
Chapter 4

Queueing Theory

The priest persuades humble people to endure their hard lot,
a politician urges them to rebel against it, and a scientist
thinks of a method that does away with the hard lot
altogether.

—Max Percy

Queueing is simply waiting in lines such as stopping at the toll booth, waiting in line

for a bank cashier, stopping at a traffic light, waiting to buy stamps at the post office,

and so on.

A queue consists of a line of people or things waiting to be served and a service center with

one or more servers.

For example, there would be no need of queueing in a bank if there are infinite

number of people serving the customers. But that would be very expensive and

impractical.

Queueing theory is applied in several disciplines such as computer systems,

traffic management, operations, production, and manufacturing. It plays a signifi-

cant role in modeling computer communication networks. Since the mid-1960s

performance evaluation of computer communication systems are usually made

using queueing models.

Reduced to its most basic form, a computer network consists of communica-

tion channels and processors (or nodes). As messages flow from node to node,

queues begin to form different nodes. For high traffic intensity, the waiting or

queueing time can be dominant so that the performance of the network is dictated

by the behavior of the queues at the nodes. Analytical derivation of the waiting

time requires a knowledge of queueing theory. Providing the basic fundamentals

of queueing theory needed for the rest of the book will be our objective in

this chapter.
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4.1 Kendall’s Notation

In view of the complexity of a data network, we first examine the properties of a

single queue. The results from a single queue model can be extended to model a

network of queues. A single queue is comprised of one or more servers and

customers waiting for service. As shown in Fig. 4.1, the queue is characterized by

three quantities:

• the input process,

• the service mechanism, and

• the queue discipline.

The input process is expressed in terms of the probability distribution of the

interarrival times of arriving customers. The service mechanism describes the

statistical properties of the service process. The queue discipline is the rule used

to determine how the customers waiting get served. To avoid ambiguity in

specifying these characteristics, a queue is usually described in terms of a well-

known shorthand notation devised by D. G. Kendall [1]. In Kendall’s notation,

a queue is characterized by six parameters as follows:

A=B=C=K=m=z (4.1)

where the letters denote:

A: Arrival process, i.e. the interarrival time distribution

B: Service process, i.e. the service time distribution

C: Number of servers

K: Maximum capacity of the queue (default ¼ 1)

m: Population of customers (default ¼ 1)

z: Service discipline (default ¼ FIFO)

The letters A and B represent the arrival and service processes and assume the

following specific letters depending on which probability distribution law is

adopted:

D: Constant (deterministic) law, i.e. interarrival/service times are fixed

M: Markov or exponential law, i.e. interarrival/service times are exponentially

distributed

G: General law, i.e. nothing is known about the interarrival/service time distribution

Arrival rate Departure rate

Queue Server

Fig. 4.1 A typical queueing system
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GI: General independent law, i.e. all interarrival/service times are independent

Ek: Erlang’s law of order k

Hk: Hyperexponential law of order k

The most commonly used service disciplines are:

FIFO: first-in first-out

FCFS: first-come first-serve

LIFO: last-in first-out

FIRO: first-in random-out.

It is common in practice to represent a queue by specifying only the first three

symbols of Kendall’s notation. In this case, it is assumed that K ¼ 1, m ¼ 1, and

z ¼ FIFO. Thus, for example, the notation M/M/1 represents a queue in which

arrival times are exponentially distributed, service times are exponentially

distributed, there is one server, the queue length is infinite, the customer population

is infinite, and the service discipline is FIFO. In the same way, an M/G/n queue is

one with Poisson arrivals, general service distribution, and n servers.

Example 4.1 A single-queue system is denoted by M/G/4/10/200/FCFS. Explain

what the operation of the system is.

Solution

The system can be described as follows:

1. The interval arrival times is exponentially distributed.

2. The services times follow a general probability distribution.

3. There are four servers.

4. The buffer size of the queue is 10.

5. The population of customers to be served is 200, i.e. only 200 customers can

occupy this queue.

6. The service discipline is first come, first served.

4.2 Little’s Theorem

To obtain the waiting or queueing time, we apply a useful result, known as Little’s
theorem after the author of the first formal proof in 1961. The theorem relates the

mean number of customers in a queue to the mean arrival rate and the mean waiting

time. It states that a queueing system, with average arrival rate λ and mean waiting

time per customer E(W), has a mean number of customers in the queue (or average

queue length) E(Nq) given by

E Nq

� � ¼ λE Wð Þ (4.2)

The theorem is very general and applies to all kinds of queueing systems. It

assumes that the system is in statistical equilibrium or steady state, meaning that the
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probabilities of the system being in a particular state have settled down and are not

changing with time.

It should be noted that Eq. (4.2) is valid irrespective of the operating policies of

the queueing system. For example, it holds for an arbitrary network of queues and

serves. It also applies to a single queue, excluding the server.

The theorem can be proved in many ways [2–4]. Three proofs of the theorem are

given by Robertazzi [2]. One of them, the graphical proof, will be given here.

Suppose we keep track of arrival and departure times of individual customers for a

long time to. If to is large, the number of arrivals would approximately equal to the

number of departures. If this number is Na, then

Arrival Rate ¼ λ ¼ Na

to
(4.3)

Let A(t) and D(t) be respectively the number of arrivals and departures in the

interval (0,to). Figure 4.2 shows A(t) and D(t). If we subtract the departure curve

from the arrival curve at each time instant, we get the number of customers in

the system at that moment. The hatched area in Fig. 4.2 represents the total time

spent inside the system by all customers. If this is represented by J,

Mean time spent in system ¼ T ¼ J

Na
(4.4)

From Eqs. (4.3) and (4.4),

Mean number of customers in the system ¼ N ¼ J

to
¼ Na

to
� J

Na
(4.5)

or

N ¼ λT (4.6)

which is Little’s theorem.

Number of customers

5

4 A(t)

3

2

1 D(t)

t

Fig. 4.2 Plot of arrival

time and departure time
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4.3 M/M/1 Queue

Consider the M/M/1 queue shown in Fig. 4.3.

This is a single-server system with infinite queue size, Poisson arrival process

with arrival rate λ, and exponentially distributed service times with service rate μ.
The queue discipline is FCFS.

The probability of k arrivals in a time interval t is given by the Poisson

distribution:

p kð Þ ¼ λtð Þk
k!

e�λt, k ¼ 0, 1, 2, � � � (4.7)

(Note that the Poisson arrival process has exponential arrival times.) It is readily

shown that the mean or expected value and variance are given by

E kð Þ ¼
X1
k¼0

kp kð Þ ¼ λt (4.8a)

Var kð Þ ¼ E k � E kð Þð Þ2
h i

¼ λt (4.8b)

One way of analyzing such a queue is to consider its state diagram [5–8] in

Fig. 4.4.

Infinite buffer

Poisson arrivals, λ

Fig. 4.3 M/M/1 queue
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λ λ λ λ
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Fig. 4.4 State diagram for M/M/1 queue
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We say that the system is in state n where there are n customers in the system

(in the queue and the server). Notice from Fig. 4.4 that λ is the rate of moving from

state n to n+1 due to an arrival in the system, whereas μ is the rate of moving

from state n to n � 1 due to departure when service is completed. If N(t) is

the number of customers in the system (in the queue and the server) at time t,

the probability of the queue being in state n at steady state is given by

pn ¼ lim
t!1 Prob N tð Þ ¼ n½ �, n ¼ 0, 1, 2, � � � (4.9)

Our goal is to find pn and use it to find some performance measures of interest.

Consider when the system is in state 0. Due to an arrival, the rate at which the

process leaves state 0 for state 1 is λpo. Due to a departure, the rate at which

the process leaves state 1 for state 0 is μp1. In order for stationary probability to

exist, the rate of leaving state 0 must equal the rate of entering it. Thus

λpo ¼ μp1 (4.10)

When the system is in state 1. Since p1 is the proportion of time the system is in

state 1, the total rate at which arrival or departure occurs is λp1 + μp1, which is the

rate at which the process leaves state 1. Similarly, the total rate at which the process

enters state 1 is λp0 + μp2. Applying the rate-equality principle gives

λp1 þ μp1 ¼ λp0 þ μp2 (4.11)

We proceed in this manner for the general case of the system being in state n and

obtain

λþ μð Þpn ¼ λpn�1 þ μpnþ1, n � 1 (4.12)

The right-hand side of this equation denotes the rate of entering state n, while the

left-hand side represents the rate of leaving state n. Equations (4.10–4.12) are called

balance equations.
We can solve Eq. (4.12) in several ways. An easy way is to write Eq. (4.12) as

λpn � μpnþ1 ¼ λpn�1 � μpn
¼ λpn�2 � μpn�1

¼ λpn�3 � μpn�2

⋮ ⋮
¼ λp0 � μp1 ¼ 0

(4.13)

Thus

λpn ¼ μpnþ1 (4.14)

or

pnþ1 ¼ ρpn, ρ ¼ λ=μ (4.15)

92 4 Queueing Theory



If we apply this repeatedly, we get

pnþ1 ¼ ρpn ¼ ρ2pn�1 ¼ ρ3pn�2 ¼ � � � ¼ ρnþ1p0, n ¼ 0, 1, 2, � � � (4.16)

We now apply the probability normalization condition,

X1
n¼0

pn ¼ 1 (4.17)

and obtain

p0 1þ
X1
n¼1

ρn
" #

¼ 1 (4.18)

If ρ < 1, we get

p0
1

1� ρ
¼ 1 (4.19)

or

p0 ¼ 1� ρ (4.20)

From Eqs. (4.15) and (4.20),

pn ¼ 1� ρð Þρn, n ¼ 1, 2, � � � (4.21)

which is a geometric distribution.

Having found pn, we are now prepared to obtain some performance measures or

measures of effectiveness. These include utilization, throughput, the average queue

length, and the average service time [5, 6].

The utilization U of the system is the fraction of time that the server is busy.

In other words, U is the probability of the server being busy. Thus

U ¼
X1
n¼1

pn ¼ 1� p0 ¼ ρ

or

U ¼ ρ (4.22)
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The throughput R of the system is the rate at which customers leave the queue

after service, i.e. the departure rate of the server. Thus

R ¼ μ 1� p0ð Þ ¼ μρ ¼ λ (4.23)

This should be expected because the arrival and departure rates are equal at

steady state for the system to be stable.

The average number of customers in the system is

E Nð Þ ¼
X1
n¼0

npn ¼
X1
n¼0

n 1� ρð Þρn ¼ 1� ρð Þ
X1
n¼0

nρn

¼ 1� ρð Þ ρ

1� ρð Þ2

or

E Nð Þ ¼ ρ

1� ρ
(4.24)

Applying Little’s formula, we obtain the average response time or average
delay as

E Tð Þ ¼ E Nð Þ
λ

¼ 1

λ

ρ

1� ρ
(4.25)

or

E Tð Þ ¼ 1

μ 1� ρð Þ (4.26)

This is the mean value of the total time spent in the system (i.e. queue and the

server).

As shown in Fig. 4.5, the average delay E(T) is the sum of the average waiting

time E(W) and the average service time E(S), i.e.

E Tð Þ ¼ E Wð Þ þ E Sð Þ (4.27)

Equivalently, the average number of customers E(N) in the system equals the

sum of the average of customers waiting E(Nq) in the queue and the average number

of customers E(Ns) being served, i.e.

E Nð Þ ¼ E Nq

� �þ E Nsð Þ (4.28)
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But the mean service E Sð Þ ¼ 1
μ. Thus

E Wð Þ ¼ E Tð Þ � 1

μ
(4.29)

or

E Wð Þ ¼ ρ

μ 1� ρð Þ (4.30)

We now apply Little’s theorem to find the average queue length or the average

number of customers waiting in the queue, i.e.

E Nq

� � ¼ λE Wð Þ ¼ ρ2

1� ρ
(4.31)

Finally, since E(N ) ¼ λE(T), it is evident from Eqs. (4.27) and (4.28) that

E Nsð Þ ¼ λE Sð Þ ¼ λ
1

μ
¼ ρ (4.32)

Notice from Eqs. (4.25), (4.31), (4.32) that the Little’s theorem is applied three

times. This is also shown in Fig. 4.5.

Example 4.2 Service at a bank may be modeled as an M/M/1 queue at which

customers arrive according to Poisson process. Assume that the mean arrival rate is

1 customer/min and that the service times are exponentially distributed with mean

40 s/customer. (a) Find the average queue length. (b) How long does a customer

have to wait in line? (c) Determine the average queue size and the waiting time in

the queue if the service time is increased to 50 s/customer.

λ E(Nq) =λE(W) 

μ

E(N) = λE(T)

E(Ns)=
λE(S)

Fig. 4.5 Little’s formula

applied to M/M/1 queue

thrice
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Solution

As an M/M/1 queue, we obtain mean arrival rate as

λ ¼ 1 customer/min

and the mean service rate as

E Sð Þ ¼ 1

μ
¼ 40s=customer ¼ 40

60
min=customer

Hence, the traffic intensity is

ρ ¼ λ

μ
¼ 1ð Þ 40=60ð Þ ¼ 2

3

(a) The mean queue size is

E Nq

� � ¼ ρ2

1� ρ
¼ 2=3ð Þ2

1� 2=3
¼ 1:333 customers

(b) The mean waiting time is

E W½ � ¼ ρ

μ 1� ρð Þ ¼
2=3 4=6ð Þ
1� 2=3ð Þ ¼ 1:333min

(c) If the mean service time E(S) ¼ 50 s/customer ¼ 50/60 min/customer, then

ρ ¼ λ

μ
¼ 1ð Þ 50=60ð Þ ¼ 5

6

E Nq

� � ¼ ρ2

1� ρ
¼ 5=6ð Þ2

1� 5=6
¼ 4:1667 customers

E W½ � ¼ ρ

μ 1� ρð Þ ¼
5=6 5=6ð Þ
1� 5=6ð Þ ¼ 4:1667min

We expect the queue size and waiting time to increase if it takes longer time for

customers to be served.

4.4 M/M/1 Queue with Bulk Arrivals/Service

In the previous section, it was assumed that customers arrive individually (or one at

a time) and are provided service individually. In this section, we consider the

possibility of customers arriving in bulk (or in groups or batch) or being served in

bulk. Bulk arrivals/service occur in practice because it is often more economical to

collect a number of items (jobs, orders, etc.) before servicing them.
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4.4.1 Mx/M/1 (Bulk Arrivals) System

Here we consider the situation where arrivals occur in batches of more than one

customer, i.e. in bulk. Although the process is not birth-and-death process, the

arrival instants still occur as a Poisson process with constant rate λ. Each of the

arriving customers is served in standard fashion (first-come, first served, one at a

time) by a server with exponentially distributed service times with parameter μ.
Suppose the size of the batch is fixed atm � 1 customers. Then only two transitions

can occur as

n ! nþ m arrivalð Þ
or

nþ 1 ! n departureð Þ
The state transition diagram is shown in Fig. 4.6 for m ¼ 2.

The balance equation for n ¼ 0 is

λp0 ¼ mμp1 (4.33)

and for n � 1 is

λþ μmð Þpn ¼ μmpnþ1 þ λpn�m (4.34)

We now apply the method of z-transforms to solve for pn. We define the

generating function

G zð Þ ¼
X1
i¼0

pnz
n (4.35)

Multiplying the balance equation for state n by zn and summing, we obtain

X1
n¼1

λþ μmð Þpnzn ¼
X1
n¼1

μmpnþ1z
n þ

X1
n¼1

λpn�mz
n (4.36)

λ λ

μ μ

n

μ μ

λ λ

4
μ1

Fig. 4.6 Transition diagram of MX/M/1 queue with m ¼ 2
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Simplifying yields

G zð Þ ¼ μm 1� zð Þp0
μmþ λzmþ1 � z λþ μmð Þ (4.37)

The value of p0 is obtained using the condition G(1) ¼ 1.

p0 ¼ 1� λm

μ
¼ 1� ρ, ρ ¼ λm

μ
(4.38)

4.4.2 M/MY/1 (Bulk Service) System

This kind of model is used to analyze systems that wait until a certain message size

is reached before releasing the data for transmission. We will assume that

customers are served in bulk of size m, i.e. customers are served m at a time. At

equilibrium, the balance equations are [8, 9]:

λþ μð Þpn ¼ λpn�1 þ μpnþm, n � 1 (4.39a)

λp0 ¼ μpm þ μpm�1 þ � � � þ μp1 (4.39b)

Equation (4.39a) can be written in terms of an operator D so

μDmþ1 � λþ μð ÞDþ λ
� �

pn ¼ 0, n � 0 (4.40)

If the roots of the characteristic equation are r1, r2, � � �, rmþ1, then

pn ¼
Xmþ1

I¼1

Cir
n
i , n � 0 (4.41)

Using the fact that
X1
n¼0

pn ¼ 1, we obtain

pn ¼ 1� r0ð Þrn0, n � 0, 0 < r0 < 1 (4.42)

where ro is the one and only one root of Eq. (4.40) that is less than one. Comparing

this with Eq. (4.21) shows the similarity between this solution and that of M/M/1.

Hence,

E N½ � ¼ r0
1� r0

(4.43)

E T½ � ¼ r0
λ 1� r0ð Þ (4.44)
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4.5 M/M/1/k Queueing System

In this case, we have situations similar to M/M/1 but the number of customers that

can be queued is limited to k. In other words, this is a system with limited waiting

space. If an arriving customer finds the queue full, it is lost or blocked, as shown in

Fig. 4.7.

Hence,

λn ¼ λ, if 0 � n < k
0, n � k

�
(4.45)

μn ¼ μ, 0 � n � k (4.46)

The state transition diagram is given in Fig. 4.8.

The balance equations are

λp0 ¼ μp1

λpn þ μpn ¼ λpn�1 þ μpnþ1, 1 � n � k � 1 (4.47)

λpk�1 ¼ μpk

We solve these equations recursively and apply the normalization condition. If

we define ρ ¼ λ/μ, the state probabilities at steady state are given by

pn ¼
1� ρð Þρn
1� ρkþ1

, 0 � n � k

0, n > k

8<
: (4.48)

(1− pk )λ

Arrival rate λ

pkλ (k slots) μ

Lost customers

Fig. 4.7 M/M/1/k queueing system

0 1 2 . . .1 
k-2 k-1 k

λ λ λ λ

μ μμμ

Fig. 4.8 State transition diagram for the M/M/1/k queue
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The utilization of the server is given by

U ¼ 1� p0 ¼
ρ 1� ρk
� �
1� ρkþ1

(4.49)

The average queue length is

E Nq

� � ¼ Xk
n¼0

npn ¼
ρ

1� ρkþ1

1� ρk

1� ρ
� kρk

� �
(4.50)

Since there can be blocking in this system, the blocking probability is

PB ¼ pk ¼
1� ρð Þρ
1� ρkþ1

k

(4.51)

This is the probability that arriving customer is blocked, i.e. it is lost because it

finds the queue full.

Example 4.3 A system consists of a packet buffer and a communication server and

can hold not more than three packets. Arrivals are Poisson with rate 15 packets/ms

and the server follows exponential distribution with mean 30 packets/ms. Deter-

mine the blocking probability of the system.

Solution

This is an M/M/1/k system with k ¼ 3.

ρ ¼ λ
1

μ
¼ 15

30
¼ 0:5

The probability is

PB ¼ 1� ρð Þρ
1� ρkþ1

k

¼ 1� 0:5ð Þ0:53
1� 0:54

¼ 0:0667

which is about 7 %.

4.6 M/M/k Queueing System

This is the case where we have k servers, as shown in Fig. 4.9.

Upon arrival, a customer is served by any available server. The arriving cus-

tomer is queued when all servers are found busy, i.e. no customer is queued until the

number of arrivals exceeds k. The state transition diagram is shown in Fig. 4.10.
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The system can be modeled as a birth-and-death process with

λn ¼ λ (4.52)

μm ¼ nμ, 0 � n � k
kμ, n � k

�

At steady state,

λpn�1 ¼ nμpn, n � k (4.53a)

λpn�1 ¼ kμpn, n > k (4.53b)

From these, we obtain the state probabilities as

pn ¼
p0

kρð Þn
n!

, n � k

p0
ρnkk

k!
, n � k

8>>>><
>>>>:

(4.54)

where ρ ¼ λ
kμ < 1: Solving for p0, we get

p0 ¼
Xk�1

n¼0

kρð Þn
n!

þ kkρk

k!

	 

1

1� ρ

" #�1

(4.55)

λ 1

k

•
•
•

Fig. 4.9 The M/M/k queue

. . .

λ λ

μ 2μ

0 1 2

3μ

k+1k-2 k-1 k . . .
(k - 1)μ kμ kμ

λ λ λ

kμ

λ

Fig. 4.10 State transition diagram for M/M/k system
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Measures of effectiveness for this model can be obtained in the usual manner.

The probability that an arriving customer joins the queue is

Prob queueing½ � ¼ PQ ¼
X1
n¼k

pn ¼
X1
n¼k

p0k
kρn

k!
¼ p0 kρð Þk

k!

X
n¼k

ρn�k ¼ kkρk

k!

p0
1� ρ

	 


or

PQ ¼ kkρk

k!

p0
1� ρ

	 

(4.56)

This formula is known as Erlang’s C formula. It is widely used in telephony; it

gives the probability that no trunk (or server) is available for an arriving call.

The average queue length is

E N½ � ¼
X1
n¼0

npn ¼ kρþ ρ

1� ρð ÞPQ (4.57)

Using Little’s theorem, the average time spent E[T] in the system can be

obtained as

E T½ � ¼ E N½ �
λ

¼ 1

μ
þ 1

μk

PQ

1� ρð Þ (4.58)

4.7 M/M/1 Queueing System

This is the case in which we have infinite number of servers so that an arriving

customer can always find a server and need not queue This model can be used to

study the effect of delay in large systems. The state transition diagram for the M/M/

1 system is shown in Fig. 4.11.

Like we did before, we assume a Poisson arrivals at rate λ and exponentially

distributed service times with mean 1/μ. We adopt a birth-and-death process with

parameters

λn ¼ λ, n ¼ 0, 1, 2, � � � (4.59)

. . . 

λ λ λ
λ

μ 2μ
nμ

(n + 1)μ

0 1 2 n n+1

Fig. 4.11 State transition diagram for M/M/1 queueing system
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μn ¼ nμ, n ¼ 1, 2, � � � (4.60)

The balance equation is

λpn ¼ nþ 1ð Þμpnþ1 (4.61)

which can be solved to give

pn ¼
ρn

n!
p0 (4.62)

where ρ ¼ λ/μ. Applying the normalization condition
X1
n¼0

pn ¼ 1 gives

p0 ¼ e�ρ (4.63)

The utilization of the server is

U ¼ 1� p0 ¼ 1� e�ρ (4.64)

The average number of customers in the system is

E N½ � ¼
X1
n¼0

npn ¼ ρ (4.65)

We apply Little’s theorem in finding the average time spent in the system.

E T½ � ¼ E N½ �
λ

¼ 1

μ
(4.66)

Also,

E Nq

� � ¼ 0 ¼ E Wq

� �
(4.67)

i.e. the average waiting time and the average number of customers waiting in the

queue are both zero.

4.8 M/G/1 Queueing System

The M/G/1 queueing system is the simplest non-Markovian system. We analyze it

assuming that it is in the steady state. An M/G/1 system assumes a FIFO service

discipline, an infinite queue size, a Poisson input process (with arrival rate λ), a
general service times (with arbitrary but known distribution function H, mean
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τ ¼ 1/μ, and variance σ2), and one server. To derive the average waiting time of the

M/G/1 model requires some effort beyond the scope of this book. The derivation

involves applying themethod of z-transform or generating functions and is provided

in the Appendix A for the curious student. The result is [10–12]:

E Wð Þ ¼ ρτ

2 1� ρð Þ 1þ σ2

τ2

	 

(4.68)

where ρ ¼ λ/μ ¼ λτ. This is known as Pollaczek-Khintchine formula after two

Russian mathematicians Pollaczek and Khintchine who derived the formula inde-

pendently in 1930 and 1932 respectively. The average number of customers E(Nq)

in the queue is

E Nq

� � ¼ λE Wð Þ ¼ ρ2

2 1� ρð Þ 1þ σ2

τ2

	 

(4.69)

The average response time is

E Tð Þ ¼ E Wð Þ þ τ ¼ ρτ

2 1� ρð Þ 1þ σ2

τ2

	 

þ τ (4.70)

and the mean number of customers in the system is

E Nð Þ ¼ λE Tð Þ ¼ E Nq

� �þ ρ (4.71)

or

E Nð Þ ¼ ρ2

2 1� ρð Þ 1þ σ2

τ2

	 

þ ρ (4.72)

We may now obtain the mean waiting time for the M/M/1 and M/D/1 queue

models as special cases of the M/G/1 model.

For the M/M/1 queue model, a special case of the M/G/1 model, the service

times follow an exponential distribution with mean τ ¼ 1/μ and variance σ2. That
means,

H tð Þ ¼ Prob X � t½ � ¼ 1� e�μt (4.73)

Hence,

σ2 ¼ τ2 (4.74)

Substituting this in Pollaczek-Khintchine formula in Eq. (4.68) gives the mean

waiting time as

E Wð Þ ¼ ρτ

1� ρð Þ (4.75)
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The M/D/1 queue is another special case of the M/G/1 model. For this model, the

service times are constant with the mean value τ ¼ 1/μ and variance σ ¼ 0. Thus

Pollaczek-Khintchine formula in Eq. (4.68) gives the mean waiting time as

E Wð Þ ¼ ρτ

2 1� ρð Þ (4.76)

It should be noted from Eqs. (4.75) and (4.76) that the waiting time for the M/D/

1 model is one-half that for the M/M/1 model, i.e.

E Wð ÞM=D=1 ¼
ρτ

2 1� ρð Þ ¼
1

2
E Wð ÞM=M=1 (4.77)

Example 4.4 In the M/G/1 system, prove that:

(a) Prob (the system is empty) ¼ 1 � ρ
(b) Average length of time between busy periods ¼ 1/λ
(c) Average no. of customers served in a busy period ¼ 1

1�ρ

where ρ ¼ λX and X is the mean service time.

Solution

(a) Let pb ¼ Prob. that the system is busy. Then pb is the fraction of time that the

server is busy. At steady state, arrival rate ¼ departure rate

λ ¼ pbμ

or

pb ¼
λ

μ
¼ ρ

The Prob. that the system is empty is

pe ¼ 1� pb ¼ 1� ρ

(b) The server is busy only when there are arrivals. Hence the average length of

time between busy periods ¼ average interarrival rate ¼ 1/λ.
Alternatively, we recall that if t is the interarrival time,

f tð Þ ¼ λe�λt

Hence E(t) ¼ 1/λ.
(c) Let E(B) ¼ average busy period, E(I) ¼ average idle period. From part (a),

pb ¼ ρ ¼ E Bð Þ
E Bð Þ þ E Ið Þ
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From part (b),

E(I) ¼ average length of time between busy periods ¼ 1/λ
Hence

ρ ¼ E Bð Þ
E Bð Þ þ 1

λ

Solving for E(B) yields

E Bð Þ ¼ ρ

λ 1� ρð Þ ¼
X

1� ρ

as required.

The average no. of customers served in a busy period is

Nb ¼ Average length of busy period

Average service time

Hence

Nb ¼ E Bð Þ=X ¼ 1

1� ρ

4.9 M/Ek/1 Queueing System

In this case, the service time distribution is Erlang distribution with parameters μ
and k, i.e.

f X xð Þ ¼ μ μxð Þk�1

k � 1ð Þ! e
�μx, x � 0 (4.78)

with mean and variance

E X½ � ¼ k

μ
, Var X½ � ¼ k

μ2
(4.79)

This should be regarded as another special case of M/G/1 system so that

Pollaczek-Khintchine formula in Eq. (4.68) applies. Thus,

E Wq

� � ¼ 1þ k

2k

λ

μ μ� λð Þ ¼
1þ k

2k

ρ

μ 1� ρð Þ (4.80)

E Nq

� � ¼ λE Wq

� � ¼ 1þ k

2k

λ2

μ μ� λð Þ ¼
1þ k

2k

ρ2

1� ρ
(4.81)
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E T½ � ¼ E Wq

� �þ 1

μ
(4.82)

E N½ � ¼ λE T½ � (4.83)

where ρ ¼ λ/μ.

4.10 Networks of Queues

The queues we have considered so far are isolated. In real life, we have a network of

queues interconnected such as shown in Fig. 4.12. Such networks of queues are

usually complicated and are best analyzed using simulation. However, we consider

two simple ones here [13–15].

4.10.1 Tandem Queues

Consider twoM/M/1 queues in tandem, as shown in Fig. 4.13. This is an example of

open queueing network.

The state diagram is shown in Fig. 4.14. From the sate diagram, we can obtain

the balance equations.

2

1

3

4

Fig. 4.12 A typical network of queues

λ

μ2 μ1 

Fig. 4.13 Two M/M/1 queues in tandem

4.10 Networks of Queues 107



Let

pi, j ¼ Prob i jobs at server 1 and j jobs at server 2½ �

For state (0,0),

λp0, 0 ¼ μ2p0, 1 (4.84)

For state (i,0), i > 0,

λpi�1, 0 þ μ2pi, 1 � λþ μ1ð Þpi, 0 ¼ 0 (4.85)

For state (0,j), j > 0,

μ1p1, j�1 þ μ2p0, jþ1 � λþ μ2ð Þp0, j ¼ 0 (4.86)

For state (i,j),

λpi�1, j þ μ1piþ1, j�1 þ μ2pi, jþ1 � λþ μ1 þ μ2ð Þpi, j ¼ 0 (4.87)

Since queue 1 is unaffected by what happens at queue 2, the marginal probability

of i jobs at queue 1 is

pi ¼ 1� ρ1ð Þρi1, ρ1 ¼
λ

μ1
(4.88)

Similarly, for queue 2

pj ¼ 1� ρ2ð Þρj2, ρ2 ¼
λ

μ2
(4.89)

λ λ

λ

λ0, 0 1, 0 2, 0 i, 0

0, 1 1, 1

. . .

0, 2

μ1 
μ1 

μ1 

μ2 

μ2 

μ2 

Fig. 4.14 The state diagram for two M/M/1 queues in tandem
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A simple product form solution for this two-node network is

pi, j ¼ 1� ρ1ð Þ 1� ρ2ð Þρi1ρj2, ρ1 ¼
λ

μ1
(4.90)

The analysis of even this simplest case is extremely complicated.

4.10.2 Queueing System with Feedback

Queuing systems with feedback are applicable to a fairly limited set of

circumstances. A typical example is shown in Fig. 4.15. The problem here is that

the combination of the external Poisson process and the feedback process is not

Poisson because the processes being superposed are not independent due to the

feedback. However, consideration of the steady state diagram shows us that, as far

as queue length is concerned, the system behaves like an M/M/1 queue with arrival

rate λ and service rate pμ. Also, the traffic equation for this network is

λ1 ¼ λþ λ1p ! λ1 ¼ λ

1� p
(4.91)

4.11 Jackson Networks

A Jackson network has a steady state solution in product form. Such product-form

queueing networks can be open or closed. The nature of such networks allows us to

decouple the queues, analyze them separately as individual systems, and then

combine the results. For example, consider a series of k single-server queues with

exponential service time and Poisson arrivals, as shown in Fig. 4.16.

Customers entering the system join queue at each stage. It can be shown that

each queue can be analyzed independently of other queues. Each queue has an

arrival and a departure rate of λ. If the ith server has a service rate of μi, the
utilization of the ith server is

ρi ¼
λ

μi
(4.92)

p

μλ λ1

1 - p

Fig. 4.15 A queueing system with a (Bernoulli) feedback
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and

Prob ni customers in the ith queue½ � ¼ P nið Þ ¼ 1� ρið Þρnii (4.93)

The joint probability of queue lengths of k queues is the product of individual

probabilities.

P n1; n2; � � �; nkð Þ ¼ �
1� ρ1

�
ρn11

�
1� ρ2

�
ρn22 � � �

�
1� ρk

�
ρnkk

¼ P1 n1ð ÞP2

�
n2
�� � �Pk

�
nk
� (4.94)

This is known as Jackson theorem, after J.R. Jackson who first proved the

property. The queueing network is therefore a product-form network. A network

to which Jackson’s theorem is applicable is known as Jackson network. In general,

for a product-form network

P n1; n2; � � �; nkð Þ ¼ 1

G

Yk
i¼1

ρnii (4.95)

where G is a normalization constant and is a function of the total number of jobs in

the system. The product-form networks are easier to solve than nonproduct-form

networks.

4.12 Summary

1. A simple introduction to queueing theory was presented.

2. Beginning with the M/M/1 queue, we derived the closed form expressions

for some performance measures.

3. We also considered the case of an M/M/1 queue with bulk arrivals or service. We

considered M/M/1/k, M/M/k, and M/M/1 queueing systems.

4. Using the more general queueing model M/G/1, we derived the Pollaczek-

Khintchine formula for the mean waiting time. The corresponding mean waiting

times for the M/M/1, M/D/1, M/Ek/1 queue models were derived as special cases

of the M/G/1 model.

A more in depth introduction to queueing theory can be found in [11, 12,

16–22]. We will apply the ideas in this chapter to model computer networks in

the following chapters.

μ1 μ2 μk 

λ
...

Fig. 4.16 k M/M/1 queues in series
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Problems

4.1 For the M/M/1 system, find: (a) E(N2) , (b) E(N(N � 1)), (c) Var(N).

4.2 In an M/M/1 queue, show that the probability that the number of messages

waiting in the queue is greater than a certain number m is

P n > mð Þ ¼ ρmþ1

4.3 For an M/M/1 model, what effect will doubling λ and μ have on E[N], E[Nq],

and E[W]?

4.4 Customers arrive at a post office according to a Poisson process with

20 customers/h. There is only one clerk on duty. Customers have exponential

distribution of service times with mean of 2 min. (a) What is the average

number of customers in the post office? (b) What is the probability that an

arriving customer finds the clerk idle?

4.5 From the balance equation for the M/M/1 queue, obtain the probability

generating function.

4.6 An air-line check-in counter at Philadelphia airport can be modeled as an

M/M/1 queue. Passengers arrive at the rate of 7.5 customers per hour and the

service takes 6 min on the average. (a) Find the probability that there are fewer

than four passengers in the system. (b) On the average, how long does each

passenger stay in the system? (c) On the average, how many passengers need

to wait?

4.7 An observation is made of a group of telephone subscribers. During the 2-h

observation, 40 calls are made with a total conversation time of 90 min.

Calculate the traffic intensity and call arrival rate assuming M/M/1 system.

4.8 Customers arrive at a bank at the rate of 1/3 customer per minute. If X denotes

the number of customers to arrive in the next 9 min, calculate the probability

that: (a) there will be no customers within that period, (b) exactly three

customers will arrive in this period, and (c) at least four customers will arrive.

Assume this is a Poisson process.

4.9 At a telephone booth, the mean duration of phone conversation is 4 min. If no

more than 2-min mean waiting time for the phone can be tolerated, what is the

mean rate of the incoming traffic that the phone can support?

4.10 For an M/M/1 queue operating at fixed ρ ¼ 0.75, answer the following

questions: (a) Calculate the probability that an arriving customer finds the

queue empty. (b) What is the average number of messages stored? (c) What is

the average number of messages in service? (d) Is there a single time at which

this average number is in service?

4.11 At a certain hotel, a lady serves at a counter and she is the only one on duty.

Arrivals to the counter seem to follow the Poisson distribution with mean of

10 customers/h. Each customer is served one at a time and the service time

follows an exponential distribution with a mean of 4 min.
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(a) What is the probability of having a queue?

(b) What is the average queue length?

(c) What is the average time a customer spends in the system?

(d) What is the probability of a customer spending more than 5 min in the

queue before being attended to?

Note that the waiting time distribution for an M/M/1 queue is

Prob W > tð Þ ¼ W tð Þ ¼ 1� ρe�μ 1�ρð Þt, t � 0

4.12 (a) The probability pn that an infinite M/M/2 queue is in state n is given by

pn ¼

1� ρð Þ
1þ ρð Þ , n ¼ 0

2 1� ρð Þ
1þ ρð Þ ρ2, n � 0

8>>><
>>>:

where ρ ¼ λ
2μ. Find the average occupancy E(N) and the average time delay in

the queue E(T).

4.13 ConsiderM/M/kmodel. Show that the probability of any server is busy is
λ

kμ= .

4.14 For the M/M/1/k system, let qn be the probability that an arriving customer

finds n customers in the system. Prove that

qn ¼
pn

1� pk

4.15 Derive Eq.(4.62) from Eq. (4.61).

4.16 Find the mean and variance of the number of customers in the system for the

M/M/1 queue.

4.17 At a toll booth, there is only one “bucket” where each driver drops 25 cents.

Assuming that cars arrive according to a Poisson probability distribution at

rate 2 cars per minute and that each car takes a fixed time 15 s to service, find:

(a) the long-run fraction of time that the system is busy, (b) the average

waiting time for each car, (c) the average number of waiting cars, (d) how

much money is collected in 2 h.

4.18 An M/Ek/1 queue has an arrival rate of 8 customers/s and a service rate of

12 customers/s. Assuming that k ¼ 2, find the mean waiting time.

4.19 Consider two identical M/M/1 queueing systems in operation side by side in a

facility with the same rates λ and μ (ρ ¼ λ/μ). Show that the distribution of the

total number N of customers in the two systems combined is

Prob N ¼ nð Þ ¼ nþ 1ð Þ 1� ρð Þ2ρn, n > 0
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