
Chapter 3

Stochastic Processes

For me problem-solving is the most interesting thing in life.
To be handed something that’s a complete mess and
straighten it out. To organize where there is no organization.
To give form to a medium that has no form.

—Sylvester Weaver

This chapter is an extension of the previous chapter. In the previous chapter, we

focused essentially on random variables. In this chapter, we introduce the concept

of random (or stochastic) process as a generalization of a random variable to

include another dimension—time. While a random variable depends on the out-

come of a random experiment, a random process depends on both the outcome of a

random experiment and time. In other words, if a random variable X is time-

dependent, X(t) is known as a random process. Thus, a random process may be

regarded as any process that changes with time and controlled by some probabilistic

law. For example, the number of customers N in a queueing system varies with

time; hence N(t) is a random process

Figure 3.1 portrays typical realizations or sample functions of a random process.

From this figure, we notice that a random process is a mapping from the sample

space into an ensemble (family, set, collection) of time functions known as sample

functions. Here X(t,sk) denotes the sample function or a realization of the random

process for the sk experimental outcome. It is customary to drop the s variable and

use X(t) to denote a random process. For a fixed time t1, X(t1) ¼ X1 is a random

variable. Thus,

A random (or stochastic) process is a family of random variables X(t), indexed by the

parameter t and defined on a common probability space.

It should be note that the parameter t does not have to always represent time; it

can represent any other variable such as space.
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In this chapter, we discuss random processes, their properties, and the basic tools

used for their mathematical analysis. Specifically, we will discuss random walks,

Markov processes, birth-death processes, Poisson processes, and renewal pro-

cesses. We will also consider how the concepts developed can be demonstrated

using MATLAB.

3.1 Classification of Random Processes

It is expedient to begin our discussion of random processes by developing the

terminology for describing random processes [1–3]. An appropriate way of achiev-

ing this is to consider the various types of random processes. Random processes

may be classified as:

• Continuous or discrete

• Deterministic or nondeterministic

• Stationary or nonstationary

• Ergodic or nonergodic
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Fig. 3.1 Realizations of a random process
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3.1.1 Continuous Versus Discrete Random Process

A continuous-time random process is one that has both a continuous random

variable and continuous time. Noise in transistors and wind velocity are examples

of continuous random processes. So are Wiener process and Brownian motion.

A discrete-time random process is one in which the random variables are discrete,

i.e. it is a sequence of random variables. For example, a voltage that assumes a

value of either 0 or 12 V because of switching operation is a sample function from

a discrete random process. The binomial counting and random walk processes are

discrete processes. It is also possible to have a mixed or hybrid random process

which is partly continuous and partly discrete.

3.1.2 Deterministic Versus Nondeterministic
Random Process

A deterministic random process is one for which the future value of any sample

function can be predicted from a knowledge of the past values. For example,

consider a random process described by

X tð Þ ¼ A cos ωtþ Φð Þ (3.1)

where A and ω are constants and Φ is a random variable with a known probability

distribution. Although X(t) is a random process, one can predict its future values

and hence X(t) is deterministic. For a nondeterministic random process, each
sample function is a random function of time and its future values cannot be

predicted from the past values.

3.1.3 Stationary Versus Nonstationary Random Process

A stationary random process is one in which the probability density function of the
random variable does not change with time. In other words, a random process is

stationary when its statistical characteristics are time-invariant, i.e. not affected by a

shift in time origin. Thus, the random process is stationary if all marginal and joint

density functions of the process are not affected by the choice of time origin.

A nonstationary random process is one in which the probability density function

of the random variable is a function of time.
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3.1.4 Ergodic Versus Nonergodic Random Process

An ergodic random process is one in which every member of the ensemble

possesses the same statistical behavior as the entire ensemble. Thus, for ergodic

processes, it is possible to determine the statistical characteristic by examining only

one typical sample function, i.e. the average value and moments can be determined

by time averages as well as by ensemble averages. For example, the nth moment is

given by

Xn ¼
ð1

�1
xnf X xð Þdx ¼ lim

T ! 1
1

2T

ðT

�T

Xn tð Þdt (3.2)

This condition will only be satisfied if the process is stationary. This implies that

ergodic processes are stationary as well. A nonergodic process does not satisfy the

condition in Eq. (3.2). All non-stationary processes are nonergodic but a stationary

process could also be nonergodic. Figure 3.2 shows the relationship between

stationary and ergodic processes. These terms will become clearer as we move

along in the chapter.

Example 3.1 Consider the random process

X tð Þ ¼ cos 2πtþ Θð Þ
where Θ is a random variable uniformly distributed on the interval [0,2π].

Solution

We are given an analytic expression for the random process and it is evident that it

is a continuous-time and deterministic random process. Figure 3.3 displays some

sample functions or realizations of the process.

Ergodic 

Stationary 

Random Processes 

Fig. 3.2 Relationship

between stationary and

ergodic random processes

64 3 Stochastic Processes



3.2 Statistics of Random Processes and Stationarity

Since a random process specifies a random variable at any given time, we can find

the statistical averages for the process through the statistical averages of the

corresponding random variables. For example, the first-order probability density

function (PDF) for a random process X(t) is fX(x;t), while the corresponding first-

order cumulative distribution function (CDF) of X(t) is

FX x; tð Þ ¼ P X tð Þ � x½ � ¼
ðx

�1
f X λ; tð Þdλ (3.3)

or

f X x; tð Þ ¼ ∂FX x; tð Þ
∂x

(3.4)

θ = 0 X(t)

θ = π/2 X(t)

θ = π

t

t

t

X(t)

Fig. 3.3 For Example 3.1; sample functions of the random process
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Similarly, if X(t1) ¼ X1 and X(t2) ¼ X2 represent two random variables of a

random process X(t), then their joint distributions are known as second-order PDF

and CDF, which are related as

FX x1; x2; t1; t2ð Þ ¼ P X t1ð Þ � x1,X t2ð Þ � x2½ �

¼
ðx2

�1

ðx1
�1

f X
�
λ1, λ2; t1, t2

�
dλ1dλ2 (3.5)

or

f X x1; x2; t1; t2ð Þ ¼ ∂FX x1; x2; t1; t2ð Þ
∂x1∂x2

(3.6)

In general, the joint distributions of n random variables X(t1) ¼ X1, X(t2) ¼ X2,

. . ., X(tn) ¼ Xn provide the nth-order PDF and CDF of a random process X(t) and

are related as

FX x1; x2; . . . ; xn; t1; t2; . . . ; tnð Þ ¼ P X
�
t1
� � x1,X

�
t2
� � x2, . . . ,X

�
tn
� � xn

� �

¼
ðxn

�1
. . .

ðx2
�1

ðx1
�1

f X
�
λ1, λ2, . . . , λn; t1, t2, . . . , tn

�
dλ1dλ2 . . . dλn

(3.7)

or

f X x1; x2; . . . ; xn; t1; t2; . . . ; tnð Þ ¼ ∂FX x1; x2; . . . ; xn; t1; t2; . . . ; tnð Þ
∂x1∂x2 . . .∂xn

(3.8)

A random process X(t) is said to be strictly stationary of order n if its nth-order

PDF and CDF are time-invariant, i.e.

FX x1, x2, . . . , x; t1 þ τ, t2 þ τ, . . . , tn þ τ
� �
¼ FX x1, x2, . . . , x; t1, t2, . . . , tn

� �
(3.9)

i.e. the CDF depends only on the relative location of t1, t2,. . .,tn and not on their

direct values.

We say that {Xk}, k ¼ 0, 1, 2, � � �, n is an independent process if and only if

FX x0; x1; � � �; xn; t0; t1; � � �; tnð Þ ¼ FX0
x0; t0ð ÞFX1

x1; t1ð Þ� � �FXn
xn; tnð Þ

In addition, if all random variables are drawn from the same distribution, the

process is characterized by a single CDF, FXk
xk; tkð Þ, k ¼ 0, 1, 2, � � �, n . In this

case, we call {Xk} a sequence of independent and identically distributed (IID)

random variables.
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Having defined the CDF and PDF for a random process X(t), we are now

prepared to define the statistical (or ensemble) averages—the mean, variance,

autocorrelation, and autocovariance of X(t). As in the case of random variables,

these statistics play an important role in practical applications.

The mean or expected value of the random process X(t) is

mX tð Þ ¼ X tð Þ ¼ E X tð Þ½ � ¼
ð�1

�1
xf X x; tð Þdx (3.10)

where E[•] denotes ensemble average, fX(x;t) is the PDF of X(t) and X(t) is regarded

as a random variable for a fixed value of t. In general, the mean mX(t) is a function
of time.

The variance of a random process X(t) is given by

Var Xð Þ ¼ σ2X ¼ E X tð Þ � mX tð Þð Þ2
h i

¼ E X2
� �� m2

X (3.11)

The autocorrelation of a random process X(t) is the joint moment of X(t1)

and X(t2), i.e.

RX t1; t2ð Þ ¼ E X t1ð ÞX t2ð Þ½ � ¼
ð1

�1

ð1

�1
x1x2 f X x1; x2; t1; t2ð Þdx1dx2 (3.12)

where fX(x1,x2;t1,t2) is the second-order PDF of X(t). In general, RX(t1,t2) is a

deterministic function of two variables t1 and t2. The autocorrection function is

important because it describes the power-spectral density of a random process.

The covariance or autocovariance of a random process X(t) is the covariance of

X(t1) and X(t2), i.e.

Cov X t1ð Þ,X t2ð Þ½ � ¼ CX t1; t2ð Þ ¼ E X t1ð Þ � mX t1ð Þf g X t2ð Þ � mX t2ð Þf g½ � (3.13a)

Or

Cov X t1ð Þ,X t2ð Þ½ � ¼ RX t1; t2ð Þ � mX t1ð ÞmX t2ð Þ (3.13b)

indicating that the autocovariance can be expressed in terms of the autocorrelation

and the means. Note that the variance of X(t) can be expressed in terms of its

autocovariance, i.e.

Var X tð Þð Þ ¼ CX t; tð Þ (3.14)

The correlation coefficient of a random process X(t) is the correlation coefficient

of X(t1) and X(t2), i.e.
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ρX t1; t2ð Þ ¼ CX t1; t2ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CX t1; t1ð ÞCX t2; t2ð Þp (3.15)

where
��ρX t1; t2ð Þj � 1.

Finally, we define the nth joint moment of X(t) as

E X t1ð ÞX t2ð Þ . . .X tnð Þ½ �

¼
ð1

�1
. . .

ð1

�1

ð1

�1
x1x2 . . . xnf X x1; x2; . . . ; xn; t1; t2; . . . ; tnð Þdx1dx2 . . . dxn

(3.16)

We should keep in mind that the mean, variance, autocorrelation,

autocovariance, and nth joint moment are good indicators of the behavior of a

random process but only partial characterizations of the process.

In terms of these statistics, a random process may be classified as follows.

1. A random process is wide-sense stationary (WSS) or weakly stationary if its

mean is constant, i.e.

E X tð Þ½ � ¼ E X t1ð Þ½ � ¼ E X t2ð Þ½ � ¼ mx ¼ constant (3.17)

and its autocorrelation depends only on the absolute time difference

τ ¼ jt1 � t2j, i.e.
E X tð ÞX tþ τð Þ½ � ¼ RX τð Þ (3.18)

Note that the autocovariance of a WSS process depends only on the time

difference τ

CX τð Þ ¼ RX τð Þ � m2
x (3.19)

and that by setting τ ¼ 0 in Eq. (3.18), we get

E X2 tð Þ� � ¼ RX 0ð Þ (3.20)

indicating that the mean power of a WSS process X(t) does not depend on t. The

autocorrelation function has its maximum value when τ ¼ 0 so that we can write

�RX 0ð Þ � RX τð Þ � RX 0ð Þ (3.21)

2. A random process is said to be strict-sense stationary (SSS) if its statistics are

invariant to shift in the time axis. Hence,

FX x1, x2, . . . , xn; t1 þ τ, t2 þ τ, . . . , tn þ τð Þ
¼ FX x1; x2; . . . ; xn; t1; t2; . . . ; tnð Þ (3.22)
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An SSS random process is also WSS but the converse is not generally true.

In general terms, a random process is stationary if all its statistical properties do not vary

with time.

Example 3.2 A random process is given by

X tð Þ ¼ A cos ωtþ Θð Þ
where A and ω are constants and Θ is uniformly distributed over (0,2π). (a) Find E

[X(t)] , E[X2(t)] and E[X(t)X(t+τ)]. (b) Is X(t) WSS?

Solution

(a) Since Θ has a uniform distribution, its PDF is given by

f Θ θð Þ ¼
1

2π
, 0 � θ � 2π

0, otherwise

8<
:

Hence,

E X tð Þ½ � ¼
ð1
�1

xfΘ θð Þdθ ¼ A

ð2π

0

cos ωtþ θð Þ 1

2π
dθ ¼ 0

E X2 tð Þ� � ¼
ð1
�1

x2fΘ θð Þdθ ¼ A2

ð2π

0

cos 2 ωtþ θð Þ 1

2π
dθ

¼ A2

ð2π

0

1

2
1þ cos 2 ωtþ θð Þ½ � 1

2π
dθ ¼ A2

2

where the trigonometric identity cos 2α ¼ 1
2
1þ cos 2α½ � and the fact that

ω ¼ 2π/T have been applied.

E X tð ÞX tþ τð Þ½ ¼
ð2π

0

A cos ωtþ θð ÞA cos ω tþ τð Þ þ θ½ � 1
2π

dθ

¼ A2

2π

ð2π

0

1

2
cos ωτ þ 2ωtþ 2θð Þ þ cosωτ½ �dθ ¼ A2

2
cosωτ

where we have used the trigonometric identity cosA cosB ¼
1
2
cos Aþ Bð Þ þ cos A� Bð Þ½ �:

(b) Since the mean of X(t) is constant and its autocorrelation is a function of τ only,
X(t) is a WSS random process.
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Example 3.3 Let X(t) ¼ A sin (πt/2), where A is a Gaussian or normal random

variable with mean μ and variance σ2, i.e. A ¼ N(μ,σ). (a) Determine the mean,

autocorrelation, and autocovariance of X(t). (b) Find the density functions for

X(1) and X(3). (c) Is X(t) stationary in any sense?

Solution

Given that E[A] ¼ μ and Var(A) ¼ σ2, we can obtain

E A2
� � ¼ Vax Að Þ þ E2 A½ � ¼ σ2 þ μ2

(a) The mean of X(t) is

mX tð Þ ¼ E A sin πt=2½ � ¼ E A½ � sin πt=2 ¼ μ sin πt=2

The autocorrelation of X(t1) and X(t2) is

RX t1; t2ð Þ ¼ E A sin
�
πt1=2

�
A sin

�
πt2=2

�� � ¼ E A2
� �

sin
�
πt1=2

�
sin

�
πt2=2

�
¼ σ2 þ μ2ð Þ sin �πt1=2� sin �πt2=2�

The autocovariance is

CX t1; t2ð Þ ¼ RX t1; t2ð Þ � mX t1ð ÞmX t2ð Þ ¼ σ2 sin πt1=2ð Þ sin πt2=2ð Þ
(b) X(1) ¼ A sin π(1)/2 ¼ A

FX x1; t1ð Þ ¼ P X 1ð Þ � x1½ � ¼ P A � x1½ � ¼ FA að Þ
where a ¼ x1

f X x1ð Þ ¼ ∂F x1; t1ð Þ
∂x1

¼ dFA að Þ
da

da

dx1
¼ f A að Þ

Since A ¼ N(μ,σ),

f A að Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� a�μð Þ2= 2σ2ð Þ

f X x1ð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x1�μð Þ2= 2σ2ð Þ

Similarly, X(3) ¼ A sin π3/2 ¼ �A

FX x3; t1ð Þ ¼ P X 3ð Þ � x3½ � ¼ P �A � x3½ � ¼ P A � �x3½ � ¼ 1� P A � �x3½ �
¼ 1� FA að Þ

where a ¼ �x3.
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f X x3ð Þ ¼ ∂F x3; t1ð Þ
∂x3

¼ dFA að Þ
da

da

dx3
¼ f A að Þ

Hence

f X x3ð Þ ¼ 1

σ
ffiffiffiffiffi
2π

p e� x3þμð Þ2= 2σ2ð Þ

(c) Since the mean of X(t) is a function of time, the process is not stationary

in any sense.

3.3 Time Averages of Random Processes and Ergodicity

For a random process X(t), we can define two types of averages: ensemble and time

averages. The ensemble averages (or statistical averages) of a random process X

(t) may be regarded as “averages across the process” because they involve all

sample functions of the process observed at a particular instant of time. The time

averages of a random process X(t) may be regarded as “averages along the process”

because they involve long-term sample averaging of the process.

To define the time averages, consider the sample function x(t) of random process

X(t), which is observed within the time interval � T � t � T. The time average
(or time mean) of the sample function is

x ¼ < x tð Þ >¼ lim

T ! 1
1

2T

ðT

�T

x tð Þdt (3.23)

where <•> denotes time-averaging operation. Similarly, the time autocorrelation
of the sample function x(t) is given by

R X τð Þ ¼ < x tð Þx tþ τð Þ >¼ lim

T ! 1
1

2T

ðT

�T

x tð Þx tþ τð Þdt (3.24)

Note that both x and R X τð Þ are random variables since their values depend on

the observation interval and on the sample function x(t) used.

If all time averages are equal to their corresponding ensemble averages, then the

stationary process is ergodic, i.e.

x ¼ < x tð Þ > ¼ E X tð Þ½ � ¼ mX (3.25)

R X τð Þ ¼ < x tð Þx tþ τð Þ > ¼ E X tð ÞX tþ τð Þ½ � ¼ RX τð Þ (3.26)

An ergodic process is one for which time and ensemble averages are interchangeable.

The concept of ergodicity is a very powerful tool and it is always assumed in

many engineering applications. This is due to the fact that it is impractical to have a
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large number of sample functions to work with. Ergodicity suggests that if a random

process is ergodic, only one sample function is necessary to determine the ensemble

averages. This seems reasonable because over infinite time each sample function of

a random process would take on, at one time or another, all the possible values of

the process. We will assume throughout this text that the random processes we will

encounter are ergodic and WSS.

Basic quantities such as dc value, rms value, and average power can be defined

in terms of time averages of an ergodic random process as follows:

1. x ¼ mX is the dc value of x(t).

2. x½ �2 ¼ m2
X is the normalized dc power.

3. R X 0ð Þ ¼ x2 is the total average normalized power

4. σ 2
X ¼ x2 � x½ �2 is the average normalized power in the ac or time-varying

component of the signal.

5. Xrms ¼
ffiffiffiffiffi
x2

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ 2
X þ x½ �2

q
is the rms value of x(t).

Example 3.4 Consider the random process in Example 3.2. Show that the process is

stationary and ergodic.

Solution

We already showed that the process is stationary because the statistical or ensemble

averages do not depend on time. To show that the process is ergodic, we compute

the first and second moments. Since ω ¼ 2π/T,

x ¼ lim

T ! 1
1

2T

ðT

�T

A cos ωtþ θð Þdt ¼ 0

x2 ¼ lim

T ! 1
1

2T

ðT

�T

A2 cos 2 ωtþ θð Þdt ¼ lim

T ! 1
A2

2T

ðT

�T

1

2
1þ cos 2 ωtþ θð Þ½ �dt ¼ A2

2

indicating that the time averages are equal to the ensemble averages we obtained in

Example 3.2. Hence the process is ergodic.

3.4 Multiple Random Processes

The joint behavior of two or more random processes is dictated by their joint

distributions. For example, two random processes X(t) and Y(t) are said to be

independent if for all t1 and t2, the random variables X(t1) and Y(t2) are indepen-

dent. That means that their nth order joint PDF factors, i.e.

FXY x1; y1; x2; y2; . . . ; xn; yn; t1; t2; . . . ; tnð Þ
¼ FX x1; x2; . . . ; xn; t1; t2; . . . ; tnð ÞFY y1; y2; . . . ; yn; t1; t2; . . . ; tnð Þ (3.27)
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The crosscorreleration between two random processes X(t) and Y(t) is

defined as

RXY t1; t2ð Þ ¼ E X t1ð ÞY t2ð Þ½ � (3.28)

Note that

RXY t1; t2ð Þ ¼ RYX t2; t1ð Þ (3.29)

The processes X(t) and Y(t) are said to be orthogonal if

RXY t1; t2ð Þ ¼ 0 for all t1 and t2 (3.30)

If X(t) and Y(t) are jointly stationary, then their crosscorrelation function

becomes

RXY t1; t2ð Þ ¼ RXY τð Þ
where τ ¼ t2 � t1. Other properties of the crosscorrelation of jointly stationary

processes are:

1. RXY(�τ) ¼ RXY(τ), i.e. it is symmetric.

2.
��RXY τð Þj � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

RX 0ð ÞRY 0ð Þp
, i.e. it is bounded.

3. RXY τð Þ�� � 1
2
RX 0ð Þ þ RY 0ð Þ½ ��� , i.e. it is bounded.

The crosscovariance of X(t) and Y(t) is given by

CXY t1; t2ð Þ ¼ E X t1ð Þ � mX t1ð Þf g Y t2ð Þ � mY t2ð Þf g½ � ¼ RXY t1; t2ð Þ � mX t1ð ÞmY t2ð Þ
(3.31)

Just like with random variables, two random processes X(t) and Y(t) are uncor-
related if

CXY t1; t2ð Þ ¼ 0 for all t1 and t2 (3.32)

which implies that

RXY t1; t2ð Þ ¼ mX t1ð ÞmY t2ð Þ for all t1 and t2 (3.33)

Finally, for jointly ergodic random processes X(t) and Y(t),

R XY τð Þ ¼ lim

T ! 1
1

2T

ðT

�T

x tð Þx tþ τð Þdt ¼ RXY τð Þ (3.34)

Thus, two random processes X(t) and Y(t) are:

(a) Independent if their joint PDF factors.

(b) Orthogonal if RXY(t1,t2) ¼ 0 for all t1 and t2
(c) Uncorrelated if RXY(t1,t2) ¼ mX(t1)mY(t2) for all t1 and t2.
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Example 3.5 Two random processes are given by

X tð Þ ¼ sin ωtþ Θð Þ, Y tð Þ ¼ sin ωtþ Θþ π=4ð Þ
where Θ is random variable that is uniformly distributed over (0,2π). Find the cross
correlation function RXY(t,t + τ)

Solution

RXY t, tþ τð Þ ¼ RXY

�
τ
� ¼ E X

�
t
�
Y
�
tþ τ

�� � ¼
ð2π

0

x tð Þy tþ τð ÞfΘ θð Þdθ

¼
ð2π

0

sin ωtþ θð Þ sin ω tþ τð Þ þ θ þ π=4½ � 1
2π

dθ

¼
ð2π

0

1

2
cos ωτ þ π=4ð Þ � cos

�
2ωtþ ωτ þ 2θ þ π=4

� � 1

2π
dθ

¼ 1

2
cos ωτ þ π=4ð Þ

where we have applied the trigonometric identity sinA sinB ¼
1
2
cos A� Bð Þ � cos Aþ Bð Þ½ �.

Example 3.6 A received signal X(t) consists of two components: desired signal

S(t) and noise N(t), i.e.

X(t) ¼ S(t) + N(t)

If the autocorrelation of the random signal is

RS τð Þ ¼ e�2jτj

while that of the random noise is

RN τð Þ ¼ 3e�jτj

Assume that they are independent and they both have zero mean.

(a) Find the autocorrelation of X(t). (b) Determine the cross correlation between

X(t) and S(t).

Solution

(a) RX t1; t2ð Þ ¼ E X
�
t1
�
X
�
t2
�� � ¼ E S t1ð Þ þ N t1ð Þf g S t2ð Þ þ N t2ð Þf g½ �

¼ E S t1ð ÞS�t2�� �þ E N
�
t1
�
S
�
t2
�� �þ E S

�
t1
�
N
�
t2
�� �þ E N

�
t1
�
N
�
t2
�� �

Since S(t) and N(t) are independent and have zero mean,
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E N t1ð ÞS t2ð Þ½ � ¼ E N t1ð Þ½ �E S t2ð Þ½ � ¼ 0

E S t1ð ÞN t2ð Þ½ � ¼ E S t1ð Þ½ �E N t2ð Þ½ � ¼ 0

Hence,

RX τð Þ ¼ RS τð Þ þ RN τð Þ ¼ e�2jτj þ 3e�jτj

where τ ¼ t1 � t2.

(b) Similarly,

RXS t1; t2ð Þ ¼ E X
�
t1
�
S
�
t2
�� � ¼ E S t1ð Þ þ N t1ð Þf g S t2ð Þf g½ �

¼ E S t1ð ÞS�t2�� �þ E N
�
t1
�
S
�
t2
�� �

¼ RS t1; t2ð Þ þ 0

Thus,

RXS τð Þ ¼ RS τð Þ ¼ e�2jτj

3.5 Sample Random Processes

We have been discussing random processes in general. Specific random processes

include Poisson counting process, Wiener process or Brownian motion, random

walking process, Bernoulli process, birth-and-death process, and Markov process

[4, 5]. In this section, we consider some of these specific random processes.

3.5.1 Random Walks

A random walk (or drunkard’s walk) is a stochastic process in which the states are

integers Xn representing the position of a particle at time n. Each state change

according to

Xn ¼ Xn�1 þ Zn (3.35)

where Zn is a random variable which takes values of 1 or �1. If X0 ¼ 0, then

Xn ¼
Xn
i¼1

Zi (3.36)

A random walk on X corresponds to a sequence of states, one for each step of the

walk. At each step, the walk switches from its current state to a new state or remains

at the current state. Thus,
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Random walks constitute a random process consisting of a sequence of discrete steps of

fixed length.

Random walks are usually Markovian, which means that the transition at each

step is independent of the previous steps and depends only on the current state.

Although random walks are not limited to one-dimensional problems, the

one-dimensional random walk is one of the simplest stochastic processes and can

be used to model many gambling games. Random walks also find applications in

potential theory. A typical one-dimensional random walk is illustrated in Fig. 3.4.

Example 3.7 Consider the following standard Markovian random walk on the

integers over the range {0, . . ., N} that models a simple gambling game, where a

player bets the same amount on each hand (i.e., step). We assume that if the player

ever reaches 0, he has lost all his money and stops, but if he reaches N, he has won a
certain amount of money and stops. Otherwise, at each step, one moves from state

i (where i 6¼ 0, N) to i + 1 with probability p (the probability of winning the game),

to i � 1 with probability q (the probability of losing the game), and stays at the

same state with probability 1 � p � q (the probability of a draw).

3.5.2 Markov Processes

If the future state of a process depends only on the present (and independent of the

past), the process is called a Markov process. A Markov process is made possible

only if the state time has a memoryless (exponential) distribution. This requirement

often limits the applicability of Markov processes.

Formally, a stochastic process X(t) is a Markov process if

Prob X tð Þ ¼ x
��X tnð Þ ¼ xn,X tn�1ð Þ ¼ xn�1� � �,X toð Þ ¼ xo

� �
¼ Prob X tð Þ ¼ x

��X tnð Þ ¼ xn
� �

for to < t1 < � � � < tn < t (3.37)

A discrete-state Markov process is called a Markov chain [4]. We use the state

transition diagram to represent the evolution of a Markov chain. An example of

three-state Markov chain is shown in Fig. 3.5.

p p
p

q
q q

n-1 n n+1

Fig. 3.4 A typical

random walk
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The conditional probability

Prob Xnþ1 ¼ i
��Xn ¼ j

� � ¼ pn i; jð Þ
is called the transition probability from state i to state j. Since a Markov chain must

go somewhere with a probability of 1, the sum of pn(i,j)’s over all j’s is equal to 1. If

pn(i,j) is independent of n, the Markov chain is said to be time-homogeneous and in

this case, the transition probability becomes p(i,j). When we arrange p(i,j) into an

square array, the resulting matrix is called the transition matrix.
For a simple example, consider four possible states as 0, 1, 2, and 3. The

transition matrix is

P ¼
p 0; 0ð Þ p 0; 1ð Þ p 0; 2ð Þ p 0; 3ð Þ
p 1; 0ð Þ p 1; 1ð Þ p 1; 2ð Þ p 1; 3ð Þ
p 2; 0ð Þ p 2; 1ð Þ p 2; 2ð Þ p 2; 3ð Þ
p 3; 0ð Þ p 3; 1ð Þ p 3; 2ð Þ p 3; 3ð Þ

2
664

3
775 (3.38)

3.5.3 Birth-and-Death Processes

Birth-death processes describe the stochastic evolution in time of a random variable

whose value increases or decreases by one in a single event. These are discrete-

space Markov processes in which the transitions are restricted to neighboring states

only. A typical example is shown in Fig. 3.6.

For example, the number of jobs in a queue with a single server and the

individual arrivals can be represented as a birth-death process. An arrival to the

queue (a birth) causes the state to change by +1, while a departure (a death) causes

the state to change by �1. Although the birth-death processes are used in modeling

population, they are useful in the analysis of communication networks. They are

also used in physics, biology, sociology, and economics.

1 20

p00

p02

p20

p10 p21

p22

p11

p12p01

Fig. 3.5 State transition

diagram for a three-state

Markov chain
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3.5.4 Poisson Processes

From application point of view, Poisson processes are very useful. They can be used

to model a large class of stochastic phenomena. Poisson process is one in which the

number of events which occur in any time interval t is distributed according to a

Poisson random variable, with mean λt. In this process, the interarrival time is

distributed exponentially.

A process is called a Poisson process when the time intervals between successive events

are exponentially distributed.

Given a sequence of discrete events occurring at times t0, t1, t2, t3,. . ., the intervals
between successive events areΔt1 ¼ (t1 � t0),Δt2 ¼ (t2 � t1),Δt3 ¼ (t3 � t2), . . .,
and so on. For a Poisson process, these intervals are treated as independent random

variables drawn from an exponentially distributed population, i.e., a population with

the density function f(x) ¼ λe�λ x for some fixed constant λ. The interoccurrence

times between successive events of a Poisson process with parameter λ are indepen-
dent identical distributed (IID) exponential random variable with mean 1/λ.

The Poisson process is a counting process for the number of randomly occurring

point-events observed in a given time interval. For example, suppose the arrival

process has a Poisson type distribution. If N(t) denotes the number of arrivals in

time interval (0,t], the probability mass function for N(t) is

pn tð Þ ¼ P N tð Þ ¼ n½ � ¼ λtð Þn
n!

e�λt (3.39)

Thus, the number of events N(t) in the interval (0,t] has a Poisson distribution

with parameter λt and the parameter λ is called the arrival rate of the Poisson

process.

Two properties of the Poisson process are the superposition property and

decomposition property [6, 7].

The superposition (additive) property states that the superposition of Poisson

processes is also a Poisson process, as illustrated in Fig. 3.7.

Thus, the sum of n independent Poisson processes with parameters λk, k ¼ 1, 2,

� � �, n is a Poisson process with parameter λ ¼ λ1 þ λ2 þ � � � þ λn.
The decomposition (splitting) property is just the reverse of the superposition

property. If a Poisson stream is split into k substreams, each substream is also

Poisson, as illustrated in Fig. 3.8.

λ λ λ λ

μ μ μ μ

1
. . .

n-10 n n+1

Fig. 3.6 The state transition diagram for a birth-and-death process
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The Poisson process is related to the exponential distribution. If the interarrival

times are exponentially distributed, the number of arrival-points in a time interval is

given by the Poisson distribution and the process is a Poisson arrival process. The

converse is also true—if the number of arrival-points in any interval is a Poisson

process, the interarrival times are exponentially distributed.

The relationship among various types of stochastic processes is shown in Fig. 3.9.

λ

λ1 

λ2 

λ3

λN 

⋅
⋅

Fig. 3.7 Superposition of

Poisson streams

p1l
p1

p2 p2l
λ

p3 p3l

pN

pNl

⋅

⋅

Fig. 3.8 Decomposition of

a Poisson stream

Poisson 
Processes 

Birth-death 
Processes 

Markov  Processes 

Fig. 3.9 Relationship

between various types of

stochastic processes
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3.6 Renewal Processes

A renewal process generalizes the notion of a Markov process. In a Markov process,

the times between state transitions are exponentially distributed. Let X1, X2, X3, � � �
be times of successive occurrences of some phenomenon and let Zi ¼ Xi � Xi � 1

be the times between (i � 1th) and ith occurrences, then if {Zi} are independent and
identically distributed (IID), the process {Xi} is called a renewal process. The study
of renewal processes is called renewal theory.

One common example of a renewal process is the arrival process to a queueing

system. The times between successive arrivals are IID. In a special case that the

interarrival times are exponential, the nenewal process is a Poisson process. Poisson

process, binomial process, and random walk process are special cases of renewal

processes.

3.7 Computation Using MATLAB

The MATLAB software can be used to reinforce the concepts learned in this

chapter. It can be used to generate a random process X(t) and calculate its statistics.

It can also be used to plot X(t) and its autocorrelation function.

MATLAB provides command rand for generating uniformly distributed ran-

dom numbers between 0 and 1. The uniform random number generator can then be

used to generate a random process or the PDF of an arbitrary random variable. For

example, to generate a random variable X uniformly distributed over (a,b), we use

X ¼ aþ a� bð ÞU (3.40)

where U is generated by rand. A similar command randn generates a Gaussian

(or normal) distribution with mean zero and variance one.

Suppose we are interested in generating a random process

X tð Þ ¼ 10 cos 2πtþ Θð Þ (3.41)

where Θ is a random variable uniformly distributed over (0,2π). We generate and

plot X(t) using the following MATLAB commands.

» t¼0:0.01:2; % select 201 time points between 0 and 2.
» n¼length(t);
» theta¼2*pi*rand(1,n); % generates n¼201 uniformly

distributed theta
» x¼10*cos(2*pi*t +theta);
» plot(t,x)

The plot of the random process is shown in Fig. 3.10.
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Wemay find the mean and standard deviation using MATLAB commandsmean

and std respectively. For example, the standard deviation is found using

» std(x)
ans ¼

7.1174

where the result is a bit off from the exact value of 7.0711 obtained from Example

3.2. The reason for this discrepancy is that we selected only 201 points. If more

points, say 10,000, are selected the two results should be very close.

We will now use MATLAB to generate a Bernoulli random process, which is

used in data communication. The process consists of random variables which

assume only two states or values: +1 and �1 (or +1 and 0). In this particular

case, the process may also be regarded as random binary process. The probability
of X(t) being +1 is p and �1 is q ¼ 1 � p. Therefore, to generate a Bernoulli

random variable X, we first use MATLAB rand to generate a random variable U

that uniformly distributed over (0,1). Then, we obtain

X ¼ 1, if U � p
�1, if U > p

�
(3.42)

i.e. we have partitioned the interval (0,1) into two segments of length p and 1 � p.

The following MATLAB program is used to generate a sample function for the

random process. The sample function is shown in Fig. 3.11.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

Fig. 3.10 MATLAB generation of the random process X(t) ¼ 10 cos(2πt + Θ)
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% Generation of a Bernoulli process
% Ref: D. G. Childers, "Probability of Random Processes,"

Irwin, 1997, p.164
p¼0.6; % probability of having +1
q¼1-p; % probability of having -1
n¼30; % length of the discrete sequence
t¼rand(1,n); % generate random numbers uniformly

distributed over (0,1)
x¼zeros(length(t)); % set initial value of x equal to zero
for k¼1:n

if( t(k) <¼ p )
x(k)¼1;

else
x(k)¼ -1;

end
end
stairs(x);
xlabel(’t’)
ylabel(’x(t)’)
a¼axis;
axis([a(1) a(2) -2 2]);
grid on

Fig. 3.11 A typical sample function of a Bernoulli random process
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3.8 Summary

1. A random process (also known as stochastic process) is a mapping from the

sample space into an ensemble of time functions known as sample functions.

At any instant of time, the value of a random process is a random variable.

2. A continuous-time random process X(t) is a family of sample functions of

continuous random variables that are a function of time t, where t is a continuum

of values. A random process is deterministic if future values of any sample

function can be predicted from past values.

3. A random process is stationary if all its statistical properties does not change

with time, i.e mX(t) is constant and RX(t1,t2) depends only on τ ¼ jt2 � t1j.
4. For an ergodic process, the statistical and time averages are the same and only

one sample function is needed to compute ensemble averages.

5. For two stationary random processes X(t) and Y(t), the cross-correlation func-

tion is defined as

RXY τð Þ ¼ E X tð ÞY tþ τð Þ½ �
Widely used random processes in communication include random walk,

birth-and-death process, Poisson process, Markov process, and renewal process.

6. Some of the concepts covered in the chapter are demonstrated using MATLAB.

For more information on the material covered in this chapter, one should

see [8–10].

Problems

3.1 If X(t) ¼ A sin4t, where A is random variable uniformly distributed between

0 and 2, find E[X(t)] and E[X2(t)].

3.2 Given a random process X(t) ¼ At + 2, where A is a random variable uni-

formly distributed over the range (0,1),

(a) sketch three sample functions of X(t),

(b) find X tð Þ and X2 tð Þ ,
(c) determine RX(t1,t2),
(d) Is X(t) WSS?

3.3 If a random process is given by

X tð Þ ¼ A cosωt� B sinωt,

where ω is a constant and A and B are independent Gaussian random variables

with zero mean and variance σ2, determine: (a) E[X], E[X2] and Var(X),

(b) the autocorrelation function RX(t1,t2).
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3.4 Let Y(t) ¼ X(t � 1) + cos3t, where X(t) is a stationary random process.

Determine the autocorrelation function of Y(t) in terms of RX(τ).
3.5 If Y(t) ¼ X(t) � X(t � α), where α is a constant and X(t) is a random

process. Show that

RY t1; t2ð Þ ¼ Rx t1; t2ð Þ � Rx t1, t2 � αð Þ � Rx t1 � α, t2ð Þ þ Rx t1 � α, t2 � αð Þ
3.6 A random stationary process X(t) has mean 4 and autocorrelation functon

RX τð Þ ¼ 5e�2jτj

(a) If Y(t) ¼ X(t � 1), find the mean and autocorrelation function of Y(t).

(b) Repeat part (a) if Y(t) ¼ tX(t).

3.7 Let Z(t) ¼ X(t) + Y(t), where X(t) and Y(t) are two independent stationary

random processes. Find RZ(τ) in terms of RX(τ) and RY(τ).
3.8 Repeat the previous problem if Z(t) ¼ 3X(t) + 4Y(t).

3.9 If X(t) ¼ Acosωt, where ω is a constant and A random variables with mean μ
and variance σ2, (a) find < x(t) > and mX(t). (b) Is X(t) ergodic?

3.10 A random process is defined by

X tð Þ ¼ A cosωt� B sinωt,

where ω is a constant and A and B are independent random variable with zero

mean. Show that X(t) is stationary and also ergodic.

3.11 N(t) is a stationary noise process with zero mean and autocorrelation function

RN τð Þ ¼ No

2
δ τð Þ

where No is a constant. Is N(t) ergodic?

3.12 X(t) is a stationary Gaussian process with zero mean and autocorrelation

function

RX τð Þ ¼ σ2e�αjτj cosωτ

where σ, ω, and α are constants. Show that X(t) is ergodic.

3.13 If X(t) and Y(t) are two random processes that are jointly stationary so that

RXY(t1,t2) ¼ RXY(τ), prove that

RXY τð Þ ¼ RYX �τð Þ
where τ ¼ jt2 � t1j.

3.14 For two stationary processes X(t) and Y(t), show that
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(a)
��RXY τð Þj � 1

2
RX 0ð Þ þ RY 0ð Þ½ �

(b)
��RXY τð Þj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RX 0ð ÞRY 0ð Þ

p

3.15 Let X(t) and Y(t) be two random processes given by

X(t) ¼ cos (ωtþΘ)
Y(t) ¼ sin (ωtþΘ)

where ω is a constant and Θ is a random variable uniformly distributed over

(0,2π). Find

RXY t, tþ τð Þ and RYX t, tþ τð Þ:
3.16 X(t) and Y(t) are two random processes described as

X(t) ¼ A cos ωt + B sin ωt
Y(t) ¼ B cos ωt � A sin ωt

where ω is a constant and A ¼ N(0,σ2) and B ¼ N(0,σ2). Find RXY(τ).
3.17 Let X(t) be a stationary random process and Y(t) ¼ X(t) � X(t � a), where a

is a constant. Find RXY(τ).
3.18 Let N tð Þ, t � 0f g be a Poisson process with rate λ. Find E N tð Þ:N tþ sð Þ½ �.
3.19 For a Poisson process, show that if s < t,

Prob N sð Þ ¼ k
��N tð Þ ¼ n

� � ¼ n
k

	 

s

t

� �k
1� s

t

� �n�k
, k ¼ 0, 1, � � �, n

3.20 Let N(t) be a renewal process where renewal epochs are Erlang with

parameters (m,λ). Show that

Prob N tð Þ ¼ n½ � ¼
Xnmþm�1

k¼nm

λtð Þk
k!

e�λt

3.21 Use MATLAB to generate a random process X(t) ¼ A cos(2πt), where A is a

Gaussian random variable with mean zero and variance one. Take

0 < t < 4 s.

3.22 Repeat the previous problem if A is random variable uniformly distributed

over (�2, 2).

3.23 Given that the autocorrelation function RX τð Þ ¼ 2þ 3e�τ2 , use MATLAB to

plot the function for �2 < τ < 2.

3.24 Use MATLAB to generate a random process
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X tð Þ ¼ 2 cos 2πtþ B n½ � π
4

� �

where B[n] is a Bernoulli random sequence taking the values of +1 and �1.

Take 0 < t < 3 s.
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