
Chapter 5

Simulation

Science without religion is lame, religion without
science is blind.

—Albert Einstein

The previous chapter dealt with one of the tools for performance analysis—queueing

theory. This chapter concentrates on another tool—simulation. In this chapter, we

provide an overview of simulation: its historical background, importance,

characteristics, and stages of development.

There is a lot of confusion among students as to what simulation is really about.

Some confuse simulation with emulation or numerical modeling. While emulation

is building a prototype (either hardware or software or combination of both) to

mimic the real system, simulation is “the process of designing a mathematical or

logical model of a real system and then conducting computer-based experiments

with the model to describe, explain, and predict the behavior of the real system”

[1]. In other words, simulation is modeling the real system, while emulation is an

imitation of the system.

Simulation is designing a model that resembles a real system in certain important aspects.

It can be viewed as the act of performing experiments on a model of a given

system. It is a cost-effective method of solving engineering problems. With

computers, simulations have been used with great success in solving diverse

scientific and engineering problems.

Simulation emerged as a numerical problem-solving approach during World

War II when the so-called Monte Carlo methods were successfully used by John

Von Neumann and Stanislaw Ulam of Los Alamos laboratory. The Monte Carlo

methods were applied to problems related to atomic bomb. Simulation was

introduced into university curricula in the 1960s during which books and

periodicals on simulation began to appear. The system that is being modeled is

deterministic in Monte Carlo simulation, and stochastic in case of simulation [2].
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Computer systems can be modeled at several levels of detail [3]: circuit-level,

gate-level, and system-level. At the circuit-level, we employ simulation to analyze

the switching behavior of various components of the circuit such as resistors,

capacitors, and transistors. In the gate-level simulation, the circuit components

are aggregated into a single element so that the element is analyzed from a

functional standpoint. At the system-level, the system is represented as a whole

rather than as in segments as in gate-level simulation. System-level simulation

involves analyzing the entire system from a performance standpoint. It is this kind

of simulation that we shall be concerned with in this chapter.

5.1 Why Simulation?

A large number of factors influence the decision to use any particular scientific

technique to solve a given problem. The appropriateness of the technique is one

consideration, and economy is another. In this section, we consider the various

advantages of using simulation as a modeling technique.

A system can be simplified to an extent that it can be solved analytically. Such an

analytical solution is desirable because it leads to a closed form solution (such as in

Chap. 4) where the relationship between the variables is explicit. However, such a

simplified form of the system is obtained by many several assumptions so as to

make the solution mathematically tractable. Most real-life systems are so complex

that some simplifying assumptions are not justifiable, and we must resort to

simulation. Simulation imitates the behavior of the system over time and provides

data as if the real system were being observed.

Simulation as a modeling technique is attractive for the following reasons [4, 5]:

(1) It is the next best thing to observing a real system in operation.

(2) It enables the analysis of very complicated systems. A system can be so

complex that its description by a mathematical model is beyond the capabilities

of the analyst. “When all else fails” is a common slogan for many such

simulations.

(3) It is straightforward and easy to understand and apply. It does not rely heavily

on mathematical abstractions which require an expert to understand and apply.

It can be employed by many more individuals.

(4) It is useful in experimenting with new or proposed design prior to implementa-

tion. Once constructed, it may be used to analyze the system under different

conditions. Simulation can also be used in assessing and improving an existing

system.

(5) It is useful in verifying or reinforcing analytic solutions.

A major disadvantage of simulation is that it may be costly because it requires

large expenditure of time in construction, running, and validation.
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5.2 Characteristics of Simulation Models

As mentioned earlier, a model is a representation of a system. It can be a replica,

a prototype, or a smaller-scale system [6]. For most analysis, it is not necessary to

account for all different aspects of the system. A model simplifies the system to

sufficiently detailed level to permit valid conclusions to be drawn about the system.

A given system can be represented by several models depending on the objectives

being pursued by the analyst. A wide variety of simulation models have been

developed over the years for system analysis. To clarify the nature of these models,

it is necessary to understand a number of characteristics.

5.2.1 Continuous/Discrete Models

This characteristic has to do with the model variables. A continuousmodel is one in

which the state variables change continuously with time. The model is

characterized by smooth changes in the system state. A discrete model is one in

which state variables assume a discrete set of values. The model is characterized by

discontinuous changes in the system state. The arrival process of messages in the

queue of a LAN is discrete since the state variable (i.e. the number of waiting

messages) changes only at the arrival or departure of a message.

5.2.2 Deterministic/Stochastic Models

This characteristic deals with the system response. A system is deterministic if its
response is completely determined by its initial state and input. It is stochastic
(or non-deterministic) if the system response may assume a range of values for

given initial state and input. Thus only the statistical averages of the output

measures of a stochastic model are true characteristics of the real system.

The simulation of a LAN usually involves random interarrival times and random

service times.

5.2.3 Time/Event Based Models

Since simulation is the dynamic portray of the states of a system over time, a

simulation model must be driven by an automatic internal clock. In time-based
simulation, the simulation clock advances one “tick” of Δt. Figure 5.1 shows the

flowchart of a typical time-based simulation model.

5.2 Characteristics of Simulation Models 117



Although time-based simulation is simple, it is inefficient because some action

must take place at each clock “tick.” An event signifies a change in state of a

system. In event-based simulation model, updating only takes place at the occur-

rence of events and the simulation clock is advanced by the amount of time since

the last event. Thus no two events can be processed at any pass. The need of

determining which event is next in event-based simulation makes its programming

complex. One disadvantage of this type of simulation is that the speed at which the

simulation proceeds is not directly related to real time; correspondence to real time

operation is lost. Figure 5.2 is the flow chart of a typical event-based simulation.

The concepts of event, process, and activity are important in building a system

model. As mentioned earlier, an event is an instantaneous occurrence that may

change the state of the system. It may occur at an isolated point in time at which

decisions are made to start or end an activity.

A process is a time-ordered sequence of events. An activity represents a duration

of time. The relationship of the three concepts is depicted in Fig. 5.3 for a process

that comprises of five events and two activities. The concepts lead to three types of

discrete simulation modeling [7]: event scheduling, activity scanning, and process
interaction approaches.

No
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Initialize 
variables 

T =T + ΔT

Generate 
events 

Event 1 Event 2 Event 3

STOP

T ≥ Tmax

Fig. 5.1 Typical time-

based simulation model
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5.2.4 Hardware/Software Models

Digital modeling may involve either hardware or software simulation. Hardware

simulation involves using a special purpose equipment, and detailed programming

is reduced to a minimum. This equipment is sometimes called a simulator.
In software simulation, the operation of the system is modeled using a computer

program. The program describes certain aspects of the system that are of interest.

In this chapter, we are mainly concerned with software models that are discrete,

stochastic, and event-based.

No

Yes

Initialize
variables

T =Tnextevent

Event 1 Event 2 Event 3
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Determine
next event

Generate
next event

Update
statistics

T ≥Tmax

Fig. 5.2 Typical event-based simulation model
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5.3 Stages of Model Development

Once it has been decided that software simulation is the appropriate methodology to

solve a particular problem, there are certain steps a model builder must take. These

steps parallel six stages involved in model development. (Note that the model is the

computer program.) In programming terminology, these stages are [5, 9, 10]:

(1) Model building, (2) program synthesis, (3) model verification, (4) model vali-

dation, (5) model analysis, and (6) documentation. The relationship of the stages is

portrayed in Fig. 5.4, where the numbers refer to the stages.

1. Model Building: This initial stage usually involves a thorough, detailed study of

the system to decompose it into manageable levels of detail. The modeler often

simplifies components or even omit some if their effects do not warrant their

inclusion. The task of the modeler is to produce a simplified yet valid abstraction

of the system. This involves a careful study of the system of interest. The study

should reveal interactions, dependence, and rules governing the components of

the system. It should also reveal the estimation of the system variables and

parameters. The modeler may use flowcharts to define or identify subsystems

and their interactions. Since flowcharting is a helpful tool in describing a

problem and planning a program, commonly used symbols are shown in

Fig. 5.5. These symbols are part of the flowcharting symbols formalized by the

American National Standards Institute (ANSI). The modeler should feel free to

adapt the symbols to his own style.

2. Program Synthesis: After a clear understanding of the simplified system and the

interaction between components is gained, all the pieces are synthesized into a

coherent description, which results in a computer program. The modeler must

decide whether to implement the model in a general-purpose language such as

FORTRAN or C++ or use a special-purpose simulation language such GASP,

Event 1 Event 2 Event 3 Event 4 Event 5 time
Arrival Begin End End

Task 1 Task 2 Task 1 Task 2

Activity 1

Process 

Activity 2

Begin

Fig. 5.3 Relationship of events, activities, and processes
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GPSS, SLAM, SIMULA, SIMSCRIPT, NS2 or OPNET. A special-purpose

simulation language usually require lesser amount of development time, but

executes slower than a general-purpose language. However, general-purpose

languages so speed up programming and verification stages that they are becom-

ing more and more popular in model development [5]. The selection of the type

of computer and language to be used depends on resources available to the

programmer.

3. Model Verification: This involves a logical proof of the correction of the program
as a model. It entails debugging the simulation program and ensuring that the

input parameters and logical structure of the model are correctly represented in

the code. Although the programmer may know precisely what the program is

intended to accomplish, the program may be doing something else.

1

2

3

Yes 

4

Yes 

5

6

Problem
formulation

Model
building

Program
synthesis

Verified?

Validated?

Analysis

Documentation

Implementation

No 

No 

Fig. 5.4 Stages in model

development
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4. Model Validation: This stage is the most crucial. Since models are simplified

abstractions, the validity is important. A model is validated by proving that the

model is a correct representation of the real system. A verified program can

represent an invalid model. This stage ensures that the computer model matches

the real system by comparing the two. This is easy when the real system exists.

It becomes difficult when the real system does not exist. In this case, a simulator

can be used to predict the behavior of the real system. Validationmay entail using

a statistical proof of correctness of the model. Whichever validation approach is

used, validation must be performed before the model can be used. Validation may

uncover further bugs and even necessitate reformulation of the model.

5. Model Analysis: Once the model has been validated, it can be applied to solve

the problem at hand. This stage is the reason for constructing the model in the

first place. It involves applying alternate input parameters to the program and

observing their effects of the output parameters. The analysis provides estimate

measures of performance of the system.

6. Documentation: The results of the analysis must be clearly and concisely

documented for future references by the modeler or others. An inadequately

documented program is usually useless to everyone including the modeler

himself. Thus the importance of this step cannot be overemphasized.

5.4 Generation of Random Numbers

Fundamental to simulations is the need of having available sequences of numbers

which appear to be drawn at random from a particular probability law. The method

by which random numbers are generated is often called the random number

Symbol

Processing:  a group of operations; computation 

Decision:  a branching operation 

Terminal:  marks the beginning or end of the program

Connector:  an entry from, or point to, some other
Section of the flowchart 

Meaning 

Fig. 5.5 Common flowchart symbols
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generator [8, 10–12]. A simple way of generating random numbers is by casting a

dice with six faces numbered 1 to 6. Another simple way is to use the roulette wheel

(similar to the “wheel of fortune”). These simple ways, however, will not generate

enough numbers to make them truly random.

The almost universally used method of generating random numbers is to select a

function G(Z) that maps integers into random numbers. Select some guessed value

Z0, and generate the next random number as Zn + 1 ¼ G(Zn). The commonest

function G(Z) takes the form

G Zð Þ ¼ aZþ cð Þ mod m (5.1)
where

Z0 ¼ a starting value or a seed Z0 � 0ð Þ (5.2)

a ¼ multiplier(a � 0),

c ¼ increment (c � 0),

m ¼ the modulus

The modulus m is usually 2t for t-digit binary integers. For a 31-bit computer

machine, for example, m may be 231 � 1. Here Z0, a, and c are integers in the same

range as m > a, m > c, m > Z0.

The desired sequence of random numbers Zn is obtained from

Znþ1 ¼ aZn þ cð Þ mod m (5.3)

This is called a linear congruential sequence. For example, if Z0 ¼ a ¼ c ¼ 7

and m ¼ 10, the sequence is

7, 6, 9, 0, 7, 6, 9, 0, . . . (5.4)

In practice, we are usually interested in generating random numbers U from

the uniform distribution in the interval (0,1).

U ¼ Znþ1

m
(5.5)

U can only assume values from the set {0, 1/m, 2/m, . . ., (m � 1)/m}. A set of

uniformly distributed random numbers can be generated using the following

procedure:

(a) Select an odd number as a seed value Z0.

(b) Select the multiplier a ¼ 8r � 3, where r is any positive integer and a is close

to 2t/2. If t ¼ 31, a ¼ 215 + 3 is a good choice.

(c) Compute Zn + 1 using either the multiplicative generator

Znþ1 ¼ aZn mod m (5.6)
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or the mixed generator

Znþ1 ¼ aZn þ cð Þ mod m (5.7)

(d) Compute U ¼ Zn + 1/m.

U is uniformly distributed in the interval (0,1). For generating random

numbers X uniformly distributed over the interval (A,B), we use

X ¼ Aþ B� Að ÞU (5.8)

Random numbers based on the above mathematical relations and computer-

produced are not truly random. In fact, given the seed of the sequence, all numbers

U of the sequence are completely predictable or deterministic. Some authors empha-

size this point by calling such computer-generated sequences pseudorandomnumbers.

Example 5.1 (a) Using linear congruential scheme, generate ten pseudorandom

numbers with a ¼ 573, c ¼ 19, m ¼ 103, and seed value Z0 ¼ 89. Use these

numbers to generate uniformly distributed random numbers 0 < U < 1.

(b) Repeat the generation with c ¼ 0.

Solution

(a) This is a multiplicative generator. Substituting a ¼ 573, c ¼ 19, m ¼ 1,000,

and Z0 ¼ 89 in Eq. (5.3) leads to

Z1 ¼ 573 � 89 + 19 (mod 1,000) ¼ 16

Z2 ¼ 573 � 16 + 19 (mod 1,000) ¼ 187

Z3 ¼ 573 � 187 + 19 (mod 1,000) ¼ 170

Z4 ¼ 573 � 170 + 19 (mod 1,000) ¼ 429

Z5 ¼ 573 � 429 + 19 (mod 1,000) ¼ 836

Z6 ¼ 573 � 836 + 19 (mod 1,000) ¼ 47

Z7 ¼ 573 � 47 + 19 (mod 1,000) ¼ 950

Z8 ¼ 573 � 950 + 19 (mod 1,000) ¼ 369

Z9 ¼ 573 � 369 + 19 (mod 1,000) ¼ 456

Z10 ¼ 573 � 456 + 19 (mod 1,000) ¼ 307

Dividing each number by m ¼ 1,000 gives U as

0.016, 0.187, 0.170, . . .,0.307

(b) For c ¼ 0, we have the mixed generator. Thus, we obtain

Z1 ¼ 573 � 89 (mod 1,000) ¼ 997

Z2 ¼ 573 � 997 (mod 1,000) ¼ 281

Z3 ¼ 573 � 281 (mod 1,000) ¼ 13

Z4 ¼ 573 � 13 (mod 1,000) ¼ 449

Z5 ¼ 573 � 449 (mod 1,000) ¼ 277

Z6 ¼ 573 � 277 (mod 1,000) ¼ 721

Z7 ¼ 573 � 721 (mod 1,000) ¼ 133

Z8 ¼ 573 � 133 (mod 1,000) ¼ 209
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Z9 ¼ 573 � 209 (mod 1,000) ¼ 757

Z10 ¼ 573 � 757 (mod 1,000) ¼ 761

with the corresponding U as

0.997, 0.281, 0.013,. . .,0.761

5.5 Generation of Random Variables

It is often required in a simulation to generate random variable X from a given

probability distribution F(x). The most commonly used techniques are the inverse

transformation method and the rejection method [10, 13].

The inverse transformation method basically entails inverting the cumulative

probability function F(x) ¼ P[X � x] associated with the random variable X. To

generate a random variable X with cumulative probability distribution F(x), we set

U ¼ F(x) and obtain

X ¼ F�1 Uð Þ (5.9)

where X has the distribution function F(x).

If, for example, X is a random variable that is exponentially distributed with

mean μ, then

F xð Þ ¼ 1� e�x=μ, 0 < x < 1 (5.10)

Solving for X in U ¼ F(X) gives

X ¼ �μln 1� Uð Þ (5.11)

Since (1 � U) is itself a random number in the interval (0,1), we can write

X ¼ �μlnU (5.12)

A number of distributions which can be generated using the inverse method are

listed in Table 5.1.

The rejection method can be applied to the probability distribution of any

bounded variable. To apply the method, we let the probability density function

of the random variable f(x) ¼ 0 for a > x > b, and let f(x) be bounded by M

(i.e. f(x) � M) as shown in Fig. 5.6.

We generate random variate by taking the following steps:

(1) Generate two random numbers (U1, U2) in the interval (0,1).

(2) Compute two random numbers with uniform distributions in (a,b) and (0,M)

respectively, i.e.

X ¼ a + (b � a) U1 (scale the variable on the x-axis)

Y ¼ U2 M (scale the variable on the y-axis).
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(3) If Y � f(X), accept X as the next random variate, otherwise reject X and return

to Step 1.

Thus in the rejection technique all points falling above f(x) are rejected while those

points falling on or below f(x) are utilized to generate X through X ¼ a + (b � a)U1.

The C codes for generating uniform and exponential variates using Eqs. (5.8)

and (5.12) are shown in Fig. 5.7. RAND_MAX is defined in stdlb.h and defines the

maximum random number generated by the rand() function. Also, EX represents

the mean value of the exponential variates.

Other random variables are generated as follows [14]:

• Bernoulli variates: Generate U. If U � p, return 0. Otherwise, return 1.

• Erlang variates: Generate U in m places and then

Erlang a;mð Þ � �aln
Ym
k¼1

Uk

 !
• Geometric variates: Generate U and compute

G pð Þ ¼ lnU

ln 1� pð Þ
� �

where [.] denotes rounding up to the next larger integer.
• Gaussian (or normal) variates: Generate twelve U, obtain Z ¼

X12
k¼1

Uk � 6 and

set X ¼ σZ + μ

Table 5.1 Applications

of the inverse-transform

method [14]

Distribution F(x) Inverse

Exponential 1 � e� x/μ � μ ln U

Geometric 1 � (1 � p)x lnU
ln 1�pð Þ

Logistic 1� 1
1þe x�μð Þ=b μ� bln 1

U � 1
� �

Pareto 1 � x� μ 1
U1=μ

Weibull 1� e x=að Þb a(ln U )1/b

f(x) 

M 

a b x

Fig. 5.6 The rejection

method of generating a

random variate from f(x)
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5.6 Simulation of Queueing Systems

For illustration purposes, we now apply the ideas in the previous sections specifi-

cally to M/M/1 and M/M/n queueing systems. Since this section is the heart of this

chapter, we provide a lot of details to make the section as interesting, self-

explanatory, and self-contained as possible.

5.6.1 Simulation of M/M/1 Queue

As shown in Fig. 5.8, the M/M/1 queue consists of a server which provides service

for the customers who arrive at the system, receive service, and depart. It is a single-

server queueing system with exponential interarrival times and exponential service

times and first-in-first-out queue discipline. If a customer arrives when the server is

busy, it joins the queue (the waiting line).

There are two types of events: customer arrivals (A) and departure events (D).

The following quantities are needed in representing the model [15, 16]:

AT ¼ arrival time

DT ¼ departure time

BS ¼ Busy server (a Boolean variable)

QL ¼ queue length

RHO ¼ traffic intensity

ART ¼ mean arrival time

SERT ¼ mean service time

CLK ¼ simulation global clock

CITs ¼ customer interarrival times (random)

CSTs ¼ customer service times (random)

TWT ¼ total waiting time

NMS ¼ total no. of messages (or customers) served

The global clock CLK always has the simulated current time. It is advanced by

AT, which is updated randomly. The total waiting time TWT is the accumulation of

the times spent by all customers in the queue.

The simulator works as shown in the flowchart in Fig. 5.9a and explained as

follows. As the first step, we initialize all variables.

X=rand()/RAND_MAX; 

X=A+(B-A)*X; 

X=rand()/RAND_MAX; 

X=-EX*log(X); 

Fig. 5.7 Subroutines

for generating random:

(a) uniform, (b) exponential

variates
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Fig. 5.8 M/M/1 queue
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a

Fig. 5.9 (a) Flowchart for the simulation of M/M/1 queue, (b) flowchart of the arrival event, (c)

flowchart for the departure event
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CIT = ART*LOG(X) 
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c

Fig. 5.9 (continued)
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CLK ¼ 0 (simulation clock)

QL ¼ 0

TWT ¼ 0

NMS ¼ 0

AT ¼ 0

BS ¼ false

DT ¼ bigtime, say 1025

other variables ¼ 0 or specify

The “bigtime” is selected such that it is greater than any value of CLK in the

simulation.

As the second step, we determine the next event by checking whether AT > DT.

By default the first event to occur is arrival of the first customer, as illustrated in

Fig. 5.10. Whether the second or subsequent event is arrival or departure depends

on whether AT < DT because AT and DT are generally random.

As the third step, update statistics depending on whether the event is arrival or

departure. The occurrence of either will affect QL or BS. Since this step is crucial,

the step is illustrated in Fig. 5.9b, c for arrival and department events respectively.

For an arrival event, update statistics by updating the total waiting time and

scheduling the next arrival event. If server is busy, increment queue size. If server

is idle, make server busy and schedule departure/service event. For departure event,

update the total waiting time, system clock, and increment the number of customers

served. If queue is empty, disable departure event. As shown in Fig. 5.9c, the

departure event is disabled by setting DT ¼ bigtime. This will ensure that a

customer does not exit the system before being served. If queue is not empty,

make server busy, decrement queue size, and schedule next departure event.

As the fourth step, determine whether simulation should be stopped by checking

when CLK � TMAX (or when a large number of customers have been served,

i.e. NMS � NMAX). And as the last step, compute the mean/average values, i.e.

Simulation time

First 
departure

Scheduled departure time

0 t0 t1

Interarrival time

First
arrival

Next
arrival

Fig. 5.10 The first few events in simulation
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Average queue length ¼ TWT

CLK
(5.13)

Average waiting time ¼ TWT

NMS
(5.14)

5.6.2 Simulation of M/M/n Queue

Figure 5.11 shows a M/M/n queue, in which n servers are attached to a single queue.

Customers arrive following a Poisson counting process (i.e., exponential

interarrival times). Each server serves the customers with exponentially distributed

service times. Here, we assume that the mean service time is the same for all of the

servers. If all the servers are busy, a new customer joins the queue. Otherwise, it

will be served by one of the free servers. After serving a customer, the server can

serve the customer waiting ahead of queue, if any.

With a careful observation of the way that the customers are served, we can

extend the C program for M/M/1 queue to take care of the more general, M/M/n

queue. The following quantities should be defined as arrays instead of scalar

quantities:

DT[j]—departure time from the jth server, j ¼ 1,2,. . ., n
BS[j]—busy server jth, j ¼ 1,2,. . ., n

We also define a variable named SERVER which is associated with the current

event. The other quantities remain unchanged from the M/M/1 model. Figure 5.12a

illustrates the flowchart of simulator for M/M/n queue.

As the first step, we initialize all variables at the start of the program just like

for the M/M/1 queue (Fig. 5.9). The only difference here is with the two arrays for

BS and DT.

Poisson
arrival

Servers Departures

1

2

.

.

.

n

Queue

Fig. 5.11 M/M/n queue
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DT[j] ¼ bigtime, j ¼ 1,2, . . ., n
BS[j] ¼ false, j ¼ 1,2,. . ., n

As the second step, we determine the next event by checking whether AT < DT

[j] for all j ¼ 1,2,. . .,n. If so, the program proceeds with the arrival event in the third

step. Otherwise it finds the SERVER associated with the closest departure event.

Yes No

A

            C

    B

D

No

Yes

Start

a

Initialize  variables

Is this an
arrival
event?

Arrival
Event

Departure
Event 

Stop
Simulation?

Compute mean
values of

output variables

Stop

Scan the event list,  AT, DT(j) (j=1,2,…n)
and  choose the closest event in time  

Identify the “server”
associated with this event

Fig. 5.12 (a) Flowchart for the simulation of M/M/n queue, (b) flowchart of the arrival event,

(c) flowchart for the departure event
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DT[SERVER]=CST+CLK

DT=BIGTIME

Fig. 5.12 (continued)
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As the third step, the program performs either the arrival or departure routine

(Fig. 5.12b, c), and updates the statistics accordingly. For an arrival event, the

program updates TWT and CLK and then checks to see if a server is free. If all the

servers are busy, the queue is incremented by one. If some servers are free, the first

available one is made busy and scheduled for a departure event. For departure

event, only the server engaged in this event becomes free. If there is no customer in

queue, this server remains idle and its departure event is assigned “bigtime.” When

the queue is not empty, the server will be busy again and the next departure event

will be scheduled.

Example 5.2 (a) Write a computer program to simulate an M/M/1 queue assuming

that the arrival rate has a mean value of 1,000 bps and that the traffic intensity

ρ ¼ 0.1, 0.2,. . ., 0.9. Calculate and plot the average queue length and the average

waiting time in the queue for various values of ρ. Compare your results with the

exact analytical formulas. (b) Repeat part (a) for an M/D/1 queue.

Solution

(a) Based on the flowchart given in Fig. 5.9 and the variables introduced above, we

develop a program in C to implement the simulator for M/M/1 queue. In this

example each single bit represents a customer, and the customers arrive 1,000

per second on average. The simulator runs according to the flowchart for each

value of ρ ¼ 0.1, 0.2, . . .,0.9. For each ρ, the simulator computes the output

variables after enough number of customers (say 10,000) are served. The arrival

rate is λ ¼ 1,000 bps, and the mean interarrival time (1/λ) is 1 ms. For each ρ,
the mean departure rate is μ ¼ λ/ρ and the corresponding mean service time is

1/μ. In Fig. 5.13, the average waiting time and the average queue length for

M/M/1 queue are shown. The results are given for both the simulation and

analytical solution. The analytical formulas for M/M/1 queue are found in

Chap. 4:

E Wð Þ ¼ ρ

μ 1� ρð Þ (5.15)

E Nq

� � ¼ ρ2

1� ρ
(5.16)

where E(W) and E(Nq) are the average waiting time and queue length

respectively.

(b) For M/D/1 queue, the service times are deterministic or constant. The only

change in the flowchart of Fig. 5.9 is replacing the statement

CST ¼ �SERT*LOG(X)
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with CST ¼ SERT. The analytical formulas for an M/D/1 queue are found in

Chap. 4, namely:

E Wð Þ ¼ ρ

2μ 1� ρð Þ (5.17)

E Nq

� � ¼ ρ2

2 1� ρð Þ (5.18)

Figure 5.14 show the results for M/D/1 queue. We notice that both the

average waiting time and queue length are half of their respective values for

M/M/1 queue which is confirmed by simulation.

Example 5.3 Develop a computer program to simulate an M/M/n queue assuming

that the arrival rate has a mean value of 1,000 bps and that traffic intensity ρ ¼ 0.1,

0.2, . . .. Calculate and plot the average waiting time and the average queue length in

the queue for n ¼ 2 and n ¼ 5 servers. Compare the results with those of M/M/1

queue.

Solution

We use the flowcharts in Fig. 5.12 to modify the program of the last example.

Since n servers are serving the customers, the value of ρ can be up to n, without

the queue being congested by high number of customer waiting. The analytical

formulas for the average waiting time E(W) and queue length E(Nq) respectively

are given by:

E Wð Þ ¼ ρn ρ=nð Þ
n! 1� ρ=nð Þ2 p0 (5.19)

E Nq

� � ¼ λE Wð Þ (5.20)

where n is the number of servers and

p0 ¼
Xn�1

k¼0

ρk

k!
þ ρn

n!

1

1� ρ=nð Þ

" #�1

(5.21)

The average waiting time and the queue length are given in Fig. 5.15a, b.

We observe good agreement between analytical and simulation results. We can

also see that for a particular value of ρ, both the waiting time and queue length are

smaller for the larger number of servers.
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Fig. 5.15 (a) Average waiting time for M/M/n queue, n ¼ 1, 2, 5. (b) Average queue length for

M/M/n queue, n ¼ 1, 2, 5
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5.7 Estimation of Errors

Simulation procedures give solutions which are averages over a number of tests.

For this reason, it is important to realize that the sample statistics obtained from

simulation experiments will vary from one experiment to another. In fact, the

sample statistics themselves are random variables and, as such, have associated

probability distributions, means, variances, and standard deviation. Thus the

simulation results contain fluctuations about a mean value and it is impossible

to ascribe a 100 % confidence in the results. To evaluate the statistical uncer-

tainty or error in a simulation experiment, we must resort to various statistical

techniques associated with random variables and utilize the central limit

theorem.

Suppose that X is a random variable. You recall that we define the expected or

mean value of X as

μ ¼
ð1

�1
xf xð Þdx (5.22)

where f(x) is the probability density distribution of X. If we draw random and

independent samples, x1, x2, � � �, xN from f(x), our estimate of x would take the

form of the mean of N samples, namely,

eμ ¼ 1

N

XN
n¼1

xn (5.23)

Whereas μ is the true mean value of X, eμ is the unbiased estimator of μ—an

unbiased estimator being one with the correct expectation value. Although expected

value eμ is close to μ but eμ 6¼ μ. The standard deviation, defined as

σ xð Þ ¼ E X2
� �� μ2

� �1=2
(5.24)

provides a measure of the spread in the values of eμ about μ; it yields the order of

magnitude of the error. The confidencewe place in the estimate of themean is given by

the variance of eμ . The relationship between the variance of eμ and the variance of x is

σ eμð Þ ¼ σ xð Þffiffiffiffi
N

p (5.25)

This shows that if we use eμ constructed from N values of xn according to

Eq. (5.23) to estimate μ, then the spread in our results ofeμ about μ is proportional to
σ(x) and falls off as the number of N of samples increases.

In order to estimate the spread in eμ we define the sample variance
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S2 ¼ 1

N � 1

XN
n¼1

xn � exð Þ2 (5.26)

Again, it can be shown that the expected value of S2 is equal to σ2(x). Therefore
the sample variance is an unbiased estimator of σ2(x). Multiplying out the square

term in Eq. (5.26), it is readily shown that the sample standard deviation is

S ¼ N

N � 1

	 
1=2
1

N

XN
n¼1

x2n � ex 2

" #1=2
(5.27)

For large N, the factor N/(N � 1) is set equal to one.

According to the central limit theorem, the sum of a large number of random

variables tends to be normally distributed, i.e.

f eμð Þ ¼
ffiffiffiffiffi
N

2π

r
1

σ xð Þ exp �N eμ � μð Þ2
2σ2 xð Þ

" #
(5.28)

The normal (or Gaussian) distribution is very useful in various problems in

engineering, physics, and statistics. The remarkable versatility of the Gaussian

model stems from the central limit theorem. For this reason, the Gaussian model

often applies to situations in which the quantity of interest results from the summa-

tion of many irregular and fluctuating components.

Since the number of samples N is finite, absolute certainty in simulation is

unattainable. We try to estimate some limit or interval around μ such that we can

predict with some confidence that eμ falls within that limit. Suppose we want the

probability that eμ lies between μ � ε and μ + ε. By definition,

Prob μ� ε < eμ < μþ ε½ 	 ¼
ðμþε

μ�ε

f eμð Þdeμ (5.29)

By letting λ ¼ eμ�μð Þffiffiffiffiffiffi
2=N

p
σ xð Þ, we get

Prob μ� ε < eμ < μþ ε½ 	 ¼ 2ffiffiffi
π

p
ðffiffiffiffiffiffiN=2

p� �
ε=σð Þ

0

e�λ2dλ ¼ erf
ffiffiffiffiffiffiffiffiffi
N=2

p ε

σ xð Þ
	 


(5.30)

or

Prob μ� zα=2
σffiffiffiffi
N

p < eμ < μþ zα=2
σffiffiffiffi
N

p
� �

¼ 1� α (5.31)

where erf(x) is the error function and zα/2 is the upper α/2 � 100 percentile of the

standard normal deviation. The random intervalex � ε is called a confidence interval
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and erf
ffiffiffiffiffiffiffiffiffi
N=2

p
ε=σ xð Þ

� �
is the confidence level. Most simulation experiments use

error ε ¼ σ xð Þ= ffiffiffiffi
N

p
which implies that eμ is within one standard deviation of μ, the

true mean. From Eq. (5.31), the probability that the sample mean eμ lies within the

interval eμ � σ xð Þ= ffiffiffiffi
N

p
is 0.6826 or 68.3 %. If higher confidence levels are desired,

two or three standard deviations may be used. For example,

Prob μ�M
σffiffiffiffi
N

p < eμ < μþM
σffiffiffiffi
N

p
� �

¼
0:6826, M ¼ 1

0:954, M ¼ 2

0:997 M ¼ 3

8<: (5.32)

where M is the number of standard deviations. In Eqs. (5.31) and (5.32), it is

assumed that the population standard deviation σ is known. Since this is rarely the

case, σ must be estimated by the sample standard S calculated from Eq. (5.27) so

that the normal distribution is replaced by Student’s t-distribution. It is well known

that the t-distribution approaches the normal distribution as N becomes large, say

N > 30. Thus Eq. (5.31) is equivalent to

Prob μ� Stα=2;N�1ffiffiffiffi
N

p < eμ < μþ zα=2
Stα=2;N�1ffiffiffiffi

N
p

� �
¼ 1� α (5.33)

where tα/2;N � 1 is the upper 100 � α/2 percentage point of Student’s t-distribution

with (N � 1) degrees of freedom. Its values are listed in any standard statistics text.

The confidence interval ex � ε < x < ex þ ε contains the “true” value of the

parameter x being estimated with a prespecified probability 1 � α. Therefore, when
we make an estimate, we must decide in advance that we would like to be, say,

90 or 95 % confident of the estimate. The confidence of interval helps us to know

the degree of confidence we have in the estimate. The upper and lower limits of the

confidence interval (known as confidence limits) are given by

upper limit ¼ μþ ε (5.34a)

lower limit ¼ μ� ε (5.34b)

where

ε ¼ Stα=2;N�1ffiffiffiffi
N

p (5.35)

Thus, if a simulation is performed N times by using different seed values, then in

(1 � α) cases, the estimate eμ lies within the confidence interval and in α cases the

estimate lies outside the interval, as illustrated in Fig. 5.16. Equation (5.35) provides

the error estimate for a given number N of simulation experiments or observations.

If, on the other hand, an accuracy criterion ε is prescribed and we want to

estimate μ by eμ within tolerance of ε with at least probability 1 � α, we must

ensure that the sample size N satisfies
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Prob
eμ � μ
�  < ε	 � 1� α (5.36)

To satisfy this requirement, N must be selected as the small integer satisfying

N � Stα=2;N�1ffiffiffi
ε

p
	 
2

(5.37)

For further discussion on error estimates in simulation, one should consult [17, 18].

Example 5.4 In a simulation experiment, an analyst obtained the mean values of a

certain parameter as 7.60, 6.60, 7.50, and 7.43 for five simulations runs using

different seed values. Calculate the error estimate using a 95 % confidence interval.

Solution

We first get the sample mean

μ ¼ 7:60þ 6:60þ 6:97þ 7:50þ 7:43

5
¼ 7:22

From Eq. (5.26), the sample variance is obtained as

S2 ¼ 7:60� 7:22ð Þ2 þ � � � þ 7:43� 7:22ð Þ2
4

¼ 0:23793

or S ¼ 0.48778. Using a 95 % confidence interval, 1 � α ¼ 95 % (i.e., α ¼ 0.05).

For five runs (N ¼ 5), the t-distribution table gives tα/2;N � 1 ¼ 2.776. Using

Eq. (5.35), the error is estimated as

ε ¼ 0:48778x2:776ffiffiffi
5

p ¼ 0:6056

Thus, the 95 % confidence interval for the parameter is

μ� ε < eμ < μþ ε ¼ 6:6144 < eμ < 7:78265
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Fig. 5.16 Confidence

of interval
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5.8 Simulation Languages

The purpose of this section is to present the characteristics of common simulation

languages and provide the analyst with the criteria for choosing a suitable language.

Once the analyst has acquired a throughout understanding of the system to be

simulated and is able to describe precisely how the model would operate, the next

step is to decide on the language to use in the simulation. This step should not be

taken lightly since the choice of a language would have several implications, some

of which will be discussed later. After deciding on the language to apply, the analyst

needs to consult the language reference manual for all the details.

There are basically two types of languages used in simulation: multipurpose

languages and special-purpose languages. The former are compiler languages
while the latter are interpretive languages [19]. A compiler language comprises

of macrostatements and requires compilation and assembly before execution can

occur. An interpretive language consists of symbols which denote commands to

carry out operations directly without the need for compilation and assembly. Thus

the major difference between the two types of languages is the distinction between a

source program and an object program. An analyst usually submits a source

program to a computer. If the source program is in a compiler language, an object

program is needed for execution. If the source program is in interpretive language,

execution is done directly without any object program.

Some analysts tend to select multipurpose or general-purpose languages such as

FORTRAN, BASIC, PASCAL, and C for the simulation of computer networks.

Although these languages are far from ideal for discrete simulation, they are widely

been used. Why? There are at least three reasons. First, there is conservatism on the

part of the analysts and organizations that support them. Many organizations are

committed to multipurpose languages and do not want to be vulnerable to a

situation where a code written in a language only familiar to an analyst may have

to be rewritten when the analyst leaves the organization. Second, the widespread

availability of multipurpose languages and the libraries of routines that have been

developed over the years makes them more desirable. It is easy to gain technical

support since experts of multipurpose languages are everywhere. Third, high speed

in the simulation is possible if a general-purpose language is used. Analysts who

prefer fast-running simulations use a general-purpose language. In view of the

problem of learning another set of syntactic rules, a decision in favor of a

general-purpose language is often considered wise by analysts.

The development of special-purpose simulation languages began in the late

1950s. The need came from the fact that many simulation projects required similar

functions across various applications. The purpose of simulation languages is to

provide the analyst with a relatively simple means of modeling systems. Unlike

using the general-purpose language such as C++ where the analyst is responsible

for all the details in the model, special-purpose languages are meant to eliminate the

major portion of the programming effort by providing a simulation-oriented frame-

work about which a model is constructed in a simple fashion. Although many such

languages have been developed, only few have gained wide acceptance.
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Before deciding which type of language to use in a simulation, the analyst

must carefully weigh the advantages of the multipurpose languages against the almost

guaranteed longer program development and debugging time required in special-

purpose languages. Irrespective of the language used in the simulation of

a computer network, the languagemust be capable of performing functions including:

• generating random numbers,

• executing events,

• managing queues,

• collecting and analyzing data, and

Commonly used special-purpose, discrete simulation languages include GPSS,

SIMSCRIPT, GASP, SLAM, RESQ, NS2, and OPNET. No attempt will be made to

include the many instructions available in these languages. Interested readers must

consult the manuals and references for more details on the languages [20–28].

Only OPNET and NS2 will be covered.

The development of new simulation languages has slowed considerably in the

last few years, and the well established languages have not changed dramatically

for the past few years. This notwithstanding, it is expected that new languages

will be developed and old ones will be improved. At present, there is a growing

interest in combined discrete-continuous simulations. Also, the use of ADA and C

as simulation languages is receiving active attention [32].

5.9 OPNET

Optimized Network Engineering Tools (OPNET) is a window-based comprehen-

sive engineering system that allows you to simulate large communication networks

with detailed protocol modeling. It allows you to design and study communication

networks, devices, protocols, and applications with great flexibility. OPNET key

features include graphical specification of models, a dynamic, event-scheduled

simulation kernel, integrated data analysis tools, and hierarchical, object-based

modeling. Modeler’s object-oriented modeling approach and graphical editors

mirror the structure of actual networks and network components. Modeler supports

all network types and technologies [29].

Here, we focus on the modeling using OPNET IT Guru which is user-friendly

interface with drag-and-drop features that enable users to effectively model, man-

age, and troubleshoot real-world network infrastructures. For example, we illustrate

here how OPNET is used to examine the Medium Access Control (MAC) sublayer

of the IEEE 802.11 standard for wireless local area network (WLAN). The perfor-

mance of different options is analyzed under different scenarios [30].

The model’s concept is overviewed as following: The IEEE 802.11 standard

provides wireless connectivity to computerized stations that require rapid deployment

such as portable computers. The Medium Access Control (MAC) sublayer in the

standard includes two fundamental access methods: distributed coordination function
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(DCF) and the point coordination function (PCF). DCF utilizes the carrier sense

multiple access with collision avoidance (CSMA/CA) approach; it is implemented

in all stations in the wireless local area network (WLAN). PCF is based on polling to

determine the station that can transmit next. Stations in an infrastructure network

optionally implement the PCF access method. In addition to the physical CSMA/CD,

DCF and PCF utilize virtual carrier-sense mechanism to determine the state of the

medium. This virtual mechanism is implemented by means of the network allocation

vector (NAV). TheNAVprovides each stationwith a prediction of future traffic on the

medium. Each station uses NAV as an indicator of time periods during which

transmission will not be installed even if the station senses that the wireless medium

is not busy. NAV gets the information about future traffic from management frames

and the header of regular frames being exchanged in the network.

With DCF, every station senses the medium before transmitting. The transmit-

ting station defers as long as the medium is busy. After deferral and while the

medium is idle, the transmitting station has to wait for a random backoff interval.

After the backoff interval and if the medium is still idle, the station initiates data

transmission or optionally exchanges RTS (request to send) and CTS (clear to send)

frames with the receiving station. With PCF, the access point (AP) in the network

acts as a point coordinator (PC). The PC uses polling to determine which station can

initiate data transmission. It is optional for the stations in the network to participate

in PCF and hence respond to poll received from the PC. Such stations are called

CF-pollable stations. The PCF requires control to be gained of the medium by the

PC. To gain such control, the PC utilizes the Beacon management frames to set the

network allocation vector (NAV) in the network stations. As the mechanism used to

set NAV is based on the DCF, all stations comply with the PC request to set their

NAV whether or not they are CF-pollable. This way the PC can control frame

transmissions in the network by generating contention free periods (CFP). The PC

and the CF_pollable stations do not use RTSCTS in the CFP.

The standard allows for fragmentation of the MAC data units into smaller

frames. Fragmentation is favorable in case the wireless channel is not reliable

enough to transmit longer frames. Only frames with a length greater than a

fragmentation and will be separately acknowledged. During a contention period,

all fragments of a single frame will be sent as burst with a single invocation of the

DCF medium access procedure. In case of PCF and during a contention free period,

fragments are sent individually following the rules of the point coordinator (PC),

which will based on the following steps:

5.9.1 Create a New Project

To create a new project for the Ethernet network:

1. Start OPNET IT Guru Academic Edition ! Choose New from the File menu.

2. Select Project ! Click ok ! Name the project < your initials >
_WirelessLAN and the scenario DCF ! Click ok
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3. In the Startup Wizard Initial Topology dialog box, make sure that Create Empty
Scenario is selected ! click next ! choose Office from the Network Scale list
and check Use Metric Units ! Click next twice ! click ok.

5.9.2 Create and Configure the Network

To create the wireless network:

1. The Object Palette dialog box should be now on the top of your project

workspace.

2. Add to project workspace the following objects from the palette: 9
wlan_station_adv (fix).

To add an object from a palette, click its icon in the object palette ! move the

mouse to the workspace ! left-click to place the object. Right-click when

finished.

3. Close the Object Palette dialog box ! Arrange the stations in the workspace as

shown in Fig. 5.17 ! Save your project.

Fig. 5.17 Workspace to

create and configure the

network
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5.9.2.1 Configure the Wireless Nodes

Repeat the following for each of the nine nodes in Fig. 5.17:

1. Right-click on the node ! Edit Attributes ! Assign to theWireless LAN MAC
Address attribute a value equal to the node number. Assign to the Destination
Address attribute the corresponding value shown in Table 5.2 ! Click ok.

Figure 5.18 shows the values assigned to the Destination Address and Wireless
LAN MAC Address attributes for node_1.

5.9.2.2 Traffic Generation Parameters

1. Select all the nodes in the network simultaneously except node_0 ! Right-click

on any of the selected nodes (i.e. node_1 to node_8) ! Edit Attributes !
Check the Apply Changes to Selected Objects check box.

Table 5.2 Assignment

of destination address

to the node name

Node name Destination address

Node_1 5

Node_2 8

Node_3 6

Node_4 7

Node_5 1

Node_6 3

Node_7 4

Node_8 2

Fig. 5.18 Values assigned

to the Destination Address

and Wireless LAN MAC

Address attributes for node1
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2. Expand the hierarchies of the Traffic Generation Parameters and the Packet
Generation Arguments attributes ! Edit the attributes to match the values

shown in Fig. 5.19 ! Click ok.

3. Select all the nodes in the network simultaneously including node_0 ! Right-

click on any of the selected nodes ! Edit Attributes ! Check the Apply
Changed to Selected Objects check box.

4. Expand the hierarchy of the Wireless LAN Parameters attribute ! Assign the

value 4608000 to the Buffer Size (bits) attribute, as shown in Fig. 5.20 ! Click

ok.

5. Right-click on node_0 ! Edit Attributes ! Expand the Wireless LAN
Parameters hierarchy and set the Access Point Functionality to Enabled, as
shown in Fig. 5.21 ! Click ok.

5.9.3 Select the Statistics

To test the performance of the network in our DCF scenario, we collect some of the

available statistics as follows:

1. Right-click anywhere in the project workspace and select Choose Individual
Statistics from the pop-up menu.

2. In the Choose Results dialog box, expand the Global Statistics and Node
Statistics hierarchies ! choose the five statistics, as shown in Fig. 5.22.

3. Click ok and then save your project.

Fig. 5.19 Traffic

generation parameters

for node 1
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5.9.4 Configure the Simulation

Here we will configure the simulation parameters:

1. Click on the Configure Simulation button.

2. Set the duration to be 10.0 min.

3. Click ok and then save your project.

Fig. 5.20 Editing

buffer size

Fig. 5.21 Enabled the

access point functionality

for node 0
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5.9.5 Duplicate the Scenario

In the network we just created, we did not utilize many of the features explained in

the overview. However, by default the distributed coordination function (DCF)

method is used for the medium access control (MAC) sublayer. We will create three

more scenarios to utilize the features available from the IEEE 802.11 standard. In

the DCF_Frag scenario we will allow fragmentation of the MAC data units into

smaller frames and test its effect on the network performance. The DCF_PCF

scenario utilizes the point coordination function (PCF) method for the medium

access control (MAC) sublayer along with the DCF method. Finally, in the

DCF_PCF_Frag scenario we will allow fragmentation of the MAC data and

check its effect along with PCF.

5.9.5.1 The DCF_Frag Scenario

1. Select Duplicate Scenario from the Scenarios menu and give it the name

DCF_Frag ! click ok.

Fig. 5.22 The Chosen statistics results we want to show up
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2. Select all the nodes in the DCF_Frag scenario simultaneously ! Right-click

on anyone of them ! Edit Attributes ! Check the Apply Changes to Selected
Objects check box.

3. Expand the hierarchy of the Wireless LAN Parameters attribute ! Assign the

value 256 to the Fragmentation Threshold (bytes) attribute, as shown in

Fig. 5.23 ! Click ok.

4. Right-click on node_0 ! Edit Attributes ! Expand the Wireless LAN
Parameters hierarchy and set the Access Point Functionality to Enabled as

shown in Fig. 5.24 ! Click ok.

Fig. 5.23 DCF_Frag Scenario for node 8

Fig. 5.24 Enabled the access point functionality for node 0
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5.9.5.2 The DCF_PCF Scenario

1. Switch to the DCF scenario, select Duplicate Scenario from the Scenariosmenu

and give it the name DCF_PCF ! Click ok ! Save your project.

2. Select node_0, node_1, node_3, node_5 and node_7 in the DCF_PCF scenario

simultaneously ! Right-click on anyone of the selected nodes ! Edit
Attributes.

3. Check Apply Changes to Selected Objects ! Expand the hierarchy of the

Wireless LAN Parameters attribute ! Expand the hierarchy of the PCF
Parameters attribute ! Enable the PCF Functionality attribute, as shown in

Fig. 5.25 ! Click ok.

4. Right-click on node_0 ! Edit Attributes ! Expand the Wireless LAN
Parameters hierarchy and set the Access Point Functionality to Enabled, as
shown in Fig. 5.26.

5. Click ok and save your project.

5.9.6 Run the Simulation

To run the simulation for the four scenarios simultaneously.

1. Go to the Scenarios menu ! Select Manage Scenarios.

Fig. 5.25 Enabling PCF

Parameters for node 0
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2. Click on the row of each scenario and click the Collect Results button. This

should change the values under the Results column to < collect > shown in

Fig. 5.27.

3. Click ok to run the four simulations.

4. After the simulation of the four scenarios complete, click Close and then save

your project.

5.9.7 View the Results

To view and analyze the results:

1. Select Compare Results from the Results menu.

Fig. 5.27 Managing the Scenarios

Fig. 5.26 Enabled the access point functionality for node 0
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2. Change the drop-down menu in the lower right part of the Compare Results
dialog box from As Is to time-average ! Select the Delay (sec) statistic from

the Wireless LAN hierarchy as shown in Fig. 5.28.

3. Click Show to show the result in a new panel. The resulting graph should

resemble that shown in Fig. 5.29.

Fig. 5.28 Comparing results

Fig. 5.29 Time average in WLAN delay (s)
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4. Go to the Compare Results dialog ! Follow the same procedure to show the

graphs of the following statistics from theWireless LAN hierarchy: Load (bits/s)
and Throughput (bits/s). The resulting graphs should resemble Figs. 5.30

and 5.31.

Fig. 5.30 Time average

in WLAN load (bits/s)

Fig. 5.31 Time average in

WLAN throughput (bits/s)
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5. Go to the Compare Results dialog box ! Expand the Object Statistics hierarchy
! Expand the Office Network hierarchy ! Expand the hierarchy of two nodes.

One node should have PCF enabled in the DCF_PCF scenario (e.g., node_3) and

the other node should have PCF disabled (e.g., node_2) ! Show the result of

the Delay (sec) statistic for the chosen nodes. The resulting graphs should

resemble Figs. 5.32 and 5.33.

6. Repeat step 5 above but for the Retransmission Attempts (packets) statistic. The
resulting graphs should resemble Figs. 5.34 and 5.35.

7. Close all graphs and the Compare Results dialog box ! Save your project.

More information about Opnet can be found in [31].

5.10 NS2

The Network Simulator version 2 (NS2) is targeted at networking. It is

object-oriented, discrete event driven network simulator. It was developed at UC

Berkeley written in C++ language and it uses Object-oriented extension of Tool

command language (OTcl). These two different languages are used for different

purposes in NS2 as shown in Table 5.3 and more information about NS2 can be

found in [32, 33].

Fig. 5.32 Time average in

WLAN delay (s) for node 3
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Figure 5.36 shows the process of network simulation in NS2. The simulation

using NS2 can carry two levels: first level is based on configuration and con-

struction of OTcl, and second level, is based on OTcl and C++. It is essential for

NS2 to be upgraded or modified to add the required elements when the module

resources needed do not exist. Therefore, the split object model of NS2 is used to

Fig. 5.33 Time average in

WLAN delay (s) for node 2

Fig. 5.34 Time average in

WLAN retransmission line

attempts (packets) for

node 3
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add a new C++ class and an OTcl class, and then program the OTcl scripts to

implement the simulation [34]. The class hierarchies of C++ and OTcl languages

can be either stand alone or linked together using an OTcl/C++ interface called

TclCL [32].

There are three components for whole network simulation using NS2 [35]. First,

modifying the source code. This step is used only when there is a need to modify the

source codes which requires programming and debugging from the users. Indeed,

the OTcl codes need to be modified as the source codes due to that NS2 supports the

OTcl and C++. Second, writing the Tcl/OTcl scripts of network simulations. In fact,

Fig. 5.35 Time average in

WLAN retransmission line

attempts (packets) for

node 2

Table 5.3 Use of OTcl and C++

OTcl C++

Acts as the front end (i.e., user interference,

a command and configuration)

Acts as the back end running the actual

simulation

NS2 uses it to create and configure a network NS2 uses it to run simulation

OTcl is an interpreter All C++ codes need to be complied and linked

to create an executable file

Use OTcl for configuration, setup, and one

time simulation

Use C++ for dealing with a packet

Use OTcl for run simulation with existing

NS2 models

Use C++ for the need to modify existing

NS2 modules

OTcl is slow to run, but fast to change,

therefore, it is suitable to run a small

simulation configuration over several

repetitions.

C++ is fast to run and slow to change, therefore,

it is suitable for the detailed protocol

implementation procedures and large

simulation
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in this step, it requires the user writing Tcl codes for describing the network

topology types, defining nodes and network component attributes, controlling the

network simulation process. Third, analyzing the network simulation results.

This step requires the user to understand the structure of the NS2 Trace file and

to be able to use some tools to check the outcome data and draw figures, etc.

Figure 5.37 shows the flow chart for simulation in NS2. Although, the general

architecture of the view of the NS2 for the general users can be presented in

Fig. 5.38.

NS2 is primarily useful for simulating LAN and WAN. It has the capability of

supporting the simulations of unicast node and multicast node. It is complemented

by Network Animator (NAM) for packet visualization purposes such as Fig. 5.39

for simulation topology of wireless network [37]. Indeed, NS2 is widely used

network simulator that has been commonly used in education and research.

NS2 has the following limitations [36]:

1. Large multi format outcome files, which require post processing.

2. Huge memory space consumption due to a very large output file.

3. Relatively slow.

4. Lack of built-in-QoS monitoring modules.

5. Lack of user friendly visual output representation.

6. Requires the users to develop tools by themselves.

Fig. 5.36 The simulation process of NS2 [34]
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5.11 Criteria for Language Selection

There are two types of factors that influence the selection of the special-purpose

language an analyst uses in his simulation. One set of factors is concerned with the

operational characteristics of the language, while the other set is related to its

problem-oriented characteristics [38, 39].

In view of the operational characteristics of a language, an analyst must consider

factors such as the following:

Fig. 5.37 The simulation flow chart of NS2 [35]
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1. the analyst’s familiarity with the language;

2. the ease with which the language can be learned and used if the analyst is not

familiar with it;

3. the languages supported at the installation where the simulation is to be done;

4. the complexity of the model;

5. the need for a comprehensive analysis and display of simulation results;

6. the language’s provision of good error diagnostics;

Fig. 5.38 The architectural view of NS2 [36]

Fig. 5.39 Network animator interface (NAM) showing the simulation topology of wireless

network [37]
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7. the compiling and running time efficiency of the language;

8. the availability of well written user’s manual;

9. the availability of support by a major interest group; and

10. the cost of installation, maintenance, and updating of the language.

In the view of the characteristics of the language and those of the problems the

analyst will most likely encounter, the following factors should be considered:

1. time advance methods;

2. random number and random variate generation capabilities;

3. the way a language permits the analyst to control the sequence of subroutines

that represent the state changes;

4. capability for inserting use-written subroutines; and

5. forms of statistical analyses that can be performed on the data collected during

simulation.

No language is without some strong points as well as weak points. It is difficult

to compare these languages because many important software features are quite

subjective in nature. Everyone seems to have his own opinion concerning the

desirable features of a simulation language, e.g. ease of model development,

availability of technical assistance, and system compatibility. In spite of this

difficulty, various attempts have been made to compare simulation languages

based on objective criteria [22]. In general, GPSS and SLAM (which are

FORTRAN-based) are easiest to learn.

SIMSCRIPT has the most general process approach and thus can be used to

model any system without using the event-scheduling approach. This, however,

may result in more lines of code than GPSS or SLAM. RESQ has features specially

oriented toward computer and communication systems, but the terminology is

strictly in terms of queueing networks.

5.12 Summary

1. This chapter has presented the basic concepts and definitions of simulation

modeling of a system.

2. The emphasis of the chapter has been on discrete, stochastic, digital, software

simulation modeling. It is discrete because it proceeds a step at a time. It is

stochastic or nondeterministic because element of randomness is introduced by

using random numbers. It is digital because the computers employed are digital.

It is software because the simulation model is a computer program.

3. Because simulation is a system approach to solving a problem, we have consid-

ered the major stages involved in developing a model of a given system.

These stages are model building.

4. Since simulation output is subject to random error, the simulator would

like to know how close is the point estimate to the mean value μ it is supposed

to estimate. The statistical accuracy of the point estimates is measured in
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terms of the confidence interval. The simulator generates some number of

observations, say N, and employs standard statistical method to obtain the

error estimate.

5. There are basically two types of languages used in simulation: multipurpose

languages and special-purpose languages. The multipurpose or general-purpose

languages include FORTRAN, BASIC, ADA, PASCAL, and C++. Special-

purpose languages are meant to eliminate the major portion of the programming

effort by providing a simulation-oriented framework about which a model is

constructed in a simple fashion.

6. A brief introduction to two commonly used special-purpose, discrete simulation

packages (NS2 and OPNET) is presented.

More information about simulation can be found in the references,

including [40].

Problems

5.1 Define simulation and list five attractive reasons for it?

5.2 Generate 10,000 random numbers uniformly distributed between 0 and

1. Find the percentage of numbers between 0 and 0.1, between 0.1 and 0.2,

etc., and compare your results with the expected distribution of 10 % in each

interval.

5.3 (a) Using the linear congruential scheme, generate ten pseudorandom num-

bers with a ¼ 1573, c ¼ 19, m ¼ 1000, and seed value X0 ¼ 89.

(b) Repeat the generation with c ¼ 0.

5.4 Uniformly distributed random integers between 11 and 30, inclusive, are to

be generated from the random numbers U shown below. How many of the

integers are odd numbers?

0.2311 0.7919

0.2312 0.9218

0.6068 0.7382

0.4860 0.1763

0.8913 0.4057

0.7621 0.9355

0.4565 0.9169

0.0185 0.4103

0.8214 0.8936

0.4447 0.0579

5.5 Generate 500 random numbers, exponentially distributed with mean 4,

using uniformly distributed random numbers U. Estimate the mean and the

variance of the variate.
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5.6 Using the rejection method, generate a random variable from

f xð Þ ¼ 5x2, 0 � x � 1

5.7 (a) Using the idea presented in this chapter, generate 100 Gaussian variates

with mean 3 and variance 2.

(b) Repeat part (a) using MATLAB command randn.

(c) By estimating the mean and variance, which procedure is more accurate?

5.8 The probability density function of Erlang distribution is

f xð Þ ¼ αkxk�1

Γ kð Þ e�αx, x > 0, α > 0

where Γ(k) ¼ (k � 1)! and k is an integer. Take k ¼ 2 and α ¼ 1. Use the

rejection method to describe a procedure for generating random variates from

Erlang distribution.

5.9 Write a computer program to produce variates that follow hyperexponential

distribution, i.e.

f xð Þ ¼ pλe�λx þ 1� pð Þμe�μx

Take p ¼ 0.6, λ ¼ 10, μ ¼ 5.

5.10 Write a program to simulate the M/Ek/1 queueing system. Take k ¼ 2.

Compare the results of the simulation with those predicted by queueing

theory.

5.11 A random sample of 50 variables taken from a normal population has a mean

of 20 and standard deviation of 8. Calculate the error with 95 % confidence

limits.

5.12 In a simulation model of a queueing system, an analyst obtained the mean

waiting time for four simulation runs as 42.80, 41.60, 42.48, and 41.80 μs.
Calculate the 98 % confidence interval for the waiting time.

5.13 Discuss the OPNET simulation results of Fig. 5.29 results?

5.14 Discuss the OPNET simulation comparison results of Figs. 5.30 and 5.31?

5.15 Discuss the OPNET simulation comparison results Figs. 5.32 through 5.35?

5.16 What are different purposes for C++ and OTcl languages in NS2?

5.17 What are the limitations of NS2?
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