
Chapter 2
Computing Efficiently Spectral-Spatial
Classification of Hyperspectral Images
on Commodity GPUs

Pablo Quesada-Barriuso, Francisco Argüello and Dora B. Heras

Abstract The high computational cost of the techniques for segmentation and
classification of hyperspectral images makes them good candidates for parallel
processing, in particular, for computing on Graphics Processing Units (GPUs). In
this paper an efficient projection on the GPUs for the spectral–spatial classification
of hyperspectral images using the Compute Unified Device Architecture (CUDA) for
NVIDIA devices is presented. A watershed transform is applied after reducing the
hyperspectral image to one band through the calculation of a morphological gradient,
while the spectral classification is carried out by Support Vector Machine (SVMs).
The results are combined with an adaptive majority vote. The different computational
stages are concatenated in a pipeline that minimizes the data transfer between the
main memory of the host computer and the global memory of the graphics device to
maximize the computational throughput. The memory hierarchy and the thousands
of threads available in this architecture are efficiently exploited. It is possible to
study different data partitioning strategies and thread block arrangements in order to
promote concurrent execution of a large number of threads. The objective is to effi-
ciently exploit commodity hardware with the aim of achieving real-time execution
for on-board processing.
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2.1 Introduction

Recent advances in sensor technology have led to hyperspectral images being now
widely available [1, 2]. The special characteristics of hyperspectral images, which
provide a detailed spectrum for each pixel, allow distinguishing among physical mate-
rials and objects even at pixel level, presenting new challenges to spectral analysis,
target detection, image segmentation or classification. Nevertheless, the large number
of spectral channels of the hyperspectral images makes most of the commonly used
methods designed for the processing of grey level or color images not appropriate.
To take full advantage of the rich information provided by the spectral dimension
new algorithms are required.

The supervised classification of hyperspectral images has been a very common
topic in the last decades. Pixel-wise classifiers, for instance, consider only the spectral
information of the pixel [1, 3–5]. In particular, pixel-wise classification by Support
Vector Machine (SVM) classifiers has been introduced and shown good results when
a small number of training samples are available [3]. However, this pixel-wise clas-
sification does not consider information about spatial structures. Therefore, the clas-
sification can also take advantage of the spatial relationships among pixels, allowing
more elaborate spectral–spatial models for a more accurate segmentation and clas-
sification of the image [6–8]. The spatial information can be included considering
different approaches. The first approach consists in including information from the
closest neighborhood of a pixel through morphological filtering [9], morphological
leveling [6] or Markov random fields [10]. The second approach consists in carrying
out a segmentation of the image by methods that are usually based in graphs [11].
Among these some unsupervised methods have been widely used: partitional cluster-
ing [7], hierarchical segmentation [12], MSF [13] and watershed [8]. The watershed
transform is a widely used method for non-supervised image segmentation, specially
suitable for low contrast images [14]. It is usually applied to the morphological gra-
dient of a two dimensional image for extracting homogeneous regions with respect
to grey level values.

Recently, Tarabalka et al. [8] have presented a spectral–spatial classification
scheme for hyperspectral images that uses the watershed transform. It is based on an
SVM spectral classification, followed by a Majority Vote (MV) process among the
classified pixels within the same watershed region. Among the proposals presented
by the authors to reduce the image to one band, such as multidimensional or vectorial
gradients. One of the most efficient approaches, in terms of classification quality, is
obtained through a Robust Color Morphological Gradient (RCMG) calculation. The
good classification results of this proposal in urban and open areas had led us to
adopt it in this work.

The computational cost of the techniques for segmentation and classification of
hyperspectral images is high, which makes them good candidates for parallel and, in
particular, for General-Purpose Computing on Graphics Processing Units (GPGPUs).
The focus of this study is to provide a solution for a GPU platform, adapting the
hyperspectral processing to a low cost parallel computing architecture. With this
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approach the on-board processing of information is possible without the need for
bulky high performance computing infrastructures.

In most cases neither sequential nor existing parallel algorithms can be directly
implemented in the GPU and it is necessary to modify the flow of the computa-
tions in order to fully exploit the architecture. The use of Graphics Processing Units
to process hyperspectral images has been gaining popularity in recent years. For
instance, algorithms for spectral unmixing [15, 16], target detection [17, 18], clas-
sification [1] and segmentation [19, 20] have led to more complete tools [21, 22].
A spectral–spatial GPU classification tool was presented in [22]. In this tool the
spatial information is introduced by MV within a fixed window where each pixel is
assigned to the most predominant class, so the spatial structure of the image is not
fully considered. As a result, this MV implementation may generate different classes
within the same watershed region, unlike in [8].

The interest is on exploring GPU architectures for hyperspectral processing by
developing techniques that can be efficiently projected on GPU consumer platforms
with the objective of achieving real-time execution that makes on-board process-
ing possible. In this paper a spectral–spatial classification scheme for hyperspec-
tral images based on [8] is presented, specially adapted for GPU processing using
CUDA. The process consists in the calculation of a morphological gradient operator,
that reduces the dimensionality of the hyperspectral image, followed by the calcu-
lation of a watershed transform based on Cellular Automata (CA) over the resulting
2D image, and a spectral classification based on SVM. A MV process combines
the spectral and spatial results. The thousands of threads available in the GPU are
efficiently exploited. The different stages are concatenated in a pipeline processing
that minimizes the data transfers between the host and the device and maximizes
the computational throughput. Furthermore, data are reused within the GPU, taking
advantage of the shared memory and cache hierarchy of the architecture. In addition,
different hyperspectral data partitioning strategies and thread block arrangements are
studied in order to effectively exploit the memory and computing capabilities of the
GPU architecture.

The reminder of this paper is organized as follows: in Sect. 2.2 some GPU and
CUDA fundamentals are introduced. Section 2.3.1 introduces the morphological gra-
dient, Sect. 2.3.2, the watershed transform, and Sect. 2.3.3 the majority vote approach
for spectral–spatial classification. The implementations of the algorithms and the
results obtained are discussed in Sects. 2.4 and 2.5, respectively. Finally, Sect. 2.6
presents the final remarks.

2.2 GPU Architecture

The most recent GPUs provide massively parallel processing capabilities based on
a data parallel architecture. The NVIDIA GPU architecture is organized into a set
of Streaming Multiprocessors (SMs), each one with many cores called streaming
processors [23], as shown in Fig. 2.1a. These cores can manage hundreds of threads



22 P. Quesada-Barriuso et al.

Fig. 2.1 NVIDIA CUDA architecture. (a) Streaming multiprocessors and (b) organizations of
Grid, blocks and threads

in a Single Instruction Multiple Data (SIMD) programming model. The GPU cores
execute the same instruction simultaneously on different data unlike the multicore
processors that are Multiple Instruction Multiple Data (MIMD) (different cores exe-
cute different threads operating on different data).

CUDA for NVIDIA devices, is an Application Programming Interface (API) for
writing programs that are executed in the GPU. A CUDA program, which is called
a kernel, is executed by thousands of threads grouped into blocks, as illustrated in
Fig. 2.1b. The Compute Unified Device Architecture (CUDA) has a global memory
of Dynamic Random Access Memory (DRAM) that is available for all the blocks.
There is also an on-chip shared memory space only available per block. This feature
enables an extremely rapid read/write access to the data in this memory but with the
lifetime of the block. Furthermore, it is not possible to read or write data to the shared
memory allocated to another block. Finally, each thread has its own local memory
and registers. Examples include the NVIDIA G80 and GT200 graphics cards series.

The Fermi and Kepler architectures [24] have also a cache hierarchy consisting
of a configurable L1 and a unified L2 caches. The 64 KB of on-chip memory can
be configured as 48 KB of shared memory and 16 KB of L1 cache or vice versa.
There are 64 KB of this memory available for each SM. The L2 is a unified cache
up to 1,536 KB shared by all the SMs. The accesses to the DRAM are cached in
this memory hierarchy. The NVIDIA Tesla GF100 and the GeForce 500 series are
examples of the Fermi architecture. The Tesla K-series family of products includes the
Kepler K10, K20 and K20X GPU accelerators with different chipsets. In particular
the Tesla K20X based on the GK110 chipset incorporates 2688 CUDA cores and
6 GB of memory. These chipsets can be found in commodity GPUs like the GTX680
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graphics card, used in this work, which has a GK104 chipset (1536 CUDA cores and
2 GB of memory).

The challenge of GPU programming is to increase the computational throughput.
To achieve this, important aspects that must be considered are [25]: minimizing CPU–
GPU data transfers, aligning accesses to consecutive memory locations, maximizing
data reuse, balancing the workload among threads, and minimizing their divergence.

2.3 Spectral–Spatial Classification of Hyperspectral Images

Hyperspectral images are basically digital pictures where each pixel is represented
by a set of n values. Each value corresponds to a spectral component across the
visible and infrared light bands [18]. The number of captured bands depends on
the properties of the hyperspectral sensor. For example, the well known Reflective
Optics System Imaging Spectrometer (ROSIS) is able to record 103 spectral bands
[26], while the Airbone Visible-Infrared Imaging Spectrometer (AVIRIS) is able to
record 224 spectral bands [27].

Most classification methods for hyperspectral images process each pixel indepen-
dently using pixel-wise classifiers, but do not take into account the spatial informa-
tion of the neighborhood [28]. Nevertheless, it has been proved that the classification
results significantly improve when spatial information is incorporated [6–8].

An efficient approach to integrate spectral and spatial information in a classifica-
tion system is defined by Tarabalka et al. [8]. The process consists of the stages shown
in Fig. 2.2. On one hand, the spectral processing is applied over the hyperspectral

Fig. 2.2 Spectral-spatial classification scheme, which consists of a spectral stage (top), a spatial
stage (bottom), and a final stage to combine the results
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Fig. 2.3 Example of majority vote application for spectral–spatial classification. (a) Classification
map; (b) Segmentation map; (c) Majority vote within a segmented region

input image using a SVM that produces a classification map (shown at the top of
the figure). Each pixel of this map belongs to one class predicted by the SVM (three
classes in this example). On the other hand, the spatial processing, applied to the
one–band image generated after a RCMG calculation, creates a segmentation map
using a watershed transform (shown in the bottom of the figure). In this map, all of
the pixels are labelled according to the region they belongs to.

Finally, the spectral and spatial results are combined using a majority vote process.
Each pixel in a watershed region is assigned to the most predominant class among
the classes within the same region. The output of this scheme, as shown in Fig. 2.2, is
a more accurate hyperspectral classification of the image compared to a standalone
spectral classification. The procedure for combining the results is illustrated in detail
in Fig. 2.3 for the case of three spectral classes, represented as three colors in Fig. 2.3a.
The segmentation map, with regions A, B, C, and the results of the MV are displayed
in Fig. 2.3b, c.

In the following sections we explain in detail the different steps of the spatial
processing. The Robust Color Morphological Gradient, Sect. 2.3.1, the watershed
transform based on CA, Sect. 2.3.2, and how to combine the results with the spectral
ones, Sect. 2.3.3.

2.3.1 Robust Color Morphological Gradient

The basic morphological gradient operator for grey scale images is defined as Eq. 2.1:

∇( f ) = δg( f ) − εg( f ), (2.1)

where δg and εg are the dilation and erosion morphological operators, and g the
structuring element which defines the neighborhood of a pixel in the image f . In an
alternative form, Eq. 2.1 can be expressed as follows in Eq. 2.2:

∇( f ) = max
x∈g

{ f (x)} − min
y∈g

{ f (y)}
= max(| f (x) − f (y)|) ∀x, y ∈ g, (2.2)
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giving the greatest intensity difference between any two pixels within the structuring
element. In this way Eq. 2.2 can easily be extended to color images [29], which have
a pixel vector of three components, i.e. the red, green and blue channels of color.

Let x be a pixel vector of a color image and χ = [x1, x2, . . . , xn] be a set of n pixel
vectors in the neighborhood of x, and the set χ contains x. The Color Morphological
Gradient (CMG), ∇(f), using the Euclidean distance, is defined as Eq. 2.3:

∇(f) = max
i, j∈χ

{||xi − x j ||2}, (2.3)

whose response is the maximum of the distances between all pairs of vectors in the
set χ . As the CMG is very sensitive to noise and may produce edges that are not
representative of the gradient, a RCMG is proposed in [29], based on pairwise pixel
rejection of Eq. 2.3. The RCMG , ∇(f)Robust , is defined as Eq. 2.4:

∇(f)Robust = max
i, j∈χ−Rs

{||xi − x j ||2}, (2.4)

where Rs is the set of s pairs of pixel vectors removed. The pairs removed are those
that are furthest apart. The RCMG is therefore a vectorial gradient operator based
on the Euclidean distances of pixel vectors.

A pixel vector also refers to a pixel of the hyperspectral image with all the n-bands
as components of a n-dimensional vector. Thus, using the RCMG, a hyperspectral
image may be reduced to a single band and be used as input for the watershed
transform.

Regarding GPU concerns, the calculation of Eq. 2.4 is split into partial operations
and then the partial results are combined to find the maximum distance. There are two
possible work distribution strategies among thread blocks which will be explained
in Sects. 2.4.1.1 and 2.4.1.2.

2.3.2 Watershed Transform Based on Cellular Automata

Regarding segmentation, a watershed transform based on CA is applied, because of
the simplicity of the computing model of the CA that can model complex problems
easily, and because the computations for pixels are highly independent, and thus very
adequate for streaming parallel processing architectures like the GPU.

The watershed algorithm is a widely used method for non-supervised image seg-
mentation, specially suitable for low-contrast images [14]. If a grey scale image
is represented as a topographic relief, where the height of each pixel is directly
related to its grey level, the dividing lines of the basins of attraction of rain falling
over the regions are called watershed lines [14]. Various definitions, algorithms and
implementations can be found in the literature [30]. In this paper the Hill-Climbing
algorithm based on the topographical distance by Meyer is adopted [31]. This algo-
rithm starts by detecting and labelling all minima in the image with unique labels.
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Fig. 2.4 Three-state automation implementing the Hill-Climbing algorithm [32]

Then, the labels are propagated upwards, climbing up the hill, following the path
defined by the lower slope of each pixel. At the end, all pixels have a label that
identifies the region to which they belong. No implicit lines are generated with this
algorithm, so the watershed lines are the limits between these regions.

CA are computing models composed of a set of cells arranged in a regular grid,
with each cell connected to its adjacent neighbors. The CA evolve in discrete time
steps, according to a collection of states and a set of transition rules. One of the main
characteristics of CA is that updates are made for each cell considering only local
information, so the concept of parallelism and, in particular, streaming process-
ing, is implicit in the automata. The updates of the cells can be carried out syn-
chronously or asynchronously [33]. In the latter case, the grid can be partitioned
into different regions which can be independently updated an unbounded number
of times.

Galilée et al. proposed a three-state cellular automaton implementing the Hill-
Climbing algorithm [32] that is shown in Fig. 2.4 (MP stands for Minimum or Plateau
state and NM for Non-minimum state). The main advantage of this Watershed Trans-
form based on Cellular Automata (CA–Watershed) is that minima detection, labeling,
and climbing the steepest paths are simultaneously and locally performed.

Each cell of the automaton computes a pixel of the image. First, the pixels are
sequentially labelled and the state of each pixel is initialized to one of two possible
states. Considering that a plateau is a region of constant grey value within the image,
these states are MP and NM. If a pixel is within a plateau, it switches to the MP state.
Otherwise, the state of the pixel switches to NM. Figure 2.5a shows an example of
a 1D image represented as a terrain (lines) and the corresponding grey values of
each pixel (squares). The numbers within each square in this figure are initial label
values.

Once the pixels have been initialized, the following steps update the automaton.
This is an iterative task that processes the MP and NM states as follows: The pixels
of a plateau, i.e. MP state, extend the label with the minimum value along the pixels
belonging to that plateau, in case of a plateau that is minimum as indicated in Fig. 2.5b,
and change their state if the plateau is non-minimum. If the state of the pixel is NM,
the label is propagated through the lower slope as shown in Fig. 2.5c, where labels 3
and 9 are being propagated upwards, climbing up the hills. This iterative task ends
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Fig. 2.5 1D image represented as a terrain (top lines) and the corresponding grey values of each
pixel (bottom squares). (a) Init state, (b) MP update, (c) NM update, (d) final segmentation

when no more changes occur as in Fig. 2.5d. The result is a segmentation map where
each region is represented by the label corresponding to the seed pixel that generated
the region. The watershed lines can be later defined as the borders among regions.

The CA–Watershed can be synchronously or asynchronously implemented. The
asynchronous implementation is non-deterministic and may lead to different segmen-
tation results. A formal proof of correctness and convergence towards a watershed
segmentation using a mathematical model of data propagation in a graph is presented
in [32].

The asynchronous algorithm is particularly suitable for the CUDA computing
model as it was shown by Quesada-Barriuso et al. [34]. Different regions of the
image can be simultaneously and independently updated during certain number of
steps, thus reducing the number of points of synchronization, so the exploitation of
parallelism is maximized.

2.3.3 Majority Vote

The MV is a process for determining which out of an arbitrary number of candidates
has received most votes, considering a vote as a particular property or attribute.
One possible implementation of MV takes as input an array with the votes for each
candidate, and returns the element with most votes after one pass over the whole
vector [35]. In the hyperspectral classification context, the MV within a fixed window,
i.e. fixed neighborhood, is a standard spatial regularization procedure when it is
applied after a pixel-wise classification [8]. However, using the regions created by
the segmentation process as in this work, i.e. using an adaptive neighborhood, the
spatial structures that may be present in the image are taken into account in a more
realistic way. So, using an adaptive neighborhood, the MV process integrates the
spectral and the spatial information that are available per pixel within each watershed
region, summing up the votes that identify the spectral class for each pixel [36].
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From an implementation perspective, in order to combine the results, it is nec-
essary to identify with the same label all the pixels belonging to a region. This
may become a challenge when the algorithm is executed on a GPU, because
each watershed region can be computed by independent blocks of threads. So, it
could be necessary to connect the labels identifying the watershed regions among
different blocks.

2.4 Spectral–Spatial Processing in GPU

In this section the GPU projection of the classification process described in
Sect. 2.3 is detailed. The hyperspectral image must be divided into regions that are
distributed among the thread blocks. The regions will be one, two or three dimen-
sional depending on the executed stage, enabling all the threads to perform useful
work, and therefore exploiting the thousands of threads available in the GPU.

For the RCMG and the CA–Watershed stages, each data region must be extended
with a border of size one because the processing of each pixel requires data of its
neighbors. As an example, Fig. 2.6a shows an image divided into 4 × 4 pixel regions
assigned to blocks of 4 × 4 threads, and Fig. 2.6b the extended region for one of
the blocks. Threads on the edge of the block must perform extra work loading the
data corresponding to the border. In practice, rectangular regions are considered.
Using a rectangular block, with the longest dimension being the one along which
data is stored in global memory, the data of the border is packed in the minimum
number of cache lines. This way the overhead associated to global memory accesses
is minimized [37].

Thanks to the pipeline processing, the number of computations and the required
bandwidth are reduced in the majority vote stage, because all the pixels in the same
watershed region are already identified by the same watershed label. So, there is no
need to create new data structures and copy them to the GPU memory.

Fig. 2.6 An image divided into, 4 × 4 pixel regions and (b) the extended region for one of
the blocks
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Regarding the spectral processing, different implementations in GPU of SVM
are available in the literature [38–42]. Among those that provide the source code
performing training and classification, and producing a final classification map, the
selected library is the GPUSVM by Catanzaro et al. [40]. This implementation con-
siders the standard two-class soft-margin SVM classification problem. With the use
of the CUDA Basic Linear Algebra Subroutines (CUBLAS)1 to perform the classi-
fication, the library takes maximum profit from the latest CUDA releases.

2.4.1 Robust Color Morphological Gradient

The workflow of the RCMG algorithm, summarized in Fig. 2.7 is divided into
three steps. First, for all the pixel vectors, threads within a block cooperate to obtain
the distances of the set χ , for calculating Eq. 2.3, and computing the CMG. Second,
the pair of pixels Rs that are furthest apart, required for Eq. 2.4, are found and the
RCMG is calculated with the remaining distances in the third step. So, finally a
one-band gradient is obtained. In this work Rs = 1, i.e. only one pair of pixels is
removed.

The hyperspectral image can be partitioned in the spatial or the spectral domains.
From a processing point of view, two different algorithms have been implemented.
One based on spatial partitioning within a block, as shown in Fig. 2.8 a and described
in Sect. 2.4.1.1. Another based on spectral partitioning within a block, described in
Sect. 2.4.1.2 and shown in Fig. 2.8b. In both cases, the input image is stored in global
memory so that consecutive threads access consecutive global memory locations.
The intermediate results that are necessary in order to calculate the distances are
stored in shared memory.

Fig. 2.7 RCMG algorithm work-flow

Fig. 2.8 Kernel configuration for spatial (a) and spectral (b) partitioning

1 See CUBLAS at https://developer.nvidia.com/cublas

https://developer.nvidia.com/cublas
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2.4.1.1 Spatial Partitioning RCMG

In this implementation, each thread processes one spectral component, as shown in
Fig. 2.8a, and a group of threads cooperate in a reduction operation, where the largest
dimension of a thread block indexes the different spectral components. For each
region of the image, all the spectral components of each pixel vector are consecutively
stored in global memory. The kernel is configured to work in blocks of x × y threads,
corresponding to the X and Y dimensions of Fig. 2.8a. For each block, all the threads
load different components of each pixel vector simultaneously and compute a partial
result (xi )

2 − (x j )
2 of Eq. 2.3. Then, the threads in the X dimension cooperate in a

reduction operation [43] for computing the CMG (step 1). Half of the threads work
in the reduction, and the number of active threads is halved at each iteration as the
reduction proceeds.

One thread in the X dimension finds the pair of pixels that generated the maximum
distance (step 2) and computes the RCMG (step 3) with the remaining distances.
Finally, the RCMG is written in global memory.

2.4.1.2 Spectral Partitioning RCMG

In the spectral partitioning RCMG, each thread processes all the spectral components
of a pixel, as shown in Fig. 2.8b. For each region, data are stored in row-major order for
each band. The kernel is configured to work in blocks of 32×4 threads corresponding
to the X and Y dimensions in Fig. 2.8b. Threads within a block process a region of
each spectral band in a loop through all the bands (sequential processing). At each
iteration, data corresponding to a new band are loaded in shared memory, and the
partial results (xi )

2 − (x j )
2 of Eq. 2.3 are computed and stored. At the end of the

loop, all the distances for each pixel are available in shared memory.
To compute the CMG (step 1 in Fig. 2.7), each thread finds the maximum of

the distances of its set χ and the corresponding pair of pixels which generated that
maximum. Having identified the two pixel vectors that are furthest apart (step 2), each
thread computes Eq. (2.4) with the remaining distances (step 3) and writes the result
back to global memory. This implementation is expected to use less shared memory
that the previous one owing to the sequential scanning in the spectral domain. So,
more concurrent blocks per SM are also expected.

2.4.2 Watershed Based on CA

The input data to the CA–Watershed algorithm is the 2D gradient image obtained
from the RCMG algorithm. The CA–Watershed can be asynchronously implemented
as it was mentioned in Sect. 2.3.2, which is up to four times faster than the CUDA
synchronous implementation [34]. In this section the asynchronous algorithm is
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described, which has the advantage of reusing information within a block, efficiently
exploiting the shared and cache memories of the GPU.

The algorithm has two kernels implementing the initialization and updating stages
of the CA–Watershed. These kernels are configured to work in blocks of 32 × 4
threads operating over 32 × 4 pixel regions of the image. Data structures have been
compressed in order to reduce the storage requirements to 8 bytes per pixel as in
[34]. With the first kernel, the automaton is initialized. Once all the data have been
initialized, they are packed into 8 bytes per pixel before transferring them to global
memory.

The updating stage is a hybrid iterative process that includes intra-block updates
and inter-block updates. Each region is synchronously updated, for instance all cells
within a region are updated at each time step, while the regions themselves are asyn-
chronously updated (an update of all the blocks is performed at each inter-block step).

During the intra-block updating the values used from outside the block (a border
of size one) are kept constant and equal to their values at the beginning of the stage.
In the inter-block updating process, data are read at the block borders, which allows
the data propagation across the entire grid.

On each call to the CUDA kernel, an inter-block update takes place, where each
step is a set of intra-block updates. For each block, once data are loaded in shared
memory from an input buffer, the pixels are modified in registers according to their
state, and stored back to shared memory in an iterative intra-block process within
each region.

The intra-block updating ends when no new modifications are made with the
available data within the region. Then the data in shared memory are packed and
stored in global memory in an output buffer. This operation is repeated several times
in an iterative inter-block process. The algorithm ends when all regions have been
flooded and each pixel is labelled with a value indicating the region it belongs to.

The CA–Watershed implementation not only exploits efficiently the resources of
the GPU, as the shared memory, but also generates a segmentation map where the
pixels are connected. Figure 2.9a shows an example of an image segmented into
three regions, represented as “A”, “B”, “C”. The grey lines in each region indicate
that after the segmentation process every pixel of each region has the same label,

Fig. 2.9 An example of an image segmented into three regions, (a) represented as “A”, “B”, “C”,
and (b) the connected components created from the labels
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that of the pixel from which the region was created. So, the pixels are connected as
shown in Fig. 2.9b without the need of performing any component labelling process
[44]. Thus, the output of this algorithm can be used directly in the final stage of the
spectral–spatial classification scheme.

2.4.3 Majority Vote

The MV, when applied to this hyperspectral classification, processes the pixels within
each segmented region. In this implementation, a region can be assigned to different
thread blocks, therefore all the pixels belonging to the same region must be connected,
as shown in Fig. 2.9b.

By using the segmentation map, such as the one in Fig. 2.9a, the pixels of each
watershed region are already connected, so the MV can be projected in the GPU
following the steps: voting, winner and updating. The voting step counts the number
of SVM classes for each region. The winner step finds the class with the maximum
number of votes per region, and finally, the updating step assigns the winner class
to the pixels within the region. Each step is performed by a separate kernel that is
configured to work in one dimensional blocks of threads. In the first and third kernel
each thread operates on one pixel of the image, while in the second kernel each pixel
operates on the information collected for one region of the segmentation map. So,
for the second kernel less blocks need to be executed.

One majority vote per watershed region is performed. As the number of these
regions is unknown a priori, the first approach would be to allocate in global memory
data structures of a large enough size to compute as many regions as pixels in the
image. With the aim of saving memory resources, the number of regions generated
by the CA–Watershed algorithm are calculated prior to the voting step. Once the
number of regions is known, a two dimensional data structure is defined in global
memory being the number of watershed regions and the number of spectral classes
the dimensions of the structure.

For the voting kernel, each thread adds one vote to the corresponding class, using
the label as an index to reference its region. As two or more threads can vote in the
same region to the same class with no predictable order, the voting is done by atomic
operations. In the winner step, each thread finds the class with the maximum number
of votes (winning class) and saves its class identifier in global memory. The last
kernel updates the pixels of the classification map with the winning class, producing
a new spectral–spatial classification map.

2.5 Results

The algorithms have been evaluated on a PC based in the Nehalem microarchitecture
with an Intel quad-core i7-860 microprocessor (8 MB Cache, 2.80 GHz) and 8 GB
of Double Data Rate type three (DDR3) Synchronous DRAM. The code has been
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Table 2.1 Classification accuracy as percentages for the SVM and the whole spectral–spatial
scheme in CPU and GPU for the hyperspectral image of Pavia in terms of OA, AA and CS

SVM SVM Spect–Spat. Spect–Spat.
CPU GPU CPU GPU

OA 89.77 89.78 94.55 94.63
AA 91.49 91.50 95.00 94.97

CS RO
Asphalt 0.083 84.80 84.83 94.74 94.59
Meadows 0.029 90.37 90.39 94.89 95.12
Gravel 0.187 78.75 78.85 86.37 85.66
Trees 0.171 96.57 96.57 93.93 93.90
Metal sheets 0.197 99.55 99.55 99.63 99.63
Bare Soil 0.106 88.51 88.53 92.86 93.30
Bitumen 0.282 95.04 95.04 96.69 96.84
Bricks 0.140 89.90 89.90 95.98 95.79
Shadows 0.244 99.89 99.89 99.89 99.89

compiled using gcc version 4.4.3 with OpenMP 3.0 support under Linux. For the
CUDA implementation we run the algorithms on a NVIDIA Kepler architecture with
the GK104 chipset (1536 CUDA cores and 2 GB of Graphics Double Data Rate type
five (GDDR5) Synchronous DRAM). The GPU is a GeForce GTX680 with 64 KB
of on-chip memory that can be distributed among L1 cache and shared memory and
8 SMs which can execute up to 16 concurrent blocks giving a total maximum of 2048
threads per SM. The CUDA code has been compiled using nvcc and the 4.2 toolkit,
also under Linux.

The results are expressed in terms of execution times and speedups. For the SVM
spectral classification the speedups are calculated with respect to the LIBSVM [45]
that is a sequential library. For the remaining steps of the spectral–spatial classifica-
tion scheme of Fig. 2.2, the reference codes in CPU are optimized OpenMP parallel
implementations considering 4 threads because four cores are available in the Intel
Core i7. The tests were run on two hyperspectral airborne images that were obtained
from the Basque University (UPV/EHU)2: A 103-band ROSIS image from the Uni-
versity of Pavia (Pavia) with a spatial dimension of 610×340 pixels, and a 204-band
AVIRIS image of 512×217 pixels taken over the Salinas Valley, California (Salinas).
Although both images are of approximately the same global size, Pavia is larger in
the spatial domain while Salinas is larger in the spectral domain.

The final results were compared to the available ground truth of each image. these
results are validated using the Overall Accuracy (OA), which is the percentage of
correctly classified pixels in the whole image, the Class Accuracy (CS), which is the
percentage of correctly classified pixels for a given class, and the Average Accuracy
(AA), which is the mean of the CS for all the classes [13]. Tables 2.1 and 2.2 shows

2 Hyperspectral Remote Sensing Scenes available at http://www.ehu.es/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes

http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.es/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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Table 2.2 Classification accuracy as percentages for the SVM and spectral–spatial scheme in CPU
and GPU for the hyperspectral image of Salinas in terms of OA, AA and CS

SVM SVM Spect–Spat. Spect–Spat.
CPU GPU CPU GPU

OA 93.55 93.45 94.43 94.37
AA 96.82 96.76 96.90 96.89

CS RO
Brocoli_green_weeds_1 0.100 99.75 99.75 99.75 99.80
Brocoli_green_weeds_2 0.100 99.79 99.76 100.00 100.00
Fallow 0.100 99.85 99.85 100.00 100.00
Fallow_rough_plow 0.100 99.71 99.71 99.78 99.78
Fallow_smooth 0.100 98.77 98.77 99.14 99.14
Stubble 0.100 99.65 99.65 99.85 99.85
Celery 0.100 99.62 99.92 99.80 99.80
Grapes_untrained 0.100 89.64 89.57 93.42 93.12
Soil_vinyard_develop 0.100 99.95 99.81 99.98 99.98
Corn_senesced_green_weeds 0.100 98.05 97.53 98.78 98.72
Lettuce_romaine_4wk 0.100 98.97 98.97 98.97 98.97
Lettuce_romaine_5wk 0.100 99.79 99.79 99.58 99.79
Lettuce_romaine_6wk 0.100 99.67 99.67 95.96 95.74
Lettuce_romaine_7wk 0.100 95.51 95.42 94.77 94.77
Vinyard_untrained 0.100 71.05 70.82 71.68 71.66
Vinyard_vertical_trellis 0.100 99.11 99.11 98.95 99.17

the OA, AA, and CS percentages for the SVM and the spectral–spatial classification
scheme in CPU and GPU for the images of Pavia and Salinas. RO stands for the
ratio between the number of training samples and the number of testing samples for
each class. The best accuracies are indicated in bold. These results are similar to
those published in [6–8] when combining spectral and spatial information. Overall,
the image of Pavia gives the best results in terms of spectral–spatial classification
with an OA improvement of 4.85 points over the SVM. Similar results are obtained
in CPU and GPU. The image of Salinas has a very high OA score with the SVM
classification and thus, less room for improvement with the spectral–spatial scheme.
The improvement for this image is 0.92.

Figures 2.10 and 2.11 show from left to right the SVM classification map, the
RCMG results, the segmentation map represented as watershed lines, and the majority
vote for the University of Pavia and the Salinas Valley, respectively. The number of
watershed regions are 22,678 for the first image and 8,423 for latter one. An over-
segmented result is observed in Pavia, while the number of regions in Salinas is
smaller due to the larger plateaus present in that image

The performance results are summarized in Table 2.3 for Pavia and Table 2.4 for
Salinas. The time to transfer the hyperspectral image from CPU to the GPU global
memory at the beginning is included in the spectral stage. The data transfer time
for copying the final results back to the CPU is 0.6 ms for Pavia and 0.3 ms for
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Fig. 2.10 From left to right, the GPUSVM classification map, the RCMG, CA–Watershed lines
imposed over a false color composition to assist in visualizing the segmentation map, and the final
classification by majority vote, of the hyperspectral image of Pavia

Fig. 2.11 From left to right, the GPUSVM classification map, the RCMG, the CA–Watershed lines
and the final classification by majority vote, of the hyperspectral image of Salinas

Salinas, resulting in less than 0.003 % of the total time. The total times indicate that,
even with the high speedups obtained, the times required in GPU are around 17 s
for Pavia and 59 s for Salinas. These values are far from real-time, mainly due to
the cost of the spectral classification, that accounts for the 81.2 % of this GPU time.
So the real-time objective can only be achieved if a less costly spectral technique
is applied. Overall, the best results for the whole classification scheme are obtained
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Table 2.3 Performance results for the University of Pavia hyperspectral image (execution times in
seconds)

SVM SVM Spect. Part. Async. CA Majority Total
training classification RCMG watershed vote

CPU 0.5760 s 101.4484 s 0.1517 s 0.0186 s 0.0022 s 102.1969
GPU 3.2466 s 14.0497 s 0.0085 s 0.0010 s 0.0003 s 17.3067
Speedup 0.2× 7.2× 17.8× 18.6× 7.3× 5.9×

Table 2.4 Performance results for the Salinas Valley hyperspectral image (execution times in
seconds)

SVM SVM Spect. Part. Async. CA Majority Total
Training Classification RCMG Watershed Vote

CPU 1.5559 s 112.2305 s 0.1959 s 0.0963 s 0.0023 s 114.0809 s
GPU 11.0552 s 47.7323 s 0.0092 s 0.0035 s 0.0001 s 58.8006 s
Speedup 0.1× 2.3× 21.3× 27.5× 23.0× 1.9×

for Pavia with a speedup of 5.9×. In the next sections we will explain in detail the
results for each stage.

2.5.1 SVM Spectral Classification

The standard two-class SVM spectral classification has two phases: training and
classification. The training phase builds a model which is used to predict if new
samples belong to one category or another in the second phase of classification,
which is the most time consuming one as it can be observed in Tables 2.3 and 2.4.
The percentage of time corresponding to classification is the same for both images,
81.2 % of the time in GPU required for the whole classification process.

When more than two classes are present the classification must be multiclass
and different strategies can be applied in order to solve it. Hsu [46] found that the
One-Against-One (OAO) method is more suitable for practical use than the One-
Against-All (OAA), mainly because the total training time is shorter. In this work
GPUSVM with the OAO method is used to classify the hyperspectral images. The
kernel function for the SVM is a Gaussian Radial Basis Function (RBF) [28]. The
number of classes considered for the classification was taken from the ground truth,
with nine classes for the first image and sixteen for the second one.

First, the SVM was trained with the same values of C , γ , and number of training
samples for the Pavia image as in [8]: C = 128, γ = 0.125 and 3192 samples. In
the case of the Salinas image, the values C = 256 and γ = 0.125 were determined
by fivefold cross validation, and the number of training samples for each class was
selected as 10 % of the total samples for the class.
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Table 2.5 Performance results for the spatial and spectral partitioning RCMG with the Pavia and
the Salinas hyperspectral images

Spatial partitioning Spectral partitioning
Pavia Salinas Pavia Salinas

CPU (OpenMP) 0.1517s 0.1959s 0.1517s 0.1959s
GPU (CUDA) 0.0537s 0.0638s 0.0085s 0.0092s
Speedup 2.8× 3.1× 17.8× 21.3×

As shown in Tables 2.3 and 2.4, the speedup results are worse for the GPU in the
training phase. The SVM requires a small number of training samples in this phase
[3] and, therefore, the GPU performance is low because the number of samples is
not enough to exploit the big number of threads that can be simultaneously available
in the GPU, up to 2,048 threads per SM in the GTX680. This is not a problem, as
the training phase only needs to be performed once for each type of hyperspectral
image and it is responsible for only 18.8 % of the total time.

The second phase in the spectral classification, which consumes 81.2 % of the time
for the Pavia and Salinas images, obtained speedups of 7.2× and 2.3× respectively.
The tests are carried out as in [40], excluding the file I/O time for both, the LIBSVM
and GPUSVM, but including CPU–GPU data transfer in the GPU implementation
times.

2.5.2 Robust Color Morphological Gradient

The RCMG is the vectorial gradient, described in Sect. 2.3.1, that is applied to the
hyperspectral image in order to reduce it to one-band. The approaches described in
Sect. 2.4.1, called spatial partitioning RCMG and spectral partitioning RCMG have
been developed. Different block configurations were tested and finally the spectral
partitioning RCMG implementation was configured with blocks of 32 × 4 threads.
For the spatial partitioning RCMG, 128 × 4 threads per block for the Pavia image
and 256 × 2 threads per block for the Salinas image were considered. Each block in
the spatial partitioning RCMG processes a region of 4 × 4 pixel vectors for the first
image and a region of 2 × 2 pixel vectors for the second one.

Table 2.5 shows a summary of performance for the images. The best results are
for the spectral partitioning RCMG with speedups of 17.8× and 21.3×. The shared
memory requirements for the spectral partitioning RCMG are 5.7 KB per block,
while the spatial partitioning RCMG requires up to 20.6 KB, depending on the block
size. Thus, more blocks per SM are concurrently executed in the first approach which
leads to a better speedup as shown in Table 2.5.
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2.5.3 Asynchronous CA–Watershed

As explained in Sect. 2.4.2, the asynchronous CA–Watershed takes as input the 2D
gradient image obtained from the RCMG calculation. This implementation presents
the advantage of reusing information within each thread block, efficiently exploiting
the shared and cache memories of the GPU. In addition, it achieves better results when
the image has large plateaus because in this situation the labels must be propagated
through large regions. In the asynchronous implementation the labels are propagated
faster within a block, unlike the synchronous implementation which performs more
steps to propagate them within a plateau. Thus, less inter-block synchronizations are
needed [34].

The kernels were configured to work with blocks of 32×4 threads and the shared
memory was maximized to 48 KB, because only 21.4 KB are required for the 16
blocks that are simultaneously active per SM.

This proposal achieves speedups of 18.6× and 27.5×, that can be observed in
Tables 2.3 and 2.4. The speedup is better for the Salinas image, as a consequence of
presenting larger plateaus.

2.5.4 Majority Vote

The MV was projected on the GPU taking advantage of the pipeline processing
explained in Sect. 2.4, and reducing the requirements of global memory, which also
means less data transfer. The times shown in Tables 2.3 and 2.4 include, as it was
described in Sect. 2.4.3, the step for counting the watershed regions, as well as the
global memory allocation time.

The MV obtained speedups of 7.3× and 23.0× for the images of Pavia and Salinas.
The difference in the speedups are related mainly to the number of regions because
the number of blocks executed in the winner step is directly related to the number of
watershed regions in the image. The segmentation map of Pavia has 22,678 regions
which is approximately three times more than Salinas, which has 8,423 regions, that
is approximately the speedup factor observed in the performance tables.

The kernels were configured to work in one dimensional blocks. Different block
sizes have been tested and it was found that the best performance is achieved for
blocks of 128 threads. With this configuration each SM is fully exploited with 16
blocks simultaneously active.

2.6 Conclusions

In this work a GPU projection scheme for a spectral–spatial classification of hyper-
spectral images was presented. The scheme efficiently exploits the memory hierar-
chy and the thousands of threads available in the GPU architecture. The different
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stages of the scheme have been concatenated with a pipeline processing that mini-
mizes the data transfers between the CPU and the GPU and maximizes the compu-
tational throughput. Different hyperspectral data partitioning strategies and thread
block arrangements were studied in order to have a larger number of blocks being
concurrently executed. The spectral classification stage was carried out with SVM
using the GPUSVM, a third party library. The spatial processing stages consists in
the calculation of a RCMG, that reduces the dimensionality of the hyperspectral
image to a two dimensional image, followed by the asynchronous calculation of a
watershed transform based on cellular automata. The spectral and the spatial results
are combined by a MV technique commonly used in classification of hyperspectral
images.

The projection of the classification process in the GPU requires working with
data blocks of different dimensionality depending on the stage of the process: 3D for
RCMG, 2D for watershed and 1D for MV. For the RCMG, two different approxima-
tions of data distribution among blocks were studied: spectral and spatial partitioning.
The spectral partitioning takes better advantage of the memory hierarchy of the GPU
maximizing the number of active blocks per SM. For the watershed transform an
asynchronous strategy based on a cellular automaton was proposed. This asynchro-
nous approach has the advantage that it can efficiently exploit the shared memory of
the GPU being up to four times faster than a synchronous implementation. Finally,
the MV was designed to save global memory space and to directly operate on the
output of the other two stages using pipeline processing. This way, there is no need
to move new data structures to the GPU.

The speedup values for the whole classification process were 5.9× for Pavia and
1.9× for Salinas showing the efficiency of the GPU projections while maintaining
the same classification quality as when it is computed on CPU. The best performance
values for the RCMG, 17.8× and 21.3×, were obtained for the spectral partitioning
approach, with the images of Pavia and Salinas, respectively. The asynchronous
CA–Watershed reached speedups of 18.6× and 27.5×, and the MV speedups of 7.3×
and 23.0×, respectively. These results show that the GPU is an adequate computing
platform for on-board processing of hyperspectral information.

As the most costly part of the spectral–spatial classification process, and therefore
the critical part in terms of real-time execution, was the classification stage by SVM,
other spectral classification algorithms more adequate for their efficient projection
on GPU should be investigated.
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