the DIN strategy is that it
needs to be tuned, i.e. the noise discount parameter needs to be learnt through
extensive simulations.

Future work in this area will focus on designing new response surface cre-
ation methods which do not require prior tuning. This might be achieved, for
instance, by modifying the mean prior of the GP, by learning the magnitude
of the changes through an auxiliary variable, or by tuning the noise parameter
online. Furthermore, the scaling of these techniques to higher dimensions and
the consistency of their performance when applied to other test functions are
yet to be explored.
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Abstract. Differential Evolution (DE) is a well known optimization ap-
proach to solve nonlinear and complex problems. But, DE, like other
probabilistic optimization algorithms, sometimes exhibits premature
convergence and stagnation. DE exploration and exploitation capabilities
depend on the two processes namely mutation process and crossover pro-
cess. In these two processes exploration and exploitation are balanced us-
ing the fine tuning of scale factor F and crossover probability CR. In the
solution search process of DE, there is a enough chance to skip the true
solution due to large step size. Therefore, in this paper, to balance the
diversity and convergence capability of DE, fitness based self adaptive F
and CR are proposed. The proposed strategy is named as Fitness based
Self Adaptive DE (FSADE). The experiments on 16 well known test
problems of different complexities show that the proposed strategy out-
performs the basic DE and recent variants of DE, namely Self-adaptive
DE (SaDE) and Scale Factor Local Search DE (SFLSDE) in most of
the experiments.

Keywords: Self adaptive scale factor, Self adaptive crossover, Self
adaptive step size.

1 Introduction

Differential Evolution (DE) scheme, proposed by Storn and Price [17], is rel-
atively a simple, fast and population based stochastic search technique. Re-
searchers are continuously working to improve the performance of DE. Some
of the recently developed versions of DE with appropriate applications can be
found in [2, 3, 14–16]. Experiments over several numerical benchmarks [18] show
that DE performs better than the genetic algorithm (GA) [5] and the particle
swarm optimization (PSO) [6].

There are two fundamental processes which drive the evolution of DE popu-
lation: the variation process, to explore different areas of the search space, and
the selection process, for the exploitation of the previous experience. However,
it has been shown that DE may occasionally stop proceeding towards the global
optima even though the population has not converged to a local optima [7].
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Therefore, to maintain a proper balance between exploration and exploitation
behavior of DE, a self adaptive position update strategy is proposed. In the pro-
posed strategy, crossover probability CR and scale factor F are self adaptively
changed for every individual based on the fitness of that individual. It is pro-
posed that a better fit individual will be less perturbed and uses small step sizes
in the position update process hence so exploits the already identified search
area, while a low fit individual will be high perturb and uses large step sizes,
which help in exploration of the solution search space. The proposed strategy
is used for finding the global optima of a unimodal and/or multimodel func-
tions using self adaptive CR and F for updating the candidate solution in the
search space. Further, the proposed strategy is compared by experimenting on
16 well known test problems to the basic DE and its recent variants named, Self
Adaptive DE (SaDE) [10] and Scale factor Local Search Differential Evolution
(SFLSDE) [9].

Rest of the paper is organized as follows: Section 2 describes brief overview
of the basic DE. Fitness based Self Adaptive DE (FSADE) is proposed and
tested in Section 3. In Section 4, a comprehensive set of experimental results are
provided. Finally, in Section 5, paper is concluded.

2 Brief Overview of Differential Evolution Algorithm

DE has several strategies based on method of selecting the target vector, num-
ber of difference vectors used and the type of crossover [11]. In this paper
DE/rand/1/bin scheme is used. Like other population based search algorithms,
in DE a population of potential solutions (individuals) searches the solution. In
a D-dimensional search space, an individual is represented by a D-dimensional
vector (xi1, xi2, ..., xiD), i = 1, 2, ..., NP where NP is the population size.

In DE, there are three operators: mutation, crossover and selection. Initially, a
population is generated randomly with uniform distribution, then the mutation,
crossover and selection operators are applied to generate a new population. DE
operators are explained briefly in following subsections.

2.1 Mutation

A trial vector is generated by the DE mutation operator for each individual of
the current population. A target vector is mutated with a weighted differential
to generate a new trial vector, which then produced an offspring in the crossover
operation. If G is the index for generation counter, the mutation operator for
generating a trial vector ui(G) is defined as follows:

– Select a target vector, xi1 (G), from the population, such that i �= i1.
– Again, randomly select two individuals, xi2 and xi3 , from the population

such that i �= i1 �= i2 �= i3.
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– Then the target vector is mutated for calculating the trial vector as follows:

ui(G) = xi1 (G) + F ×
Variation Component
︷ ︸︸ ︷

(xi2 (G) − xi3(G))
︸ ︷︷ ︸

Step size

(1)

where F ∈ [0, 1] is the mutation scale factor used to control the amplification
of the differential variation [4].

2.2 Crossover

Offspring x′i(G) is generated using the crossover of parent vector, xi(G) and the
trial vector, ui(G) as follows:

x′ij(G) =

{

uij(G), if j ∈ J
xij(G), otherwise.

(2)

where J is the set of crossover points or the points that will go under perturba-
tion, xij(G) is the j

th element of the vector xi(G).
Different methods may be used to determine the set, J , of which binomial

crossover and exponential crossover are the most frequently used [4]. In this
paper, the DE and its variants are implemented using the binomial crossover.
In this crossover, the crossover points are randomly selected from the set of
possible crossover points, {1, 2, . . . , D}, where D is the problem dimension.
Algorithm 1 shows the steps of binomial crossover to generate crossover points
[4]. In this algorithm, CR is the probability that the considered crossover point
will be included, and U(1, D) is a uniformly distributed random integer between
1 and D. The larger the value of CR, indicates that the more crossover points
will be selected.

Algorithm 1. Binomial Crossover:

J = φ
j∗ ∼ U(1, D);
J ← J ∪ j∗;
for each j ∈ 1...D do

if U(0, 1) < CR and j �= j∗ then
J ← J ∪ j;

end if
end for

2.3 Selection

The selection operator perform two tasks: First it selects an individual to gen-
erate the trial vector through mutation and then chooses the best between the
parent and the offspring based on their fitness value for the next generation. If
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fitness of parent is greater than that of offspring the parent is selected otherwise
offspring is considered. Therefore next generation component is decided by:

xi(G+ 1) =

{

x′i(G), if f(x′i(G)) > f(xi(G)).

xi(G), otherwise.
(3)

This ensures that the population’s average fitness does not deteriorate. The
Differential Evolutionary strategy is described and represented by Algorithm 2
[4] given below in pseudo code:

Algorithm 2. Differential Evolution Algorithm

Initialize the control parameters, F and CR;
Generate and initialize the population, P (0), of NP individuals;
while termination condition(s) do

for each individual, xi(G) ∈ P (G) do
Calculate the fitness, f(xi(G));
Generate the trial vector, ui(G) by using the mutation operator;
Generate an offspring, x′

i(G), by using the crossover operator;
if f(x′

i(G)) is better than f(xi(G)) then
Add x′

i(G) to P (G + 1);
else

Add xi(G) to P (G + 1);
end if

end for
end while
Return the fittest individual as a solution;

Here, F , CR and P , represents the scale factor, crossover probability, and the
population vector respectively. Here F and CR, are the control parameters and
the choice of their values influences the performance of DE.

3 Fitness Based Self Adaptive DE (FSADE)

The inherent drawback with most of the population based stochastic algorithms
is premature convergence. DE is not an exception. Any population based algo-
rithm is regarded as an efficient algorithm if it is fast in convergence and able to
explore the maximum area of the search space. In other words, if a population
based algorithm is capable of balancing between exploration and exploitation
of the search space, then the algorithm is regarded as an efficient algorithm.
From this point of view, basic DE is not an efficient algorithm [7, 8]. Therefore,
in this paper, to balance the diversity and convergence ability of DE, crossover
probability (CR) and scale factor (F ) are adaptively modified.
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3.1 Why CR and F?

The CR and F are the crucial parameters, which are used to manage exploration
and exploitation in DE. CR is the parameter which is responsible for the per-
turbation in the individual which is going to update for creating the offspring,
while F is the parameter which decides a step size for an individual by which it
can move in the search space.

It is obvious that the perturbation of an individual will be high for the high
value of CR and so as the exploration, while a low value of CR may enhance the
exploitation as for this case, the perturbation will be low (refer to Algorithm 1).

Further, F also plays an important role in balancing the exploration and
exploitation. It is clear from equation (1), that a low value of F will force an
individual to search a new solution in its neighborhood as the step size will be low
proportionally and therefore, the individual exploits its neighborhood. Whereas
a high value of F , makes an individual to take large size step and hence explore
the search area to find new solutions.

It is evident from above discussion that CR and F have significant role to
settle the exploration and exploitation capabilities. Therefore, these two (CR
and F ) are selected for modification in the view of their importance in managing
the diversity in the population.

3.2 Self Adaptive Strategy

As explained in Section 3.1, in this paper, to balance the diversity and con-
vergence ability of DE, CR and F are set adaptively and are different for every
individual i, based on the fitness based probability probi of the individual, which
may be calculated as shown in equation (4):

probi = 0.9× fitnessi
max fitness

+ 0.1, (4)

here fitnessi is the fitness value of the ith solution and max fitness is the
maximum fitness in the population. It is clear from equation (4) that probi ∈
[0.1, 1].

Further, based on the probi of each individual i in the population, which is a
function of fitness, the CR and F are adaptively changed as shown in equations
(5) and (6):

CRi = (C1 − probi), (5)

Fi = (2× C1 − probi)× U, (6)

here, C1 = 1.1 is a constant and U is a random number ∈ (−0.5, 0.5). It is
obvious from equation (5) and (6) that CRi ∈ [0.1, 1] and Fi ∈ [−1.05, 1.05].
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It is clear from equations (5) and (6) that for high value of probi and that will
be the case for high fitness solutions, the value of CRi and Fi will be low and
vice versa. Therefore, it could be expected that high fit individual will be less
perturbs as well as the step sizes will be small in mutation and hence it could
exploits the search area in its vicinity while the low fit individual explore the
search area to find out new solutions due to high perturbation and large step
sizes. The proposed population update process is shown in Algorithm 3:

Algorithm 3. Fitness based self adaptive position update process

Input: An individual xi which is going to update its position, probi and constant
C1;
G: Generation counter, U(a, b): Uniform random number between a and b;
Select three random individuals (i1, i2, i3) from population such that
i �= i1 �= i2 �= i3;
Calculate CRi(G) = (C1 − probi(G));
for each j ∈ 1...D do

Fi(G) = (2× C1 − probi(G))× U(−0.5, 0.5);
if U(0, 1) < CRi(G) then

uij = xi1j(G) + Fi(G)× (xi2j(G)− xi3j(G));
else

uij = xij(G)
end if

end for
if f(ui) is better than f(xi(G)) then

Add ui to P (G + 1);
else

Add xi(G) to P (G + 1);
end if

4 Experimental Results and Discussion

4.1 Test Problems under Consideration

In order to analyze the performance of FSADE, 16 different global optimization
problems (f1 to f16) are selected (listed in Table 1) [1]. These problems are min-
imization problems and have different degree of complexity and multimodality.

4.2 Experimental Setting

To prove the efficiency of FSADE algorithm, it is compared with the classical
DE (DE/rand/bin/1) [11] and its variants namely, Self-adaptive DE (SaDE)
[12] and Scale factor local search differential evolution (SFLSDE) [9].
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To test DE and DE variants over test problems, following experimental setting
is adopted:

– The value of F and CR for SaDE and SFLSDE are kept same as suggested
by their respective authors [9, 12].

– Population size NP=50.
– The stopping criteria is either maximum number of function evaluations

(which is set to be 2.0 × 105) is reached or the corresponding acceptable
error (mentioned in Table 1) has been achieved.

– The number of simulations/run =100.
– In order to investigate the effect of the parameter C1, described by algorithm

3 on the performance of FSADE, its sensitivity with respect to different
values of C1 in the range [1.1, 1.9], is examined in the Figure 1. It can be
observed from Figure 1 that the FSADE is very sensitive towards C1 and
value 1.1 gives comparatively better results. Therefore C1 = 1.1 is selected
for the experiments in this paper.
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Fig. 1. Effect of parameter C1 on sum of success rate for 30 runs of all the considered
test problems

4.3 Results Comparison

Numerical results with experimental setting of subsection 4.2 are given in
Table 2. In Table 2, standard deviation (SD), mean error (ME), average func-
tion evaluations (AFE) and, success rate (SR) are reported. Table 2 shows that
most of the time FSADE outperforms in terms of reliability, efficiency and ac-
curacy as compare to the DE/rand/bin/1, SFLSDE and SaDE. Some more
intensive analyses based on acceleration rate (AR) [13], performance indices and
boxplots have been carried out for results of DE and its variants.
FSADE, DE, SFLSDE and SaDE are compared through SR, ME and

AFE in Table 2. First SR is compared for all these algorithms and if it is not
possible to distinguish the algorithms based on SR then comparison is made
on the basis of AFE. ME is used for comparison if it is not possible on the
basis of SR and AFE both. Outcome of this comparison is summarized in Table
3. In Table 3, ‘+’ indicates that the FSADE is better than the considered



Fitness Based Self Adaptive Differential Evolution 79

algorithms and ‘-’ indicates that the FSADE is not better or the difference is
very small. The last row of Table 3, establishes the superiority of FSADE over
DE, SFLSDE and SaDE.

Table 2. Comparison of the results of test problems

Test Algorithm SD ME AFE SR
Function

f1

FSADE 8.22E-07 9.01E-06 30294 100
DE 4.52E-03 2.05E-03 64036.5 81
SFLSDE 1.03E-03 1.57E-04 39382.59 98
SaDE 8.85E-03 4.09E-03 45890.5 96

f2

FSADE 1.69E+01 2.86E+01 200050 0
DE 4.09E+01 4.24E+01 200050 0
SFLSDE 2.82E+01 2.35E+01 189640.34 1
SaDE 1.21E+01 8.46E+00 174741.5 13

f3

FSADE 8.03E-07 9.16E-06 92932 99
DE 5.71E+00 1.46E+01 200050 0
SFLSDE 9.90E-02 9.96E-03 134474.92 99
SaDE 1.25E-01 2.39E-01 142371.5 58

f4

FSADE 1.18E-02 3.96E-03 43339.5 86
DE 4.84E-02 4.90E-02 167536 23
SFLSDE 4.48E-02 1.48E-02 66651.79 76
SaDE 4.51E-02 1.72E-02 85810.5 67

f5

FSADE 8.49E-07 9.02E-06 19217.5 100
DE 2.90E-02 5.92E-03 30339 96
SFLSDE 8.88E-04 5.88E-03 99779.94 55
SaDE 1.47E-02 5.80E-01 109265 43

f6

FSADE 6.88E-07 9.19E-06 16125.5 100
DE 7.39E-07 8.99E-06 17018 100
SFLSDE 9.82E-07 8.96E-06 23688.78 100
SaDE 6.23E-07 9.12E-06 12503 100

f7

FSADE 7.69E-07 9.01E-06 35806 100
DE 8.77E-07 8.89E-06 39664.5 100
SFLSDE 9.40E-07 8.99E-06 43179.52 100
SaDE 7.29E-07 9.09E-06 23187 100

f8

FSADE 1.10E-05 2.10E-05 13340 100
DE 3.32E-01 1.00E-01 33846.5 91
SFLSDE 2.30E-05 5.13E-05 16301.45 100
SaDE 4.30E-02 1.80E-03 39404 92

f9

FSADE 2.64E-01 9.95E-02 80435.5 85
DE 6.30E-01 8.93E-01 176110.5 17
SFLSDE 7.19E-01 5.63E-01 116706.29 52
SaDE 8.12E-01 5.73E-01 117613 56

f10

FSADE 7.45E-07 9.09E-06 18678 100
DE 1.54E-03 2.29E-04 23981.5 98
SFLSDE 7.48E-07 9.09E-06 24436.9 100
SaDE 2.80E-03 7.77E-04 26025.5 93

f11

FSADE 7.00E-07 9.13E-06 24994.5 100
DE 7.39E-07 9.07E-06 27209 100
SFLSDE 8.24E-07 9.01E-06 30359.56 100
SaDE 6.78E-07 9.15E-06 16982.5 100

f12

FSADE 3.28E-05 4.13E-05 1761 100
DE 3.31E-05 4.11E-05 1790.5 100
SFLSDE 3.26E-05 3.92E-05 3224.46 100
SaDE 3.32E-05 4.14E-05 3355 100

f13

FSADE 2.47E-04 1.76E-04 49103 90
DE 3.63E-04 2.81E-04 63952.5 70
SFLSDE 2.05E-04 5.55E-04 172173.74 16
SaDE 3.00E-04 5.46E-04 155720 25

f14

FSADE 5.36E-06 4.54E-06 7476 100
DE 4.93E-06 4.06E-06 8348.5 100
SFLSDE 5.79E-06 5.30E-06 26974.37 100
SaDE 5.47E-06 4.80E-06 71139.5 100
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Table 2. Comparison of the results of test problems (Cont.)

Test Algorithm SD ME AFE SR
Function

f15

FSADE 2.60E-03 8.11E-03 109441.5 97
DE 2.52E-01 5.02E-01 200050 0
SFLSDE 4.83E-02 1.15E-01 199770.42 0
SaDE 1.59E-01 6.31E-01 200000 0

f16

FSADE 7.30E-17 9.11E-16 56257.5 100
DE 8.16E-17 8.95E-16 59365 100
SFLSDE 8.21E-17 8.99E-16 64566.58 100
SaDE 7.58E-17 9.10E-16 35111.5 100

Table 3. Summary of Table 2 outcome

Test Problems
FSADE
Vs

FSADE
Vs

FSADE
Vs

DE SFLSDE SaDE

f1 + + +

f2 + - -

f3 + + +

f4 + + +

f5 + + +

f6 + + -

f7 + + -

f8 + + +

f9 + + +

f10 + + +

f11 + + -

f12 + + +

f13 + + +

f14 + + +

f15 + + +

f16 + + -

Total number of
+ sign

16 15 11

Further, we compare the convergence speed of the considered algorithms by mea-
suring the average function evaluations (AFEs). A small value of AFEs means
higher convergence speed. In order to minimize the effect of the stochastic nature
of the algorithms, the reported function evaluations for each test problem is the
average over 100 runs. we use the acceleration rate (AR) to compare convergence
speeds, which is defined as follows, based on the AFEs for the two algorithms
ALGO and FSADE:

AR =
AFEALGO

AFEFSADE
, (7)

where, ALGO ∈ {DE,SFLSDE, SaDE} and AR > 1 means FSADE con-
verges faster. Table 4 shows a clear comparison between FSADE and DE,
FSADE and SFLSDE, and FSADE and SaDE in terms of AR. It is clear
from Table 4 that, for most of the test problems, convergence speed of FSADE
is faster among all the considered algorithms.
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For the purpose of comparison in terms of consolidated performance, boxplot
analyses have been carried out for all the considered algorithms. The boxplots
for FSADE, DE, SFLSDE and SaDE are shown in Figure 2. It is clear from
this figure that FSADE is better than the considered algorithms as interquartile
range and median are comparatively low.

Table 4. Acceleration Rate (AR) of FSADE compare to the basic DE, SFLSDE
and SaDE

Test Prob-
lems

DE SFLSDE SaDE

f1 2.113834423 1.300012874 1.514837922

f2 1 0.947964709 0.873489128

f3 2.152649249 1.447024921 1.531996514

f4 3.865665271 1.537899376 1.979960544

f5 1.578717315 5.192139456 5.685703135

f6 1.055347121 1.469026077 0.775355803

f7 1.107761269 1.205929732 0.647573032

f8 2.537218891 1.221997751 2.953823088

f9 2.189462364 1.450930124 1.462202634

f10 1.283943677 1.308325302 1.393377235

f11 1.088599492 1.214649623 0.679449479

f12 1.016751846 1.831039182 1.905167518

f13 1.302415331 3.506379244 3.171292996

f14 1.116706795 3.608128678 9.515716961

f15 1.827917198 1.825362591 1.827460333

f16 1.05523708 1.147697285 0.624121228
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Fig. 2. Boxplots for average number of function evaluation

Further, to compare the considered algorithms, by giving weighted impor-
tance to the success rate, the standard deviation and the average number of
function evaluations, performance indices (PI) are calculated [2]. The values
of PI for the FSADE, DE, SFLSDE, and SaDE are calculated by using
following equations:
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PI =
1

Np

Np
∑

i=1

(k1α
i
1 + k2α

i
2 + k3α

i
3)

Where αi
1 = Sri

Tri ; α
i
2 =

{
Mfi

Afi , if Sri > 0.

0, if Sri = 0.
; and αi

3 = Moi

Aoi

i = 1, 2, ..., Np

– Sri = Successful simulations/runs of ith problem.
– Tri = Total simulations of ith problem.
– Mf i = Minimum of average number of function evaluations used for obtain-

ing the required solution of ith problem.
– Af i = Average number of function evaluations used for obtaining the re-

quired solution of ith problem.
– Moi = Minimum of standard deviation obtained for the ith problem.
– Aoi = Standard deviation obtained by an algorithm for the ith problem.
– Np = Total number of optimization problems evaluated.

The weights assigned to the success rate, the average number of function evalu-
ations and the standard deviation are represented by k1, k2 and k3 respectively
where k1+k2+k3 = 1 and 0 ≤ k1, k2, k3 ≤ 1. To calculate the PIs, equal weights
are assigned to two variables while weight of the remaining variable vary from 0
to 1 as given in [2]. Following are the resultant cases:

1. k1 =W,k2 = k3 = 1−W
2 , 0 ≤W ≤ 1;

2. k2 =W,k1 = k3 = 1−W
2 , 0 ≤W ≤ 1;

3. k3 =W,k1 = k2 = 1−W
2 , 0 ≤W ≤ 1

The graphs corresponding to each of the cases (1), (2) and (3) for FSADE,
DE, SFLSDE and SaDE are shown in Figures 3(a), 3(b), and 3(c) respectively.
In these figures the weights k1, k2 and k3 are represented by horizontal axis while
the PI is represented by the vertical axis.

In case (1), average number of function evaluations and the standard deviation
are given equal weights. PIs of the considered algorithms are superimposed in
Fig. 3(a) for comparison of the performance. It is observed that PI of FSADE
are higher than the considered algorithms. In case (2), equal weights are assigned
to the success rate and standard deviation and in case (3), equal weights are
assigned to the success rate and average function evaluations. It is clear from
Fig. 3(b) and Fig. 3(c) that, the algorithms perform same as in case (1).
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Fig. 3. Performance index for test problems; (a) for case (1), (b) for case (2) and (c)
for case (3)

5 Conclusion

In this paper, a new poistion update strategy is proposed based on the fitness
based CR and F . In the proposed strategy, CR and F are adaptively modified
for every individual on the basis of its richness (in terms of fitness). The high
fit individual is forced to exploit the search area in its vicinity by reducing
perturbation as well as step sizes, while a low fit individual try to explore the
search area for finding the new solutions. Further, the proposed algorithm is
compared to the recent variants of DE, namely, Self Adaptive DE (SaDE) and
Scale Factor Local Search DE (SFLSDE) and with the help of experiments
over test problems, it is shown that the FSADE outperforms to the considered
algorithms in terms of reliability, efficiency and accuracy.
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Abstract. An open question that arises in the design of adaptive
schemes for Dynamic Optimization Problems consists on deciding what
to do with the knowledge acquired once a change in the environment
is detected: forget it or use it in subsequent changes? In this work, the
knowledge is associated with the selection probability of two local search
operators in the Adaptive Hill Climbing Memetic Algorithm. When a
problem change is detected, those probability values can be restarted
or maintained. The experiments performed over five binary coded prob-
lems (for a total of 140 different scenarios) clearly show that keeping the
information is better than forgetting it.
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1 Introduction

Many real world situations present features, costs, objective functions or con-
straints that may vary over time. In order to understand how to better deal
with such scenarios, researchers usually model them as Dynamic Optimization
Problems (DOPs) [5].

In terms of optimization, the basic approach to address DOPs consists on
restarting the search each time a change is detected, considering it as completely
new problem [2, 13]. However it is widely assumed that the environment changes
gradually, so if we handle each change as a different problem we are probably
loosing information. Early studies already showed that the reuse of information
lead to faster adaptations to changes, and thus, to better solutions. This fact is
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specially important in many practical cases, where the time constraints makes
the exhaustive exploration of the search space not feasible.

Among the methods proposed to solve DOPs, we found Evolutionary Algo-
rithms [19], Multi-Swarm methods [3], Ant Colony Optimization [9, 15] or coop-
erative strategies [7, 8]. A recent trend in DOPs resolution is the use of learning
schemes to adapt the configuration of the solver (parameters, operators, etc.)
during the search [7, 8, 14, 15, 17, 18]. The main reason behind this trend is
the difficulty of finding an appropriate configuration for the solver -being even
harder than in static problems- since environment changes over time. Despite
this difficulty, works as those mentioned show that the learning increases the
robustness and performance of the methods.

An important question that arises in the design of adaptive mechanisms for
DOPs is what to do with the knowledge acquired once a change in the environ-
ment occurs: should we reuse it for the next changes or “forget it”? Although we
found methods that works in one sense (reuse it) [14, 17] and the other (forget
it)[8, 18], as far as we know, this is still an open question.

In this work, the knowledge is associated with the selection probability of
two local search operators in the Adaptive Hill Climbing Memetic Algorithm
(AHMA)[17]. When a problem change is detected, those probability values can
be restarted or maintained.

In this work, we aim to shed light on this issue using as example the Adaptive
Hill Climbing Memetic Algorithm (AHMA)[17]. The knowledge acquired is as-
sociated with the selection probability of two local search operators available in
(AHMA). When a problem change is detected, those probability values can be
restarted (i.e. forgetting) or maintained (keeping). The benchmark is composed
by the dynamic versions of the knapsack (three instances), OneMax, Plateau,
RoyalRoad and Deceptive problems.

The rest of this paper is organized as follows. Firstly, Section 2 presents
AHMA and the variants we study in this work. Then, in Section 3, we show
the experimental framework, describing the benchmark, performance measures,
comparison methods and the experimental set-up. Section 3.2 analyses the re-
sults obtained and finally, Section 5 gives the main conclusions and further work.

2 Adaptive Hill Climbing Memetic Algorithm

The Adaptive Hill Climbing Memetic Algorithm (AHMA) proposed by Yang[17]
was originally designed for combinatorial DOPs. AHMA combines a genetic al-
gorithm with a local search that uses two operator according to a probability
distribution that is adjusted during the search. This idea of adapting the selec-
tion of the local search operator in memetic algorithms was previously tested
with success in static problems [11, 12].

Initially, AHMA generates a random population of popsize individuals. Then,
in each generation, the method selects individuals using the roulette wheel
method; applies uniform crossover operator to them with probability pc; per-
forms a uniform mutation to the resultant individuals with probability pm;



Adaptation Schemes and DOPs: A Basic Study on the AHMA 87

accomplishes a steady-state replacement that allow survive the best popsize
individuals among parents and offspring; and applies a local search to the best
individual of the population (elite).

AHMA also includes two methods to generate diversity in the current pop-
ulation: Adaptive Dual Mapping (ADM) and Triggered Random Immigrants
(TRI). The ADM, performed before local search, generates a new solution from
the elite individual by applying to each variable the operator 1 − xi. The new
solution replaces the elite if it is better. TRI is used after the local search to re-
place a certain percentage of the worst elements of the population by randomly
generated individuals.

As mentioned above, the local search uses two operators: Greedy Crossover-
base Hill Climbing (GCHC) and Steepest Mutation Hill Climbing (SMHC).
GCHC applies uniform crossover operator to the elite solution and another indi-
vidual from the current population selected by the roulette wheel method. Then,
the offspring obtained replaces the elite solution if it is better. This process is
repeated ls size times. SMHC selects randomly a number of bits of the solution
and flips them. As in the former operator, if the resulting solution improves the
elite then it replaces it, and the process is repeated ls size times. Every time
the local search is executed, AHMA selects randomly one of these two operators
according to a probability distribution that is adapted along the search with the
aim of giving a higher probability to the best performing operator. The learning
scheme that adjust the probability distribution is explained below.

2.1 Adaptive Scheme

Let pgchc and psmhc be the probabilities of applying GCHC and SHMC, respec-
tively (pgchc + psmhc = 1). At the beginning of the search, both probabilities are
initialized to 0.5, to give them the same chances of being selected. The learning
scheme adjusts the values of pgchc and psmhc depending on the improvement
degree (η) they produce, that is calculated as follows:

η =
|fimp − fini|

fini
(1)

where fini and fimp are the fitness of the elite solution before and after the
application of the local search, respectively. In the generation t, the values of
pgchc and psmhc are adjusted as follows:

pgchc(t) = pgchc(t− 1) + � · ηgchc(t) (2)

psmhc(t) = psmhc(t− 1) + � · ηsmhc(t) (3)

pgchc(t) =
pgchc(t)

pgchc(t) + psmhc(t)
(4)

psmhc(t) = 1− pgchc(t) (5)

where � is the relative influence of the improvement degree on the selection.
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With the aim of studying what we should do with the knowledge acquired
once a change in the environment occurs, in this paper we will analyse three
variants for the adaptive scheme of AHMA:

– AHMA: this is the original approach. Probabilities pgchc and psmhc are ad-
justed as explained above, so the probabilities learned are kept after the
environment changes.

– AHMA Reset (AHMAR): pgchc and psmhc are reset to 0.5 after each change
to “forget” the learning gained.

– AHMA Without Learning (AHMAWL): this is the baseline for comparison.
In this variant pgchc and psmhc are fixed to 0.5 during the whole search
process.

3 Experimental Study

This section describes the test problems, the performance measure used, how
the comparisons are made and the details of the computational experiments
performed.

3.1 Dynamic Test Problems

In order to make a problem dynamic, we use the XOR-DOP generator [18].
This XOR-DOP can generate dynamic environments from any binary-encoded
stationary function f(x)(x ∈ {1, 0}) by a bitwise exclusive-or (XOR) operator.
The environment is changed every t generations. For each environmental period
k, an XOR mask M(k) is incrementally generated as follows:

M(k) =M(k − 1)⊕ T (k)

where ⊕ is the XOR operator (i.e., a⊕b = 1 ⇐⇒ a �= b) and T (k) is an interme-
diate binary template randomly created with ρm ones for the kth environmental
period. For the first period k = 1, M(1) = {0 . . . 0}. Then, the population at
generation t is evaluated as:

f(x, t) = f(x⊕M(k))

where k = �t/τ� is the environmental change index. One advantage of this XOR
generator lies in that the speed and severity of environmental changes can be
easily tuned. The parameter τ controls the speed of changes while ρ ∈ [0.0, 1.0]
controls their severity. A bigger ρ means more severe changes while a smaller τ
means more frequent changes.

The benchmark used for the experimentation is composed by dynamic opti-
mization problems generated from well-known static binary problems by means
of the XOR-DOP generator shown above. The next part of this subsection is
devoted to describe these problems.
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Dynamic Knapsack Problem. The knapsack problem is a well known NP-
Hard combinatorial optimization problem [10]. Given a set of m elements the
knapsack problem is described as follows:

max f(x) =
m∑

i=1

pixi

subject to

m∑

i=1

wixi ≤ C

xi ∈ {0, 1} i = 1 . . .m

where x = (x1, ..., xm) and xi = 1 if item i is selected or xi = 0, otherwise.
Values pi and wi represent the profit and the weight of item i, respectively and
C is the capacity of the knapsack, which cannot be exceeded.

The instances of the knapsack problem used here have m = 100, while the
weights, profits and capacity are defined as follows:

Capacity C = 0.6×
m∑

i=1

wi

We will deal with three types of instances, depending on the level of
correlation between the profits and weights [16]:

Type Weight Profit
No Correlation (NC) wi = U(1, 50) pi = U(1, 55)
Weak Correlation (WC) wi = U(1, 50) pi = 0.5wi + U(1, 5)
Strong Correlation (SC) wi = U(1, 50) pi = wi + U(1, 5)

where U(a, b) is a function that returns a random integer between a and b coming
from uniform distribution. In this contribution, we generate one instance per
type.

It is believed that knapsack is one of the easiest NP-Hard problem. Several
exact algorithms are available and for them, the hardness of random instances,
increases with the correlation between weights and profits [16].

In order to deal with unfeasible solutions during the optimization process, we
use the same penalization scheme as [18].

f(x) =

⎧

⎨

⎩

∑100
i=1 pixi if

∑100
i=1 wixi ≤ C

10−10 × (
∑100

i=1 wi −
∑100

i=1 wixi) otherwise

Dynamic Test Functions. The other test problems used on this paper are four
binary-encoded combinatorial optimization funtions: OneMax, Plateau, Royal
Road and Deceptive. All of them consists of finding solutions that match all
the bits of a target optimal solution. This target solution is initially considered
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Fig. 1. Contribution of the 4-bits block to the corresponding cost function with respect
to the number of correctly matched bits

to be the solution where all its bits are set to 1. To evaluate a solution, we
consider blocks of 4 bits where each block contributes a given amount to the
final objective value. The contribution of every block of 4 bits for each of the
considered functions is computed as follows:

– OneMax: Each matched bit adds 1 to the fitness.
– Plateau: Three matched bits add 2 to the fitness while four matched bits

add 4 and any other amount of bits matched leads to a 0 contribution.
– RoyalRoad: Each perfectly matched block adds 4 to the fitness. Partially

matched blocks have 0 fitness.
– Deceptive: Fitness is 4 if all the 4 bits are matched. If not, the fitness for

the block is 3 minus the number of matched bits.

This information is graphically shown in Fig. 1.
The dimension of these problems is defined as l (where l is divisible by 4),

and given the aforementioned rules to compute the fitness, the optimum value
for any of the problems is also l.

3.2 Performance Measures

To assess the performance of the algorithms, we have used the offline perfor-
mance [4] that is defined as the best-of-generation fitness averaged across the
number of total runs and then averaged over the data gathering period, as
formulated below:
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FBG =
1

G

G∑

i=1

⎛

⎝
1

N

N∑

j=1

FBGij

⎞

⎠ (6)

where G is the number of generations (i.e., G = 10× τ), N is the total number
of runs, and FBGij is the best-of-generation fitness of generation i of run j.

3.3 Experimental Set Up

We performed 30 independent runs with 100 fitness function changes, for every
instance, period, severity and algorithm variant. We considered five different
periods of change (τ ∈ {10, 25, 50, 75, 100} generations) and four severities (ρ ∈
{0.1, 0.2, 0.5, 0.9}).

The parameters of AHMA were configured according to the guidelines given
in the original work by Wang [17].

3.4 About the Comparison of the Methods

Since the results for every possible algorithm/adaptive scheme and problem con-
figuration would be difficult to interpret if displayed as a numerical table, we
used the “Statistical Ranking Color Scheme” (SRCS) [1].

This technique uses non-parametric tests (Kruskal-Wallis and Mann-Whitney
Wilcoxon with Holm’s correction for multiple comparisons) to assess the statis-
tical significance of the individual differences among each pair of algorithms on
every problem configuration. If the test concludes that there is enough evidence
for statistical differences, the algorithm with the highest overall offline perfor-
mance adds 1 to its rank, and the other adds −1. In case of a tie, both receive a
0. The range of the rank values for n algorithms for any specific problem, period
and severity will therefore be in the [−n+1, n− 1] interval. The higher the rank
obtained, the better an algorithm can be considered in relation to the other
ones. Those ranks are displayed as colors with the highest rank value (n − 1)
being displayed as white and the lowest rank value (−n+ 1) having the darkest
color. The remaining rank values will be assigned a progressively darker color as
the rank decreases. If we group together the ranks of an algorithm for a given
problem with every possible different period and severity we can obtain a colored
matrix, where it is easy to observe how the algorithm performs for that specific
problem. A white color in a given cell indicates that the algorithm is statistically
better than all of the other algorithms for that specific problem configuration.
If the color gets darker means that the algorithm starts to be statistically equal
or worse than some other algorithms. The worst case for a given algorithm oc-
curs when its cell has the darkest possible color, meaning that the algorithm is
statistically worse than all of the others for that problem configuration.
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4 Results

4.1 On the Influence of the Adaptive Schemes

The results of the AHMA and its variants appear in the Fig. 2 that was obtained
using the SRCS [1] technique.

Results should be analyzed per test problem. Every matrix (one per algorithm)
in the corresponding column contains the ranking of such algorithm in all the
scenarios tested. In order to compare the results from different algorithms in a
given scenario we should look at the same matrix position in the three matrices.
For example, consider the SC instance of the knapsack problem (first column),
severity = 0.9 and change period = 10. The positions to observe are marked with
a square in the figure. AHMA has a white colour in that cell, meaning that its
rank is 2: it is significantly better than the other two alternatives. AHMAR and
AHMAWL have an orange colour, associated with rank -1: they are significantly
worse than one of the other two alternatives. The figure can also be read in a more
general way. For example, again in the SC instance, the algorithm AHMA has
an almost white matrix, meaning that it is better than the other two algorithms
in most of the scenarios tested.

We will start the analysis considering the point of view of adapation/no adap-
tation, or learning vs. no learning.

The original algorithm AHMA obtains, in general, better results than AH-
MAWL. This is clear for SC and WC instances and considering high values of
severity. AHMAWL is better than AHMA on the NC instance. When consid-
ering the other problems (OneMax, Plateau, RoyalRoad and Deceptive), the
advantage of AHMA over AHMAWL is clear over all the scenarios tested.

When considering AHMAR vs AHMAWL, we can observe that both methods
have a pretty similar behaviour over the three knapsack instances (and over all
the configurations). Again, over the NC instance and considering higher values of
severity AHMAWL is better than the alternative including learning (AHMAR).
The plots are quite similar for the rest of problems. AHMAR achieved better or
equal performance than AHMAWL. Similar behaviour is observed for low values
of severity while for higher values, AHMAR achieved a higher position in the
ranking (lighter colour in the corresponding cells).

We will finally compare the two adaptive schemes. Recall that the difference
among them is what to do with the knowledge acquired when a change arrived.
In one scheme (AHMAR), everything is forgotten, while in the other, no action
is taken (AHMA) so the knowledge is accumulated from one change to the other.

Clearly, forgetting is not a good way to proceed when considering SC and
WC instances (AHMA is better than AHMAR). However, on the NC instance,
AHMAR is better than AHMA, specially when higher severities are considered.
In the other group of problems the situation is clear: AHMA is definitely better
than AHMAR.



Adaptation Schemes and DOPs: A Basic Study on the AHMA 93

Fig. 2. Performance of the algorithms AHMA, AHMAR, AHMAWL over the test
problems. Lighter colors indicates better results.

4.2 Analysis Matched Pairs Non-parametric Tests

The SRCS technique gives statistical information about the ranking of a set of
methods in just one configuration of one problem. However, it is also interesting
to compare the results of the methods over a set of configurations from one or
various problems to have a more comprehensive view. In this sense, Garćıa et
al. proposed in [6] the directives to carry out this global analysis using paired
non-parametric statistical tests. These tests allow to rank the performance of
two or more methods over a set problem configurations and to determine if the
difference in performance are significant or not. The significance of the differences
is assessed by comparing estimators (usually the mean/median fitness or error
value) of the performance of the algorithms over each problem configuration.

Matched pairs non-parametric tests allow, for example, to determine the best
global method over all the configurations of the Knapsack problem for the three
instance or over the 60 problem configuration considered in this work. The spe-
cific matched pairs non-parametric tests performed here were done with the SPSS
statistical software. We used Friedman’s test to determine if there are significant
differences among the performance of two or more methods, and Wilcoxon paired
test to check if there exist significance differences between the performance of
two algorithms.

Firstly, we performed a global analysis of the algorithmic variants over all the
test problems and configurations, using the Friedman test. Results indicated a
statistical significant difference among the algorithms, and then we performed
a pairwise comparison using the Wilcoxon’s test. The results are shown below
(given Algorithm1 vs Algorithm2, ‘>’ stands for Algorithm1 is significantly
better than Algorithm2):

AHMA vs. AHMAR AHMA vs. AHMAWL AHMAR vs. AHMAWL

> > >
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Table 1. Results of the pairwise comparison using the Wilcoxon’s test over all the
test problems. Two levels of severity and change frequency were considered. A ‘>’ sign
indicates that the first algorithm was significantly better than the second one. Symbol
‘-’ denotes no significant differences.

Severity

Change Low

AHMA vs AHMAR AHMA vs AHMAWL AHMAR vs AHMARWL
Low > > −
High > > >

Change High

AHMA vs AHMAR AHMA vs AHMAWL AHMAR vs AHMARWL
Low > > −
High > > >

We can observe that AHMA is better than AHMAR and AHMAWL, and
AHMAR is better than AHMAWL. The conclusion is clear: having some sort of
adaptation is better than not having it.

Then, we performed a similar analysis but grouping the scenarios in terms of
low (0.1,0.2) /high (0.5,0.9) severity and low (10,25) /high (50,75,100) change
frequency.

After checking the existence of significant difference among the three methods
by Friedman’s test, we apply the Wilcoxon’s test pairwise and the results are
shown in Table 1. A ‘>’ sign indicates that the first algorithm was significantly
better than the second one, whereas ‘-’ denotes no significant differences.

The original AHMA is better than AHMAR and AHMAWL over all the com-
binations tested: low/high change frequency and low/high severity. When consid-
ering AHMAR against AHMAWL, no differences were detected when the change
frequency is low (and independently of the severity level). In scenarios with a
high frequency of changes (with low or high severities), AHMAR was better than
AHMAWL.

The last analysis considers the results on every test problem. The application
of the non-parametric tests was done in an analogous way and the results are
collected in Table 2. The conclusion is clear: AHMA is better than the other
two variants in all the problems, excepting the NC instance of the knapsack
problem, where the differences were not significant. In this analysis, AHMAR is
better than AHMAWL in almost all of the problems; but no statistical significant
differences were found over WC and NC knapsack instances.
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Table 2. Pairwise comparison of the algorithms on every test problems (each one
consisting on twenty scenarios). A ‘>’ sign indicates that the first algorithm was sig-
nificantly better than the second one. Symbol ‘-’ denotes no significant differences.

Problem AHMA vs AHMAR AHMA vs AHMAWL AHMAR vs AHMAWL

OneMax > > >
Plateau > > >

RoyalRoad > > >
Deceptive > > >

Knapsack SC > > >
Knapsack WC > > −
Knapsack NC − − −

5 Conclusions and Future Work

In this work we have analysed an important issue that arises in the design of
adaptive schemes for DOPs: should we forget the knowledge acquired once a
change in the environment occurs or should we use it in the new environment? To
this end, we have used AHMA, a state-of-the-art algorithm for binary DOPs that
incorporates a simple learning or adaptive scheme to adjust the usage probability
of two local search operators. Concretely, we analyzed three variants of AHMA’s
adaptative scheme: AHMAWL , AHMAR and AHMA. The first variant does not
perform any learning, the second one forgets the learning after changes and the
third one accumulates the knowledge during the whole search process.

The experimentation was done over three instances of a dynamic version of the
Knapsack Problem and four dynamic test functions: OneMax, Plateau, Royal-
Road y Deceptive. Twenty configurations (four severities × five change frequen-
cies) were considered for each instance. In short, the algorithms were compared
over 140 different scenarios.

Two main conclusions can be derived from this work. Firstly, it is clear that
including some sort of adaptation is beneficial: AHMA and AHMAR were bet-
ter than AHMAWL. In some specific scenarios where the severity was low, the
performance of AHMAR and AHMAWL was similar.

Secondly, restarting the selection probabilities of the local search operators
is not a good strategy. Maintaining the learnt values after a change is clearly
beneficial, at least under the scenarios tested.

Now, several lines of research arise. For example, it is not clear what it would
happen if more operators are available. If one of them gets a very low probability
of selection and these probabilities are kept, then it may be quite difficult to
“recover” it.

Another point to analyze is the “speed” of adaptation or learning. In this
sense a possible idea is to define an ideal adaptation profile and observe how
different learning techniques match this profile.
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Finally, we need to explore how these ideas on what to do with the acquired
knowledge at the level of parameters may have some parallelism with the changes
that are need to perform in the population when a change occurs.

Some of these topics are now being explored.
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Abstract. The canonical genetic code is almost universal. An intrigu-
ing question is why the canonical genetic code is used instead of another
genetic code. Some researchers have proposed that the canonical genetic
code is a product of natural selection. This hypothesis is supported by its
robustness against mutations. In this paper, we propose a new evaluation
function based on entropy and robustness against base position errors for
the study of genetic code adaptability. In order to find the best hypothet-
ical genetic codes in the search space, we use a genetic algorithm (GA).
The experimental results indicate that, when the proposed evaluation
function is compared to the standard evaluation function based only on
robustness, the difference between the fitness of the best hypothetical
codes found by the GA and the fitness of the canonical genetic code is
smaller.

Keywords: Genetic Algorithms, Genetic Code Adaptability, Base
Position Errors.

1 Introduction

The genetic information is stored in living organisms as DNA molecules. In one
of the gene expression steps, the DNA is copied into messenger RNA, this process
is called transcription. The messenger RNA dictates the amino acid sequence of
a protein, in a process called translation. Although, the alphabet of the acids
nucleic RNA and DNA is composed of 4 letters (4 nucleotides), whereas proteins
are encoded by 20 amino acids. During the translation process each triple of
nucleotide, which is called codon, is mapped in an amino acid, according to
the genetic code [3]. Therefore, the genetic code is an interface between genetic
information and the proteins, which are the macromolecules essential to most
biological processes in living organisms [1].

A genetic code maps each one each one of the 64 (43) codons into one of the
amino acids used in living organisms. Considering all possible codes mapping
the 64 codons into 21 amino acids, more than 1.51× 1084 possible genetic codes
can be generated [4]. However, only one genetic code, named canonical genetic
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code, is used in almost all complex living organisms. Why exactly this code was
selected over this large number of possible codes is a question that has intrigued
researchers for decades [5], [6], [7], [8], [9].

The canonical code’s organization remains under discussion, but many re-
searchers argue that the genetic code is a product of natural selection, instead
of random product [6]. This hypothesis is supported by its robustness against
mutations when amino acids properties like polar requirement are considered [5].
Haig and Hurst [10], and some other authors after them [8], [11], showed that
a very small percentage of random codes are better than the canonical code in
minimizing the deleterious effects of errors in the translation process.

According to the authors in [11], two approaches can be used to analyse the
genetic code adaptability. In the statistical approach, the number of random
codes better than the canonical genetic code is estimated, using a given mathe-
matical function to evaluate a possible genetic code. In the engineering approach,
the canonical code is compared with the best code obtained by an optimization
algorithm. The engineering approach allows to identify regions of the genetic
code space where best codes, according to a given evaluation function, can be
found.

Following the engineering approach, Santos and Monteagudo [12] used a Ge-
netic Algorithm (GA) with the standard evaluation function based on robustness
considering the polar requirement of the amino acids. They also used two types
of encodings: the first one is a non-restrictive encoding, where the allowed ge-
netic codes map the 64 codons into the 21 amino acids; the second is a restrictive
encoding, where only genetic codes with codons grouped in the same way as the
canonical code are allowed. One can observe that canonical code information
is used in the restrictive encoding in order to drastically reduce the number of
possible genetic codes found in the non-restrictive encoding. As a consequence,
best results are obtained with the restrictive encoding when the standard eval-
uation function based on the polar requirement is used (the authors in [12] also
considered other amino acids properties in the evaluation function, obtaining
similar results).

One of the problems with the non-restrictive encoding is that the best codes,
according to the standard evaluation function, are those with high frequency
of some few amino acids associated to codons. When the frequencies of codons
associated to amino acids in the canonical genetic code are plotted, one can
observe that most amino acids are codified by two or more codons. This property
is not observed in the best codes obtained by an optimization procedure when
polar requirement and non-restrictive encoding are considered, as we show in
next section. In those best codes, which are better than the canonical genetic
code when the standard robustness-based evaluation is considered, few amino
acids are associated with more than one codon.

In order to solve this problem, we proposed in a previous work [16] an
entropy-based evaluation function, considering that the genetic code was opti-
mized not only according to its robustness, but also according to the frequencies
of the codons associated to each amino acid. When the distribution of these
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frequencies is uniform, the amino acids have shorter distances to all others,
i.e. the number of changes necessary to replace one amino acid for another is
smaller. As consequence, it is easier for evolution to incorporate an amino acid
to a protein as the number of possibilities to codify an amino acid is higher. The
entropy-based function is composed of the robustness against errors considering
the polar requirement [8], [10], [12], [13] and the entropy. Maximizing the en-
tropy, uniform distributions of the frequencies of the codons are preferable than
distributions where the frequency of codons codifying the amino acids are very
unequal.

In [16], when the evaluation function is computed, the robustness in all base
positions of the codons are considered with the same probability. However, ex-
perimental data indicated that errors in the translational process vary according
to base position within a codon [12]. Hence, in this paper, we investigate a new
functions where the mistranslations and base position errors are considered in
the robustness term of the evaluation function, following the methodology pre-
sented in [12]. Here, we also use a GA to search the best genetic codes in order
to compare them to the canonical code. Using the new entropy-based function,
we obtained better results, even when compared to the restrictive encoding pre-
sented in [12]. In this sense, we show that a restrictive approach is not essential
in the investigation of the genetic code adaptability.

This paper is organized as follows: the standard and the new evaluation func-
tions are presented in next section, as well as the methods employed here; the
experimental results are presented in Section 3; finally, the conclusions are pre-
sented in Section 4.

2 Methods

The GA used here is implemented using C++ programming language. The non-
restrictive encoding, where each individual of the GA’s population is composed
of 61 positions, each one related to one codon, is employed. Each position corre-
sponds to one of 20 labels, each one representing an amino acid (the stop codons
are not considered, i.e., they remain fixed). Thus, each GA’s individual encodes
a hypothetical genetic code. Figure 1(a) shows a fragment of a hypothetical
genetic code, where each codon is associated to an amino acid.

The GA uses two reproduction operators: swap and mutation [12]. The first
one interchanges amino acids associated to two codons, i.e., two positions are
randomly selected and their amino acids are swapped as shown in Figure 1(b).

In the mutation operator, a position is selected in the code (individual) and
its corresponding amino acid is replaced by another one, selected among the 20
possible amino acids (Figure 1(c)). The position and the new amino acid are
randomly selected using a uniform distribution.

In order to select the individuals to be reproduced, tournament selection is
employed. In this technique, a percentage of individuals is randomly selected and
the individual with the best fitness is chosen. Furthermore, elitism is also used to
preserve the best individual found on previous generations. In the experiments
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(a) (b) (c)

Fig. 1. a) Individual’s encoding. Each GA’s individual represents a hypothetical genetic
code, which is composed by codons associated to amino acids. b) Swap operator. c)
Mutation operator.

presented in Section 3, the population size is equal to 500, the mutation rate is
0.01, swap rate is 0.5, and the tournament size is 3%. The GA is executed 10
times during 1000 generations with different random initial populations.

2.1 Robustness-Based Evaluation Function

The standard evaluation function which is commonly employed in literature is
the mean square (Ms(C)) change in an amino acid property. This measure com-
putes all possible changes to each base of all codons for a given code C [8],
[10],[12], [14], [15]. In general, polar requirement is considered the most sub-
stantial property when Ms(C) is computed. The measure Ms(C) is defined as:

Ms(C) =

∑

ij(X(i, C)−X(j, C))2
∑

ij N(i, j, C)
(1)

where X(k, C) is the amino acid property value (in this paper, the polar require-
ment) for the amino acid codified by the k-th codon of the genetic code C, and
N(i, j, C) is the number of possible replacements between codons i and j.

A lower value of Ms(C) means that the code C is robust, i.e., a change in a
codon base will not cause a drastic change in the amino acid property considered.
Ideally, the amino acid of a mutated codon is not replaced or replaced by another
with similar properties.

The fitness of the best generated code and the fitness of the canonical genetic
code are closer when compared to the average fitness of the random codes, i.e.,
the pmd indicates how close is the fitness of the canonical code to the fitness
of the best code found by the GA when compared to the average fitness of the
random codes.

Intuitively, if we think which amino acids are most important for minimizing
Eq. 1, we will conclude that those with shorter mean distances to all others are
the most important, i.e., those with intermediate values of polar requirement.
Table 1 shows the polar requirement of each amino acid and the mean distance
among the amino acids, considering the polar requirement . One can observe
that Alanine, Glycine, and Serine have the shorter mean distances.
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Table 1. Polar requirement and mean distance among amino acids

Amino Acid Cys Leu Ile Phe Trp Met Tyr Val Pro Thr

Polar requirement 4.8 4.9 4.9 5 5.2 5.3 5.4 5.6 6.6 6.6
Mean distance 12.86 12.35 12.35 11.85 10.93 10.49 10.08 9.31 6.67 6.67

Amino Acid Ala Ser Gly His Gln Arg Asn Lys Glu Asp

Polar requirement 7 7.5 7.9 8.4 8.6 9.1 10 10.1 12.5 13
Mean distance 6.17 6.00 6.23 6.96 7.39 8.82 12.65 13.18 31.80 37.13

Fig. 2. Frequencies of codons associated to amino acids in best code found in a run of
the GA with non-restrictive encoding

In this way, hypothetical genetic codes with higher number of codons as-
sociated to Alanine, Glycine, and Serine present best values for the evaluation
function given by Eq. 1. Running the GA with non-restrictive encoding and using
Eq. 1 reinforces this conclusion, as shown in Figure 2, which shows the distribu-
tion of frequencies for the best genetic code obtained by a run of the GA. One
can observe that the code, which presents better robustness than the canonical
code, showed in Figure 2 has a non-uniform frequency distribution, with most
amino acids codified by only one codon, differently from the canonical code.

In [16], we proposed to add an entropy-based term toMs(C) in the evaluation
function of the genetic codes in order to minimize this problem (see next section).
Our hypothesis is that, having more codons codifying an amino acid in a genetic
code, it becomes easier to incorporate an amino acid to a protein, as there are
more ways to change a current codon to obtain codons corresponding to new
amino acids. In other words, the mean distance between the amino acids, in
terms of number of changes necessary to replace one for another, decreases as
the codons distribution becomes more uniform. When entropy is maximized,
possible changes in one amino acid to another occur without excessive cost,
what is certainly useful in the biological evolution.

In order to show how uniform distributions of the frequencies of codons can
be useful in this problem, a simple is presented. In this example, a standard GA
is used to optimize the following fitness function:

f(y) = ‖d− y‖ (2)
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Fig. 3. Average best fitness for the sets of runs with different mapping tables

where d is the desired integer vector and y is integer vector representing the
phenotype of a GA’s individual. In this experiment, each individual of GA is
composed by a binary vector (individual genotype). Each 5 bits of the genotype
codifies one element of the vector y (each element of the vector y is a inte-
ger). The genotype is converted into phenotype y by means of a mapping table
(similar to a genetic code), which maps each 5 bits to a integer value. In the
experiment, the vector d is randomly generated in the initial population. The
vectors d and y are composed by values between 1 to 10 and the mapping table
matches all 5-bit possibilities, which are 32, to these values. In this way, we can
have more than one of these 5-bit elements associated to the same value. Three
mapping tables with different distributions are used in this example: the first
one is uniform, the second one has one integer value more frequent than the
others, i.e. a value between 1 to 10 associated with most of the 5-bit elements,
and the third table has two more frequent integer values. The standard GA with
crossover, mutation, elitism, and tournament selection is used to optimize the
vector y. The parameters used in the experiment are: size of the population
equal to 100 individuals, crossover rate equal to 0.6, mutation rate equal to 0.01,
and number of generations equal to 10000. Figure 3 presents the average best
fitness for three sets of 10 runs of the GA, each one using a different mapping
table.

One can observe that the fitness decreases faster when the uniform mapping
table is used. This result can be explained by the fact that it is easier for the
GA to change a 5-bit element of the genotype to reach the desired solution when
the distribution used in the mapping table is uniform and, as a consequence,
the mean distance between all 5-bit elements is smaller. One way to evaluate
the uniformity of the distribution, and as a consequence, the average mean dis-
tance between the amino-acids (i.e., the number of changes in the codons of
an amino-acid to the codons of other amino-acid), is to compute the entropy
of the distribution. In fact, in the results presented in Figure 3, higher entropy
means faster convergence for the algorithm (in the runs, the uniform distribution
had the highest entropy). However, higher entropy means, in general, a smaller
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robustness against mutations. In this way, a multi-objective evaluation function
is presented in next section.

2.2 Entropy-Based Evaluation Function

The entropy-based evaluation function proposed in [16] is given by:

f(C) = aMs(C) + (1− a) 1

S(C)
(3)

where the real weight a ∈ [0, 1] and S(C) is the entropy of genetic code C, given
by:

S(C) = −
∑

k

p(k, C) log p(k, C) (4)

where p(k, C) is the relative frequency of the k-th amino acid in the genetic
code C. The term Ms(C) is computed using Eq. 1. Normalized values of Ms(C)
and entropy are used here. One can observe that, when a is equal to 1.0, Eq. 3
reproduces Eq. 1. Smaller values of a yield in more uniform genetic codes. When
a is equal to 0.0, only entropy is considered and the best genetic codes are those
where all amino acids are codified by almost the same number of codons.

2.3 Proposed Evaluation Function

Nucleotides are composed by a nitrogenous base, a pentose, and a phosphate.
The nitrogenous bases are classified in purines and pyrimidines according to their
structure [3]. The purines Adenine (A) and Guanine (G) have a pair of fused
rings, while the bases Cytosine (C), Thymine (T), and Uracil (U) contain a single
ring [2]. Transition errors occur when a purine is replaced by another purine or
a pyrimidine is replaced by a pyrimidine. On the other hand, transversion errors
occur when a purine is replaced by a pyrimidine or vice versa. Experimental data
show that errors in the translational process occur in a complex manner [17],
but, in general, mistranslation accuracy varies according to base position within
a codon. Freeland and Hurst [8] summarized this knowledge in the following
rules:

– Mistranslation of the second base is much less frequent than mistranslation
in the other two bases, whereas mistranslation of the first base is less frequent
than mistranslation of the third base.

– Most mistranslations of the second base are transitional.
– Most mistranslations of first base are transitional.
– The transition bias is very small in the third base mistranslation.

Freeland and Hurst [8] propose that this information should be added to
the evaluation function when analyzing the genetic code adaptability. For this
purpose, a mistranslation weight matrix is used, as shown in Table 2. TheMs(C)
computed with mistranslation weights is called Mst(C).
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Table 2. Weights used in Mst calculation

Weight Fist base Second base Third base

Transitions 1 0.5 1
Transversions 0.5 0.1 1

In this paper, we propose to useMst(C) and entropy to evaluate the hypothet-
ical and canonical genetic codes. In this way, the proposed evaluation function,
based on Eq. 3, is given by:

f(C) = aMst(C) + (1− a) 1

S(C)
(5)

2.4 Comparison of the Evaluation Functions

In order to compare the canonical genetic code to the best codes obtained by
the GA using Eq. 5 with different values of a as fitness function (engineering
approach), we use two measures:

– Percentage of Minimization Distance (pmd), as described in [7];
– Improvement, as mentioned in [12];

The pmd is computed as follows:

pmd = 100
Δmean −Δcode

Δmean −Δlow
(6)

where Δmean is the average fitness of genetic codes randomly generated, Δcode

is the fitness of the canonical genetic code, and Δlow is the fitness of the best
code found by the GA.

Higher values of pmd means that the fitness of the best generated code and
the fitness of the canonical genetic code are closer when compared to the average
fitness of the random codes, i.e., the pmd indicates how close is the fitness of the
canonical code to the fitness of the best code found by the GA when compared
to the average fitness of the random codes.

The other measure, improvement, gives the percentage of the best code im-
provement in relation to the canonical genetic code fitness, i.e.,

Improvement = 100
Δcode −Δlow

Δcode
(7)

Improvement decreases as the pmd increases, providing a measurement of how
the best code found improved the fitness compared to the canonical genetic code.

The average fitness obtained for different values of a in Eq. 5 is also presented
in the tables of results.

Besides, we also use the statistical approach (see 1) to analyse the proposed
evaluation function. In this approach, the GA is not used. Instead, a large number
of random codes is generated and they are compared to the canonical code using
the proposed evaluation function with different values of a.
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Table 3. Fitness of the best individuals (over 10 runs) for different values of a

a mean std median minimum

0.4 0.635 0.005 0.634 0.630
0.5 0.540 0.004 0.539 0.534
0.6 0.442 0.003 0.442 0.438
0.7 0.349 0.007 0.347 0.342
0.8 0.253 0.008 0.253 0.246
0.9 0.154 0.005 0.154 0.148
1.0 1.138 0.083 1.130 1.021

Table 4. Mean and minimum values of pmd and improvement (over 10 runs)

a pmd (mean) pmd (best) Impr.(mean) Impr. (best)

0.4 80.4 78.8 6.02 6.62
0.5 83.1 81.5 7.4 8.2
0.6 84.3 83.1 9.7 10.6
0.7 86.0 84.4 12.2 13.9
0.8 87.0 85.4 16.9 19.2
0.9 87.0 85.8 27.3 30.2
1.0 86.4 85.5 56.7 61.2

3 Results

The results of the GA with fitness given by the proposed evaluation function
(Eq. 5) are presented in Section 3.1 (engineering approach). The results of
the statistical approach with the proposed evaluation function are presented in
Section 3.2.

3.1 Engineering Approach

Tables 3 and 4 show the results for the proposed evaluation function (Eq. 5) for
different values of a.

One can observe in the tables that the pmd and the improvement of the
experiments with the proposed evaluation function for a = 0.9 are better than
the values for the standard evaluation function (i.e, when a = 1.0). When a is
equal to 0.9, the pmd is 85.8%, while, when entropy is not considered (a = 1.0),
the pmd is 85.5%. The fitness of the best code, when a is equal to 1, is 1.021,
while the fitness of the canonical code is 2.63, which is very close to the value
obtained in [12]. The pmd obtained when a = 1.0 is 85% in [12], also similar to
the value obtained here.

The frequencies of codons associated with each amino acid for the best code
found for the runs with a = 0.9 is presented in Figure 4. One can observe that the
frequency distribution of codons associated with the amino acids is more uniform
than the distribution for the best code obtained for the standard evaluation
function (a = 1.0) shown in Figure 2. One can observe that the distribution for
a = 0.9 is similar to the distribution of the canonical code.
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Fig. 4. The best code found by GA optimization when a = 0.9 and using Mst(C), in
comparison with the canonical genetic code

3.2 Statistical Approach and Frequency Code Analysis

Here, the results of the comparison of the canonical code with random codes
using the proposed evaluation function with different values of a are presented.
This experiment intends to find how many random codes are better than the
canonical code when the evaluation function proposed in [16] (Eq. 3) and the
proposed evaluation function (Eq. 5) are employed for different values of a.
In the experiments presented here, 1 billion random codes are generated. The
results are presented in Table 5. One can remember that, when a is equal to 0,
the evaluation fitness depends only on the entropy, and as consequence, a large
number of random codes have almost uniform distributions, generating a large
number of random codes better than the canonical code. On the other hand,
when a is equal to 1, the standard evaluation function, where only robustness
is considered, is reproduced. In this case, similar results to those found in the
literature were found in the experiments. One can observe that very few random
codes are better than the canonical codes when a is in the interval [0.4, 0.7]
for the evaluation function proposed in [16], indicating the good quality of the
evaluation function when compared to the standard evaluation function (a = 1).

One can still observe that, when mistranslation is used (proposed evaluation
function), there is no random codes better than canonical code in the interval
[0.2, 1.0], indicating that the use of the error as a function of base position in-
creases codes robustness. These statistical approach results reinforces the better
results of the proposed evaluation function, when compared to the function pre-
sented in [16], also presented when the GA was employed (engineering approach).

In addition, the histograms for the evaluation value of 1 billion genetic codes
randomly generated are presented in figures 5(a)-6(b) . The horizontal axis
represents small ranges of evaluation values, while the vertical axis gives the
number of random codes in each range. The evaluation value for the canonical
genetic code is also presented. Figures 5(a) and 5(b) show the histograms for
the evaluation function proposed in [16] (Eq. 3) for a = 1.0 and a = 0.7 (best
value found), while figures 6(a) and 6(b) show the histograms for the proposed
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Table 5. Number of random codes (over 1 billion codes) better than the canonical
code using evaluation functions given by equations 3 and 5 with different values of a

(a) Eq. 3 Eq. 5

0 778478253 778478253
0.1 11491417 58711
0.2 5583 0
0.3 75 0
0.4 7 0
0.5 6 0
0.6 4 0
0.7 5 0
0.8 9 0
0.9 13 0
1.0 18 0

(a) (b)

Fig. 5. a) Empirical distribution for the evaluation function proposed in [16] with
a = 0.7. b) Empirical distribution for the evaluation function proposed in [16] with
a = 1.0.

(a) (b)

Fig. 6. a) Empirical distribution for the proposed evaluation function with a = 0.9. b)
Empirical distribution for the proposed evaluation function with a = 1.0.

evaluation function (Eq. 5) for a = 1.0 and a = 0.9. Those results reinforce the
importance of the engineering approach, as it allows identifying regions of the
optimization space where best codes can be found, i.e., it allows to find the best
codes without generating a huge number of random genetic codes.
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4 Conclusion

In this paper, we to use base position errors in an entropy-based evaluation
function for the study of genetic code adaptability. In the proposed evaluation
function, robustness should be minimized while entropy should be maximized.
Using both the engineering and statistical approach, better results were obtained
with the proposed evaluation function when compared to the standard evalua-
tion function based only on robustness and to the evaluation function proposed
in [16]. It is important to observe that, despite closer results of the fitness were
obtained between the best codes found by the GA and the canonical codes, the
codes are different. In this way, a future work must investigate if the canonical
genetic code represents a local optimum for the proposed evaluation function.
Hence, another important future work is to investigate new evaluation func-
tions. Additionally, a term to represents the noise of evolutionary process can
be considered in the fitness function. Polar requirement seems to be a important
property to be taken into account, but cannot not be the only. Other amino
acids properties can be investigated using a multiobjective approach.
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Abstract. Throughout the history, Genetic Algorithms (GA) have been
widely applied to a broad range of combinatorial optimization problems.
Its easy applicability to areas such as transport or industry has been
one of the reasons for its great success. In this paper, we propose a new
Adaptive Multi-Crossover Population Algorithm (AMCPA). This new
technique changes the philosophy of the basic genetic algorithms, giving
priority to the mutation phase and providing dynamism to the crossover
probability. To prevent the premature convergence, in the proposed
AMCPA, the crossover probability begins with a low value, and varies
depending on two factors: the algorithm performance on recent gener-
ations and the current generation number. Apart from this, as another
mechanism to avoid premature convergence, our AMCPA has different
crossover functions, which are used alternatively. We test the quality of
our new technique applying it to three routing problems: the Travel-
ing Salesman Problem (TSP), the Capacitated Vehicle Routing Problem
(CVRP) and the Vehicle Routing Problem with Backhauls (VRPB). We
compare the results with the ones obtained by a basic GA to conclude
that our new proposal outperforms it.

Keywords: Adaptive Population Algorithm, Genetic Algorithm, Rout-
ing Problems, Combinatorial Optimization, Intelligent Transport
Systems.

1 Introduction

Since its proposal in the ’70s, genetic algorithm (GA) has become one of the
most successful meta-heuristic techniques for solving combinatorial optimization
problems. GAs are based on the genetic process of living organisms and in the
law of the species evolution, proposed by Darwin. The basic principles of this
technique were proposed by Holland [16], trying to imitate the natural selection
process and the strongest specimens survival. Even though, its practical use for
solving complex problems was shown later by De Jong [8] and Goldberg [12].
From that moment, GAs has been the focus of a large number of papers and

G. Terrazas et al. (eds.), Nature Inspired Cooperative Strategies for Optimization 113

(NICSO 2013), Studies in Computational Intelligence 512,

DOI: 10.1007/978-3-319-01692-4_9, © Springer International Publishing Switzerland 2014



114 E. Osaba et al.

books [1, 15], and they have been applied in a wide range of fields, like transport
[24], software engineering [22] or industry [11].

In this paper, we present an Adaptive Multi-Crossover Population Algorithm
(AMCPA) for solving routing problems. This new meta-heuristic is a variant of
the basic GA. It prioritizes the local optimization (mutation), applying crossover
operators only when they would be beneficial to the search process. In our AM-
CPA the crossover probability varies, depending on the search performance on
recent generations and the current generation number. This dynamism helps
our technique to prevent premature convergence. Apart from this, the proposed
AMCPA has multiple crossover functions, which are applied alternatively.

Adjusting the control parameters of the GAs has always been one of the most
controversial questions in the field of genetic algorithms. Related works have
been done since the 80’s [14] until today [9]. Concretely, the idea of adapting
crossover and mutation probabilities (pc and pm) to improve the performance of
GAs has been studied since long time ago, for example in [34] and [7], but it is
also subject of many studies nowadays. Below were mentioned several examples
of works on this topic, being the whole literature for this field much larger. In
[37], for example, a genetic algorithm that adapts its pc and pm in function of the
population fitness difference and the maximum fitness value is presented. In [45]
and [46], a GA that uses fuzzy logic to adaptively tune pc and pm is introduced. In
these proposals, a clustering technique is used to split the population in clusters.
Then, a fuzzy system determines the pc and pm depending on the best and worst
chromosome of each cluster. In [40] is proposed a GA that, besides adapting
the pm, determines the types of replacing genes in the mutation procedure.
In [44] some improvements on adaptive GAs for reliability-related applications
are introduced. In that work, the authors present a simple parameter-adjusting
method, using the fitness average and variance of the population. In [43] an
adaptive algorithm for optimizing the design of high pressure hydrogen storage
vessel is presented. That algorithm adapts pc and pm depending on the fitness
value of each individual. Finally, another example of adapting pc and pm is the
one presented in [42]. In that work an improved adaptive genetic algorithm based
on hormone modulation mechanism to solve the job-shop scheduling problem is
proposed.

Regarding the multi-crossover, this mechanism has been used less than the
previously explained one. Anyway, it has also been studied before, long time
ago and nowadays. In [36], for example, an adapting crossover technique for an
population algorithm is presented, which varies the crossover operator and its
utilization frequency. The algorithm proposed in that work uses two crossovers
functions depending on the population situation in the solution space. Another
example is [25]. In this work a strategy adaptive genetic algorithm is proposed for
solving the well-known Traveling Salesman Problem (TSP) [18]. This algorithm
works with three different crossover functions. The choice of the function is
decided partly by the quality of each of them and partly at random.

After a brief analysis of the state of the art, we detail the most innovative
aspects of the new technique we propose:
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– Our AMCPA reverses the philosophy of conventional GAs. It starts with a
high values of pm and a very low or null value for pc. This fact is based on
our previous work [28].

– Our proposal adapts its pc depending on the current generation number
and the search performance in recent iterations, instead of relying on the
population fitness, as most previous studies.

– The proposed algorithm combines the pc adaptation and the multi-crossover
mechanism, something that has not been done frequently before.

– The introduced AMCPA is tested with routing problems. Traditionally,
adaptive algorithm has not been applied to this type of problem.

This paper is structured as follows. In the following section we introduce our
proposed technique. Then, we will show the results of our AMCPA applied to
three different well known routing problems: TSP, Capacitated Vehicle Routing
Problem (CVRP) [17] and Vehicle Routing Problem with Backhauls (VRPB)
[13]. In the same section we compare the results obtained by our algorithm with
the results of a basic GA. We finish this work with the conclusions and future
work.

2 Our Adaptive Multi-Crossover Population Algorithm

As already mentioned, our AMCPA is a variant of a conventional GA. Its
flowchart can be seen in figure 1. The proposed technique reverses the philoso-
phy of conventional GAs, giving higher priority to the individual optimization,

Fig. 1. Flowchart of the algorithm
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provided by the mutation phase, and giving less importance to the crossovers
phase. These fundamentals are based on our recently published study [28], in
which we analyze the blind crossover suitability in GAs solving routing prob-
lems. In that work we check our theory, which stands that the crossover phase is
not efficient for the optimization capacity of the technique when it is applied to
routing problems using path encoding. For this reason, the proposed AMCPA
offers a greater role to the mutation phase. Despite this, we consider that the
crossovers between different individuals can be beneficial to maintain the popu-
lation diversity. Therefore, in the proposed AMCPA we try to fit the pc to the
search process needs. Apart from that, as an additional tool to avoid the prema-
ture convergence, our AMCPA has a multi-crossover mechanism, which changes
the crossover operator of the technique for all the population. These changes are
made based on various concepts which will be explained later. Below, we will
describe these mechanisms.

2.1 Adaptive Mechanism

Regarding the pm, in our AMCPA, all individuals in the population go through
the mutation process every generation. This would be equivalent to having a
pm equals to 1.0. On the other hand, in the proposed method the pc starts
with a very low value, close to 0.0. The latter parameter is modified as search
progresses, increasing or restarting its value to 0. The modification is performed
based on the improvement in the best solution found in the last generation. This
modification is based on the following criteria:

– The best solution found by the technique has been improved in the last gen-
eration: This means that the search process evolves correctly and that it
is not necessary to diversify the population. In this case, the value of pc is
restarted.

– The best solution found by the technique has not been improved in the last
generation: In this case, it could be considered that the search is in a bump.
This means that the search process could be trapped in a local optimum, or
that the population could be concentrated in the same region of the solution
space. At this time, increasing the population diversification using crossover
operators would be beneficial. With this intention pc is increased.

Whenever the best solution found has not been improved over the previous
generation, pc increases based on the following function, where N represents the
number of generations executed without improvements, NG the total number
of generations executed and NMF represents the size of the mutation operator
neighborhood:

pc = pc +
N2

NMF 2
+

NG

NMF 2

As seen in the formula above, pc increases proportionally to the total number
of generations (NG) and the number of generations without any improvement
in the best solution (N).
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2.2 Multi-Crossover Mechanism

In relation to the multi-crossover feature, as we have already said, our AMCPA
has more than one crossover operator which are alternated during the execution.
At the beginning, one operator is assigned at random. Along the execution, this
function will be randomly replaced by another available, allowing repetitions.
For this purpose, a maximum pc value is defined. If over the generations the pc
value exceeds that maximum, the crossover function will be replaced at random
by another one, and pc will be restarted with the initial value.

The maximum pc value is an adjustable parameter, which has to be high
enough to prevent a premature function change. Furthermore, to avoid an ex-
cessive runtime waste, the value cannot be too high.

This mechanism allows a diversification of the population much more efficient
than other similar techniques. That is, prevent the algorithm from being trapped
in a local optimum.

3 Experimentation

In this section we show in detail the results of applying our AMCPA three
well-known combinatorial optimization problems. As we have mentioned, the
technique proposed in this paper is a basic GA variation. For that reason, we
compare the results obtained by a traditional GA, and our new AMCPA. For
both algorithms we have used similar functions and parameters, so that the
only difference between them is their working way. This method of comparing
meta-heuristics is the most reliable way to determine which technique gets better
results. The tests were performed with the three different problems that have
been mentioned in the introduction: TSP, CVRP and VRPB. All these problems
are well-known in combinatorial optimization and they are used in many studies
annually [3, 4, 10, 19, 20, 23, 26, 33].

3.1 Parameters of the Algorithms

For both algorithms, the population is composed by 50 individuals, which are
created randomly. The aim of this study is to make a comparison between our
AMCPA and a GA, for that reason the population size is not very important,
as long as the two meta-heuristics have the same. Regarding the selection and
survivor phases, same function is used for both in all instances, which is the 0.5
elitist - 0.5 random. About the ending criteria, the execution of both algorithms
finishes when there are a generation number proportional to the size of the
neighborhood (obtained by the mutation operator) without improvements in
the best solution found. The individuals encoding mode is the Path Encoding.

For the GA, the pm is 0.05 while the pc is 0.95. In the case of the proposed
AMCPA, the pc starts at 0.0. When the best solution found is not improved,
the pc increases following the formula shown in Section 2.1, otherwise, it returns
to 0.0.
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For the TSP, the crossover functions used for our AMCPA are Order Crossover
(OX) [6], Modified Order Crossover (MOX) [30] and Order Based Crossover
(OBX) [38]. These functions have been widely used since their creation [2, 29,
32, 35, 41]. On the other hand, OX is used as crossover function for the GA.
The mutation function for both techniques is the 2-opt [21], which has been very
used since its formulation [5, 39].

For the CVRP and VRPB, the crossover functions used for the proposed AM-
CPA are the Half Crossover (HX) and Half Random Crossover (HRX). These
functions are a particular case of the traditional crossover, in which the cut point
is made always in the middle of the path. With HX, first, the 50% of the best
routes in one randomly chosen parent are selected and inserted in the child.
Then, the nodes already inserted are removed from the other parent. Finally,
the remaining nodes are inserted in the same order in the final solution, creating
new routes. The HRX working way is similar to HX. In this case, in the first
step, the routes selected from one of the parents are chosen randomly, instead
of selecting the best ones. For the GA the crossover function used is the HX.

Continuing with the CVRP and VRPB, regarding the mutation function, we
have used for both techniques the called Vertex Insertion Routes. This function
selects and extracts one random node from a random route. Then, the node is
re-inserted in a random position in another randomly selected route. New routes
creation is possible with this function.

3.2 Results

All the tests were performed on an Intel Core i5 2410 laptop, with 2.30 GHz
and a 4 GB of RAM. For each run we display the total average, the best result
obtained and the standard deviation. The objetive function used in the three
problems is the total traveled distance. We also show the average runtime, in
seconds. In order to determine if our AMCPA average is significantly different
than the averages obtained by GA, we perform Students t-test. The t statistic
has the following form [27]:

t =
X1 −X2

√
(n1−1)SD2

1+(n2−1)SD2
2

n1n2−2
n1+n2

n1n2

where:

X1: Average of our AMCPA,
SD1: Standar deviation of our AMCPA,
X2: Average of GA,
SD2: Standar deviation of GA,
n1: Our AMCPA size,
n2: GA size,

The t values shown can be positive, neutral, or negative. The positive value
of t indicates that our proposal is significantly better than GA. In the opposite
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case, GA obtains better solutions. If t is neutral, the difference between the two
algorithms is not significant. We stated confidence interval at the 95% confidence
level (t0.05 = 2.021).

Each experiment is repeated 20 times. Instances for the TSP were obtained
from the TSPLIB Benchmark [31]. For the CVRP, the instances were picked
from the CVRP set of Christofides and Eilon (http://neo.lcc.uma.es/vrp1). The
name of each TSP and CVRP instances has a number that displays the number
of nodes it has. Tables 1 and 2 show the results for these problems.

Table 1. Results of our AMCPA and GA for the TSP

Instance Proposed AMCPA Genetic Algorithm t test

Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t

Oliver30 420 427.5 4.4 420 0.08 435.3 15.3 420 0.19 +
Eilon50 425 440.5 6.6 430 0.42 469.9 17.5 435 1.59 +
Eil51 426 445.0 5.9 441 0.36 465.7 10.5 441 1.33 +
Berlin52 7542 7805.2 284.7 7542 0.29 8040.1 188.4 7745 1.36 +
St70 675 706.5 16.1 692 0.81 750.2 30.1 707 4.18 +
Eilon75 535 575.0 9.5 547 1.27 615.4 14.7 585 6.22 +
Eil76 538 578.1 12.2 566 1.28 610.6 12.2 558 6.96 +
KroA100 21282 22125.3 460.3 21608 2.25 22270.4 711.0 21566 14.84 +
KroB100 22140 23043.7 355.6 22536 2.28 23565.4 489.3 23253 13.54 +
KroC100 20749 21550.8 355.6 20785 2.40 22572.2 713.6 22271 16.52 +
KroD100 21294 22125.5 457.0 21725 2.25 23246.8 424.7 22162 12.92 +
KroE100 22068 23196.7 484.9 22611 2.54 23329.6 712.4 22412 12.72 +
Eil101 629 678.1 13.6 657 4.11 725.8 22.2 696 18.38 +
Pr107 44303 45361.2 953.1 44438 4.50 46742.2 1404.7 45833 18.21 +
Pr124 59030 60578.6 752.4 59030 6.86 62203.0 1223.3 60127 22.34 +
Pr136 96772 101712.4 1548.1 98125 7.42 104308.7 2425.1 99835 46.79 +
Pr144 58537 60259.8 1128.6 59061 9.57 62892.2 2552.9 60275 50.12 +
Pr152 73682 76225.4 1138.0 74518 10.32 77925.1 2862.3 74250 57.25 +

For the VRPB we have used 10 instances. The first 6 were obtained from the
VRPTW Benchmark of Solomon (http://neo.lcc.uma.es/vrp). In this case, the
time constraints have been removed, but vehicle capacities and the amount of
customer demands are retained. Apart from this, we also have been modified the
demands nature with the aim of creating pickup and deliveries. The remaining 4
instances were obtained from the CVRP set of Christofides and Eilon. In these
instances, the vehicle capacities and the number of nodes have been maintained,
but the demand types have been also changed to have pickups and deliveries.
For these cases the optimums are not shown, since they are not typical VRPB
instances, therefore, these values are unknown. The last table (table 3) shows
the results for this problem.

1 Last update: January 2013.
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Table 2. Results of our AMCPA and GA for the CVRP

Instance Proposed AMCPA Genetic Algorithm t test

Name Optima Avg. S. dev. Best Time Avg. S. dev. Best Time t

En22k4 375 395.6 7.1 375 2.08 388.4 15.1 375 3.78 -
En23k3 569 611.8 43.3 569 2.24 646.5 38.6 592 3.78 +
En30k3 534 560.7 25.8 534 3.02 570.8 25.1 535 6.74 +
En33k4 835 903.5 20.2 869 3.15 921.1 27.2 882 7.40 +
En51k5 521 617.6 27.2 587 4.56 680.8 47.1 604 18.17 +
En76k7 682 813.0 62.8 762 10.17 878.9 44.8 793 57.17 +
En76k8 735 876.5 32.1 819 10.67 953.4 46.5 920 53.86 +
En76k10 830 965.8 17.6 921 11.04 1029.6 34.4 956 55.27 +
En76k14 1021 1170.7 46.3 1135 7.39 1191.6 35.0 1125 80.54 +
En101k8 815 1012.0 59.6 916 17.95 1081.0 43.3 1011 100.25 +
En101k14 1071 1272.6 47.1 1201 18.60 1369.7 49.8 1308 120.84 +

Table 3. Results of our AMCPA and GA for the VRPB

Instance Proposed AMCPA Genetic Algorithm t test

Name Avg. S. dev. Best Time Avg. S. dev. Best Time t

C101 724.4 41.9 627 8.25 723.0 71.9 624 34.93 ∗
C201 652.4 12.4 617 4.04 849.9 98.8 744 25.43 +
R101 962.2 38.7 875 5.86 1081.2 70.7 957 29.51 +
R201 1105.2 41.7 1021 12.54 1335.7 112.4 1224 56.94 +
RC101 595.2 47.1 529 2.13 659.4 64.2 563 5.45 +
RC201 1221.6 90.8 1167 18.35 1505.3 92.2 1367 57.59 +
En30k4 534.5 27.8 500 1.57 583.4 67.0 520 3.53 +
En33k4 812.9 45.8 787 1.85 848.9 44.4 751 4.64 +
En51k5 688.1 34.8 636 4.01 727.6 30.6 680 9.41 +
En76k8 912.8 43.5 798 7.55 1008.8 40.5 927 28.61 +

3.3 Analysis of Results

Viewing the results obtained the conclusion that can be drawn is clear. The
proposed technique outperforms the GA in terms of solution quality and run-
times. The reason why our algorithm needs lower runtime is logical. If mutation
and crossover functions are compared, the last ones needs more time to execute,
since they operate with two different solutions, and their working way is more
complex that the mutation. On the other hand, the mutation operates with one
solution and it is a simple modification in a chromosome which can be made in
a minimum time. Our AMCPA makes fewer crossovers than the GA. This fact
is perfectly reflected in the runtimes, giving a great advantage to our technique.

The reason why the proposed AMCPA gets better results can also be ex-
plained, and it is based on the conclusions obtained in our recent study [28].
Crossovers between different individuals are very useful resources if we want to
make jumps in the solution space. Using crossovers helps a broad exploration
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of the solution space, but does not help to make an exhaustive search. To get
a deeper search, the existence of a function that takes care of optimizing the
solutions independently becomes necessary. The mutation function can handle
this goal easily.

With all this, our AMCPA is a technique that is able to perform a thorough
and intense search in promising regions of the solution space using the mutation
function. While it do this, it uses the crossover function in case the search is
in a bump, in order to avoid local optimums. Using the crossovers, the current
population is expanded through the entire solution space, and will be easier to
find regions that allow the search to reach better results. This diversification is
enhanced thanks to the multi-crossover, allowing a broader exploration.

By contrast, with the GA basic structure, the search performed by the al-
gorithm comprises a large percentage of the solution space, but has a smaller
capacity to deepen in those areas which are most promising. This means that,
finally, the GA obtains worse results than the AMCPA.

4 Conclusions and Further Work

In this paper we have presented an Adaptive Multi-Crossover Population Al-
gorithm for solving routing problems, which is a variation of the conventional
genetic algorithm. Our AMCPA reverses GAs conventional philosophy, giving
priority to the individual autonomous improvement, making crossovers only
when they are beneficial for the search process. The proposed technique has
two mechanisms to avoid the premature convergence, helping to the population
diversity. These mechanisms are the crossover probability adaption and the use
of multiple crossover operators.

Initially we have introduced our new meta-heuristic, explaining how it works.
Then, we have shown the results obtained by applying it to three different routing
problems. We have compared these outcomes with obtained by a basic GA, to
conclude that our method gets better results. Finally, we have reasoned why our
new technique is better than the GA.

As future work, we will compare the performance of our technique with other
approaches of similar philosophy that we can find in the literature. In addi-
tion, we are planning to apply our new proposal to real life routing problems.
At this time, we are planning its application to a dynamic distribution system
of car windscreen repairs. In this case the problem is designed as a dynamic
CVRP, wherein the routes may be re-planned according to the needs of the cus-
tomers. Apart from this, we are planning to extend our technique, turning it into
an island-based meta-heuristic. This new technique will use different crossover
functions for the different populations evolving in each island, and will make
transfers of individuals between them.
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Abstract. The performance of multi-objective evolutionary algorithms
(MOEA) is severely deteriorated when applied to many-objective prob-
lems. For Pareto dominance based techniques, available information
about optimal solutions can be used to improve their performance. This
is the case of corner solutions. This work considers the behaviour of three
multi-objective algorithms (NSGA-II, SMPSO and GDE3) when corner
solutions are inserted into the population at different evolutionary stages.
Corner solutions are found using specific algorithms. Preliminary results
are presented concerning the behaviour of the aforementioned algorithms
in five benchmark problems (DTLZ1-5).

1 Introduction

In last three decades MOEA have been proposed to solve real-world problems
[1–3], involving the simultaneous optimization of several objectives. Most of the
objectives are in conflict with each other, meaning that the improvement of one
objective value will deteriorate some other objective values. The overall goal is to
obtain a set of non-dominated optimal solutions with both good convergence to
the true Pareto front and good solution diversity, representing different trade-off
among objectives. Some well-known algorithms used in MOEA are the Non-
Dominated Sorting Genetic Algorithm (NSGA-II) [4], the Speed-Constrained
Multi-objective Particle Swarm Optimization (SMPSO) [5] and the Generalized
Differential Evolution (GDE3) [6]. MOEA have been successfully applied in solv-
ing problems with two or three objectives [1, 2]. However, when these algorithms
are applied to many-objective problems (more than three objectives) [7] some dif-
ficulties may arise due to the significant increase of the search complexity [3, 8].
In the next section a perspective of main issues inherent to the evolutionary
based many-objective optimization is presented.

An approach based on the introduction of informed solutions in the beginning
of the search procedure has been proposed by Dasgupta et al. [9], in order to
improve many-objective optimization algorithms performance. Examples of in-
formed solutions are the extreme and internal points approximated to the Pareto
front. This informed solutions can be found by specific algorithms [9–12]. While
the results presented by [9] indicate improvements in the many-objective op-
timization performance, there are still some open research issues. One of this
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issues concerns the study of the most appropriate evolution stage to introduce
the informed solutions into the search procedure. Indeed, Dasgupta et al. [9]
solely considered the introduction of informed solutions in the beginning of the
search. The introduction of these solutions in a early search stage could lead to
an over-dominance effect, preventing a proper initial exploration of the search
space. Recently a corner based approach has been proposed to reduce the dimen-
sionality of the many-objective problems [10]. Several techniques based on the
Nadir point determination have been proposed, which can be used to determine
the corner (or approximated) solutions [8, 13, 14].

The influence of inserting corner solutions in the population at different evolu-
tionary times is the overall objective of this study. Preliminary results regarding
the use of corner solutions in different evolutionary stages of the many-objective
optimization process are presented. Three different paradigms of evolutionary
computation are considered: genetic algorithms, particle swarm optimization
and differential evolution through three well known multi-objective algorithms,
namely: NSGA-II, SMPSO and GDE3.

The remaining of this article is organized as follows: Section 2 presents intro-
ductory notions regarding many-objective optimization; Section 3 presents the
problem statement and the research hypothesis under study; Section 4 describes
the algorithms, test functions and metrics used. Section 5 presents preliminary
results and analysis. Finally, Section 6 concludes the paper and outlines future
work.

2 Many-Objective: Introductory Concepts

Many real world engineering applications require solving search and optimiza-
tion problems with more than three objectives [2]. The majority of MOEA use
the domination principle, which together with the concept of diversity main-
tenance are many-objective MOEA low performance major causes [8]. These
challenges motivated significant research efforts in addressing many-objective
optimization in the last decade [2, 10, 15]. However despite these efforts, as
it will be overviewed for evolutionary based techniques, there are still many
open research questions. After the motivation for addressing many-objective op-
timization problems has been presented, a relevant question is: what makes a
many-optimization problem difficult? Some of the key points providing answers
to this question are:

– Many-objective problems have an intrinsic tendency to achieve populations
in which all (or nearly all) elements represent non-dominated solutions [16] at
early search stage. Thus, Pareto based selection pressure is seriously compro-
mised and consequently their convergence properties. This has been typified
as deterioration of search ability problem [3, 8].

– A huge number of solutions is necessary to approximate the Pareto front
to represent a higher dimensionality. This problem can be attenuated by
increasing the population and archive size. However, it has been shown [3]
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that there is not an archiving technique which can store all the necessary
solutions to characterize the Pareto front, due to the exponential growing
factor and considerable increase of the computational effort.

– The visualization process allowing the decision maker to select the non-
dominated solution which best suits its needs, is much more difficult for
many-optimization techniques [17].

2.1 Approaches to Deal with Many-Objective Problems

Several approaches have been proposed to deal with many-objective problems,
which can be classified according to the following categories:

– Preference-ordering based techniques. The basic idea is to try to dis-
tinguish non-dominated solutions using fitness assignment techniques which
improve the many-objective search efficiency, in a way their optimal solu-
tions set is a subset of the Pareto optimal set. Examples of modified non-
dominated ranking techniques are [16, 18–20].

– Objective or dimensionality reduction. Some high-dimensional prob-
lems can be reduced to fewer objectives. In cases where one or more objec-
tives are redundant these can be discarded [10, 21–24].

– Preference information. Considering the difficulties inherent to many-
objective optimization problems, particularly in representing adequately all
Pareto front, some approaches have been proposed which are directed to
detect particular regions or points of the Pareto front. The preference infor-
mation can be incorporated in the many-objective problems by the decision
maker, so the algorithms will be focused in a region of interest [25, 26]. Al-
gorithms can also be guided by Pareto front to specific regions, like knee
points [11, 12].

The first category gives more importance to some non-dominated solutions
when the Pareto dominance considers all non-dominated solutions equally im-
portant. For the second category, it is observed that many problems with more
than tree objectives have objectives that are not in conflict between them or
some objectives are not so important. Therefore, it is possible to exclude those
objectives from the problem and if it has less than four objectives, can either
be solved using MOEA, or can be a first step to the problem solving with other
technique such as preference information [26]. In the preference information cat-
egory, information can be provided interactively during the search, and often
objectives lose relevance throughout the search. The information can also be
provided prior to the algorithm execution.

3 Problem Statement

Several studies have explored the use of population initialization techniques to
improve the search in many-objective optimization. This is the case of Gutiérrez
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et al.[27]. An approach that appears obvious in improving the optimization pro-
cedure is based on the use of optimal solutions or near-optimal solutions in
the initial population. This approach was explored by Dasgupta et al. [9] and
termed informed initialization. The overall goal is to use extreme and internal
Pareto front points to improve the search procedure obtained previously using a
fast convergence aggregated single objective technique. Preliminary results pre-
sented in Dasgupta et al. [9] indicate that classical algorithms such as NSGA-II
can benefit from the inclusion of informed solutions in the initial population.

Following this line of thought the hypotheses under study here concerns the
introduction of corner solutions in different evolutionary stages to evaluate their
influence in the MOEA performance.

4 Algorithms, Test Functions and Performance Metrics

4.1 Algorithms

Three well known MOEA were selected to verify if the introduction of corner
solutions in the population improves the final result, using the implementation
provided by the jMetal framework [28]:

– NSGA-II [4] algorithm is one of the oldest MOEA, with great popularity. It
is a genetic algorithm based on Pareto ranking scheme and crowding distance
operator.

– SMPSO [5] is a multi-objective particle swarm optimization (PSO) algo-
rithm, based on the OMOPSO [29] algorithm, and like NSGA-II use the
crowding distance to choose the archive solutions, however it only con-
siders first rank solutions. It also uses a mutation operator and includes
ε-dominance.

– GDE3 [6] is a multi-objective variant of differential evolution (DE). GDE3,
notable for rotationally invariant operators[30], which produce offspring in-
dependent of the orientation of the fitness landscape.

4.2 Test Functions

The test functions, used are DTLZ1-5 [31], which have some important features:
i)relatively small implementation effort; ii) can be scaled to any number of deci-
sion variables and objectives; iii) the optimal Pareto front is known analytically;

This study considers four to ten objectives. The number of variables and other
parameters are used as defined by [31].

4.3 Performance Metrics

The following metrics are deployed to evaluate the results convergence and
diversity.
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Generational Distance (GD): The concept of generational distance [32] is
used to estimate how far elements in the non-dominated solutions set are from
those in the optimal Pareto set. The DTLZ1-5 functions Pareto surfaces are
easily expressed analytically, and therefore GD is computed as the expected
value of the distance between each individual in a population and the Pareto
surface. For DTLZ1 problem the equation 1 is used and for DTLZ2-5 problems
the following equation 2 is used:

GD =
m∑

i=1

fi − 0.5, (1)

GD =

m∑

i=1

f2
i − 1 (2)

Spacing (SP): Spacing [33] is used to measure the neighboring solutions range
variance in the known Pareto front. It is defined as:

SP =

√
√
√
√

1

n− 1

n∑

i=1

(d− di)2 (3)

where di = minj(
∑m

k=1 |f i
m − f j

m|, i, j = 1, ..., n and n is the number of non-
dominated solutions generated by the algorithm; m is the number of objectives;
d is the mean of all di. A value of zero for this measure indicates that all the
non-dominated solutions found are equidistantly spaced.

5 Results and Discussion

The overall goal is to understand how corner solutions inclusion into the pop-
ulation affects algorithms performance. For each combination problem/number
of objectives algorithms are run 21 times. Each algorithm gives origin to five
test variants. The first is the standard algorithm itself (represented by letter ‘N’
for NSGAII, ‘G’ for GDE3 and ‘S’ for SMPSO). The second is the algorithm
when corners are inserted in the initial population, represented by ‘N0’, ‘G0’ and
‘S0’. In the next three cases corners are inserted at 25%, 50% and 75% of the
predefined total number of iterations, respectively referred as: ‘N25’, ‘N50’ and
‘N75’ for NSGA-II algorithm, ‘G25’, ‘G50’ and ‘G75’ for GDE3 algorithm and
finally ‘S25’, ‘S50’ and ‘S75’ for SMPSO algorithm.

The population size, the external archive size and the maximum number of
iterations are set using the following heuristics:

– Population size = 80 + number of objectives × 10;

– Archive size = Population size;

– Number of iterations = number of objectives × 100.
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Table 1. SMPSO Median GD

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

S 1.64e-01 4.63e-01 1.19e+01 3.03e+01 5.27e+01 5.42e+01 6.89e+01
S0 1.20e-01 2.69e-01 4.21e-01 5.76e-01 7.21e-01 8.77e-01 1.05e+00
S25 1.23e-01 2.54e-01 4.16e-01 5.70e-01 7.17e-01 8.24e-01 1.03e+00
S50 1.26e-01 2.55e-01 4.05e-01 5.60e-01 7.22e-01 9.07e-01 1.05e+00
S75 1.24e-01 2.54e-01 4.12e-01 5.39e-01 7.16e-01 8.61e-01 9.71e-01

DTLZ2

S 1.73e-01 4.90e-01 8.21e-01 1.16e+00 1.41e+00 1.95e+00 2.15e+00
S0 1.37e-01 2.66e-01 4.42e-01 6.29e-01 7.91e-01 9.57e-01 1.17e+00
S25 1.39e-01 2.75e-01 4.43e-01 6.47e-01 8.24e-01 9.88e-01 1.17e+00
S50 1.32e-01 2.86e-01 4.76e-01 6.20e-01 8.00e-01 9.89e-01 1.21e+00
S75 1.30e-01 2.81e-01 4.58e-01 5.95e-01 8.25e-01 9.82e-01 1.19e+00

DTLZ3

S 2.67e-01 2.76e+00 1.35e+04 4.01e+04 3.86e+04 4.67e+04 5.14e+04
S0 1.32e-01 3.12e-01 5.43e-01 7.02e-01 9.01e-01 1.11e+00 1.27e+00
S25 1.29e-01 3.20e-01 5.04e-01 7.21e-01 9.00e-01 1.15e+00 1.30e+00
S50 1.20e-01 3.08e-01 4.92e-01 6.93e-01 9.21e-01 1.09e+00 1.28e+00
S75 1.25e-01 2.70e-01 4.76e-01 6.99e-01 8.73e-01 1.09e+00 1.30e+00

DTLZ4

S 3.94e-02 5.43e-02 7.58e-02 1.09e-01 1.51e-01 1.73e-01 1.81e-01
S0 1.07e-01 2.12e-01 3.46e-01 4.91e-01 6.08e-01 8.00e-01 8.75e-01
S25 1.05e-01 1.94e-01 2.85e-01 4.26e-01 5.56e-01 6.62e-01 5.43e-01
S50 6.12e-02 1.05e-01 1.58e-01 2.47e-01 2.27e-01 2.82e-01 2.72e-01
S75 3.47e-02 6.79e-02 8.19e-02 1.11e-01 1.36e-01 1.76e-01 1.76e-01

DTLZ5

S 2.62e+00 4.86e+00 6.28e+00 7.82e+00 8.44e+00 8.51e+00 9.09e+00
S0 2.57e+00 4.84e+00 6.03e+00 7.92e+00 8.19e+00 8.79e+00 8.99e+00
S25 2.63e+00 4.87e+00 6.19e+00 7.54e+00 8.44e+00 8.71e+00 8.90e+00
S50 2.65e+00 4.86e+00 6.35e+00 7.74e+00 8.33e+00 8.63e+00 9.21e+00
S75 2.59e+00 4.75e+00 6.21e+00 7.65e+00 8.25e+00 8.49e+00 9.09e+00

Table 2. SMPSO Median Spacing

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

S 5.35e-02 1.02e-01 3.71e+00 4.02e+00 7.20e+00 6.87e+00 1.16e+01
S0 4.76e-02 7.82e-02 1.08e-01 1.29e-01 1.48e-01 1.76e-01 1.96e-01
S25 4.56e-02 7.28e-02 1.04e-01 1.29e-01 1.61e-01 1.81e-01 2.05e-01
S50 4.81e-02 7.29e-02 1.01e-01 1.33e-01 1.56e-01 1.87e-01 1.99e-01
S75 4.86e-02 7.42e-02 1.04e-01 1.30e-01 1.53e-01 1.80e-01 1.96e-01

DTLZ2

S 1.04e-01 1.80e-01 2.59e-01 3.22e-01 3.77e-01 4.53e-01 4.96e-01
S0 1.08e-01 1.56e-01 2.13e-01 2.65e-01 3.30e-01 3.86e-01 4.23e-01
S25 1.08e-01 1.62e-01 2.11e-01 2.66e-01 3.24e-01 3.75e-01 4.12e-01
S50 1.07e-01 1.58e-01 2.20e-01 2.63e-01 3.30e-01 3.82e-01 4.26e-01
S75 1.05e-01 1.60e-01 2.24e-01 2.74e-01 3.26e-01 3.82e-01 4.16e-01

DTLZ3

S 1.16e-01 2.96e-01 2.98e+01 4.09e+01 4.61e+01 5.11e+01 5.57e+01
S0 1.03e-01 1.63e-01 2.36e-01 2.66e-01 3.27e-01 3.67e-01 4.11e-01
S25 1.07e-01 1.58e-01 2.22e-01 2.81e-01 3.22e-01 3.84e-01 4.19e-01
S50 1.01e-01 1.65e-01 2.23e-01 2.72e-01 3.24e-01 3.72e-01 4.20e-01
S75 1.06e-01 1.65e-01 2.07e-01 2.83e-01 3.20e-01 3.84e-01 4.22e-01

DTLZ4

S 8.53e-02 1.26e-01 1.56e-01 1.74e-01 1.95e-01 2.28e-01 2.20e-01
S0 1.01e-01 1.52e-01 2.08e-01 2.57e-01 3.06e-01 3.75e-01 4.06e-01
S25 1.09e-01 1.47e-01 1.95e-01 2.51e-01 3.02e-01 3.43e-01 3.45e-01
S50 9.48e-02 1.46e-01 1.82e-01 1.99e-01 2.39e-01 2.80e-01 2.72e-01
S75 9.32e-02 1.29e-01 1.59e-01 1.85e-01 2.03e-01 2.46e-01 2.30e-01

DTLZ5

S 1.13e-01 2.35e-01 3.49e-01 4.05e-01 4.71e-01 5.18e-01 5.76e-01
S0 1.16e-01 2.27e-01 3.34e-01 4.22e-01 4.51e-01 5.14e-01 5.42e-01
S25 1.13e-01 2.34e-01 3.23e-01 4.10e-01 4.86e-01 5.30e-01 5.70e-01
S50 1.15e-01 2.29e-01 3.17e-01 4.02e-01 4.79e-01 5.07e-01 5.76e-01
S75 1.13e-01 2.32e-01 3.21e-01 3.99e-01 4.59e-01 5.02e-01 5.65e-01
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Table 3. NSGAII Median GD

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

N 9.14e-02 2.21e+02 3.66e+02 4.23e+02 4.59e+02 4.71e+02 4.83e+02
N0 3.08e-03 6.66e-02 2.55e-01 4.17e-01 5.99e-01 7.56e-01 8.97e-01
N25 1.87e-03 5.84e-02 2.62e-01 4.38e-01 5.99e-01 7.78e-01 8.87e-01
N50 5.74e-03 6.14e-02 2.35e-01 4.13e-01 6.12e-01 7.52e-01 9.10e-01
N75 9.93e-03 2.56e-02 1.84e-01 3.91e-01 5.72e-01 7.35e-01 8.85e-01

DTLZ2

N 6.44e-02 1.33e+00 6.32e+00 8.47e+00 9.30e+00 9.64e+00 9.91e+00
N0 4.01e-02 9.61e-02 2.12e-01 4.74e-01 7.26e-01 9.61e-01 1.29e+00
N25 3.44e-02 9.14e-02 2.21e-01 4.61e-01 7.43e-01 9.99e-01 1.30e+00
N50 4.01e-02 8.14e-02 2.24e-01 4.64e-01 7.07e-01 1.01e+00 1.26e+00
N75 3.50e-02 8.97e-02 2.15e-01 4.52e-01 7.32e-01 9.97e-01 1.27e+00

DTLZ3

N 1.28e+02 6.99e+05 1.81e+06 2.52e+06 3.15e+06 3.59e+06 3.71e+06
N0 3.23e-03 3.77e-02 1.77e-01 4.27e-01 6.78e-01 9.03e-01 1.22e+00
N25 1.64e-03 4.07e-02 1.71e-01 4.51e-01 6.99e-01 9.59e-01 1.17e+00
N50 1.35e-03 2.98e-02 1.77e-01 3.90e-01 7.21e-01 9.44e-01 1.18e+00
N75 3.43e-03 1.40e-02 8.92e-02 3.51e-01 6.20e-01 8.84e-01 1.14e+00

DTLZ4

N 4.73e-02 2.00e-01 2.09e+00 6.44e+00 8.21e+00 9.13e+00 9.40e+00
N0 3.68e-02 9.09e-02 2.22e-01 4.51e-01 6.97e-01 9.52e-01 1.14e+00
N25 3.90e-02 9.30e-02 2.10e-01 4.55e-01 6.85e-01 9.84e-01 1.19e+00
N50 3.71e-02 9.53e-02 2.18e-01 4.36e-01 6.74e-01 9.57e-01 1.17e+00
N75 3.94e-02 9.08e-02 2.09e-01 4.34e-01 6.77e-01 9.27e-01 1.14e+00

DTLZ5

N 2.69e+00 4.69e+00 6.26e+00 7.86e+00 8.19e+00 8.63e+00 9.00e+00
N0 2.64e+00 4.66e+00 6.08e+00 7.04e+00 7.63e+00 7.95e+00 8.37e+00
N25 2.63e+00 4.63e+00 5.84e+00 7.18e+00 7.54e+00 7.96e+00 8.41e+00
N50 2.70e+00 4.59e+00 5.97e+00 7.04e+00 7.60e+00 8.04e+00 8.37e+00
N75 2.73e+00 4.50e+00 6.07e+00 6.99e+00 7.58e+00 7.82e+00 8.46e+00

Corners solutions were analytically evaluated from the optimal Pareto front.
The simulation test results are presented in table 1-6, with the bold num-

bers representing the best results obtained. Concerning the most appropriate
evolutionary stage to introduce corner solutions into the population, to improve
diversity and convergence, the results presented in tables 1-6 indicate:

– The majority of tests results clearly show that the introduction of corner
solutions improves standard algorithms performance, independently of the
stage in which they are introduced. In DTLZ1-3 cases the standard tested al-
gorithms present difficulties regarding many-objective optimization. In these
functions the corners insertion improves the search performance, despite the
small number of iterations considered.

– The main advantage concerning corners insertion is the improvement of con-
vergence time, as can be observed in the figures 1-6. From these graphics it
is also possible to verify that the optimal value obtained is the same for all
the insertion evolutionary stages considered.

– In the case of GDE3 algorithm for the DTLZ3, it is important to note that
the number of iterations used proved to be insufficient. As DTLZ3 is a highly
multi-modal function with multiple local fronts the insertion of the corner
set totally dominates all the other solutions, providing results which appears
to be excellent regarding the both metrics. However, this is not the case,
due to the small number of non-dominated solutions obtained. This small
number of solutions can not properly represent the non-dominated front (e.g.
see all DTLZ3 G75 cases presented in Table 5). In all the other tests results
presented the final archive is completely filled with non-dominated solutions.
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Table 4. NSGAII Median Spacing

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

N 5.40e-02 1.82e+01 3.80e+01 5.28e+01 6.06e+01 7.37e+01 8.28e+01
N0 3.87e-02 5.94e-02 9.89e-02 1.32e-01 1.69e-01 2.04e-01 2.35e-01
N25 3.90e-02 6.27e-02 1.02e-01 1.35e-01 1.65e-01 1.95e-01 2.17e-01
N50 3.94e-02 6.42e-02 9.66e-02 1.31e-01 1.68e-01 1.97e-01 2.28e-01
N75 3.84e-02 5.38e-02 9.10e-02 1.31e-01 1.65e-01 2.02e-01 2.36e-01

DTLZ2

N 1.09e-01 2.43e-01 5.06e-01 6.91e-01 8.78e-01 9.61e-01 1.12e+00
N0 1.13e-01 1.57e-01 2.16e-01 2.87e-01 3.57e-01 4.39e-01 4.86e-01
N25 1.08e-01 1.60e-01 2.26e-01 2.97e-01 3.84e-01 4.39e-01 4.70e-01
N50 1.09e-01 1.55e-01 2.20e-01 2.97e-01 3.76e-01 4.21e-01 4.82e-01
N75 1.08e-01 1.60e-01 2.27e-01 2.97e-01 3.72e-01 4.25e-01 4.95e-01

DTLZ3

N 1.27e+00 8.67e+01 1.95e+02 3.12e+02 4.21e+02 5.05e+02 5.86e+02
N0 1.05e-01 1.57e-01 2.19e-01 2.90e-01 3.61e-01 4.23e-01 4.72e-01
N25 1.09e-01 1.53e-01 2.16e-01 2.95e-01 3.62e-01 4.36e-01 4.73e-01
N50 1.06e-01 1.53e-01 2.16e-01 2.89e-01 3.67e-01 4.31e-01 4.72e-01
N75 1.03e-01 1.48e-01 1.98e-01 2.77e-01 3.53e-01 4.32e-01 4.86e-01

DTLZ4

N 1.03e-01 1.76e-01 3.52e-01 5.65e-01 7.46e-01 9.15e-01 1.02e+00
N0 1.10e-01 1.59e-01 2.16e-01 2.81e-01 3.61e-01 4.27e-01 4.79e-01
N25 1.07e-01 1.68e-01 2.07e-01 2.87e-01 3.46e-01 4.31e-01 4.72e-01
N50 1.09e-01 1.63e-01 2.15e-01 2.82e-01 3.55e-01 4.08e-01 4.97e-01
N75 1.07e-01 1.55e-01 2.12e-01 2.84e-01 3.56e-01 4.24e-01 4.78e-01

DTLZ5

N 1.06e-01 2.10e-01 3.31e-01 4.38e-01 5.47e-01 5.73e-01 6.29e-01
N0 1.16e-01 2.01e-01 3.13e-01 3.81e-01 4.86e-01 5.38e-01 5.65e-01
N25 1.10e-01 2.16e-01 3.12e-01 4.06e-01 4.45e-01 5.13e-01 5.66e-01
N50 1.01e-01 1.99e-01 3.06e-01 4.06e-01 4.63e-01 5.28e-01 5.51e-01
N75 9.82e-02 1.95e-01 3.22e-01 4.14e-01 4.73e-01 5.16e-01 5.80e-01

Table 5. GDE3 Median GD

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

G 7.63e-02 2.29e-01 4.71e-01 6.09e+00 2.97e+01 5.49e+01 1.03e+02
G0 7.06e-02 2.15e-01 3.60e-01 5.15e-01 7.13e-01 8.57e-01 9.09e-01
G25 7.36e-02 2.12e-01 3.57e-01 5.36e-01 6.52e-01 8.04e-01 9.77e-01
G50 6.97e-02 2.12e-01 3.68e-01 5.50e-01 6.77e-01 8.57e-01 9.49e-01
G75 7.34e-02 2.09e-01 3.84e-01 5.44e-01 7.00e-01 8.47e-01 9.72e-01

DTLZ2

G 1.53e-01 3.97e-01 8.29e-01 1.42e+00 2.47e+00 3.96e+00 5.57e+00
G0 1.39e-01 3.29e-01 6.09e-01 8.38e-01 1.12e+00 1.36e+00 1.60e+00
G25 1.41e-01 3.39e-01 5.94e-01 8.69e-01 1.10e+00 1.36e+00 1.58e+00
G50 1.37e-01 3.39e-01 5.92e-01 8.57e-01 1.11e+00 1.33e+00 1.64e+00
G75 1.50e-01 3.31e-01 5.86e-01 8.50e-01 1.10e+00 1.38e+00 1.61e+00

DTLZ3

G 1.10e+02 9.27e+01 1.25e+03 1.54e+04 2.76e+04 8.57e+04 2.05e+05
G0 1.50e-01 3.44e-01 5.72e-01 8.26e-01 1.06e+00 1.31e+00 1.56e+00
G25 1.57e-01 3.56e-01 5.90e-01 8.41e-01 1.08e+00 1.30e+00 1.53e+00
G50 0.00e+00 3.46e-01 5.97e-01 8.06e-01 1.09e+00 1.28e+00 1.50e+00
G75 0.00e+00 1.98e-01 0.00e+00 0.00e+00 2.74e-02 7.53e-03 9.54e-03

DTLZ4

G 1.48e-01 3.54e-01 6.04e-01 8.49e-01 1.09e+00 1.34e+00 1.64e+00
G0 1.49e-01 3.29e-01 5.73e-01 8.14e-01 1.04e+00 1.28e+00 1.50e+00
G25 1.36e-01 3.41e-01 5.59e-01 8.15e-01 1.05e+00 1.28e+00 1.51e+00
G50 1.51e-01 3.48e-01 5.66e-01 8.10e-01 1.05e+00 1.31e+00 1.50e+00
G75 1.35e-01 3.38e-01 5.82e-01 8.05e-01 1.02e+00 1.26e+00 1.52e+00

DTLZ5

G 3.08e+00 5.02e+00 6.29e+00 7.58e+00 8.56e+00 8.94e+00 8.99e+00
G0 3.23e+00 5.23e+00 6.41e+00 7.48e+00 7.72e+00 8.33e+00 8.68e+00
G25 3.25e+00 5.23e+00 6.23e+00 7.46e+00 7.84e+00 8.31e+00 8.90e+00
G50 3.19e+00 5.27e+00 6.39e+00 7.39e+00 7.98e+00 8.41e+00 8.68e+00
G75 3.21e+00 5.21e+00 6.30e+00 7.56e+00 7.93e+00 8.43e+00 8.67e+00
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Table 6. GDE3 Median Spacing

Problems Algorithms
Objective Number

4 5 6 7 8 9 10

DTLZ1

G 3.59e-02 6.07e-02 9.64e-02 8.26e-01 3.28e+00 5.89e+00 1.38e+01
G0 3.76e-02 6.04e-02 8.47e-02 1.07e-01 1.24e-01 1.52e-01 1.72e-01
G25 3.64e-02 5.76e-02 8.15e-02 1.13e-01 1.35e-01 1.48e-01 1.67e-01
G50 3.48e-02 5.87e-02 8.41e-02 1.08e-01 1.24e-01 1.51e-01 1.72e-01
G75 3.56e-02 5.93e-02 8.15e-02 1.05e-01 1.21e-01 1.52e-01 1.64e-01

DTLZ2

G 9.66e-02 1.47e-01 2.04e-01 2.71e-01 3.58e-01 4.41e-01 5.76e-01
G0 1.05e-01 1.55e-01 2.02e-01 2.24e-01 2.89e-01 3.03e-01 3.35e-01
G25 1.01e-01 1.54e-01 2.13e-01 2.41e-01 2.86e-01 3.19e-01 3.34e-01
G50 1.02e-01 1.55e-01 2.16e-01 2.33e-01 2.77e-01 3.06e-01 3.31e-01
G75 1.03e-01 1.51e-01 2.00e-01 2.42e-01 2.81e-01 3.22e-01 3.23e-01

DTLZ3

G 1.78e+00 1.74e+00 6.30e+00 2.21e+01 3.35e+01 6.63e+01 1.09e+02
G0 1.00e-01 1.55e-01 2.02e-01 2.46e-01 2.83e-01 3.09e-01 3.54e-01
G25 1.00e-01 1.50e-01 1.95e-01 2.51e-01 2.91e-01 3.34e-01 3.39e-01
G50 0.00e+00 1.63e-01 2.05e-01 2.46e-01 2.91e-01 3.10e-01 3.45e-01
G75 0.00e+00 1.44e-01 2.95e-01 0.00e+00 2.79e-01 6.22e-01 6.95e-01

DTLZ4

G 9.81e-02 1.48e-01 2.07e-01 2.41e-01 2.82e-01 3.08e-01 3.41e-01
G0 1.04e-01 1.52e-01 2.10e-01 2.36e-01 2.80e-01 3.14e-01 3.51e-01
G25 1.04e-01 1.52e-01 2.00e-01 2.40e-01 2.90e-01 3.12e-01 3.35e-01
G50 1.00e-01 1.47e-01 1.90e-01 2.39e-01 2.88e-01 3.13e-01 3.41e-01
G75 9.97e-02 1.50e-01 1.94e-01 2.38e-01 2.72e-01 3.15e-01 3.30e-01

DTLZ5

G 9.75e-02 2.14e-01 3.31e-01 4.10e-01 4.95e-01 5.28e-01 6.16e-01
G0 1.01e-01 2.05e-01 2.85e-01 3.97e-01 4.21e-01 4.83e-01 5.45e-01
G25 1.13e-01 2.17e-01 3.13e-01 3.81e-01 4.58e-01 5.15e-01 5.17e-01
G50 1.03e-01 2.19e-01 3.10e-01 4.02e-01 4.48e-01 5.10e-01 5.56e-01
G75 1.03e-01 2.05e-01 3.12e-01 4.20e-01 4.55e-01 5.10e-01 5.46e-01
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Fig. 1. GD Median for DTLZ1, problem with 8 objectives in GDE3 Algorithm
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The results presented in figures 1,3 and 5 show the convergence improvement
achieved with the corner solutions introduction. In some cases after the corner
solution insertion the performance appears to be optimal (zero) during a small
number of iterations. This is due to the time necessary to the algorithm gen-
erate more non-dominated solutions besides the inserted corner solutions. All
the presented figures show the performance improvement of the corner solutions
introduction when compared to the standard algorithm.

6 Conclusion

A major advantage of evolutionary based multi-objective optimization tech-
niques is to achieve a wide non-dominated set in a single run. However, when
applied to many-objective problems, their performance is severely deteriorated.
In this paper the idea of introducing non-dominated Pareto front in the beginning
of the search procedure proposed by Dasgupta et al.[9] is explored. This study
addresses the research issue regarding the most appropriate evolutionary stage
for inclusion of extreme Pareto front solutions (corners solutions). This tech-
nique assumes the availability of corner solutions prior to the many-objective
optimization algorithm execution. Corner solutions or approximated solutions
can be determined using a specific search algorithm (e.g. Nadir point based
techniques). Simulation results were presented concerning the corner solutions
introduction into the population, in several evolutionary stages. The evolution-
ary stages considered were 25%, 50% and 75% of a total number of iterations.

The results presented for the considered function test set (DTLZ1-5) and
performance metrics allows to conclude that:
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– the search efficiency in terms of search convergence rate and diversity is
clearly improved relatively to the standard algorithms, as result of corner
solutions introduction.

– while the convergence rate is improved, this does not depend on the evolu-
tionary stage in which the informed solutions are introduced. This results
are in agreement with the results presented in [9].

– considering the small number of iterations used, the corner solutions insertion
showed to be dominant regarding the existing non-dominated archive. This
has the effect of significantly reduce the number of non-dominated solutions
in the archive until the algorithms find new non-dominated solutions.

– for the DTLZ5 case the corner introduction has a marginal effect in the
performance as the standard algorithms are capable of finding the corner
solutions despite the number of objectives considered.

It is important to note the small number of algorithm iterations considered in
the tests particularly for the problems with more than seven objectives. Future
work will be carried on considering the inclusion of other types of informed
solutions besides corner solutions.
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Abstract. We present a new nature-inspired algorithm, mt−GA, which
is a parallelized version of a simple GA, where subpopulations evolve in-
dependently from each other and on different threads. The overall goal
is to develop a population-based algorithm capable to escape from local
optima. In doing so, we used complex trap functions, and we provide ex-
perimental answers to some crucial implementation decision problems.
The obtained results show the robustness and efficiency of the proposed
algorithm, even when compared to well-known state-of-the art optimiza-
tion algorithms based on the clonal selection principle.

Keywords: Genetic algorithms, multi-threaded genetic algorithms,
trap functions, toy problems, global optimization, optimization.

1 Introduction

Many real-world problems are hard to solve because the parameters that in-
fluence the problem structures and dynamics over time are unknown and often
impossible to be analytically solved. On such problems Evolutionary Algorithms
(EA) seem to be perform quite well, primarily when the solutions are not known
a priori or they are nonlinear. However, the EA it must be designed in such way
to prevent getting trapped into local optima.

One feature that plays a key role on this issue is the diversity of individu-
als introduced into the population. Population diversity strongly influences, as
known, both the exploration of the search space, and the exploitation of the infor-
mation gained during the evolutionary process. The aim of this work, therefore,
is to develop a population-based algorithm capable to escape from local optima
maintaining itself blind on the problem’s domain, i.e. general purpose and not
tailored to the any specific problem. In order to achieve our result, we focused on
developing a Genetic Algorithm (GA) based on Multi-Threads, where subsets of
individuals evolve on different threads. Moreover, our GA is also equipped with
a migration operator which allows pairs of solutions (individuals) to migrate
between threads. Migration allows our algorithm to perform a careful and deep
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search of the solution space. In what follows, we will denote our algorithm with
mt−GA.

To check the ability of mt−GA to escape local maxima, we used Trap Func-
tions, well-known toy problem, used for understanding the dynamics and search’s
ability of a generic evolutionary algorithm [10]. We designed two variants of
mt−GA (synchronous, and asynchronous threads), and the trap functions are
used as testbed in order to analyze and determine which variant is more suitable
for our aims. Moreover, what solutions to select for the migration, and in what
place, is also subject of this study.

2 Multi-population GA and Migrations

There is a very vast literature on multi-population Genetic Algorithms and the
associated concept of migration. A comprehensive analysis of it, is certainly way
beyond the scope of our contribution. For sake of completeness, however, we will
mention few of the obtained results, especially in relation to the key decision
about migration.

The standard GA has a single population which tries to explore the entire
search space. The Multi-population approach tries to divide the search space
into several parts and then uses a number of small populations to search them
separately. The approach can obviously be parallelized and so such separate
searches may run either synchronously or asynchronously (we will talk about this
in the next sections). If we allow the different populations to “communicate”, a
key concept is migration.

In [7], the author proposes the random immigrants approach, sociologically
inspired by the flux of immigrants that between generations move from one place
to another. Technically, some individuals of the current population are replace
with random individuals, called random immigrants, from another population at
every generation. The choice of individuals to be replaced is usually governed by
two main strategies: replacing random individuals or replacing the worst ones.
In many ways, random immigrants may act as “genetic mutations” and thus the
ratio of number of random immigrants to the the population size, is usually set
to a small value.

The effect of the policy used to select migrants and the individuals they replace
on the selection pressure in parallel evolutionary algorithms (EAs) with multiple
populations is investigated in [1]. In particular, four possible combinations of
random and fitness-based emigration and replacement of existing individuals
are considered.

In [11] the author investigates a hybrid memory and random immigrants
scheme, called memory-based immigrants, and a hybrid elitism and random im-
migrants scheme, called elitism-based immigrants, for improving the performance
of genetic algorithms in dynamic environments.

To underline the importance on modern technical issues of such techniques, we
mention the work in [2], where multi population GA’s with immigrants schemes
are designed for the dynamic dhortest path routing problem in mobile networks.
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3 The Trap Functions

The trap functions problem [4, 5] is a toy yet complex problem that simply takes
as input the number of 1′s of bit strings of length �. The fitness function f(x)

is defined as a function f̂(·) of the number of 1-bits, u(x), in the binary input
string x

f(x) = f̂(u(x)) = f̂

(
�∑

k=1

xk

)

(1)

The definition of the function f̂ , which depends on few numerical parameters,
gives rise to two different scenarios: simple trap function and complex trap func-
tion. Both scenarios are shown in figure 1.
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Fig. 1. Simple (left plot) and complex (right plot) trap functions

The simple trap function is characterized by one global optimum (for a bit
string of all 0’s) and one local optimum (for a bit string of all 1’s) that are the
complement bit-wise of each other (see left plot in figure 1). Its formal definition
is given by:

f̂(u(x)) =

{ a
z (z − u(x)) , if u(x) ≤ z
b

�−z (u(x)− z) , otherwise
(2)

where the 3 parameters a, b, and z are such that [8] z ≈ (1/4)�; b = � − z − 1;
1.5b ≤ a ≤ 2b; a multiple of z.

The complex trap function, defined using 4 parameters, is instead more dif-
ficult to investigate because there are two directions where the algorithm may
get trapped (see right plot of figure 1).

It is formally defined as:

f̂(u) =

⎧

⎪⎨

⎪⎩

a
z1
(z1 − u(x)), if u(x) ≤ z1
b

�−z1
(u(x) − z1), if z1 < u(x) ≤ z2

b(z2−z1)
z2

(

1− 1
z1
(u(x)− z2)

)

otherwise.

(3)

If z1, similarly to z in the case of simple trap function, verifies z ≈ (1/4)�, the
value of parameter z2 > z1 could be fixed as z2 = �− z1. We also note that if we
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fix z2 = � the complex trap function becomes a simple trap one. Summing up, for
both kinds of trap functions there are many possible choices for the parameters
a, b and z, (with z1 = z and z2 = �− z1 for the complex trap function) [8]. Some
values are shown in table 1 and we will use them for our experiments.

Table 1. Parameter values used by simple and complex trap functions

type � z a b

I 10 3 12 6
II 20 5 20 14
III 50 10 80 39
IV 75 20 80 54
V 100 25 100 74

The plots in figure 1 were produced using the following parameter values:
� = 100, z = 25, a = 100, b = 74 for the simple trap function, and � = 100, z1 =
25, z2 = 75, a = 100, b = 74 for the complex trap function.

In the next sections, we will focus our discussions on complex trap functions.

4 mt − GA: A Multi-Threaded Genetic Algorithm

We began our work with the implementation of a simple, standard GA.
Therefore, we used some classical operators for recombination, mutation, and

selection mechanism, namely 2–point crossover, bit flip, and roulette wheel se-
lection. Based on this simple algorithm, we studied and tested the impact, and
improvements produced by its parallelization where subpopulations evolve sepa-
rately each on a different thread. The motivation on parallelize a GA via threads
is not only the speeding up the running times, but also, and primarily, because it
provides a method where different processes are running in cooperation among
them, each with specific tasks, and sharing gained information. To strengthen
the cooperation produced by the parallelization of GA, we have designed a mi-
gration approach, where k individuals migrate from the i-th thread to another.
In this way we give the opportunity to exchange among them the gained informa-
tion. Moreover, such an approach guarantees sufficient introduction of diversity
into each subpopulation, which, on the whole, helps mt−GA in escaping from
local optima, in according with the aims of this work. Algorithm 1 shows the
pseudocode of the designed Multi-Threaded Genetic Algorithm (mt−GA).

As a classical nature-inspired algorithm, mt − GA starts with a random
creation of the initial population (P (t=0)), where each chromosome is repre-
sented as a bit string of lenght �. Afterwards, the population is divided in
subpopulations, as many as the number n of threads, which will evolve in-
dependently from each other. The individuals for any subpopulation are se-
lected in sequential order from the overall population (P (t=0)); therefore, the
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Algorithm 1. Pseudo code of mt−GA
t← 0
FFE ← 0
P t ← Create Initial Population
for i = 1 to n do

P t
i ← Assign the individuals

(

(i− 1)( popsize
n

) + 1
)

, . . . , i( popsize
n

)
end for
while FFE < Tmax do

for all Thread i (1 ≤ i ≤ n) do
Compute Fitness(P t

i )
FFE ← FFE +

(
popsize

n

)

Select ( popsize
n

) individuals via Roulette Wheel Selection
Recombination for generating offsprings via 2−point Crossover and Bit Flip
Mutation
k individuals migrate to the j-th thread (1 ≤ j ≤ n, and i �= j)

end for
t← t + 1

end while

i-th subpopulation (P
(t=0)
i ), i.e. the i-th thread, will be assigned the individuals

((

(i− 1)× popsize
n

)

+ 1
)

, . . . ,
(

i× posize
n

)

.
From this moment on, all the subpopulations will evolve in independent way.

Thus, the description of the subsequent steps, given for the thread i and the
population Pi is equivalent for all n threads.

At each timestep t, the fitness function value is computed for each individual.
Such an evaluation will, obviously, increase the value of the global variable FFE
so to force the termination of the Algorithm within a finite number of steps, as
described later. To select individuals for offspring generation, we implemented
the classical Roulette Wheel Selection mechanism; given a chromosome x ∈ P t

i

with fitness f(x), the probability px that it will be selected is given by

px =
f(x)

∑

y∈P t
i
f(y)

.

Once two individuals have been chosen for mating, we use the 2-point crossover
operator to generate two offspring.

As last step, to each offspring is applied a mutation operator, which is basically
a bit flip of the selected gene. The mutation is performed with a probability pi,
which accounts for the independent evolution of the population in the thread.
mt−GA can can therefore better explore the search space, as well as exploit more
efficiently the gained information. In particular, some threads work more on the
exploration of wide regions of the landscape; whilst others on the exploitation of
the solutions found. Finally, after crossover and mutation operators, k individuals
from each thread migrate to other threads. This helps mt−GA in escaping from
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local optima by introducing diversity into the subpopulations, and brings to a
thread information discovered by other threads.

It is obviously crucial to decide which individuals should be chosen from each
subpopulation to be migrate, and in which thread they should migrate. Another
important issue is synchronicity among threads. If they run synchronized, the
cooperation among them is strengthened. If they run in an asynchronous man-
ner, it is possible that one thread does not receive any migrants, because is not
running in that time. Thus, we have also designed a third variant of mt −GA,
which includes a Birth operator, which restores the right size of the given sub-
population introducing new elements randomly generated. The three variants of
mt − GA (synchronous, asynchronous, and asynchronous with birth operator),
have been the subject of our study and are described in section 5.

The algorithm terminates its execution when the fitness function evaluation
number (FFE) is great or equal to Tmax, i.e. the maximum number of allowed
objective function evaluations .

5 Experimental Results

In this section we present the study conducted in order to understand the validity
of the novelties introduced. In particular, we concentrated on answering the
questions:

1. which individuals should be selected as migrants?
2. to which thread should they migrate?
3. which variant of mt−GA shows the best performances?

As anticipated in previous section (sec. 1), the three variants ofmt−GA which
were implemented are (1) synchronous, (2) asynchronous, and (3) asynchronous
with birth.

For the migration thread, we implemented two different protocols: (i) migrate
to the next thread (i.e. from i to i + 1), and (ii) migrate to a randomly chosen
thread.

To choose k individuals for migration, instead, we implemented the following
protocols: (a) the best k; (b) the best k/2, and the remaining k/2 randomly
chosen; and (c) k randomly chosen.

A feature that plays also a central role in mt−GA, as well as in every evolu-
tionary algorithm, is how to generate the new population for the next iteration.
This decision, of course, influences the search ability, and then the overall per-
formances of a generic algorithm.

We implemented three different strategies: elitism; substitution, and no preser-
vation. The first strategy always maintains the best individuals found so far; the
second one, instead, replaces the worst offspring with the best of its parents;
finally, in the last one we do not preserve any individual.

To make a robust analysis of our study we have tested mt−GA only on the
complex trap functions, being the most difficult ones, especially when increasing
the size of the search space, and enough challenging to answer the above open
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Table 2. The three variants of mt − GA on complex trap functions using Elitism
approach as preservation strategy

Synchronous Variant

migrants Trap SR AES best mean σ SR AES best mean σ

migration place: next thread migration place: random thread

best2 C(I) 100 953.04 12.0 12.0 0.0 100 832.16 12.0 12.0 0.0
best2 C(II) 87 45040.92 20.0 18.61 3.59 96 43607.31 20.0 19.57 2.09
best2 C(III) 24 92272.91 80.0 41.86 21.85 58 93684.59 80.0 59.59 24.43
best2 C(IV ) 2 135315.5 80.0 35.57 6.7 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 905.19 12.0 12.0 0.0 100 1082.91 12.0 12.0 0.0
best + random C(II) 92 43512.0 20.0 19.15 2.89 98 39015.87 20.0 19.79 1.49
best + random C(III) 35 84307.17 80.0 47.01 24.21 54 103432.78 80.0 57.46 25.01
best + random C(IV ) 0 0.0 34.36 34.36 0.05 1 111436.0 80.0 34.85 4.54
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 954.94 12.0 12.0 0.0 100 1049.46 12.0 12.0 0.0
random C(II) 98 31512.93 20.0 19.79 1.49 97 29823.65 20.0 19.75 1.54
random C(III) 57 99018.06 80.0 58.21 25.09 57 103747.83 80.0 58.58 24.82
random C(IV ) 1 142402.0 80.0 35.24 6.12 0 0.0 34.36 34.36 0.05
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant

migration place: next thread migration place: random thread

best2 C(I) 100 1731.06 12.0 12.0 0.0 100 1866.19 12.0 12.0 0.0
best2 C(II) 76 58889.68 20.0 17.44 4.56 88 58618.03 20.0 18.75 3.4
best2 C(III) 27 91646.11 80.0 42.98 22.52 30 107803.47 80.0 44.5 23.24
best2 C(IV ) 2 154088.5 80.0 35.28 6.39 1 52527.0 80.0 34.82 4.54
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 1649.15 12.0 12.0 0.0 100 1484.57 12.0 12.0 0.0
best + random C(II) 80 48261.8 20.0 17.87 4.27 90 60251.61 20.0 18.93 3.2
best + random C(III) 33 87326.87 80.0 46.21 23.79 42 99014.62 80.0 50.57 25.05
best + random C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 1341.8 12.0 12.0 0.0 100 1665.9 12.0 12.0 0.0
random C(II) 99 39384.28 20.0 19.89 1.06 99 47915.18 20.0 19.89 1.06
random C(III) 36 112243.72 80.0 47.65 24.28 34 83118.65 80.0 46.93 24.11
random C(IV ) 1 118636.0 80.0 34.82 4.54 0 0.0 34.36 34.36 0.052
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant with Birth Operator

migration place: next thread migration place: random thread

best2 C(I) 100 501.11 12.0 12.0 0.0 100 511.01 12.0 12.0 0.0
best2 C(II) 100 27610.78 20.0 20.0 0.0 100 26663.05 20.0 20.0 0.0
best2 C(III) 44 106628.73 80.0 51.98 25.07 40 95407.25 80.0 50.22 24.69
best2 C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 519.82 12.0 12.0 0.0 100 496.47 12.0 12.0 0.0
best + random C(II) 100 23491.53 20.0 20.0 0.0 100 25244.08 20.0 20.0 0.0
best + random C(III) 37 111004.54 80.0 48.14 24.42 46 118486.35 80.0 52.65 25.25
best + random C(IV ) 1 136321.0 80.0 34.82 4.54 1 51949.0 80.0 34.82 4.54
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 710.88 12.0 12.0 0.0 100 440.12 12.0 12.0 0.0
random C(II) 100 24147.84 20.0 20.0 0.0 100 22398.65 20.0 20.0 0.0
random C(III) 39 119943.66 80.0 49.04 24.75 35 112969.88 80.0 47.84 24.21
random C(IV ) 0 0.0 34.36 34.36 0.05 1 191156.0 80.0 34.82 4.54
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

questions. After several experiments, and a preliminary investigation on the best
parameter tuning, we have fixed (popsize = 40) as population size; (n = 4) as
number of threads; and (k = 2) as number of migrants from one thread to
another. The low population size is due to both the parallelization and the de-
veloped migration strategy, thanks to which mt−GA maintains a good diversity
into the subpopulations, performing a proper exploration and exploitation of the
landscape.

All the presented experiments were performed on 100 independent runs, and
the maximum number of fitness function evaluations allowed has been fixed to
2.5× 105.

In tables 2, 3, and 4 we show the results obtained by our study in order
to understand the right answers to our open questions. For each experiment
and each variant, we show the success rate (SR); the average number of fitness
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Table 3. The three variants of mt−GA on complex trap functions using Substitution
approach as preservation strategy

Synchronous Variant

migrants Trap SR AES best mean σ SR AES best mean σ

migration place: next thread migration place: random thread

best2 C(I) 100 1133.5 12.0 12.0 0.0 100 1208.66 12.0 12.0 0.0
best2 C(II) 87 14040.73 20.0 18.61 3.59 100 18460.4 20.0 20.0 0.0
best2 C(III) 39 62181.23 80.0 49.07 24.73 91 75528.59 80.0 75.81 13.72
best2 C(IV ) 1 135149.0 80.0 34.82 4.54 5 155389.8 80.0 36.64 9.95
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 987.61 12.0 12.0 0.0 100 1085.56 12.0 12.0 0.0
best + random C(II) 99 29244.40 20.0 19.89 1.06 100 28607.12 20.0 20.0 0.0
best + random C(III) 56 108547.59 80.0 57.7 25.16 78 117031.12 80.0 69.56 20.21
best + random C(IV ) 3 146127.0 80.0 35.73 7.78 1 241915.0 80.0 34.82 4.54
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 1142.13 12.0 12.0 0.0 100 1105.79 12.0 12.0 0.0
random C(II) 100 22248.69 20.0 20.0 0.0 100 35201.9 20.0 20.0 0.0
random C(III) 63 117734.73 80.0 62.24 23.84 72 117650.89 80.0 66.11 22.37
random C(IV ) 1 147825.0 80.0 34.82 4.54 2 116774.0 80.0 35.28 6.39
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant

migration place: next thread migration place: random thread

best2 C(I) 100 2137.36 12.0 12.0 0.0 100 1954.92 12.0 12.0 0.0
best2 C(II) 92 49366.47 20.0 19.15 2.89 97 53139.79 20.0 19.68 1.82
best2 C(III) 47 110869.3 80.0 53.98 25.10 68 116860.8 80.0 64.03 23.33
best2 C(IV ) 2 173201.0 80.0 35.28 6.39 2 130577.0 80.0 35.28 6.39
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 1512.2 12.0 12.0 0.0 100 2236.88 12.0 12.0 0.0
best + random C(II) 97 46749.69 20.0 19.68 1.82 97 44977.67 20.0 19.68 1.82
best + random C(III) 42 100841.66 80.0 50.86 24.84 66 127740.34 80.0 63.81 23.35
best + random C(IV ) 0 0.0 34.36 34.36 0.05 2 157680.5 80.0 35.28 6.39
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 2223.74 12.0 12.0 0.0 100 1325.07 12.0 12.0 0.0
random C(II) 98 42429.27 20.0 19.79 1.49 100 41378.41 20.0 20.0 0.0
random C(III) 49 107010.27 80.0 54.54 25.31 50 111112.34 80.0 54.65 25.35
random C(IV ) 0 0.0 34.36 34.36 0.05 1 128098.0 80.0 34.92 4.63
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant with Birth Operator

migration place: next thread migration place: random thread

best2 C(I) 100 652.39 12.0 12.0 0.0 100 472.79 12.0 12.0 0.0
best2 C(II) 100 27712.16 20.0 20.0 0.0 100 23326.76 20.0 20.0 0.0
best2 C(III) 38 116789.77 80.0 49.52 4.45 66 121492.37 80.0 63.39 23.33
best2 C(IV ) 1 148662.0 80.0 34.82 4.54 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 777.71 12.0 12.0 0.0 100 811.5 12.0 12.0 0.0
best + random C(II) 100 26608.98 20.0 20.0 0.0 100 25715.95 20.0 20.0 0.0
best + random C(III) 39 128374.16 80.0 49.69 24.52 56 117110.44 80.0 58.93 24.60
best + random C(IV ) 1 123084.0 80.0 34.82 4.54 2 166874.0 80.0 35.28 6.39
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 742.36 12.0 12.0 0.0 100 633.79 12.0 12.0 0.0
random C(II) 100 21931.74 20.0 20.0 0.0 100 24375.95 20.0 20.0 0.0
random C(III) 56 117295.36 80.0 58.04 25.01 50 113501.22 80.0 54.71 25.3
random C(IV ) 0 0.0 36.0 34.38 0.17 1 119316.0 80.0 34.82 4.54
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

evaluations to solution (AES); best solution found (best); the mean value of the
best fitness values for all runs (mean); and the relative standard deviation (σ).

In table 2 we show the results obtained by the three variants of mt − GA
when the best solutions are always maintained in the new population (elitism
approach). By inspecting these results, mt−GA obtains the best performances
for both synchronous and asynchronous variants when the k = 2 migrants are
randomly chosen and the migration place is the next thread; whilst, instead, the
last variant (asynchronous with birth operator) works better when the migration
place is randomly chosen, and the migrants are selected among both best and
random. All in all, this last variant seems to produce better results in all ex-
periments. This can be explained because the introduction of new chromosomes
balances the choice to focus the evolution onto the best solutions found so far
(feature of any elitism approach).
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Table 4. The three variants of mt−GA on complex trap functions using no preservation
approach as preservation strategy

Synchronous Variant

migrants Trap SR AES best mean σ SR AES best mean σ

migration place: next thread migration place: random thread

best2 C(I) 100 1451.98 12.0 12.0 0.0 100 1721.94 12.0 12.0 0.0
best2 C(II) 98 70712.0 20.0 19.88 0.89 95 62842.19 20.0 19.47 2.32
best2 C(III) 0 0.0 29.25 29.25 0.0 0 0.0 29.25 29.25 0.0
best2 C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 1825.64 12.0 12.0 0.0 100 1923.4 12.0 12.0 0.0
best + random C(II) 100 61141.63 20.0 20.0 0.0 100 45439.82 20.0 20.0 0.0
best + random C(III) 0 0.0 40.0 29.49 1.53 0 0.0 29.25 29.25 0.0
best + random C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 1561.16 12.0 12.0 0.0 100 1759.7 12.0 12.0 0.0
random C(II) 100 41329.28 20.0 20.0 0.0 100 36417.68 20.0 20.0 0.0
random C(III) 14 202747.08 80.0 40.54 17.84 27 169550.38 80.0 44.72 22.62
random C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 76.0 34.92 4.35
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant

migration place: next thread migration place: random thread

best2 C(I) 100 4520.26 12.0 12.0 0.0 100 3726.43 12.0 12.0 0.0
best2 C(II) 90 70742.43 20.0 19.05 2.92 93 70598.37 20.0 19.31 2.55
best2 C(III) 0 0.0 29.25 29.25 0.0 0 0.0 29.25 29.25 0.0
best2 C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 4060.6 12.0 12.0 0.0 100 3626.43 12.0 12.0 0.0
best + random C(II) 100 51491.81 20.0 20.0 0.0 100 42154.58 20.0 20.0 0.0
best + random C(III) 10 187785.3 80.0 37.18 15.07 42 149380.88 80.0 52.31 24.29
best + random C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 36.0 34.4 0.23
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 3963.11 12.0 12.0 0.0 100 3542.22 12.0 12.0 0.0
random C(II) 100 50164.49 20.0 20.0 0.0 100 39202.16 20.0 20.0 0.0
random C(III) 18 176831.11 80.0 41.68 19.42 76 147446.23 80.0 69.48 19.62
random C(IV ) 0 0.0 34.36 34.36 0.05 4 163231.75 80.0 36.58 9.62
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Asynchronous Variant with Birth Operator

migration place: next thread migration place: random thread

best2 C(I) 100 2269.42 12.0 12.0 0.0 100 2041.41 12.0 12.0 0.0
best2 C(II) 100 58625.36 20.0 20.0 0.0 100 40907.38 20.0 20.0 0.0
best2 C(III) 0 0.0 29.25 29.25 0.0 0 0.0 29.25 29.25 0.0
best2 C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 34.36 34.36 0.05
best2 C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

best + random C(I) 100 2012.56 12.0 12.0 0.0 100 1948.07 12.0 12.0 0.0
best + random C(II) 100 48335.62 20.0 0.0 0.0 100 34830.15 20.0 20.0 0.0
best + random C(III) 7 150069.58 80.0 34.88 13.67 23 147841.39 80.0 41.4175 21.11
best + random C(IV ) 0 0.0 34.36 34.36 0.05 0 0.0 36.0 34.38 0.17
best + random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

random C(I) 100 2355.47 12.0 12.0 0.0 100 1195.44 12.0 12.0 0.0
random C(II) 100 43478.27 20.0 20.0 0.0 100 28972.43 20.0 20.0 0.0
random C(III) 12 173612.67 80.0 37.22 16.86 57 151960.47 80.0 59.14 24.54
random C(IV ) 0 0.0 34.36 34.36 0.05 1 232352.0 80.0 35.51 6.49
random C(V ) 0 0.0 49.33 49.33 0.05 0 0.0 49.33 49.33 0.05

Table 3 presents the results ofmt−GA when the worst offspring x1 is replaced
with the best one of its parents x2; of course this is done if f(x1) < f(x2). Using
this strategy for the generation of the new population, the synchronous variant
produces the best overall performances on all experiments conducted, and with
respect to all the studied variants. In particular the absolute best results are
obtained when the 2 best individuals of each thread become migrants, and the
place of migration is randomly selected. Choosing randomly the migration thread
helps considerably mt − GA in finding better solutions independently on how
the migrants are chosen, because in this way the cooperation between the n = 4
threads is improved. Also in this table, for both asynchronous variants the best
place where to migrate is randomly chosen; the migrants, instead, are selected
randomly for the simple variant, whilst with the birth operator they are chosen
by picking the best, and one randomly. Comparing only these two last variants
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on table 3, is possible to see how the use of the birth operator helps mt − GA
to achieve a higher success rate.

For the last experiments, showed in table 4, we obtain a different behavior
on both mt − GA variants. In particular, without any preservation of the best
solutions during the construction of the new population, the synchronous variant
shows its worst performances (random migrants, and random migration place);
whilst the asynchronous ones achieve the best results in overall. The best selec-
tion for both asynchronous variants is given by random migrants and random
migration threads. With respect to previous tables, these experiments are the
only one where the simple variant outperforms the one with the birth opera-
tor. By inspecting all three tables together, it is possible to claim that the best
performances, in order to achieve the aims of this work, are given by the syn-
chronous variant selecting the best two individuals for migrating in a thread
randomly chosen.

Table 5. Comparisons between the three best variants of mt − GA and two clonal
selection algorithms: CLONALG [5, 6], and opt− IA [3, 4]

Trap SR AES SR AES SR AES SR AES SR AES
opt-IA [3], [5] CLONALG1

Inv Macro Inv+Macro
(

1
ρ

)
e(−f) e(−ρ∗f)

C(I) 100 371.15 100 737.78 100 388.42 100 272.5 100 251.3
C(II) 100 44079.57 100 27392.18 100 29271.68 100 17526.3 10 191852.7
C(III) 0 - 54 115908.61 24 149006.5 0 - 0 -
C(IV) 0 - 7 179593.29 2 154925 0 - 0 -
C(V) 0 - 2 353579 0 - 0 - 0 -

Synchronous Asynchronous Asynchronous & Birth CLONALG2

C(I) 100 1208.66 100 3542.22 100 1195.44 100 254.0 100 218.4
C(II) 100 18460.4 100 39202.16 100 28972.43 29 173992.6 24 172434.2
C(III) 91 75528.59 76 147446.23 57 151960.47 0 - 0 -
C(IV) 5 155389.8 4 163231.75 1 232352.0 0 - 0 -
C(V) 0 - 0 - 0 - 0 - 0 -

In order to better understand the robustness of the performances and the
quality of the solutions produced by all mt−GA variants, we have compared the
designed algorithm with two well-known clonal selection algorithms: CLONALG
[6], and opt − IA [3, 4]). We underline the fact that today opt − IA represents
one of the best bio-inspired algorithms for optimization tasks [9]. The showed
results for these two algorithms have been taken mainly from [5], and are showed
in table 5.

By inspecting this table, it is possible to see how the three variants ofmt−GA
outperforms all compared algorithms, achieving higher values of success rate
(SR), except for the macro version of opt-IA on the traps C(IV) and C(V).
From an overall point of view by inspecting the obtained results, it is possible to
claim thatmt−GA, as well as its three variants, are competitive on optimization
tasks; are able to get out from local optima; and, finally, they prove to us that
the implemented strategies are efficient, and robust.
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6 Conclusions

The overall aim of this work is to develop a multi population-based algorithm
capable to escape from local optima, which are the main reason why a generic
optimization algorithm fails. In order to achieve the fixed aim, it is crucial to an-
swer questions such as: (1) the best performance is obtained by running threads
in a synchronous way, which strengthen the cooperation, or in asynchronous
form? (2) which individuals should be selected as migrants? and (3) to what
thread should they migrate? Our Algorithm, denoted mt−GA, addresses those
questions and it contains a migration strategy which improves a the cooperation
between the subpopulations, yet maintaining a sufficient amount of diversity.

Trap functions are a classical toy problems that represent a really useful tool
in order to well understand the main features of a given EA, albeit they are
not of immediate scientific interest. In particular, trap functions are mostly used
for understanding the dynamics, and search’s ability of a generic evolutionary
algorithm. Although there exist two different scenarios (simple and complex),
we focused our experiments only on complex trap functions, since they are suf-
ficiently challenging to properly evaluate the goodness of mt−GA.

Many experiments were conducted on different complex trap functions, from
which we tried to provide the right answer the above questions. We have tested
three variants of mt − GA: (1) synchronous, (2) asynchronous, and (3) asyn-
chronous with birth; this last variant is necessary when one thread does not
receive migrants because it may not be running at that specific time. The mi-
gration place, and which migrants to select were problems studied as well.

By inspecting all performed experiments, we concluded that the best overall
results are obtained by the synchronous variant, where the k = 2 migrants corre-
spond to the best two individuals, and the migration place is randomly chosen.
The two asynchronous variants instead show a slightly lower performances to the
synchronous one, and they both obtain the best performance when the migrants,
and migration place are randomly chosen.

Finally, in order to properly evaluate the efficiency, and robustness ofmt−GA,
we compared the best results obtained by each variant with two well-known
optimization algorithms based on the clonal selection principle, CLONALG [6]
and opt−IA [3, 4] (belonging to Artificial Immune Systems class). In particular,
the latter represents today the state-of-the-art for global optimization tasks.
From the comparisons, we can see that the three variants of mt−GA are very
competitive with the other algorithms. This proves the efficiency and robustness
of mt − GA, and the high success rates achieved on the most of the instances
confirms us that mt−GA is really suitable for the fixed aim.
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Abstract. Keyword extraction plays an increasingly crucial role in sev-
eral texts related researches. Applications that utilize feature word se-
lection include text mining, web page retrieval, text clustering and text
categorization. Current methods for computing the keywords of a doc-
ument are subject to a series of evolutions. Nevertheless, the methods
do not perform well in very high dimensional state spaces. The methods
are quite inefficient as they depend greatly on a human form of input.
This attribute of the existing keyword extraction methods is not ideal in
several applications. This paper presents a technique which will extract
keywords without any kind of manual support. Genetic based extraction
computes the list of key terms for each document. Irrespective of the text
size, the novel method is able to perform the required computation with
a higher echelon of performance. Calculations are done with the informa-
tion taken from a structured document. Then the document is converted
into a numerical representation by bestowing the distinct words with a
numerical weight. The proposed method uses the knowledge of an iter-
ative computation with a genetic algorithm to discover the optimal key
terms. The evolutionary technique is subject to gradual changes that
ensure the survival of the fittest. Experiments were done using three
different data sets. The proposed method shows a high degree of corre-
lation when the performance was checked against the existing methods
of weighted term standard deviation, The Differential Text Categorizer
method and the discourse method.

Keywords: Genetic algorithms, Weighted Term Standard Deviation,
Genetic based algorithm, mutation, crossover.

1 Introduction

Digitization of information has led to problems of accessibility and discoverability
[5]. The existing problems demand a solution which needs a proper classification
of the text, to allow easy extraction of the required content. To achieve this,
various keyword extraction techniques are used to extract the keywords from a
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plain textual document. Various keyword extraction techniques have been used
in processes like text classification, text categorization, text summarization, etc
[1]. These techniques rely on exploiting various document parameters like the
word count, term occurrences and term position. “Ease of use” and the “as-
certain temperament” of the text are the two key problems, which have been
instantiated as a result of high digitalisation. Understanding a corpus would
require navigating through the entire manuscript to discover the foremost ter-
minologies. For an effective level of keyword extraction, information has to be
gathered from the document’s structure. Word building methods with iterative
principles work on all the different aspects of document analysis. This increases
the accuracy and precision of the possible outputs.

Each document comprises of a topic. The documents have an appropriate
title that is used to describe the content. The title is followed by the body of
the document. The body is not a single entity but a collection of many factors.
The factors would include the sub paragraphs that elaborate on the topic, the
links and other references. The importance of the data varies according to the
location of the content within the document [9]. The initial words of a paragraph
can be given more priority, than the others that occur later in the document.

In this paper, the initial weight of the words is calculated using the basic
equations, as stated by the Weighted Term Standard Deviation method in an
extended fashion. The basic weighing function is followed by the Genetic Pro-
cedures. The term weighing function works on certain aspects of the document
features, by which the word profile is established. The initial weights that are
calculated are then passed into the genetic algorithm procedures, which are used
to enhance the feature-weighting schemes. The total number of words derived
is based on the dimensionality of the content. Several test documents are used
to decide the efficiency of the extraction. The end result is compared against a
prebuilt set of words and their weights. The similarity values are also computed
to ensure the output. In this paper we exploit a technique that does not rely on
manpower and can vary outputs across all possibilities of the text parameters.
It ensures the accuracy and optimization of the end results.

The rest of the paper is organized as follows: Section 2 presents the literature
on feature extraction. Section 3 discusses the design and development of the
new method for keyword extraction, and introduces the experimental procedures
for the performance measures. Section 4 analyses the data and the results are
obtained. Section 5 concludes with the summary, identifying the limitations of
the research and proposes suggestions for future study.

2 Literature Review

The fundamental keyword extraction method would be the term frequency (TF)
and inverse document frequency (IDF) where the occurrences of the term in the
document are considered [7, 8]. The IDF gives the weight with respect to the
whole pack of documents. The weight of the characteristic term is divided into
two parts [8, 9].

tfidf(ti, dj) = tf ∗ log(N/n)
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where
tf - term frequency of the ith term in the jth document,
N- Total number of documents in the collection,
n - Document frequency of the ith term.

The weight of a term is directly proportional to the number of times it occurs
in the document. This has a positive and negative impact on the final weighing.
The advantage of using the term frequency is that, it clearly shows the words
which occur repeatedly. Nevertheless, less priority is given for the ones that occur
less frequently. To improve the effect of the computation, newer methods take
into consideration the relevancy of the terms in the document. The relevance
frequency (RF) [8] is given by the following:

RF (t) = log(1 + n(+)/n(−))
n(+) - number of positive documents with a particular term,
n(-) - number of negative documents with a particular term.

KEA [3, 16] is a keyword extraction algorithm that was generated in the later
stages of the feature selection research. The new KEA++ includes the phrase
length of the words and the frequency of the various nodes. KEA was released
in several versions. Each had a predominant variation from the other. Various
factors like the document type, the structure of the corpus and the context can
be used to help the feature calculation [13]. The existing techniques are not
reliantly fast when the above considerations are made. KEA is a supervised
keyword extraction strategy. The other supervised methodologies include the
Support Vector Machine (SVM) [6, 15].

In [11] a statistical equation called Weighted Term Standard Deviation
(WTSD) is proposed to represent the dispersion of the concepts in a docu-
ment. They divided the standard deviation by a maxline (di), to normalize the
standard deviation by the size of each document.

V ardicj =

√
√

x2 − (Σx)2/Dc

(Dc − 1)maxline(di)

where
x - position of the ith term in the jth document,
Dc - total number of words in a document “d”,
maxline(di) - the maximum line of document with a maximal width,
V ardicj - standard deviation of the concept position.

The standard deviation method was used to represent the distribution of the
dispersion in a document. The higher the standard deviation of the document
is, the larger the dispersion in the distribution would be [11].

The discourse method ought to take place in the initial sections of a document.
It is not applicable for the latter portions. The word weight is computed with
respect to the frequency. The position of each word in the sentence is taken
into consideration in the discourse technique [12]. The discourse is similar to the
TF-IDF method. The equation representation is as follows:

wi = tf ∗ log(s/sp)
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where
wi - weight of word in the ith position of the jth sentence,
tf - term frequency of the ith term in jth document,
s - number of sentences in document “d”,
sp - position of the ith word during its first appearance in document “d”.

In [14] various distributional features of a word are used to characterize the
importance of a word in the document. The various distributional features in-
clude the compactness of the word, the frequency of its appearance and the
position of its first appearance. But all these features are dependent on various
factors, like the length of the document etc.

From the above, it is evident that the discourse method does not consider
the later appearances of a word. The equation takes only the first occurrence
of a word into consideration. This is a major drawback of the technique. The
procedure would be effective in a smaller document space, but when applied
in large corpuses where the terms tend to repeat, the method will result in
incorrect results. The discourse is a simple formulation that will work perfectly
with documents with a lower number of words. As the number of terms and
sentences increases, the overall output accuracy declines.

On the whole, it is evident that the existing methods do not dig into the
intrinsic features of a document [2]. The term frequency method relies on the
frequency of the keywords. This is not sufficient to come to a conclusion, that
the term which keeps repeating is the ideal feature word of the document. The
method has to be revised and more parameters need to be included in it. The
supervised method is a tedious one, which needs the user to input test data into
the system. For effective extraction there has to be an effective training process.
KEA is a common keyword extraction algorithm, but it has a lot of scope for
improvement.

Our method is an enhancement of the Weighted Term Standard Deviation
(WTSD) technique. It has been the base of many feature selection methodologies.
The Weighted Term Standard Deviation method does not consider the position
of a word with respect to each sentence. This is a feature that can increase
the accuracy of a keyword weight computation. The discourse method does not
take into consideration the parameters of the words, which occur in the later
positions of a document, which in turn, reduces the accuracy of the output. The
genetic based algorithm has identified the drawbacks of the existing systems, and
modulated a new set of formulas which gives the terms a better weight value.
Statistically and experimentally the new algorithm has established an improved
performance.

3 Proposed Method

This paper shows how the genetic algorithm can be used to haul out the supreme
set of keywords. The computational challenges are analysed for efficient and
effective retrieval of the scoring words from both the real and synthetic data
sets. This involves the repetitive application of the mutation, crossover, and
fitness functions along with the selection operators.
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The main objective is to the extract keywords from each individual docu-
ment. The initial phase of the keyword extraction involves pre processing the
document. The terms need to be assigned with a weight that will help in pri-
oritizing them within the population. Once the initial weight is calibrated, the
genetic procedures are executed to gain a final keyword population. The terms
are chromosomes and the weights are the numeric representation of genes. A
simple, modified arithmetic technique is applied for crossover, trialed by the
“Expected Number of Elements in the Population” viewpoint to declare the fit-
ness of the engendered populace. Mutation is alleged only if the fitness utility is
not contended for cessation.

3.1 Document Pre-processing

The content is initially converted into the appropriate form [5]. The processes
for stop word removal and stemming are applied to the text, which is given
as the input. Pre-processing involves the elimination of non-textual information
like punctuation, HTML tags etc. The reduction of the document dimension
improves the performance of the extraction technique. Most of the keywords
would not be less than 2 characters; with this assumption the words that con-
fine to the above range are dropped. The space complexity is reduced with the
pre-processing methods.

3.2 Initial Weighing of the Keywords

Keyword retrieval systems are based on the weight of terms. Term weighing
is divided into two sections. The initial phase gives each term a weight. The
second phase involves the execution of several genetic engineering modules. The
net output of the combined processes would be a set of terms that describes
the document.

The initial weighing equation is once again divided into two parts. When words
occur for the first time, an extension of the weighted term standard deviation
method as given by [11] was used. The equation that was proposed previously
exploits only certain document features. To improve the accuracy the new for-
mulation weighs the terms based on all the parameters, which could identify the
terms in the document.

The equation (1) takes into consideration the “Position of a term in a given
sentence” along with “Average position in whole document, Avg(wx)”. Avg(wx)
is a parameter that has not been used in many keyword extraction mechanisms.
Avg(wx), gives priority to a word which occurs many times and at diverse
positions, than a word which occurs only once in the first sentence. Thus, this
incorporates the idea of “Survival of the Fittest”. Additionally, equation (1)
takes into consideration the number of words in each sentence, sc. This is an
important parameter which gives value to each and every sentence. Thus words
are weighted with respect to the document and each sentence. This increases
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the precision and accuracy of the term weights. The very first equation in the
genetic based method is as follows.

wi =
sc/Avg(wx)

maxline(di)/Dc
(1)

where
wi - weight of word in the ith position of the jth sentence,
sc - word count in the ith sentence,
Avg(wx) - Average position of the ith term in a document “d”,
maxline(di) - the maximum line of document with a maximal width,
Dc - total number of words in a document “d”.

When a word starts repeating, the next equation (2) is used. The equation has
utilized the concept of term frequency. As a term keeps repeating over and over
again, it could have a certain amount of relevance. The idea is made prominent by
considering several other document attributes, which reveal the real relevance
of each term. When the same word repeats at position “t + 1”, its weight is
calculated using the weight that was being computed at position “t” and this is
continued every time a term re-appears. The equations (2) and (3) now deviate
from the base equations and navigate into the unique document features. This
increases the accuracy of the output.

As a word repeats, an incremental factor Wicr is computed. This increases
the weight of the “repeating” term. Thus, as the weight of a term increases, its
priority in the document will also enhance. Wicr is computed with the term’s
current parameters. This includes “the number of words in the sentence in which
it currently appears” and “the improved average position of the term”. These
are the factors, which will keep the recurrent term at a higher position. With
these factors, the weight of a term is computed withWicr and the “square root of
its previous weight”. This generalizes the weight and prevents it from deviating
away from the “document’s term populace”.

Wicr =
1

s∗c
√

Avg(wx)
(2)

V wi =Wicr +
√

V wi(t− 1) (3)

where Wicr - value to be added to the weight of a word when it is encountered
more than once, V wi(t−1) - Weight of word at position t−1, V wi - Net Weight
of the “ith” term after increment.

This helps with the evaluation, and words with lower weights give a reduced
prominence to the document meaning. Words that occur deeper down in the
passage may be seen to have less weight-age but the positional factors of the
words in the particular sentence neutralises the drop. A balance is made between
the position of the word in the document and its occurrences. The combination
of the above two equations will produce the best set of keywords to be passed
on to the next phase of genetic algorithms. Algorithm 1 gives an overview of the
process.
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Algorithm 1. Calculating the initial weights of Words
INPUT
A Text document “D” with:
“S” number of sentences
“C” number of words in each sentence
Let “E” be the set of distinct words
Let “V wi” be the weight of each distinct word in the document
INITIALISE
The weight V wi of each word wi to 0
EXECUTE
for i from 1 to S do
for j from 1 to C do
Get the word wj in position “j”
if sentence si contains the word wj that is not in E
then
add wi to E
Calculate V wi of word wi according to (1)
else
Calculate V wi of word wi according to (2)
End if
End for
End for
OUTPUT
A set of distinct words with a weight V wi

3.3 Application of the Genetic Algorithm

The genetic algorithm helps to obtain improved results than the previous tech-
niques. The genetic algorithm relies on a population referred to as chromosomes,
which have been encoded as solutions to emphasize the optimization [4]. The pro-
cess starts with a randomly selected population, but ends with a stable and coher-
ent resultant. Itworkswithmutual processes like the fitness function andmutation.

The fitness function will evaluate the populations and the next generation is
finalised by the process of mutation. The algorithm concludes when, an utmost
amount of production has been achieved, or an adequate suitability echelon has
been accomplished. The objective is to engender solutions with optimization.
Keyword extraction is an idea of pronouncing the terms restating a document
the search is optimised with the assistance of the inherent schemas. The results of
the initial weighing equations are passed onto the genetic procedures. The input
weights are sorted in the descending order, before the methods of crossover,
fitness and mutation are applied.

3.4 Probability Crossover

The performance of the genetic algorithm is controlled by the crossover value.
The choice of the crossover value should be such as to control the performance
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of the genetic algorithm in a positive manner. The probability crossover for our
procedures is indicated with respect to the word weights. The efficiency of the
mechanism is increased since there is no need to convert the chromosomes into
the binary type; thus, no loss in precision by discretion from binary to other
values. The equations are framed in such way that values which are not likely
to occur in the final population will sense the required changes and determine
their chance of occurrence thereafter.

The basic principle behind crossover involves the divide and conquer method.
The populationis brokeninto two halves where the first segment contains the
better half,and the rest holds the weight of the lower probability poulation. Wi

indicates the weight of a word in position “i”. Pci is the probability ratio of
the most feasible word with respect to the word that has the highest occurence
in the other part of the division. The genetic based algorithm creates a balance
between the words with high and low weight values. It divides term weights,
which are sorted in descending order into two distinguishable halves. Where the
first segment contains the better half and the rest holds the weight of terms in
the lower probability population. Thereforth, equations (5) and (6) can be used
to measure the probability crossover of terms corresponding to each other in the
broken set of words.

For example, if the document term set has 50 different words, the first half as
a result of “divide and conquer” will have 25 terms with high weights. While the
other half will have words with lower weights. To compute probability crossover,
the “first word in the first half” will be paired with the “first word in the second
half”. This has to be continued till the whole term populace is computed against
probability crossover. As a result, words which were thought to be meaningless
will be given a “second chance” to prove its priority. Probability Crossover is
succeeded by fitness and mutation. Thus, words which had lower weights but a
higher likelihood of defining the document will be allowed to come within the
final term set. This clearly stresses on the genetic principle the “Survival of the
Fittest”. Equations (4), (5) and (6) computes in an organised manner, following
the principles of simple crossover. It does not select words in a random order.
The equations exploited in the crossover mechanism include the following:

Pi =Wi

Pk =Wk

K = Pi + Pk (4)

ai =
Pi

(K)

ak =
Pk

(K)

Pci = (ai ∗ Pi) + (1− ak)Pk (5)

Pck = (ak ∗ Pk) + (1− ai)Pi (6)
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where
Pi - Weight of a word “i” in the first half of the population,
Pk - Weight of a word “k” in the second half of the population,
ai - Probability occurrence of a word “i”,
ak - Probability occurrence of a word “k”,
Pci - modified weight of the word “i”,
Pck - modified weight of a word “k”.

The probability method of “p = (1−q)” is used to obtain the likeliness between
words. “P” denotes the weight of a highly prioritised word and “q” indicates the
words with a lower priority. The above methodology has the ability to push words
with less feasibility to a better position. The base of the crossover is to achieve a
population by choosing parents that have the ability to generate offspring that
can satisfy the fitness calculations. The values of crossover can affect the whole
algorithm, as its unhealthy values could lead to an un-optimal local solution that
may cease [10].

3.5 Fitness

The robustness of the solution depends on the selection of parents passed from
the current process to the next iteration. The fitness function is used to gener-
ate a functional assessment of comparative fitness expressions. The survival of
an individual term is considered independently. The algorithm flows with the
standard of “Expected number of copies of the word “i” in the forthcoming
population”. The equation representation would be as follows:

E(ni) =
Pc(i)

avg(Pc)
∗Dmax (7)

T (i) = E(ni) ∗Ddistinct terms in documents (8)

if(T (i) < avg(Pc))

Pmi = 0

where
E(ni) - Expected copies of the ith term,
Pc(i) - Probability Crossover weight of the ith term,
Pm(i) - Probability Mutation of the ith term,
avg(Pc) - Average weight of “all” words in a document “d”,
Ddistinct terms in documents - Number of distinct words in a document.

The novel genetic based algorithm computes a fitness value for each term.
It calculates the likelihood of a term in the final populace, with respect to its
probability crossover. This is followed by a test condition, which calibrates each
individual term against all the other terms in the document. The term which
ceases to fall within the average probability crossover of all the other terms will
be eliminated. Similarly, words with higher weights and greater divergence from
the normal population of terms will also be eliminated. This allows the final set
of terms to be confined with a small state space.
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3.6 Mutation

Mutation endorses the amendment of term weights with a probability mutation
“pm”. Mutation has the capability to reinstate the mislaid genetic material into
the populace, thus thwarting the convergence of the solution into a suboptimal
region, or its divergence into an infinite loop. T (i) decides whether the mutation
process is to be applied or not. When a word does not lie within the fitness
condition, the process of mutation is not applied. The fitness value determines
the mutation. When two consecutive iterations have a similar weight-age for the
terms, the ultimate keyword list is generated. The equational representation of
mutation is given by the following formula:

Pmi =
√

V wi(i) +
tf

Avg[x]
(9)

where Avg(x) - average position of the ith term in the jth document.
Mutation considers the term frequency and the average position of words.

This allows the terms to retain its documental parameters. Words with greater
weights, positioned at the initial stages of a sentence and has incurred a greater
frequency will be allowed to have a greater weight value. This will also prevent
the genetic based algorithm from ceasing at a suboptimal region.

4 Computational Results

Three different datasets were used for the study. One is the Reuters-21578, man-
ually processed set of abstracts and the test data set of KEA. The Reuters-21578
is an experimental data collection that appeared on the Reuters newswire of the
year 1987. The dataset was obtained from

http://kdd.ics.uci.edu/databases/reuters21578/reuters21578

Nearly 12300 articles from Reuters under different categories were uniquely
assigned, and used for evaluation. There is no standard keyword list for this
dataset; so the keywords extracted using the TF method, are used as the base-
line for our evaluation. The manually processed set of abstracts is obtained from
cornell.edu. This contained around 500 documents with a predefined collection
of keywords. The keywords were extracted using the test methods WTSD, dis-
course, text categoriser and genetic based extraction. The output was evaluated
against the keywords extracted, using term-frequency method. The KEA dataset
is obtained from the KEA website. The dataset had a standard keyword list at-
tached with every document. The dataset that was pre-processed and executed
by using KEA was also tested with the WTSD, discourse, text Categoriser and
genetic based algorithm, and calibrated to show the level of performance. The
keywords that were extracted by these methods are compared with the standard
keyword list given in the dataset.

After pre-processing, the set of words that can describe the document is left
over. The words are given a document term weight. The initially mentioned
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weight age equations are applied to gain the numerical representation. There-
after, the weights are passed to the genetic algorithm that comprises the newly
devised formulations for the feature selection.

4.1 Percentage of the Keywords Extracted

The percentage of the keywords extracted is found using the following formula

%words found =
(100 ∗ words extracted)

Total Number of keywords

Table 1 shows the percentage of the keywords extracted by the several meth-
ods. The results did justify that the new way of extraction is more appropriate
than the existing ones.

Table 1. % of the Keywords Extracted

Dataset No. of keywords WTSD Discourse Text Categoriser Genetic based method

3 56.6 11.1 66.7 66.7
4 63.3 12.3 75.0 66.7
5 99.6 23.6 80.0 99.6

Reuters 6 64.4 54.9 66.7 76.6
7 82.3 69.3 14.2 87.4
8 73.3 66.7 25.0 72.6
9 33.3 33.5 66.7 83.3

4 34.5 18 25 38
5 42.4 21.2 60.0 44.4
6 51.6 30.4 66.7 54.7

Cornell 7 47.5 29.9 42.8 50.6
8 47.5 29.5 37.5 56.5
9 38.5 15 22.2 35.6
10 38.3 17.6 20.0 38.1

7 34.4 54.6 57.1 58.5
8 49.6 30.9 45.6 58.6

KEA 9 37.3 15.8 55.5 37.8
10 39.6 17.5 38.7 40.3
11 21.2 18.8 47.6 29.9

4.2 F -Measure

The evaluation of the algorithms can be done using the F -Measure. This eval-
uation method works with the Recall and Precision values. The higher the F -
Measure, the better will be the performance of extraction. The F Measure is
a standard method that is used to analyze the performance of the keyword
extraction methods. These standard measures to address the performance are
given by:
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Recall, R =
Terms found and correct

T otal number of keywords

Precision, p =
Terms found and correct

Keywords extracted

F -Measure for a document, D is given by:

F (D) =
2PR

(P +R)

Table 2 shows that the genetic based method have higher values than other
methods. This is a clear evidence that the genetic based method is better than
other methods.

Table 2. F -Measure values

Dataset No. of keywords WTSD Discourse Text Categoriser Genetic based method

3 0.27 0.06 0.29 0.30
4 0.24 0.06 0.14 0.24
5 0.28 0.08 0.35 0.28

Reuters 6 0.18 0.15 0.19 0.21
7 0.19 0.17 0.09 0.21
8 0.16 0.13 0.14 0.16
9 0.07 0.07 0.38 0.16

4 0.58 0.31 0.07 0.64
5 0.57 0.28 0.07 0.59
6 0.63 0.37 0.12 0.67

Cornell 7 0.55 0.34 0.09 0.58
8 0.50 0.31 0.16 0.59
9 0.37 0.16 0.12 0.38
10 0.40 0.18 0.08 0.40

7 0.21 0.49 0.18 0.37
8 0.22 0.53 0.15 0.53

KEA 9 0.19 0.64 0.28 0.71
10 0.33 0.57 0.42 0.75
11 0.21 0.53 0.60 0.21

4.3 Entropy

The entropy measure can also be used for a homogenous evaluation. The total
entropy is evaluated as the sum of the precision. It is necessary to minimize the
entropy of the results. The formula for entropy calculation is given below.

Entropy = −
∑

i∈P

P (i)× log(P (i))

The output is tabulated in Table 3.
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Table 3. Entropy Values

Dataset No. of keywords WTSD Discourse Text Categoriser Genetic based method

4 0.28 0.57 0.30 0.21
5 0.31 0.59 0.76 0.31
6 0.27 0.53 0.35 0.20

Reuters 7 0.38 0.40 0.56 0.35
8 0.37 0.39 0.59 0.35
9 0.40 0.44 0.53 0.41
10 0.56 0.56 0.05 0.40

4 0.28 0.33 0.99 0.08
5 0.28 0.30 1.11 0.08
6 0.33 0.36 0.85 0.10

Cornell 7 0.30 0.33 0.97 0.10
8 0.28 0.34 0.57 0.09
9 0.23 0.25 0.58 0.05
10 0.26 0.28 0.83 0.08

7 0.67 0.45 0.39 0.32
8 0.63 0.18 0.36 0.18

KEA 9 0.71 0.13 0.32 0.19
10 0.52 0.17 0.18 0.30
11 0.67 0.67 0.19 0.22

The genetic based method had the least value in the entropy computation.
This is clear evidence that the novel method is better than the existing ones.
Table 3 shows the numerical values of entropy for the data sets.

5 Conclusion

The paper demonstrates the execution of the keyword extraction using the ge-
netic algorithm techniques. A variety of features are proposed beyond the tradi-
tional frequency and position based features extracted from the system generated
summaries. We have proposed a looping structure that works with the leverage
of relationship between the keyword extraction and summarization. According
to the experimental data examination the projected procedure is better than the
standard deviation methods by virtually 15% in terms of the F -Measure. The
method appears to be more powerful and has given satisfactory levels of achieve-
ment, when large data sets were worked with. The fitness function that has been
keenly focused on, makes certain that the best word is not lost through the it-
erations. It also gives room for the lower value words to catch up with the final
population. The genetic algorithm bestows a healthier approach in pronouncing
the words that depict the document. There is scope for enhancement where the
restrictions on the dimensions of the state space can be imposed. This enables
reducing the deviated word list from being generated. Upgrading, in terms of
dimension and accuracy, can allow further supremacy of the keyword extraction
technique.
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Abstract. Part-of-speech tagging is a task of considerable importance
in the field of natural language processing. Its purpose is to automatically
tag the words of a text with labels that designate the appropriate parts-
of-speech. The approach proposed in this paper divides the problem into
two tasks: a learning task and an optimization task. Algorithms from the
field of evolutionary computation were adopted to tackle each of those
tasks. We emphasize the use of swarm intelligence, not only for the good
results achieved, but also because it is one of the first applications of
such algorithms to this problem. This approach was designed with the
aim of being easily extended to other natural language processing tasks
that share characteristics with the part-of-speech tagging problem. The
results obtained in two different English corpora are among the best
published.

Keywords: Part-of-speech Tagging, Disambiguation Rules, Evolu-
tionary Algorithms, Particle Swarm Optimization, Natural Language
Processing.

1 Introduction

The words of a language are usually grouped in lexical categories or parts-of-
speech (POS). A tagger is a system that should receive a text, made of sentences,
and, as output, should return the same text, but with each of its words associated
with the correct POS tag. These tags are acronyms for the lexical categories
chosen for labeling the words. The process of classifying words into their POS,
and labeling them accordingly, is known as POS tagging, or, simply, tagging.
In most languages, each word has a set of lexical categories that represent the
roles that they can assume in a sentence. When the cardinality of this set is
greater than one, we say that the word is ambiguous. The context of a word,
i.e., the lexical categories of the surrounding words, is the fundamental piece of
information for determining its role in a sentence. For instance, the word wind
can assume the function of a verb, if it follows the word to, or can be used as a
noun if it is preceded by a determiner like the. According to this, most taggers
take into consideration the context of a word to decide which should be its tag.
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However, each of the words belonging to a word’s context can also be used in
different ways, and that means that, in order to solve the problem, a tagger
should have some type of disambiguation mechanism that allows it to choose
the proper POS tags for all the words of a sentence.

The methods used for solving the POS tagging problem can be divided into
two distinct groups, based on the information they use. In one group, we can
gather the approaches that use statistical information about the possible con-
texts of the various word tagging hypotheses. Most of the stochastic taggers are
based on hidden Markov models. In the other group, we find rule based taggers
[1–3]. The rules are usually discovered automatically, and its purpose is to cor-
rect errors resulting from an initial basic tagging. Brill’s tagger [1] is perhaps
the most popular tagger based on rules.

More recently, several works following an evolutionary approach have been
published. These taggers can also be divided by the type of information they use
to solve the problem: statistical information [4, 5], and rule-based information
[2]. In the former, an evolutionary algorithm is used to assign the most likely tag
to each word of a sentence, based on a training table that basically has the same
information that is used in the traditional probabilistic approaches. The later is
inspired by Brill’s rule based tagger. In this case a genetic algorithm (GA) is used
to evolve a set of transformations rules, which will be used to tag a text in much
the same way as in Brill’s tagger. While in [4, 5], the evolutionary algorithm is
used to discover the best sequence of tags for the words of a sentence, using an
information model based on statistical data, in [2] the evolutionary algorithm is
used to evolve the information model itself, in the form of a set of transformation
rules.

Although the POS tagging problem is a task that has had a special attention
in the field of natural language processing (NLP), the evolutionary approach de-
serves, in our opinion, a more thorough study. We believe that this study should
include the application of other algorithms from the evolutionary computation
field. Moreover, previous work suggest the exploitation of these algorithms on
two key aspects of the task: the information gathering and the automatic process
to perform the tagging, according to the information collected. In this paper, we
present a new evolutionary approach to the POS tagging problem. Our strategy
implies a division of the problem into two different tasks: a learning task and
an optimization task. These are tackled using not only evolutionary algorithms,
but also particle swarm optimization (PSO), resulting, as far as we know, in
the first attempt to approach this problem using swarm intelligence. Although
focusing mainly on the POS tagging problem, we believe that this work may be
the foundation for a new paradigm to solve other NLP tasks. This paradigm is
based, however, in two fundamental assumptions:

– With the help of a classification algorithm, it is possible to generalize, from
linguistic resources, the information typically used in the probabilistic ap-
proach, by learning a set of disambiguation rules. These rules will not play
the role of a classifier, instead they will be used as an heuristic to help solve
the task in question.
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– It is possible to formalize the main problem as a search problem and use the
rules discovered in the first phase as an heuristic to guide the search for a
solution in the problem state space.

The field of evolutionary computation includes a set of global optimization
algorithms that have been applied, with recognized success, to a vast and varied
set of problems in areas such as optimization, search and learning. These algo-
rithms are characterized by being easily adapted to different representations and
tasks. They are also global optimization algorithms, hence outperforming many
of the greedy approaches. Therefore, they present themselves as a suitable tool
to integrate the approach we propose here, since they can be used in both phases
of the strategy. Also the inherent versatility of these algorithms contributes to
strengthen the possibility of applying this approach to other NLP tasks.

2 Rules Discovery Using Evolutionary Computation

It is our belief that the information stored in the training tables of the proba-
bilistic approach can be interpreted as a set of instances. Each of these instances
is typically described by a set of measurable attributes related to the tags of the
surrounding words, and is associated with a numerical value that identifies the
number of times each one occurs in the training corpus. Naturally, this infor-
mation is specific to the corpus from which it was collected and does not show
any degree of generalization, instead it can easily be interpreted as an extensive
and comprehensive collection of information. Hence we are convinced that it is
admissible to investigate the possibility of generalizing this information using a
classification algorithm. From this generalization we expect to be able to reduce
the amount of information needed to solve the problem and also to improve the
tagging accuracy. The learned rules may be used, in a similar way to the train-
ing table, to guide the search of the POS tagging problem state space. They
aim not to classify a given word, but rather assess the quality of a particular
classification.

Previous experience with classification rules discovery [6, 7], using evolu-
tionary computation, has led us to define the classification algorithm based
on a covering algorithm. The outline of the algorithm used is defined in
Algorithm 1. As we can see, the set of rules is obtained by executing the search
algorithm m times. This algorithm is responsible for determining the best clas-
sification rule for the set of training examples it receives as input. At each ex-
ecution, the rule obtained is stored, along with its quality value, and the set
of positive examples is updated by eliminating all the instances covered by the
rule. The search algorithm will be executed as many times as necessary, so that
all positive examples are covered, i.e., the set of positive examples is the empty
set. We divided the problem into n distinct classification problems, n being the
number of different tags used in the annotated corpus, from which the rules will
be learned and that define the tag set E. Each tag e ∈ E presented in the cor-
pus determines a classifying object, with possible classes taking values from the
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discrete set Y = {Y es,No}. Two different search algorithms were tested: one
based on a GA and another based on a PSO. A more detailed description of the
implemented algorithms can be found in [8, 9].

Algorithm 1. Covering Algorithm

Require: PosExemples, NegExemples
Ensure: RulesSet

while PosExemples �= ∅ do
〈BestRule, Quality〉 ← SearchAlgorithm(PosExemples, NegExemples)
PosExemples ← Remove(PosExemples,BestRule)
RulesSet ← Add(RulesSet, 〈BestRule, Quality〉)

end while

2.1 Prediction Attributes and Representation

The use of rules allows, in addition to the grammatical categories of the sur-
rounding words, the consideration of other aspects. Although a word context is
perhaps the most determinant piece of information to identify its lexical cate-
gory, there are also some other aspects that can be helpful. The internal structure
of a word may give useful clues as to the word’s class [10]. For example, -ing is
a suffix that is most commonly associated with gerunds, like walking, talking,
thinking, listening. We also might guess that any word ending in -ed is the past
participle of a verb, and any word ending with ’s is a possessive noun. Taking
these observations into account, we considered as prediction attributes two dis-
tinct groups. The first group includes six attributes related with the context: the
lexical categories of the third, second and first words to the left, and the lexical
categories of the first, second, and third words to the right of a particular word.
The second group comprises the following information about the words: if the
word is capitalized, if the word is the first word of the sentence, if the word has
numbers or ‘.’ and numbers, and some words’ terminations like ed, ing, es,
ould, ’s, s. The possible values for each of the first group’s attributes are the
values of the corpus tag set from which the search algorithm will learn the rules.
This set will depend on the annotated corpus used, since the tag set will vary for
different annotated corpora. The remaining attributes were defined as boolean.

The training sets were built from the Brown corpus. For each word of the cor-
pus, we collected the values of every attribute in the rule’s antecedent, creating
a specific training example. Next, for each tag of the tag set, we built a training
set made by positive and negative examples of that tag. The building process
used to define each of the training sets was the following: for each example ei of
the set of examples, with word w and tag t, if w is an ambiguous word, with S
the set of all its possible tags, then put ei in the set of positive examples of tag
t, and put ei in the set of negative examples of all the tags in S, except t.

We used a binary representation for the rules. The attributes related with the
context were codified, each one, by six bits. The first bit indicates whether the
attribute should or should not be considered, and the following five bits represent
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the assumed value of the attribute in question. We adopted a table of 20 entries
to store the tag set, and used the binary value represented by five bits to index
this table. If the value exceeds the number 20, we used the remainder of the divi-
sion by 20. The remaining attributes were encoded by 18 bits, two bits for each of
the nine attributes. In the same way, the first bit indicates if the attribute should
or shouldn’t be considered, while the second bit, indicates whether the property
is, or is not, present. We adopted a Michigan approach, thus, in both implemen-
tations of the search algorithm, each particle/individual represents a rule using
the codification described. In short, each particle/individual was composed by
6× 6 + 2× 9 = 54 bits.

2.2 Search Algorithm

For the PSO based search algorithm we adopted the binary version presented by
Kennedy [11]. The genetic algorithm based version follows the classical GA with
binary representation [12]. We used, as genetic operators, the two point crossover
(with 0.75 probability) and the binary mutation (with 0.01 probability). The
selection scheme used was a tournament selection with tournaments of size two
and k = 0.8.

The formula used to evaluate each rule, and therefore to set its quality, is
expressed in Equation 1. This formula penalizes a particle/individual that rep-
resents a rule that ignores the first six attributes, which are related with the
word’s context, forcing it to assume a more desirable form. The others are eval-
uated by the well known Fβ-measure (see Equation 2). The Fβ-measure can be
interpreted as a weighted average of precision and recall. We used β = 0.09,
which means we put more emphasis on precision than recall.

Q(X) =

{

Fβ(X) if X tests at least one of the first six attributes
−1 otherwise

(1)

Fβ(X) = (1 + β2)× precision(X)× recall(X)

β2 × precison(X) + recall(X)
(2)

3 POS-Tagger

By definition, a POS-tagger should receive as input a non annotated sentence,
w, made of n words, wi, and should return the same sentence, but now with all
the wi marked with the appropriate tag. Assuming we know all the possibilities,
Wi, of tagging each of the words wi of the input sentence, the search space of the
problem can be defined by the set W1 ×W2 × · · · ×Wm. Therefore the solution
can be found by searching the problem state space. We believe that this search
can be guided by the disambiguation rules found earlier. We tested two different
global search algorithms: a genetic algorithm (GA-Tagger) and a binary particle
swarm optimizer (PSO-Tagger).

The taggers developed were designed to receive as inputs a sentence, w, a
set of sets of disambiguation rules, Dt, and a dictionary, returning as output
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the input sentence with each of its words labeled with the correct POS tag.
The search algorithm evolves a swarm/population of particles/individuals, that
encode, each of them, a sequence of tags for the words of the input sentence. The
quality of each particle/individual is measured using the sets of disambiguation
rules given as input. Again, a more detailed description of the implemented
taggers can be found in [8, 9].

3.1 Representation

The representation used in the two implemented algorithms is slightly different.
In the GA-Tagger, we adopted a symbolic representation. An individual is rep-
resented by a chromosome g made of a sequence of genes. The number of genes
in a chromosome equals the number of words in the input sentence. Each gene,
gi, proposes a candidate tag for the word, wi, in the homologous position. The
possible alleles for gene gi, are the elements of the set Wi.

Since we adopted the binary version of the PSO algorithm, we used, in this
case, a binary representation. To encode each of the tags belonging to the tag
set, we used a string of 5 bits. Therefore, a particle that proposes a tagging for
a sentence with n ambiguous words will be represented by n× 5 bits. Each five
bits of a particle encode a integer number that indexes a table with as much
entries as the possible tags for the correspondent ambiguous word. If the integer
number, given by the binary string, exceeds the table size, we use as index the
remainder of the division by the table size value.

3.2 Tagging Evaluation

The quality of the overall tagging, t, is given by the sum of the evaluation results
of each tag assignment, ti for each word wi. A particle/individual representing
a sequence of n tags, t, for a sentence with n words will give rise to a set of n
pairs 〈xi, ti〉, with xi denoting the correspondent 15-tuple collecting the values
of the 15 attributes presented in the antecedent of the disambiguation rule. The
quality of each tag assignment, ti, is measured by assessing the quality of the
pair 〈xi, ti〉, with xi using Equation 3.

h(〈xi, ti〉) =
{

qk If 〈rk, qk〉 ∈ Dti and rk covers xi

0 Otherwise
(3)

The quality of a particle/individual is given by Equation 4, with T represent-
ing the set of all n pairs 〈xi, ti〉.

Quality(T ) =
n∑

j=1

h(Tj) (4)

4 Experimental Results

We developed our system in Python and used the resources available on the
NLTK (Natural Language Toolkit) package in our experiences. The NLTK
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package provides, among others, the Brown corpus and a sample of 10% of
the WSJ corpus of the Penn Treebank. It also provides several Python modules
to process those corpora. The experimental work was done in two phases. First
the disambiguation rules were discovered and, after that, the POS taggers were
tested. The results achieved in each phase are presented in the next subsections.

4.1 Disambiguation Rules

As we said before, tagged corpora use many different conventions for tagging
words. In order to be able to use the disambiguation rules learned from the Brown
corpus to tag text from other corpora, we used the simplify tags=True option
of the tagged sentence module of NLTK corpus readers. When this option is set
to True, NLTK converts the respective tag set of the corpus used to a uniform
simplified tag set, composed by 20 tags. This simplified tag set establishes the
set of classes we use in our algorithm. We ran the covering algorithm for each
one of these classes and built, for each one, the respective sets of positive and
negative examples.

We processed 90% of the Brown corpus in order to extract the training exam-
ples, and, for each word found, we built the corresponding instance. The total
number of examples extracted from the corpus equaled 929286. We used 6 sub-
sets of this set (with different cardinality) to conduct our experiments. We used
sets of size: 3E4, 4E4, 5E4, 6E4, 7E4 and 8E4, which we identified with labels
A, B, ..., F. For each subset, we built the sets of positive and negative examples
for each tag, using the process described in the previous section.

We tested the classification algorithm both with the GA and the PSO im-
plementation of the search algorithm. We ran the classification algorithm two
times with each different implementation for each of the training sets. The GA
was run with populations of size 200 for a maximum of 80 generations and the
PSO with swarms of 20 particles over 200 generations. In Table 1 we present
the average number of rules achieved by both algorithms and the correspondent
reduction, considering the total number of positive examples (+) adopted.

Although the publications describing previous evolutionary approaches, based
on training tables, do not clearly indicate the number of entries of those tables,
their size is explicitly mentioned as a sensitive point concerning the algorithm

Table 1. Average number of rules discovered by the classification algorithm

Average number of rules
Set + GA Reduction PSO Reduction

A 25859 2719 89.49% 2715.5 89.49%
B 33513 3081 90.81% 3124.5 90.68%
C 41080 3358.5 91.82% 3327.0 91.90%
D 48612 3735.5 92.32% 3696.5 92.39%
E 55823 4137 92.59% 4033.0 92.78%
F 63515 4399 93.07% 4288.5 93.25%
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time execution [4]. While unknowing these values, the total number of positive
examples considered from each of the training sets adopted, can give us an idea
of the size of these tables, since the information used is similar. However, while
the large training set in our case has a total of 8E4, the previous approaches
use sets with typically more than 1.5E5. As we can see in Table 1, the rules
discovered by both algorithms, allowed a significant reduction (around 90%) in
the number of positive examples considered. The results also show that there
are no significant differences in the number of rules discovered by the GA and
the PSO.

In order to evaluate the quality of the heuristic represented by each of the
discovered rules sets, we use them as input for the implemented taggers. At this
point, our goal was to compare the accuracy results given by the taggers for
each of the rules sets, but at the same time confirm the second hypothesis of our
approach. We executed 10 times each of the taggers for each of the rules sets
with the same test set. We ran the GA-Tagger with 50 individuals during 10
generations and the PSO-Tagger with swarms of 10 particles during 50 genera-
tions. The best accuracy results were systematically achieved by the PSO-Tagger
and they are presented in Tables 2 and 3. We observed that the best tagging
was achieved with the rules discovered from the set F during the first execution
of the classification algorithm based on a GA (GA F.1)). The best set of rules
discovered by the classification algorithm based on a PSO was achieved from the
training examples of set C during the first run (PSO C.1).

Table 2. Tagging accuracy results achieved using the rules discovered by the GA

Set Number of rules Average Best Standard deviation

GA A.1 2740 0.9655128 0.9659605 2.3120E − 4
GA A.2 2698 0.9647239 0.9652956 3.7227E − 4

GA B.1 3059 0.9651449 0.9654286 2.6196E − 4
GA B.2 3103 0.9644358 0.9649854 2.4651E − 4

GA C.1 3355 0.9664569 0.9667583 2.6329E − 4
GA C.2 3362 0.9654596 0.9658718 2.6350E − 4

GA D.1 3742 0.9664258 0.9667139 1.7882E − 4
GA D.2 3362 0.9661023 0.9664480 3.2624E − 4

GA E.1 4166 0.9669666 0.9672458 1.7858E − 4
GA E.2 4108 0.9666209 0.9669356 2.4496E − 4

GA F.1 4440 0.9672369 0.9677334 2.3248E − 4
GA F.2 4358 0.9671128 0.9677334 2.7878E − 4

This first set of experiments enable us to identify the best heuristic and also
to confirm that it is possible to formalize the POS tagging problem as a search
problem and use the disambiguation rules as an heuristic to guide the search
for a solution in the state space of the problem. We also concluded that the
classification algorithm based on a GA was more successful than the one based on
a PSO. Also we can observe, from the results achieved with the rules discovered
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Table 3. Tagging accuracy results achieved using the rules discovered by the PSO

Set Number of rules Average Best Standard deviation

PSO A.1 2695 0.9635227 0.9641876 2.5759E − 4
PSO A.2 2736 0.9629022 0.9633011 2.8265E − 4

PSO B.1 3148 0.9628668 0.9631682 2.6163E − 4
PSO B.2 3101 0.9649366 0.9651183 1.5132E − 4

PSO C.1 3385 0.9669356 0.9673345 2.3172E − 4
PSO C.2 3269 0.9650962 0.9654286 2.3937E − 4

PSO D.1 3664 0.9655749 0.9660048 2.3643E − 4
PSO D.2 3729 0.9661378 0.9664923 2.4005E − 4

PSO E.1 3958 0.9650740 0.9654286 2.0365E − 4
PSO E.2 4108 0.9654286 0.9658275 2.4809E − 4

PSO F.1 4309 0.9655394 0.9658718 2.1435E − 4
PSO F.2 4268 0.9656901 0.9660934 2.0836E − 4

by the GA, a correlation between the size of the training examples set and
increasing accuracy values. This allows us to expect that better heuristics could
be learned by the GA using larger training sets.

4.2 POS Tagging Results

We tested the PSO-Tagger and the GA-Tagger on a test set made of 22562
words of the Brown corpus using the best set of rules found (AG F.1). We ran
the PSO-Tagger 20 times with swarms of 10 and 20 particles during 50 and 100
generations. The GA-Tagger was also executed 20 times with populations of 50
and 100 individuals during 10 and 20 generations. These values were chosen so
that we could test both algorithms with similar computational effort, considering
the number of necessary evaluations the effort measure.

The results achieved are shown in Table 4. As we can see, the best average ac-
curacy was achieved with the PSO-Tagger using a swarm of 20 particles evolving
during 50 generations. The best accuracy result returned by the GA-Tagger is

Table 4. Tagging accuracy results achieved by both POS-taggers on a test set made
of 22562 words of the Brown corpus using as heuristic the set GA F.1

Tagger Part/Ind Generations Average Best Standard Deviation

PSO-Tagger 10 50 0.9672658 0.9679550 2.6534E − 4
100 0.9673123 0.9676004 1.9373E − 4

20 50 0.9674896 0.9678220 1.9158E − 4
100 0.9673921 0.9678663 2.1479E − 4

GA-Tagger 50 10 0.9672170 0.9675561 1.9200E − 4
20 0.9672968 0.9674231 1.1707E − 4

100 10 0.9672591 0.9675561 1.4097E − 4
20 0.9672835 0.9675117 1.0978E − 4
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worst than the best result obtained with the PSO-Tagger and it needs the dou-
ble number of evaluations required by the PSO-Tagger. However, the accuracy
values displayed by the GA-Tagger are still very competitive when compared
with others published using similar approaches.

We also tested the taggers on a test set of the WSJ corpus of the Penn
Treebank made of 1000 sentences, in a total of 25184 words, using the rules
discovered from the Brown corpus (see Table 5). As expected, the results achieved
by the two taggers on the WSJ corpus, using as heuristic the disambiguation rules
learned from the Brown corpus, are inferior to the ones obtained on the Brown
corpus. However, we believe that they allow us to conclude that the discovered
rules are sufficiently generic so that they can be used in different corpora. This
conviction emerges from comparing the obtained results with those published by
other evolutionary approaches (see Table 6). Indeed, we found that the accuracy
achieved is comparable with the best published results. It is also important to
stress that this values are achieved with no previous training on this corpus. The
accuracy values for the WSJ corpus presented in Table 6 were achieved using all
the corpus available in the NLTK package, in a total of 100676 words, setting
the parameters of the algorithm with the values that provided the best results
in the initial set of experiments presented in Table 5.

Table 5. Best tagging accuracy results achieved by both POS-taggers on a test set
made of 25184 words of the WSJ corpus using as heuristic the set AG F.1

Tagger Part/Ind Generations Average Best Standard Deviation

PSO-Tagger 20 50 0.9659943 0.9668837 3.1277E − 4
GA-Tagger 100 20 0.9660598 0.9663675 2.4541E − 4

An overview of the accuracy values achieved by the taggers in both English
corpora used, is presented in Table 6, along with the results published by works
using similar approaches. These results only reveal that the accuracy values
obtained by the two taggers are competitive with those of past approaches. We
can not directly compare our results with those published since we have no access
to the test set used in the experiments made in the cited works. Nevertheless, we
may conclude that for comparable size words sets (in the case of the evolutionary
approaches), taken from the same corpora, the results obtained in this work
are among the best published. The values shown in Table 6 were converted to
percentage values and rounded to the second decimal place, so that they could
be more easily compared with the ones presented in the publications cited.
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Table 6. Results achieved by the two taggers on two english corpora along with the
ones published by similar approaches. (Araujo - [4]; Alba, Alba-GA, Alba-PGA, Alba
- [5]; Wilson - [2]; Brill - [1])

Corpus Tagger Training set Test set Best

Brown PSO-Tagger 80000 22562 96.78
GA-Tagger 80000 22562 96.76
Araujo 185000 2500 95.40
Alba-GA 165276 17303 96.67
Alba-PGA 165276 17303 96.75

WSJ PSO-Tagger ∅ 100676 96.67
GA-Tagger ∅ 100676 96.66
Wilson 600000 =Training 89.80
Brill 600000 150000 97.20
Alba 554923 2544 96.63

5 Conclusions

We described a new evolutionary approach to the POS tagging problem, which
we tested using two distinct algorithms from the evolutionary computation field:
a GA and a PSO. We would like to emphasize the fact that, to the best of
our knowledge, this was the first attempt to apply a PSO to solve the POS
tagging problem, and that, in general, there are few approaches based on swarm
intelligence to solve NLP tasks.

The experimental work carried out in order to study the influence of the al-
gorithms’ parameters in the taggers’ output, namely the number of generations
and the number of particles/individuals, allowed us to conclude that the algo-
rithms can find promising solutions even with reduced resources. In fact, we
could not identify a clear trend of improving accuracy with increasing number
of evaluations. We also observed that the best tagging accuracy was displayed
by the PSO-Tagger, which allows us to conclude that swarm intelligence based
algorithms can also show good results when applied to NLP problems. The re-
sults displayed by the GA-Tagger also proved to be competitive with the best
ones published in previous works following a evolutionary approach.

The experiments made using the WSJ corpus and the disambiguation rules
extracted from the Brown corpus gave us an idea of the degree of generalization
achieved by the adopted classification algorithm. From those results, we were
able to confirm that the rules obtained are sufficiently generic to be applied on
different corpora. The attained generalization also reflected a substantial reduc-
tion in the information volume needed to solve the problem, while contemplating,
besides the typical context information, other aspects related, not to the POS
tags, but to the characteristics of the words. Although we did not present any
example of the learned rules, we would like to point out the advantages of repre-
senting the information in the typical classification rule format, when compared
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to the numerical values used in the probabilistic approaches. The comprehensi-
bility of the learned rules, which can be represented by predicate logic, allows
its easy application in different contexts.

It is our conviction that the presented approach can be viewed as a new
paradigm for solving a set of NLP tasks that share some of the features of
the POS tagging problem and that are currently mainly solved by probabilistic
approaches. Therefore, we are planning to extend this method to other tasks that
also need some kind of disambiguation in the resolution process, like noun-phrase
chunking, the named-entity recognition problem, sentiment analysis, etc.
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Abstract. Recent works in combinatorial optimization shows that the
cooperation of activities allows obtaining good results. In this work, we
are interested in a parallel cooperation between Ant Colony System
(ACS) and Marriage in honey Bees Optimisation (MBO) for the res-
olution of the graph coloring problem (GCP). We first present two ACS
new strategies (ACS1 and ASC2) and an MBO approach (BeesCol) for
the GCP, then, we offer several collaboration modes and parallelisation
for the proposed methods using a parallel machine simulated on a cluster
of PCs. An empirical study is undertaken for each method. Moreover, to
test our approach, we have also implemented effective algorithms for the
GCP. A comparison between the different algorithms shows that ACS1
(construction strategy) gives best results and is quite fast compared to
other methods. Moreover, the parallel implementation of ACS reduces
significantly the execution time. Finally, we show that the cooperation
between ACS and MBO improves the results obtained separately by each
algorithm.

Keywords: Graph coloring problem, Ant Colony System, Marriage in
honey Bees Optimisation, cooperation, parallel solution.

1 Introduction

The graph coloring problem (GCP) is one of the most studied NP-hard optimiza-
tion problems in graph’s theory, completeness theory and operational research
[15]. Its importance is justified by its diverse and interesting applications such
as scheduling [14], register allocation [16], and frequency assignment [17]. The
GCP consists in assigning to each graph node, a color different from those of its
neighbors while using a minimum of possible colors. In this paper, we present
the main steps of a new ACS approach for the GCP, with two strategies: con-
struction and improvement. We compare the ants’ approach versus the bees’
approach using BeesCol [4]. Then, we propose a parallel implementation of ACS
and different modes of collaboration between the proposed ACS and BeesCol.

In section 2, we give the general concept of Ant Colony Optimisation (ACO)
and the details of our new ACS approach for the GCP. In section 3, we give the
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general principle of BeesCol. In section 4, we present a parallel solution for ACS
alone and collaboration between the proposed ACS and BeesCol. In section 5,
we discuss the tests results and finally, in section 6, we draw some conclusions.

2 Ant Colony Optimisation

Ant Colony Optimisation (ACO) is a proposed metaheuristic approach for solv-
ing hard combinatorial optimization problems [9]. It is an evolutionary method
inspired by real ants foraging behaviour that enables them to find shortest paths
between a food source and their nest. In an ACO algorithm,a complete graph
denoted by G=(C ,L ) whose vertices are the solution components associated
to the problem. It is called “construction graph”. Moreover, a simple agents
called artificial ants communicate indirectly to find good solutions for the op-
timization problem. Informally, the behaviour of ants in ACO algorithms can
be summarised as follows: The ants of a colony concurrently and independently
move through adjacent states of the problem on the construction graph, applying
a stochastic local decision. While moving, ants incrementally build solutions to
the optimisation problem. Typically, good quality solutions emerge as the result
of the collective interaction of the ants, which is obtained via indirect communi-
cation (pheromone trails). Indeed, during the construction of the solution, ants
evaluate the partial solution and deposit pheromone on components or connec-
tions (online update). This information will guide the future ants search. when
moving on the construction graph ants make decision based on pheromone trails
(τ ) and an information specific to the problem (η). In many cases, η is the
cost, or an estimate of the cost. These values are used by the ant’s heuristic
rule to make probabilistic decisions on how to move on the construction graph.
The probabilities involved in this case are commonly called transition probabil-
ities.The first ACO algorithm proposed was Ant System (AS) [11]. Several ant
algorithms were developed later on improving AS such as Ant Colony System
(ACS)[10][13][5]. In this paper, we will be interested by this last algorithm. In
fact, we implemented two strategies for ACS: Construction and improvement
strategy.

2.1 Construction Strategy: ACS1

The construction strategy, we propose in this work, does not use in its self adap-
tation phase, a constructive specific method such as RLF (Recursive Largest
First) [12] or DSATUR (Degree of Saturation) [6][5]. Every ant is initially put
on a node of the construction graph randomly or according to a well defined
criterion. Each one builds a feasible solution iteratively by inserting, at every it-
eration, a couple (node, color) in the partial solution until obtaining a complete
one. Note that the graph built by the ant is the graph to color. The algorithm
main steps are summarized below: (1) Initialization. Before applying the algo-
rithm, the following parameters are initialized: The pheromone initial values
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(τ0), the ants’ number, the number of iterations (stopping criterion), the tran-
sition rule parameters α,β, q0,ϕ∈ [0,1] pheromone trails persistence and finally
the candidate list size.

(2) Ants position. Every ant is put on a node randomly.
(3) Selection of the next node to color. The choice of the next node (s) to

color is carried out by applying a transition rule in the following manner. Let q
be a uniformly distributed random variable on [0, 1], if q≤ q0 then the chosen
node (s) is the one for which the product between the pheromone value and the
heuristic information value is maximum; ie s = argmax (τij)

α(t).(ηij)
β(t), If q

>q0 , the node is chosen using the following probability form:

(τij(t))
α.(ηij(t))

β

∑

l∈Jik
(τil(t))α.(ηil(t))β

. (1)

Where τij (t) is the pheromone value on the edge (i,j) at iteration t,Values of
pheromone are associated to pairs of nonadjacent vertices having the same color.
ηij(t) is the heuristic information on node j, q0 (0 ≤ q0 ≤ 1), a parameter of the
algorithm which determines the relative importance between the exploitation
and the exploration. α and β are two parameters which control the relative
influence of the pheromone trails and heuristic information and Jik is the feasible
neighborhood of ant k; that is, the set of nodes which ant k has not yet visited.
The next node to color (ncur) is selected among those nodes. When the size of
the instance is very large, a candidate list is used. It is an intelligent strategy that
does not consider the totality of the neighborhood but rather a subset. Nodes in
this list can be sorted out in a descending order of their degrees. (ncur) is added
to the partial solution and put in the ant’s taboo list. This list is used to save
the path (solution) built by the ant. It is also used to make sure that a node
already colored will not be colored a second time, and consequently it guarantees
the feasibility of the built solution. (4) On-line Updated step by step. This stage
consists in decreasing the pheromone values associated to pairs of nodes having
the same color (nodes which has been just added to the stable in construction) to
make them less attracting for the future ants and then avoid a fast convergence
to the same solution. Pheromone is either put on nodes (2) or on edges (3):

τ(s) = (1− ϕ).τ(s) + ϕ.τ0 (2)

τij = (1− ϕ).τij + ϕ.τ0 (3)

where s or j is the chosen node to color. The preceding steps are repeated as
long as the ant has not finished building a complete solution. (5) Off-line Update.
Extra-pheromone is added to the best solution found in this generation which will
help future ants in their search. The Off-line Update is carried out according to
the following formula:((4) case of pheromone on nodes and (5) case of pheromone
on connexions):

∀s ∈ S∗, τ(s) = (1− η) ∗ τ(s) + η ∗ cost(S∗) (4)
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τij = (1 − η) ∗ τij + η ∗ cost(S∗) (5)

Where S* is the best solution found until now, η is a parameter indicating the
pheromone decline and cost(S) is defined as the number of colors used in the
solution S. (6) Evaporation. When stagnation (same solution appears during sev-
eral iterations) is detected, then evaporation is made according to the following
equation:

τ(vi, vj) = (1− ϕ) ∗ τ(vi, vj) (6)

where (1 − ϕ) is the evaporation coefficient. This process is repeated as long as
the stopping criterion (a maximum number of iterations ) is not satisfied.

2.2 Improvement Strategy (ACS2)

In this strategy, the search space is also a graph, where every node is a complete
solution. Initially, each ant is on a node. It moves, at each iteration, to a neighbor
node to improve its solution. When moving, the ant changes the color (recolor)
of a node. The steps of this strategy are summarized as follows: 1) Initialization.
Similar to the first strategy’s one. 2) Initial solution generation. Each ant gener-
ates an initial complete solution using one of these strategies: a. Assign to each
node a color randomly, the number of colors nc is fixed beforehand, such as nc ≤
(maximum degree of G) +1. b. The initial solution is built using a constructive
algorithm that partitions the nodes set in K stables (all nodes of a stable have
the same color), where K is the maximum degree of the graph [7]. 3) Recolor a
node. At each iteration, the ant chooses in its ordered candidate list a node to
recolor, applying the pseudorandom transition rule. This corresponds to move
the chosen node to another partition in order to minimize the conflicts if they
exist or to improve the solution. This process is repeated a fixed number of iter-
ations. 4) On-line Delayed Update. After an ant recolors a node, it updates the
pheromone table according to the (7) (case of pheromone on nodes) or formula
(8) (case of pheromone on connections):

τij = τij + ϕ/cost(S∗) (7)

τ(s) = τ(s) + ϕ/cost(S∗) (8)

where S* represents the best solution found until now and the cost is the number
of conflicts. Thus, the amount of the added pheromone is proportional to the
cost of the ant’s solution. 5) Off-line update. It is similar to the first strategy.
6) Evaporation. As in the first strategy, if stagnation occurs, then evaporation
is made according to the equation (6). 7) Stopping Criterion. The algorithm
stops when a maximum number of iterations pre-defined is reached. Heuristic
information The choice of the next node to color is influenced by the heuristic
information. In the case of the GCP, this information is tightly bound to the
characteristic of the nodes (degree, degsat). In this work, we propose a static
and a dynamic heuristic. The static heuristic is represented by a vector of size
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|V |, which contains the degrees of the nodes to color, computed during the ini-
tialisation phase. However, the value of the dynamic heuristic information is
recomputed after each node re-coloration (by an ant). It defines the node’s satu-
ration degree. Let’s recall that the saturation degree of a node v (DSATUR(v))
is the number of colors already assigned to the neighbours of v.

3 Marriage in Honey Bees Optimisation

Bees are social insects living in very organized colonies. Each honey-bees colony
consists of one or several queens, drones, workers and broods. Queens special-
ize in egg laying, workers in brood care and sometimes egg lying, drones are the
sires of the colony and broods the children. Marriage in Honey Bees Optimization
(MBO) is a swarm approach to combinatorial optimization problems inspired by
the bee’s reproduction process which can be summarised as followed: In a mat-
ing flight, each queen mates with seven to twenty drones. During each mating,
sperm reaches the spermatheca and accumulates there to form the genetic pool
of the colony. Each time a queen lays fertilized eggs (broods), it retrieves at
random a mixture of sperms accumulated in the spermatheca to fertilize the egg
[2]. Contrary to most of the swarm intelligence algorithms such as Ant colony
optimisation, MBO uses self-organization to mix different heuristics. MBO was
first used on the 3-SAT problem [3]. It was also used for the GCP (BeesCol)
[4]. BeesCol uses as worker Taboo Search, Local Search or ACS2. The worker
(heuristics) intervenes on two levels of the algorithm; it improves the initial so-
lutions at first and then improves the solutions obtained after the crossover. The
pseudo code of BeesCol is given in [4].

4 A Cooperative Approach For The GCP

Cooperation among the different implemented methods requires a parallel ma-
chine having certain characteristics: parallel execution of different methods, a
good communication among the different applications, synchronization and con-
trol of the co-operation between these applications. The machine we use consists
of a master processor and several slaves supervised and controlled by the mas-
ter. It was simulated on a cluster of PCs where a particular PC is identified as
a master processor. The communication among the different processors is made
via the TCP / IP protocol, the choice of this protocol is justified by its reliability.
For an execution, the user selects a number of slaves to run and the methods
(ACS or MBO) to assign to each one. Moreover, he initialises the parameters of
each method. Then, the master processor ensures the communication and the
synchronisation among the different slaves during their execution. The exchange
of solutions among slaves is done via the master. In this work, we first present a
parallel solution of ACS, then, two cooperation modes: (1) BeesCol with ACS2;
(2) ACS1with BeesCol and ACS2.
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4.1 Parallel Solution of ACS

If a large colony (n) is needed to solve GCP, using a sequential version of ACS
can be time consuming. To overcome this limit, we can use the machine defined
above with m (m < n) slaves. Each slave executes the ACS algorithm (ACS1 or
ACS2) with a number of ants =�n/m�(the largest integer less than or equal than
the total number of ants n divided by the number of slaves m) . As a result, a
large colony is divided into smaller size colonies. This form of parallelization is
said to be coarse-grain. Each processor builds its solution and sends the solution
as well as the pheromone information periodically (the period is defined by the
user) to the master. The latter compares all received solutions, and sends the
best solution pheromone information to all slaves. The pheromone trails are then
updated by all Slaves.

4.2 Parallel Cooperation

In the first mode (BeesCol and ACS2), there is a total cooperation between all
slaves. Each slave executes independently the assigned optimization method with
different parameters and sends its solution periodically (defined by the user)
to the master. The following figure (Fig. 1) shows an example of cooperation
between ACS2 and two different BeesCol algorithms (with different workers).

ACS2 Beescol

ACS2 Beescol

Master
Processor

Fig. 1. A cooperation example

In the second mode (ACS1 with BeesCol and ACS2), there is a partial cooper-
ation, as the slave executing ACS, is the only one sending its solution to others,
via the master. Indeed, ACS1 is a constructive method contrarily to BeesCol and
ACS2. In both modes, the master sends the best received solution to all slaves.

5 Tests Results

In this section, we present a summary of the results obtained by different im-
plemented methods applied to the GCP. The first part is devoted to the ACS
behavior study. Then, a comparison is carried out on the implemented methods
and some ants’ algorithms, namely: Ant Colony System where an ant is im-
plemented as a constructive method (RLF or Dsatur) [5] and Ant System [8]
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(well known algorithm). Finally, we conclude with a synthesis study of the
various cooperation modes among the implemented methods. All tests are
performed either on generated random graphs used in [8], or on well known
benchmarks taken from [1]. A random graph n d is a graph with n vertices and
such that there exists an edge with a probability p=0.d between any pair of
vertices. Random graphs are deeply studied with respect to coloring, especially
for p ∈ {0.4, 0.5, 0.6}. The execution times are written in the format “Seconds:
mili-seconds”. This time covers only the effective algorithms’ treatment exclud-
ing the input and output display. In all tables presented below, each line gives
the best, and the average solution of 50 executions.

5.1 ACS Results

We have performed several tests to adjust the different parameters of ACS. These
experiments are carried out on random generated graph 100 4 (100 nodes, 1941
edges and a density of 0.4) [1]. In the following, we have used these abbreviations:
Cs: colony size; It: iterations number; Gn: generations number; Cd: size of the
candidate list; τ0: initial value of pheromone; ϕ : Evaporation rate of pheromone;
α : pheromone influence; β : heuristic information influence; q0: intensification/
diversification parameter; St : pheromone strategy (N: pheromone on nodes;
C: pheromone on connections); H: heuristics (S: static; D: Dynamics); G: Gener-
ation where best solution found; In: generation strategy of initial population (0:
for random; 1: a constructive algorithm); time: time to obtain the best solution
in seconds and cost: Cost of the best solution. After preliminar tests, we found
that the best values for Cd and q0 are respectively 3 and 0.8. These values will
be used in all coming tests.

ACS1 Results. The obtained results for benchmarks 100 4 , described above,
are summarized in tables 1. Note that after preliminar tests, we use pheromone
on nodes as it is the strategy that gives better results. In the first and second
lines of table 1, we use respectively the static and the dynamic heuristic. Same
importance is given to both heuristic and pheromone information (α = β). A
closer look at the results shows that even though dynamic heuristic gives better
results, it slows down the search process (line 1, 2, 6 and 7). When we can-
cel the pheromone influence (α = 0) and give more importance to heuristic
information(β = 1), we notice that a local optimum is reached only at the 6th
iteration (line 4). This can be explained by the fact that last ants do not take
advantage of the experience of preceding ones. We conclude that ants’ learning
process is very important as pheromone trails improve the search through the
generations. The comparison of lines 5 and 7 results shows that the use of a
bigger colony size, even with a reduced number of generations, helps reaching
the optimum at generation 3; thus emphasizing the importance of diversification
in the solutions space.

The configuration that gives the best results is the following one:
BestConfig = τ0 = 0.1, ϕ = 0.1, α = 0.01, β = 1, Cs = 37, Gn = 3, use of
the dynamic heuristic and pheromone on nodes.
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Table 1. ACS1 results for the benchmark 100 4

Cs Gn St H τ0 ρ α β Best cost aver G time

5 10 N S 0.1 0.1 0.50 0.50 15 15.24 4 01:05
5 10 N D 0.1 0.1 0.50 0.50 14 14.50 5 01:75
5 10 N S 0.1 0.1 0.50 0.50 15 15.44 6 01:30
5 10 N D 0.1 0.1 0 1 15 15.24 6 02:05
5 10 N D 0.1 0.1 0.01 1 15 15.50 6 02:12
50 3 N S 0.1 0.1 0.01 1 15 14.20 3 00:93
37 3 N D 0.1 0.1 0.01 1 14 14.30 3 01:46

ACS2 Results. In table 2, we give the most significant results of the tests
performed with the improvement strategy on benchmark 100 4. Contrary to
ACS1, the optimum (14) is never reached. The cost of the best solution found is
(15), obtained with the following parameters: τ0 = 0.1, ϕ = 0.1, α = 0.01, andβ =
1. Thus, the construction strategy seems to be more suitable for the GCP. This is
due to the fact that ACS1 takes into account the nature of the problem, therefore
its constraints.

Table 2. ACS2 results for benchmark 100 4

Gn St H τ0 ρ α β cst G time

10 N S 0.1 0.1 0.01 1 16 1 10:30
10 N D 0.1 0.1 0.01 1 15 2 13:48

5.2 MBO Results

The test results obtained for MBO shows that the optimum is reached for all
the workers but with different execution times. The use of Tabu Search (TS)
reduces the execution time when compared to the use of the two other workers
(Local Search and ACS2). Results obtained for the first benchmark are close to
the optimum (14). The details of the execution of MBO are given in [4].

5.3 Comparative Study among Optimization Methods

We have done tests on several benchmarks which chromatic number is known, to
make a comparative study among the results of ACS1, ACS2, BeesCol and the
methods presented in [8] and [5]. The following table gives the optimum found
for each benchmark. The notations below are used in table 3: AS D (Ant System
where an ant is implemented as DSATUR), AS F (Ant System where an ant is
implemented as RLF), ACS1 D (ant implemented as DSATUR, and ACS1 R
(ant implemented as RLF).
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Table 3. Comparison among various methods

Graph opt BeesCol ACS1 ACS2 AS D AS R ACS D ACS R

queen6.6 7 8 7 8 8 8 8 8
queen7.7 7 7 7 8 10 7 8 9
queen8.8 9 10 9 10 10 10 9 9
miles1500 73 73 73 73 75 74 73 74
mulsol.i.4 31 31 31 31 31 32 32 31
zeroin.i.2 30 30 30 30 31 31 30 31
100-4 14 13 13 14 14 13 13 14
100-5 16 16 16 17 17 16 17 18
100-6 19 20 19 21 19 19 19 20
300-4 28 29 28 29 31 29 28 30
300-5 35 35 35 35 40 36 35 35
300-6 42 44 42 45 44 46 42 43

From this table, we note that ACS1 reaches the optima in most cases. Con-
cerning ACS2 and BeesCol, the obtained results are satisfactory compared to
those of AS D, AS R.

Compared to all other methods, ACS1 gives better results. Indeed, in BeesCol,
the crossover can deteriorate the quality of the solutions and sometimes create
conflicts, which moves away research from the interesting zones and slowed down
the algorithm.Whereas, the ACS approach by construction, manages at the same
time the constraints posed by the problem, the exploitation of the research space
and the exploration of the promising areas in this space.

5.4 Cooperation Results

Recall from section 4 that we propose in this paper two types of parallel solutions
for the GCP: a parallel solution of ACS and a parallel cooperation of several
methods. In what follows we present the results obtained.

Parallel ACS Results. We have chosen to run two ACS1 sub colonies (25 ants
each) in parallel on benchmark 100 4. Each colony is assigned to a slave. The user
initializes the parameters as well as of the periodicity of the pheromone table and
solution exchange via the master. Note that the parameters can be the similar
or different. In this case, both slaves are initialized with the values of Best config
and several executions varying the exchange periodicity (1 generation to 5) are
run. Both slaves reached the optimum, but with different execution times. For a
periodicity of 1, there is no gain in the execution time as most time is devoted to
the exchange. However for a periodicity of 2, we notice that the execution time is
cut by 25%. For a periodicity over 3, this parallelization is not efficient in terms
of time performance compared to the sequential execution of ACS1.However,
these results are promissing for a large scale parallelization. Concerning ACS2,
even when we execute two sub colonies (25 ants each) in parallel on benchmark
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100 4 with the best configuration, the optimum could not be reached. The cost of
the best solution found through all runs, for all slaves, is 15. The ACS2 parallel
version does not improve the results of the sequential version; however, it reduces
the execution time.

Parallel Cooperation Results. We propose two modes of cooperation. In
the first one, there is a total cooperation among all initialized slaves. In this
execution, we use two slaves to which we assign BeesCol and ACS2. In the
second mode, there is a partial cooperation where the slave executing ACS1
sends periodically its best solutions to the other slaves.

Total Cooperation Results. Each method exploits the solutions sent by
the other. The best parameters deduced from previous tests are used for each
method. The results are summarized in table 4.

Table 4. Total cooperation results for benchmark 100 4

processor method average cost average time

P1 ACS2 14.83 11:562
P2 MBO 14.25 8:589

Recall that ACS2 does not reach the optimum when executed alone (Table 2).
However, when ACS2 collaborates with BeesCol, it reaches the optimum after
two exchanges (on average). Moreover ACS2 helps BeesCol improving its average
cost if we refer to table 4.

Partial Cooperation Results. In this type of cooperation, ACS1 sends peri-
odically its best solutions to the other two slaves (BeesCol, ACS2). Table 5 gives
a summary of the results.

Table 5. Partial cooperation results for the benchmark 100 4

processor method cost time

P1 ACS1 14 01:27
P2 ACS2 14 7:33
P3 MBO 14 13:254

One notices that ACS1 reaches the optimum the first (second generation)
while the two others methods find the optimum starting from the 6th generation.
ACS1 “helps” the other methods to overcome the local optimum.
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6 Conclusion

In this paper, we were interested in a parallel cooperation between ACS and
MBO for the resolution of the GCP. We, first, presented two new strategies for
ACS to solve the GCP. The construction strategy, we proposed in this work, do
not use in its self adaptation phase constructive specifics methods such as RLF or
DSATUR and thus, was faster than ACS-R and ACS-D proposed in [3]. We gave
briefly the general principle of BeesCol, the GCP MBO approach. We offered
several parallelisation and collaboration modes between proposed methods using
a parallel machine simulated on a cluster of PCs. An empirical study was done
for each method. To test our algorithms, we implemented known algorithms for
the GCP: Ant System and another approach of ACS. The preliminary results
obtained on some well studied DIMACS graphs showed that ACS1 (construction
strategy) gave best results and was quite fast compared to other methods. It ap-
proached the results of best coloring on some large instances of famous Dimacs
benchmarks. Parallel implementation of ACS reduced significantly the execu-
tion time and computed quickly the best parameters (pheromone trails). Our
application offered partial and total cooperation modes of different optimization
methods to improve the solution and reduce the execution time. On one hand, we
showed that cooperation between ACS and MBO improved the results obtained
separately by each algorithm. Indeed, total cooperation allowed ACS2 to reach
the optimum and BeesCol to improve its average cost. On the other hand, in
the partial cooperation, ACS1 helped BeesCol and ACS2 to overcome the local
optimum.
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Abstract. The Artificial Bee Colony (ABC) is a recently introduced
swarm intelligence algorithm for optimization, that has previously been
applied successfully to the training of neural networks. This paper ex-
plores more carefully the performance of the ABC algorithm for op-
timizing the connection weights of feed-forward neural networks for
classification tasks, and presents a more rigorous comparison with the
traditional Back-Propagation (BP) training algorithm. The empirical
results show that using the standard “stopping early” approach with
optimized learning parameters leads to improved BP performance over
the previous comparative study, and that a simple variation of the ABC
approach provides improved ABC performance too. With both improve-
ments applied, we conclude that the ABC approach does perform very
well on small problems, but the generalization performances achieved are
only significantly better than standard BP on one out of six datasets,
and the training times increase rapidly as the size of the problem grows.

1 Introduction

Recently, the study of different insect behaviours, animal colonies and swarms
has led to the introduction of many nature inspired optimization algorithms [6].
Such swarm intelligence algorithms typically involve a group of simple agents
that cooperate with each other locally, either directly or indirectly, and these
simple interactions lead to the emergence of complex intelligent global behaviour
for solving problems. The best known examples are Particle Swarm Optimiza-
tion (PSO), inspired by the social behaviour of flocks of birds, and Ant Colony
Optimization (ACO), inspired by the foraging behaviour of ants.

A more recent, and less well studied, swarm intelligence algorithm is the Ar-
tificial Bee Colony (ABC) originally proposed by Karaboga [7], and inspired by
the foraging behaviour of honeybees. There are many possible applications of
ABC, but this paper will concentrate on their use in optimizing the weights of
artificial Neural Networks (NNs). Of course, there already exist many hybrid
neural network learning algorithms that aim to improve upon standard gradi-
ent descent algorithms such as Back-Propagation (BP), but the advantages of
those approaches are debatable. In particular, Cantu-Paz and Kamath [4] have
shown that most combinations of Evolutionary Algorithms (EAs) and neural
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networks performed no better than simple BP on the classification tasks they
tested. Karaboga and colleagues [9, 11], however, have previously applied ABC
to neural network learning and claimed some success. The aim of this paper is
to explore more carefully how effective ABC really is for training feed-forward
neural networks to perform classification tasks.

In the following sections, we first describe the ABC algorithm and how it can
be applied to neural network training. Then we describe and present results from
a series of computational experiments that explore the power of standard and
improved ABC for neural network applications in comparison with appropriately
optimized BP. The paper ends with our conclusions and a discussion of the
implications.

2 The Standard Artificial Bee Colony Algorithm

The ABC algorithm is a stochastic optimization algorithm inspired by the forag-
ing behaviour of honeybees [7]. The algorithm represents solutions in the given
multi-dimensional search space as food sources (nectar), and maintains a popu-
lation of three types of bee (employed, onlooker, and scout) to search for the best
food source. Comparative studies [8, 10] have indicated that ABC performance
is competitive with other population-based algorithms such as PSO, Genetic
Algorithms (GA) and Differential Evolution (DE).

The general idea of the ABC is that it starts with random solutions and
repeatedly attempts to find better solutions by searching the neighbourhoods
of the current best solutions and abandoning the poor solutions. The current
problem solutions are represented as food sources that are each associated with
an employed bee. An equal number of onlooker bees each choose one of those
food sources to be exploited based on their quality or fitness, using standard
roulette wheel selection [6]. Both onlooker and employed bees continuously try
to locate better food sources in the neighbourhood of their current food source
by changing a randomly chosen dimension of their food source position (i.e.,
a randomly chosen parameter of their solution) by a random amount in the
direction of another randomly chosen food source. Specifically, at each stage, a
randomly chosen parameter xi of food source i is updated by r.(xi − xj) where
r is a random number drawn uniformly from the range [−1, 1], and xj is the
corresponding parameter of a different randomly chosen food source j [11]. If that
update results in a better solution, the existing food source is replaced by the
one at the updated position. Meanwhile, scout bees carry out global exploration
of the search space by randomly choosing new food sources to initialize the
algorithm, and to replace food sources that have been deemed exhausted because
they have failed too many times to lead to improvements.

It is clear from the above description that the standard ABC algorithm
has only three control parameters that need to be set appropriately for the
given problem. First, the bee colony size, equal to twice the number of food
sources, and effectively equivalent to an EA population size. Second, the local
search abandoning limit. Third, the maximum number of search cycles, that is
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equivalent to an EA number of generations, and can be defined indirectly by a
suitably chosen fitness-based termination criterion.

3 Training Neural Networks Using ABC

Applying the ABC algorithm to training neural networks is relatively straight-
forward. The multi-dimensional search space is the space of network connection
weights and neuron thresholds, and the fitness is a standard measure of network
output performance (such as sum-squared error or cross entropy) on the training
data. However, the main objective here is for the trained network to generalize
to perform well on previously unseen testing data, and it is well known that
learning the training data too precisely can lead to “over-fitting” and unneces-
sarily poor generalization performance [1]. With gradient descent training, such
as BP, that is typically avoided by “stopping training early”, or by adding a
regularization term to the cost function (such as “weight decay”), and optimiz-
ing those with reference to an independent validation dataset [1]. In principle,
similar approaches can be applied to optimize the ABC training, though that
does not appear to have been done in the previous studies.

Karaboga and Ozturk [11] have already tested the ABC approach on nine
PROBEN1 benchmark classification problems [13], and compared their results
with those they obtained using two traditional neural network learning algo-
rithms (BP and Levenberg-Marquardt) and three population based algorithms
(PSO, GA and DE). Overall, the ABC achieved good results. More recently,
further improved results have been obtained with hybrid learning algorithms
involving ABC combined with traditional neural network training algorithms
[12, 14]. The key question to be addressed in this paper is: how can these good
ABC results be reconciled with the earlier negative results that Cantu-Paz and
Kamath obtained for the closely related population-based EAs [4]?

For the purpose of fair comparison, we shall follow as closely as possible
the approaches used in the previous studies in this area. As with the earlier
comparative study of using EAs for NN training [4], the ABC algorithm will
be compared here with standard BP. Following the earlier study of using ABC
for NN training [11], we shall concentrate on standard fully connected feed-
forward classification neural networks with one hidden layer and use sigmoidal
hidden and output activation functions. Sum squared error will again be used
as the training cost function, a simple winner-take-all approach will be used to
determine the predicted output classes during testing, and performance will be
given as percentage correct scores.

An important issue when comparing learning algorithms is that many of the
standard benchmark datasets in the UCI Machine Learning Repository [2] are
actually trivial in the sense that even the simplest low complexity O(nd) al-
gorithms do not perform significantly worse on them than more sophisticated
algorithms [5]. In fact, four of the nine datasets used in the Karaboga and Ozturk
study [11] are trivial in that sense (Cancer, Card, Diabetes and Glass) [5], so we
shall not consider them any further. They will be replaced by the more challeng-
ing Optical Digits dataset that has 64 inputs representing pixelated images and
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Table 1. Neural network architectures, numbers of weights, and training, validation
and testing dataset sizes

Dataset Architecture Weights Train Valid. Test

Thyroid 21-6-3 153 3600 1800 1800
Heart 35-6-2 230 460 230 230
Horse 58-6-3 375 182 91 91
Soybean 82-6-9 631 342 171 170
Gene 120-6-3 747 1588 794 793
Digits 64-40-10 3010 3058 765 1797

10 output classes for the digits 0 to 9, with 3823 training patterns and 1797 for
testing [2]. The same network architectures were used as in the Karaboga and
Ozturk study [11] for their five remaining datasets. For the new Optical Digits
set, 6 hidden units was nowhere near enough, so 40 were used. Table 1 sum-
marizes the properties of the six datasets studied, showing the corresponding
network architectures, numbers of weights, and dataset sizes.

Throughout this study we shall use standard unpaired two-tailed t tests to de-
termine the statistical significances of any performance differences found. Such
tests on the Karaboga and Ozturk [11] results (repeated in Table 2) for each
of their five datasets indicate that BP is significantly better (p < 0.001) than
ABC on one (Gene), significantly worse (p < 0.001) on three (Heart, Soybean,
Thyroid), and not significantly different (p > 0.1) on one (Horse). A potential
problem with these results, however, is that the performance of both algorithms
appear surprisingly poor, particularly for the Thyroid and Soybean datasets, so
the following sections will attempt to optimize the performance of each algo-
rithm, and repeat the comparisons using the improved results.

4 Training Neural Networks Using Optimized BP

A common problem with all comparisons against BP is that it is very easy for
BP to perform poorly on the chosen datasets if its learning parameters are not
optimized well, and that can be difficult to do by hand, because the parameters
are not independent, and the best values depend on the properties of the given
dataset. The study of Karaboga and Ozturk [11] simply used the same learning
parameters for all nine datasets, and it is likely that they were far from optimal
for at least some of them. One solution would be to use an evolutionary algorithm
to optimize the key BP learning parameters, such as the random initial weight
range [−ρ, ρ] and the learning rate η. With a fixed, sufficiently large, number of
training epochs for each problem, the evolved learning rate is then able to imple-
ment a form of early stopping and avoid over-fitting, and that consistently leads
to improved performances [3]. However, this evolutionary approach tends to be
rather computationally intensive, and might be regarded as giving BP an unfair
advantage over ABC. Instead, we can abstract a consistent emergent property
of the evolutionary approach, namely that very small initial weight ranges and
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Table 2. Mean neural network Classification Error Percentages (CEP) and standard
deviations (s.d.) for the six datasets using: BP from [11], ABC from [11], Optimized
BP, Optimized ABC, and Optimized Unconstrained ABC

Dataset BP [11] ABC [11] Opt. BP Opt. ABC Opt. UABC

Thyroid CEP 7.26 6.95 2.06 6.14 1.87
s.d. 0.00 0.01 0.21 0.07 0.14

Heart CEP 21.44 19.48 19.43 19.13 19.49
s.d. 0.55 1.41 0.54 1.34 0.57

Horse CEP 27.84 28.63 28.43 27.69 27.14
s.d. 2.12 2.61 2.70 1.23 1.69

Soybean CEP 61.16 38.63 10.08 13.93 9.91
s.d. 19.18 3.18 1.98 1.13 1.04

Gene CEP 11.37 29.50 13.23 19.55 12.22
s.d. 1.15 1.88 0.57 0.71 0.52

Digits CEP - - 4.32 6.29 4.27
s.d. - - 0.27 0.18 0.34

very slow learning rates tend to work best, and use a standard stopping early
approach to set the number of epochs. The details of the experimental set-up
and analysis were then chosen to provide the closest possible match with the
ABC approach discussed in the next section.

The datasets were each split into standard training, validation and testing
sub-sets (as indicated in Table 1), with the validation set performance used
to determine the optimal stopping point for the training on the training set.
For each training run, for each dataset, the initial network weights were drawn
uniformly from the range [-0.03,0.03] and a maximum of one million epochs
of BP training were applied. Clearly, a learning rate for each training dataset
was required that consistently resulted in achieving the maximum validation
set performance in the allowed number of epochs. These were found by initially
trying a learning rate of 0.000001 in each case, and then increasing that by factors
of ten till it was large enough, giving 0.000001 for Gene, 0.00001 for Heart and
Digits, 0.0001 for Horse, 0.001 for Soybean, and 0.01 for Thyroid. These large
differences serve to emphasise again how important it is to set the learning
parameters differently and appropriately for each dataset. It is quite likely that
the learning could be speeded up in some cases (by using fewer epochs and larger
learning rates), but determining by how much would potentially require more
computational effort overall for no improvement in performance.

As always, the random factors result in fluctuating performances within and
across runs, so there are often no clear optimal stopping points for the training,
and it is not obvious that all runs should be selected for use in computing the
average test set performances. A number of valid model selection approaches were
possible, but it made best sense to choose an approach to averaging that most
closely matched the natural averaging approach for the ABC. An average test set
performance was therefore determined using the network weights corresponding
to the top ten validation set performances from five BP runs. This was then
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repeated ten times to give an indication of the variance of the results. These
results are presented in the “Opt. BP” column of Table 2 for comparison with the
corresponding results from the earlier study [11]. With the optimized parameter
values, BP is now significantly better (p < 0.001) than ABC on three of the
datasets (Thyroid, Soybean, Gene), and not significantly different (p > 0.1) on
the other two (Heart, Horse), despite the fact that BP has been trained on less
data (i.e., not on the subset of the full training data set that was kept aside to
be the validation set). So, at this stage, the empirical results show that ABC is
significantly worse than BP for training neural networks.

5 Training Neural Networks Using Optimized ABC

In the same way that non-optimized learning parameter values resulted in mis-
leadingly poor BP results, it may be that better optimization of the ABC pa-
rameters can bring that approach back up to, or even beyond, the performance
levels of BP. This is the issue that we address next.

We proceed by investigating how the ABC performance depends on its pa-
rameters, and thus determine the best values that will enable a fair comparison
against BP. A preliminary investigation revealed that the bee colony size and
abandoning limit had very little effect on the results achieved, but the number of
search cycles was extremely important. This is not surprising, since the ABC will
obviously be prone to under- and over-fitting in exactly the same way as gradi-
ent descent algorithms such as BP, and stopping training early (at an optimum
point determined by performance on a validation set) can be expected to lead
to improved generalization performance on the test set. The way to get the best
generalization results is therefore to apply the ABC algorithm for enough cycles
that over-fitting has clearly begun, and then go back and take the solutions (i.e.
network weights) corresponding to the best validation set performances to be the
ones to represent the Optimized ABC. As with the above averaging approach
for BP, we take the average test set performance over the ten sets of weights
corresponding to the ten best validation performances from each ABC run, and
repeat that ten times to estimate the variances. The use of five BP runs to
give the ten best sets of BP weights can now be seen as providing a reasonable
approximation to picking the best weights from whole bee colonies.

For neural network training using ABC, there is another crucial parameter
that can have a big effect on the results, namely the size of the search space,
which here corresponds to the limit on the network weights. It is known that
optimizing the initial random weight range for BP can have a big effect on the
generalization performance [3], so it is not surprising that it also has a big effect
for ABC too. The obvious way to proceed is to start with the default ABC colony
size of 30 and abandoning limit of 1000 used by Karaboga and Ozturk [11], but
to train for a range of search space limits to find the best for each dataset.

Figure 1 shows how the performance varies with search space size, i.e. the
weight range [−ρ, ρ] used to generate the initial solutions and to limit the weights
throughout training. There is inevitable problem dependence, but if the range is
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Fig. 1. Generalization performance as a function of weight range for the ABC training
algorithm with limited random initial weight range, and the same limited weight range
throughout training

Fig. 2. Generalization performance as a function of initial weight range for the ABC
training algorithm with limited random initial weight range, but unconstrained weights
at later stages of training

too small or too large, the generalization performance deteriorates in each case.
The study of Karaboga and Ozturk [11] simply used the same range of [−2, 2]
for all the datsets, but that is significantly worse than optimal for four of the
six datasets (Thyroid, Horse, Gene, Digits), and not significantly different for
the other two (Heart, Soybean). The performances of the optimal data points
from Figure 1 are shown in the “Opt. ABC” column of Table 2, and despite
the reduced amount of training data caused by excluding the validation set, no
datasets have reduced performance compared with the original study. However,
even with the optimized weight ranges, ABC is still significantly worse (p < 0.01)
than BP on four data sets (Thyroid, Soybean, Gene, Digits), and not significantly
different (p > 0.1) on the other two (Heart, Horse).

The general pattern found for BP initial weight ranges is that smaller values
tend to result in better generalization until a point is reached when any further
reductions make little difference. The problem the ABC approach has is that
smaller values will lead to an over-restricted search space if the weights are
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Fig. 3. Generalization performance as a function of the bee colony size for the UABC
training algorithm with optimal initial weight range and abandoning limit of 1000

constrained to stay within that range throughout training. However, it is a simple
variation of the standard ABC (that we shall call Unconstrained ABC, or UABC)
to define an initial weight range, but allow the ABC algorithm to take the weights
outside that range. Doing that leads to the improved pattern of performances
shown in Figure 2. Now the performance is fairly level for small weight ranges,
and the range [−0.03, 0.03], that we used for the BP runs, is small enough to
work well for all the datasets. Smaller values tend to increase the number of
training cycles without significant performance improvement, so there is no point
in using a smaller range. The optimized performances using this approach and
initial weight range are given in the “Opt. UABC” column of Table 2. This
shows significant performance improvement (p < 0.01) over the restricted weight
range approach (in the “Opt. ABC” column) for four of the datasets (Thyroid,
Soybean, Gene, Digits), and no significant difference (p > 0.1) for the other
two (Heart, Horse). Comparing the optimized UABC results with the optimized
BP results shows no significant difference (p > 0.1) for five of the six datasets
(Thyroid, Heart, Horse, Soybean, Digits), but UABC is now significantly better
(p < 0.01) than BP for the Gene dataset.

It was stated above that the bee colony size and abandoning limit had little
effect on the results obtained by ABC for neural network training, but we now
need to check that claim more carefully, in case their optimization can lead to
further improvements in performance. First, Figure 3 confirms that, as long as
the colony size does not fall below about 10, it makes no significant difference
to the final performance what the colony size is. Obviously, larger colonies will
inevitably result in longer compute times per cycle, and that tends to not be
fully compensated by a reduction in the number of cycles required, so there is
an overall advantage in keeping the colony size reasonably low. The default size
of 30 used above is well within the range of good values, but not so high as to
have serious adverse computational resource implications.

The effect of varying the abandoning limit is shown in Figure 4. As long as
it is not below about 30, it makes no significant difference what the limit is. In
fact, for the default limit of 1000, or more, the scout bees are virtually never
employed, and that has no adverse effect on performance.
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Fig. 4. Generalization performance as a function of the abandoning limit for the UABC
training algorithm with optimal initial weight range and bee colony size of 30

Thus, we have now fully optimized the ABC algorithm parameters, and the
results shown in Table 2 are the best possible without further modification of
the algorithm itself. The ABC has achieved neural network generalization per-
formance significantly better than BP on the Gene dataset, but the results for
the other five datasets studied are not significantly different to those obtained
using standard BP with appropriate learning parameter values.

6 Conclusions and Discussion

This paper has investigated the use of the ABC algorithm for training neural
networks, and shown how it can be optimized to give better results than those
found in previous studies. However, in most cases, the best ABC generalization
performance levels obtained are not significantly different to standard BP that
has been properly optimized for the given problems.

One could argue that ABC algorithms are relatively minor extensions of stan-
dard EAs: they both involve populations of solutions, the generation of new
solutions based on existing solutions, and the discovery of better solutions by
iteratively using fitness based selection to determine which “offspring” should
replace which existing solutions. The obvious question to ask, then, is whether
the offspring generation and selection inspired by bees perform any better on
the application of interest (i.e. neural network training) than those inspired by
evolution by natural selection. We have seen that the scout bee component of
the ABC algorithm is redundant in this case, in that no decrease in performance
results from setting the abandoning limit to values so high that the scout bees
never become involved after the initial solution set generation. Thus there is
effectively no further wide-scale random exploration of the search space during
training. This means that all the offspring are generated by changing the value
of a single randomly chosen parameter (i.e. network weight) by an amount that
depends on the difference between that value and the corresponding value of
another individual. That is exactly how a basic EA cross-over and mutation
would optimize its genotype [3], so it is not surprising that we have come to
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a similar conclusion to that of the earlier study of Cantu-Paz and Kamath [4]
which showed that weight optimization using EAs gave results that were not
significantly better than standard BP.

This paper has shown that the optimized ABC and BP results are not signif-
icantly different for five of the six datasets studied, but we are still left with
the question of how the ABC performs significantly better than BP on the
Gene dataset. With BP learning, the weight update sizes depend on the back-
propagated output errors and the chosen value of the learning rate parameter.
With ABC optimization, the potential weight update sizes depend on the weight
differences between individuals, and that means the algorithm can effectively
generate its own learning rates for each weight during training [11]. For example,
about half way through training on the Gene dataset, the mean standard devia-
tion across individuals of the input to hidden unit weights is around 0.05, while
that of the hidden to output weights is around 3.3. This means that there will
be something like a factor of 66 difference in the average effective learning rates
for the two sets of weights. Similar large differences in BP learning rates across
network components have been found in evolutionary neural network studies to
lead to significant improvements in performance for some datasets [3], so it is a
reasonable hypothesis that this is why ABC is performing better here than BP
with a single learning rate throughout the network.

Another important issue is the increased computational cost of using ABC
rather than BP. With ABC updating random network weights one at a time,
by amounts involving a random factor, it will inevitably become less computa-
tionally efficient as the network sizes increase. Of course, BP also becomes more
computationally costly as the network size grows, but to a much lesser extent
than ABC. This differing dependence on network size makes fair comparisons of
the two approaches difficult, because past empirical results have shown that the
generalization performance usually improves with more hidden units, as long as
appropriate regularization (such as stopping early) is used (e.g., [3]), and using
much larger networks than the current study will not only pose problems with
getting the experiments completed in a reasonable time, but will also put ABC
at a considerable compute time disadvantage compared with BP. If equal fixed
maximum compute times were enforced for both algorithms, it is quite likely
that BP would end up being able to use significantly more hidden units, and
thus achieve better generalization performances than the ABC in that way.

There clearly remains considerable scope for future work in this area, but,
unfortunately, most of it will be extremely computationally expensive. First, of
course, the investigation of a wider range of datasets, with many more runs per
dataset, will provide a more reliable indication of the patterns of results that can
be expected more generally. Then, the application of an evolutionary approach
to the optimization of the BP learning parameters, including the evolution of
different learning rates for different layers of weights, should allow closer to opti-
mal BP performance than is feasible with parameters set “by hand” [3], and also
allow testing of the above hypothesis concerning the superior ABC performance
on the Gene dataset. Finally, testing how the generalization performances and
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run times depend on the number of neural network hidden units will address the
computational cost issue noted above. Ultimately, it will be the results of this
future work that will determine whether the ABC is a worthwhile algorithm for
training neural networks.
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Abstract. Metaheuristics are used successfully in several global opti-
mization functions. Problems arise when functions have large flat re-
gions since information, given by the slope, necessary to guide the search
is insufficient. In such case, a common solution can be a change in the
metaheuristic’s parameters in order to attain a optimal balance between
the exploration and exploitation. In this paper, we propose a criterion
to determine when a flat region can be problematic. It is validated with
a very simple hybrid algorithm based on the use of PSO technique for
optimizing non-flat regions and Monte Carlo sampling for searching the
global optimum in large flat regions. The proposed criterion switches the
both algorithms to provide more exploitation for descendent functions
and more exploration for planar functions. Preliminary results show that
the proposed hybrid algorithm finds better results than PSO and Monte
Carlo techniques in isolation for ten well-known test functions.

Keywords: Global Optimization, Particle Swarm Optimization,
Monte-Carlo optimization, metaheuristics.

1 Introduction

Heuristic optimization in presence of large flat regions on the landscape of the
objective function is an important and difficult challenge. First, several meta-
heuristics, as Differential Evolution or Particle Swarm Optimization (PSO), are
well suited for optimizing non-flat (descendent or ascendant) functions where the
gradient provides information about the possible location of the global optimum
[1–3]. However, for functions with large flat regions, which means gradients near
or equal to zero, there is not information to guide the search [1–3].

Second, each type of objective function has a unique topology. Then, search
needs a different balance between exploration and exploitation for algorithm
used. That means a new set of parameters for the metaheuristic with the aim
to improve the quality of the solution, reducing the computational effort and
increasing the robustness of the method [4, 5]. In this sense, the problem of
searching in flat regions can be solved by setting the appropriate values for the
parameters of the particular metaheuristic [6]. However, the presence of large flat
regions is not detectable in advance because of there is not available information
about function topology before starting the optimization. The first objective of
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this work is present a criterion to determine when there is a problematic flat
region in the objective function for algorithms that use the information of the
search like gradient.

Third, several metaheuristics have problems in presence of large flat regions
due to the absence of good candidate solutions for being used in the exploitation;
in this case, simple random search, as the Monte Carlo approach, has a better
performance for that kind of functions, because of random search does not need
previous information to find the new solutions for the search [7, 8]. The second
objective of this work is to present the validation of the proposed criterion; to do
it, we proposed a simple hybrid optimization algorithm that uses the developed
criterion for switching between PSO technique and Monte Carlo sampling for
optimizing nonlinear functions.

This paper is organized as follows: in Section II, we describe the problem of
planar regions. In Section III, we present the developed of a criterion to deter-
mine when we are in the presence of a problematic planar region. In Section
IV, we describe a hybrid optimization methodology that switches, between both
algorithms used (PSO and Monte Carlo), using the proposed criterion as param-
eter control. Also, the test and results are discussed.

2 The Problem with Planar Regions

In this section, we present a mathematical description of planar regions, discuss
why they are a problem in global optimization and, finally, exemplify the problem
using benchmark functions.

2.1 Definitions

Before explaining why metaheuristics have a poor performance in planar regions,
we define some basic concepts of global optimization.

Definition 1. A set A is called a search region if A = {x = (x1, . . . , xn) |l1 ≤
x1 ≤ u1, . . . , ln ≤ xn ≤ un} where li and ui,i = 1, . . . , n, are the lower and upper
bounds of the variable i [9].

Definition 2. A local minimum for the function f : Rn → R in the subregion
N ⊆ A, with N �= ∅, is a solution x, such that f (x∗) ≤ f (x), ∀x ∈ N and x �= x∗

[5]. For example, the Figure 1 has three local minimums for the subregions B, C
y D.

Definition 3. A global minimum for the function f : Rn → R in the region A,
with A �= ∅ is a solution x, such that f (x∗) ≤ f (x), ∀x ∈ A and x �= x∗ [9].

Definition 4. A local search algorithm is an iterative procedure that searches
the point xkin the neighborhood of x(k−1) such that f (xk) ≤ f

(

x(k−1)

)

. The
sequence of points {xk} for k = 0 to k =∞ is called trajectory of points [10].
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A
BB

CD

Fig. 1. Search Area A for a objective function f(x)

Definition 5. The attracting region L for the point x∗ where occurs a local
minimum for the function f : Rn → R is defined as the region surrounding x∗

such that ∀x0 ∈ L, chosen randomly, a local search algorithm starting at x0

arrives to x∗in a finite number of iterations [5, 10, 11]. In other words, L is
the region that provides information about the location of x∗ . (See Figure 1
region B)

Definition 6. The point x∗ s a strong minimum of f (·) when f (x∗) < f (x),
∀x ∈ L [8]. In other words, there is only one minimum point in the attraction
region.

Definition 7. The point x∗ s a weak minimum when x∗ is not a strong mini-
mum [8]. In other words, there is more than one minimum point in the attraction
region L.

2.2 The Problem with Planar Regions

Strictly, a planar region is a region L ∈ A, with L �= ∅, such that ∀x ∈ L,
f (x) = c ∈ R, and all points x ∈ L are weak minimums. This implies that
�f (x) = 0, x ∈ L. However, in this article we are interested in a definition with
relaxed conditions; we consider that the attracting region L for the point x∗ is a
flat or planar region whenf (x∗) ≤ f (x), ∀x ∈ L and‖f (x)− f (x∗)‖ ≤ δ where
δ is an arbitrary quantity near to zero; δ is a small constant that representes the
possible amount between complete plans, gradient=0, and a region that could
be problematic because of small gradients. This implies that �f (x) ≈ 0 inside
of the attracting region and f (·) is a smooth function with slopes near to zero or
zero, where the attraction region of the minimum has little information about its
location or there are several minimums in the neighborhood. We refer the initial
definition of planar region as a pure planar region and the second definition as
a relaxed or non-pure planar region.

Classical local optimization based on gradients are not able to optimize func-
tions with optimal point located in flat regions because of gradient algorithm
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has not direction to follow. Usually, direct methods based on population have
similarities with gradient methods, because all of them use the information of
the descendent slope like the water’s drop that needs the slope to flow; when the
slope information is not available, the drop will be stagnated in one point like
the algorithms actually does.

Several metaheuristics have problems for finding the global optimum of a
function when such point is located inside of a large flat region, due to: first, there
is insufficient information for determining descent directions that are required
for guiding search of the algorithm. Second, the local search algorithm only finds
points with f (xk) ≈ f

(

x(k−1)

)

such that the trajectory of visited points seems
to be erratic or random and there is not convergence [4]. Third, the absence of
good candidate solutions for being used in the exploitation phase of the used
metaheuristic. Thus, metaheuristics presents questionable advantages over pure
random optimization when the optimized function has the global optimum inside
of a large planar region.

Rarely, we will have a complete planar region for the objective function. Usu-
ally, we have a mixture between planar regions and non-planar regions. There
is not a unique mathematical criterion to determine when this mixture could
be problematic for an algorithm, but we have benchmark functions that are
problematic and can be consider as function with large planar regions.

2.3 Benchmark Functions That Present Planar Regions

Commonly benchmark functions are classified in terms of roughness, smooth-
ness and quantity of minimums, but there is not a classification based on the
presence or absence of problematic planar regions. However, several well-known
benchmark functions are difficult to optimize due to the presence of large flat
regions [12–14]. In Table 1 and Figure 2, we present five functions extracted from
most relevant literature.

Table 1. Benchmark functions: name, equation, minimum, and search region

Name Function Search Area minimum

Sphere f1(x) =
∑D

i=1 x
2
i [−500, 500]30 0

Rosenbrock f2(x) =
∑D−1

i=1 [100(xi+1)]x2
i [−5.12, 5.12]2 0

Rastrigin f3(x) =
∑30

i=1 [x2
i − 10 cos(2πxi + 10)] [−100, 100]30 0

Foxholes f4(x) =
[

1
500

+
∑25

j=1
1

j+
∑

D
i=1(xi−ai,j)

6

]

[−65.5, 65.5]2 ≈ 1

Branin f5(x) =

(

x2 − 5.1

(4π2)
x2
1 + 5

π
x1 − 6

)2

[−5, 10][0, 15] 0.398

+10
(

1− 1
8π

)

cos x1 + 10

Function f1 and f3 are descendent and the others present planar regions
(see Figure 2). In Figure 2, we presented the three-dimensional plots and two-
dimensional contours of these functions; where we can see the planar regions
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(a) Sphere (b) Rosenbrock (c) Rastrigin

(d) Foxholes (e) Branin

Fig. 2. Benchmark Functions

like bananas for functions f2 and f5 and like a foxhole for f4. Notice that there
is not a complete planar in any function, there is a mixture between types of
regions with high level of information about location of minimum and zones
with a pretty poor clues about minimum location where algorithms, generally,
could become struck. All these five function are described in the literature like
problematic functions [12–14]. In addition, we use other five functions from CEC
2005 benchmark set (Functions 11 to 15) to validate the criterion; these functions
are complex and planar regions are not evident.

3 A Criterion to Determine Problematic Planar Regions

Metaheuristics methods based on population are often initialized by random
sampling. Afterwards, population is improve by different strategies using the
information given by the last iteration. In real-world problems, the geometrical
configuration of the objective function is unknown and to determine when exists
a planar regions is not trivial problem. The information given by population can
be used for the fine tunning of the parameters of the metaheuristic with the aim
of changing the exploration-exploitation balance, or, inclusively, for selecting an
alternative optimization method best suited for random search.

In this Section, we propose an empirical criterion for determining when the
objective function has a planar region that could be a problem for the opti-
mizer. The proposed criterion is calculated using sampled points of the objective
function.
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3.1 Proposed Empirical Criterion

Usually, metaheuristic methods use the known values of objective function to
direct the search towards regions where it is possible to find the optimum; e.g.
evolutionary algorithm uses the values of objective function to calculate the
fitness of the population for finding a next generation, which is improved thanks
to the knowledge of previous generation. In particle swarm optimization (PSO),
the values of objective function calculated for current position of the particles
in the swarm are used to calculate the next direction and magnitude of the
displacement of each particle; thus, PSO uses an empirical descendent direction
in a similar way of the gradient based techniques [9, 15]. In these cases, the
similarity with gradient search imposes the same weakness: problems with the
performance in presence of large planar regions as explained above.

However, the information provided by the points already visited for the meta-
heuristic is not used to extract important features of the objective function as
smoothness, roughness and slopes. For example, when f(xi) = c, with c ∈ R,
for all xi belongs to the current population of a population-based optimization
algorithm, the standard deviation, mean and median of the values f (xi) will
be zero and c respectively; this information can be used to determine when the
population is located inside a pure planar region.

 x
0

f (
x)

Range Mean
Median

(a) planar function

 x
0

f (
x) Range Median

 and Mean

(b) non-planar function

Fig. 3. Scatter of objective function values versus kinds of objective functions: planar
regions with descendent areas and purely descendent functions

But, what will happen with a scatter measures of objective function values
when the region has a large (non-pure) planar region with small descendent
areas? Figure 3(a) shows the results. First, the range among the optimum, the
mean and the median is bigger that in the case of purely planar region mentioned.
Second, the most part of the sample of objective function values are found near
to the true median of the function; only a small amount of calculated function
values will have a smaller value than the true median. Moreover, the median
of objective function will be near to constant value of planar region and the
mean will be affected by the smaller values. Therefore, there will be a difference
between both, mean and median, values.



Nonlinear Optimization in Landscapes with Planar Regions 209

Accordingly, what will happen when the function is strongly descendent? In
Figure 3(b), a descendent function is plotted. In this case, we could see that
the difference between the mean and median are zero or could be near to zero.
That means, we could identify a large planar region from the scatter measures
sampled using the current population of the optimization algorithm.

We propose two measure of variability as indicators of problematic planar
regions. For a set of solutions, we calculate the range Rg, higher values indicate
that there are a large variation in the values of the samples. Thus, we divide Rg

between the dimension of search space to have an average of the change by one
unit of this space. We define Rg as:

Rg =
f (x)max − f (x)min

‖ub− lb‖ (1)

Afterwards, for the same, we calculate the difference, Tc between mean and the
median and observe how the sampled are distributed. Low values indicate a well-
distributed sample, which implies homogeneity, and it is agree with descendent
functions (See Figure 3(a) and 3(b)). We define Tc as:

TC =
f (x)mean − f (x)median

f (x)max − f (x)min

· 100 (2)

We divide the difference between mean and median by the estimated range of
the objective function with the aim of normalized it as a percentege to compare
with a specific value. Table 2 shows the possible values for the criterion and its
meaning in terms of the optimization problem.

Table 2. Criterion meaning

Rg Tc Meaning

Rg ≈ 0 Tc ≈ 0 Weak minimum zone.
Rg � 0 Tc ≈ 0 Descend function.
Rg � 0 Tc� 0 Mixture between weak and strong minimum zones.

The criterion presented above is still useless because we have not values for
distinguishing when Rg and Tc are near to or differ from zero. To use the criterion
first we need to review that:

– The criterion identify between descendent region with small gradient and
planar regions.

– The criterion could identify planar regions for high number of dimension.
– The criterion is not sensitive to the sample size used to calculate the criterion

it means, the population size.
– The values of Rg and Tc that must be consider problematic for the algorithm,

in this case PSO, and if it is the same for all problems and all dimensions.
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3.2 Behavior and Sensibility of the Test for Known Functions

The criterion presented is a new approach for solution to the problem of identify
planar regions. With the aim of analyzing the behavior of the proposed measures
of variability, we conduce a test two tailored functions, a parabola

fd = αx2 (3)

and a piecewise function with a planar region (See Figure 4), defined as:

fp =

⎧

⎨

⎩

αx2 [−2, 2]
4α (−70, 2) ∪ (2, 70)

αx2 − 140αx+ 4904α [−100,−70]∪ [70, 100]
(4)

In both cases, α, varies between [0.001, 1] and controls the gradient of the
function. In other words, the parabola and the piecewise function with α =
0.001 will be flatter than the both functions with α = 1. And x vary between
[−100, 100]D where D is the dimensions. With the first experiment, we expect
to determine the ranges of values for both measures, if the criterion can identify
between a planar region and descendent region with small gradients.

In Table 3 we present calculated values for Rg and Tc for one-dimensional func-
tions for different values of α. The sample used consists in 50 points obtained
from the Sobol low discrepancy sequence(LDS) [16]. For both one-dimensional
functions we found that: first, Rg is directly proportional to α and Tc is indepen-
dent of the gradient, but changes between both functions; this means that the
criterion it is not sensitive to small values for gradient of descendent functions.
And, second, the value of Tc for the function fp is bigger than the value of Tc
for the function fd; this means that fp is more planar than fd, which is agree
with construction of the functions.

Fig. 4. piece-wise function fp
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(a) Results for RG (b) Results for TC

Fig. 5. Values for the criterion using k numbers to evaluate the function. The numbers
are random with uniform distribution.

Table 3. Results for one-dimensional
functions

α fd fp
Rg Tc Rg T c

1 9384.76 7.85% 26818.06 12.6%
0.5 4692.38 7.85% 13409.03 12.6%
0.1 938.48 7.85% 2681.80 12.6%
0.01 93.647 7.85% 268.18 12.6%
0.001 9.39 7.85% 26.81 12.6%

Table 4. Results for fd and fp as a
multi-dimensional functions

D fd fp
Rg Tc Rg Tc

1 9384.76 7.85% 26818.06 12.6%
2 15312.50 0.59% 39498.16 13.2%
10 51640.63 1.58% 109868.12 19.8%
30 139824.21 0.26% 298131.17 22.9%

Next, we analyze whether the obtained results for one-dimensional functions
are sensitive to sample’s size and randomness. For this, we calculate Rg and Tc
for different sample sizes and random points. We consider sample sizes from 10
to 100 points every 10 points. For each sample size, we realize 50 independent
runs where the points used for calculating Rg and Tc are drawn from a uniform
distribution. Figure 5 shows the values of Rg and Tc for both test functions
in one-dimension; the mean of the value for criterion and the correspondent
standard deviation are shown. We found that Rg is more sensitive to small
sample sizes than Tc and both criteria tend to be constant for large sample sizes.
Figure 5(b) shows a pretty clear difference between Tc for fd which is smaller
than Tc for fp. So, the minimal number of points recommended to calculate the
criterion is greater than 30 because of the standard deviation found for Tc.

Following, we analyze the behavior of the criterion when the number of di-
mensions of the search region changes. In Table 4, the values for the proposed
measures of variability are calculated for both test functions and for 1, 2, 10
and 30 dimensions. As in the first experiment, we use a Sobol low discrepancy
sequence for obtaining 50 samples of the test functions.Results show that the
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values given by the criterion are sensitive to the number of dimensions; which
was expected because with dimensions the difference between plans augment.
Nevertheless, the sensitive found is positive because the difference Tc is increase
with number of dimensions. In other words, for high number of dimensions the
difference identified by the criterion between planar regions and non planar re-
gions will be stronger. However, the relationship between criterion values and
dimension is unknown. Based on the results, we did a polynomial regression and
obtain that:

Tc ≥ 7.675(D)−0.588 (5)

We use the equation 5 to determine when it is a problematic planar region.

3.3 Behavior of the Test for Benchmark Functions

To test the criterion, we choice three benchmark functions that present weak
minimums and two the descendent functions as control functions. These func-
tions, and correspondent, dimensions, search areas, and minimums are presented
in Table 1 and Figure 2. Table 5 shows the results; functions f1 and f3 have not
problematic planar region and the value of Tc are smaller than the other func-
tions. Rg in both cases is greater than zero. For the other function Tc is greater
than the limit 7.6. The criterion identify different function as planar o non pla-
nar regions. In this case, we do not use the other five function because we do
not know if they are or not planar.

Table 5. Criterion results for benchmark function

f1 f2 f3 f4 f5

Rg 3495605.47 60301.24 775.55 495.02 204.07
TC 0.26% 13.12% 0.67% 8.65% 12.06%

4 Hybrid Methodology

In this Section, we present the algorithm implemented to validate the criterion
proposed to determine the planar regions. The aim of this algorithm is to show
how this criterion can uses in making decisions about the optimization strategy.
In this case, the criterion will switch between two algorithms, PSO and Monte
Carlo sampling. PSO is metaheuristic developed by Kennedy and Eberhart in the
middle of 90’s [15] and have been applied successful to several problems [4]. PSO
has great advantages: high level of convergence, robustness and computational
cost. It is pretty known and had been used in hybrids [3, 17, 18]. Monte Carlo
is a purely stochastic method; it is used for different applications, it has not a
sophisticated method inside. It uses the random sampling to find the optimums,
but it has been proved to be superior when the information about localization of
minimum is poor [8]. In this approach, the proposed criterion is used to decide
when use PSO or Monte Carlo sampling. The sequence of the algorithm is shown
in the Pseudocode 1.
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Pseudocode 1. Hybrid proposed PSO-MC

1: Sk = randomx1, ..., xk

2: Evaluation of f(x) for Sk

3: Evaluation of Rg and Tc
4: if TC ≥ 7.675 (dimensions)−0.588 and Rg > 0 then
5: Use monte carlo algorithm
6: else
7: use PSO algorithm
8: end if

Table 6. Results of hybrid proposed for benchmark functions

Function Criterion Type of function Monte Carlo PSO
Rg Tc Mean Desviation Mean desviation

f1 3495605.47 0.26% Non Planar 4,23E-01 3,85E-01 2,96E-08 5,60E-08
f2 60301.24 13.12% Planar 9,87E-04 1,25E-03 1,64E-03 3,18E-03
f3 775.55 0.67% Non Planar 6,53E-01 5,06E-01 6,70E-06 2,12E-05
f4 495.02 8.65% Planar 9,98E-01 4,03E-06 1,28E+00 5,17E-01
f5 204.07 12.06% Planar 1,00E+01 2,40E-09 1,00E+01 5,88E-07
f6 4.45 0.41% Non Planar 90.29 0,85E-00 90.01 2.44E-02
f7 4662.31 7.5% Planar -459.87 8,25E-02 458.67 3,83E-01
f8 1.11E05 104% Planar -127,59 2.3E-01 -125.67 2,12E00
f9 0.018 1.8% Planar 298.99 5,4E-01 289.99 5,47E01
f10 195.4 0.74% Non Planar 194.73 5.5E01 123.12 2.19E00

4.1 Hybrid Results

In this test, we used the PSO implementation developed by Claus Bendtsen for
R language [19] and our own implementation of the most simple version of the
Monte Carlo methodology [8]. The proposed optimization methodology is used
for optimizing the five functions presented in Table 1. In addition, we optimized
other five functions from CEC’05 benchmark test, correspondent to functions
f11 to f15 for details see [20]. The additional functions are for two dimensions
because less dimensions is more critical for the criterion because difference bew-
teen planar and non planar regions are closer. In step 3, the proposed criterion is
evaluated using 50 random points drawn from a uniform distribution. In step 4,
we sample 12.000 random points drawn from a uniform distribution and use as a
result the best point found. In step 5, we run PSO with 300 iterations and 40 in-
dividuals; we use the default parameters of the package [19]. Table 6 present our
results found by each algorithm (mean and standard deviation for 50 indepen-
dent runs) and the values for the criterion. The bold results are the ones taken
by the hybrid proposed. The results for functions f2 and f5 are pretty similar,
but the deviation is better in both cases. In terms of computational effort PSO
has 12000 calls to objective function it is 300 iterations and population size is 40,
but it has internal operations, and Monte Carlo has 12000 calls to the objective
function without internal operations. The time used both methods are similar,
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but it is longer for monte carlo around 0.5 seconds each independent run in 30
dimensions (2.9 Ghz intel i7 processor).

For the complete set of function, we found six functions with problematic
planar areas, and four with non planar areas. For the first five functions, we
are sure that there are two function described as planar; but for the second
part of the tests the functions are hybrids and rotated, which makes difficult to
determine the topology. Nevertheless, criterion shows the problematic functions
and let use the best strategy for the function except for function 5, in this case,
the results for both algorithms are so similar.

5 Conclusions

We conclude that the criterion proposed works successfully as a strategy to
identify problematic planar regions of functions with different dimensions, con-
figurations and populations. As a strategy of control, it levers the advantages
for each algorithm agrees with the topology of the function. It improves the in-
dividual behavior without any parameter change for the algorithm proposed to
validate the criterion.

In this case, to obtain the best result compared with other algorithms was not
the target, but results for the small benchmark test show criterion’s potential
as an general strategy to get the relevant information of the function with the
aimed to parameters control. The computational effort of the criterion proposed
is small and use the information given by the population without other search
and calculations, which are desirable. Nevertheless, this is the first approach
to the idea then it is immature yet. But now the criterion shows potential as a
successful strategy for hybrids and can be used for control and tuning parameters
for different metaheuristics.

In future works, the proposed criterion can be used to control parameters in-
side search with the aim to develop metaheuristics with self-adaptive parameters.
Also, control of algorithms for metaevolutionary optimizers.
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Abstract. Most global optimization algorithms offer a trade-off in that
they solve one class of problems better for the price of solving another
class of problems worse. This is to be expected in light of theoretical
results like No free lunch theorem. It is desirable, therefore, to have an
automatic method of constructing algorithms tuned for solving specific
problems and classes of problems. We offer a variant of Fully-Informed
Particle Swarm Optimization algorithm that is highly tunable. We show
how to use meta-optimization to optimize it’s neighbourhood space and
influence function to adjust it to solving various test problems. The op-
timized neighbourhood configurations and influence functions also give
insights in to what it takes for a Particle Swarm Optimization algorithm
to successfully solve a problem. These configurations are often contrary to
what people would design using their intuitions. This means that meta-
optimization in this case can be used as a tool for scientific exploration
as well as for practical utility.

1 Introduction

Particle Swarm Optimization is a global optimization method that optimizes a
problem by iteratively searching for a solution. It is based on social interactions
in a swarm of idealized agents (particles) that share information to adjust their
velocity and position in the solution space. It is from a family of metaheuristics
that contain such methods as Random Search, Genetic Algorithms, Simulated
Annealing and others. It is primarily used for continuous problems, although
variants for solving combinatorial problems exist.

There are many studies comparing various different PSO algorithms to other
PSO algorithms. It is usually the case that when someone develops a new variant
they compare it to several different variants of the PSO algorithm. Among larger
and more methodological studies is the one done by Marco A. Montes de Oca
[1]. In studies such as these it is almost always the case that certain variants
solve certain problems better while other variants solve other problems better.
This observation is in line with theoretical results like no free lunch theorems as
developed by David Wolpert and William G. Macready [2]. It would be advanta-
geous to have a way of automatically obtaining a variant of PSO algorithm that
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would be particularly well suited to solving a specified class of problems. One
way to achieve this is meta-optimization — fine tuning of the algorithms param-
eters using another optimization algorithm. One such study was done by Magnus
Erik Hvass Pedersen [3]. Another attempt to meta-optimize the parameters of
standard PSO was done by Michael Meissner et al. [4] with the intended use of
training artificial neural networks. Another method of tuning a PSO algorithm
for a specific class of problems is genetic programming as explored by Riccardo
Poli et al. [5].

We propose an algorithm that is purpose built to be meta-optimized. Usually
PSO algorithms use a graph based population structure. If two particles are
connected by an edge it means that they are neighbours. When two particles are
neighbours they directly exchange information about good solutions. In our case
we position particles on a two dimensional plane and the Euclidean distance in
it represents how much two particles influence each others search process. This
means that each particle gets two parameters that can be optimized, namely x
and y coordinates in the neighbourhood plane. Additionally, we use an influence
functionWi(j) which calculates the amount of influence particle j has on particle
i. This function is a third order polynomial of two variables, namely distance
between the particles in the neighbourhood plane and the best solution found
so far. This polynomial has 10 coefficients that are also optimized in the meta-
optimization process. As a result we get an algorithm with 2n+ 10 parameters.
We optimize these parameters in the hope that this will adapt the algorithm to
specific classes of problems (functions with similar properties).

In the second section we describe various variants of the particle swarm op-
timization (PSO) algorithms used in this study. Also other relevant theoretical
information is presented there, such as the concept of PSO topology. In the
third section we describe the proposed changes to the Fully-Informed Particle
Swarm Optimization (FIPSO) algorithm that allow it to be meta-optimized. We
describe the function Wi(j) that is used to evaluate the influence particle with
index j has on particle with index i. The value of this function describes numer-
ically how much particle i is attracted or repulsed from particle j. In the fourth
section we describe the meta-optimization procedure we used to optimize func-
tion Wi(j) and particle positions in neighbourhood space. We also describe the
test functions we used and the experimental procedure that was used to arrive
at numerical results presented in this paper. In the fifth section we present re-
sults obtained via the experimental procedures, we discuss these results, present
and discuss interesting cases, we also sum up the results and present interesting
directions for future research.

2 Particle Swarm Optimization

Particle Swarm Optimization is a global optimization metaheuristic designed
for continuous problems. It was first proposed by James Kennedy and Rus-
sell C. Eberhart in 1995 [6]. The idea is to have a swarm of particles (points in
multi-dimensional space) each having some other particles as neighbours and ex-
changing information to find optimal solutions. Particles move in solution space
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of some function by adjusting their velocities to move towards the best solutions
they found so far and towards the best solutions found by their neighbours.
These two attractors are further randomly weighted to allow more diversity in
the search process. The idea behind this algorithm are observations from societies
acting in nature. For example one can imagine a flock of birds looking for food
by flying towards other birds who are signaling a potential food source as well as
by remembering where this particular bird itself has seen food before and scout-
ing areas nearby. It can also be viewed as modeling the way we ourselves solve
problems - by imitating people we know, who we see as particularly successful,
but also by learning on our own. Thus problem solving is being guided by our
own experience and by the experiences of people we know to have solved similar
problems particularly well. The original algorithm is not presented here since it
is very rarely used today and we go straight to more modern implementations.

2.1 Canonical Particle Swarm

Proposed by Maurice Clerc et al. [7] it is a variant of the original PSO algorithm.
It guarantees convergence through the use of the constricting factor χ. It also
has the advantage of not having any parameters, except for φ1 and φ2 which
represent the influence of the personal best solution and the best solution of
particles neighbours on the trajectory of that particle. Both of these parameters
are usually set to 2.05 as per suggestion in the original paper. Moving the particle
in solution space is done by adding the velocity vector to the old position vector
as illustrated in (1) equation.

xi ← xi + vi (1)

Updating velocity involves taking current velocity and adjusting it so that it
will point the particle more in the direction of its personal best and the best of
its most successful neighbour. It is laid out in (2) formula.

vi ← χ (vi + ρ1 ⊗ (pi − xi) + ρ2 ⊗ (gi − xi)) (2)

where
ρi = U(0, φi) (3)

χ =
2

φ− 2 +
√

φ2 − 4φ
(4)

and where φ = φ1 +φ2 with φ1 and φ2 set to 2.05, U(a, b) is a vector of random
numbers from the uniform distribution ranging from a to b in value. Here pi is
the best personal solution of particle i and gi is the best solution found by a
neighbour of particle i. Which particle is a neighbour of which other particle is
set in advance.
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Algorithm 1. Canonical PSO algorithm

Data: Function f of d dimensions to be optimized.
Result: The best value of function f found and the vector x in solution

space which evaluates to that value.
1 for j ← 1 to n do
2 xj ← U(a, b);
3 vj ← 0;

4 for i← 1 to k do
5 for j ← 1 to n do
6 xj ← xj + vj ;
7 if f(xj) < f(pj) then
8 pj ← xj ;

9 Update vj according to (2) formula;

The canonical variant of the PSO algorithm is given in Algorithm 1 and can be
explained in plain words as follows: for each particle with index j from n particles
in the swarm, initialize the position vector xj to random values from the range
specific to function f and initialize the velocity vector to the zero vector, for k
iterations (set by the user) update the position vector according to formula (1)
and update velocity according to formula (2), recording best positions found for
each particle.

Particle Swarm topology is a graph that defines how the particles interact.
Particles sharing edges are called neighbours. We used two topologies: lbest
where particles are connected in a ring, each particle connected to 4 closest
particles in that ring and grid where particles are connected in a von Neumann
neighbourhood.

2.2 Fully-Informed Particle Swarm

The original Fully-Informed PSO algorithm was described by Rui Mendes et al.
[8] and the original procedure for velocity update is given in (5) formula. The
difference between standard PSO and Fully-Informed PSO is that the velocity
update formula takes in to account all of particles neighbours, instead of only
the one with the best solution found so far. The update formulas are given in
the original notation.

v ← χ (v + φ (Pm −X)) (5)

where

Pm =

∑

k∈N W (k)φk ⊗ Pk
∑

k∈N W (k)φk
(6)

where

φk = U

(

0,
φmax

|N |
)

(7)

and where N is the set of particles neighbours. As in the canonical PSO algo-
rithm, particles position in solution space is updated by adding velocity vector
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to position vector x. This variant extends the work done by Maurice Clerc et al.
[7] on the value of χ - the constriction coefficient in formula (5), which is essen-
tial to swarm convergence. This work was done on a particle swarm variant that
only takes in to account its own personal best and the personal best of its most
successful neighbour, but was extended to use data from all the neighbours.

Riccardo Poli et al. [9] give a slightly different update rule, where W (k) = 1,
it is shown in (8) formula.

vi ← χ

(

1

Ki

Ki∑

n=1

U(0, φ)⊗ (pnbrn − xi)

)

(8)

Here Ki is the number of neighbours of particle with index i and pnbrn is the
best solution found by the n-th neighbour of particle i.

3 Proposed Changes to FIPSO

Our proposed algorithm is identical in all ways to the standard FIPSO algorithm
except for the fact that we use all the particles in the swarm to update the
velocity and not only the neighbours of each particle. In place of neighbourhood
topology (a graph that defines which particles are neighbours of which other
particles) we use Euclidean distances in two dimensional space. Each particle
gets coordinates in this space and the distances define how socially close particles
are to each other. These coordinates are configurable and are considered to be
parameters of our algorithm. As such they are subject to meta-optimization
procedure. This is shown graphically in Figure 1, where there are 5 particles
labeled a, b, c, d and e. If we consider the influence other particles have on
particle a, we can arrange them in order of decreasing influence as b, c, d and
e. Influence particles have on particle a is proportional to the length of the
line connecting them. If we are calculating the influence particle with index j
has on particle with index i we will use two variables in the influence function:

yj and dij which are calculated as follows: yj = 1 − y∗
j−min(g)

max(g)−min(g) and dij =

1− d∗
ij−min(di)

max(di)−min(di)
, where y∗j is the best value of the optimized function achieved

by particle j, g is the vector of best values achieved by all the particles in
the swarm, d∗ij is Euclidean distance in neighbourhood space from particle i to
particle j and di is the vector of distance from particle i to every other particle
in the swarm.

The velocity update function then becomes as shown in (9) formula.

vi ← χ

⎛

⎝
1

∑n
j=1Wi(j)

n∑

j=1

Wi(j)U

(

0,
φ

n

)

⊗ (pj − xi)

⎞

⎠ (9)
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Fig. 1. Particles in neighbourhood plane

Here n is the number of particles in the swarm, pj is the best solution found
by particle with index j and Wi(j) is the influence function described below. All
the other parts of the formula mean the same as in the canonical PSO. We also
define the influence function Wi(j) as shown in (10) formula.

Wi(j) = w1y
3
j + w2d

3
ij + w3y

2
jdij + w4yjd

2
ij+

+w5y
2
j + w6d

2
ij + w7yjdij+

+w8yj + w9dij+

+w10

(10)

We end up with n × 2 + 10 parameters for a swarm that has n particles.
This is because each particle gets two coordinates for the neighbourhood plane
and additionally there are 10 coefficients for the 3rd order polynomial. We will
use meta-optimization to find good values for these parameters for each test
problem.

3.1 Meta-optimization

The goal of the meta-optimization procedure is to calculate good values for
position of the particle in the 2-dimensional neighbourhood space and polynomial
coefficients both of which are used in the influence function for our variant of
FIPSO algorithm. The function that was used during meta-optimization process
is presented in Algorithm 2.
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Algorithm 2. Function used to evaluate the performance of a particle swarm
with specific particle positions in neighbourhood plane and influence polyno-
mial coefficients.
Data: A 60-dimensional vector x where first 50 coordinates are the

coordinates of particles in a 2-dimensional neighbourhood space and
the last 10 coordinates are coefficients for a 3rd order polynomial of
the influence function.

Result: Mean value of variables y1 to y50, holding best function values
found by the swarms.

1 for i← 1 to 50 do
2 si ← a new swarm, where particle j gets the position (x2j−1, x2j) and

the coefficients for polynomial Wj(k) are the last 10 coordinates of
vector x;

3 for i← 1 to 50 do
4 for iteration← 1 to 300 do
5 Update position and velocity for each particle in si in accordance to

formulas (1) and (9) respectively;

6 yi ← best result found by si;

We used 50 swarms to evaluate given particle positions in neighbourhood plane
and polynomial coefficients. We used the average best value found by these 50
swarms. This was done to make sure we get a fairly accurate evaluation for the
given parameter set. Each swarm ran for 300 iterations. This function was then
optimized for 1000 iterations using Canonical PSO with 36 particles connected
in a grid topology. The results (particle positions and the coefficients for the
polynomial) were recorded. Initial values were chosen so that xi ∈ (−10, 10),
where 1 ≤ i ≤ 60, they were chosen randomly with uniform distribution.

4 Experimental Setup

Two experiments were performed while doing this study. At first we used meta-
optimization to find optimal solutions for particle positions in neighbourhood
space and coefficients for the polynomials used as influence functionsWi(j). This
procedure was performed on every test function we used. After this we compared
the results obtained by these tuned versions to results obtained by popular PSO
variants. Namely Canonical and FIPSO withWj(k) = 1 as described by Riccardo
Poli et al. [9] with grid and lbest topologies. In this experiment we did not
use results obtained by the meta-optimization procedure for our variant. This
is because meta-optimization will tend to favor good results thus resulting in
bias towards lower values. Instead new swarms were created using coordinates
and polynomial coefficients obtained by meta-optimization and these were then
tested. When comparing algorithms we used 500 swarm iterations and 100 runs
for each swarm/function combination. The results of these runs were averaged
and recorded.
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4.1 Test Functions

We used 10 test functions defined in Table 1, all functions were used in their 20-
dimensional forms so n = 20 in all these formulas. These functions can be found
in many publications and are often used to test novel optimization methods.
Some of them were described by Thomas Bäck [10], others can be found in, for ex-
ample, [11]. Particles got their initial positions in the solution space from different
intervals for each of these functions. They are as follows: Sphere - (−100, 100) for
each coordinate, Griewangk - (−600, 600), Rastrigin - (−5.12, 5.12), Rosenbrock
- (−10, 10), Ackley - (−30, 30), Michalewitz - (0, π), Pathological - (−100, 100),
SinEnv - (−100, 100), Schubert - (−10, 10) and (−10, 10) for Stretched-V
function.

Table 1. Test Functions

Name Formula

Sphere
∑n

i=1 x
2
i

Griewangk 1
4000

∑n
i=1(xi − 100)2 −∏n

i=1 cos
(

xi−100√
i+1

)

+ 1

Rastrigin
∑n

i=1

(

x2
i − 10cos(2πxi) + 10

)

Rosenbrock
∑n

i=2

(

100(xi − x2
i−1)2 + (1− xi−1)2

)

Ackley −20e−0.2
√

1
n

∑n
i=1 x2

i − e
1
n

∑n
i=1 cos(2πxi) + 20 + e

Michalewitz −∑n
i=1

(

sin(xi)sin
20

(

(i−1)x2
i

π

))

Pathological
∑n−1

i=1

(

sin2
(√

100x2
i+1 + x2

i − 0.5
)/

(

0.001 (xi − xi+1)4 + 0.5
)
)

SinEnv
∑n−1

i=1

(

sin2
(√

x2
i+1 + x2

i − 0.5
)/

(

0.001
(

x2
i+1 + x2

i

)

+ 1.0
)2

+ 0.5
)

Schubert
∑n

i=1

∑j<5
j=0(j + 1)sin((j + 2)xi + (j + 1))

Stretched-V
∑n−1

i=1 (x2
i+1 + x2

i )0.25sin2(50(x2
i+1 + x2

i )0.1) + 1)

5 Results

Results of algorithm comparison are shown in Table 2 with best results empha-
sized in bold font. As can be seen our algorithm gives the best result in 5 out
of 10 cases. In cases where it does not give the best result, however, it comes
closer than the other of the two algorithms. For example in case of Rosenbrock
function FIPSO did best with 18.2477, Canonical PSO only achieved 30.5920
while our variant got 19.3589 - very close to the best result. In the opposite
direction Canonical PSO got the best result of -214.7149, while FIPSO only got
-106.0894, while our algorithm got -178.9168 which is much closer to the best
result. This, we believe, shows the algorithms ability to tune itself to a prob-
lem. Two problems where our algorithm was a lot better than any of others are
Rastrigin and Michalewitz functions.
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Table 2. Algorithm performance comparison

Canonical FIPSO Our Variant
grid lbest grid lbest

Sphere 4.2× 10−4 7.0× 10−4 1.6× 10−6 5.6 × 10−7 3.4× 10−8

Griewangk 1.7× 10−2 2.0× 10−2 3.0× 10−3 2.7 × 10−3 9.4× 10−4

Rastrigin 31.0148 31.7726 19.0379 31.4604 11.9119
Rosenbrock 42.1298 30.5920 18.2477 19.1382 19.3589

Ackley 6.8× 10−3 1.0× 10−2 3.7× 10−4 2.1× 10−4 9.5784 × 10−4

Michalewitz -15.1072 -15.1069 -11.3147 -11.8751 -17.0844
Pathological -4.8556 -5.08256 -3.8177 -3.7988 -4.5861
SinEnv -22.6788 -22.4641 -25.0864 -24.5566 -25.8629
Schubert -213.9197 -214.7149 -97.7311 -106.0894 -178.9168
Stretched-V 2.8070 4.2907 0.2787 0.2574 0.4340

Visualizations of optimized swarm parameters are given in Figures 2 to 11.
The picture on the left side is a scatter plot of particle positions in two dimen-
sional neighbourhood space, while the picture on the right is a plot of the two
variable polynomial that is used as Wi(j) - the influence function. From the
scatter plots it seems that particles tend to settle in to a more or less normally
distributed configuration. There seems to be some clusterization in the case of
Michalewitz, SinEnv and Stretched-V functions, although a larger number of
particles would have to be used to make sure. In all three cases there seem to be
3 clusters of particles. Optimized polynomials usually emphasize either distance
in neighbourhood space or the best value found by that particle or both. Usu-
ally there is a large area where the value of Wi(j) is negative, which means that
particle i is repulsed from particle with index j, it is an important point since
repulsion is mostly ignored in existing PSO algorithms.

Fig. 2. Optimized swarm parameters for the Sphere problem
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Fig. 3. Optimized swarm parameters for the Griewangk problem

Fig. 4. Optimized swarm parameters for the Rastrigin problem

Fig. 5. Optimized swarm parameters for the Rosenbrock problem
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Fig. 6. Optimized swarm parameters for the Ackley problem

Fig. 7. Optimized swarm parameters for the Michalewitz problem

Fig. 8. Optimized swarm parameters for the Pathological problem
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15 10 5 0 5 10 15 20
x1

20

10

0

10

20

x2

0.00000000

0.00042423

0.00084847

0.00127270

0.00169694

0.00212117

0.00254541

0.00296964

Fig. 9. Optimized swarm parameters for the SinEnv problem

Fig. 10. Optimized swarm parameters for the Schubert problem

Fig. 11. Optimized swarm parameters for the Stretched-V problem
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6 Conclusions

We think we have shown reasons to believe that our algorithm or one like it
is capable to adapt to problems and could be used to solve classes of problems
more successfully than more generic ones. This avoids the problem of an algo-
rithm being excellent at optimizing some functions yet very bad at optimizing
others. There are no reasons why several functions could not be used in the
meta-optimization process. There may be some improvements to the method
that might make the process more successful, like using higher order polynomi-
als. It would also be interesting to see what properties of test functions result
in what polynomials and patterns in neighbourhood space. A more involved
study would have the meta-optimization routine run over sets of functions with
certain properties and would have us map function properties to properties of
neighbourhood plane configurations and polynomial coefficients.
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2006. LNCS, vol. 4150, pp. 1–12. Springer, Heidelberg (2006)

[2] Wolpert, D., Macready, W.: No free lunch theorems for optimization. IEEE Trans-
actions on Evolutionary Computation 1(1), 67–82 (1997)

[3] Pedersen, M.E.H.: Good parameters for particle swarm optimization. Technical
Report HL1001, Hvass Laboratories (2010)

[4] Meissner, M., Schmuker, M., Schneider, G.: Optimized particle swarm optimiza-
tion (opso) and its application to artificial neural network training. BMC Bioin-
formatics 7, 125 (2006)

[5] Poli, R., Langdon, W.B., Holland, O.: Extending particle swarm optimisation via
genetic programming. In: Keijzer, M., Tettamanzi, A.G.B., Collet, P., van Hemert,
J., Tomassini, M. (eds.) EuroGP 2005. LNCS, vol. 3447, pp. 291–300. Springer,
Heidelberg (2005)

[6] James Kennedy, R.C.E.: Particle swarm optimization. In: Proceedings of the IEEE
International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

[7] Clerc, M., Kennedy, J.: The particle swarm - explosion, stability, and convergence
in a multidimensional complex space. IEEE Transactions on Evolutionary Com-
putation 6(1), 58–73 (2002)

[8] Mendes, R., Kennedy, J., Neves, J.: The fully informed particle swarm: simpler,
maybe better. IEEE Transactions on Evolutionary Computation 8(3), 204–210
(2004)

[9] Poli, R., Kennedy, J., Blackwell, T.: Particle swarm optimization. Swarm Intelli-
gence 1(1), 33–57 (2007)
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Abstract. Particle Swarm Optimization is a simple and elegant opti-
mization algorithm used to solve a large variety of different real-valued
problems. When it comes to solving combinations of continuous and dis-
crete problems however, PSO by itself is not very well suited for the
task. There have been previous works addressing the issue of solving
solely discrete problems with PSO, but solving problems involving both
discrete and continuous parameters at the same time with a PSO-like
algorithm has not yet been fully explored. In this paper we provide a
novel PSO-based algorithm, called Meta Morphic Particle Swarm Opti-
mization, which looks at solving a particular class of problems for which
there exists a discrete set of possible ways to solve the problem where each
possibility uses a different subset of a continuous, real-valued parameter
space. We introduce a two-layered approach, a PSO in the inner layer for
the continuous space, and an outer layer, guided migration scheme using
probabilities to choose between the different possible solution sets. We
analyze the performance and characteristics of this new algorithm and
show how it can be used for real-world applications.

1 Introduction

Since its original inception, the Particle Swarm Optimization algorithm (or PSO)
[7] has seen a considerable amount of attention in the evolutionary computation
community. Partly due to its simplicity and elegance, since then many new vari-
eties of PSO have been developed by researchers in the community trying either
to address some of its shortcomings (such as stagnation [6, 20], diversity [11] or
niching [1, 12]) or to improve its performance tailored towards specific sets of
problems (such as multiple objectives or constraints [10, 14, 17]).

In this work we look at solving such a particular set of problems. Namely
the optimization of a problem for which a discrete set of solution classes exists ,
each with a (possibly overlapping) subset of continuous, parameters taken from
the total parameter set. The optimization then needs to take into account the
discrete problem, as well as optimizing the continuous parameters used for this
particular solution class. This might seem like an abstract problem, but indeed,
many real problems are formulated this way. Often we choose to optimize each
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solution class of the problem independently or even manually and compare the
results later. This however is 1) not practical for problems for which a large
set of different solutions exist, 2) inefficient for problems with a large possible
solution set, but a small probable solution set, and 3) it can be biased by human
intervention especially for the cases for which human intervention is not suffi-
cient. To solve these kinds of problems we require an algorithm which 1) makes
informed, discrete decisions about which classes of solutions to explore and 2)
finds optimal parameter values for these classes of solutions.

The first contribution to solving discrete binary problems using PSO came
not long after the original PSO algorithm was published. In [8], the original
author of PSO details a version of PSO which uses probabilities of a discrete
value switching from 0 to 1 (or the other way around) instead of the actual
values as the parameters being optimized. More recently, this approach was
generalized in [4] in which the definitions and operations of the PSO (position,
velocity, subtraction, external multiplication and move) are redefined for the
discrete domain. An extension of the original binary discrete PSO algorithm
was presented in [16] where discrete multi-valued problems are solved by adding
a probability for each possible value that the discrete variable can take. Here we
take inspiration from this work and use a similar approach to making discrete
choices by using probabilities. However, unlike in previous approaches we will
define probabilities related to exploration and exploitation similar to those used
in PSO to search the set of discrete solution classes while at the same time solving
the continuous problem in each solution class. We believe that this allows for
more control of the way the problem is solved while at the same time reusing
concepts from the continuous domain, which have worked well in general, to the
discrete domain. Although Genetic Algorithms and Genetic Programming could
be used in a similar way to provide the discrete part of the optimization, we are
interested here in reusing the collaborative/cooperative nature of the PSO in the
discrete part, instead of competition. The novel algorithm that we designed for
this particular problem is called Meta Morphic Particle Swarm Optimization. In
this paper we focus primarily on explaining in detail the design, and properties of
this algorithm and provide a working example implementation of the algorithm.

The following sections first shortly describe the base PSO algorithm. We then
continue to describe the main MMPSO algorithm in detail. After this description
we show some of the MMPSO properties on an example problem. Finally, we
discuss some of the applications of the algorithm and future work.

2 Base PSO Algorithm

In this section we first briefly explain the original PSO algorithm. We then
continue in the next section to describe how we change the basic algorithm
resulting in Meta Morphic PSO.

Particle SwarmOptimization (from here on referred to as PSO) is a population
based, stochastic optimization algorithm which has been a popular alternative
to Genetic Algorithms since it was first introduced in [7]. In its essence, PSO is a
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very simple algorithm, consisting only of two simple equations which govern its
dynamics. Conceptually, the PSO is a cooperative algorithm where the individual
particles share information about known solutions of the particular problem
being solved. For this work, we use the PSO algorithm as described in [18] as
the basis algorithm. The two equations describing the whole algorithm are given
in equation 1.

vi(t+ 1) = w · vi(t) + ri1 · c1 · (Xi − xi(t)) + ri2 · c2 · (Xg − xi(t))
xi(t+ 1) = xi(t) + vi(t+ 1) (1)

Here xi is the current position of particle i in the parameter space. It is thus
the vector of real-valued parameter values representing a particular solution to
the problem begin solved. vi is the current velocity of particle i, in change of
parameter value per iteration. Furthermore, ri1 and ri2 are two random numbers
uniformly distributed between 0 and 1, Xi is the best solution as found by
particle i (its personal best) and Xg is the global best known solution. The
constants c1 and c2 determine the importance of respectively local versus global
search. Compared to the original algorithm as described in [7], an additional term
is introduced, the so called inertia factor w [18]. The purpose of w is to improve
the convergence and has been generally found to improve the performance of the
PSO.

The algorithm as presented thus has three parameters, the inertia factor w
and the two constants c1 and c2. For the remainder of this contribution, these
parameters have been set to the values 1.494 for both c1 and c2, and 0.729 for
w which can be shown to guarantee convergence of the algorithm [2, 3, 5].

Finally, to perform the optimization, an initial population of particles is gen-
erated each with an initial position vector xi and initial velocity vector vi. Both
of these vectors are usually initialized such that they are randomly, uniformly
distributed in a bounded parameter space (we will not look at unconstrained
parameter spaces in this work). We limit the maximum value of each dimension
of the velocity vector to the distance from the minimum parameter boundary
to the maximum parameter boundary [5]. This has been shown to give good
results in general as there is more exploration (in particular in the beginning of
the optimization). After the population has been initialized, at each iteration
the fitness of each particle for the parameters xi is calculated and Xi and Xg

are updated accordingly. Then, for each particle, the particle’s velocity vi and
xi are updated using equation 1. The stopping condition is often chosen to be a
fixed number of iterations or some measure of convergence.

We should note that we do not focus on the particular values of w, c1, c2 and
Vmax in this work and have instead taken sensible values for each from literature
which have been proven to work well in the general case.

Now that we have briefly described the base PSO algorithm, the next section
will describe the extensions that make up the Meta Morphic PSO Algorithm.
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3 Meta Morphic PSO Algorithm

We found PSO to be a well performing and easy to understand algorithm for a
wide variety of optimization problems. It often outperforms algorithms such as
Genetic Algorithms [9, 13] in a variety of different domains it has been applied
to. The elegance of the algorithm, the small number of parameters (c1, c2 and
w) to tune and the general performance are arguably some of its most prominent
features.

The base PSO algorithm as described in the previous section works on con-
tinuous parameters. What we are interested in, in this work, however is a combi-
nation of a discrete set of parameter subspaces and a simultaneous optimization
of each of these parameter subspaces (in which the parameters are continuous).
We have coined our algorithm Meta Morphic due to the fact that it performs
a sort of meta optimization on the possible solution subspaces by morphing
particles from one subspace to another, reconfiguring its parameter space.

We briefly describe a concrete robotics problem (explained in more detail in
section 5) to illustrate for which type of problems MMPSO was designed. Assume
a certain robotic structure with K degrees of freedom, for which we want to find
control laws for locomotion. Furthermore, assume that we can control each of
these DOFs with three different modes of control, namely 1) Oscillation, 2)
Continuous Rotation or 3) a Locked constant offset. We now have three choices
of control modes to make for each of the K degrees of freedom. Instead of making
these choices manually, we designed MMPSO to explore combinations of control
modes for each DOF automatically. We will occasionally refer to this application
of MMPSO in explaining certain concepts of the algorithm.

3.1 Concepts and Terminology

The Meta Morphic PSO Algorithm (hereafter referred to with MMPSO) has
been specifically designed for the type of problem described above. Still staying
in the abstract domain, consider the following problem containing 9 parameters
to optimize as shown in figure 1.

This schematic representation of the parameter space consists of three entities
(A, B and C) which we call parameter pools. A parameter pool in MMPSO is
something which defines a distinct number of possible parameters groupings
active at a single given time. Thus, referring to figure 1, in pool A only either
parameter (1) or parameters (2, 3) are active. In the context of MMPSO, we
call these different parameter groups and in the text we indicate a group within
parentheses (). The groups within each pool are mutually exclusive. Although
the groups are mutually exclusive, the parameters in each group need not be.
Indeed, shown in pool B in figure 1, parameter 5 is active both in group 1 and in
group 2. Similarly, parameter 6 is active in both group 2 and in group 3 (groups
are indicated by a superscript in each box).

We have until now only explained the concepts of pools and groups. We still
need to outline the concept of parameter subspaces. Given the definitions of the
pool and group above, a parameter subspace is one particular, valid combination
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Fig. 1. Example parameter configuration of a single particle. Each of the parameter
pools A, B and C depict a discrete number of parameter groups. The group number is
indicated in the superscript of each box as well as by the background shading for clarity.
In each pool, only one group can be active and optimized at a given time. Parameters
can overlap between different groups as can be seen in pool B, where a valid set of
parameters is either (4, 5), (5, 6) or (6, 7). One complete subspace is composed of
selecting one group for each pool, for example {(1), (4, 5), (9)}. There are a total
number of 9 parameters in this example.

of groups chosen from each pool. In the text we will indicate subspaces with
braces {}. In figure 1 possible subspaces are {(1), (6, 7), (8)} or {(1), (4, 5), (9)}.
The total number of possible subspaces results from simple combinatorics on the
groups in each pool. In our example, the total number of subspaces would thus
be 2× 3× 2 = 12.

To relate the MMPSO parlance to our concrete robotics example, each DOF
is represented by a pool and each control mode is represented by a group. Thus
each pool contains three groups (Oscillation, Rotation, Locked) to choose from.
A particular subspace is then a specific combination of control modes for each
DOF.

The goal of MMPSO is to efficiently search for solutions within these sub-
spaces, dividing effort spent in each subspace based on a similar principle of
collaboration as used by the base PSO algorithm. To accomplish this we sepa-
rate the algorithm in two layers.

3.2 The Inner Layer

The inner layer is defined as one instance of a subspace (i.e. there are 12 distinct
inner layers in our abstract example). Each inner layer runs an independent
base PSO algorithm. Particles initially are equally distributed over the different
subspaces (note that there can be more subspaces than particles in which case
some subspaces remain initially unpopulated). Although we use the base PSO
algorithm as defined in section 2, it should be noted that any extension or
variant of PSO could be run without modification in the inner layer. The main
contribution of MMPSO is the way particles are transferred between subspaces
in what we call the outer layer.

3.3 The Outer Layer

The outer layer is a separate algorithm outside the inner layers responsible for
migrating particles from one subspace to another. Figure 2 shows a schematic
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Fig. 2. Schematic overview of the two-layered algorithm. Each of the subspaces con-
tains an independent PSO with a population set to the particles which are currently in
the subspace. The green (triangle) particle represents the best known solution for each
subspace which we call Xs (this is equivalent to Xg in the base PSO). The blue (rect-
angle) particle represents the globally best known solution taken over all the subspaces
and is only known only to the outer layer algorithm. We call this solution Xg .

representation of the two-layered system. Each subspace contains a separate
PSO and the outer layer migrates particles between subspaces. A subspace best
solution, Xs is maintained in each subspace and is the equivalent of the globally
best known solution Xg in the base PSO algorithm. We also introduce a new Xg

which represents a new globally best known solution known only to the outer
layer algorithm.

To transfer particles between subspaces we borrow the concept of the mutation
operation from Genetic Algorithms. The basic idea is to migrate a particle from
one subspace to another subspace based on migration probabilities. However,
unlike in GA where a beneficial mutation is automatically propagated to the
next generation, we do not have such a concept in our PSO. Simply moving
particles from one subspace to another randomly chosen subspace will not provide
appropriate pressure to explore subspaces that have a higher overall fitness more
than other subspaces, since the particles are moved (and re-moved) randomly.

To address this issue, we take inspiration from the concepts of local ver-
sus global and exploration versus exploitation from PSO and introduce three
migration probabilities. The exploration migration probability Pe, defines the
probability of a random migration of the active group within each pool. The
local migration probability, Pl, defines the probability of migrating to the group
within each pool which is contained in the best solution known to that particle.
Similarly, the global migration probability, Pg, defines the same type of migra-
tion probability as the local migration probability, but towards the globally best
known solution Xg over all subspaces.

Together, these three migration probabilities will govern the search of the
different subspaces in a collaborative manner similar to how PSO tries to
optimize parameters within a subspace. We can now define the probability
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P (sc → sj |sc �= sj) for each particle, of migrating the current group (c) of a pool
(s) to a group (j) different from c as given in equation 2.

P (sc → sj |sc �= sj) = 1− (1− Pe

N − 1
) · (1− Pl|sj = sl) · (1− Pg|sj = sg)

P (sc → sj |sc = sj) = 1−
N∑

k

P (sc → sk|sc �= sk)

Pe + Pl + Pg ≤ 1 (2)

Here the notation P (a → b|a �= b) is used to mean the probability of a
transitioning to b given that b is different from a, thus the probability of a particle
to migrate a particular group to a different group. This probability is calculated
from the probabilities Pe, Pl and Pg as defined above and N the number of
different parameter groups in the pool s. Furthermore, sl is the parameter group
l of pool s in which the locally best known solution of the particle has been
found and sg is the parameter group g of pool s in which the globally best
known solution (over all parameter subspaces) has been found.

Equation 2 proceeds to calculate first the probability of not migrating, which
is given by the product of the probabilities of not migrating due to respectively
exploration (Pe), local migration (Pl) and global migration (Pg). The probability
of not exploring is given by 1 minus the probability to migrate according to Pe

to any other group, of which there are N − 1. Secondly, the probability of not
migrating towards the locally known best group can be calculated by 1 minus
Pl, given that the group to be transitioned to (sj) is the locally best known
group (sl). We have adopted the notation Pl|sj = sl here to evaluate to Pl

when sj = sl, or 0 otherwise. The probability of not migrating towards the
globally best known group is calculated in the same way. Finally, the resulting
probability P (sc → sj |sc �= sj) is then given by 1 minus the total probability of
not migrating.

For completeness, the second equation provides the probability of staying in
the same group (i.e. not migrating at all). This probability is simply 1 minus the
total probability of migrating to any of the N other groups. In practice, only the
first equation is used to calculate whether a group needs to be migrated. Finally,
to guarantee proper probabilities, the sum of Pe, Pl and Pg must be smaller or
equal to one.

The probabilities as described in equation 2 are proper probabilities in the
sense that the sum of all the probabilities equals to 1 (this can be easily seen since
the probability of not migrating is defined as 1 minus the sum of probabilities of
migrating to a different group). They are also defined correctly such that setting
for example Pe = 0.5 will cause on average one particle per two iterations to
migrate each pool randomly.

As an example, figure 3 shows schematically the migration probabilities in-
volved for a given state of the pool B ∈ s for a particular particle (as shown before
in figure 1). The figure portrays the case where the current group of B (Bc) is
group 1, or parameters (4, 5). The locally best known group (Bl) is group 2, or
parameters (5, 6) and the globally best known group (Bg) is group 3. There are
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Fig. 3. An example of the migration probabilities involved in migrating the pool B ∈ s
from one particular current group (Bc) to each possible group of B. The probabilities
P (B1 → B1), P (B1 → B2) and P (B1 → B3) can be calculated using equation 2. The
resulting probabilities (as functions of Pe, Pl and Pg) are given in equation 3.

then three probabilities P (B1|B1 = Bc), P (B2|B2 �= Bc) and P (B3|B3 �= Bc)
which respectively represent the migration probability of 1) not changing the
current group, 2) changing the current group from B1 to B2 and finally chang-
ing the current group from B1 to B3. Using equation 2, these probabilities then
become as shown in equation 3. We will discuss ways to choose Pe, Pl and Pg to
design certain behaviors of the algorithm in section 4.

P (B1 → B2) = 1− (1− Pe

2
) · (1− Pl)

P (B1 → B3) = 1− (1− Pe

2
) · (1− Pg)

P (B1 → B1) = 1− P (B1 → B2)− P (B1 → B3) (3)

3.4 Pseudo Code

A very short and concise pseudo code listing for the algorithm is given in algo-
rithm listing 11. In short, at each iteration, a base PSO is run for each currently
non-empty subspace. After this, the best local and global group (sl and sg) for
each pool are updated according to the fitness of each particle. Finally, particles
are migrated from one subspace to another by changing the group in each pool
according to the probabilities Pe, Pl and Pg.

4 Properties

There is only one set of parameters left for the user of MMPSO to be chosen.
These parameters are the mutation probabilities Pe, Pl and Pg. The values of
these parameters are important since they will completely govern the behavior
of the outer layer algorithm. As such, they need to be chosen carefully.

1 A fully working example of the MMPSO algorithm implemented in matlab is avail-
able at: http://biorob2.epfl.ch/~jvanden/mmpso/mmpso_code_nicso_2013.zip

http://biorob2.epfl.ch/~jvanden/mmpso/mmpso_code_nicso_2013.zip
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Algorithm 1. MMPSO

Require: Subspaces: the set of all subspaces
Require: Pools: the set of all pools
Require: P : probability function of sc → si with Pe, Pl, Pg

1: Particles ← initializePopulation
2: while stopping condition not met do
3: for u ∈ Subspaces, u �= ∅ do
4: PSO(Particles ∪ u) {base PSO on particles in u}
5: end for
6: for s ∈ Pools do
7: {sl, sg} ← updatePoolBest(s) {update sl and sg}
8: end for
9: for p ∈ Particles do

10: for s ∈ Pools do
11: migratePool(p, s, P (sc → si|sc, sl, sg)) {migrate sc → si using P}
12: end for
13: end for
14: end while

In general we would normally like to stimulate exploration early in the
optimization, so the various subspaces are explored sufficiently and general
(sub)optima can be located. As the optimization progresses, particles should
start to focus more on their locally best known subspaces to explore these in
more detail. Finally, particles should start to converge on the globally best known
subspace to maximally optimize for that particular space during the late phases
of the optimization process.

To get this kind of behavior, we can design the mutation probabilities using
probability curves as functions of the number of iterations. Note that we as-
sume here a stopping criterion based on the maximum number of iterations. If
a measurable convergence criterion is used, then the probability curves can be a
function of the convergence instead. Figure 4 shows one particular choice of the
probability curves. Here we used sigmoid shaped functions for the exploration
and global exploitation probabilities, and a Gaussian shaped curve for the local
exploitation probability.

The exact choice of where to switch from exploration to exploitation will
choosing the shapes of the curves similarly to the ones shown in figure 4 generally
works well.

4.1 Example

In this section we will briefly show some characteristics of the MMPSO on the
most simple numerical problem. Although the example is a trivial one, it makes
it equally trivial to analyze its behavior. More complex examples are currently
outside of the scope of this paper (see also the discussion in section 6). In this
simple example we are going to consider only two parameters, x and y both
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Fig. 4. Mutation probability characteristics for the exploration probability Pe, local
exploitation probability Pl and global exploitation probability Pg , emphasizing early
exploration and late convergence

bounded in [0, 1]. We define one pool containing two groups. The first group is
(x) and the second is (x, y). Thus a particle either optimizes for only x or both
x and y. We further define two objective functions. The first is evaluated for
particles optimizing {(x)} and the objective is simply x itself, with a maximum
value of 1. The second objective function is evaluated for {(x, y)} and is given
by 2 − (|x − 0.5|+ |y − 0.5|), which has a maximum value of 2 at x = 0.5 and
y = 0.5. These objectives were chosen such that the maxima in both subspaces
are at different values of x, to illustrate the ability of the algorithm to find both.

The population size in this example is set to 40 particles and the optimization
lasted for 70 iterations. The probabilities Pe, Pl and Pg were respectively 0.01,
0.05 and 0.05. All particles were initialized in the region [0, 0.25] for both x and
y to better show the effect of the particles converging on the maxima.

Figure 5 show the flow of particles between the two subspaces. The particles
quickly converge on their respective maxima (not shown in the figure). For this
simple problem, the population sizes of both subspaces can be easily calculated in
the limit of the iteration using equation 2. Given that all particles will at some
point have visited both subspaces (due to Pe), such that the global best and
local best are both located in the second subspace. This results in a probability
P (s1|s2) = Pe and P (s2|s1) = 1−(1−Pe)·(1−Pl)·(1−Pg). Given the probabilities
as defined before, this results in P (s1|s2) = 0.01 and P (s2|s1) ≈ 0.1. Thus the
final populations would be approximately, on average as given in equation 4.

S1 = P (s1|s2) · N

P (s1|s2) + P (s2|s1) ≈ 0.1 · 40

0.11
≈ 37

S2 = P (s2|s1) · N

P (s1|s2) + P (s2|s1) ≈ 0.01 · 40

0.11
≈ 3 (4)

Figure 5 show the trend towards these population sizes (though the simulation
would have to be prolonged further to approach these values).
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Fig. 5. Particle flow for subspace 1 (left) and subspace 2 (right). The green (upper)
and orange (lower) areas show respectively the in- and out-flow of particles in each
subspace.

5 Applications

Although we feel that the full details of the applications of MMPSO are out of
the scope of this paper, we would like to briefly discuss one previous application
and one future application of MMPSO to show how this algorithm can be applied
to a specific set of robotics problems.

5.1 Automatic Gait Generation in Modular Robots

In [15] we explored the generation of locomotion gait patterns for a modular
robot named Roombots [19] using MMPSO. This work did not focus on the
specifics of the used optimization algorithm, but rather on the control method-
ology of generating locomotion for modular robots. One module of this robot
has 3 degrees of freedom (DOFs) (see [19] for details about the robot struc-
ture). One particular feature which makes Roombots an interesting platform for
studying gait generation is that each DOF can continously rotate, allowing a di-
verse array of locomotive behaviors. Two Roombots modules joint together are
termed a Metamodule. The goal of this work was to explore locomotion modes
of a Roombots Metamodule. The peculiar placement of the degrees of freedom of
the Metamodule however make it hard to design locomotion controllers by hand.

If all 6 degrees of freedom of the Metamodule would have the same control
law, then a standard PSO would have sufficed to optimize the various controller
parameters. In this work however we were interested in exploring combinations of
three different control modes for each of the DOFs, Oscillation (i.e. sinusoidal),
continuous Rotation and Locked in which the DOF is controlled to be at a certain
constant offset.

To explore combinations of these different control modes, we have success-
fully used MMPSO to select control modes for each of the DOFs. In MMPSO
terminology, there were 6 pools (one for each DOF). Each pool consisted of
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three parameter groups (one for each control mode). The open control param-
eters to be optimized (for each DOF i) were the oscillation amplitude Ri, the
oscillation or locked offset Xi and a phase bias ψij controlling the phase rela-
tionship between neighboring DOFs. The MMPSO pool for each DOF i is given
by: [(Ri, Xi), (), (Xi)], with groups for respectively the Oscillation, Rotation and
Locked modes. Note that there are no parameters for the Rotation mode and
that the offset Xi is shared between the Oscillation and Rotation modes. In
terms of MMPSO subspaces, there are a total of 36 = 729 different subspaces to
be explored. One possible MMPSO subspace is given in 5:

{(R1, X1), (R2, X2), (X3), (), (), (X6)} (5)

Where the two DOFs are Oscillating, the third and last DOF are Locked and
the fourth and fifth DOF are Rotating.

We ran MMPSO to optimize at the same time the control mode configuration
and the control parameters. One of the main outcomes of that work shows that
allowing optimization of so-called Hybrid control modes, selected by MMPSO,
generally outperforms Pure control modes (such as only oscillatory or rotational
modes for all the joints). The choice of the migration probabilities Pe, Pl and
Pg gives precise control over how much iterations (on average) particles explore
different subspaces and can be chosen properly according to the total number of
subspaces available to the problem. For more details on this particular work, we
refer to [15].

5.2 Co-design of Mechanics and Control of a Wearable Exoskeleton

MMPSO has been designed for applications where there are a certain (known)
set of design choices to be made for (sub)parts of the system. This leads to a
combinatory number of possible solutions to be explored. One interesting appli-
cation of MMPSO for robotics is the co-design of the mechanics (or morphology)
and control of a robot. We are currently exploring the use of MMPSO in the
context of co-design of a wearable, non-anthropomorphic exoskeleton. The main
idea here is to first assume the human body to be a given, fixed mechanical
structure. This “system” is then augmented with parallel structures composed
of various components (linear/revolute actuators, rigid links, passive elements
such as springs and dampers), composing the exoskeleton. Mechanical parame-
ters to be optimized are comprised of material density, mass distribution, actua-
tor placement and rigid link lengths. At the same time, open control parameters
for controlling the actuators have to be optimized, which similarly to our work
described before can have different control modes. The augmented system can
then be evaluated on certain tasks such as locomotion assistance. MMPSO can
be used here to explore the different combinations of mechanical parts to con-
struct the exoskeleton attached in parallel to the human body, as well as the
control of this exoskeleton, simultaneously. Although we only have preliminary
results of this work at this time, we hope to present results of this approach in
the near future.
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6 Discussion

In this contribution we have described a novel PSO based algorithm for opti-
mizing specific optimization problems combining real-valued parameters with
certain discrete choices in the type of solution being explored. Although the
algorithm is suited only for these specific type of problems, we believe that it
provides a valuable addition to the variety of existing modifications of the base
PSO algorithm. The work explains in detail how principles of migration, inspired
by Genetic Algorithms, can be applied to PSO in a collaborative way such that
multiple, partially-overlapping parameter subsets can be explored simultane-
ously. The use of proper migration probabilities which separate exploration, local
exploitation and global exploitation and their semantics makes choosing values
for these probabilities well defined and understandable. The resulting behavior
can be analyzed in terms of these probabilities and makes it easier to design the
probability functions. Furthermore, the two-layer approach of the algorithm al-
lows for any number of extensions of the base PSO algorithm to be used without
any additional modifications to the outer layer algorithm.

Although we have shown that the algorithm is capable of solving the problem
it was designed for, we currently lack a more extensive comparison with differ-
ent algorithms capable of solving similar types of problems at this time (e.g.
Genetic Programming). Future work will investigate more thoroughly how the
performance of MMPSO compares to other algorithms capable of solving similar
problems.
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Abstract. Modelling biochemical networks can be achieved by itera-
tively analyzing parts of the systems via top-down or bottom-up ap-
proaches. It is feasible to piece-wise model the biochemical networks from
scratch by employing strategies able to assemble reusable components.
In this paper, we investigate a set of strategies that can be employed in a
bottom-up piece-wise modelling framework, to obtain synthetic models
with similar behaviour to the target systems. A combination of evolution
strategies and simulated annealing is employed to optimize the structure
of the system and its kinetic rates. Simulation results of different variants
of those computational methods on a standard signaling pathway show
that it is feasible to obtain a tradeoff between the generation of desired
behaviour and similar and alternative topologies.

1 Introduction

In theoretical chemistry and systems and synthetic biology, time-dependent
chemical concentration data for large networks of biochemical reactions are im-
portant. These data are collected with the purpose to identifying the exact struc-
ture of a network of chemical reactions and their corresponding kinetic rates for
which the identity of the chemical species present in the network is known but
no information is available on the species interactions.

General methods for engineering biochemical networks can be divided into two
main approaches: top-down or bottom-up, which allow the modelling of biochem-
ical systems by manipulating parts of the systems. In the top-down (analytical)
approach, a whole complex biochemical system is segregated into subunits that
can be easily dealt with for further investigation, such as dissecting apoptotic sig-
nals [9] and tuning complex signal cascades [14]. In the bottom-up (construction-
ist) approach, a complex biochemical system is composed from building blocks
where the relationships of involved compounds are investigated, such as building
synthetic oscillators [15] and transplanting synthetic genomes [2]. The modelling
of biochemical networks involves the optimisation of two main attributes: net-
work topology and kinetic rates.
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There exist several approaches dealing with inferring biochemical systems,
some of them with limitations and drawbacks [6][12][13]. They mainly include
evolutionary algorithms and genetic programming (from the class of evolution-
ary computation models). Previous research applies a hybrid combining Evolu-
tionary Strategies (ES) and Simulated Annealing (SA) to the optimisation of
topology and the kinetic rates of a biochemical system [21]. In this paper, we
investigate variants of the ES-SA heuristics for bottom-up systems modelling.
Due to the flexibility of these strategies, various combinations of the evolution-
ary operators, evaluation criteria and design principles can be considered. These
variants are presented in detail in Section 4.

2 Biochemical Systems

The modelling of biochemical systems has been investigated widely in computa-
tional biology, especially in systems biology. In biochemistry, a chemical reaction
is a process of converting molecules of reactants into products within a specific
time period. The reactants are usually known as substrates. Biochemical systems
are composed of interacting molecules (or molecular species), whose dynamic
evolution is determined by the occurrence of chemical reactions. A biochemical
model is fully characterized by the initial concentration of each molecular species
and the description of the reactions with their kinetic rate laws. The represen-
tation of the dynamics is given by an ordinary differential equation (ODE) as
follows:

dXi

dt
=
∑

j

μij · γj
∏

k

X
fjk
k (1)

where Xi represents one species of the model, for instance metabolite concen-
trations, protein concentrations or levels of gene expression; j represents the
biochemical reaction affecting the dynamics of the species; μij indicates the sto-
ichiometric coefficient; γj indicates rate constants; fjk stands for kinetic orders;
and k denotes the number of species.

Mass action kinetics are used in chemistry and chemical engineering to de-
scribe the dynamics of chemical reactions. The mass action given in equation MA
is used in this work; note that A is the substrate, B the product, E the enzyme
and A|E is the intermediary substrate-enzyme complex.

A+ E

k1−→
←−
k2

A|E k3−→ B + E . (MA)

There are different methodologies employed to describe biochemical systems in
computational biology. Petri nets are one of the existing mathematical modelling
structures used for the description of biochemical systems as a reaction-system
behaviour descriptor, and comprise two types of nodes – places and transitions
– connected via edges. The usage of Petri nets in biological systems comes as
a natural solution as biochemical reactions are inherently bipartite, comprising
reactions between biochemical entities [11], which are mapped onto transitions
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and places respectively. A continuous Petri net can be represented by a system
of ODEs [8]. We focus on the automatic identification of both network structure
and its corresponding kinetic rates from observed time-domain concentrations
alone without assuming a given basic structure or any given reaction kinetics.

3 ES-SA Metaheuristic for Biochemical Systems

ES (as well as any of the evolutionary computation methods) are good candi-
dates for evolving biochemical systems. A solution of the ES encodes a Petri
net which is a representation of a biochemical system. SA is a powerful op-
timization method and it is used for optimizing the kinetic rates. The hybrid
method ES-SA applied to biochemical systems is described in detail in [19][21].
We reproduce here the main characteristics. In order to understand the main
constituents of an ES solution, elements such as pattern, component, model and
rules are required. Any complex biochemical reactions can be described by em-
ploying instantiations from the binary patterns. The two general patterns we use
describe how two species form a new species, or how one species is decomposed
into two species:

– binding pattern: two reactants are merged into a complex with a specific
kinetic rate

– unbinding pattern: a complex is disassociated back to reactants, or converted
to a product and an enzyme with a specific kinetic rate.

A component for constructing biochemical models is given by
C = 〈P, T, f, v,m0〉, which is based on the structure of Petri nets, where:

– P is a disjoint set of three continuous Places
– T is a singleton set containing one continuous Transition
– f : ((P × T ) ∪ (T × P )) → R+

0 defines a set of three directed arcs, weighted
by non-negative real numbers, such that there is at least one arc of the form
p→ t and at least one of the form t→ p

– v : T → H assigns a firing rate function to the transition, whereby the set
of all firing rate functions is H :=

⋃

t∈T

{

ht|ht : R|•t| → R
}

, and v(t) = ht
is for the transition t ∈ T

– m0 : P → R+
0 gives the initial marking.

A model of a biochemical system is a generalized form of a component but
with no restrictions on the number of places and transitions. The mathematical
interpretation of both component and model is a system of ODEs, illustrating
the nonlinear relationship among at least three involved biochemical elements.

The ES part of the ES-SA metaheuristic builds models from single compo-
nents by using evolutionary mechanisms for composition operators and rules.
A database has been designed and two libraries developed to store the compo-
nents and models. Components are created at initial stage, according to the pre-
defined patterns. A components library is developed as a table in the database,
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to preserve the generated components as atomic building blocks. The library
maintains detailed information of these atomic components, such as labels of
involved species, constants of associated kinetic rates and structures of created
components.

The fitness function for a generated model MG is given by:

f(MG) = dMT ,MG(Xk) +
1

η

η
∑

k=1

Φ(Xk) (2)

where

dMT ,MG(Xk) =
1

η

η
∑

k=1

√
√
√
√

P∑

t=1

(xtk − x̂tk) (3)

XT = (X1, X2, ..., XN ) represent the behaviour of the N species, P denotes
data points in each time series Xi = (x1i, x2i, ..., xPi), i = 1, ..., N . There are

M time series XG = (X̂1, X̂2, ..., X̂M ) describing the behaviour of M species
in a constructed model MG, and there are P data points for each time series
X̂j = (x̂1j , x̂2j , ..., x̂Pj), j = 1, ...,M . The intersection between MT and MG of
species is defined by XC = XT ∩ XG = (X1, X2, ..., Xn), 1 ≤ n ≤ N . η = n if
the compared species are from the intersection XC and η = n′ if the compared
substrates are from X ′

C , the set which contains the species for behaviour com-
parison specified by the user. The fitness function has to be minimized, therefore
the smaller the evaluated fitness value, the better the generated model.

A set of composition operators are adapted from the evolutionary optimization
to fine tune the structures of the models:

– addition, represented by ⊕: addition rules add a component to a model
– subtraction, represented by �: subtraction rules remove a component from

a model
– crossover, represented by ⊗: crossover rules combine two models. The

crossover rules allow two models be cut and spliced by swapping parts of
the models via a “cut and splice” approach.

ES builds solutions, i.e. biochemical systems represented by Petri nets, in a
piece-wise manner by applying the operators above to the components library.
In this way, ES optimises the topology of the biochemical system. The kinetic
rates of the reactions encoded in the Petri net are optimized using simulated
annealing. In order to evaluate an ES-SA solution, the fitness function includes
both the topology and the kinetic rates. The topology part of the fitness function
gives the number of common species and their interactions in the evolved model
compared to the target one. Some of the target model species and interactions
may be missing from the generated model, as well as extra species not in the
target topology could be generated. For the optimization of the kinetic rates, we
employed the BioNessie [10] platform to simulate the model and generate time
course data as a set of target behaviour of species in the model. The measure-
ment of behavioural distance is obtained by employing the Euclidean distance
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function. This part of the fitness involves solving the system of ODEs associated
with the reactions. More details on the implementation of the two methods and
all the parameters involved can be found in [19][21].

4 ES-SA Variants for Biochemical Systems Modelling

Due to a large variety of ways in which evolutionary methods can be designed
in terms of performing genetic operators, comparing species behaviour and eval-
uating generated models during the construction process, we have carried out
an empirical investigation of the advantages and disadvantages of some variants
for the piecewise modelling, with an emphasis on the effect of genetic operators
and evaluation criteria. Five sets of specific modelling variants are compared and
general descriptions of these variants are given in what follows.

1. Methods of driving model composition:

– Fixed: behaviour of a fixed set of species to be compared
– Dynamic: behaviour of a dynamic set of species to be compared

Time series data presenting behaviour of species in a target biochemical
system is used to drive the modelling process via reducing the behaviour
distance between generated and target model. Given a target biochemical
system and a generated model which consist of N and M species respectively,
there are two sets of time series data describing species behaviour in the
target and generated model. It is easy to deduce that species to be compared
can be selected via a fixed or a dynamic method.

In the fixed method, the species in a fixed set are specified by users at the
initial stage. They are referred to the target biochemical system. Therefore,
all the information (names, concentrations and behaviour in time series data
format) of these species is provided without uncertainty. Regarding the pro-
cess of piecewise modelling, a model which is constructed at initial stages or
evolved by mutation after many generations could only consist of less species
than the target model. Thus some of the species could be absent.

In the dynamic method, the species for comparison are generated and
preserved in a dynamic set according to the existence of species in both
generated and target models. The number of species is a dynamic variable
in a range of [0, N ], N denoting the number of species in the target model.

2. Methods of survival selection:
– SES: standard (1+1)-evolution strategy
– PES: probabilistic (1+1)-evolution strategy, probabilistically accept a

worse model
A probabilistic evolution strategy (PES) is proposed, which differs from the
standard evolution strategy (SES) in the sense that it can accept worse
models by a probability while searching the solution space. This may be
helpful in avoiding local optima.

The SES method is the standard evolutionary process, selecting model
candidates as offsprings for further evolution in following generations. The
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criteria for survival models is based on fitness value. The PES method intro-
duces an acceptance probability into the stages of choosing survival models,
which is integrated within the normal model selection stages of SES.

3. Methods of implementing the mutation operator (mutation consists in
adding and/or subtracting a component to/from the topology):

– Fixed: a fixed frequency of switching the addition/removal of a compo-
nent to/from the model

– Random: a random way of switching the addition/removal of a compo-
nent to/from the model

In the fixed method, the two mutation operators can be performed
alternatively.

In the random method, addition and subtraction are applied to models at
every generation in a random manner.

4. Methods of performing crossover operator:

– Best: each individual mates with the best individual in the population

– Random: each individual mates with a randomly selected individual from
the population

The crossover operator mates two individual models under construction by
a cut and splice method. New offspring are generated from the combination
of parental models in terms of components (reactions and species). Parents
and offspring compete and only one of them can be preserved as a model
candidate in the population of the next generation. We consider two ways
to performing the crossover operator: best and random methods.

In the best method, each model under construction from the population
is recombined with the model with best fitness. It is inspired by the elitism
based individual selection in genetic algorithm.

In the random method, each model in the population will be crossed over
with another model chosen randomly.

5. Methods of evaluating solutions (models):

– ED: the objective function represents the Euclidean distance function

– ED+RP: the objective function is a combination of a reward and penalty
mechanism and the Euclidean distance function

The difference between generated and target model is calculated by employ-
ing an objective function. In the objective function, there are two methods
of evaluating the composed models: Euclidean distance (ED) based method,
and Euclidean distance with a reward and penalty mechanism (ED+RP)
based method. ED is an ordinary distance between two points on the time
series data representing the species behaviour from generated and target
model. The inclusion of the reward and penalty in an objective function
is intended to prioritize individuals whose components are among the ones
existing in the target model. For instance, if a species is generated in a syn-
thetic model and the species is also among the ones existing in the target
model, fitness will be improved by giving a reward value.
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5 Evaluation Metrics

In order to evaluate the synthetic model structures quantitatively, two measures
are employed: Compression and Coverage. Both measures vary from 0 (worst)
to 1 (best). If either compression or coverage is low for a particular model, it
indicates the topology of the generated model is very different from the target
biochemical system, even if their behaviours are similar.

Compression (adapted from [3] and [7]) measures the percentage of matched
common arcs between synthetic and target model and it is given by:

Compression =
|Intersection|

Max(|Target| , |Generated|)
where |Intersection| represents the number of matched arcs between target
and generated topology, |Target| is the number of arcs in the target topol-
ogy, |Generated| denotes the number of arcs in the generated topology, and
Max(|Target| , |Generated|) is the maximum number of arcs in either of the
target and generated model.

Coverage calculates the ratio of matched arcs in the target model and it is
given by:

Coverage =
|Intersection|
|Target|

where |Intersection| represents the number of matched arcs between target and
generated topology, and |Target| is the number of arcs in the target topology.

6 Experiments and Comparisons

In order to quantitatively study the modelling variants, we performed statistical
analysis of the performance by comparing fitness values, compression and cov-
erage scores. One of the most important and intensively studied signaling path-
ways is ERK pathway (the Ras/Raf-1/MEK/ERK signaling pathway) which
transfers the mitogenic signals from the cell membrane to the nucleus [17]. The
ERK pathway is de-regulated in various diseases, ranging from cancer to im-
munological, inflammatory and degenerative syndromes and thus represents an
important drug target. A brief illustration of regulations among proteins and
complex based on signaling transduction in the ERK pathway is given as fol-
lows. Ras is activated by an external stimulus, via one of many growth factor
receptors; it then binds to and activates Raf-1 to become Raf-1*, or activated
Raf, which in turn activates MAPK/ERK Kinase (MEK) which in turn activates
Extracellular signal Regulated Kinase (ERK). Cell differentiation is controlled
by following cascade of protein interactions: Raf-1→ Raf-1* → MEK → ERK.
The effect of regulation is dependent upon the activity of ERK. The Raf-1 ki-
nase inhibitor protein (RKIP) inhibits the activation of Raf-1 by binding to it,
disrupting the interaction between Raf-1 and MEK, thus playing a part in regu-
lating the activity of the ERK pathway [18]. A number of computational models
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have been developed in order to understand the role of RKIP in the pathway
and ultimately to develop new therapies [4][5].

Due to the space limitation we present the analysis of a single signaling path-
way but other examples could be found in [19].

Figure 1 shows a Petri net of the RKIP signaling pathway. Figure 2 displays
the behaviour of all the species in the model of ERK signaling pathway regulated
by RKIP, which is generated by simulation on a set of given ODEs and a group
of original kinetic rates.

Raf−1Star RKIP

Raf−1Star_RKIP

ERK−PP

MEK−PP_ERK

Raf−1Star_RKIP_ERK−PP
RKIP−P_RP

MEK−PP ERK RKIP−P RP

r1 r2

r3 r4

r6 r7 r9 r10r5

r8

r11

Fig. 1. A Petri net of the RKIP signaling pathway. Initial markings are taken from [20]

6.1 Simulation Settings

There are five pairs of ES-SA variants compared and investigated. Details of
simulation settings are given in Table 1.

The hybrid ES-SA platform calls the subtraction operator at every two gen-
erations, Sub@Ge=2; SA is called to optimize kinetic rates at every 25 gener-
ations, OptRate@Ge=25; reward ε1 and penalty ε2 values are 0.01 and 1000
respectively.The number of generations in one run of ES is 100, GeSi=100; the
number of individuals is 50, PopSi=50. Initial SA system temperature is 10,
Tini=10; cooling rate of SA system is 0.8, CoRate=0.8; minimum temperature
for stopping simulation is 1, Tmin=1; number of iterations at each temperature
is 10, Iter=10. The mean μ and standard deviation σ of Gaussian distribution
N(μ, σ) are 0 and 0.00001, μ=0 and σ=0.00001. Other properties of the simula-
tion setting during the modelling process are fixed without modification except
the two compared modelling variants, which allows a fair comparison between
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Fig. 2. Behaviour of all species in RKIP signaling pathway

two modelling variants in each pair in terms of performance on generation of
synthetic models.

We investigate both alternative topologies and similar topologies. By analyz-
ing the number of reactions in target pathway to the ones existing in the model
generated by our method, we can quantitatively measure the difference between
the alternative topology compared to the target one. A similar topology contains
parts identical to the ones in the target network, but it could as well contain
parts which are absent in the target network. An alternative topology has a dif-
ferent structure for the network, for instance could contain the same reactants
as the target one, but the arcs between them are different.

Table 1. Simulation settings for running modelling variants

Modelling Variants Hybrid Modelling ES SA Gaussian N(μ, σ)

Data Driven: �Runs = 10 GeSi = 100 Tini = 10 μ= 0
Fixed vs Dynamic Sub@Ge= 2 PopSi = 50 CoRate = 0.8 σ= 0.00001
Survival Selection: OptRate@Ge = 25 Tmin = 1
SES vs PES ε1=0.01 Iter = 10
Mutation: ε2=1000
Fixed vs Random
Recombination:
Best vs Random
Fitness Function:
ED vs (ED+RP)
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6.2 Statistical Analysis

Two statistical measures in the R packages [16], ‘var.test(X, Y)’ and ‘t.test(X,
Y)’, are employed to perform the statistical analysis.

Fitness values, compression and coverage scores are used to calculate the P-
value in ‘var.test(X, Y)’ and ‘t.test(X, Y)’ for further statistical analysis. The
P-value is compared with a traditional significant level ‘p=0.05’, and the ratios
of variances among generated models are also compared (see Tables 2, 3, 4).
Results over 10 independent runs are summarized.

Table 2. Statistical analysis of average fitness sets

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriFixed vs DriDyn 0.0229 0.6309 < 2.2e-16 3.1602
1.2 SES vs PES 0.4574 1.1616 0.837 4.2289
1.3 MFixed vs MRan 0.6821 0.9208 0.0262 4.2474 4.035
1.4 ⊗Ran vs ⊗Best 1.07e-03 1.9448 0.5737 4.2019
1.5 ED vs (ED+RP) < 2.2e-16 6.15e-06 < 2.2e-16 348.78

Table 3. Statistical analysis of average compression

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriFixed vs DriDyn 0.0096 0.4713 < 2.2e-16 0.025
1.2 SES vs PES 0.0461 1.7802 6.78e-16 0.0361
1.3 MFixed vs MRan 0.75 1.0958 0.0296 0.0526 0.0567
1.4 ⊗Ran vs ⊗Best 1.60e-06 0.2387 < 2.2e-16 0.1033
1.5 ED vs (ED+RP) 1.25e-05 3.6546 0.0004 0.0469

Table 4. Statistical analysis of average coverage

NO. X vs Y
var.test(X, Y) t.test(X, Y)

P-value rV ariances P-value X̄ Ȳ

1.1 DriFixed vs DriDyn 6.74e-12 8.4369 < 2.2e-16 0.0731
1.2 SES vs PES 0.4961 1.2161 0.0261 0.2065
1.3 MFixed vs MRan 0.062 1.7147 6.63e-05 0.2322 0.2765
1.4 ⊗Ran vs ⊗Best 0.3373 1.3178 0.1888 0.2174
1.5 ED vs (ED+RP) 9.39e-05 0.3163 1.05e-14 0.3967

Table 5 shows a comparative example of the reactions obtained in a model
generated by ES-SA strategies compared with the ones in the real (target) model.
In the case presented here, four reactions marked with a star in target RKIP
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pathway are generated in the synthetic model. The synthetic model consists of
12 reactions, four of them being identical to the ones in RKIP pathway. The ES-
SA metaheuristics can obtain alternative topologies exhibiting similar behaviour
to the target ones.

Alternative topologies in synthetic models illustrate target biochemical sys-
tem in a different way, providing templates to biologists in wet-lab for further
experimental examination at the properties of the biochemical systems.

Table 5. Comparison of one synthetic model with RKIP pathway

Reactions in RKIP pathway Reactions in One Generated Model

*Raf1 + RKIP
k1−→ RKIP |Raf1 ERK|RP

r1−→ ERKP + RP

*RKIP |Raf1
k2−→ Raf1 + RKIP ERKPP |MEKPP

r2−→ ERKPP + MEKPP

RKIP |Raf1 + ERKPP
k3−→ ERKPP |RKIP |Raf1 ERK|RP + ERKPP |RKIPP

r3−→ ERK|ERKPP |RKIPP |RP

ERKPP |RKIP |Raf1
k4−→ RKIP |Raf1 + ERKPP ERK + RKIP |Raf1

r4−→ ERK|RKIP |Raf1

ERKPP |RKIP |Raf1
k5−→ Raf1 + ERK + RKIPP *RKIP + Raf1

r5−→ RKIP |Raf1

*ERK + MEKPP
k6−→ ERK|MEKPP *ERK + MEKPP

r6−→ ERK|MEKPP

*ERK|MEKPP
k7−→ ERK + MEKPP ERKPP |MEKPP + MEKPP |RKIPP

r7−→ ERKPP |MEKPP |RKIPP

ERK|MEKPP
k8−→MEKPP + ERKPP RKIP + ERK|RP

r8−→ ERK|RKIP |RP

RKIPP + RP
k9−→ RKIPP |RP *RKIP |Raf1

r9−→ RKIP + Raf1

RKIPP |RP
k10−−→ RKIP + RP ERK|MEKPP

r10−−→ ERKP + MEKPP

RKIPP |RP
k11−−→ RKIPP + RP RKIP |Raf1 + ERKP

r11−−→ ERKP |RKIP |Raf1

*ERK|MEKPP
r12−−→ ERK + MEKPP

6.3 Discussion

Details of the advantage and disadvantage of applying ES-SA variants to con-
struct models are described below, each pair being considered separately.

Fixed vs. Dynamic – Data Driven. For generating desired behaviour and
alternative topologies, dynamic variant, is better than fixed one, but for gener-
ating similar topologies, the fixed variant is better than dynamic one.

Figure 3(a) shows that the dynamic version converges more quickly in terms
of fitness function than the fixed one.

SES vs. PES – Survival Selection. For generating desired behaviour, the
experiments do not show any difference between SES and PES; for generating
similar topologies, SES is better than PES and for generating alternative topolo-
gies, SES is better than PES.

Figure 3(b) shows that SES and PES have a similar performance regarding
the convergence of fitness values.

Fixed vs. Random – Mutation Operator. For generating desired behaviour
and similar topologies random variant is better than fixed one; and for alternative
topologies random variant is the same as fixed one.

Figure 3(c) shows the convergence of the fitness values for the fixed and ran-
dom variant.
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Fig. 3. Fitness convergence of ES-SA variants (the number of generations is shown on
the X-axis and the average fitness values on the Y-axis): (a) variants for data driven,
Fixed vs Dynamic; (b) variants for survival selection, SES vs PES; (c) variants for
applying mutation operator, Fixed vs Random; (d) variants for applying crossover
operator, Best vs Random; (e) variants for models estimation, ED vs ED+RP
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Best vs. Random – Crossover Operator. For generating desired behaviour
and similar topologies, a random selection of mate for recombination works the
same as the selection of the best individual but selection of best individual
for recombination is better than the random selection for generating alterna-
tive topologies. Figure 3(d) shows the convergence of the fitness values. In Ta-
ble 2 (1.4) and Table 4 (1.4), the two P-values of t.test() are both larger than
the significant level 0.05, indicating that the mean fitness and coverage values of
the random variant are the same as the ones of the best variant. This suggests
that the best and random mechanisms of selecting individual for crossover have
the same performance.

ED vs. ED+RP. For generating similar topologies, ED+RP variant is better
than ED but ED is better for generating alternative topologies. In Table 2 (1.5),
the P-value is much smaller than 0.05, indicating a significant difference between
ED and ED+RP. Figure 1(e) presents the convergence of the fitness value for
ED and ED+RP. The average coverage value is larger for the models estimated
by ED+RP which suggests that the ED+RP variant can be better than the
ED variant in terms of generating similar topologies. However the P-value of
var.test() in Table 3 (1.5) is smaller than 0.05 and the ratio of variances is larger
than 1.

Note that some of the ES-SA variants are not directly comparable, because the
statistical values are not in the same measurement scale. For instance, the ED
and ED+RP are not comparable in terms of fitness values, since the mechanism
of reward and penalty generates a different fitness scale.

We are aware that sometimes small amendments to the original methods could
have an impact upon the final results; this is what we tried to prove in this paper,
but with the aim of selecting those forms of operators and evaluation procedures
would best fit the biochemical network design. The probabilistic ES makes no
difference to the standard one (it is even worse in certain situations) which
shows that accepting worse solutions will not bring additional exploration of the
search space. The manner in which mutation is performed helps if additional
information is known about the problem to be solved. In the case presented in
this paper, the imposition of a certain number of steps for adding a component or
removing a component is not helpful. This could work better than in the random
case if more interaction is provided, i.e. remove a component every certain fixed
number of steps only if the size of the network is too big. The step size of the
application of an addition or a subtraction is also important, but that requires
extra analysis. Elitism plays an important role and in our case it helped in
selection the individuals for crossover.

Table 6 shows the overall pair-wise comparison of all the five variants in terms
of topologies generation and behaviour.
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Table 6. A summary of performance between compared modelling variants

Desired Similar Alternative
Modelling Variants Behaviours Topologies Topologies

Data Driven:
Fixed vs Dynamic Dynamic Fixed Dynamic

Survival Selection:
SES vs PES = SES SES

Mutation:
Fixed vs Random Random × =

Recombination:
Best vs Random = × Best

Fitness Function:
ED vs (ED+RP) × ED+RP ED

Notes: ‘×’ means not comparable; ‘=’ means the same.

7 Summary and Conclusions

The work described in this paper focuses on the empirical analysis of piece-
wise modelling approaches of signalling pathways, comparing performance of
different Evolutionary Strategies – Simulated Annealing variants. Alternative
topologies of synthetic models obtained in silico can be taken as general guides
for biologists to examine and understand biochemical systems by experimental
techniques in wet-lab. Moreover, these can be used as templates for researchers
in synthetic biology to develop specific functions of biochemical systems. The
research presented here aims at guiding biomodel engineers in deciding the com-
putational setup and selecting the right parameters. Our analysis of some of the
combinations which could be considered helps in developing models that are use-
ful for further construction with respect to specific characteristics of modelling
biochemical systems.
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Abstract. Paramecium is covered by cilia. It uses the cilia to swim
and transport food particles to its mouth. The cilia are synchronised
into a collective action by propagating membrane potential and mechan-
ical properties of their underlying membrane and the liquid phase en-
vironment. The cilia inspired us to design and manufacture a hardware
prototype of a massively parallel actuator array, emulated membrane po-
tentials via a discrete excitable medium controller and mechanical prop-
erties based on vibrating motors. The discrete excitable medium is a
two-dimensional array of finite automata, where each automaton, or a
cell, updates its state depending on states of its closest neighbours. A
local interaction between the automata lead to emergence of propagating
patterns, waves and gliders. The excitable medium is interfaced with an
array of actuators. Patterns travelling on an automaton array manifest
patterns of actuation travelling along the array of actuators. In com-
puter models and laboratory experiments with hardware prototypes we
imitate transportation of food towards mouth pore of the Paramecium.
The hardware actuator arrays proposed could in future replace simple
manipulators in demanding micro-scale application.

Keywords: cellular automata, multi-agent systems, natural
collaboration.

1 Introduction

Multi-agent engineering systems are ubiquitous. Their control is challenging [9].
A specific category of multi-agent systems are the smart surfaces [4], manipulator
arrays replacing traditional manipulators in industrial applications specifically
at the micro-scale.
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Fig. 1. Image of the bristles fabricated to emulate natural cilia. This design is used as
an alternative to the membrane design described in [13].

Typical manipulation tasks in industrial environments are being performed by
classic 6-DOF manipulators. These robots are often very large, and can manip-
ulate objects varying in size but are smaller than the manipulator itself. Typical
arrangements of these manipulators are either as single units or in small groups,
where collaborative tasks are achieved by properly planning the spatial trajec-
tories of the individual units. Given the small number of agents involved the
planning tasks can be solved analytical. Recently another class of manipulation
tasks emerged: the micro-assembly or assembly on the molecular level. This novel
field of manipulation leads to the creation of massive arrays of distributed small
manipulators. The most common types are based on airjets [8], vibration based
solutions [22] and micro electro-mechanical systems (MEMS) [10].

The actuators used by these systems are small, weak and inexpensive, but by
using cooperative control, they are able to manipulate object much larger than
their own size. Some types of cooperative control of smart surfaces has been
analysed in [5, 18]. A manipulation based on cooperative behaviour in Cellular
Automata (CA) has been studied in [12, 14]. Presently we explore similarities of
waves propagating in CA to biological cilia, like the ones found in Paramecium,
and cilia controlling signalling [21] and how the latter allows the emergence of
collaborative behaviour between the actuators of the prototype system developed
in [13], and the bristled version as seen in Fig. 1. The artificial cilia of the
hardware behave in a coordinated manner via excitation waves and propagating
self-localised excitations that are travelling in the underlying CA lattice.

2 Biological Coordination

Coordination of multiple activities is amongst most intriguing mechanisms of
natural systems [16]. It is still unclear how biological systems are coordinated to
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(a)

(b)

Fig. 2. (a) Image of Paramecium with cilia exhibiting metachronal waves (arrows),
and (b) line of 40 cilia in the presence of a metachronal wave indicated by arrows [15]

produce specific behaviours. To answer this question the mechanics of spatial-
temporal patterns have been investigated in different systems. The main idea
is that chemical signalling mechanisms [7] are being used to produce these
behaviours.

Of particular interest are the mechanisms that govern the operation of cilia.
Cilia are organelle structures found in single-cell organisms used for propulsion,
like in Paramecium Figs. 2(a), and manipulate particles of food, including other
bacteria, towards the Paramecium’s mouth pore. The latter is also the task by
which the proposed artificial system will be evaluated. In multicellular organ-
isms cilia are used as part of other systems, e.g. in the trachea for cleaning the
incoming air from dust and small particles. The intriguing structure of a cilium
has inspired building and control of artificial ones as flow generators. The fabri-
cation technics involve, among other, magnetically actuated structures [11] and
soft, electro-active polymer approaches [20].

The cilia coordination has been investigated in order to establish how the com-
bined action of arrays of cilia produce effective fluidic flows that are propagating
objects. The coordinated action of adjacent cilia and the break of symmetrical
beating was analysed to establish the dynamics of macroscopic flow [15]. Also,
phase-oscillator descriptions of the hydrodynamics interaction of beating cilia ar-
rays have been formulated to allow the analytical investigation of cilia coordina-
tion [19]. The recurring subject of metachronal waves, Figs. 2(a), 2(b) and how
this type of wave formation creates the maximum effective flow is analysed in [2].

Further to the signalling procedure that leads to the cooperative operation of
cilia, the shape of the resulting flow, and related force vector, has influenced the
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current research. It has been proposed and demonstrated in modelling, that the
3D fluidic flow around an actuated cilium has the shape of a 3D vortex [6]. The
2D component of this motion generates the common shape of vortex with
the vectors of acting forces rotating around a centre and converging to the gen-
erative specific spot, i.e. the cilium. The latter is the inspiration for the model
that is used for describing the hardware behaviour of the system in [13].

3 Cooperative Smart Surface

3.1 Cellular Automata

It has been proposed that reaction-diffusion (RD) models can provide a frame-
work to analyse signal propagation in biological systems [17]. The intrinsic
simplicity of the RD approach facilitates simulation of the chemical and fluid
dynamics of the cilia signalling methods that lead to their cooperative func-
tionality. Based on this observation, CA as a form of modelling RD, are being
used in this research to model the signals used for cilia coordination. CA are a
type of distributed embedded controller that, via the state changing rules pat-
terns emerge demonstrating collaborative performance. The investigation of the
emerging patterns in CA have been extensively investigated for their information
processing abilities [1].

In previous work we used the 2+-medium ruleset as the controller of the smart
surface [12, 14]. In brief, the neighbourhood of this ruleset is 3× 3 cells and the
rules are as follows; each cell, x of a 2D lattice L, can take three states, resting
(·), excited (+) and refractory (−), for this manuscript whenever a CA lattice
is depicted in a figure resting state will be black, excited state will be grey and
refractory state will be white. A resting cell is excited if the number of excited
neighbours is exactly two. An excited cell takes refractory state and a refractory
cell takes a resting state unconditionally:

xt+1 =

⎧

⎪⎨

⎪⎩

+, xt = · and ∑y∈u(x) χ(y,+) = 2

−, xt = +

·, otherwise

(1)

where u(x) = {y �= x ∈ L : |x − y| ≤ 1} and χ(y,+) = 1 if y = + and 0,
otherwise.

In this ruleset self-localisations, or wave-fragments, having an excited front,
two cells being in the excited state (+ or grey in the pictures), and a refractory
tail, two cells being in the refractory state (− or white in the pictures), travel in
straight lines. These excitation waves can be considered analogs of metachronal
waves that are traveling in the lattice. As shown in Fig. 3, ten wave-fragments
traveling in a line are behaving in a similar manner to the waves in cilia of
Fig. 2(b).

Under the CA states is a side view of the ‘equivalent’ cilia. Each cilium can
take central, left or right position. Although the beating pattern, the bending of
the cilium, is simpler that in nature, the intended behaviour is emerging from
the phenomenology of the wave propagation.
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Fig. 3. Excitation waves travelling in a 40×2 cylindrical lattice. The ‘equivalent’ cilia
metachonal wave is depicted below the CA states (grey is excited, white is refractory
and black is resting).

3.2 Actuators and Coupling with CA

In order to achieve the vortex generation method of the cilia in 2D, we use vi-
brating motors interconnected using a flexible membrane. Each motor can rotate
in both directions, clockwise and counter-clockwise. This directional operation
modes, plus being off are mapped with the three CA states. Hence resting state
(·) is mapped as motor off, excited (+) is mapped as motor CW and refractory
(−) is mapped as motor CCW, The motors are designed to vibrate radially,
but being positioned on a flexible platform allows them to vibrate slightly in
the axial direction. A more detailed description of the hardware can be found
in [13].

The combination of the axial and radial vibrations create the vortex shaped
force field on Fig. 5(a). This is similar to the 2D components of the vortexes
generated by cilia bitting in fluids [6]. The generated force field is created by the
rotation of a single motor. With arrows are the vectors of the force in specific
position on the top of the membrane. The length of the vector represents the
magnitude of the force at the point. As it is expected, the closer a vector is to
the motor the higher the exerted forces are. If the forces are negligible no vector
is shown (blank space in the figures).

In order to achieve controllable collaborative behaviour the CA states and
the motor commands need to be mapped. This connection is straightforward
since the three states of the CA can be connected with the three states of the
motor. The resting state is connected with the motor being off, while excited and
refractory are arbitrarily selected as motor rotating clockwise (CW) and motor
rotating counter-clockwise (CCW) respectively.

4 Actuator Cooperative Behaviour

To demonstrate similarities between manipulation methods in Paramecium and
our actuator array we chosen a task of transporting ‘food’ object to a dedicated
site of a manipulator, which imitates a ‘mouth pore’.

We compare three different control actuation signals, single motor, random
and metachronal waves in CA. The motor commands were generated using
the software APRON and the physical behaviour was simulated in MATLAB.
The location of the object is selected randomly and in the lower right corner
of the lattice. Since the model is deterministic a single simulation is needed for
each of the three signalling methods.
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Fig. 4. Screenshot from the APRON environment where the control signals for the
motors lattice are depicted in colour matrices. Single motor, random signal and
metachronal wave (at frame 1).

APRON. Array Processing enviRONment [3] is used as the control signals
development and simulation environment. It is a real-time, interactive and highly
visual simulation platform for working with and debugging 2D arrays of data
and rapidly prototyping array based algorithms. APRON scripts treat arrays as a
primitive data type, where the user sequentially defines operations between them,
and computation is performed in an element-wise manner. Individual elements
can be disabled based upon both global and local data and conditions, yielding
local autonomy and algorithmic branching with the array. The CA rules were
developed in open-loop and a frame of the output from each signalling method
is shown Fig. 4.

MATLAB. The information from APRON was then transferred to MATLAB
where the generation of the vortex force-field for each motor was generated. To
create the total force-field of a single motor a combination of coupled oscillators,
(2a) and membrane wave oscillations (2b) was used. The former provided the
components for the behaviour of each motor as affected by the rotation of the
adjacent motors, while the latter describes the dynamics of the membrane that
covers all the motors and connects them.

FC(t)− kd− pḋ = md̈ (2a)

∂2z

∂x2
+
∂2z

∂y2
=

1

c2

(
∂2z

∂t2
+ p

∂z

∂t

)

, c2 = FW /ρ (2b)

where, FC(t) is the actuation force (motor’s torque), k and p are the spring and
damping coefficients of the membrane, m is the mass of the eccentric weight
and d, ḋ and d̈ is the displacement, velocity and acceleration along the axis
of oscillation. And c is a speed of wave travelling on the membrane, FW is a
force generated by the wave and ρ is a density of the membrane’s medium. The
membrane is considered homogeneous and isotropic. The term pḋ = p∂z

∂t is again
the damping effect of the membrane as in (2a) but in the z axis. The combined
force-field was then used to calculate the displacement and rotation of the object
using the equations for normally accelerated motion (3).
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x(t) = x(t−Δt) + ux(t−Δt) ·Δt+ ax(t−Δt) ·Δt2
2

y(t) = y(t−Δt) + uy(t−Δt) ·Δt+ ay(t−Δt) ·Δt2
2

r(t) = r(t −Δt) + ω(t−Δt) ·Δt+ α(t−Δt) ·Δt2
2

(3)

where x(t), y(t), r(t) are the position and rotation of the object at time t, ux(t)
and uy(t) are the linear velocity in the two directions and ω(t) is the angular
velocity, and finally, ax(t), ay(t) are the linear and α(t) is the angular acceleration
respectively, as calculated by FM = m · a and MM = α(t) · Id, where FM is the
resultant force of FC and FW , MM the rotational momentum of this force, and
Id the inertia and m the mass of the object. All calculations are performed in
specified simulation time intervals, Δt.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Simulation frames from MATLAB with APRON generated control signals. The
vectors of the force field, the rectangular object with a rotation indication line and the
trajectory are depicted. (a) Is the vortex force-field created by a single motor, (b) is
the single motor force field ‘pulling’ the object towards the centre of the lattice (frame
60), (c) is the trajectory of the object under a randomly generated force field (frame
400), (d)-(f) are frames 0, 60 and 400 of the trajectory under the metachronal wave
signal. Object is placed at coordinates (12,4). Axis are simulation based units.
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The three different control signals are representing three methods for achieving
the task. The first is to enable a single motor (cilium) symmetrically from the
location of the object and try to ‘pull’ the ‘food’ towards the ‘mouth pore’,
Fig. 5(b). The second is a randomly generated control signal, Fig. 5(c), where
the ‘cilia’ are flapping randomly to try to move the ‘food’ towards the ‘mouth
pore’. Finally, the third control signal is an excitation wave traveling horizontally
on the lattice. The lattice is assumed being a torus and as such the wave is
‘wrapping’ around from left to right, Fig. 5(d)-5(f).

4.1 Discussion

Analysing the trajectories from the different control signals we can deduce some
interesting results regarding the cooperative attributes of the various control
signalling.

The single motor approach, with the motor trying to ‘pull’ the object towards
the centre fails even to start moving the object. Investigating the exhibited forces
we find that the single motor is not able to exert the friction between the object
and the membrane. This is a demonstration that a single ‘cilium’ fails to achieve
the task and some form of cooperative action needs to take place.

The random motor approach overcome the lack of power, since it does move
the object from its initial position. Nonetheless, the object is moving in a ran-
dom path. Furthermore, it might be locked in local attractors that will not
coincide with the intended target. Hence, the use of multiple ‘cilia’ is necessary
to produce manipulation, but random ‘beating’, hence signalling, does not create
controllable behaviour.

(a) (b)

Fig. 6. Object trajectory for random and CA metachronal wave control signal. Initially
the object is placed in coordinates (4,4) in this experiment.
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Finally, the CA excitable/metachronal wave both moves the object and
reaches the intended target. The synchronised movement of the motors create
the collaborative behaviour that natural cilia create. Hence, this type of control
signalling can create controllable collaborative behaviour.

In order to demonstrate the generalisation of the proposed method, in Fig. 6
the trajectory paths of the object from a different location are depicted. As can
be easily noted, the random force-field, Fig. 6(a), exhibits the same random/local
attractor behaviour, while the CA metachronal wave, Fig. 6(b), moves the object
towards the target.

5 Conclusions

Coordination is crucial for the function of biological systems. There is a great
deal of research being done in order to unravel the process with which systems of
multiple agents are communicating and collaborating, like the case of cilia in the
Paramecium. One of the most prominent explanations is the use of metachronal
waves to co-ordinate the ciliate movements.

With this work we demonstrated a method to replicate the metachronal waves
of cilia utilising reaction-diffusion models of CA. We demonstrated how excita-
tion waves travelling in the CA lattice can phenomenologically model waves in
cilia arrays and how this waves can be used as signals to control a prototype
actuators array, a smart surface.

Using these metachronal waves in the CA medium the actuators exhibited a
controlled collaborative behaviour. The ability to succeed in a simple manipula-
tion task, has been demonstrated through a set of experiments. The metachronal
wave control signals were compared with single actuator activation, lacking suf-
ficient force, and random control signalling, lacking controllable manipulation.

Future work could involve developing machine learning and evolutionary com-
puting approaches to investigate the possible collaborative behaviour of the sys-
tem. Hence, the solutions to the optimal cooperation method can emerge by the
analysis of the potential solution space. Furthermore, a consistent understanding
of the dynamics of the cooperative behaviour must be investigated. This will be
achieved by developing further the vortex modelling for the actuators. Also, a
connection of the modelled behaviour with the hardware described in [13] will
prove the suitability of the approach under real-world conditions. Furthermore,
the potential of the proposed method to be used as a generic controller for other
system should be investigated. Especially as a solution for scalability issues in
multi-agent systems, since the metachronal CA-generated wave can inherently
scale without increasing the complexity of the underlying hardware.



270 I. Georgilas et al.

References

[1] Adamatzky, A.: Computing in non-linear media and automata collectives.
Institute of Physics Publishing (2001)

[2] Aiello, E., Sleigh, M.A.: The metachronal wave of lateral cilia of mytilus edulis.
The Journal of Cell Biology 54(3), 493–506 (1972)

[3] Barr, D.R., Dudek, P.: Apron: A cellular processor array simulation and hardware
design tool. EURASIP Journal on Advances in Signal Processing, 9 (2009)

[4] Bohringer, K.F., Donald, B.R., Mihailovich, R., MacDonald, N.C.: Sensorless ma-
nipulation using massively parallel microfabricated actuator arrays. In: Proceed-
ings of the 1994 IEEE International Conference on Robotics and Automation, pp.
826–833. IEEE (1994)

[5] Bohringer, K.F., Bhatt, V., Donald, B., Goldberg, K.: Algorithms for sensorless
manipulation using a vibrating surface. Algorithmica 26(3-4), 389–429 (2000)

[6] Chen, D., Norris, D., Ventikos, Y.: The active and passive ciliary motion in the em-
bryo node: A computational fluid dynamics model. Journal of Biomechanics 42(3),
210–216 (2009),
http://www.sciencedirect.com/science/article/pii/S0021929008005472,
doi:10.1016/j.jbiomech.2008.10.040

[7] Christensen, S.T., Pedersen, L.B., Schneider, L., Satir, P.: Sensory cilia and inte-
gration of signal transduction in human health and disease. Traffic 8(2), 97–109
(2007)

[8] Delettre, A., Laurent, G., Le Fort-Piat, N.: 2-dof contactless distributed manip-
ulation using superposition of induced air flows. In: 2011 IEEE/RSJ Int. Conf.
Intelligent Robots and Systems, IROS 2011, San Francisco, CA, pp. 5121–5126
(2011), doi:10.1109/IROS.2011.6048251

[9] Ferber, J.: Multi-agent systems: an introduction to distributed artificial intelli-
gence, vol. 1. Addison-Wesley, Reading (1999)

[10] Fujita, H., Ataka, M.: System configuration and fabrication technology for dis-
tributed mems. In: 1st Worksh. Hardw. Softw. Impl. Contr. Distr. MEMS, dMEMS
2010, Besancon, pp. 1–5 (2010)

[11] Gauger, E.M., Downton, M.T., Stark, H.: Fluid transport at low reynolds number
with magnetically actuated artificial cilia. The European Physical Journal E 28(2),
231–242 (2009)

[12] Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating objects with gliders in
cellular automata. In: 2012 IEEE International Conference on Automation Science
and Engineering (CASE), pp. 936–941. IEEE (2012)

[13] Georgilas, I., Adamatzky, A., Melhuish, C.: Towards an intelligent distributed
conveyor. In: Herrmann, G., Studley, M., Pearson, M., Conn, A., Melhuish, C.,
Witkowski, M., Kim, J.-H., Vadakkepat, P. (eds.) TAROS-FIRA 2012. LNCS,
vol. 7429, pp. 457–458. Springer, Heidelberg (2012)

[14] Georgilas, I., Adamatzky, A., Melhuish, C.: Manipulating with excitations: Waves
or gliders? In: Workshop Notes of the ICRA Workshop in Unconventional Ap-
proaches to Robotics, Automation and Control Inspired by Nature, Karlruhe,
International Conference in Robotics and Automation, ICRA (2013)

[15] Guirao, B., Joanny, J.F.: Spontaneous creation of macroscopic flow and
metachronal waves in an array of cilia. Biophysical Journal 92(6), 1900–1917
(2007)
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Abstract. The paper proposes a new approach for Vehicle Routing
Problem with Time Windows, which integrates the asynchronous team
paradigm with the island-based evolutionary algorithm concept. The pro-
cess of solving the problem is carried-out by the set of agents, each rep-
resenting a heuristic algorithm, operating on population of individuals
(solutions) stored in the common sharable memory. Agents are grouped
in teams working on islands. Each team of agents periodically commu-
nicates with other teams by sharing a promising results. Computational
experiment confirmed effectiveness of the proposed approach.

Keywords: asynchronous teams, multi-agent systems, island-based
evolutionary algorithm, cooperative problem solving, vehicle routing
problem with time windows.

1 Introduction

Vehicle Routing Problems (VRPs) class consists of the family of problems where
a set of customer requests has to be served by the set of available vehicles in
order to minimize (or maximize) a given goal function (typicaly reflecting the
cost), and satisfying several customers and vehicles constraints. Because of their
practical importance, VRPs have attracted a lot of attention during recent years
[13] and the field is still an active field of research.

Among the approaches proposed for solving difficult optimization problems
including VRP, special interest of researchers and practitioners is focused on
hybridization of various methods which are able to produce a synergetic effect
while solving instances of the problem. Different kinds of methods, forms of
combining them into the effective problem-solving strategies, and technological
advances, where jointly used, may offer effective tools for solving such problems.

Last years, one of the promising and intensively expanding directions of
research, is the field of agent and multiple-agent systems [26]. A number of
multiple-agent approaches integrated with some nature-inspired methods, pro-
posed to solve different types of optimization problems grows systematicaly. One
of them, where paradigms of the population-based methods, multiple agent sys-
tems and cooperative problem solving have been integrated, is the concept of an
asynchronous team (A-Team), originally introduced in [25].
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The goal of the paper is to propose (and validate) a new cooperative Team
of A-Teams approach for solving instances of the Vehicle Routing Problem with
Time Windows (VRPTW). The idea of Team of A-Teams, introduced in [2]
is to integrate the team of asynchronous agent paradigm [25] with the island-
based genetic algorithm concept [17]. Technicaly the proposed approach is im-
plemented in a multi-agent environment presented in [1] and extended in [2]. Its
main functionality focuses on organizing and conducting the process of search
for the best solution using a set of search procedures (implemented as software
agents) executed in parallel, where each search program is an implementation of
a single-solution method. During such execution, agents representing search pro-
cedures communicate asynchronously with each other but this communication is
performed indirectly via the common, sharable memory (also called warehouse
or pool of solutions). The novelty of the approach presented here is that agents
are grouped in teams working on islands. Each team of agents periodically com-
municates with other teams by sharing a promising results with them.

Team of A-Teams architecture can be also viewed as a cooperative search ap-
proach, where cooperation takes place between software agents within a single
A-Team and/or between A-Teams. In the former case, agents work on results
obtained by another agents, but information is not exchanged directly between
agents but through the common memory containing the population of individ-
uals. The later case involves a periodical exchange of some solutions between
A-Teams belonging to the Team of A-Teams.

The rest of the paper includes the following sections. Section 2 contains the
VRPTW problem formulation. Section 3 provides the background of the asyn-
chronous teams concept. In Section 4 details of the proposed dedicated Teams
of A-Teams designed for solving the VRPTW instances are presented. Section
5 describes the computational experiment and reports on the results. Finally,
Section 6 concludes the paper and suggests directions for future research.

2 Problem Formulation

The Vehicle Routing Problem with Time Windows can be formulated as the
problem of determining optimal routes passing through a given set of loca-
tions (customers) and defined on the undirected graph G = (V,A), where
V = {0, 1, . . . , n, n+ 1} is the set of nodes and A = {(i, j)|i, j ∈ V } is the set of
edges. Nodes 0 and n+1 represent a central depot with a set K = {1, 2, . . . , NV }
of identical vehicles of capacity C. Each node i ∈ V \ {0, n+ 1} denotes a cus-
tomer characterized by a non-negative demand di, and a service time si at the
customer i. It is assumed that d0 = dn+1 = 0, and s0 = sn+1 = 0.

Moreover, with each customer i ∈ V , a time window [ai, bi] wherein the cus-
tomer has to be supplied, is associated. Here ai is the earliest possible departure
(ready time), and bi - the latest time the customer request has to be started to
be served. The time window at the depot ([a0, b0] and [an+1, bn+1]) is called the
scheduling horizon, and denoted as [E,L].
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Each link (i, j) ∈ E denotes the shortest path from customer i to j and is
described by the cost cij and time tij of travel from i to j by shortest path
(i, j ∈ V ).

The goal is to minimize the cost of travel needed to supply all customers,
such that each route starts and ends at the depot (0 and n + 1, respectively),
each customer i ∈ V \ {0, n+ 1} is serviced exactly once by a single vehicle, the
total load on any vehicle associated with a given route does not exceed vehicle
capacity, and each customer i ∈ V has to be supplied whithin the time window
[ai, bi] associated with it (the vehicle arriving before the lower limit of the time
window causes additional waiting time on the route).

Following [9], the VRPTW can be formally described as the following multi-
commodity network flow model with time window and capacity constraints,
where two types of variables are involved: binary flow variables xijk ((i, j) ∈
A, k ∈ K), equal to 1, if arc (i, j) is used by vehicle k, and 0 otherwise; and
time variables wik(i ∈ V, k ∈ K), specifying the start of service at node i when
serviced by vehicle k:

min z =
∑

k∈K

∑

(i,j)∈A

cijxijk (1)

subject to

∑

k∈K

∑

j∈Δ+(i)

xijk = 1, i ∈ V \ {0, n+ 1} (2)

∑

j∈Δ+(0)

x0jk = 1, k ∈ K (3)

∑

i∈Δ−(j)

xijk −
∑

i∈Δ+(j)

xjik = 0, k ∈ K, j ∈ V \ {0, n+ 1} (4)

∑

i∈Δ−(n+1)

xi,n+1,k = 1, k ∈ K (5)

xijk(wik + si + tij − wjk) ≤ 0, k ∈ K, (i, j) ∈ A (6)

ai(
∑

j∈Δ+(i)

xijk) ≤ wik ≤ bi(
∑

j∈Δ+(i)

xijk), k ∈ K, i ∈ V \ {0, n+ 1} (7)

E ≤ wik ≤ L, k ∈ K, i ∈ {0, n+ 1} (8)

∑

i∈N

di
∑

j∈Δ+(i)

xijk ≤ C, k ∈ K (9)

wik ≥ 0, k ∈ K, i ∈ V (10)
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xijk ∈ {0, 1}, k ∈ K, (i, j) ∈ A (11)

The objective function (1) expresses the total cost of servicing all customers.
Constraints (2) guarantee the assignment of each customer to exactly one vehicle
route. Constraints (3)-(5) characterize the flow on the path to be followed by
vehicle k. Additionally, constraints (6)-(8) and (9) assure schedule feasibility
with respect to time considerations and capacity aspects, respectively. Finally,
(10)-(11) impose conditions on the variables.

There have been important advances in the development of exact and approx-
imate algorithms for solving VRPTW. Because of NP-hardness of the problem,
most of approaches are of heuristic nature. The general classification of existing
heuristics distinguishes a group of classical approaches (route construction and
local search algorithms) and metaheuristics [7, 8]).

Classical heuristics, like Solomon’s I1 algorithm [22], or various local search
algorithms of Russell [20], Shaw [21], and Bräysy [6] are often relatively simple
and fast but the quality of solutions obtained by them is as a rule not satisfactory.
On the other hand, although metaheuristics require much more computational
resources and have to be fine-tuned in order to fit a particular problem, they
provide much better solutions, especially in case of large-scale instances. Imple-
mentations of Rochat and Taillard [19], and Taillard et al. [24] (tabu search),
Homberger and Gehring [14], and Berger et al. [4] (evolutionary algorithms), and
Gambardella et al. [11] (ant colony optimization approach) are worth mentioning
in this respect.

As mentioned, although there exists a lot of heuristics solving effectively in-
stances of VRPTW (a review of different methods can be found in two papers of
Bräysy and Gendreau [7, 8]), a relatively small number of papers aim at using
methods based on agent paradigm for solving VRPTW (see, for example [5, 16].
This paper attempts to fill this gap by combining asynchronous teams of agents
[25] concept with the island evolutionary algorithm idea [17].

3 Asynchronous Teams

The concept of asynchronous teams (A-Teams) was originally introduced by
Talukdar [25] as a result of integration of paradigms of the population-based
methods and multiple agent systems. According to this concept, an asynchronous
team can be seen as a collection of autonomous agents that cooperate to solve a
problem by dynamically evolving a population of solutions stored in the common
memories. Within an A-Team, each agent encapsulates a particular problem-
solving method (exact or heuristic) along with the methods to decide when
to work, what to work on and how often to work. The role of memories is to
accumulate results or trial solutions forming populations, processed by working
agents. During an A-Team activity, memories are time varying: new members
(solutions improved by agents) are continually added by construction agents,
while older members (worse solutions) are being erased by destruction agents,
so the quality of the solutions gradually evolves over the time.
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An important advantage of applications of the A-Team concept for solving
particular optimization problem, stems from a problem-solving method encap-
sulated in each optimization agent. Although the whole approach belongs to a
group of the population-based methods, each optimizing agent is, in fact, an
implementation of a single-solution method. The general assumptions about A-
Team do not indicate a need of using methods with specific features. Local search
methods, dedicated improvement heuristics, or nature-inspired metaheurisics be-
long to the most frequently used ones.

Besides the set of effective methods (represented by agents), the ground prin-
ciple of asynchronous teams rests on combining these methods, which alone could
be inept for the task, into effective problem-solving organizations, possibly cre-
ating a synergy effect. The observed combined effect of agents teamwork is often
greater than the sum of their separate effects.

The existence, within A-Team, of shared memory, a mechanism of manage-
ment of population of solutions and a set of autonomous agents, provide a basis
for cooperation between agents. As Rachlin et al. [18] observed agents working
within A-Team cooperate by sharing access to populations of candidate solutions.
Solutions obtained by one agent are shared, through the central memory mech-
anism, with other agents, which can exploit these solutions in order to guide the
search through new promising region of the search space, thus increasing chances
for reaching the global optimum. It is expected that such a collective of agents
can produce better solutions than individual members of such collective, thus,
achieving a synergetic effect.

4 Team of A-Teams Approach for Solving the VRPTW

The architecture of the presented approach includes: a set of single A-Teams
(Team of A-Teams) working within a network, and the communication protocol
assuring effective communication between the A-Teams while solving instances
of the problem.

4.1 Single A-Team

Main part of the architecture of the proposed approach is a single A-Team which
consists of (see Figure 1):

– A common, sharable memory, which store a population of individuals (solu-
tions),

– A set of agents (called OptiAgents), representing a single-solution method,
which operate on individuals during the process of search, and an agent
(SolutionManager), which act as an intermediary between common memory
and OptiAgents. It maintains the common memory and is responsible for
managing the population of solutions,

– A population management strategy combining these agents into a single ef-
fective problem-solving strategy.
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Fig. 1. Architecture of the single A-Team

The main functionality of such A-Team is organizing and conducting the
search process, which is organized as a sequence of steps, including initialization
and improvement phases. At first the initial population of solutions is generated
and stored in the memory. Next, at the following computation stages, individ-
uals forming the initial population are successively improved by autonomously
working OptiAgents, each executing an improvement algorithm. The main steps
of the proposed approach, repeated in loop until a stopping criterion is met,
include:

1. Selecting a particular individual (solution) from the common memory by
SolutionManager and sending it to autonomous, independently acting Opti-
Agents, which have already announced their readiness to act,

2. Improvement of solutions by these agents and sending them to back to the
SolutionManager, and

3. Storing back (by SolutionManager) the potentially improved solution re-
turned by OptiAgents in the common memory.

When the stopping criterion is met, the best solution in the population is
taken as the final solution of the given problem instance.

Common Memory. Common sharable memory stores a population of popSize
individuals (solutions). Each individual stored in the memory is represented in a
form that reflects the characteristics of the problem being solved, as well as which
is convenient to handle the calculations performed on it by search procedures. In
Teams of A-Teams approach for VRPTW, each solution is represented as a list
of routes R = (R1, R2, ..., Rm), (m - the number of routes), where each selected
route includes customer requests in the order in which customers are visited by
a single vehicle.

Set of Agents. Each optimizing agent is, in fact, an implementation of a single-
solution method. Using different improvement algorithms executed by different
agents supposedly increases chances for reaching the global optimum. Four kinds
of optimizing agents have been used in a single A-Team (see Table 1). Two of
them are based on crossover evolutionary operator, remaining two are imple-
mentations of tabu search [12], and simulated annealing [10] metaheuristics.
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Table 1. Agents and their characteristics

Agent Description

Cross1 An agent which is implementation of the one-point crossover operator,
where initially one point is randomly selected on each route Ri and Rj ,
dividing these routes on two subroutes. Next, the first subroute of Ri

is connected with the second subroute of Rj , and the first subroute of
Rj is connected with the second subroute of Ri. If the resulting routes
are feasible and the solution has been improved, it is accepted.

Cross2 An implementation of the two-point crossover operator, where initially
two points are selected randomly on each route Ri and Rj , dividing
these routes on three subroutes. Next, the middle parts (between cross-
ing points) of each route are exchanged between considered routes. Only
feasble and improving moves are accepted.

TSSwap An implementation of tabu search metaheuristic, where swap operator
has been used as the move. Up to 2 randomly selected customers from
routes Ri and Rj are swapped. The feasible move giving the greatest
decrease of the goal function value is accepted.

SAMove An implementation of simulated annealing algorithm with move oper-
ator included in it. Here, up to 2 randomly selected customers from Ri

are moved to Rj . The criterion of acceptance of the new solution is the
same as in TSSwap.

All methods operate on two randomly selected routes Ri and Rj ∈ R (i �= j,
and i, j = 1, . . . ,m).

Population Management Strategy. It defines the set of rules determining:
how the inital population is created and how many solutions does it include, how
to choose solutions which are to be sent to the search programs for improvement,
how to merge the improved solutions returned by the search procedures with the
whole population and when to stop the process of searching [1].

In the presented Teams of A-Teams approach for VRPTW, all individuals
including in the initial population of solutions are created using modified ver-
sion of Solomons I1 constructive heuristic for VRPTW [22]. Opposite to the
Solomons approach, where two initialization criteria based on the farthest un-
routed customer and the uncounted customer with the earliest deadline, were
tested, here, creation of each route starts from a randomly selected unrouted
customer. The process of creating the whole initial population is repeated until
popSize individuals have been generated.

The OptiAgent, which anouncess its readiness to act, receives from Solution-
Manager the individuals randomly selected from the population. However once
selected individual can not be selected again until all other individuals have been
tried.

After improvement, returning individual are incorporated into the common
memory by replacing the first found worse individual. If a worse individual can
not be found within a certain number of reviews (where review is understood as



280 D. Barbucha

a search for the worse individual after an improved solution is returned) then
the worst individual in the common memory is replaced by the new, randomly
generated one, representing a feasible solution. In the approach the number of
reviews after which a random solution is generated is set to 5.

The process of solving the instance by a single A-Team stops after a predefined
amount of time (after the preliminary investigation, in the experiment which
has been carried out and described in section 5, it has been decided to stop the
process after 3 minutes).

4.2 Team of A-Teams

The Team of A-Teams allows for a number of single A-Teams to solve the
same task in parallel by exploring different regions of the search space with the
added process of communication between A-Teams (see Figure 2). The process
of communication between A-Teams is supervised by a specialized agent called
MigrationManager and defined by a migration strategy including a number of
parameters [15]: an architecture in which an A-Team receives communication
from another A-Team and sends communication to some other A-Team (mi-
gration topology), number of individuals sent between common memories of A-
Teams in a single cycle (migration size), length of time between migrations
(migration frequency), and a rule determining how the received solution is in-
corporated into a common memory of the receiving A-Team (migration policy).

Fig. 2. Architecture of the Team of A-Teams for VRPTW



Team of A-Teams Approach for VRPTW 281

The migration strategy in the proposed implementation for VRPTW is based
on the randomized topology [15] in which the one source A-Team asks for a new
solution when the current best solution in its common memory has not been
changed by a fixed part of no improvement time gap. The source A-Team sends
appropriate message to the MigrationManager. It chooses randomly one other
target A-Team and asks it for sending its best solution to the source A-Team.
The best solution taken from the source A-Team replaces the worst solution in
the common memory of the target A-Team.

When one of the single A-Teams stops due to its population management
strategy, the whole Team of A-Teams stops its computation, regardless of recent
improvements in best solutions of the others A-Teams. The overall best result
from common memories of all A-Teams in Teams of A-Teams is taken as the
final solution found for the task.

5 Computational Experiment

Computational experiment has been carried out in order to evaluate the ef-
fectiveness of the proposed approach. The experiment aimed at answering the
following question: To what extent (if any) different configurations of teams of
A-Teams, including number of islands, number of optimizing agents, and number
of individuals forming the population, influence computation results? The qual-
ity of the results obtained by the proposed approach has been evaluated using
two measures: the number of vehicles needed to serve all requests, and the total
distance needed to pass by vehicles in order to supply all customers. The lexi-
cographic preference ordering on the number of vehicles, and the total distance
has been used. This means that a solution with fewer routes is preferred over
one with more routes and that in the case of a tie in the number of routes, the
solution with the shortest distance is chosen. The results were compared with
the best known solutions obtained by heuristics and reported in [23].

The experiment involved 56 instances of Solomon [22] (available at [23]) with
100 customers each. The whole set of instances is divided into six groups (R1, R2,
C1, C2, RC1, RC2) including customers with randomly generated coordinates
(R1, R2), clustered coordinates (C1, C2) or both (RC1, RC2). Additionally,
instances belonging to R1, C1, and RC1 have a short scheduling horizon, whereas
the instances from R2, C2 and RC2 have a long scheduling horizon.

All computations have been carried out on PC computer with Intel Core i5-
2540M CPU 2.60 GHz and 8 GB RAM running under MS Windows 7 operating
system.

In the reported experiment four different configurations have been tested,
each defined by the number of A-Teams and the population size of the single A-
Team. It has been assumed that the total number of individuals within Teams
of A-Teams is constant. In the first configuration, the computation has been
performed using a single A-Team with population of 120 individuals (solutions).
In the remaining configurations, the number of A-Teams has been set to 2, 4,
and 8, and the population size of the single A-Team has been set to 60, 30, and
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15, respectively. A single copy of each optimizing agent has been used in each
A-Team.

Results of the experiment are presented in Tab. 2, 3, and 4, separately for
each group of dataset. Each table includes six columns: name of the instance,
best known results (number of vehicles/distance) obtained by heuristics [23],
and results produced by the proposed approach for all tested configurations.
The best results obtained for each instance are emphasized using bold font.

Table 2. Results (min. number of vehicles/distance) obtained by the proposed
approach for all tested configurations (groups R1, R2)

Number of A-Teams (islands)
1 2 4 8

Population size of the single A-Team
Instance Best known 120 60 30 15

R101 19/1645.79 19/1732.86 19/1707.70 19/1735.26 19/1720.13
R102 17/1486.12 17/1606.36 17/1593.42 17/1570.23 17/1564.35
R103 13/1292.68 14/1310.90 14/1281.85 14/1300.49 14/1301.75
R104 9/1007.24 10/1067.12 10/1027.46 10/1044.45 11/1040.83
R105 14/1377.11 15/1447.42 15/1459.15 15/1432.47 14/1500.71
R106 12/1251.98 13/1343.87 13/1289.64 13/1314.73 13/1308.63
R107 10/1104.66 11/1170.33 11/1151.97 11/1122.77 11/1142.04
R108 9/960.88 10/1003.13 10/991.45 10/1000.56 10/1000.92
R109 11/1194.73 12/1262.69 12/1228.03 12/1255.31 12/1220.74
R110 10/1118.59 12/1154.45 12/1148.20 12/1157.47 12/1141.44
R111 10/1096.72 11/1174.21 11/1147.95 11/1152.74 12/1113.61
R112 9/982.14 10/1058.03 10/1011.92 10/1040.85 10/1025.53

R201 4/1252.37 4/1311.02 4/1322.18 4/1324.11 4/1322.14
R202 3/1191.70 4/1130.89 4/1128.37 4/1115.51 4/1122.65
R203 3/939.54 3/984.84 3/994.11 3/988.19 3/990.67
R204 2/825.52 3/796.43 3/778.64 3/790.01 3/792.84
R205 3/994.42 3/1087.50 3/1093.76 3/1064.72 3/1089.78
R206 3/906.14 3/958.78 3/964.83 3/985.53 3/961.19
R207 2/893.33 3/845.57 3/848.80 3/855.77 3/854.15
R208 2/726.75 2/753.70 2/767.52 2/796.53 2/815.64
R209 3/909.16 3/958.00 3/970.02 3/981.70 3/977.19
R210 3/939.34 3/1007.85 3/986.45 3/1036.23 3/1012.19
R211 2/892.71 3/831.57 3/805.04 3/818.85 3/820.94

Analysis of the results allows for several observations. The first one is that the
results produced by the proposed approach are competitive with the best known
approximate solutions produced by heuristics. For most cases, the number of
vehicles needed to serve all requests is the same as in the best known results.
Also, taking into account the distance needed to be covered by all vehicles, the
relative errors from the best solutions do not exceed a few percent. The overall
best results are obtained for instances belonging to group C, where majority of
results is equal to the best known ones.
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Table 3. Results (min. number of vehicles/distance) obtained by the proposed
approach for all tested configurations (groups C1, C2)

Number of A-Teams (islands)
1 2 4 8

Population size of the single A-Team
Instance Best known 120 60 30 15

C101 10/828.94 10/828.94 10/828.94 10/828.94 10/828.94
C102 10/828.94 10/828.94 10/838.37 10/828.94 10/828.94
C103 10/828.06 10/848.31 10/853.48 10/860.31 10/845.32
C104 10/824.78 10/877.28 10/872.09 10/861.71 10/868.00
C105 10/828.94 10/828.94 10/828.94 10/828.94 10/828.94
C106 10/828.94 10/828.94 10/828.94 10/828.94 10/828.94
C107 10/828.94 10/828.94 10/828.94 10/828.94 10/828.94
C108 10/828.94 10/839.07 10/830.60 10/832.67 10/828.94
C109 10/828.94 10/833.83 10/837.68 10/841.96 10/835.06

C201 3/591.56 3/591.56 3/591.56 3/591.56 3/591.56
C202 3/591.56 3/591.56 3/591.56 3/591.56 3/591.56
C203 3/591.17 3/600.21 3/614.71 3/608.39 3/610.99
C204 3/590.60 3/613.07 3/619.60 3/658.00 3/620.49
C205 3/588.88 3/588.88 3/589.89 3/589.89 3/603.64
C206 3/588.49 3/588.49 3/589.51 3/588.49 3/602.18
C207 3/588.29 3/601.19 3/595.34 3/588.29 3/595.26
C208 3/588.32 3/612.87 3/596.06 3/608.30 3/595.85

Table 4. Results (min. number of vehicles/distance) obtained by the proposed
approach for all tested configurations (groups RC1, RC2)

Number of A-Teams (islands)
1 2 4 8

Population size of the single A-Team
Instance Best known 120 60 30 15

RC101 14/1696.94 15/1728.05 15/1703.56 15/1722.02 15/1729.49
RC102 12/1554.75 14/1535.75 13/1594.40 14/1528.88 13/1549.09
RC103 11/1261.67 12/1357.84 12/1323.42 12/1338.77 12/1326.16
RC104 10/1135.48 11/1199.85 10/1208.22 10/1240.12 10/1199.68
RC105 13/1629.44 15/1640.31 15/1608.74 15/1628.93 15/1598.11
RC106 11/1424.73 13/1454.21 13/1429.15 13/1437.53 13/1455.49
RC107 11/1230.48 12/1282.55 12/1289.02 12/1276.98 12/1262.66
RC108 10/1139.82 11/1180.96 11/1193.75 11/1184.25 11/1178.24

RC201 4/1406.91 4/1503.65 4/1509.85 4/1505.59 4/1530.84
RC202 3/1367.09 4/1228.29 4/1257.35 4/1249.07 4/1249.74
RC203 3/1049.62 3/1182.38 3/1172.67 3/1166.21 3/1180.79
RC204 3/798.41 3/831.37 3/873.16 3/851.26 3/853.82
RC205 4/1297.19 4/1399.91 4/1418.68 4/1402.22 4/1431.41
RC206 3/1146.32 3/1303.50 4/1135.37 3/1195.36 3/1281.89
RC207 3/1061.14 4/1053.00 4/1045.70 3/1177.31 4/1063.92
RC208 3/828.14 3/902.15 3/874.22 3/910.45 3/900.86
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The second observation refers to comparison of results produced by a single A-
Team with results obtained by Teams of A-Teams. Fig. 3 presents the percentage
of the instances for which the best results have been obtained by a single A-Team
and by the Teams of A-Teams, grouped by the form of customers’ coordinates
distribution, and the length of the scheduling horizon.

Fig. 3. Percentage of the instances for which the best results have been obtained by
the single A-Team and by Teams of A-Teams, grouped by the form of customers’
coordinates distribution (left), and the length of the scheduling horizon (right)

Through analysis of the results, one can conclude that their quality strongly
depends on the group, the instance belongs to. Taking into account the cus-
tomers’ coordinates distribution (Fig. 3, left), it is easy to see, that only 25%
of all tested instances were solved better by a single A-Team (regardless of the
group of instances), whilst Teams of A-Teams obtained better results for 61% of
instances. The same results have been obtained for remaining 14% of instances.

By focusing observation on scheduling horizon (Fig. 3, right), one can con-
clude, that whereas instances with the short scheduling horizon (R1, C1, and
RC1) have been solved more effectively using Teams of A-Teams (79% of in-
stances), the instances with long scheduling horizon (R2, C2 and RC2) have
been solved with approx. the same effectiveness by both, a single A-Team and
Teams of A-Teams (48% - single A-Team, 41% - Teams of A-Teams, 11% - equal).
Unfortunately, in case of outperformance of Teams of A-Teams, the experiment
does not provide a decisive arguments for answering the question: how many
A-Teams should be used in order to obtain the best results. It can suggests, that
using 2 or 4 A-Teams seems to guarantee better results than using 8 A-Teams.

6 Conclusions

The paper proposes a new approach for Vehicle Routing Problem with Time
Windows, integrating the asynchronous team paradigm with the island-based
evolutionary algorithm concept. The process of solving the problem is carried-
out by a set of agents, each representing a heuristic algorithm, operating on
population of individuals (solutions) stored in the common sharable memory.
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Agents are grouped in teams, which periodically communicates with other by
sharing a promising results.

Computational experiment confirmed effectiveness of the proposed approach
in terms of relative errors from the best known solutions obtained by heuristics.
For most tested instances, Teams of A-Teams outperform a single A-Team. To
what extent this takes place depends however on features of the instance in
question (customers’ distribution and the length of the scheduling horizon).

Future research will focus on considering different migration topologies (ring,
torus, etc.) and investigating their influence on results produced by the proposed
approach. The investigation will be extended to other vehicle routing problems,
like Pickup and Delivery Vehicle Routing Problem, etc. Also, the planned ex-
tended experiment will focus on comparison the proposed approach with other
techniques known from the literature.
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[7] Bräysy, O., Gendreau, M.: Vehicle Routing Problem with Time Windows, Part
I: Route Construction and Local Search Algorithms. Transportation Science 39,
104–118 (2005)
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Abstract. The formation of groups in heterogeneous swarms is impor-
tant whenever there is benefit from cooperation between the members
of a group. Here we investigate decentralized group formation strategies
for a set of moving agents that have to collect resources. The agents are
reconfigurable and can adapt themselves to the needs of their group. It is
assumed that the agents are simple and communication between groups
is limited to sensing each other. Members of one group are able to share
information about their capabilities and movement decision. Also the
decision strategies for integrating a new agent into a group and for the
moving direction of a group are simple. Several versions of the system
are compared experimentally for a dynamic situation where the number
of available resource types changes. It is shown that the costs for re-
configuration influences the optimal strategy for the integration of new
agents into a group. The system can adapt the average group size to the
number of available resource types.

Keywords: agent simulation, group formation, reconfigurable agents,
dynamic environments.

1 Introduction

The problem of decentralized group formation for a heterogeneous set of agents
is studied in this paper. The particular version of the problem studied here is to
dynamically partition a set of moving agents that have different capabilities with
respect to a resource collection task such that a utility function is maximized.
Each set of the partition is called a group. It is known that the general problem
of group formation between agents in order to maximize a utility function is NP
hard and several heuristics have been developed for solving it (for an overview
see [1] or [2]). Important aspects of group formation problems are how much
communication is possible between the agents, how much information is shared
between them and if the problem can be solved by some central agent or has
to be solved decentralized (e.g., [3, 4]). Communication is particularly helpful
for group formation when the agents have different skills and an ideal group
contains different types of agents. But communication is also useful between the
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agents within a group in order to make agreements or compromises, e.g., about
where the group should move to or which task to execute next. Typically, there
exists a trade-off between the benefit of cooperation and its potential costs due
the necessary communication for making compromises.

In this paper decentralized and distributed multi agent systems are investi-
gated where communication is restricted. The task of the agents is to collect
resources of different types, e.g. food and construction material. It is assumed
that collecting resources requires different skills of the agents, e.g. cutting, car-
rying, or digging out material. The resources that the movable agents have to
collect are located within an arena and the agents can form groups that col-
lect the resources together. In a previous work [5] we have studied the group
formation problem for a scenario where the number of available resource types
is constant. Here we study a dynamic situation were the number of available
resource types varies over time. Moreover, different from [5] the agents are re-
configurable such that they can adapt their skills to the need of their group. A
simple mutation strategy that is motivated by evolutionary concepts is studied
for the reconfiguration process. We are particularly interested in the problem
whether the agents are able to form groups that can adapt their common skills
and size to the available resource types.

Distributed strategies for the coalition formation problem for a set of hetero-
geneous agents have already been investigated in the literature. The main aim of
[6] was to investigate the computational effort of the distributed group formation
algorithm in relation to the quality of the resulting groups. Similar to our model
an agent was characterized by a vector (a1, . . . , ak) where ar, r ∈ [1 : k] describes
its capability or talent to perform a specific action of type r and the capability
of the group is the joint capability of the agents. Improved algorithms have been
presented in [7]. In [8] an auction process was used for coalition formation with
the aim to make local decisions within the coalition to schedule the execution of
tasks in order to reduce or avoid global communication between agents.

Coalition formation for moving agents has been studied in [9] where the agents
could use global information about all other existing agents and their capabilities.
The agents have to execute a hierarchy of differently located tasks and a task
requires several agents with different capabilities for its execution. Therefore, a
subset of the agents that are located closely to a task and altogether have the
required capabilities can form a coalition and then move to the tasks and execute
it. A self-organized coalition formation scheme for agents that are located within
an arena has been studied in [10]. In this work an agent can form a coalition
with neighbored agents when this is profitable with respect to a payoff function.
It was assumed that a coalition has to pay coordination costs. The focus of [10]
was to investigate how the coalition sizes change with different pay off functions
and different coordination costs. In [11] the agents move in a 2-dimensional
arena in order to form clusters of cooperating agents. Trial and error is used by
the agents to find out which agents to cooperate with and to solve the conflict
between achieving a social optimum in the long term or an individual optimum
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r1 r1 r2 r2 r2 r2 r2 r3 → (ai1, ai2, ai3) = (2, 5, 1)

Fig. 1. The slice model used for the agents configuration in an example state of agent
ai. The number of slices s is set to eight, there are three different types of resources
and therefore three states a slice can obtain.

in the short term. A special application where the agents form coalitions to
traverse unsafe areas after a disaster was studied in [12].

2 Design of the Model

Our model consists of a set of agents A = {a1, . . . , an} and an arena F that
is a two dimensional torus of d × d fields (i.e. the last field in every row and
column is adjacent to the corresponding first field in its row respectively col-
umn). Each agent is located on a field of the arena. An agent can move within
the arena by changing its location from its current field to a neighbored field.
The task of the agents is to collect resources. There exist k different types of
resources and R = {r1, . . . , rk} is the set of resource types. For a field f ∈ F
the amount of resources of type ri that is available on f is denoted by fi. The
agents have different capabilities for collecting the different types of resources.
An agent that is very skilled in collecting a resource of type ri, might be unable
in collecting a resource of type rj , j �= i. However, an agent can recruit other
agents to form a group of agents. For ease of description we assume that a single
agent forms a group of size 1. Agents within a group help each other in collecting
resources by combining their skills. The number of resource types that are avail-
able in the arena and the amount of the different resources on the fields locations
of the resources can change over time and provide a challenging environment for
the agents. Details are described in the following subsections.

2.1 Agents

To describe the capabilities of an agent and their reconfiguration we apply a sim-
ple slice model (similar models are used in the field of reconfigurable hardware).
Each agent has s slices and each slice has one of k possible states. A slice with
state i ∈ [1, k] helps the agent to collect resources of type ri. Thus the number
of slices with state i determines the agents skill to collect resources of type ri.
The initial state of each slice is chosen randomly with uniform distribution from
the k possible states. An agent can change the states of its slices, i.e. the agent
can reconfigure itself. How reconfiguration is done is described in Section 2.3.

If an agent ai is alone, i.e. it is not member of a group of size ≥ 2, then
the amount of resources that it can collect per simulation turn is determined
as described in the following. If aij of the s slices of agent ai are in state j,
i.e. configured for collecting resource type rj , then the agent is able to collect
the fraction aij/s of the available amount fj of resource type rj on the field f
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where ai is located. Thus per simulation turn the agent can collect the amount
(aij/s) ·fj of resource type rj . For agents that are member of a group with more
than one agent the amount of resources that they can collect is described in
Subsection 2.2.

2.2 Groups

An agent is member of exactly one group and all agents of a group are located
on the same field and share a common moving direction. The moving direction
points to one of the eight neighbored fields. A group can increase its size by
recruiting new members. Newly recruited members change their moving direction
into that of the group.

The advantage of group formation lies in the diversity of its members. Here we
assume that the amount of resources that an agent of the group can collect for a
resource type ri per simulation turn is determined by the maximum number of
slices that some member of the group has in state i. Thus the resource capabilities
of each agent in a group equal the capabilities of the best agent in the group for
the corresponding resource type. Clearly, other models for the synergetic effect
of a group would be possible. Yet this specific model that is used here has the
interesting (and for applications realistic) consequence that the positive effect
of group formation fades away when the group becomes too large. Ideally, a
group has a highly qualified member for each resource type that is available.
The performance P (G) of a group G is defined by the total amount of resources
that each member of the group can collect per simulation turn when the group
is on a field f . Formally,

P (G) =
1

s · k
k∑

j=1

max
ai∈G

aij · fj (1)

Observe, that the possible values of P (G) range from 0 to 1, because they are
normalized by the number of slices s and the number of resource types k. The
groups performance also gives the performance of all its member agents.

The movement of a group is inspired by bacterial movement along a light
(phototaxis) or nutrition gradient (chemotaxis). Hence, the movement of a group
depends on its performance gradient that is derived from the difference of the
groups current performance P (G) and the performance that the group would
have when it would move from the current location f to a field f ′ ∈ F that is
neighbored in direction of the movement direction of the group. Formally,

gradient(G, f, f ′) =
1

s · k
k∑

j=0

max
ai∈G

aij(fj − f ′
j) ∈ [−1, 1] (2)

Observe that, −1 ≤ gradient(G, f, f ′) ≤ 1. If the gradient is positive or zero
and no other group is located on f ′ the group moves to f ′. Otherwise the group
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changes its movement direction by turning 45°. The decision to turn clockwise
or counterclockwise is done randomly, unless the group did already make a turn
in the previous simulation turn. In the latter case the group continues to turn
in the same direction as in the simulation turn before.

2.3 Reconfiguration

An agents capability to change the state of its slices, i.e. to reconfigure itself, is
an essential feature of our model. A state change seems particularly promising
when the old state of a slice was not really useful. Therefore, an agent checks
if the resource type for which a slice is configured, i.e. the state of the slice, is
available on the current field of the agent and if there is no other agent in its
group that has a higher capability for collecting the respective resource type. If
neither of these two cases hold the state of the slice does not increase the groups
performance P (G). Therefore, the slice is called idle during that simulation turn.
In the special case that more than one agent has a maximum number of slices
in state i for a resource type ri then for one of these agents that is chosen
randomly the slices with state i are not idle whereas for the other agents the
slices with state i are idle. A state change of an idle slices can at worst keep the
groups performance at the same level. Clearly, a reconfiguration, i.e. the change
of the state of a slice, cannot come for free. Therefore, it is assumed here that a
reconfiguring agent is able to collect only a certain percentage of the resources
as it would otherwise collect during the simulation turn.

Inspired by evolutionary concepts, an agent reconfigures a slice with a certain
probability to a randomly chosen new state. Thus, a reconfiguration can be
considered as a mutation of the agent. The reconfiguration probability for a slice
is defined as follows. Initially the reconfiguration probability for a slice is zero.
In every simulation turn where a slice is idle its reconfiguration probability is
increased by adding a value μ ∈ [0, 1]. Parameter μ called the mutation strength.
After a reconfiguration of a slice or when an idle slice becomes not idle any more
its reconfiguration probability is reset to zero.

Whenever the size of a group is larger than the number of available resource
types the group contains agents that do not increase the performance of the
group, i.e. removing the agent from the group would not change the performance
of the group. As the group contains at most one agent per resource type that is
the best in collecting that resource type (ties are resolved randomly) there are at
least |G|minus the number of available resource types agents with constantly idle
slices. These agents reconfigure their slices often and lose performance. Then, the
average performance of the group members and hence the overall performance
of the system, i.e. the sum of the performance of all agents, decreases.

2.4 Simulation Phases

Each agent has two phases of activity in every simulation turn: the recruitment
phase and the working phase (see Figure 2). During each turn of a simulation all
agents go first through their recruitment phase. During this phase each group
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recruitment phase
(see Algorithm 1)

move sources

working phase
(see Algorithm 2)

recruitment phase done

for all groups

for all agentsworking phase done

next simulation turn

Fig. 2. Flow diagram of the two phases making up a simulation turn

Algorithm 1. Recruitment Phase

1 for each group G do
2 f ′ is the neighboured field in the current movement direction
3 if there is a single agent ai on f ′, i.e. ai forms a group of size one then
4 draw a random number φ
5 if φ ≤recruitment rate then
6 recruit agent from f ′

recruits a single agent when it is on the neighbor field in the movement direction
with a certain probability called recruitment rate (see Algorithm 1).

Once all agents as part of their group have finished the recruitment phase,
they go through their working phase. The course of action for the working phase
is shown in Algorithm 2 (part of the algorithm concerning the group behavior is
explained later in the following subsection). During the working phase an agent
is able to move within the arena and either collect resources or reconfigure itself
as described before. For its actions during the working phase an agent needs
energy that it takes from its battery. If the battery has not enough energy, the
agent becomes inactive in order to reload its battery. An inactive agent reloads
its battery by a certain rate, until the battery is fully loaded. During this time an
agent is not part of any group. When an agent reactivates it forms a group of its
own, unless its former group did not move throughout the time the agent took
to reload. In the latter case the agent rejoins its old group as they are located
on the same field.

3 Experimental Settings

In order to investigate the general characteristics of the system and the benefit
of the reconfiguration we performed several tests.

Each experimental run lasts 3000 simulation turns and includes n = 100
agents on an arena F of size 50 × 50. The agents are placed initially randomly
onto a free field of the arena, with random moving direction and a random
battery loading state.
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Algorithm 2. Working Phase

1 if inactive then
2 reload battery if full then
3 turn active

4 else
5 lose energy if battery is empty then
6 turn inactive as off next turn

7 determine next field f ′;
8 if group did not move yet then
9 if gradient ≥ 0 and f ′ is empty then

10 move group on f ′

11 else
12 turn group in previous or random turning direction

13 collect resources and reconfigure idle slices

Each type of resource ri ∈ R has one field in the arena where its availability
is maximal (fi = 1). This field is called the source of ri. The availability of
a resource of a certain type on the fields of the arena decreases with growing
distance from the source. Here the distance between two fields f and f ′ is the
Euclidean distance between the center points of the two fields and is denoted
Δ(f, f ′). The function giving the radial decrease of the availability of a resource
type ri, ri ∈ R, on a field f is given by fi = max(0, (radius−Δ(f, ri))/radius)
where radius = 1/

√
2π. Thus the size of the area where ri is available is half the

size of the arena. Fields that are farther away than this radius do not contain
any resource of type ri.

The locations of the source fields for the different resource types are initially
chosen randomly. Let ri(t) ∈ [0 : 50]2 denote the coordinates of the source of
resource type ri ∈ R at time t. In each turn of the simulation the source of
a resource type slightly changes its position. This is achieved by the following
formula using the random numbers ρx, ρy ∈ [0 : 49] and the velocity v = 0.25

ri(t+ 1) =

(

(1− v) · ri(t) + v ·
[

ρx
ρy

])

mod 50 (3)

The number of available resource types influences the optimal group size for
the agents. To infer their adaptability the number of available resource types is
changed after a specific number of simulation turns. This is achieved by reducing
the availability of such a resource type ri on all fields f to 0.

To investigate the influence of the number k of resource types we conducted
two types of experiments. In the first type of experiments a fixed number k = 4
or k = 5 was used. In the second type of experiments k = 10 resource types are
available during the simulation turn interval [1001 : 2000], whereas during the in-
tervals [1 : 1000] and [2001 : 3000] only two of the ten resource types are available.
The different reconfiguration costs that have been tested are {1, 0.9, 0.8, 0.5}.
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Fig. 3. Average performance of the agents for different numbers of resource types and
different recruitment rates; left: system with four resource types; right: system with
five resource types

Recall that the reconfiguration costs denote the percentage of resources that the
agent can collect less during the simulation turn (compared to what it would
have collected without the reconfiguration). The mutation strength μ = 1/20 is
used in the tests. It is not hard to show that this value results in an expected
number of approximately 5.29 simulation turns, before an idle slice changes its
state.

Of special interest is also the recruitment rate of the system. For the tests
recruitment rate values in {0, 0.01, 0.1, 1} were used. Each simulation run was
repeated 50 times.

4 Results

In the following we analyze the performance of the agents (defined in Equa-
tion 1) of the tested systems. Different numbers of resource types favor different
systems with different recruitment rates when all resource types are available
(see Figure 3). If there are four or less resources in the system the agents are
fast to adapt themselves to these resources and the price for reconfiguration is
cheap, as an agent needs less turns to switch all its slices to the same state.
The more states a slice can switch into, the lower the probability for the slice to
switch into a specifically desired state (1/k). With five or more resource types
the benefit from the groups fades, because the agents need too much time to
specialize towards one specific resource type still missing in the group. An agent
does have a better performance when it runs by itself, i.e. it forms a group of size
1, and thus reconfigures only if a resource type is not available on the field of its
current location. In general the deviation of the systems performances between
different runs is high. The outliers of the plots show how large the impact of the
random part of the model is.

We can decrease the reconfiguration costs by letting the agent collect a larger
fraction of the resources during the simulation turn where he reconfigures its
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Fig. 4. Average performance of the agents in a systems with a dynamically changing
number of available resource types; the system has ten resource types, but in the
intervals [1 : 1000] and [2001 : 3000] only two are available; reconfiguration costs are 1
(top left), 0.9 (top right), 0.8 (bottom left) or 0.5 (bottom right)

slices instead of nothing. In the following a reconfiguring agent can still collect
0.5, 0.2, 0.1 or 0.0 of the resources it can usually collect in a simulation turn. Thus
the corresponding reconfiguration costs are a fraction of 0.5, 0.8, 0.9, respectively
1 of the resources the agent collects in the respective turn. Throughout these
tests there are ten different types of resources and therefore ten different possible
states for the agents slices. But only in the interval [1001 : 2000] all ten resources
are available. Before and after this time interval only two of the ten resources are
actually available to collect. Thus an agent should reconfigure its slices to one of
the two available resource types during the first and final thousand simulation
turns. Yet this takes a considerable time, as the slices often randomly change
their state into one of the eight states corresponding to the eight unavailable
resources.

In Figure 4 the effects of different reconfiguration costs on the performance
of the agents are shown. With high reconfiguration costs (1 or 0.9) it pays off
to avoid the recruitment of other agents whereas lower reconfiguration costs
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Fig. 5. Stacked histogram of the number of agents in groups of a specific size per
simulation turn; The system has ten resources, but in the intervals [1 : 1000] and
[2001 : 3000] only two are available for collection. The reconfiguration costs are set to
one simulation turn. The recruitment rate is 1.

(0.8 or 0.5) favor high recruitment rates. In the two intermediate systems with
reconfiguration costs 0.8 or 0.9 the worst performing system is neither the one
where groups recruit all agents they meet, nor the system where the groups do
not recruit at all.

The cause for this phenomenon is that with reconfiguration costs of 0.9 the
membership in a group with more than one agent decreases the performance.
Indeed with recruitment rates smaller than one, it seems that the larger the
group is, the worse is the performance. But if the group does recruit every single
agent it meets and increases its size as far as possible the performance increases
again. For a single agent it only pays off to be member of a group if the group
is very large. The group should contain highly specialized agents for most of the
resource types present. That way it collects enough resources in a more or less
parasitic fashion to make up for the reconfiguration costs. If the groups were
allowed to increase their size indefinitely by saturating the system with a large
number of single, recruit-able, agents, such a system will eventually show the
highest performance.

With reconfiguration costs of 0.8 we observe the inverse case. Agents are
more effective by themselves, than when they are member of a small group of
size two or three. In such groups the agents are often forced to reconfigure some
of their slices and lose precious time for collecting resources. Yet the few other
members of the group do not cover a lot of other resource types, or do so with
mediocre capabilities. Thus, the profit of shared capabilities does not pay for the
reconfiguration costs, unless the group has enough specialists.

In Figure 5 the average number of different group sizes over the test runs
is shown for a system with reconfiguration costs 1 and recruitment rate 1. In
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Fig. 6. Stacked histogram of the number of agents in groups of a specific size per
simulation turn; The system has ten resource types, but in the intervals [1 : 1000] and
[2001 : 3000] only two are available for collection. The reconfiguration costs are set to
one simulation turn. The recruitment rate is 0.01.

the beginning half of the agents are in groups with less than five members.
When more resource types become available at simulation turn 1001 the groups
grow considerably until the number of single active agents diminishes. Unable to
recruit more agents, the group sizes stabilize after approximately 500 simulation
turns. Note that inactive agents are not counted to be in groups in this histogram.
Thus only about 90 agents are considered to be in groups at any time.

A smaller recruitment rate yield smaller groups as can be seen in Figure 6.
An agent is expected to recruit about every hundredth agent with a recruitment
rate of 0.01. If there are only two resource types available for collection, the
agents stay mostly by themselves and only about a fifth of the agents share
their group with other agents. The number of single agents decreases with an
increasing number of available resource types.

It is desirable for a group to have more members in environments with many
resource types than in barren regions. Larger groups have more specialists and
can cover the greater spectrum of resource types more effectively. If there are
only two resource types available, groups do not need more than two agents. In
such an environment a group of three agents contains at least one agent with
constantly idle slices. The group sizes in the analyzed systems adapt to the
available number of resources. This phenomenon is a result of the gradient walk
of the agents. The following deeper analysis of the moving behavior gives more
insight on this adaptive behavior.
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Fig. 7. Stacked histogram of the number of movement decisions per simulation turn
by type; A positive gradient results in the groups movement, a negative gradient or a
blocked field leads the group to turn on the same field. A field is blocked if another
group of agents stands on it. The system has ten resource types, but in the intervals
[1 : 1000] and [2001 : 3000] only two are available for collection. The reconfiguration
costs are set to one simulation turn. The recruitment rate is 1 (top) and 0.01 (bottom).
The different scales are caused by the different number of groups.

Figure 7 shows how the different number of resource types influences the gra-
dient perceived by the agents and results in different movement behavior. With
10 resource types groups move less as a result of their movement decision, i.e.
the perceived gradient is negative more frequently. With ten resource types and
the position of their sources chosen randomly it is possible but improbable that
there are fields without any resources of any type at any time. The frequency
of such fields is much higher when eight of the ten sources stop providing their
respective resource type to the environment. The gradient between two such
fields is zero resulting in the groups movement. This allows groups to leave
empty regions of the arena as fast as possible. With ten active sources of ten
different resource types the agents configurations are less specialized, especially
in small groups of one or two agents. The slices do not turn idle as often as
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Fig. 8. Exemplary situation of a collision between a single agent (white) and group of
more than one agent (gray); If the perceived gradient of the larger group is negative, it
detects the single agent and is able to recruit it. Otherwise the groups go their separate
ways.

with less active sources and consequently less available resource types. Groups
are inclined to follow the source of the resource type they can collect the best.
If the source moves into the opposite direction of the groups walking direction,
it needs several turns to get back on the sources tracks all the while facing a
negative gradient. But the gradient is rarely zero.

The agents average velocity, i.e. average number of fields they traverse in one
simulation turn, decreases due to this behavior. The agent then spends many
simulation turns turning instead of moving on to the next field. For a single agent
it is now harder to avoid the recruitment by the groups, if that were its desire.
This phenomenon is based on the actions taking place in case of a collision of
two groups of agents. We only consider the case were a single agents path is
blocked by a group. The two other cases, were two groups of two or more agents
collide, or a groups path is blocked by a single agent result in the same actions
of the agents, whether they remain on the same field or not.

Whenever a single agent can not follow its moving direction because another
group of at least two agents is blocking the way the larger groups action is crucial.
The single agent is unable to recruit, because the other group is too large and
the large group is unable to recruit, because the single agent faces the wrong
direction. If the larger group faces a non-negative gradient it moves on and the
situation passes. But if the group faces a negative gradient it turns around. The
single agent needs at least three simulation turns to leave the neighborhood of
the larger group. This gives the larger groups three simulation turns to detect the
single agent in its neighborhood while it is turning and checking all neighboring
fields for a non-negative gradient. An example of such a situation is given in
Figure 8. The resulting increase of collisions between groups and them turning
away from each other can be seen in Figure 7 as well.
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With ten available resource types much fewer movement decisions are made
compared to the case with only two available resource types. As there are larger
groups during the time with ten available resource types, consequently there are
less groups in total. Each group makes one decision during each simulation turn
that is valid for all group members.

5 Conclusion and Outlook

We have investigated simple decentralized group formation strategies for a het-
erogeneous set of moving and reconfigurable agents that have to collect resources.
Different recruitment rates and reconfiguration costs have been compared exper-
imentally for a dynamic situation where the number of available resource types
changes. We obtained a system that can adapt the group sizes to the number of
available resource types and has a good resource collection performance, if the
reconfiguration costs are chosen appropriately.

Although the group sizes adapt themselves to the available number of resource
types, group formation is not advisable when there are high reconfiguration costs.
The development of a dynamic approach, where the agents can measure their
current performance and react accordingly when they have the possibility to
recruit new agents is our aim for future work.
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Abstract. A hyper-heuristic is a high-level method that incorporates
a set of low-level heuristics to handle classes of problems rather than
solving one problem. In this paper, we propose a choice function hyper-
heuristic (CFH) for the winner determination problem in combinatorial
auctions (WDP). The proposed method is evaluated on various bench-
mark problems, and compared with the well-known Stochastic Local
Search (SLS) for WDP. The experimental study shows that the CFH
algorithm is able to find good solution for the winner allocation com-
pared to the SLS.

Keywords: Winner Determination Problem, Combinatorial Auctions,
Optimization Problems, Hyper-heuristic, Meta-Heuristic, Heuristic,
Stochastic Local Search.

1 Introduction

The combinatorial auctions (CA) is a mechanism that permits to bid on bundles
of items. By using such mechanisms, the bidders can express both complemen-
tarities and substitutabilities of their preferences within bids [15, 22].

Combinatorial auctions have been used in several domains such as economics,
game theory, task allocation in multi-agent systems and in real-world applica-
tions such as the sale of spectrum licenses in America’s Federal Communications
Commissions (FCC)1 auctions.

The optimal winner determination problem (WDP) in combinatorial auctions
is the problem of finding winning bids that maximize the auctioneer’s revenue
under the constraint that each item can be allocated to at most one bidder. The
WDP is known to be an NP-Complete [9, 17].

In this work, we propose a hyper-heuristic approach for WDP.
A hyper-heuristic is a high-level method that incorporates a set of low-level

heuristics to handle classes of problems rather than solving one problem. The
hyper-heuristic method permits to select automatically and during the search

1 http://wireless.fcc.gov/auctions
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process the heuristic that should be applied for finding good quality solutions and
avoiding search stagnation. The low-level heuristics can be either constructive
or perturbative heuristics.

The constructive hyper-heuristic that uses a set of constructive heuristics
starts with an empty solution and tries to complete it at each step while the
perturbative hyper-heuristic starts with a complete initial solution and tries to
find better ones from it. In general, a hyper-heuristic functions as follow: Given
an instance of problem, the high level method used a certain selection or choice
function strategies to choose the adequate low-level heuristic at any given time.

Several works have been done on hyper-heuristics. Some researchers were in-
terested in methods permitting to generate the low-level heuristics for the hyper-
heuristic. These methods are based generally on genetic programming [6–8].

On the other hand, several works focused on the methods of selection of the
low-level heuristics of a hyper-heuristic. We cite choice function and random
strategies. For more detail on hyper-heuristics and the different strategies pro-
posed in the literature, the reader can refer to [8].

In this paper, we develop a choice function hyper-heuristic for the WDP.
The rest of the paper is organized as follows. The second section gives a

background on the WDP problem. The third section presents our contribution
for the WDP. The implementation and some numerical results are given in the
fourth section. Finally, the fifth section concludes the work.

2 Background

In this work, we are interested in the optimal winner determination problem
(WDP) in combinatorial auctions. The problem can be stated as follows:

Let’s consider a set of m items, M = 1, 2 . . .m to be auctioned and a set of n
bids, B = B1, B2 . . . Bn submitted by n buyers where each bid can cover a set
of items, Sk  M , and result in a profit to the supplier, Pk ! 0, k ∈ 1, 2 . . . n,
if the bid Bk is accepted. Further, let Xk = 1 if bid Bk is accepted (a winning
bid) and Xk = 0 otherwise (a losing bid). The WDP is the problem of finding
winning bids that maximize the auctioneer’s revenue under the constraint that
each item can be allocated to at most one bidder.

The WDP can be given as the following integer program [21]:

Maximize

n∑

k=1

PkXk (1)

Subject to :
∑

k|i∈Sk,Xk∈0,1

Xk ≤ 1, i = 1 . . .m (2)

The objective function (1) maximizes the auctioneer’s revenue which is computed
as the sum of prices of the winning bids. The constraints (2) mean that the item
can be allocated to at most one bidder. The inequality (≤ 1) allows that some
item could be left uncovered. This is due to the free disposal assumption.
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The winner determination problem is a known to be an NP-Complete [9].
Several methods have been proposed to solve it with primary contribution from
Tuomas Sandholm [21].

The main methods proposed for the WDP can be summarized as follows: the
Branch-on-Items (BoI) [18], the Branch on Bids (BoB) [20], and the Combina-
torial Auctions BoB (CABoB) [19]. These methods can find reasonable optimal
allocation with hundreds of items. Other methods are also investigated for the
WDP such as: the CASS (Combinatorial Auction Structural Search) which is a
Branch-and-Bound algorithm proposed by [9]. The authors in [14] proposed CA-
MUS (Combinatorial Auctions Multi-Unit Search) which is a new version of the
CASS for determining the optimal set of bids in general multi-unit combinatorial
auctions. In [16], authors proposed a linear programming method. Anderson et
al. proposed another exact algorithm based on integer programming [1].

Besides these exact algorithms, inexact methods are studied for the WDP.
Among them, we cite Hybrid Simulated Annealing SAGII [10, 11], Casanova
[12], Stochastic local search [5], Memetic algorithm [3] and Deferential
Evolution [4].

3 The Proposed Choice Function Hyper-heuristic for the
WDP

In the following we start with the main components of the proposed approach:
the solution representation, the random key encoding strategy used to generate
initial solutions and the objective function used to measure the quality of solu-
tions. Then, we give the five low-level heuristics used by the Choice Function
Hyper-heuristic.

3.1 The Solution Representation

A solution for the WDP is an allocation A which can be represented by a Vector
with a variable length. Each of whose components Ai receives the winning bid
number.

3.2 The Random Key Encoding

The initial solution is generated at random by using the strategy of the random
key encoding (RK) introduced by Bean [2] and used mainly for ordering and
scheduling problems. The RK encoding mechanism permits to generate and ma-
nipulate only feasible solutions. The Random Key Encoding operates as follows:
we generate n real numbers sequenced by an r order, where n is the number
of bids and the r order is a permutation of keys values. Initially we start with
an empty allocation. Then we select the bid having the highest order value to
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include in the allocation. Secondly, the bid having the second-highest order value
is accepted if its acceptance with accepted bid currently in the allocation verifies
the constraint that means that for any good i, the sum of units of i over all
the winning bids in the current allocation does not exceed mui, otherwise it is
discarded. The process continues until having examined the n bids. We obtain
a subset of bids that can be a feasible solution to the WDP.

3.3 The Objective Function

The objective function permits to measure the quality of an allocation of winning
bids. The objective function is equal to the overall price of the winning bids of
the allocation A = {B1, B2, . . . , BL}.

F (A) =

L∑

i=1

Price(Bi) =

L∑

i=1

Pi (3)

where L is the number of element of the allocation A.

3.4 The Conflict Graph

To ensure feasibility of allocations during the heuristic search process, we have
created a conflict graph where bids are vertices and edges connect bids that
cannot be accepted together. This graph permits to detect directly the conflict
bids that share a good. According to this graph we can ensure and maintain the
feasibility of our allocations.

3.5 The Five Low-Level Heuristics for WDP

The Heuristic h1. This heuristic h1 is a local search method which starts with
a solution X . Then it selects randomly from the current solution X a bid B1.
We choose after that a new bid not in X that is not in conflict with B1 to be
added in the current solution X . All conflicting bids that can be occurred in the
current allocation are removed to maintain the feasible allocation. The process
is iterated for a certain number of iterations in the hope to improve the quality
of the solution X .

The Heuristic h2. The mechanism used in the heuristic h2 is the combination
of the currently best solution with a current solution created according to the
conflict graph. The resulting solution is mutated and then enhanced by using a
local search method.

The Heuristic h3. The heuristic h3 is a one iteration of the well-known stochas-
tic local search method (SLS). The heuristic h3 is an iterative approach that
starts with the best current allocation A. Then, it performs a certain number of
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local steps that consists in selecting a bid to be added in the current allocation
A and in removing all conflicting bids that can be occurred in the current allo-
cation. The bid to be accepted is selected according to one of the two following
criteria:

1. The first criterion consists in choosing the bid in a random way with a fixed
probability wp > 0.

2. The second criterion consists in choosing the best bid (the one maximizing
the auctioneer’s revenue when it is selected) to be accepted.

The Heuristic h4. In the heuristic h4, the mutation operator is applied on the
current solution. The mutation is done with a certain probability called mutation
rate. The resulting solution is improved by using a local search method.

The Heuristic h5. In the heuristic h5, we combine the best solution with a new
solution generated randomly according to the key encoding strategy. As done in
heuristic h4, the resulting solution is improved by using a local search method.

3.6 The Choice Function Hyper-heuristic for WDP

The Choice Function hyper-heuristic consists of a selection method called Choice
Function as well as a method of acceptance of solutions. The acceptance method
validates only the new solutions that improve the current ones.

We note that Choice function is a score-based technique which assigns a weight
to each low-level heuristic. Indeed, this technique allows us to measure the ef-
fectiveness of a low-level heuristic to decide which one should be selected for
the next execution. This technique is based on three parameters which are: the
CPU time consumed by an heuristic during the search process, the quality of
the solution, and the time elapsed since the low level heuristic had been called.

In this work, we have used the same Choice Function defined in [8] and given
as follows:

∀i, g1(hi) =
∑

n α
n−1 In(hi)

Tn(hi)

∀i, g2(hID, hi) =
∑

n β
n−1 In((hID,hi)

Tn(hID,hi)

∀i, g3(hi) = elapsedT ime(hi)
∀i, score(hi) = αg1(hi) + βg2(hID, hi) + δg3(hi)
α, β ∈ [0, 1], δ ∈ R.

where hi is a low-level heuristic and hID is the last low-level heuristic recently
launched. α, β and δ values are fixed empirically.

The CFH method is sketched in Algorithm 1.
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Algorithm 1. The CFH method.

Require: a WDP instance, a set of low-level heuristics, the choice function :
HBN, α, β, δ, maxiter

Ensure: an allocation S
1: Generate an initial solution S according to RK.
2: Evaluate , the quality of the solution S
3: S = S∗ ; F∗ = F ; // F* is the quality of the best solution S* found
4: for I = 1 to maxiter do
5: For each heuristic, calculate its score by using thechoice function HBN
6: Select the heuristic hi having the highest score.
7: Apply the heuristic hi on S to obtain new solution S with a quality F //

solution acceptation method.
8: if (f(S)> f(S*)) then
9: S* = S; F*=F

10: end if
11: end for
12: return the best allocation found.

4 Experiments

To show the effectiveness of the proposed approach we compared it with the
stochastic local search [5] which we have implemented in order to do a fair
comparison.

The C programming language is used to implement the proposed approaches
for the WDP. The source codes are run on Intel COREI7, 8GB of RAM.

The adjustment of the different parameters is fixed by an experimental study.
The CFH parameters are fixed as follows: the maximum number of iterations

= 500 000, α = 0.9, β = 0.1 and δ = 1.5.
The SLS parameters are: the maximum number of iterations = 1000000 and

wp =0.3.

4.1 Benchmarks

In this study, we used realistic data of various sizes consisting of up to 1500 items
and 1500 bids provided by Lau and Goh [13]. These data sets allow for several
factors such as a pricing factor, bidder preference factor and a fairness factors
in distributing items among bids. We noted that CPLEX was unable to solve
these problems within reasonable time[10, 11]. These instances can be divided
into five different groups of problems where each group contains 100 instances,
m is the number of items and n is the number of bids as following.

- G1: 100 instances from in101 to in200: m=500, n=1000.
- G2: 100 instances from in201 to in300: m=1000, n=1000.
- G3: 100 instances from in401 to in500: m=1000, n=500.
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- G4: 100 instances from in501 to in600: m=1000, n=1500.
- G5: 100 instances from in601 to in700: m=1500, n=1500.

The input format is:
m n following n lines. The first number of each line i is the profit of bid i,
following a number of integers, which are the items covered by the bid i.

4.2 A Comparison between CFH and SLS

Due to the non-deterministic nature of CFH and SLS algorithms, 10 runs have
been considered for each instance and for each algorithm. The average and best
results found by CFH are reported and compared with the best results found by
SLS.

We give the comparative histograms in Fig. 1 to 5 to show the effectiveness
of CFH in reaching good quality solutions on several instances of the 5 different
groups of problems compared to SLS for the WDP.

We compared both the average and the best results found by CFH with the
best results found by SLS. The CFH method succeeds in finding good results for
all the checked instances. The average solutions found by CFH are better than
the best ones found by SLS for almost the instances. In some cases, the best
results found by SLS are better than the average solutions found by CFH.

When we compared the best results found by SLS and CFH, we remarked
that CFH surpassed SLS on all the tested instances.

Fig. 1 to 5 show clearly the effectiveness of the proposed hyper-heuristic in
finding good solutions to the WDP for all the checked instances.

Fig. 1. CFH.vs. SLS on some instances from Group 1
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Fig. 2. CFH.vs. SLS on some instances from Group 2

Fig. 3. CFH.vs. SLS on some instances from Group 3

We can conclude that CFH is much better than SLS on almost the tested
instances. The effectiveness of the CFH method is due to the good choice function
which permits to select adequate heuristics for the search process.
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Fig. 4. CFH.vs. SLS on some instances from Group 4

Fig. 5. CFH.vs. SLS on some instances from Group 5

4.3 Further Comparison with SLS

In this section, we compared CFH and SLS for the 500 test instances with the 5
different problem sizes. Each method computed the arithmetic average solution
of the 100 instances in each group denoted μ. For each group of 100 instances,
10 runs have been considered.
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Table 1 shows the numerical results found by CFH and SLS methods for the
five groups of problems where μaverage corresponds to the average value of μ of
the 10 runs for each group obtained by the CFH method and timeaverage is the
average time of the method in second.

The column μbest of Table 1 gives the best value of μ of the 10 runs for
each group, the column timebest is the needed time in second to obtain the best
solution and Imp is (μCFH - μSLS)/ μCFH which represents the improvement in
results of CFH in comparison to SLS.

Table 1. CFH.vs. SLS

CFH SLS
Average of 10 runs Best of 10 runs Best of 10 runs Imp%

Test Set timeaverage μaverage timebest μbest timebest μbest

REL-500-1000 32.06 66733.65 32.98 67407.44 30.49 66460.99 1.40
REL-1000-500 9.69 73137.22 9.00 73854.63 9.07 73541.06 0.42
REL-1000-1000 23.19 84147.87 25.23 84979.35 20.28 84108.96 1.02
REL-1000-1500 22.88 80414.73 22.41 80940.16 22.61 79975.69 1.19
REL-1500-1500 25.46 101071.41 24.99 101530.07 25.20 100828.27 0.69

When we compared the average results found by CFH with the best results
of SLS, we remarked that CFH is better than SLS on the REL-500- 1000, REL-
1000-1000, REL-1000-1500 and REL-1500-1500 groups of problems. For REL-
1000-500 there is a slight difference between the two methods.

When, we examined the best results found by both CFH and SLS, we see
clearly the superiority of CFH in finding good results for the five groups of
problems.

As shown in Table 1, the CFH performs better than SLS on all the five
groups of instances. It finds better solutions in reasonable CPU time on all the
five checked benchmarks. Table 1 shows that CFH always gives a 0.42 to 1.40
percent improvement in results in comparison to SLS.

5 Conclusion

In this paper, we proposed a choice function hyper-heuristic for the winner de-
termination problem in combinatorial auctions. The proposed method is imple-
mented and tested on five groups of well-known benchmarks. According to the
experimental study, the choice function hyper-heuristic was shown great per-
formance and effectiveness in solving WDP. The results are very competitive.
We plan to validate the proposed approach on other complex problems such
Maximum satifiability (MAX-SAT), travelling tournament problem (TTP) and
frequency assignment problem (FAP)in GSM networks.
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Abstract. The constraint satisfaction problem (CSP) is a generic prob-
lem with many applications in different areas of artificial intelligence and
operational research. When solving a CSP, the order in which the vari-
ables are selected to be instantiated has a tremendous impact in the cost
of finding a solution. In this paper we explore a novel type of heuristic
that combines different features that describe the current state of the
instance to decide which variable to instantiate next. A generational ge-
netic algorithm is used to automatically tune the parameters used by
these new heuristics. This paper contributes to the development of new
heuristics that can be either very specialized to one class of instances,
or general enough to deal with different classes of instances with an
acceptable performance.

Keywords: Constraint Satisfaction, Heuristics, Genetic Algorithms.

1 Introduction

A CSP is defined by a set of variables X , where each variable is associated a
domain D of values subject to a set of constraints C [39]. The goal is to find a
consistent assignment of values to variables in such a way that all constraints
are satisfied, or to show that a consistent assignment does not exist. There
is a wide range of theoretical and practical applications of CSPs that include
scheduling, frequency assignment, micro-controller selection and pin assignment,
among others (see for example [13] and [3]).

In CSPs, the selection of the next variable to instantiate determines the way
the solution space is explored. Different orderings for instantiation of the vari-
ables produce different exploration patterns, and different patterns have differ-
ent costs1. Then, if we decide correctly, we can find a solution which cost is

1 In this research, we refer to the cost of finding a solution, not the cost of the solution
itself. All the solutions to one instance are equally valid because the problem is
treated as a combinatorial one. The cost of the search can be measured in terms of
time, expanded nodes or consistency checks, to mention some.
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smaller than the others. The general idea in this investigation is to describe
a methodology to automatically produce variable ordering heuristics based on
the combination of the criteria of existing ones. The approach produces a linear
combination of the features that describe the variables within a CSP instance
and uses that combination to rank each variable and decide the next one to be
instantiated.

This paper is organized as follows. Section 2 presents a brief survey of works
relevant to this research. In Sec. 3 some important heuristics and the features
they use to order the variables are discussed. The methodology proposed is
described in detail in Sec. 4. The experimental set up and the main results are
presented in Sec. 5. Finally, the conclusion and future work of this investigation
are discussed in Sec. 4.

2 Background

In the last years we have witnessed a rapid growth of developments oriented to
improve how heuristics work. Two trends are clearly identified: methods that
optimize the use of existing heuristics and methods that construct new heuris-
tics. Regarding the methods that optimize the use of existing heuristics they
produce a mapping between the states of the problem and a feasible heuris-
tic. These methodologies maintain a set of heuristics and then, as the problem
changes, decide which heuristic to apply. Examples of these methodologies in-
clude dynamic algorithm portfolios like CP-Hydra [28, 31] and ACE [10] and
selective hyper-heuristics [11, 29, 37]. On the other hand, methodologies that
produce new heuristics identify critical parts of existing heuristics to produce
new ones [7, 7]. In this paper we will explore the second trend, the one that
produces new heuristics based on some components of existing ones.

Our approach is related to the automated parameter tuning problem, which
consists in adjusting the parameters of an algorithm without the intervention of
the user [22]. As we will see later, the approach proposed represents heuristics as
functions. These functions are very similar to the ones used by linear regression
(in linear regression these functions are known as hypotheses). Although the rep-
resentation of the functions is similar, the mechanisms to adjust the parameters
are completely different. In the case of linear regression, as a supervised learning
mechanism, it requires training examples. In our approach, we do not need any
training examples, because our model is unsupervised. To perform the tuning of
the parameters, we use a generational genetic algorithm [11, 13].

In the domain of CSPs, one of the first ideas about automatic heuristic gener-
ation was proposed by Minton et al. [16]. Their system, MULTI-TAC, produced
programs that represented heuristics designed for systematic algorithms. More
recently, Bain et al. [2, 3] proposed the use of genetic programming to gener-
ate heuristics for CSPs. The authors proposed a representation that allows the
generation of heuristics by combining individual functions and terminals that
required some existing heuristics to be broken down into their component parts.
The main difference between their work and the one presented in this document
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is the set of features used to construct the heuristics. Bain et al. [2, 3] use fea-
tures that obtain information from the whole instance, while we use information
of each individual variable. Although both approaches rely on evolutionary al-
gorithms to produce heuristics, the representation of the heuristics produced is
completely different for both approaches.

3 Descriptors and Variable Ordering Heuristics

Although heuristics that decide the next variable to instantiate are referred to
as “variable ordering heuristics” in the literature, we do not think this is the
correct term to describe what these heuristics currently do. The term comes
from the first works on CSPs where the variables were ordered before the search
and the order was kept until the search was over. Nowadays, this ‘ordering’ is
performed via a dynamic fashion, where the heuristics decide, at each stage of
the search, which variable will be instantiated next. Then, if a heuristic orders
all the variables at a certain point of the search, it will only use the first one of
the list, because it has no guarantee that once that variable is instantiated, the
ordering at the next stage of the search will remain as it was in the previous
one. The properties of the instances change as the search progresses and so
the decisions made by the heuristics. For this reason, and to help explaining
some concepts in this investigation, we will assume that all the variable ordering
heuristics described in this document return only one variable at the time, the
next one to be instantiated. This assumption simplifies our analysis without loss
of generality.

Require: X = {x0, x1 . . . , xn} , f(x)
[index, value] ← min(f(x0), f(x1), . . . , f(xn)))
return xindex

Fig. 1. Generic heuristic model

In a general way, we can see any variable ordering heuristic as a procedure
that receives a set of uninstantiated variables X and a heuristic function f(x);
and returns the variable to instantiate. Thus, each specific heuristic ranks the
variables in X according to the values returned by f(x), ∀x ∈ X . Depending
on how the heuristic is designed, the heuristic will prefer variables with large
values of f(x) over smaller ones, or vice versa. By changing the sign of the val-
ues returned by f(x) we can automatically invert the preference of the heuristic.
With this idea on mind, we propose the generic heuristic model shown in Fig. 1.
Given the proper function f(x), this generic heuristic interpreter is able to repre-
sent any specialized heuristic. For example, the min-domain heuristic [4] prefers
the variable with the minimum domain size. In our generic heuristic model, the
heuristic function for min-domain is f(x) = dom(x), where dom(x) returns the
domain size of variable x. Thus, min-domain will instantiate first the variable
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that minimizes f(x) among all the uninstantiated variables. If we decide to se-
lect the variable that maximizes f(x), we obtain a different heuristic known as
max-domain but, based also on the domain size. By using the generic heuris-
tic interpreter described in Fig. 1, max-domain should be implemented by the
function f(x) = −dom(x). Similar functions can be defined for other variable
ordering heuristics by using different features. This simple example shows how
we can represent two simple heuristics by using our generic heuristic model and
the proper function f(x). In the case of min-domain and max-domain, f(x) only
considers one feature of the variables, the domain size. To produce more com-
plex heuristics, more information needs to be obtained from the variables. Each
one of these pieces of information is gathered by what we call ‘descriptors’ that
extract information from the variables at a certain point of the search. In the
next lines we will present the descriptors proposed for this investigation.

Constraint Density, p1(x). The constraint density of a variable is defined as the
proportion of constraints with other variables over the maximum number
of bidirectional constraints the variable can participate in. Given a CSP
instance with n variables, the maximum number of bidirectional constraints
for a variable is n−1. No unary constraints are considered for this calculation.
Then, p1(x) is calculated as the degree of the variable, deg(x) (the number of
constraints with other uninstantiated variables) over the maximum number
of possible constraints: p1(x) = deg(x)/(n − 1). If we select the variable
with the largest constraint density we obtain the max-density heuristic (also
known as deg [38]), which prefers the variable involved in the largest number
of constraints.

Constraint Tightness, p2(x). The constraint tightness indicates the proportion
of conflicts within the constraints in which the variable is involved. A conflict
is a pair of values 〈a, b〉 that is not allowed for two variables at the same time.
Should we prefer the variable with the largest constraint tightness we would
obtain the max-tightness heuristic.

Domain size, ˆdom(x). As mentioned before, selecting the variable that mini-
mizes dom(x) gives place to the min-domain heuristic [4]. To restrict the

range to the interval [0, 1], we use ˆdom(x) instead of dom(x), where ˆdom(x)
is defined as the domain size of variable x divided by the maximum domain
size among all the currently uninstantiated variables. This normalization
does not modify the behaviour of the heuristic but improves the automatic
learning process.

Kappa, κ̂(x). Inspired in the κ factor that estimates how restricted a problem
is [20], we propose a similar measurement to be used as a descriptor for each
variable. κ(x) is calculated as:

−∑cj∈Cx
log2(1− pcj)

log2(dom(x))
(1)

where cj is a constraint where x is involved and prohibits a fraction pcj of
tuples in the constraint. If we prefer the variable that maximizes the value of
κ(x), we obtain the max-kappa heuristic [20]. To normalize the values of κ(x)
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we proposed that, for values of κ(x) ≤ 5, the normalized value κ̂(x) = κ(x)/5.
Larger values of κ(x) will produce κ̂(x) = 1. This normalization was inspired
in results obtained from preliminary studies with the descriptors.

Additionally to these heuristics, we have also included the standard heuristic
min-domain/max-density (referred to as dom/deg in [4]). This heuristic became
popular because of its simplicity and because it combines two features by using
a quotient, f(x) = ˆdom(x)/p2(x). We have decided also to include this heuris-
tic for the experimental phase because of the fact that it is indeed, a heuristic
that exploits the use of more than one descriptor to discriminate among vari-
ables. Thus, a total of five variable ordering heuristics have been considered
for this investigation: max-density, max-tightness, min-domain, max-kappa and
min-domain/max-density. In addition to these variable ordering heuristics, the
values are ordered according to the min-conflicts heuristic [26]. Once a variable
is selected for instantiation, the first value to be tried is the one more likely to
success, the one that participates in the fewer conflicts (forbidden pairs of values
between two variables). In all cases, lexical ordering is used to break ties.

4 Automatic Generation of Heuristics

We have observed that different descriptors and their combinations allow us to
produce different heuristics. Nevertheless, it is not clear which descriptor is more
suitable to describe the current problem state and then, make a good decision
about the next variable to instantiate. In this paper we propose a new heuris-
tic representation that uses the linear combination of the descriptors presented
in Sec. 3 to decide which variable to try next. All the descriptors are used to
obtain information about the variables, but a vector of weights determines the
importance of the descriptors to make the decision. Let s(x) be the vector that
contains all the values of the descriptors for variable x at a certain point of the
search, and w a vector of weights (the tuned parameters of the heuristic). Thus,
we define the heuristic function as: f(w, s(x)) = w · s(x). As we can observe,
the values of the vector of weights w are the same for all the variables, regardless
of the instance. What changes at each step of the search are the values of the
vector of descriptors s(x). Each heuristic makes decisions based on its internal
heuristic function and the heuristic generic interpreter that decides how to deal
with the values of the heuristic function. Depending on how the heuristic is de-
signed, it may prefer large or small values of f(x). The representation proposed
for the heuristic function allows both preference schemes. Let us assume that
our generic heuristic model prefers the variables with small values of f(w, s(x)).
Then, min-domain (which prefers the variable with the smallest domain size) will

be defined by w = (1) and s(x) = ( ˆdom(x)). When f(w, s(x)) is calculated,
variables with small domain sizes will return small values, and because the heuris-
tic prefers small values of f(w, s), it will behave exactly as min-domain. On the
contrary, ifw = (−1), variables with large domain sizes will obtain large negative
values from the heuristic function f(w, s(x)) and the heuristic will behave as
max-domain.
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All the weights in w lie in the range [−1, 1]. Also, all the components of
the vector of descriptors s(x) lie in the range, [0, 1). Because of this, given k
descriptors to define the state of the variables, the values f(w, s(x)) can produce
are always in the range (−k, k).

4.1 The Genetic Algorithm

To generate new heuristics, we propose the use of a genetic algorithm to adjust
the values in w according to the set of descriptors provided. In our implementa-
tion, a generational genetic algorithm with memory was used, but other imple-
mentations may be considered in the future (for example a steady state genetic
algorithm or a messy one). The memory is implemented as a mechanism to al-
ways keep the best configuration so far. In this way, if the evolutionary process
removes a good individual from the population, we can always use the memory
to recall that the best configuration was found before but it is no longer part of
the population.

In our genetic algorithm, each individual encodes the values of the vector of
weights w. Then, each individual determines the way in which the descriptors
are to be considered by the heuristic function f(x) and how the heuristic will
behave. The individuals are coded by using binary strings, as in standard genetic
algorithms. This representation allows us to use standard crossover and mutation
operators. Each weight in w is given 10 bits of the individual. As we can see, the
length of the individuals is fixed to 10k given the number of descriptors, k (where
k = 4 in this investigation). Because there are 10 bits to represent each weight
of the descriptor, there are 1024 possible values that can be represented. We
divided the range [−1, 1) in 1024 uniform steps and (each one of 0.001953125)
and according to the value coded in the individual for that weight, the individual
is interpreted. For example, if the string corresponding to one component in w
is 1100110110 (822 in base 10), the decimal value of that weight is calculated
as −1+ (2/1024× 822), which results in -0.6055. When the initial population is
created, all the individuals are randomly initialized (‘0’ and ‘1’ have the same
probability of occurring in the string). The fitness of the individuals is calculated
as the inverse of the cost of using the vector of weightsw coded in that individual
to solve all the instances in a training set. The cost is given in terms of consistency
checks (the number of revisions of the constraints). Thus, the best individual
should minimise the number of consistency checks to solve the whole set. Three
genetic operators are used in this investigation. Tournament selection of size two
is used to select to parents for crossover. Once the parents have been selected,
there is a probability of 0.9 that they are combined. If crossover takes place, the
parents are combined by using a standard one-point crossover operator and the
new individuals are included in the new population. If crossover does not occur,
the parents are incorporated to the new population without any changes. For
mutation, all the bits in the strings have the same probability of being affected,
0.0001. When this is the case, the value of the bit is changed to its complement.
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5 Experiments and Results

In this section we present the instances used and a detailed description of the
experiments conducted. In all cases, the CSP solver used is one implemented in
Java by the authors. For all the experiments, the constraint propagation method
used was AC3 [25], while backjumping [11] was always used as the strategy for
backtracking. All the experiments were conducted on an Intel 8 Core Windows
machine with 16 GB of memory.

5.1 Description of the Instances Used

For this research we have only considered those CSPs in which the domains
are discrete, finite sets and the constraints involve only one or two variables
(binary constraints). Rossi et al. [21] proved that for every general CSP there
is an equivalent binary CSP. Thus, all general CSPs can be reduced into a
binary CSP. All the random instances used in this investigation were produced
with model F. In model F [14], we select uniformly, independently and with
repetitions, a proportion p1 × p2 conflicts out of the m2n(n− 1)/2 possible. We
then generate a constraint between each pair of connected variables in the graph
until we have exactly p1 × n× (n− 1)/2 edges and throw out any conflicts that
are not between connected variables in this graph. Model F has proved to be
one of the most robust random CSPs generators because it is a generalization
of the well studied model E [1]. The values of p1 and p2 used for the generation
of the instances should not be confused with the descriptors p1(x) and p2(x). In
model F, p1 and p2 determine the constraint density and tightness of the instance
generated while our descriptors provide information regarding each variable.

With model F we produced three simple classes of random instances based on
the constraint density (sparse or dense) and tightness (high or low) of the whole
instance. All the instances have 25 variables and 10 values in their domains. The
values of p1 and p2 were randomly selected according to one of the following:
class A (sparse constraints, low tightness) p1 = [0.2, 0.3], p2 = [0.2, 0.3]; class
B (dense constraints, low tightness) p1 = [0.7, 0.8], p2 = [0.2, 0.3] and class C
(dense constraints, high tightness) p1 = [0.7, 0.8], p2 = [0.7, 0.8]. Sets A and B
both contain instances with low tightness while classes B and C contain instances
with dense constraints. For each class we produced two sets, one for training the
new heuristics and the other used exclusively for testing purposes. Each set is
named according to the class of instances it contains. Then, we produced six
instance sets: training sets A, B and C; and test sets A, B and C. Each training
set contains 25 instances while the test sets contain 500 instances each. Thus, a
total of 1575 instances were generated and analysed in this research.

5.2 Generating New Heuristics

For the first experiment we produced three heuristics for each set of instances.
Each run of the genetic algorithm produces a heuristic. Thus, nine runs of the
genetic algorithm were conducted to obtain the nine heuristics analysed in the
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first experiment. For each run, the genetic algorithm ran for 50 generations
with a population size of 30 individuals. The heuristics produced were trained
with instances from one specific class. Table 1 shows the results obtained from
this experiment. Each cell in the table indicates the percentage of consistency
checks saved or added by using each heuristic produced with respect to the best
standard heuristic for each set. For example, HA1, which is the first heuristic
produced by our approach when set A was for training, reduced the number of
consistency checks required by the best heuristic for class A in 5.08% (the max-
density heuristic obtained the best results on class A). The same heuristic, HA1,
when applied to test set A achieved a reduction of 4.52% with respect to the best
heuristic. Negative numbers indicate a reduction (the heuristic produced was
better than the best standard heuristic) and positive numbers indicate additional
consistency checks with respect to the best standard heuristic. The best results
from the heuristics produced by our approach are marked in bold. The best
heuristic for class A was max-density, both on the training and test set. Training
set B was best solved by using min-domain/max-density, but max-kappa showed
the best performance on test set B. Max-kappa obtained the best results for class
C among all the standard heuristics.

Table 1. Performance of each heuristic produced against the best standard heuristic
on each set (positive numbers indicate the percentage of consistency checks saved with
respect to the best heuristic and negative numbers indicate the percentage of additional
consistency checks with respect to the best heuristic)

Training Test
Heuristic Set A Set B Set C Set A Set B Set C

HA1 -5.08% 1056.17% -2.04% -4.52% 381.61% -1.03%
HA2 -5.09% 283.01% -2.04% -4.25% 166.83% -2.18%
HA3 -5.20% 309.27% -2.04% -4.28% 173.00% -2.14%

HB1 7.34% -8.79% 5.46% 6.36% -20.16% 2.06%
HB2 7.83% -10.95% 3.98% 6.51% -19.72% 2.03%
HB3 7.24% -10.28% 0.58% 6.50% -24.33% 1.63%

HC1 19.08% 22.41% -7.40% 15.86% 11.41% -4.70%
HC2 20.76% 21.65% -7.34% 15.75% 16.12% -5.23%
HC3 15.72% 18.09% -7.65% 12.89% -1.52% -4.86%

It is not surprising that heuristics trained for one specific class obtain the
best results on that class in most of the cases, both on training and test sets.
The approach proposed is able to produce very competent heuristics for specific
classes of instances, but fails (in general) to produce heuristics that can be
applied to different classes of instances. These heuristics seem to deal correctly
with unseen instances of the same class that was used for training, but tend
to perform poorly when tested on instances from other classes. In general, the
approach produces very specialized heuristics, suitable for instances of the same
class used for training. This is useful if we have, in advance, some idea about the
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classes of instances that are required to be solved. Thus, we have found evidence
that supports the idea that the approach can be used to train on a small subset
of instances from a specific class and then, use the specialized heuristic to solve
the rest of the instances.

5.3 Generalizing Heuristics

In the previous experiment we found evidence that supports the idea that the
approach produces competent heuristics for specific classes of instances. Now,
the question is how to make them more general and reusable for different classes
of instances.

Heuristics produced by using only one class during the training phase suffer
from being over-specialized for such class. They have problems to generalize
and being reusable for other classes of instances. In this experiment, we deal
with this problem by using combination of classes during the training. In this
way, six composed sets of instances were constructed with the instances defined
in Sec. 5.1. Training sets AB, BC, and ABC; and test sets AB, BC and ABC
were constructed to be used in this new experiment. The sets are formed by the
instances used in the previous experiment. For example, test set BC contains
the instances from training sets B and C. As we mentioned before, some classes
share some properties (for example, classes A and B contain instances with low
tightness constraints). We want to observe if the heuristics trained with these
new sets are better adapted for dealing with instances of different classes. Also,
training set ABC and test set ABC were generated for this experiment. Sets
ABC, contain all the instances used so far. We have the belief that heuristics
trained on this set would be less specialized (less reduction with respect to the
best heuristic, but very consistent among the three classes of instances). As in
the previous experiment, three heuristics were produced for each composed set.

Table 2. Performance of each heuristic produced against the best standard heuristic
on the composed sets (positive numbers indicate the percentage of consistency checks
saved with respect to the best heuristic and negative numbers indicate the percentage
of additional consistency checks with respect to the best heuristic)

Training Test
Heuristic Set AB Set BC Set ABC Set AB Set BC Set ABC

HAB1 -6.49% -4.75% -4.86% -3.15% -2.82% -2.77%
HAB2 -6.68% -5.01% -4.96% -9.85% -7.23% -6.73%
HAB3 -9.96% -6.32% -6.66% 9.81% 6.15% 5.25%

HBC1 -7.12% -5.24% -5.19% -10.05% -7.38% -6.94%
HBC2 -8.23% -5.31% -5.76% 0.90% 0.33% -0.09%
HBC3 -9.71% -5.62% -5.28% -20.86% -13.65% -12.58%

HABC1 -8.85% -5.73% -6.08% -4.39% -3.24% -3.36%
HABC2 -8.87% -5.82% -6.09% -4.97% -3.66% -3.72%
HABC3 -9.63% -5.57% -5.23% -17.87% -11.57% -10.63%
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The results suggest that sets AB (both training and test) are very easy to
solve by most of the heuristics produced when the genetic algorithm uses the
composed training sets as inputs. Only HAB3 and HBC2 fail to generalize on
test set AB, where they do not achieve reductions in the cost when compared
against the best heuristic for the same set.

With the change in the training sets, the approach produces heuristics that,
in general, reduce the cost of the search on all the instances used for training,
regardless of the set used. Nevertheless, when analysed on the test sets, these
heuristics are not always as competent as they were on the training sets (see for
example HAB1, HAB2 and HAB3) The problem with these heuristics is that they
are very specialized for some hard instances in the training sets. For example,
if one heuristic gets specialized for the hardest instances in one of the sets, it
is likely that that heuristic also performs well on a composed set that contains
those instances. But, once we present the heuristic new instances, the heuristic
may be so specialized for the hard instances it has already solved that fails to
solve the new instances.

In order to understand how these heuristics perform, we present a brief anal-
ysis of HBC3 and HABC3. These heuristics obtained the most relevant results on
the composed sets.

HBC3 = −(0.877)p1(x) + (0.410)p2(x) + (0.283) ˆdom(x)− (0.193)κ̂(x)

HABC3 = −(0.994)p1(x) + (0.547)p2(x) + (0.326) ˆdom(x)− (0.232)κ̂(x)
(2)

These heuristics have very similar vectors of weights and then, we expect their
decisions to be similar. HBC3 and HABC3 should be interpreted in the following
way. First, recall that the general heuristic model used in this investigation is
using a minimisation approach. Because it has the largest coefficient, p1(x) is
the most relevant descriptor, followed by p2(x). Because of the differences in the
values of the two most important coefficients (a proportion of 2 to 1), most of the
decisions will be mainly based on the values of p1(x) of the remaining variables.
Nevertheless, the combination of the values of the remaining descriptors makes
these heuristics to behave in a different way than the max-density heuristic.
In a very abstract way (and based only on the signs of the coefficients), these
heuristics will instantiate first the variable involved in the largest number of
constraints, with the fewer conflicts among the constraints where it is involved,
with a small domain and with a large value of κ̂(x). Because these heuristics are
combining the criteria of the single heuristics we expect the combination to be
somehow similar to the decisions made by the single heuristics (see Sec. 3 for
more details). It is interesting to notice that the way to consider the constraint
tightness is inverse to the recommendation of the single and accepted heuristic
(max-tightness prefers the variables with the largest values of this descriptor).
Also, we are presenting a very simple and straight forward interpretation of the
heuristic. The exact interactions between the descriptors –defined by the values
of the weights and not only their signs– is what gives the new heuristics their
strength.
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6 Conclusion and Future Work

This paper describes a methodology to produce heuristics for variable ordering
within CSPs by using components of standard heuristics taken from the liter-
ature. The components of these standard heuristics are the descriptors of the
variables. The approach is able to generate specialized heuristics that reduce the
cost of the search when compared against good quality standard heuristics on
the same instances, but more research is still needed to prove the real advantages
and limits of the approach. The genetic algorithm produces heuristics that per-
form well on unseen instances of the same classes used for training. We observed
that including more diverse instances in the training sets is, in general, a way to
produce more flexible heuristics that are capable of performing well on different
classes of instances.

We have represented the heuristics as general procedures that take two inputs:
the set of uninstantiated variables and a heuristic function. In this investigation,
we used a generic heuristic interpreter for a minimisation problem. One impor-
tant question derives from the use of this interpreter for the heuristic function.
How would the use of a more complex interpreter affect the performance of
the heuristic? Let us assume that the generic heuristic model prefers large val-
ues of f(x) at the beginning of the search and small ones for the last stages.
This slightly modified version of the generic heuristic interpreter can produce
an algorithm that switches from one heuristic to the opposite one without any
other change to the model. We consider this flexibility of the approach another
important contribution of this investigation.

By analysing the results, we have identified a potential drawback in the cur-
rent implementation of the genetic algorithm to update the vector of weights.
The fitness function, as it is currently designed, aims to reduce the cost of a
heuristic on the instances in the training set. This seemed to be the ‘natural’
way to measure the quality of the heuristics. But, this approach tends to produce
over-fitted heuristics for the instances in the training set. The reason is simple:
attempting to reduce the overall cost, the heuristic that best solves the hardest
instances in the training set receives the highest values from the fitness function.
Thus, if there is one hard instance in the training set, the fitness function will
reward competent heuristics for such instance, regardless of their performance
on other instances from the training set that may be easier to solve. The problem
with the fitness function is even more important when we deal with composed
training sets. In general, the use of composed sets facilitates the generalization
of heuristics. But, if there is the case that a small subset of really hard instances
are contained in two or more of the sets that form the composed one, and the
evolutionary process specializes the heuristics for such instances, then we can
expect those heuristics to perform well on the training sets but to fail to gener-
alize to unseen instances. In this case, the heuristics only learn how to solve well
a very small subset of specific hard instances. We consider to change the design
of the fitness function as part of the future work.

Finally, we are interested in extending our results to include real instances to
prove the effectiveness of the model to solve structured instances.
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Abstract. When solving a constraint satisfaction problem by using sys-
tematic algorithms it is needed to expand and explore a search tree to
find a solution. In this work we study both binary and k-way branching
schemes while they interact with various variable ordering heuristics, and
how those interactions affect the cost of finding a solution to different
instances. Both branching schemes have been used in previous investiga-
tions and it is not straight forward to determine the conditions that make
one branching scheme better than the other. But we provide evidence
that, in order to decide, variable ordering heuristics play a major role
in the performance of these branching schemes. This study is intended
to work as a preliminary study to develop hyper-heuristics for branching
schemes in combination with variable ordering heuristics. The final part
of the analysis presents a very simple naive hyper-heuristic that randomly
applies binary and k-way branching as the search progresses in combina-
tion with some well known variable ordering heuristics. The scope of this
paper is to explore the interactions between different variable ordering
heuristics and these two branching schemes, in order to produce some re-
lations between their performance. We expect these relations to be used
in further studies as the basis for more robust hyper-heuristics that take
into consideration the information gathered in this investigation.

Keywords: Constraint Satisfaction, Hyper-heuristics, Branching
Schemes, Variable Ordering Heuristics.

1 Introduction

A constraint satisfaction problem (CSP) is defined by a set of variables X ,
where each variable is associated a domain Dx of values subject to a set of
constraints C [23, 39]. The goal is to find a consistent assignment of values to
variables in such a way that all constraints are satisfied, or to show that such
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consistent assignment does not exist. CSP belong to the NP-Complete class [18]
and there is a wide range of theoretical and practical applications like scheduling,
timetabling, cutting stock, planning, machine vision, temporal reasoning, among
others (see for example [17], [27], [13] and [3]).

Several modern methods to solve CSP exist [14, 37], and solutions are found
by searching systematically through the possible assignments to variables or by
slightly modifying an initial complete and unfeasible solution. In all cases the
solution process is guided by heuristics. It is a common practice to use depth
first search (DFS) to solve CSPs. When using DFS to solve a CSP, every variable
represents a node in the tree and the deeper we go in that tree, the larger the
number of variables that have already been assigned a feasible value. Every time
a variable is instantiated, a consistency check occurs to verify that the current
assignment does not conflict with any of the previous assignments given the
constraints within the instance. When an assignment produces a conflict with
one or more constraints, the instantiation must be undone, and a new value must
be assigned to that variable. When all the feasible values for a variable have been
tried and failed, the value of a previously instantiated variable must be changed
(this is known as backtracking [5]). Backtracking always goes up one single level
in the search tree when a backward move is needed. One of the many ways to
reduce the search space is using constraint propagation, where the idea is to
propagate the effect of one instantiation to the rest of the variables due to the
constraints among them. Thus, every time a variable is instantiated, the values
of the other variables that are not allowed due to the current instantiation are
removed from the respective domains.

The two most used approaches used to expand the search tree are binary
and k-way branching. Binary branching is in fact, a particular case of domain
splitting branching [30] when the pivot is selected to be the first value in the
domain of the selected variable. The performance of domain splitting for different
pivots has not properly been studied and is a topic beyond the scope of this
investigation. Here we will use binary branching instead of domain splitting
because binary branching is easier to explain, more used in practice, and requires
fewer parameters to be tuned.

With k-way branching an instance P is solved as follows. Select a variable x
with domain Dx = {v1, v2, . . . , vm}. For each v ∈ Dx, we restrict P by setting
x = v, and recursively try to solve the remaining instance. P has no solution
if and only if none of the m possible values for variable x produces a feasible
solution given the current instantiated variables. In binary branching, the first
choice point creates two alternatives, x = v1 and x �= v1. The left branch is ex-
plored; if the branch fails, or if all solutions are required, the search backtracks
to the choice point, and the right branch is followed instead. Crucially, the con-
straint x �= v1 is propagated, before a second point is created between x = v2
and x �= v2, and so on.

With binary branching, the subtrees resulting from successive assignments to
a variable are not explored independently; propagating the removal of a value
from the current domain of the variable on the right branch can lead to further
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domain reductions. This propagation affects the search when future values of the
variable are considered. Hence, the order in which values are assigned has more
effect in the search compared to k-way branching [35]. Nevertheless the apparent
difference in the way they work, most of the research performed on CSPs has
used k-way branching, and only a few extra studies on the comparison between
some branching strategies have been reported [2, 22, 30, 36].

In some cases, because of the ordering heuristics used, binary branching ends
up simulating k-way branching [30]. To see why, consider a pure binary back-
tracking search with variable ordering based on the MRV heuristic [21] (a heuris-
tic that selects the variable with the smallest domain size). If we select variable
x because it has the smallest domain size m, the right branch will produce an
instance where x has also the minimum domain size (m−1). Although, this may
be the case, the cost of the search may still be different because of the way the
values are to be removed from the domains. Thus, we need a way to analyse if
these branching schemes produce different search trees or not, and under which
circumstances the differences are statistical significant.

The effect of the value ordering heuristics in binary branching, comparing the
performance to k-way branching was already studied in [34, 36]. According to
those results, binary branching is not, even with the worst value ordering heuris-
tic, worse than k-way branching [34, 36]. Thus, it seems that we should always
prefer binary branching over k-way branching; but this may not be correct. In
this investigation we have explored the other part of the ordering problem in
CSPs, the one related to variable ordering. We provide evidence that there are
cases where the use of one branching scheme is preferable to the other when
used with a specific variable ordering heuristic, but we have found no evidence
that supports that one branching scheme is always better than the other for all
variable ordering heuristics.

The research described in this paper is closely related to the work done by Bal-
afoutis and Stergiou [1] and the one conducted by Lagoudakis and Littman [24].
Balafoutis and Stergiou [1] proposed two adaptive branching heuristics to mod-
ify the behaviour of binary branching once a variable ordering heuristic has been
invoked. Their branching heuristics accept or reject the advise of the variable
ordering heuristics once the right branch is to be evaluated. They considered
some variable ordering heuristics and compared their branching heuristics on
them proving that it is possible to obtain reductions in the cost by modifying
the branching strategy as the search progresses. Lagoudakis and Littman [24] de-
scribed an approach to select branching rules for the Davis-Putnam-Logemann-
Loveland procedure for SAT [12]. The results obtained in [24] suggest that it
is possible to improve traditional search methods by introducing some decision
making and reasoning on top of them, to produce more robust branching rules.

This paper is organized as follows. Section 2 provides information about the
variable ordering heuristics used in this investigation, which along with the
branching scheme, determine the way the tree is expanded and the cost associ-
ated to the search. Later, in Sec. 3 we present the experiments that support the
idea that binary and k-way branching are good for different regions of the search
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space and we explore the idea of producing a simple hyper-heuristic that uses
both branching schemes during the search to analyse its performance. Finally,
in Sec. 4 we present the conclusion and the future work of this investigation.

2 Background

Before moving onto the variable ordering heuristics used in this investigation, we
need to explain how the CSP instances will be characterized in this document.
There are many features that can be used to describe the instances (see for
example [20]) but the most important properties used for this purpose are the
constraint density p1 and the constraint tightness, p2.

The constraint density is a measure of the proportion of constraints within
the instance; the closer the value of p1 to 1, the larger the number of constraints
in the instance. The constraint tightness (p2) represents a proportion of the
conflicts within the constraints. A conflict is a pair of values 〈x, y〉 that is not
allowed for two variables at the same time1. The higher the number of conflicts,
the more unlikely an instance has a solution.

2.1 Variable and Value Ordering Heuristics

This investigation includes a small set of ordering heuristics, four for variable
ordering and one for value ordering. For variable ordering we include Minimum
Remaining Values (MRV) [21], Kappa (K) [20], degree (DEG) [4] and Max-
Conflicts (MXC). For value ordering we use Min-Conflicts (MNC) [26]. In all
cases, the tie breaking strategy used is the lexical ordering of the variables and
values. In the next lines we briefly describe each one of these heuristics.

Minimum Remaining Values (MRV) [21, 32]. MRV selects the variable with the
smaller number of available values in its domain.

Kappa (K) [20]. K selects the variable that minimizes the value of κ of the
remaining subproblem. κ is a measure of constrainedness which serves as
an indicator of the hardness of the instances with respect to their sizes. For
example, instances with κ " 1 have many solutions while instances with
κ# 1 are likely to be unsatisfiable. κ is calculated as follows:

κ =
−∑

c∈Cx
log2(1−pc)

log2(Dx)
(1)

where Dx represents the domain size of variable x, Cx all the constraints
where variable x participates and pc the fraction of unfeasible tuples of values
in constraint c.

Degree (DEG) [16, 38]. DEG prefers the variables connected to the maximum
number of uninstantiated variables (forward degree of the variable).

1 In this investigation we have used conflicts that involve only pairs of values be-
cause we are using binary CSPs. For constraints of arity a, an a-tuple has to be
used. The approach is able to work with constraints of any arity without additional
modifications.
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Max-Conflicts (MXC) is a very simple and fast heuristic, and the main idea
is to select the variable that is involved in the largest number of conflicts
among the constraints in the instance. This instantiation will produce a
subproblem that minimises the number of conflicts among the variables left
to instantiate.

The value ordering heuristic Min-Conflicts (MNC) [26], is one simple heuristic
that prefers the value involved in the minimum number of conflicts. This heuristic
is trying to leave the maximum flexibility for subsequent variable assignments. If
we select the value that is involved in the minimum number of conflicts, we can
suppose that the resulting subproblem will have more solutions than the other
subproblems. This heuristic is the direct implementation of the ‘most promising’
principle for value ordering [19].

2.2 Hyper-heuristics

Hyper-heuristics are motivated with the goal of automating the design of
heuristic methods to solve hard computational search problems [6]. Although
‘hyper-heuristic’ is a relatively new term [10], the idea of automating the de-
sign/selection of heuristics can be traced back to the early 1960’s, when Fisher
and Thompson [15] suggested that combining priority dispatching rules would
produce a superior performance than using any of the rules in isolation. Ac-
cording to Burke et al. [8], hyper-heuristics can be divided into two main cat-
egories: methodologies that select from a fixed set of heuristics and generate
new heuristics. Regarding hyper-heuristics that select among existing heuristics,
they produce a mapping between the states of the problem and a feasible heuris-
tic. These methodologies maintain a set of heuristics and then, as the problem
changes, decide which heuristic to apply. Examples of these methodologies (al-
though not all of them use the term ‘hyper-heuristic’ to refer to their approaches)
include [31],[28],[11] and [29]. On the other hand, hyper-heuristics that produce
heuristics identify critical parts of existing heuristics to create new ones [7]. This
study intends to obtain information about the interactions between branching
schemes and variable ordering heuristics that could be used in the future to
produce hyper-heuristics for branching and variable ordering within CSPs.

3 Experiments and Results

In this section we present the set of experiments conducted during this inves-
tigation. These experiments were designed to observe the behaviour of binary
and k-way branching on different instances and working together with distinct
variable ordering heuristics. The first experiment is designed to identify whether
there are significant differences in the performance of the two branching schemes
in different regions of the search space, when using distinct variable ordering
heuristics. The second experiment explores the impact of the variable order-
ing strategy in the performance of each branching scheme when tested on more
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specific and larger instances. In the final experiment we study the effect of com-
bining the two branching schemes as the search progresses by using a very simple
hyper-heuristic approach.

3.1 Is One Branching Scheme Better Than the Other?

Our first experiment is designed to confirm that there are differences in the
performance of the two branching schemes according to the initial values of p1
and p2 of the instance to solve. For this reason, we produced a grid of random
instances where each instance contains 20 variables, and each variable has 10
values in its domain. Each cell in the grid covers a region of 0.05× 0.05 in the
space p1 × p2 (each grid contains 20× 20 cells). The purpose of such division is
to cover all the space p1× p2 in such a way that we can map the performance of
some regions of the space to one suitable branching scheme given one variable
ordering heuristic. The resolution of the grid is enough to identify these regions
and it can also be explored in an acceptable time.

For each cell, 30 instances were generated with random values of p1 and p2
within the range of the cell. In this way, 12000 instances were generated and
solved for each grid in this experiment. Because four variable ordering heuristics
are analysed in this investigation, four grids were produced and solved. In all
cases, the cost of the search is measured by the number of consistency checks
required to find the first solution or to prove than none exists.

Random model B [33] was used to generate the instances. The random in-
stances are generated in two stages. In the first stage, a constraint graph G with
n nodes is randomly constructed and then, in the second stage, the incompat-
ibility graph C is formed by randomly selecting a set of edges (incompatible
pairs of values) for each edge (constraint) in G. The parameter p1 determines
how many constraints exist in the CSP instance and corresponds to the con-
straint density, whereas p2 determines how restrictive the constraints are, and
corresponds to constraint tightness of the resulting instance. In model B, there
should be exactly p1n(n−1)/2 constraints (rounded to the nearest integer), and
for each pair of constrained variables, the number of inconsistent pairs of values
should be exactly m2p2 (where m is the uniform domain size of the variables).
This generation model was selected because it provided the flexibility to produce
instances in the exact region of the space p1 × p2 where we needed them.

Each grid was solved with a distinct variable ordering heuristic. We solved
the 30 instances in each cell in each grid by using binary branching and k-way
branching. MNC was used as value ordering heuristic in all cases. The constraint
propagation method used in all the experiments was AC3 [25]. Then, we statisti-
cally compared the cost of the two branching schemes on each cell in the grid to
observe whether the differences in the performance were statistically significant
or not (the cost is given by the number of consistency checks required by the
search; this is, the number of times the constraints are revised). To compare the
means at each point in the grid we used a bilateral hypothesis test based on a
normal distribution. In each test, we use the null hypothesis H0 : μ2B = μkB
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and the alternative hypothesis H1 : μ2B �= μkB , where μ2B and μkB stand for
the real means of binary branching and k-way branching, respectively.

Figure 1 presents the results of the the statistical test for each variable ordering
heuristic by using the two branching schemes under study. The values of each cell
correspond to the p-values resulting from the test. Thus, the smaller the value,
the stronger the statistical evidence that indicates that both approaches differ in
performance. To be consistent with the statistical notation, the cells with values
below 0.05 confirm the idea that one branching scheme is better than the other
with 5% of significance.

(a) (b)

(c) (d)

Fig. 1. p-values for the statistical test of the two branching schemes under four different
heuristics: (a) MRV, (b) DEG, (c) K and (d) MXC (cells with values below 0.05 indicate
significant statistical difference between both approaches with 5% of significance)

The statistical tests were performed to identify the regions where one branch-
ing scheme was statistically better than the other; not to identify which one was
the best option. For this reason, once we identified the regions where there was
statistical evidence that the means of the two branching schemes were differ-
ent, we conducted new tests to identify which was the better branching scheme



336 J.C. Ortiz-Bayliss, H. Terashima-Maŕın, and S.E. Conant-Pablos

for each region. We found that, in all the cases where the statistical evidence
suggests that the schemes are different, k-way branching obtained the smallest
average cost. We can conclude that, for the cases where statistical evidence was
found that one approach is better than the other, k-way branching is always
better than binary branching on this first experiment.

Trying to understand the differences in the performance of both branching
schemes, we can observe that in general (and regardless of the heuristic used),
the region where unsatisfiable instances take place, k-way branching is a bet-
ter option than binary branching for any of the four variable ordering heuristics.
Even though there is no statistical evidence that supports that binary branching
is better than k-way branching, we observed that there are regions where binary
branching obtains a better mean performance than k-way branching. These re-
gions are located just before the well known transition phase [9]; the region where
the instances abruptly change from being satisfiable to being unsatisfiable. Nev-
ertheless, no statistical evidence was found that these differences are significant.
Also, it is important to mention that, in the region where loose constraints take
place (low values of p1 and p2), both branching schemes obtain the same cost
for most of the instances.

3.2 The Effect on Larger Instances

We have studied the effect of binary and k-way branching when combined with
four variable ordering heuristics in the space p1 × p2. In this experiment we
study the performance of these branching schemes on a different set of instances
taken from the literature. The set contains 10 random instances produced with
model RB [40] (which is a revision of model B). The set includes 10 satisfiable
instances, each one with 30 variables and 15 values in each domain. This in-
stances can be obtained from http://www.cril.univ-artois.fr/~lecoutre/

research/benchmarks/frb30-15.tgz . The idea behind this new experiment is
to focus on a smaller set of larger instances with different features than the ones
used before. Also, it is interesting to observe that in the previous experiment,
k-way branching proved to be a better option for unsatisfiable instances and, in
this case, all the instances have at least one solution.

For these instances, the interactions between variable ordering heuristics and
branching schemes produce interesting behaviours. Only DEG seems to be statis-
tically sensitive to the choice of the branching scheme. For the remaining variable
ordering heuristics, the differences in the performance do not represent statisti-
cal differences with 5% of significance (this time we used a Welch’s test, which
is a hypothesis test based on t-distribution for small samples). These results are
presented by using the box plot in Fig. 2.

The analysis of the medians confirms our conclusions obtained from the anal-
ysis of the means. For MRV, K and MXC, the statistical evidence suggests that
the medians of binary and k-way branching are equal, with 95% of confidence.
This can be concluded because the notches in the box plot overlap. The statisti-
cal evidence for DEG indicates that the medians of the two branching schemes
may not me equal.

http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/frb30-15.tgz
http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/frb30-15.tgz
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Fig. 2. Boxplot of the results obtained by each branching scheme on the set of large
satisfiable instances produced with model RB when combined with each of the four
variable ordering heuristics

Once again, as in the previous experiment, we observed differences in the
performance of the distinct methods which are not statistical significant, but
this does not mean that they may not be significant in practice. For this reason,
and using only the values from the samples, we can conclude that on this set of
instances:

– Binary branching is always better than k-way branching when using MRV.
– When K is used as variable ordering heuristic, binary branching always ob-

tains the lowest costs.
– Binary branching is never worse than k-way branching when using DEG.
– When MXC is used as variable ordering heuristic, four of the 10 instances

are best solved by using binary branching and the remaining ones are solved
more efficiently by using k-way branching.

– We found no case where the both branching schemes produce the same cost.

Thus, we have identified that there are cases where, in combination with the
variable ordering heuristic, one branching scheme should be preferred above the
other. Now, the question is what occurs when we try to apply these schemes at
different stages of the search. This is the purpose of the following experiment.

3.3 A Naive Random Hyper-heuristic: How Difficult Is It to
Improve the Branching Schemes?

We have observed that the performance of the branching schemes is affected by
the selection of the variable ordering heuristic. Then, we cannot decide when one
branching scheme is better than the other without considering the variable or-
dering heuristic used in the search. In this experiment, we try a very simple way
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to analyse the probabilities of success of a naive hyper-heuristic that expands
the search tree by using binary branching at some stages, and k-way branching
at others. For this analysis we propose a naive random hyper-heuristic, which
is defined as follows. There is a probability α that binary branching is applied
(and a probability 1−α that k-way branching is used instead). At each stage of
the search (every time a variable is to be selected) a random decision is made
based on a uniform random distribution and the current value of α. For small
values of α, it is very likely that k-way branching is used. Thus, when α = 0 the
search imitates k-way branching and, when α = 1, it matches the tree produced
by binary branching. This simple approach is used only to measure the proba-
bility of success of random combinations of binary and k-way branching. This
is not intended to be a robust method for producing a real hybrid application;
its purpose is only to show what can occur when we combine these branching
approaches as the search progresses.

For each heuristic, nine values of α were tested: 0.1 to 0.9, by increments of
0.1 (values of 0 and 1.0 were taken from the results obtained in Sec. 3). For each
value of α, ten runs were conducted and the average cost of these ten runs on
the set of instances taken from http://www.cril.univ-artois.fr/~lecoutre/

research/benchmarks/frb30-15.tgz is reported. We considered that ten runs
was enough to give us an idea of the behaviour of a naive random hyper-heuristic
on this set of instances. This process is performed for each of the four variable
ordering heuristics. Figure 3 presents the results of this experiment.

Fig. 3. Average costs of different values of α for the naive random hyper-heuristic

Before conducting this experiment, we had the hypothesis that there should
be a value of α for which the average cost of solving the set of instances will
be below the cost of both binary and k-way branching. Considering the results
on Fig. 3 we have not found evidence to support our hypothesis. It seems that
using the two branching schemes at different stages of the search by using a
naive random hyper-heuristic that does not consider the current state under

http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/frb30-15.tgz
http://www.cril.univ-artois.fr/~lecoutre/research/benchmarks/frb30-15.tgz
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exploration does not help to reduce the cost. On the contrary, the results suggest
that this only increases the cost of the search. We think that the selection of
the branching scheme at different stages of the search requires a more refined
mechanism that uses the information from the current state of the space under
exploration to decide the most suitable branching scheme. The evidence suggests
that relying the selection of the branching scheme to be used only on naive
random decisions is not a good idea. What we can conclude from this experiment
is that, if we randomly try to select between the two branching schemes as the
search progresses, we are likely to increase the search cost rather than reducing
it (see for example the performance of MXC on Fig. 3, where the cost of the
search for α = 0.7 is larger than the cost of both binary and k-way branching).

The development of a hyper-heuristic that exploits information from the in-
stances to decide which branching scheme to use at each stage of the search will
be part of a future investigation. At the moment, we have provided evidence that
the use of different branching schemes during the search affects the search cost.
The goal for future research is now to propose a mechanism that produces a map-
ping from problem states to branching schemes and variable ordering heuristics,
similar to the work done on hyper-heuristics for variable ordering [11, 29].

4 Conclusion and Future Work

In this investigation we have analysed binary and k-way branching for CSPs
together with some important and widely used variable ordering heuristics. Our
analysis considers the effect of variable ordering during the search on the perfor-
mance of binary and k-way branching. Based on our observations, there is no way
to state that one of the branching scheme is to be preferred above the other in all
cases. Not only there is much to learn from the interactions between branching
schemes and variable ordering heuristics, but about the ways to exploit when
these interactions produce reductions in the search cost.

One important contribution of this research is the fact that, contrary to what
happens in value ordering (where binary branching is never worse than k-way
branching [34, 36]), variable ordering heuristics require a deeper analysis to un-
derstand their influence on the branching schemes. At the moment, we can con-
clude that binary and k-way branching are variable ordering dependant and,
none of them can be stated to be superior to the other for every instance. In
other words, we can conclude that we cannot analyse the performance of the
branching schemes without considering the variable ordering heuristic to be used
with them.

We have identified regions where some heuristics are more suitable to work
with one of these branching approaches. It seems that in general, it looks like
for unsatisfiable instances, it is better to use k-way branching. But, more inves-
tigation is still needed to confirm whether these results apply to other classes of
instances. With regard to the classes of instances used, as future work we are
interested in extending the analysis of the implications in the performance of the
branching schemes by considering real instances to observe how these branching
schemes behave when tested on structured instances.
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This investigation will be used as the basis for developing a more challeng-
ing idea, which is the generation of hyper-heuristics that control not only the
heuristics used, but the branching schemes at different stages of the search. In
order to produce a hyper-heuristic for this problem, we needed to justify that
there are differences in the performance of the methods to be combined and
that one branching scheme does not dominate the other, which is the case for
the branching schemes studied when they interact with the variable ordering
heuristics described in this investigation.
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Abstract. The problem of equilibria detection of a discrete-time Gener-
alized Cournot Dynamic Oligopoly is approached by using a Differential
Evolution and a Particle Swarm Optimization algorithm adapted to com-
pute and track the set of generalized Nash equilibria in a dynamic setting.
Both challenges of this problem, i.e. to correctly compute the entire set
of generalized Nash equilibria of the constrained (generalized) game, and
also to cope with the dynamic character of the landscape, are dealt with by
using a simple adaptive mechanism. Numerical experiments for settings
up to 60 players are performed to illustrate the efficiency of the approach.

1 Introduction

Game theory models strategic interactions among players with conflicting in-
terests in which the payoff of each player depends on the choices of all other
partners. A constrained, generalized game, is a general model of a decision situ-
ation where the strategies of the players are not independent, i.e. they not only
affect each others payoffs but also their choices can be restriced by each other.

A formalization of this idea is called Generalized Nash Equilibrium Problem
(GNEP) introduced in the 50’ies in [1], [2]. A GNEP is a generalization of the clas-
sical equilibrium problem, in which players’ strategies depend on the other play-
ers’ strategies. From a computational point of view, one of the main challenges in
solving a GNEP is to detect the entire set of generalized equilibria in a single run.

An even more realistic model is obtained by considering a dynamic environ-
ment for GNEPs, i.e. combining the GNEP with a Dynamic Game (DG). A
DG is a mathematical model of the interactions between decision makers (play-
ers, agents) who are controlling a dynamical system [3] and fulfills the following
characteristics [4]:

– for each period/epoch players receive a payoff;
– each player has an overall payoff - which is the sum of its payoffs obtained

in each period/epoch;
– the state of the system determines the payoff of each player in a certain

epoch;
– the state of the system changes in time, changes can be determined also by

the actions of the players;
– a difference or a differential equation can describe the rate of the change;
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In our approach a GNEP is considered in a dynamic environment, meaning
that the strategies of the game are dependent within the game and that this
dependence changes in time. This new class of game is called Discrete-Time
Dynamic Generalized Game. In this case, the challenge is not only to detect the
set of generalized equilibria but also to track the new position of this entire set
within a dynamic environment.

Two heuristics for tracking the solution of a discrete-time dynamic gener-
alized game are studied: a Differential Evolution (DE) and a Particle Swarm
Optimization (PSO) algorithm that have been adapted to compute the general-
ized Nash equilibria and also to deal with the dynamic environment. By means
of numerical experiments it is shown that a simple adaptation mechanism based
on mutation is effective in tracking the set of generalized Nash equilibria for the
generalized Cournot setting considered.

The paper is organized as follows: section 2 describes the Generalized Nash
Equilibrium Problem. Section 3 presents the dynamic constrained version of
the Cournot oligopoly. In section 4 the two proposed algorithms are described.
Section 5 presents the numerical experiments and Section 6 concludes the paper.

2 Generalized Nash Equilibrium Problem

Generalized Nash equilibrium problem (GNEP) [1], [2] is a generalization of the
classical Nash equilibrium problem [6], in which players’ strategies depend on
the other players’ strategies.

GNEP can arise in some real-world situations, for example oligopoly models
with shared resources, energy markets [7]. In [8] a GNEP is constructed from a
spatial oligopolistic electricity model. Breton et al. [9] construct a GNEP from a
game theoretic interpretation of joint implementation of environmental projects.
Another application can be found in solving electrical market games formulated
as a GNEP [10].

The commonly accepted solution of a GNEP is the generalized Nash equilib-
rium [11].

A GNEP can be described as a system GGNEP = ((N,K, ui), i = 1, ..., n),
where N represents a set of players, and n is the number of players.

For all players i ∈ N the common strategy set is formalized as follows:
Let s = (s1, s2, ..., sn) a vector formed by all decision variables of the game

(strategy profile); let us denote by s−i the vector formed by each players strategy
except of the ith player.

To accentuate that player’s i strategy variables in s it can be written (si, s−i)
instead of s.

Let Si ∈ R
n be the strategy set of player i, S =

∏

j∈N Sj , S−i =
∏

j∈N,j �=i Sj ,
which means S−i represents the full S set, except the ith player’s set.

Let Ki : S−i → Si be a point-to-set mapping which means, that all players
j can affect the feasible strategy of player i. Then Ki(s

∗) ⊆ Si, ∀s∗ ∈ S−i Let
K =

∏

i∈N Ki(si) the mapping formed from the Ki.
For each player i ∈ N , ui : grKi → R represents the payoff function of i,

where grKi represents the graph of the mapping Ki.
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Formally, a generalized Nash equilibrium (GNE) is a strategy profile s∗ ∈ S
such that the inequality holds:

ui(si, s
∗
−i) ≤ ui(s

∗), ∀i = 1, .., n, ∀si ∈ Ki(s−i).

The definition of the GNE differs from the normal Nash equilibrium only in
the feasible strategy of each player.

Let s and s∗ be two strategy profiles; k(s∗, s) denotes the number of players
which benefit by deviating from s∗ towards s [12]:

k(s∗, s) = card{i ∈ N, ui(si, s∗−i) > ui(s
∗), si �= s∗i }.

Let s∗, s ∈ S. We say that strategy s∗ is better than strategy s with respect
to Nash equilibrium (Nash ascends it), and we write s∗ ≺N s, if the following
inequality holds:

k(s∗, s) < k(s, s∗).

k(s∗, s) is a relative quality measure of s and s∗ - with respect to the Nash
equilibrium [13]. The relation ≺N can be considered as the generative relation
of Nash equilibrium, i.e. that the set of non-dominated strategies with respect to
≺N induces the Nash equilibrium. Based on this property several nature inspired
search methods have been adapted to compute Nash equilibria [14] by including
the k operator in the fitness assignment process. However, this is not a partial
order relation, as it is not transitive [15].

This relation can also be used for the GNEP taking into account the con-
straints imposed by the common strategy set S.

3 Constraint Dynamic Cournot Oligopoly

Let us consider a simple Cournot oligopoly model [16], where n firms produce a
quantity of si products, i = 1, ..., n.

Let P (Q) be the market clearing price, where Q =
∑n

i=1 si.

P (Q) =

{

a−Q, if Q ≤ a;
0, if Q > a.

Each firm has the common cost function C(si). Let us assume that the total
cost of company i for producing quantity si is Ci(si) = csi.

The payoff for the company i is its profit, that can be described as follows:

ui(s) = siP (Q)− Ci(si),

where s = (s1, s2, ..., sn). Hence we may write

ui(s) =

{
si(a−

∑n
j=1 sj − c), if

∑n
i=1 si ≤ a;

−csi, if
∑n

i=1 si > a.

The Nash equilibrium of this game is a−c
n+1 for all firms.
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A generalized version of the game is obtained if we consider the following con-
straints on the quantity of goods produced:

n∑

i=1

αi · si ∈ [l, u], l < u, αi ∈ [0, 1], i = 1, ..., n. (1)

All strategies that satisfy
∑n

i=1 αi·si = u are GNE if the NE of the unconstrained
version of the game does not belong to the set of common strategies S (in which
case the GNE is identical with the NE).

Dynamic Feature. By varying coefficients αi, i = 1, ..., n in time we deal with a
generalized dynamic oligopoly.

Example 1. Considering the duopoly (two players) of the Cournot game, the
payoff of the two firms can be described with the following payoff function:

ui(s) = si · (a− c− (s1 + s2)), i = 1, 2, si ∈ [0, a− c].
Let us assume that a = 24, c = 9. The Nash equilibrium of the game is the

strategy pair s = (s1, s2) = (5, 5) with the payoff (25, 25).
Additionally we know that the two firms can produce maxim a total quantity

of 3: s1 + s2 ≤ 3. This condition makes from the normal Cournot duopoly a
GNEP problem.

Considering the constraint s1 + s2 ≤ 3 it is easy to verify that (5, 5) can’t be
a Nash solution of the game. The GNEP has an infinity number of GNE with
every strategy pair s1 + s2 = 3, s1, s2 ∈ [0, 15] being a GNE of the game.

4 Dynamic Generalized-Equilibrium Tracking Algorithms

In order to compute the GNEs in a constrained dynamic environment an Evo-
lutionary Algorithm for Equilibria Detection (EAED) [17] can be endowed with
a mechanism for tracking and adapting to environment changes.

An EAED uses a selection for survival operator that guides the search using
the generative relation described in Section 2 (an offspring replaces its parent
only if it is better than it in Nash sense).

Two EAEDs are adapted to detect and track the GNEs: the Dynamic General-
ized Equilibrium Tracking Differential Evolution (DGET-DE ) based on Differen-
tial Evolution [18], and the Dynamic Generalized Equilibrium Tracking Particle
Swarm Optimization (DGET-PSO) based on SMPSO [19]. Both methods use
the same mechanism to cope with the the dynamic features of the environment,
presented in the following.

We address the equilibrium detection in a GNEP using DE and PSO based
algorithms because they are computationally effective. These simple and efficient
algorithms require less payoff function evaluations than a standard EA would.
Using the generative relation to guide the search towards the Nash equilibrium
of a game is a computationally expensive step, due to the selection for recom-
bination operators a standard Ea would require a significantly larger number of
payoff functions evaluations.
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Detection of an Environment Change. A sentinel is used to detect a change in
the game. The sentinel is randomly generated at the beginning of the search and
it does not change during the evolutionary process. In each generation its fitness
and constraint are evaluated, if these values differ from the last generation a
change it is inferred that in the environment occurred. Based on the new and
old values the algorithm estimated the amplitude of the change and adapts the
search accordingly.

Coping with Changes. The following steps are taking for dealing and adapting
to changes in the dynamic game:

1. (DGET-DE and DGET-PSO) When a change in the game is detected the
magnitude of change m is estimated:

m =
|constraintOld − constraintNew|

max(constraintOld, constraintNew)
(2)

where constraintOld and ConstraintNew represent the old and new con-
straint violation values for the sentinel. If the sentinel is a feasible solution,
the value of the constraint is taken the middle of the interval [l, u].

2. (DGET-DE and DGET-PSO) In order to increase population diversity uni-
form mutation, with pm ∈ [pmin, pmax], where pmin and pmax are parameters
of the algorithm, is applied to each individual. The probability of mutation
is computed using the following relation:

pm = pmin +m · (pmax − pmin)

which ensures that pm is directly proportional to m. Thus a large change
in the environment will produce a higher mutation rate inducing population
diversity, while a smaller change will keep a low mutation rate maintaining
the search in the equilibrium region.

3. (DGET-DE and DGET-PSO) Apply uniform mutation with probability pm
and mutation step N(0, σ) where σ is linearly correlated to the estimated
magnitude of the change m:

σm = σmin +m · (σmax − σmin).

Thus an adaptive mutation step is used to further cope with the change in
the environment.

4. (DGET-DE ) The value of of the scaling factor F is increased (in order to
better explore the search space), and linearly decreases at each generation
until it reaches a certain threshold. The value of Cr (crossover probability)
is decreased (in order to promote exploration) and linearly increases at each
generation until it reaches a predefined threshold.

In the generation in which a change is detected in the game we introduce
diversity in the population by mutating each individual in the population. A
mutation factor scaled to the amplitude of the detected change is used. This
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step is needed because the population converges to the Nash equilibrium (which
is a point/front depending on the game) and all individuals have the Nash strat-
egy. When the game changes because there is no diversity, the population does
not converge to the new Nash equilibrium. This step is used in order to pro-
mote diversity and give individuals in the population a chance to find the new
equilibrium.

Outline of the Methods. The general outlines of the DGET-DE and DGET-
PSO algorithms are presented in Algorithm 1 and Algorithm 2 respectively by
emphasizing only the changes to their standard versions. Both algorithms are
compared with a simple DE version, called Adaptive Equilibrium Differential
Evolution Algorithm (AEDE ), that only uses step 4 of the adaptation mechanism
presented here.

We compare our algorithms with a simple adaptive version of Differential
Evolution (AE-DE) (modified for detecting the Nash equilibrium of a game).
We use this algorithms for comparison because there are no other evolutionary
approaches for detecting game equilibrium, and especially Nash equilibrium in
a constrained game.

Algorithm 1. Dynamic Generalized Equilibrium Tracking Differential Evolu-
tion Algorithm (DGET-DE )

Randomly generate initial population of game situations;
repeat

Create offspring by mutation and recombination (DE/rand/1/bin);
Evaluate offspring (compute payoff functions for all players);
if the offspring is better (in Nash sense) than parent then

Replace the parent by offspring in the next generation;
end if
if change detected then

Apply uniform mutation with the adapted value of pm and step N(0, σ)
according to Steps 1-3;

end if
Apply adapted Differential evolution (using Step 4. for varying F );

until termination condition is met;

Constraints Handling. An individual is deemed feasible if it satisfies the con-
straints defined by (1). When comparing two individuals, selection for survival
is based on the following rules [20]:

1. If both individuals are infeasible choose the one that violates restriction less;
2. If one individual is feasible and the other is not then choose the feasible one;
3. When both individuals are feasible choose the one that Nash ascends the

other. If these vectors are indifferent (no individual is dominated) then keep
the parent.
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Algorithm 2. Dynamic Generalized Equilibrium Tracking Particle Swarm Op-
timization Algorithm (DGET-PSO)

Randomly generate initial population of game situations;
repeat

Perform a SMPSO iteration∗;
if change detected then

Apply uniform mutation with the adapted value of pm and step N(0, σ),
according to Steps 1-3;

end if
until termination condition is met;

∗ In the archiving step of SMPSO the Pareto domination relation is replaced with
the Nash ascendancy relation presented in Section 2.

5 Numerical Experiments

Numerical experiments are conducted for a constrained dynamic Cournot duo-
poly. The dynamic version of the game (described in Section 3) is obtained by
randomly changing αi from relation (1) at the beginning of each epoch. We use
a real value representation, each individual in the population consists of a vector
of n real numbers where the genes of our genome represent the strategy for each
player: gi = si, i = 1, ..., n.

The performance of each algorithm is evaluated by computing the Nash Gen-
erational Distance (Nash−GD) indicator, which is similar to the multiobjective
GD [21], between obtained strategies and true Nash front composed of the theo-
retical strategies computed analytically for each change of the fitness landscape.

We consider 20 independent runs for each algorithm with each run consisting
of 50 epochs. For all simulations we use a population of N = 150 individuals.
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Fig. 1. Box-plots for the average Nash-GD. DGET-DE has the lowest mean value and
standard deviation for the Nash-GD indicator.
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For DE based algorithms initial parameter values are: Cr = 0.8 and F = 0.2.
For PSO variant, based on [22], [23],[24], parameter values are: c1 = 1.4962, c2 =
1.4962, winiti = 0.7968, wfinal = 0.7968. Game parameters are: a = 24, c = 9,
si ∈ {0, 15}, l = 2, u = 4 and the ones used for the adaptation mechanism are
pmin = 0.02, pmax = 0.1, σmin = 0.1, and σmax = 1. After 200 generations (1
epoch) the constraints of the game change by generating new αi values following
a uniform distribution.
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(c) DGET-DE obtained strategies.
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(d) DGET-PSO obtained strategies.

Fig. 2. Theoretical Nash strategies for 2 epochs (epoch 0 : α1 = 1, α2 = 1 and epoch
1 : α1 = 0.6, α2 = 0.3) and obtained Nash strategies for AEDE, DGET-DE, and
DGET-PSO. DGET-DE algorithm seems to better approximate the true Nash strategy
front.

When a change is detected, in order to promote diversity, F is set to 0.4
and decreased down to 0.2 with a step of 0.02 per generation for AEDE and
DGET-DE algorithms.

Figure 2 illustrates a theoretical Nash front of strategies for 2 epochs (epoch
0 : α1 = 1, α2 = 1 and epoch 1 : α1 = 0.6, α2 = 0.3). It can be observed that
DGET-DE is able to cope well with constraints changes of the Cournot dynamic
game, Figure 2(c). The simpler AEDE version is able to find strategies that lie
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on the true Nash front but is unable to ensure a good diversity when a change is
detected, figure 2(b) and the PSO variant is not able to find a good approximation
of the true Nash strategy front when the game changes, Figure 2(d).

In order to illustrate the effect of step 3 of the adaptation mechanism on
the results (variation of the mutation step σ) a set of experiments that take
into account fixed values for σ were performed. Boxplots represented in Figure
3 indicate that the variation of σ yields better results in terms of standard
deviation and the Wilcoxon sum-rank test indicate that results obtained by using
the adaptive version are significantly better than those obtained for a fixed value
for this parameter.

Figure 1 presents box-plots of the average Nash-GD indicator computed over
all 20 independent runs for all generations. It can be observed that AEDE and
DGET-DE outperform DGET-PSO algorithm. A Wilcoxon sum ranked test
was performed in order to asses the differences in between the results of the two
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Fig. 3. The effect of the mutation step σ size
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algorithms and indicated that there is no statistical difference between AEDE
and DGET-DE methods for the mean values of the Nash-GD indicator.

On a simple duopoly, according to the Nash-GD indicator, DGET-DE out-
performs the other tested approaches. Next we wanted to see if this observation
is also true for a many player version of the constrained game. For this we
run DGET-DE and DGET-PSO algorithms on a constrained Cournot game
with n = {3, 5, 10, 20, 40, 60} players. Figure 4 presents box-plots of the average
Nash-GD indicator over 20 independent runs. It can be observed that also for
n > 2 players algorithm DGET-DE outperforms DGET-PSO.
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Fig. 4. Box-plots of the average Nash-GD for a n = {3, 5, 10, 20, 40, 60} player con-
strained Cournot. DGET-DE has the lowest mean value and standard deviation for
the Nash-GD indicator.

6 Conclusions

Two methods for computing the Generalized Nash equilibrium of a discrete-time
dynamic game are presented: one based on Differential Evolution - Dynamic
Generalized Equilibrium Tracking Differential Evolution (DGET-DE ), and one
based on particle swarm optimization (DGET-PSO). Using a generative relation
the proposed methods are able to find the GNE of the game in a dynamic
environment.

Numerical experiments are conducted for the 2, 3, 5, 10, 20, 40 and 60 players
version of the constrained dynamic Cournot game. We evaluate the performance
of each algorithm by computing the Nash Generational Distance indicator be-
tween obtained strategies and the analytically computed true Nash front over 20
independent runs for each algorithm. Considering that a 60 palyers game can be
compared with a 60 objectives multicriteria optimization problem, the results
presented indicate the competitivness of this simple approach.

The proposed DGET-DE is able to cope well with constraints changes finding
strategies that lie on the true Nash front and ensures good solution diversity.



Discrete-Time Generalized Dynamic Games 353

The simpler AEDE version is able to find strategies that lie on the true Nash
front but is unable to assure good diversity when a change is detected. DGET-
PSO is not able to find a good approximation of the true Nash strategy front
when the game changes.
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