
Chapter 2

Probability and Random Variables

Philosophy is a game with objectives and no rules.
Mathematics is a game with rules and no objectives.

—Anonymous

Most signals we deal with in practice are random (unpredictable or erratic) and

not deterministic. Random signals are encountered in one form or another in

every practical communication system. They occur in communication both as

information-conveying signal and as unwanted noise signal.

A random quantity is one having values which are regulated in some probabilistic way.

Thus, our work with random quantities must begin with the theory of probability,

which is the mathematical discipline that deals with the statistical characterization

of random signals and random processes. Although the reader is expected to have

had at least one course on probability theory and random variables, this chapter

provides a cursory review of the basic concepts needed throughout this book. The

concepts include probabilities, random variables, statistical averages or mean

values, and probability models. A reader already versed in these concepts may

skip this chapter.

2.1 Probability Fundamentals

A fundamental concept in the probability theory is the idea of an experiment. An
experiment (or trial) is the performance of an operation that leads to results called

outcomes. In other words, an outcome is a result of performing the experiment once.

An event is one or more outcomes of an experiment. The relationship between

outcomes and events is shown in the Venn diagram of Fig. 2.1.
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Thus,

An experiment consists of making a measurement or observation.

An outcome is a possible result of the experiment.

An event is a collection of outcomes.

An experiment is said to be random if its outcome cannot be predicted. Thus a

random experiment is one that can be repeated a number of times but yields

unpredictable outcome at each trial. Examples of random experiments are tossing

a coin, rolling a die, observing the number of cars arriving at a toll booth, and

keeping track of the number of telephone calls at your home. If we consider the

experiment of rolling a die and regard event A as the appearance of the number

4. That event may or may not occur for every experiment.

2.1.1 Simple Probability

We now define the probability of an event. The probability of event A is the number

of ways event A can occur divided by the total number of possible outcomes.

Suppose we perform n trials of an experiment and we observe that outcomes

satisfying event A occur nA times. We define the probability P(A) of event A

occurring as

P Að Þ ¼ lim

n!1
nA
n

(2.1)

This is known as the relative frequency of event A. Two key points should be

noted from Eq. (2.1). First, we note that the probability P of an event is always a

positive number and that

0 � P � 1 (2.2)

where P ¼ 0 when an event is not possible (never occurs) and P ¼ 1 when the

event is sure (always occurs). Second, observe that for the probability to have

meaning, the number of trials n must be large.
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Fig. 2.1 Sample space

illustrating the relationship

between outcomes (points)
and events (circles)
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If events A and B are disjoint or mutually exclusive, it follows that the two

events cannot occur simultaneously or that the two events have no outcomes in

common, as shown in Fig. 2.2.

In this case, the probability that either event A or B occurs is equal to the sum of

their probabilities, i.e.

P A or Bð Þ ¼ P Að Þ þ P Bð Þ (2.3)

To prove this, suppose in an experiments with n trials, event A occurs nA times,

while event B occurs nB times. Then event A or event B occurs nA + nB times and

P A or Bð Þ ¼ nA þ nB
n

¼ nA
n
þ nB

n
¼ P Að Þ þ P Bð Þ (2.4)

This result can be extended to the case when all possible events in an experiment

are A, B, C, . . ., Z. If the experiment is performed n times and event A occurs nA
times, event B occurs nB times, etc. Since some event must occur at each trial,

nA þ nB þ nC þ � � � þ nZ ¼ n

Dividing by n and assuming n is very large, we obtain

P Að Þ þ P Bð Þ þ P Cð Þ þ � � � þ P Zð Þ ¼ 1 (2.5)

which indicates that the probabilities of mutually exclusive events must add up

to unity. A special case of this is when two events are complimentary, i.e. if event

A occurs, B must not occur and vice versa. In this case,

P Að Þ þ P Bð Þ ¼ 1 (2.6)

or

P Að Þ ¼ 1� P Bð Þ (2.7)

For example, in tossing a coin, the event of a head appearing is complementary

to that of tail appearing. Since the probability of either event is ½, their probabilities

add up to 1.

Event A Event BFig. 2.2 Mutually

exclusive or disjoint events
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2.1.2 Joint Probability

Next, we consider when events A and B are not mutually exclusive. Two events are

non-mutually exclusive if they have one or more outcomes in common, as

illustrated in Fig. 2.3.

The probability of the union event A or B (or A + B) is

P Aþ Bð Þ ¼ P Að Þ þ P Bð Þ � P ABð Þ (2.8)

where P(AB) is called the joint probability of events A and B, i.e. the probability of

the intersection or joint event AB.

2.1.3 Conditional Probability

Sometimes we are confronted with a situation in which the outcome of one event

depends on another event. The dependence of event B on event A is measured by

the conditional probability P(BjA) given by

P B
��A� � ¼ P ABð Þ

P Að Þ (2.9)

where P(AB) is the joint probability of events A and B. The notation BjA stands “B

given A.” In case events A and B are mutually exclusive, the joint probability

P(AB) ¼ 0 so that the conditional probability P(BjA) ¼ 0. Similarly, the condi-

tional probability of A given B is

P A
��B� � ¼ P ABð Þ

P Bð Þ (2.10)

From Eqs. (2.9) and (2.10), we obtain

P ABð Þ ¼ P B
��A� �

P Að Þ ¼ P A
��B� �

P Bð Þ (2.11)

Event BEvent AFig. 2.3 Non-mutually

exclusive events

8 2 Probability and Random Variables



Eliminating P(AB) gives

P B
��A� � ¼ P Bð ÞP A

��B� �
P Að Þ (2.12)

which is a form of Bayes’ theorem.

2.1.4 Statistical Independence

Lastly, suppose events A and B do not depend on each other. In this case, events

A and B are said to be statistically independent. Since B has no influence of A

or vice versa,

P A
��B� � ¼ P Að Þ, P B

��A� � ¼ P Bð Þ (2.13)

From Eqs. (2.11) and (2.13), we obtain

P ABð Þ ¼ P Að ÞP Bð Þ (2.14)

indicating that the joint probability of statistically independent events is the product

of the individual event probabilities. This can be extended to three or more statisti-

cally independent events

P ABC . . .ð Þ ¼ P Að ÞP Bð ÞP Cð Þ . . . (2.15)

Example 2.1 Three coins are tossed simultaneously. Find: (a) the probability of

getting exactly two heads, (b) the probability of getting at least one tail.

Solution

If we denote HTH as a head on the first coin, a tail on the second coin, and a head on

the third coin, the 23 ¼ 8 possible outcomes of tossing three coins simultaneously

are the following:

HHH,HTH,HHT,HTT, THH, TTH, THT, TTT

The problem can be solved in several ways

Method 1: (Intuitive approach)

(a) Let event A correspond to having exactly two heads, then

Event A ¼ HHT;HTH;THHf g
Since we have eight outcomes in total and three of them are in event A, then

P Að Þ ¼ 3=8 ¼ 0:375
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(b) Let B denote having at least one tail,

Event B ¼ HTH;HHT;HTT;THH;TTH;THT;TTTf g
Hence,

P Bð Þ ¼ 7=8 ¼ 0:875

Method 2: (Analytic approach) Since the outcome of each separate coin is statisti-

cally independent, with head and tail equally likely,

P Hð Þ ¼ P Tð Þ ¼ 1=2

(a) Event consists of mutually exclusive outcomes. Hence,

P Að Þ ¼ P HHT;HTH;THHð Þ ¼ 1

2

� �
1

2

� �
1

2

� �
þ 1

2

� �
1

2

� �
1

2

� �
þ 1

2

� �
1

2

� �
1

2

� �

¼ 3

8
¼ 0:375

(b) Similarly,

P Bð Þ ¼ HTH;HHT;HTT;THH;TTH;THT;TTTð Þ

¼ 1

2

� �
1

2

� �
1

2

� �
þ in seven places ¼ 7

8
¼ 0:875

Example 2.2 In a lab, there are 100 capacitors of three values and three voltage

ratings as shown in Table 2.1. Let event A be drawing 12 pF capacitor and event B

be drawing a 50 V capacitor. Determine: (a) P(A) and P(B), (b) P(AB), (c) P(AjB),
(d) P(BjA).
Solution

(a) From Table 2.1,

P Að Þ ¼ P 12 pFð Þ ¼ 36=100 ¼ 0:36

and

P Bð Þ ¼ P 50 Vð Þ ¼ 41=100 ¼ 0:41

Table 2.1 For Example 2.2;

number of capacitors with

given values and voltage

ratings

Capacitance

Voltage rating

Total10 V 50 V 100 V

4 pF 9 11 13 33

12 pF 12 16 8 36

20 pF 10 14 7 31

Total 31 41 28 100
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(b) From the table,

P ABð Þ ¼ P 12 pF, 50 Vð Þ ¼ 16=100 ¼ 0:16

(c) From the table

P A Bj Þ ¼ P 12 pF 50 Vj Þ ¼ 16=41 ¼ 0:3902ðð
Check: From Eq. (2.10),

P A
��B� � ¼ P ABð Þ

P Bð Þ ¼
16=100

41=100
¼ 0:3902

(d) From the table,

P B Aj Þ ¼ P 50 V 12 pFj Þ ¼ 16=36 ¼ 0:4444ðð
Check: From Eq. (2.9),

P B
��A� � ¼ P ABð Þ

P Að Þ ¼
16=100

36=100
¼ 0:4444

2.2 Random Variables

Random variables are used in probability theory for at least two reasons [1, 2]. First,

the way we have defined probabilities earlier in terms of events is awkward. We

cannot use that approach in describing sets of objects such as cars, apples, and

houses. It is preferable to have numerical values for all outcomes. Second,

mathematicians and communication engineers in particular deal with random

processes that generate numerical outcomes. Such processes are handled using

random variables.

The term “random variable” is a misnomer; a random variable is neither random

nor a variable. Rather, it is a function or rule that produces numbers from the

outcome of a random experiment. In other words, for every possible outcome of

an experiment, a real number is assigned to the outcome. This outcome becomes the

value of the random variable. We usually represent a random variable by an

uppercase letters such as X, Y, and Z, while the value of a random variable (which

is fixed) is represented by a lowercase letter such as x, y, and z. Thus, X is a function

that maps elements of the sample space S to the real line � 1 � x � 1,

as illustrated in Fig. 2.4.

A random variable X is a single-valued real function that assigns a real value X(x) to

every point x in the sample space.

Random variable X may be either discrete or continuous. X is said to be discrete

random variable if it can take only discrete values. It is said to be continuous if it
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takes continuous values. An example of a discrete random variable is the outcome

of rolling a die. An example of continuous random variable is one that is Gaussian

distributed, to be discussed later.

2.2.1 Cumulative Distribution Function

Whether X is discrete or continuous, we need a probabilistic description of it in

order to work with it. All random variables (discrete and continuous) have a

cumulative distribution function (CDF).

The cumulative distribution function (CDF) is a function given by the probability that the

random variable X is less than or equal to x, for every value x.

Let us denote the probability of the event X � x, where x is given, as P(X � x).

The cumulative distribution function (CDF) of X is given by

FX xð Þ ¼ P X � xð Þ, �1 � x � 1 (2.16)

for a continuous random variable X. Note that FX(x) does not depend on the random

variable X, but on the assigned value of X. FX(x) has the following five properties:

1. FX �1ð Þ ¼ 0 (2.17a)

2. FX 1ð Þ ¼ 1 (2.17b)

3. 0 � FX xð Þ � 1 (2.17c)

4. FX x1ð Þ � FX x2ð Þ, if x1 < x2 (2.17d)

5. P
�
x1 < X � x2

� ¼ FX x2ð Þ � FX x1ð Þ (2.17e)

The first and second properties show that the FX(�1) includes no possible

events and FX(1) includes all possible events. The third property follows from the

fact that FX(x) is a probability. The fourth property indicates that FX(x) is a

nondecreasing function. And the last property is easy to prove since

X

•

•

outcome 

Sample space 

x2x1

Fig. 2.4 Random variable

X maps elements of the

sample space to the real line
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P X � x2ð Þ ¼ P X � x1
�þ P

�
x1 < X � x2

� �

or

Pðx1 < X � x2Þ ¼ P X � x2ð Þ � P X � x1ð Þ ¼ FX x2ð Þ � FX x1ð Þ (2.18)

If X is discrete, then

FX xð Þ ¼
XN
i¼0

P xið Þ (2.19)

where P(xi) ¼ P(X ¼ xi) is the probability of obtaining event xi, and N is the

largest integer such that x N � x and N � M, and M is the total number of points

in the discrete distribution. It is assumed that x1 < x2 < x3 < � � � < xM.

2.2.2 Probability Density Function

It is sometimes convenient to use the derivative of FX(x), which is given by

f X xð Þ ¼ dFx xð Þ
dx

(2.20a)

or

FX xð Þ ¼
ðx
�1

f X xð Þdx (2.20b)

where fX(x) is known as the probability density function (PDF). Note that

fX(x) has the following properties:

1. fX xð Þ � 0 (2.21a)

2.

ð1
�1

f X xð Þdx ¼ 1 (2.21b)

3. P x1 � x � x2ð Þ ¼
ðx2
x1

f X xð Þdx (2.21c)

Properties 1 and 2 follows from the fact that FX (�1) ¼ 0 and FX (1) ¼ 1
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respectively. As mentioned earlier, since FX(x) must be nondecreasing, its deriva-

tive fX(x) must always be nonnegative, as stated by Property 1. Property 3 is easy to

prove. From Eq. (2.18),

P
�
x1 < X � x2

� ¼ FX x2ð Þ � FX x1ð Þ

¼
ðx2
�1

f X xð Þdx�
ðx1
�1

f X xð Þdx ¼
ðx2
x1

f X xð Þdx (2.22)

which is typically illustrated in Fig. 2.5 for a continuous random variable.

For discrete X,

f X xð Þ ¼
XM
i¼1

P xið Þδ x� xið Þ (2.23)

where M is the total number of discrete events, P(xi) ¼ P(x ¼ xi), and δ(x) is the
impulse function. Thus,

The probability density function (PDF) of a continuous (or discrete) random variable is a

function which can be integrated (or summed) to obtain the probability that the random

variable takes a value in a given interval.

2.2.3 Joint Distribution

We have focused on cases when a single random variable is involved. Sometimes

several random variables are required to describe the outcome of an experiment.

Here we consider situations involving two random variables X and Y; this may be

extended to any number of random variables. The joint cumulative distribution
function (joint cdf) of X and Y is the function

FXY x; yð Þ ¼ P X � x,Y � yð Þ (2.24)

fX(x)

P(x1 < X < x2)

x2 xx10

Fig. 2.5 A typical PDF

14 2 Probability and Random Variables



where �1 < x <1, �1 < y <1 . If FXY(x,y) is continuous, the joint proba-
bility density function (joint PDF) of X and Y is given by

f XY x; yð Þ ¼ ∂2FXY x; yð Þ
∂x∂y

(2.25)

where fXY(x,y) � 0. Just as we did for a single variable, the probability of event

x1 < X � x2 and y1 < Y � y2 is

P x1 < X � x2, y1 < Y � y2ð Þ ¼ FXY x; yð Þ ¼
ðx2
x1

ðy2
y1

f XY x; yð Þdxdy (2.26)

From this, we obtain the case where the entire sample space is included as

FXY 1;1ð Þ ¼
ð1
�1

ð1
�1

f XY x; yð Þdxdy ¼ 1 (2.27)

since the total probability must be unity.

Given the joint CDF of X and Y, we can obtain the individual CDFs of the

random variables X and Y. For X,

FX xð Þ ¼ P X � x, �1 < Y <1ð Þ ¼ FXY x;1ð Þ ¼
ðx
�1

ð1
�1

f XY x; yð Þdxdy (2.28)

and for Y,

FY yð Þ ¼ P �1 < x <1, y � Yð Þ ¼ FXY 1; yð Þ

¼
ð1
�1

ðy
�1

f XY x; yð Þdxdy (2.29)

FX(x) and FY(y) are known as the marginal cumulative distribution functions
(marginal CDFs).

Similarly, the individual PDFs of the random variables X and Y can be obtained

from their joint PDF. For X,

f X xð Þ ¼ dFX xð Þ
dx

¼
ð1
�1

f XY x; yð Þdy (2.30)

and for Y,

f Y yð Þ ¼ dFY yð Þ
dy

¼
ð1
�1

f XY x; yð Þdx (2.31)
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fX(x) and fY(y) are known as the marginal probability density functions
(marginal PDFs).

As mentioned earlier, two random variables are independent if the values taken

by one do not affect the other. As a result,

P X � x,Y � yð Þ ¼ P X � xð ÞP Y � yð Þ (2.32)

or

FXY x; yð Þ ¼ FX xð ÞFY yð Þ (2.33)

This condition is equivalent to

f XY x; yð Þ ¼ f X xð Þf Y yð Þ (2.34)

Thus, two random variables are independent when their joint distribution

(or density) is the product of their individual marginal distributions (or densities).

Finally, we may extend the concept of conditional probabilities to the case of

continuous random variables. The conditional probability density function (condi-

tional PDF) of X given the event Y ¼ y is

f X x
��Y ¼ y

� � ¼ f XY x; yð Þ
f Y yð Þ (2.35)

where fY(y) is the marginal PDF of Y. Note that fX(xjY ¼ y) is a function of x with

y fixed. Similarly, the conditional PFD of Y given X ¼ x is

f Y y
��X ¼ x

� � ¼ f XY x; yð Þ
f X xð Þ (2.36)

where fX(x) is the marginal PDF of X. By combining Eqs. (2.34) and (2.36), we get

f Y y
��X ¼ x

� � ¼ f X x
��Y ¼ y

� �
f Y yð Þ

f X xð Þ (2.37)

which is Bayes’ theorem for continuous random variables. If X and Y are indepen-

dent, combining Eqs. (2.34)–(2.36) gives

f X x
��Y ¼ y

� � ¼ f X xð Þ (2.38a)

f Y y
��X ¼ x

� � ¼ f Y yð Þ (2.38b)

indicating that one random variable has no effect on the other.

Example 2.3 An analog-to-digital converter is an eight-level quantizer with the

output of 0, 1, 2, 3, 4, 5, 6, 7. Each level has the probability given by
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P X ¼ xð Þ ¼ 1=8, x ¼ 0, 1, 2, . . . 7

(a) Sketch FX(x) and fX(x). (b) Find P(X � 1), P(X > 3), (c) Determine

P(2 � X � 5).

Solution

(a) The random variable is discrete. Since the values of x are limited to 0 � x � 7,

FX �1ð Þ ¼ P X < �1ð Þ ¼ 0

FX 0ð Þ ¼ P X � 0ð Þ ¼ 1=8

FX 1ð Þ ¼ P X � 1ð Þ ¼ P X ¼ 0ð Þ þ P X ¼ 1ð Þ ¼ 2=8

FX 2ð Þ ¼ P X � 2ð Þ ¼ P X ¼ 0ð Þ þ P X ¼ 1ð Þ þ P X ¼ 2ð Þ ¼ 3=8

Thus, in general

FX ið Þ ¼ iþ 1ð Þ=8, 2 � i � 7

1, i > 7

�
(2.3.1)

The distribution function is sketched in Fig. 2.6a. Its derivative produces the

PDF, which is given by

f X xð Þ ¼
X7
i¼0

δ x� ið Þ=8 (2.3.2)

and sketched in Fig. 2.6b.

(b) We already found P(X � 1) as

P X � 1ð Þ ¼ P X ¼ 0ð Þ þ P X ¼ 1ð Þ ¼ 1=4

P X > 3ð Þ ¼ 1� P X � 3ð Þ ¼ 1� FX 3ð Þ
But

FX 3ð Þ ¼ P X � 3ð Þ ¼ P X ¼ 0ð Þ þ P X ¼ 1ð Þ þ P X ¼ 2ð Þ þ P X ¼ 3ð Þ ¼ 4=8

We can also obtain this from Eq. (2.3.1). Hence,

P X > 3ð Þ ¼ 1� 4=8 ¼ 1

2
:

(c) For P(2 � X � 5), using Eq. (2.3.1)

P 2 � X � 5ð Þ ¼ FX 5ð Þ � FX 2ð Þ ¼ 5=8� 2=8 ¼ 3=8:
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Example 2.4 The CDF of a random variable is given by

FX xð Þ ¼
0, x < 1

x� 1

8
, 1 � x < 9

1, x � 9

8>><
>>:

(a) Sketch FX(x) and fX(x). (b) Find P(X � 4) and P(2 < X � 7).

Solution

(a) In this case, X is a continuous random variable. FX(x) is sketched in Fig. 2.7a.

We obtain the PDF of X by taking the derivative of FX(x), i.e.

f X xð Þ ¼
0, x < 1

1

8
, 1 � x < 9

0, x � 9

8>><
>>:

which is sketched in Fig. 2.7b. Notice that fX(x) satisfies the requirement of a

probability because the area under the curve in Fig. 2.7b is unity. A random

number having a PDF such as shown in Fig. 2.7b is said to be uniformly
distributed because fX(x) is constant within 1 and 9.

1/2 

1/8 

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7 x 

Fx(x) 

1 

1/8 1/81/81/81/81/81/81/8

x 

fx(x) 

a

b

Fig. 2.6 For Example 2.3:

(a) distribution function

of X, (b) probability density

function of X
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(b) P X � 4ð Þ ¼ FX 4ð Þ ¼ 3=8

P 2 < x � 7ð Þ ¼ FX 7ð Þ � FX 2ð Þ ¼ 6=8� 1=8 ¼ 5=8

Example 2.5 Given that two random variables have the joint PDF

f XY x; yð Þ ¼ ke� xþ2yð Þ, 0 � x � 1, 0 � y � 1
0, otherwise

�

(a) Evaluate k such that the PDF is a valid one. (b) Determine FXY(x,y).

(c) Are X and Y independent random variables? (d) Find the probabilities that

X � 1 and Y � 2. (e) Find the probability that X � 2 and Y > 1.

Solution

(a) In order for the given PDF to be valid, Eq. (2.27) must be satisfied, i.e.

ð1
�1

ð1
�1

f XY x; yð Þdxdy¼ 1

so that

1 ¼
ð1
0

ð1
0

ke� xþ2yð Þdxdy ¼ k

ð1
0

e�xdx
ð1
0

e�2ydy ¼ k 1ð Þ 1

2

� �

FX(x) 

1

0 95 x

fX(x) 

1/8

0 1

1

5 9 x

a

b

Fig. 2.7 For Example 2.4:

(a) CDF, (b) PDF
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Hence, k ¼ 2.

(b) FXY x; yð Þ ¼
ðx
0

ðy
0

2e� xþ2yð Þdxdy ¼ 2

ðx
0

e�xdx
ðy
0

e�2ydy ¼ e�x � 1ð Þ e�2y � 1
� �

¼ FX xð ÞFY yð Þ
(c) Since the joint CDF factors into individual CDFs, we conclude that the random

variables are independent.

(d) P X � 1,Y � 2ð Þ ¼
ð1

x¼0

ð2
y¼0

f XY x; yð Þdxdy

¼ 2

ð1
0

e�xdx
ð2
0

e�2ydy ¼ 1� e�1
� �

1� e�4
� � ¼ 0:6205

(e) P X � 2, Y > 1ð Þ ¼
ð2

x¼0

ð1
y¼1

f XY x; yð Þdxdy

¼ 2

ð2
0

e�xdx
ð1
1

e� 2ydy ¼ e�2 � 1
� �

e�2
� � ¼ 0:117

2.3 Operations on Random Variables

There are several operations that can be performed on random variables. These

include the expected value, moments, variance, covariance, correlation, and trans-

formation of the random variables. The operations are very important in our study

of computer communications systems. We will consider some of them in this

section, while others will be covered in later sections. We begin with the mean or

average values of a random variable.

2.3.1 Expectations and Moments

Let X be a discrete random variable which takes on M values x1, x2, x.3, � � �, xM
that respectively occur n1, n2, n.3, � � �, nM in n trials, where n is very large. The

statistical average (mean or expectation) of X is given by

20 2 Probability and Random Variables



X ¼ n1x1 þ n2x2 þ n3x3 þ � � � þ nMxM
n

¼
XM
i¼1

xi
ni
n

(2.39)

But by the relative-frequency definition of probability in Eq. (2.1), ni/n ¼ P(xi).

Hence, the mean or expected value of the discrete random variable X is

X ¼ E X½ � ¼
X1
i¼0

xiP xið Þ (2.40)

where E stands for the expectation operator.

If X is a continuous random variable, we apply a similar argument. Rather than

doing that, we can replace the summation in Eq. (2.40) with integration and obtain

X ¼ E X½ � ¼
ð1
�1

xf X xð Þdx (2.41)

where fX(x) is the PDF of X.

In addition to the expected value of X, we are also interested in the expected

value of functions of X. In general, the expected value of a function g(X) of the

random variable X is given by

g Xð Þ ¼ E g Xð Þ½ � ¼
ð1
�1

g xð Þf X xð Þdx (2.42)

for continuous random variable X. If X is discrete, we replace the integration with

summation and obtain

g Xð Þ ¼ E g Xð Þ½ � ¼
XM
i¼1

g xið ÞP xið Þ (2.43)

Consider the special case when g(x) ¼ Xn. Equation (2.42) becomes

Xn ¼ E Xn½ � ¼
ð1
�1

xnf X xð Þdx (2.44)

E(Xn) is known as the nth moment of the random variable X. When n ¼ 1,

we have the first moment X as in Eq. (2.42). When n ¼ 2, we have the second

moment X2 and so on.
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2.3.2 Variance

The moments defined in Eq. (2.44) may be regarded as moments about the origin,

We may also define central moments, which are moments about the mean value

mX ¼ E(X) of X. If X is a continuous random variable,

E X � mXð Þn½ g ¼
ð1
�1

x� mXð Þnf X xð Þdx (2.45)

It is evident that the central moment is zero when n ¼ 1. When n ¼ 2, the

second central moment is known as the variance σX
2 of X, i.e.

Var Xð Þ ¼ σ2X ¼ E X � mXð Þ2
h o

¼
ð1
�1

x� mXð Þ2f X xð Þdx (2.46)

If X is discrete,

Var Xð Þ ¼ σ2X ¼ E X � mxð Þ2
h i

¼
X1
i¼0

xi � mXð Þ2P xið Þ (2.47)

The square root of the variance (i.e. σX) is called the standard deviation of

X. By expansion,

σ2X ¼ E X � mXð Þ2
h i

¼ E X2 � 2mXX þ m2
X

� 	 ¼ E X2
� 	� 2mXE X½ � þ m2

X

¼ E X2
� 	� m2

X

(2.48)

or

σ2X ¼ E X2
� 	� m2

X (2.49)

Note that from Eq. (2.48) that if the mean mX ¼ 0, the variance is equal to the

second moment E[X2].

2.3.3 Multivariate Expectations

We can extend what we have discussed so far for one random variable to two or

more random variables. If g(X,Y) is a function of random variables X and Y, its

expected value is

g X; Yð Þ ¼ E g X; Yð Þ½ � ¼
ð1
�1

ð1
�1

g x; yð Þf XY x; yð Þdx dy (2.50)
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Consider a special case in which g(X,Y) ¼ X + Y, where X and Y need not be

independent, then

X þ Y ¼ X þ Y ¼ mX þ mY (2.51)

indicating the mean of the sum of two random variables is equal to the sum of their

individual means. This may be extended to any number of random variables.

Next, consider the case in which g(X,Y) ¼ XY, then

XY ¼ E XY½ � ¼
ð1
�1

ð1
�1

xyf XY xð Þdx dy (2.52)

If X and Y are independent,

XY ¼
ð1
�1

ð1
�1

xyf X xð Þf Y yð Þdx dy ¼
ð1
�1

xf X xð Þdx
ð1
�1

yf Y yð Þdy ¼ mXmY (2.53)

implying that the mean of the product of two independent random variables is equal

to the product of their individual means.

2.3.4 Covariance and Correlation

If we let g(X,Y ) ¼ XnYk, the generalized moments are defined as

E XnYk
� 	 ¼ ð1

�1

ð1
�1

xnykf XY xð Þdx dy (2.54)

We notice that Eq. (2.50) is a special case of Eq. (2.54). The joint moments in

Eqs. (2.52) and (2.54) are about the origin. The generalized central moments are

defined by

E X � mXð Þn Y � mYð Þk
h i

¼
ð1
�1

ð1
�1

x� mXð Þn y� mYð Þkf XY xð Þdx dy (2.55)

The sum of n and k is the order of the moment. Of particular importance is the

second central moment (when n ¼ k ¼ 1) and it is called covariance of X andY, i.e.

Cov X;Yð Þ ¼ E X � mXð Þ Y � mYð Þ½ � ¼
ð1
�1

ð1
�1

x� mXð Þ y� mYð Þf XY xð Þdx dy

or
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Cov X; Yð Þ ¼ E XYð Þ � mXmY (2.56)

Their correlation coefficient ρXY is given by

ρXY ¼
Cov X; Yð Þ

σXσY
(2.57)

where � 1 � ρXY � 1. Both covariance and correlation coefficient serve as

measures of the interdependence of X and Y. ρXY ¼ 1 when Y ¼ X and ρXY ¼ �1
when Y ¼ �X. Two random variables X and Y are said to be uncorrelated if

Cov X;Yð Þ ¼ 0! E XY½ � ¼ E X½ �E Y½ � (2.58)

and they are orthogonal if

E XY½ � ¼ 0 (2.59)

If X and Y are independent, we can readily show that Cov(X,Y) ¼ 0 ¼ ρXY.
This indicates that when two random variables are independent, they are also

uncorrelated.

Example 2.6 A complex communication system is checked on regular basis. The

number of failures of the system in a month of operation has the probability

distribution given in Table 2.2. (a) Find the average number and variance of failures

in a month. (b) If X denotes the number of failures, determine mean and variance of

Y ¼ X + 1.

Solution

(a) Using Eq. (2.40)

X ¼ mX ¼
XM
i¼1

xiP xið Þ
¼ 0 0:2ð Þ þ 1

�
0:33

�þ 2
�
0:25

�þ 3
�
0:15

�þ 4
�
0:05

�þ 5
�
0:02

�
¼ 1:58

To get the variance, we need the second moment.

X2 ¼ E X2
� � ¼XM

i¼1
x2i P
�
xi
�

¼ 02 0:2ð Þ þ 12
�
0:33

�þ 22
�
0:25

�þ 32
�
0:15

�þ 42
�
0:05

�þ 52
�
0:02

�
¼ 3:98

Var Xð Þ ¼ σ2X ¼ E X2
� 	� m2

X ¼ 3:98� 1:582 ¼ 1:4836

Table 2.2 For Example 2.6 No. of failures 0 1 2 3 4 5

Probability 0.2 0.33 0.25 0.15 0.05 0.02
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(b) If Y ¼ X + 1, then

Y ¼ mY ¼
XM
i¼1

xi þ 1ð ÞP xið Þ
¼ 1 0:2ð Þ þ 2

�
0:33

�þ 3
�
0:25

�þ 4
�
0:15

�þ 5
�
0:05

�þ 6
�
0:02

�
¼ 2:58

Similarly,

Y2 ¼ E Y2
� � ¼XM

i¼1
xi þ 1ð Þ2P�xi�

¼ 12 0:2ð Þ þ 22
�
0:33

�þ 32
�
0:25

�þ 42
�
0:15

�þ 52
�
0:05

�þ 62
�
0:02

�
¼ 8:14

Var Yð Þ ¼ σ2y ¼ E Y2
� 	� m2

Y ¼ 8:14� 2:582 ¼ 1:4836

which is the same as Var(X). This should be expected because adding

a constant value of 1 to X does not change its randomness.

Example 2.7 Given a continuous random variable X with PDF

f X xð Þ ¼ 2e�2xu xð Þ
(a) Determine E(X) and E(X2). (b) Assuming that Y ¼ 3X + 1, calculate

E(Y) and Var(Y).

Solution

(a) Using Eq. (2.41),

E Xð Þ ¼
ð1
�1

xf X xð Þdx ¼
ð1
0

x 2e�2x
� �

dx

¼ 2
e�2x

4
�2x� 1ð Þ

2
4

3
5
1

0

¼ 1

2

E X2
� � ¼ ð1

�1
x2f X xð Þdx ¼

ð1
0

x2 2e�2x
� �

dx

¼ 2
e�2x

�8 4x2 þ 4xþ 2
� �2

4
3
5
1

0

¼ 1

2

Var Xð Þ ¼ E X2
� �� E Xð Þ½ �2 ¼ 1

2
� 1

4
¼ 1

4
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(b) Rather than carrying out a similar complex integration, we can use common

sense or intuitive argument to obtain E(Y) and E(Y2). Since Y is linearly

dependent on X and the mean value of 1 is 1,

E Yð Þ ¼ E 3Xþ 1ð Þ ¼ 3E Xð Þ þ E 1ð Þ ¼ 3=2þ 1 ¼ 5=2:

Since the 1 in Y ¼ 3X + 1 is constant, it does not affect the Var(Y). And

because a square factor is involved in the calculation of variance,

Var Yð Þ ¼ 32Var Xð Þ ¼ 9=4:

We would have got the same thing if we have carried the integration in

Eq. (2.45). To be sure this is the case,

E Y2
� � ¼ ð1

�1
3xþ 1ð Þ2f X xð Þdx ¼

ð1
�1

9x2 þ 6xþ 1
� �

f X xð Þdx

¼ 9E X2
� �þ 6E

�
X
�þ E

�
1
� ¼ 9

2
þ 6

2
þ 1 ¼ 17

2

Var Yð Þ ¼ E Y2
� �� E2 Yð Þ ¼ 17

2
� 25

4
¼ 9

4

confirming our intuitive approach.

Example 2.8 X and Y are two random variables with joint PDF given by

f XY x; yð Þ ¼ xþ y, 0 � x � 1, 0 � y � 1

0, elsewhere

�

(a) Find E(X + Y) and E(XY). (b) Compute Cov(X,Y) and ρXY. (c) Determine

whether X and Y are uncorrelated and/or orthogonal.

Solution

(a)

XþY ¼ E XþY½ �¼
ð1
�1

ð1
�1

xþyð Þf XY xð Þdxdy¼
ð1
0

ð1
0

xþyð Þ xþyð Þdxdy

¼
ð1
0

ð1
0

x2þ2xyþy2
� �

dxdy¼
ð1
0

x3

3
þx2yþxy2

2
4

3
5
x¼1

x¼0

dy¼
ð1
0

1

3
þyþy2

0
@

1
Ady

¼ 1

3
yþy2

2
þy3

3

2
4

3
5
1

0

¼7

6
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An indirect way of obtaining this result is using Eq. (2.51) but that will

require that we first find the marginal PDFs fX(x) and fY(y).

Similarly,

XY ¼ E XY½ � ¼
ð1
�1

ð1
�1

xyf XY xð Þdxdy ¼
ð1
0

ð1
0

xy xþ yð Þdxdy

¼
ð1
0

ð1
0

x2yþ xy2
� �

dxdy ¼
ð1
0

x3

3
yþ x2

2
y2

2
4

3
5
x¼1

x¼0

dy ¼
ð1
0

1

3
yþ 1

2
y2

0
@

1
Ady

¼ y2

6
þ y3

6

2
4

3
5
1

0

¼ 1

3

(b) To find Cov(X,Y), we need the marginal PDFs.

f X xð Þ ¼
ð1
�1

f XY x; yð Þdy ¼
ð1
0

xþ yð Þdy ¼ xyþ y2

2

2
4

3
5
1

0

¼ xþ 1

2

0, otherwise

8>><
>>:

mX ¼
ð1
0

xf X xð Þdx ¼
ð1
0

x xþ 1

2

� �
dx ¼ x3

3
þ x2

4


 �1
0

¼ 7

12

Due to the symmetry of the joint PDF, mY ¼ 7/12.

E X2
� 	 ¼ ð

1

0

x2 xþ 1

2

� �
dx ¼ x4

4
þ x6

6


 �1
0

¼ 5

12

σ2X ¼ E X2
� 	� m2

X ¼
5

12
� 49

144
¼ 11

144

Cov X; Yð Þ ¼ E XYð Þ � mXmY ¼ 1

3
� 49

144
¼ � 1

144

Similarly, σ2Y ¼ 11
144

. Thus,

ρXY ¼
Cov X; Yð Þ

σXσY
¼
�1
144
11
144

¼ � 1

11

(c) Since E XY½ � ¼ 1
3
6¼ mXmY , X and Y are correlated. Also, since E[XY] 6¼ 0,

they are not orthogonal.
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2.4 Discrete Probability Models

Based on experience and usage, several probability distributions have been devel-

oped by engineers and scientists as models of physical phenomena. These

distributions often arise in communication problems and deserve special attention.

It is needless to say that each of these distributions satisfies the axioms of probabil-

ity covered in Sect. 2.1. In this section, we discuss four discrete probability

distributions; continuous probability distributions will be covered in the next

section. In fact, some of these distributions have already been considered earlier

in the chapter. In this and the next section, we will briefly consider their CDF, PDF,

and their parameters such as mean and variance [3–5].

2.4.1 Bernoulli Distribution

A Bernoulli trial is an experiment that has two possible outcomes. Examples are

tossing a coin with the two outcomes (heads and tails) and the output of half-wave

rectifier which is 0 or 1. Let us denote the outcome of ith trial as 0 (failure) or

1 (success) and let X be a Bernoulli random variable with P(X ¼ 1) ¼ p and

P(X ¼ 0) ¼ 1 � p. Then the probability mass function (PMF) of X is given by

P xð Þ ¼
p, x ¼ 1

1� p, x ¼ 0

0, otherwise

8<
: (2.60)

which is illustrated in Fig. 2.8.

The parameters of the Bernoulli distribution are easily obtained as

E X½ � ¼ p (2.61a)

E X2
� 	 ¼ p (2.61b)

Var Xð Þ ¼ p 1� pð Þ (2.61c)

P(x)

1-p

p

0 1 x

Fig. 2.8 Probability mass

function of the Bernoulli

distribution
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2.4.2 Binomial Distribution

This is an extension of Bernoulli distribution. A random variable follows a Bino-

mial distribution when: (1) n Bernoulli trials are involved, (2) the n trials are

independent of each other, and (3) the probabilities of the outcome remain constant

as p for success and q ¼ 1 � p for failure. The random variable X for Binomial

distribution represents the number of successes in n Bernoulli trials.

In order to find the probability of k successes in n trials, we first define different

ways of combining k out of n things, which is

nCk ¼
n
k

� �
¼ n!

k! n� kð Þ! (2.62)

Note that
n
k

� �
¼ n

n� k

� �
. Hence, the probability of having k successes in n

trials is

P kð Þ ¼ n
k

� �
pk 1� pð Þn�k (2.63)

since there are k successes each with probability p and n � k failures each with

probability q ¼ 1 � p and all the trials are independent of each other. If we let

x ¼ k, where k ¼ 0, 1, 2, . . ., n, the PDF of the Binomial random variable X is

f X xð Þ ¼
Xn
k¼0

P kð Þδ x� kð Þ (2.64)

which is illustrated in Fig. 2.9 for n ¼ 5 and p ¼ 0.6.

From fX(x), we can obtain the mean and variance for X as

E Xð Þ ¼ np (2.65a)

Var Xð Þ ¼ npq ¼ np 1� pð Þ (2.65b)

fX (x)

0.346

0.23 0.26

0.077 0.078
0.01

0 1 2 3 4 5 x

Fig. 2.9 PDF for binomial

distribution with n ¼ 5 and

p ¼ 0.6
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2.4.3 Geometric Distribution

The geometric distribution is related to Bernoulli trials. A geometric random

variable represents the number of Bernoulli trials required to achieve the first

success. Thus, a random variable X has a geometric distribution if it takes the

values of 1, 2, 3, . . . with probability

P kð Þ ¼ pqk�1, k ¼ 1, 2, 3, . . . (2.66)

where p ¼ probability of success (0 < p < 1) and q ¼ 1 � p ¼ probability of

failure. This forms a geometric sequence so that

X1
k¼1

pqk�1 ¼ p

1� q
¼ 1 (2.67)

Figure 2.10 shows the PDF of the geometric random variable for p ¼ 0.5 and

x ¼ k ¼ 1, 2, . . . 5.
The mean and variance of the geometric distribution are

E Xð Þ ¼ 1

p
(2.68a)

Var Xð Þ ¼ q

p2
(2.68b)

The geometric distribution is somehow related to binomial distribution. They are

both based on independent Bernoulli trials with equal probability of success

p. However, a geometric random variable is the number of trials required to achieve

the first success, whereas a binomial random variable is the number of successes

in n trials.

fX (x)

0.5

0.25

0.125

0.0625 0.03

x2 431 5

Fig. 2.10 PDF of a

geometric distribution with

p ¼ 0.5 and n ¼ 5
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2.4.4 Poisson Distribution

The Poisson distribution is perhaps the most important discrete probability distri-

bution in engineering. It can be obtained as a special case of Binomial distribution

when n is very large and p is very small. Poisson distribution is commonly used in

engineering to model problems such as queueing (birth-and-death process or

waiting on line), radioactive experiments, the telephone calls received at an office,

the emission of electrons from a cathode, and natural hazards (earthquakes,

hurricanes, or tornados). A random variable X has a Poisson distribution with

parameter λ if it takes the values 0, 1, 2, . . . with

P kð Þ ¼ λk

k!
e�λ, k ¼ 0, 1, 2, � � � (2.69)

The corresponding PDF is

f X xð Þ ¼
X1
k¼0

P kð Þδ x� kð Þ (2.70)

which is shown in Fig. 2.11 for λ ¼ 2.

The mean and variance of X are

E X½ � ¼ λ (2.71a)

Var Xð Þ ¼ λ (2.71b)

Note from Eq. (2.71a) that the parameter λ represents the average rate of

occurrence of X. A summary of the properties of the four discrete probability

distributions is provided in Table 2.3.

fX (x)

0 1 2 3 4 5 6 x

0.271 0.271

0.135

0.18

0.09

0.036 0.012

Fig. 2.11 PDF for Poisson

distribution with λ ¼ 2
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Example 2.9 Verify Eq. (2.71).

Solution

First, we notice that

X1
k¼0

P kð Þ ¼
X1
k¼0

λk

k!
e�λ ¼e�λ

X1
k¼0

λk

k!
¼ e�λ eλ

� � ¼ 1

We obtain the mean value of X as

E X½ � ¼
X1
k¼0

kP kð Þ ¼
X1
k¼0

k
λk

k!
e�λ ¼ 0þ

X1
k¼1

λk�1

k � 1ð Þ! λe
�λ

If we let n ¼ k � 1, we get

E X½ � ¼ λe�λ
X1
n¼0

λn

n!
¼ λe�λ eλ

� � ¼ λ

The second moment is handled the same way.

E X2
� 	 ¼X1

k¼0
k2P kð Þ ¼

X1
k¼0

k2
λk

k!
e�λ ¼ 0þ

X1
k¼1

k
λk�1

k � 1ð Þ! λe
�λ

Since, k ¼ k � 1 + 1

E X2
� 	 ¼X1

k¼1
k � 1þ 1ð Þ λk�1

k � 1ð Þ! λe
�λ ¼λ2e�λ

X1
k¼1

λk�2

k � 2ð Þ!þλe
�λX1

k¼1

λk�1

k � 1ð Þ! ¼ λ2 þ λ

Hence

Var Xð Þ ¼ E X2
� 	� E2 X½ � ¼ λ2 þ λ� λ2 ¼ λ

as expected.

Table 2.3 Properties of discrete probability distributions

Name P(k) PDF Mean Variance

Bernoulli

P xð Þ ¼
p, x ¼ 1

1� p, x ¼ 0

0, otherwise

8<
: f X xð Þ ¼

X1
k¼0

P kð Þδ x� kð Þ
p p(1 � p)

Binomial
P kð Þ ¼ n

k

� �
pk 1� pð Þn�k f X xð Þ ¼

Xn
k¼0

P kð Þδ x� kð Þ np np(1 � p)

Geometric P(k) ¼ pqk � 1

f X xð Þ ¼
Xn
k¼0

P kð Þδ x� kð Þ 1/p q/p2

Poisson
P kð Þ ¼ λk

k!
e�λ f X xð Þ ¼

X1
k¼0

P kð Þδ x� kð Þ λ λ
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2.5 Continuous Probability Models

In this section, we consider five continuous probability distributions: uniform,

exponential, Erlang, hyperexponential, and Gaussian distributions [3–5].

2.5.1 Uniform Distribution

This distribution, also known as rectangular distribution, is very important for

performing pseudo random number generation used in simulation. It is also useful

for describing quantizing noise that is generated in pulse-code modulation. It is a

distribution in which the density is constant. It models random events in which

every value between a minimum and maximum value is equally likely. A random

variable X has a uniform distribution if its PDF is given by

f X xð Þ ¼
1

b� a
, a � x � b

0, otherwise

8<
: (2.72)

which is shown in Fig. 2.12.

The mean and variance are given by

E Xð Þ ¼ bþ a

2
(2.73a)

Var Xð Þ ¼ b� að Þ2
12

(2.73b)

A special uniform distribution for which a ¼ 0, b ¼ 1, called the standard

uniform distribution, is very useful in generating random samples from any proba-

bility distribution function. Also, if Y ¼ Asin X, where X is a uniformly distributed

random variable, the distribution of Y is said to be sinusoidal distribution.

fX (x)

b − a
1

0 a b x
Fig. 2.12 PDF for a

uniform random variable
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2.5.2 Exponential Distribution

This distribution, also known as negative exponential distribution, is important

because of its relationship to the Poisson distribution. It is frequently used in

simulation of queueing systems to describe the interarrival or interdeparture times

of customers at a server. Its frequent use is due to the lack of conditioning of

remaining time on past time expended. This peculiar characteristic is known

variably as Markov, forgetfulness or lack of memory property. For a given Poisson

process, the time interval X between occurrence of events has an exponential

distribution with the following PDF

f X xð Þ ¼ λe�λxu xð Þ (2.74)

which is portrayed in Fig. 2.13.

The mean and the variance of X are

E Xð Þ ¼ 1

λ
(2.75a)

Var Xð Þ ¼ 1

λ2
(2.75b)

2.5.3 Erlang Distribution

This is an extension of the exponential distribution. It is commonly used in

queueing theory to model an activity that occurs in phases, with each phase being

exponentially distributed. Let X1, X2, � � �, Xn be independent, identically

distributed random variables having exponential distribution with mean 1/λ. Then
their sum X ¼ X1 + X2 + � � � Xn has n-stage Erlang distribution. The PDF of X is

fX (x)

λ

0 x

Fig. 2.13 PDF for an

exponential random

variable
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f X xð Þ ¼ λkxk�1

n� 1ð Þ! e
�λx (2.76)

with mean

E Xð Þ ¼ n

λ
(2.77a)

and variance

Var Xð Þ ¼ n

λ2
(2.77b)

2.5.4 Hyperexponential Distribution

This is another extension of the exponential distribution. Suppose X1 and X2 are

two exponentially distributed random variables with means 1/λ1 and 1/λ2 respec-
tively. If the random variable X assumes the value X1 with probability p, and the

value of X2 with probability q ¼ 1 � p, then the PFD of X is

f X xð Þ ¼ pλ1e
�λ1x þ qλ2e

�λ2x (2.78)

This is known as a two-stage hyperexponential distribution. Its mean and

variance are given by

E Xð Þ ¼ p

λ1
þ q

λ2
(2.79)

Var Xð Þ ¼ p 2� pð Þ
λ21

þ 1� p2

λ22
� 2p 1� pð Þ

λ1λ2
(2.80)

2.5.5 Gaussian Distribution

This distribution, also known as normal distribution, is the most important proba-

bility distribution in engineering. It is used to describe phenomena with symmetric

variations above and below the mean μ. A random variable X with Gaussian

distribution has its PDF of the form

f X xð Þ ¼ 1

σ
ffiffiffiffiffi
2π
p exp � 1

2

x� μ

σ

 �2
 �
, �1 < x <1 (2.81)

where the mean
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E Xð Þ ¼ μ (2.82a)

and the variance

Var Xð Þ ¼ σ2 (2.82b)

are themselves incorporated in the PDF. Figure 2.14 shows the Gaussian PDF.

It is a common practice to use the notation X � N(μ,σ2) to denote a normal

random variable X with mean μ and variance σ2. When μ ¼ 0 and σ ¼ 1, we have

X ¼ N(0,1), and the normalized or standard normal distribution function with

f X xð Þ ¼ 1ffiffiffiffiffi
2π
p e�x

2=2 (2.83)

which is widely tabulated.

It is important that we note the following points about the normal distribution

which make the distribution the most prominent in probability and statistics and

also in communication.

1. The binomial probability function with parameters n and p is approximated by a

Gaussian PDF with μ ¼ np and σ2 ¼ np(1 � p) for large n and finite p.

2. The Poisson probability function with parameter λ can be approximated by a

normal distribution with μ ¼ σ2 ¼ λ for large λ.
3. The normal distribution is useful in characterizing the uncertainty associated

with the estimated values. In other words, it is used in performing statistical

analysis on simulation output.

4. The justification for the use of normal distribution comes from the central limit
theorem.

The central limit theorem states that the distribution of the sum of n independent random

variables from any distribution approaches a normal distribution as n becomes large.

(We will elaborate on the theorem a little later.) Thus the normal distribution is

used to model the cumulative effect of many small disturbances each of which

contributes to the stochastic variable X. It has the advantage of being

fX (x)

σ 2p
1

μ x

Fig. 2.14 PDF for an

Gaussian random variable
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mathematically tractable. Consequently, many statistical analysis such as those of

regression and variance have been derived assuming a normal density function. In

several communication applications, we assume that noise is Gaussian distributed

in view of the central limit theorem because noise is due to the sum of several

random parameters. A summary of the properties of the five continuous probability

distributions is provided in Table 2.4.

Example 2.10 Let X be a Gaussian random variable. (a) Find E[X], E[X2], and

Var(X). (b) Calculate P(a < X < b).

Solution

(a) By definition,

E X½ � ¼
ð1
�1

xf X xð Þdx ¼
ð1
�1

x
1

σ
ffiffiffiffiffi
2π
p e� x�μð Þ2=2σ2dx (2.10.1)

Let y ¼ (x � μ)/σ so that

E X½ � ¼ 1ffiffiffiffiffi
2π
p

ð1
�1

σyþ μð Þe�y2=2dy ¼ σffiffiffiffiffi
2π
p

ð1
�1

ye�y
2=2dyþ μffiffiffiffiffi

2π
p

ð1
�1

e�y
2=2dy

¼ 0þ μ

(2.10.2)

Notice the first integral on the right-hand side is zero since the integrand is an

odd function and the second integral gives μ since it represents the PDF of a

Gaussian random variable N(0,1). Hence,

E X½ � ¼ μ (2.10.3)

Similarly,

E X2
� 	 ¼ ð1

�1
x2

1

σ
ffiffiffiffiffi
2π
p e� x�μð Þ2=2σ2dx

Again, we let y ¼ (x � μ)/σ so that

E X2
� 	¼ 1ffiffiffiffiffi

2π
p

ð1
�1

σyþμð Þ2e�y2=2dy¼ 1ffiffiffiffiffi
2π
p

ð1
�1

σ2y2e�y
2=2dyþ 1ffiffiffiffiffi

2π
p

ð1
�1

2σμye�y
2=2dy

þ 1ffiffiffiffiffi
2π
p

ð1
�1

μ2e�y
2=2dy

(2.10.4)

We can evaluate the first integral on the right-hand side by parts. The second

integral is zero because the integrand is an odd function of y. The third integral

yields μ2 since it represents the PDF of a Gaussian random variable N(0,1). Thus,
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E X2
� 	 ¼ σ2ffiffiffiffiffi

2π
p ye�y

2=2 1
�1 þ

ð1
�1

e�y
2=2dy

������
3
5þ 2σμ 0ð Þ þ μ2 ¼ σ2 þ μ2

2
4 (2.10.5)

and

Var Xð Þ ¼ E X2
� 	� E2 X½ � ¼ σ2 þ μ2 � μ2 ¼ σ2

We have established that for any real and finite number a and b, the following

three integrals hold.

ð1
�1

1

b
ffiffiffiffiffi
2π
p exp � x� að Þ2

2b2

" #
dx ¼ 1 (2.10.6a)

ð1
�1

x

b
ffiffiffiffiffi
2π
p exp � x� að Þ2

2b2

" #
dx ¼ a (2.10.6b)

ð1
�1

x2

b
ffiffiffiffiffi
2π
p exp � x� að Þ2

2b2

" #
dx ¼ a2 þ b2 (2.10.6c)

(b) To determine the Gaussian probability, we need the CDF of the Gaussian

random variable X.

FX xð Þ ¼
ðx
�1

f X xð Þdx ¼
ðx
�1

1

σ
ffiffiffiffiffi
2π
p e� x�μð Þ2=2σ2dx

¼
ð1
�1

1

σ
ffiffiffiffiffi
2π
p e� x�μð Þ2=2σ2dx�

ð1
x

1

σ
ffiffiffiffiffi
2π
p e� x�μð Þ2=2σ2dx

The value of the first integral is 1 since we are integrating the Gaussian PDF

over its entire domain. For the second integral, we substitute

z ¼ x� μð Þ
σ
ffiffiffi
2
p , dz ¼ dx

σ
ffiffiffi
2
p

and obtain

FX xð Þ ¼ 1�
ð1
x

1ffiffiffi
π
p e�z

2

dz (2.10.7)

We define error function as
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erf xð Þ ¼ 2ffiffiffi
π
p
ðx
0

e�t
2

dt (2.10.8)

and the complimentary error function as

erfc xð Þ ¼ 1� erf xð Þ ¼ 2ffiffiffi
π
p

ð1
x

e�z
2

dz (2.10.9)

Hence, from Eqs. (2.10.7)–(2.10.9),

FX xð Þ ¼ 1

2
1þ erf

x� μ

σ
ffiffiffi
2
p

� �
 �
(2.10.10)

and

P a < x < bð Þ ¼ FX bð Þ � FX að Þ ¼ 1

2
erf

b� μ

σ
ffiffiffi
2
p

� �
� 1

2
erf

a� μ

σ
ffiffiffi
2
p

� �
(2.10.11)

Note that the definition of erf(x) varies from one book to another. Based on

its definition in Eq. (2.10.8), some tabulated values are presented in Table 2.5.

For example, given a Gaussian distribution with mean 0 and variance 2, we use

the table to obtain

P 1 < x < 2ð Þ ¼ 1

2
erf 1ð Þ � 1

2
erf 0:5ð Þ ¼ 0:1611

2.6 Transformation of a Random Variable

It is sometimes required in system analysis that we obtain the PDF fY(y) of the

output random variable Y given that the PDF fX(x) for the input random variable X

is known and the input-output transformation function

Y ¼ g Xð Þ (2.84)

is provided. If we assume that g(X) is continuous or piecewise continuous, then Ywill

be a random variable. Our goal is to get fY(y). We begin with the distribution of Y.

FY yð Þ ¼ P Y � y½ � ¼ P g Xð Þ � y½ � ¼ P X � g�1 yð Þ� 	 ¼ FX g�1 yð Þ� �
Hence

40 2 Probability and Random Variables



f Y yð Þ ¼ d

dy
FX g�1 yð Þ� � ¼ d

dx
FX g�1 yð Þ� � dx

dy

or

f Y yð Þ ¼ f X xð Þ
dy

dx

����
����

(2.85)

where x ¼ g�1(y). In case Y ¼ g(X) has a finite number of roots X1, X2,. . .,Xn

such that

Y ¼ g X1ð Þ ¼ g X2ð Þ ¼ � � � ¼ g Xnð Þ
then the PDF of y becomes

f X yð Þ ¼ f X x1ð Þ
dy

dx1

����
����
þ f X x2ð Þ

dy

dx2

����
����
þ � � � þ f X xnð Þ

dy

dxn

����
����

(2.86)

Once the PDF of Y is determined, we can find its mean and variance using the

regular approach.

Table 2.5 Error function x erf(x) x erf(x)

0.00 0.00000 1.10 0.88021

0.05 0.05637 1.15 0.89612

0.10 0.11246 1.20 0.91031

0.15 0.16800 1.25 0.92290

0.20 0.22270 1.30 0.93401

0.25 0.27633 1.35 0.94376

0.30 0.32863 1.40 0.95229

0.35 0.37938 1.45 0.95970

0.40 0.42839 1.50 0.96611

0.45 0.47548 1.55 0.97162

0.50 0.52050 1.60 0.97635

0.55 0.56332 1.65 0.98038

0.60 0.60386 1.70 0.98379

0.65 0.64203 1.75 0.98667

0.70 0.67780 1.80 0.98909

0.75 0.71116 1.85 0.99111

0.80 0.74210 1.90 0.99279

0.85 0.77067 1.95 0.99418

0.90 0.79691 2.00 0.99532

0.95 0.82089 2.50 0.99959

1.00 0.84270 3.00 0.99998

1.05 0.86244 3.30 1.0

2.6 Transformation of a Random Variable 41



Example 2.11 Suppose that X is a Gaussian random variable with mean 3 and

variance 4 and Y ¼ 3X � 1. Find the PDF of Y and its mean and variance.

Solution

With μ ¼ 3 and σ2 ¼ 4, the PDF of X is obtained using Eq. (2.81) as

f X xð Þ ¼ 1

2
ffiffiffiffiffi
2π
p exp � 1

2

x� 3

2

� �2
" #

Since Y ¼ g(X) ¼ 3X � 1, X ¼ (Y + 1)/3 and

dy

dx
¼ 3

Hence,

f Y yð Þ ¼ f X xð Þ
3
¼ 1

3
f X

yþ 1

3

� �
¼ 1

6
ffiffiffiffiffi
2π
p exp � 1

2

yþ1
3
� 3

2

 !2
2
4

3
5

or

f Y yð Þ ¼ 1

6
ffiffiffiffiffi
2π
p exp � 1

2

y� 8

6

� �2
" #

Comparing this with Eq. (2.81) indicates that Y has a Gaussian distribution with

mean 8 and variance 62 ¼ 36. We can easily check this.

E Y½ � ¼ E 3X� 1½ � ¼ 3E X½ � � 1 ¼ 3� 3� 1 ¼ 8

Var Yð Þ ¼ 32Var Xð Þ ¼ 9� 4 ¼ 36:

2.7 Generating Functions

It is sometimes more convenient to work with generating functions. A probability

generating function, often called the z-transform, is a tool for manipulating infinite

series. Generating functions are important for at least two reasons. First, they may

have a closed form. Second, they may be used to generate probability distribution

and the moments of the distributions.

If p0, p1, p2, � � � form a probability distribution, the probability generating

function is
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G zð Þ ¼ E zi
� 	 ¼X1

i¼0
zipi (2.87)

Notice that G(1) ¼ 1 since the probabilities must sum up to 1. The generating

function G(z) contains all the information that the individual probabilities have.

We can find the individual probabilities from G(z) by repeated differentiation as

pn ¼
1

n!

dnG zð Þ
dzn

����
z¼0

(2.88)

The moments of the random variable can be obtained from G(z). For example,

for the first moment,

E X½ � ¼
X1
i¼0

ipi ¼
X1
i¼0

ipiz
i�1
�����
z¼1
¼ d

dz

X1
i¼0

piz
i

�����
z¼1
¼ G

0
1ð Þ (2.89)

For the second moment,

E X2
� 	 ¼X1

i¼0
i2pi ¼

X1
i¼0

i i� 1ð Þpi þ
X1
i¼0

ipi

¼
X1
i¼0

i i� 1ð Þpizi�2
�����
z¼1
þ
X1
i¼0

ipiz
i�1
�����
z¼1

¼ G
00
1ð Þ þ G

0�
1
�

(2.90)

Example 2.12 Find the generating function for geometric distribution.

Solution

For geometric distribution, q ¼ 1 � p and pi ¼ pqi � 1. Hence,

G zð Þ ¼
X1
i¼1

pqi�1zi ¼ pz
X1
i¼1

qzð Þi�1 ¼ pz

1� qz

For n � 1,

dnG zð Þ
dzn

¼ n!pqn�1

1� qzð Þnþ1
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Thus,

E X½ � ¼ G
0
1ð Þ ¼ p

1� qð Þ2 ¼
1

p

and

E X2
� 	 ¼ G

0
1ð Þ þ G

00
1ð Þ ¼ 1

p
þ 2q

p2
¼ 1þ q

p2

so that variance is

Var Xð Þ ¼ E X2
� 	� E2 X½ � ¼ q

p2

2.8 Central Limit Theorem

This is a fundamental result in probability theory. The theorem explains why many

random variables encountered in nature have distributions close to the Gaussian

distribution. To derive the theorem, consider the binomial function

B Mð Þ ¼ N!

M! N �Mð Þ! p
MqN�M (2.91)

which is the probability of M successes in N independent trials. If M and N � M

are large, we may use Stirling’s formula

n! ffi nne�n
ffiffiffiffiffiffiffiffi
2nπ
p

(2.92)

Hence,

B Mð Þ ¼ f xð Þ ¼ 1

σ
ffiffiffiffiffi
2π
p exp � x� μð Þ2

2σ2

" #
(2.93)

which is a normal distribution, μ ¼ Np and σ ¼ ffiffiffiffiffiffiffiffiffi
Npq
p

. Thus, as N ! 1, the sum

of a large number of random variables tends to be normally distributed. This is

known as the central limit theorem.

The central limit theorem states that the PDF of the sum of a large number of individual

random variables approaches a Gaussian (normal) distribution regardless of whether or not

the distribution of the individual variables are normal.

Although the derivation above is based on binomial distribution, the central limit

theorem is true for all distributions. A simple consequence of the theorem is that

any random variable which is the sum of n independent identical random variables

approximates a normal random variable as n becomes large.
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Example 2.13 This example illustrates the central limit theorem. If X1, X2, X3,. . .Xn

are n dependent random variables and c1, c2, c3, . . .,cn are constants, then

X ¼ c1X1 þ c2X2 þ c3X3 þ . . .þ cnXn

is a Gaussian random variable as n becomes large.

Solution

To make things simple, let use assume that X1, X2, X3,. . . Xn are identical uniform

variable with one of them as shown in Fig. 2.15a. For the sumY ¼ X1 +X2, the PDF

of y is a convolution of the PDF in Fig. 2.15a with itself, i.e.

-a 0 a

fY (y)

2a
1

Y = X1 + X2

-2a 0 2a

fZ (z)

Z = X1 + X2 + X3

-3a 0 3a

2a
1

fX  (x)

z

y

x

3/8a

a

b

c

Fig. 2.15 (a) PDF of

uniform random variable X,

(b) PDF of Y ¼ X1 + X2,

(c) PDF of

Z ¼ X1 + X2 + X3
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f Y yð Þ ¼
ð1
�1

f X xð Þf X y� xð Þdx

By performing the convolution, we obtain the joint PDF in Fig. 2.15b. In the

same way, for the sum Z ¼ X1 + X2 + X3, the PDF of Z is the convolution of

the PDF in Fig. 2.15a with that in Fig. 2.15b, i.e.

f Z zð Þ ¼
ð1
�1

f X λð Þf Y λ� zð Þdλ

which results in Fig. 2.15c. With only three terms, the PDF of the sum is already

approaching Gaussian PDF. According to the central limit theorem, as more terms

are added, the PDF becomes Gaussian.

2.9 Computation Using MATLAB

MATLAB is a useful tool for handling and demonstrating some of the concepts

covered in this chapter. For example, the MATLAB commandsmean, std, cov, and

corrcoef can be used to find the average/mean value, standard deviation, covari-

ance, and correlation coefficient respectively. We will illustrate with examples how

MATLAB can be used.

2.9.1 Performing a Random Experiment

Suppose we want to carry out the random experiment of tossing a die, we can use

the MATLAB command unidrnd to generate as many trials as possible, with each

trial yield randomly 1, 2, . . .6.
We use this command to generate a 12 � 12 matrix with numbers that are

uniformly distributed between 1 and 6 as follows.

> > x ¼ unidrnd(6,12,12)
x ¼

5 3 5 4 6 3 5 6 4 3 1 5
3 4 1 2 5 3 4 5 1 3 4 1
1 2 6 6 5 6 5 3 2 2 5 3
4 4 6 3 5 4 1 4 4 3 2 4
3 1 4 5 5 2 3 6 2 2 2 5
1 4 2 1 2 3 3 4 4 3 5 4
4 5 6 3 2 4 1 2 2 4 5 3
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5 6 4 3 4 1 5 3 4 5 6 3
5 5 5 3 4 5 6 2 4 2 3 1
6 5 3 4 1 6 3 3 3 1 6 3
6 3 6 4 1 4 6 3 4 3 3 3
1 4 1 1 2 1 1 3 6 3 5 2

> > x1 ¼ mean(x)
x1 ¼
Columns 1 through 10
3.6667 3.8333 4.0833 3.2500 3.5000 3.5000 3.5833

3.6667 3.3333 2.8333
Columns 11 through 12
3.9167 3.0833

> > x2 ¼ mean(x1)
x2 ¼

3.5208
> > y1 ¼ std(x)
y1 ¼
Columns 1 through 10
1.8749 1.4035 1.9287 1.4848 1.7838 1.6787 1.8809

1.3707 1.3707 1.0299
Columns 11 through 12
1.6765 1.3114

> > y2 ¼ std(y1)
y2 ¼

0.2796

From 144 outcomes above, we tabulate the results as shown in Table 2.6.

We expect P(xi) ¼ 1/6 ¼ 0.1667 for all i ¼ 1, 2, . . .6 but it is not quite so because

the number of trials is not large enough. We have chosen 144 to make the result

manageable. If higher number of trials is selected, the results would be more

accurate. We also find the mean value to be 3.5208 instead of 3.5 and the standard

deviation to be 0.2796.

2.9.2 Plotting PDF

MATLAB can also be used in plotting the cumulative distribution functions (CDF)

or probability density function (PDF) of a random variable. The MATLAB

commands for the CDF and PDF for various types of random variables we consid-

ered in Sects. 2.4 and 2.5 are provided in Table 2.7. One may use the help command

to get assistance on how to use any of these commands.

For example, we will use MATLAB code to plot PDF or P(x) for Binomial

distribution for cases (1) p ¼ 0.6, n ¼ 20, (2) p ¼ 0.6, n ¼ 100 by using the

command binopdf. The MATLAB commands are:
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> > n ¼ 20; % later change n to 100
> > p ¼ 0.6;
> > x ¼ 1:n;
> > y ¼ binopdf(x,n,p);
> > stem(x,y); %plots the discrete distribution

The two cases are shown in Fig. 2.16. Notice that as n increases, the distribution

approaches Gaussian distribution, as expected.

MATLAB can also be used to plot the CDF or PDF when there is no MATLAB

command. For example, suppose we are given a joint PDF for random variables

X and Y as

f XY x; yð Þ ¼ 1

2π
exp � x2 þ y2

� �
=2

� 	
, �1 < x <1, �1 < y <1 (2.94)

Since the computer cannot possibly cover the entire domain of the PDF, we may

restrict x and y to [�4,4]. The following MATLAB code can be used to plot the

PDF in Eq. (2.94) as shown in Fig. 2.17.

[x,y] ¼ meshgrid(-4:0.2:4,-4:0.2:4); % defines grid
f ¼ exp(-(x.^2 + y.^2)/2)/(2*pi); % pdf to be plotted
surf(x,y,f) % creates 3-D plot
xlabel(’x’); ylabel(’y’); zlabel(’pdf’);

2.9.3 Gaussian Function

As mentioned earlier, the Gaussian distribution is the most important PDF in

communications. We can use MATLAB commands normpdf and normcdf to

Table 2.6 Outcomes of the experiment of tossing a die

Number (i) 1 2 3 4 5 6

No. of occurrence 20 18 34 29 25 18

P(xi) 0.1389 0.1250 0.2361 0.2014 0.1736 0.1250

Table 2.7 MATLAB

commands for commom

CDFs and PDFs

Name CDF PDF

Binomial binocdf binopdf

Poisson poisscdf poisspdf

Geometric geocdf geopdf

Uniform (discrete) unidcdf unidpdf

Uniform (continuous) unifcdf unifpdf

Exponential expcdf exppdf

Gaussian (Normal) normcdf normpdf

Rayleigh raylcdf raylpdf

48 2 Probability and Random Variables



plot the PDF and CDF of the Gaussian distribution. In Sect. 2.5, we defined CDF of

the Gaussian random variable X as

FX xð Þ ¼ 1

2
þ 1

2
erf

x� μ

σ
ffiffiffi
2
p

� �
(2.95)

Fig. 2.16 Plot PDF for Binomial distribution for cases (a) p ¼ 0.6, n ¼ 20, (b) p ¼ 0.6, n ¼ 100
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where erf(.) is the error function defined as

erf xð Þ ¼ 2ffiffiffi
π
p
ðx
0

e�t
2

dt (2.96)

The MATLAB command erf for the error function evaluates the integral in

Eq. (2.96). Hence

P a < x < bð Þ ¼ FX bð Þ � FX að Þ ¼ 1

2
erf

b� μ

σ
ffiffiffi
2
p

� �
� 1

2
erf

a� μ

σ
ffiffiffi
2
p

� �

For example, given a Gaussian distribution with mean 0 and variance 2

P 1 < x < 2ð Þ ¼ 1

2
erf 1ð Þ � 1

2
erf 0:5ð Þ

Rather than using Table 2.5 to figure this out, we can use MATLAB.

> > P ¼ 0.5*(erf(1) - erf(0.5))
P ¼
0.1611

i.e. P(1 < x < 2) ¼ 0.1611, in agreement with what we got in Example 2.10.

MATLAB becomes indispensable when the value of erf(x) is not tabulated.

Fig. 2.17 The plot of the joint PDF in Eq. (2.10.5)
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2.10 Summary

1. The probability of an event is the measure of how likely the event will occur as

a result of a random experiment. A random experiment is one in which all the

outcomes solely depend on chance, i.e., each outcome is equally likely to

happen.

2. The relative-frequency definition of the probability of an event A assumes that

if an experiment is repeated for a large number of times n and event A occurs

nA times,

P Að Þ ¼ nA
n

3. A random variable is a real-value function defined over a sample space.

A discrete random variable is one which may take on only a countable number

of distinct values such as 0, 1, 2, 3, . . .
A continuous random variable is one which takes an infinite number

of possible values.

4. The cumulative distribution function (CDF) FX(x) of a random variable X

is defined as the probability P(X � x) and FX(x) lies between 0 and 1.

5. The probability density function (PDF) fX(x) of a random variable X is the

derivative of the CDF FX(x), i.e.

f X xð Þ ¼ dFX xð Þ
dx

 ! FX xð Þ ¼
ðx
�1

f X xð Þdx

Note that fX(x)dx is the probability of a random variable X lying within

dx of x.

6. The joint CDF FXY(x,y) of two random variables X and Y is the probability

P(X � x, Y � y), while the joint PDF fXY(x,y) is the second partial derivative

of the joint CDF with respect to x and y. The PDF of X alone (the marginal

PDF) is obtained by integrating the joint PDF fXY(x,y) over all y. The joint

CDF or PDF of two independent random variables are factors.

7. The mean value of a random variable X is

E Xð Þ ¼
ð1
�1

xf X xð Þdx if X is continuous

or

E Xð Þ ¼
XM
i¼1

xiP xið Þ if X is discrete

8. The variance of random variable X is
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Var xð Þ ¼ σ2X ¼ E X2
� 	� E2 Xð Þ

where σX is the standard deviation of the random variable; σX is a measure of

the width of its PDF.

9. Table 2.3 summarizes the P(k), PDF, mean, and variance of common discrete

probability distributions: Bernoulli, binomial, geometric, and Poisson.

10. Table 2.4 summarizes the CDF, PDF, mean, and variance of common continu-

ous probability distributions: uniform, exponential, Erlang, hyperexponential,

and Gaussian.

11. The central limit theorem is the usual justification for using the Gaussian

distribution for modeling. It states that the sum of independent samples from

any distribution approaches the Gaussian distribution as the sample size

becomes large.

12. MATLAB can be used to plot or generate CDF and PDF, perform random

experiments, and determine mean and standard deviation of a given random

variable.

For more information on the material covered in this chapter, see [6, 7].

Problems

2.1 An experiment consists of throwing two dice simultaneously. (a) Calculate the

probability of having a 2 and a 5 appearing together. (b) What is the probability

of the sum being 8.

2.2 A circle is split into ten equal sectors which are numbered 1–10. When the

circle is rotated about its center, a pointer indicates where it stops (like a wheel

of fortune). Determine the probability: (a) of stopping at number 8, (b) of

stopping at an odd number, (c) of stopping at numbers 1, 4, or 6, (d) of stopping

at a number greater than 4.

2.3 A jar initially contains four white marbles, three green marbles, and two red

marbles. Two marbles are drawn randomly one after the other without replace-

ment. (a) Find the probability that the two marbles are red. (b) Calculate the

probability that the two marbles have marching colors.

2.4 The telephone numbers are selected randomly from a telephone directory and

the first digit (k) is observed. The result of the observation for 100 telephone

numbers is shown below.

k 0 1 2 3 4 5 6 7 8 9

Nk 0 2 18 11 20 13 19 15 1 1

What is the probability that a phone number: (a) starts with 6? (b) begins

with an odd number?
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2.5 A class has 50 students. Suppose 20 of them are Chinese and 4 of the Chinese

students are female. Let event A denote “student is Chinese” and event B

denote “student is female.” Find: (a) P(A), (b) P(AB), (c) P(BjA).
2.6 In a particular city, voters registration follows the tabulated statistics below.

What is the probability that a person selected at random will be a male given

that the person is also a Republican?

Male (%) Female (%)

Democrat 26 28

Republican 20 13

Independent 12 12

2.7 For three events A, B, and C, show that

P Aþ Bþ Cð Þ ¼ P Að Þ þ P Bð Þ þ P Cð Þ � P ABð Þ � P ACð Þ � P BCð Þ þ P ABCð Þ
2.8 A continuous random variable X has the following PDF

f X xð Þ ¼ kx, 1 < x < 4

0, otherwise

�

(a) Find the value of constant k.

(b) Obtain FX(x).

(c) Evaluate P(X � 2.5) .

2.9 A random variable has a PDF given by

f X xð Þ ¼
1

2
ffiffiffi
x
p , 0 < x < 1

0, otherwise

8<
:

Find the corresponding FX(x) and P(0.5 < x < 0.75).

2.10 A Cauchy random variable X has PDF

f X xð Þ ¼ 1

π 1þ x2ð Þ , �1 < x <1

Find the corresponding CDF.

2.11 A joint PDF is given by

f XY x; yð Þ ¼ ke� 2xþ3yð Þ=6u xð Þu yð Þ
(a) Determine the value of the constant k such that the PDF is valid.

(b) Obtain the corresponding CDF FXY(x,y).

(c) Calculate the marginal PDFs fX(x) and fY(y).

(d) Find P(X � 3, Y > 2) and P(0 < X < 1, 1 < Y < 3).
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2.12 X and Y are random variables which assume values 0 and 1 according to the

probabilities in the table below. Find Cov(X,Y).

X

0 1 Total

Y 0 0.3 0.4 0.7

1 0.1 0.2 0.3

Total 0.4 0.6 1.0

2.13 The random variables X and Y have joint PDF as

f XY x; yð Þ ¼
1

4
, 0 < x < 2, 0 < y < 2

0, otherwise

8<
:

Find: (a) E[X + Y], (b) E[XY].

2.14 Given that a is a constant, show that

(a) Var aXð Þ ¼ a2Vax Xð Þ
(b) Var Xþ að Þ ¼ Var Xð Þ

2.15 If X and Y are two independent random variables with mean μX and μY
and variances σ2X and σ2y respectively, show that

Var XY½ � ¼ σ2Xσ
2
y þ σ2Xμ

2
y þ μ2Xσ

2
y

2.16 Let f xð Þ ¼ e�αx βxþ γð Þ, x > 0

0, otherwise

�
Find the conditions for α, β, and γ so that f(x) is a probability density

function.

2.17 Given the joint PDF of random variables X and Y as

f XY x; yð Þ ¼
1

2
xþ 3yð Þ, 0 < x < 1, 0 < y < 1

0, otherwise

8<
:

(a) Find E[X + Y] and E[XY].

(b) Calculate Cov(X,Y) and ρXY.
(c) Are X and Y uncorrelated? Are they orthogonal?
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2.18 The joint PDF of two random variables X and Y is

f XY x; yð Þ ¼ ye�y xþ1ð Þu xð Þu yð Þ

(a) Find the marginal PDFs fX(x) and fY(y).

(b) Are X and Y independent?

(c) Calculate the mean and variance of X.

(d) Determine P(X < Y).

2.19 Given the joint PDF

f XY x; yð Þ ¼ k xþ xyð Þ, 0 < x < 2, 0 < y < 2

0, otherwise

�

(a) Evaluate k.

(b) Determine P(X < 1, y > 1).

(c) Find FXY(0.5,1.5).

(d) Obtain FY(yjX ¼ x).

(e) Calculate Cov(X,Y).

2.20 The skew is defined as the third moment taken about the mean, i.e.

skew Xð Þ ¼ E X � mxð Þ3
h i

¼
ð1
�1

x� mxð Þ3 f X xð Þdx

Given that a random variable X has a PDF

f X xð Þ ¼
1

6
8� xð Þ, 4 < x < 10

0, otherwise

8<
:

find skew(X).

2.21 Refer to the previous problem for the definition of skewness. Calculate

skew(X), where X is a random variable with the following distributions:

(a) Binomial with parameters n and p

(b) Poisson with parameter λ.
(c) Uniform on the interval (a,b).

(d) Exponential with parameter α.

2.22 There are four resistors in a circuit and the circuit will fail if two or more

resistors are defective. If the probability of a resistor being defective is 0.005,

calculate the probability that the circuit does not fail.
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2.23 Let X be a binomial random variable with p ¼ 0.5 and n ¼ 20. Find

P(4 � X � 7).

Hint: P(4 � X � 7) ¼ P(X ¼ 4) + P(4 < X � 7).

2.24 The occurrence of earthquakes can be modeled by a Poisson process. If the

annual rate of occurrence of earthquakes in a particular area is 0.02, calculate

the probability of having exactly one earthquake in 2 years.

2.25 The number of cars arriving at a toll booth during any time interval T

(in minutes) follows Poisson distribution with parameter T/2. Calculate the

probability that it takes more than 2 min for the first car to arrive at the booth.

2.26 A uniform random variable X has E[X] ¼ 1 and Var(X) ¼ 1/2. Find its PDF

and determine P(X > 1).

2.27 Two independent random variables are uniformly distributed, each having the

PDF shown in Fig. 2.18. (a) Calculate the mean and variance of each.

(b) Determine the PDF of the sum of the two random variables.

2.28 A continuous random variable X may take any value with equal probability

within the interval range 0 to α. Find E[X], E[X2], and Var(X).

2.29 A random variable X with mean 3 follows an exponential distribution.

(a) Calculate P(X < 1) and P(X > 1.5). (b) Determine λ such that

P(X < λ) ¼ 0.2.

2.30 A zero-mean Gaussian random variable has a variance of 9. Find a such that

P(jXj > a) < 0.01.

2.31 A random variable T represents the lifetime of an electronic component.

Its PDF is given by

f T tð Þ ¼ t

α2
exp � t2

α2


 �
u tð Þ

where α ¼ 103. Find E[T] and Var(T).

fX (x)

1/3

0 1 2 3 4 x

Fig. 2.18 For Prob. 2.27

56 2 Probability and Random Variables



2.32 A measurement of a noise voltage produces a Gaussian random signal with

zero mean and variance 2 � 10�11 V2. Find the probability that a sample

measurement exceeds 4 μV.
2.33 A random variable has triangular PDF as shown Fig. 2.19. Find E[X] and

Var(X).

2.34 A transformation between X and Y is defined by Y ¼ e� 3X. Obtain the PDF

of Y if:

(a) X is uniformly distributed between �1 and 1, (b) fX(x) ¼ e� xu(x).
2.35 If f X xð Þ ¼ αe�αx, , 0 < x <1 and Y ¼ 1/X, find fY(y).

2.36 Let X be a Gaussian random variable with mean μ and variance σ2. (a) Find
the PDF of Y ¼ eX. (b) Determine the PDF of Y ¼ X2.

2.37 If X and Y are two independent Gaussian random variables each with zero

mean and the same variance σ, show that random variable R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2 þ Y2

p
has

a Rayleigh distribution as shown Fig. 2.20. Hint: The joint PDF is fXY(x,y)

¼ fX(x)fY(y) and f R rð Þ ¼ r

σ2
e�r

2=2σ2u rð Þ.
2.38 Obtain the generating function for Poisson distribution.

fX (x)

c − a
1

a b c
x

Fig. 2.19 For Prob. 2.33

fX (x)

eσ
1

0 σ x

Fig. 2.20 PDF of a

Rayleigh random variable

for Prob. 2.37
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2.39 A queueing systemhas the following probability of being in state n (n ¼ number

of customers in the system)

pn ¼ 1� ρð Þρn, n ¼ 0, 1, 2, � � �
(a) Find the generating function G(z). (b) Use G(z) to find the mean number of

customers in the system.

2.40 Use MATLAB to plot the joint PDF of random variables X and Y given by

f XY x; yð Þ ¼ xye� x2þy2ð Þ, 0 < x <1, 0 < y <1
Limit x and y to (0,4).

2.41 Use MATLAB to plot the binomial probabilities

P kð Þ ¼ k
n

� �
2�k

as a function of n for: (a) k ¼ 5, (b) k ¼ 10.

2.42 Error in data transmission occurs due to white Gaussian noise. The probability

of an error is given by

P ¼ 1

2
1� erf xð Þ½ �

where x is a measure of the signal-to-noise ratio. Use MATLAB to plot P over

0 < x <1.

2.43 Plot the PDF of Gaussian distribution with mean 2 and variance 4 using

MATLAB.

2.44 Using the MATLAB command rand, one can generate random numbers

uniformly distributed on the interval (0,1). Generate 10,000 such numbers

and compute the mean and variance. Compare your result with that obtained

using E[X] ¼ (a + b)/2 and Var(X) ¼ (b � a)2/12.
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