
Chapter 10

Self-Similarity of Network Traffic

Everybody wants to live longer but nobody wants to
grow old.

—Jules Rostand

In 1993, it was found out that there are modeling problems with using Markovian

statistics to describe data traffic. A series of experiments on Ethernet traffic

revealed that the traffic behavior was fractal-like in nature and exhibit self-

similarity, i.e. the statistical behavior was similar across many different time scales

(seconds, hours, etc.) [1, 3]. Also, several research studies on traffic on wireless

networks revealed that the existence of self-similar or fractal properties at a range of

time scale from seconds to weeks. This scale-invariant property of data or video

traffic means that the traditional Markovian traffic models used in most perfor-

mance studies do not capture the fratal nature of computer network traffic. This has

implications in buffer and network design. For example, the buffer requirements in

multiplexers and switches will be incorrectly predicted. Thus, self-similar models,

which can capture burstiness (see Fig. 10.1) over several time scales, may be more

appropriate.

In fact, it has been suggested that many theoretical models based on Markovian

statistics should be reevaluated under self-similar traffic before practical implemen-

tation potentially show their faults.

Self-similarity is the property of an object which “looks the same” when viewed at

different scales [4].

Self-similarity describes the phenomenon where a certain property of an object

is preserved with respect to scaling in space and/or time. That is, as one zooms in or
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out the object has a similar (sometimes exact) appearance. For example, if an object

is self-similar or fractal, its parts, when magnified resemble the shape of the whole.

This idea is easily illustrated using the Sierpinski triangle (also known as Sierpinski

gasket named after the Polish mathematician) shown in Fig. 10.2. The triangle S

consists of three self-similar copies of itself, each with magnification of 2. We can

look further and find more copies of S. The triangle S also consists of nine self-

similar copies of itself, each with magnification of 4. Or we may cut S into 27 self-

similar pieces, each with magnification factor 8. This kind of self-similarity at all

scales is a hallmark of the images known as fractals.

Another example is the well known Koch snowflake curve shown in Fig. 10.3.

As one successively zooms in the resulting shape is exactly the same no matter how

far in the zoom is applied. A far more common type of self similarity is an

approximate one, i.e. as one looks at the object at different scales one sees structures

that are recognizably similar but not exactly so.

This chapter attempts to account for the self-similar traffic. We begin by first

introducing the mathematics of self-similar process. We then present Pareto distri-

bution as a typical example of a heavy-tailed distribution. We investigate the

behavior of single queueing system with interarrival times having a large variance.

We finally consider wireless networks with self-similar input traffic.

Silence periodBurst Burst

Fig. 10.1 An example of a burst traffic

Fig. 10.2 The Sierpinski triangle
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10.1 Self-Similar Processes

Self-similar processes are stochastic processes, which can be described mathemati-

cally. They can be described by their characteristic of being scale-invariant.

They are also characterized by fractal (i.e. fractional) dimensions, of which a

number have been defined. One of these dimensions is the correlation dimension.

A perfectly self-similar process on the average looks exactly the same regardless of

the time scale observed.

Self-similarity manifests itself in a variety of ways: traffic appearing fractal-like,

a spectral density obeying a power-law behavior, long-range dependence,

slowly decaying variance, etc. [5]. The degree of self-similarity of a process is

typically specified by the Hurst parameter H, where 0.5 < H < 1.0. 0.5 represents

Fig. 10.3 Koch snowflake curve
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non-self-similar behavior and the closer H is to 1, the more long-range dependence

the process is.

A continuous stochastic process X(t) is self-similar if a� HX(at) has exactly the

same second-order statistics (i.e. distribution) as X(t) for any real a > 0 and Hurst

parameter H. The key idea is that a direct scaling of time yields a related scaling of

the series regardless of what scale is chosen. A stochastic process X(t) is statisti-

cally self-similar if for a > 0, the process aHX(at) has the same statistical properties

as X(t). The relationship may be expressed by the following three conditions [6, 7]:

1: E X tð Þ½ � ¼ E X atð Þ½ �
aH

meanð Þ (10.1)

2: Var X tð Þ½ � ¼ Var X atð Þ½ �
a2H

varianceð Þ (10.2)

3: RX t; sð Þ ¼ RX at; asð Þ
a2H

autocorrelationð Þ (10.3)

The Brownian motion process and fractional Brownian motion process satisfy

our definition of self-similarity. The fractional Brownian motion (FBM) is a

continuous, zero mean, Gaussian process with parameter H, 0 < H < 1. FBM

reduces to Brownian motion when H ¼ 0.5.

A discrete-time definition of self-similarity may be given as follows. Let

X ¼ (Xt : t ¼ 0, 1, 2, � � �) be a covariance stationary (also called wide-sense sta-

tionary) stochastic process—a process with a constant mean μ ¼ E[Xt], finite

variance σ2 ¼ E[(Xt � μ)2], and autocorrelation function

R kð Þ ¼ Cov Xt;Xtþkð Þ
Var Xtð Þ ¼ E Xt � μð Þ Xtþk � μð Þ½ �

σ2
, k ¼ 0, 1, 2, � � � (10.4)

that depends only on k. A new aggregated time series X(m) ¼ (Xk
(m) : k ¼ 1, 2, 3,

. . .) for each m ¼ 1, 2, 3, . . . is obtained by averaging non-overlapping blocks of

size m from the original series X. In other words,

X
mð Þ
k ¼ Xkm�mþ1 þ . . .þ Xkmð Þ

m

For example,

X
3ð Þ
k ¼ X3k�2 þ X3k�1 þ X3k

3

A process X is self-similar with parameter β (0 < β < 1) if

Var X mð Þ
h i

¼ Var X½ �
mβ

varianceð Þ (10.5a)

254 10 Self-Similarity of Network Traffic



RX mð Þ kð Þ ¼ RX kð Þ autocorrelationð Þ (10.5b)

We also assume that X has autocorrelation function of the form

R kð Þ � L tð Þk�β as k ! 1 (10.6)

where 0 < β < 1, the symbol � means “behaves asymptotically as,” and L(t) is

“slowly varying” at infinity, i.e.

lim
t!1

L txð Þ
L tð Þ ¼ 1 (10.7)

This self-similar process has self-similarity Hurst parameter

H ¼ 1� β=2 (10.8)

There are two important characteristics of self-similar processes [6–10]. The first

feature has to do with the their long-range dependence (LRD), i.e. their autocorre-
lation function decays hyperbolically (less than exponentially fast). Equation

(10.5a) implies this. In spite of the serious effects of this characteristic on queueing

behavior, it cannot be accounted for in Markovian traffic models. For short range

dependent (SRD) processes, such as the traditional traffic models, their functions

show a fast exponential decay. The two concepts of self-similarity and long-range

dependence are often used interchangeably to mean the same thing.

The second feature of self-similar process is the slowly decaying variance
(SDV). The variance of the sample mean decays more slowing than the reciprocal

of the sample size:

Var X mð Þ
h i

� a1m
�β, m !1 (10.9)

a1 is a positive constant and H ¼ 1 � β/2. This result indicates that the process
has infinite variance. However, this result differs from traditional Markovian

models where the variance is given by

Var X mð Þ
h i

� a1m
�1 (10.10)

10.2 Pareto Distribution

Another issue related to self-similarity is that of heavy-tailed distribution. In fact, to

produce self-similar behavior, the traffic model should employ heavy-tailed distri-

bution with infinite variance. A distribution is heavy-tailed if [11]

Prob X > x½ � ¼ 1� F xð Þ � 1

xα
(10.11)
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where 1 < α < 2. One of the distributions that are heavy-tailed is the Pareto

distribution, which is defined as

Prob X > x½ � ¼ δ

x

� �α

(10.12)

where δ is a parameter which indicates the minimum value that the distribution can

take, i.e. x � δ and α is the shape parameter (1 � α � 2), which describes the

intensity of self-similarity. α also determines the mean and variance of X. Thus, the

cumulative distribution function is

F xð Þ ¼ 1� δ

x

� �α

(10.13a)

while the probability density function is

f xð Þ ¼ α

δ

δ

x

� �αþ1

(10.13b)

The mean value of the Pareto distribution is

E Xð Þ ¼ δ
α

1� α
(10.14)

For our purposes, it is convenient to set δ ¼ 1.

It is common in simulating self-similar traffic to assume that the packet

interarrival times are independent, identically distributed according to a Pareto

distribution [12, 13]. The Pareto distribution is a distribution with memory, heavy

tail, and strong burstiness. It can have finite mean and infinite variance depending

on the value of one of its parameters. It has been shown that the ON/OFF source

model with heavy-tailed distribution reproduces the self-similar traffic [14]. The

lengths of the ON-periods are identically distributed and so are the lengths of the

OFF-periods. Traffic obtained through infinite radix multiplexing of ON/OFF

source traffic so that the ON interval or the OFF period follows a Pareto distribution

is not as Fractional Gaussian Noise (FGN).

Example 10.1 Let there be a queue with time-slotted arrival process of packets.

The load is 0.5 and there is a batch arriving according to Bernoulli process such that

Prob there is a batch in a time slot½ � ¼ 0:25

so that the mean number of arrivals in any batch is 2. Calculate the probability of

having more than x arrivals in any time slot if the batch size is: (a) exponentially

distributed, (b) Pareto-distributed.

Solution

(a) Prob batch size > x½ � ¼ e�x=2
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so that

Prob > 10 arrivals in a time slot½ � ¼ Prob batch size > 10½ �
	 Prob there is a batch in a time slot½ �

¼ e�10=2 	 0:25 ¼ 0:001684

(b) In this case, assuming δ ¼ 1,

E X½ � ¼ 1
α

α� 1
¼ 2

or

α ¼ E X½ �
E X½ � � 1

¼ 2

Thus,

Prob batch size > x½ � ¼ 1

x

� �2

Prob > 10 arrivals in a time slot½ � ¼ Prob batch size > 10½ �
	 Prob there is a batch in a time slot½ �

¼ 1

10

0
@

1
A
2

	 0:25 ¼ 0:0025

For the two distributions, the probability is of the same order of magnitude. This

indicates that for a batch size of greater than 10 arrivals, there is not much

difference between the two distributions. However, there would be significant

difference is we try more than 100 arrivals. For exponential case,

Prob > 100 arrivals in a time slot½ � ¼ e�100=2 	 0:25 ¼ 4:822	 10�23

and for Pareto case

Prob > 100 arrivals in a time slot½ � ¼ 1

100

� �2
	 0:25 ¼ 2:5	 10�5

10.3 Generating and Testing Self-Similar Traffic

A proper way of modeling network traffic is a prerequisite for an adequate design of

networks. Several approaches have been developed for modeling self-similar traf-

fic. These include the random midpoint displacement algorithm, on-off model, and

wavelet transformation [15].

10.3 Generating and Testing Self-Similar Traffic 257



10.3.1 Random Midpoint Displacement Algorithm

This algorithm is used for generating Fractional Brownian Motion (FBM) with

Hurst parameter H ∈ (0.5,1) in a given time interval. If the trajectory of FBM

Z(t) is to be computed in the interval [0,T], we start by setting Z(0) ¼ 0 and

Z(T) from a Gaussian distribution with mean 0 and variance T2H. Next Z(T/2) is
calculated as the average of Z(0) and Z(T) plus an offset δ1, i.e.

Z T=2ð Þ ¼ 1

2
Z 0ð Þ þ Z Tð Þ½ � þ δ1 (10.15)

where δ1 is a Gaussian random variable with zero mean and a standard deviation

given by T2H times the initial scaling factor s1, i.e.

Δ1 ¼ T2H:s1 ¼ T2H

2H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 22H�2

p
(10.16)

The two intervals from 0 to T/2 and from T/2 to T are further subdivided and

we reduce the scaling factor by 1
2H

and so on. At the nth stage, a random Gaussian

variable δn is added to the midpoint of the stage n � 1 with a variance.

Δn ¼ T2H

2nð ÞH
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 22H�2

p
(10.17)

Once a given point has been determined, its value remains unchanged in all later

stages. As H goes to 1, Δn goes to 0 and Z(t) remains a collection of smooth line

segment connecting the starting points.

10.3.2 On-Off Model

This traffic model is aggregated by multiple single ON/OFF traffic source. In other

words, traffic is generated by a large number of independent ON/OFF sources such

as workstations in a large computer network. An ON/OFF source is a burst traffic

source which alternates active (ON) with silent (OFF) periods. During an active

period (that is, a burst), data is generated at a fixed peak rate, while during silent

periods no data is generated. Every individual ON/OFF source generates an

ON/OFF process consisting of alternating ON- and OFF-periods. The lengths of

the ON-periods are identically distributed and so are the lengths of OFF-periods.

The ON/OFF source model with the “heavy-tailed” (Pareto-like) distribution

reproduces the self-similar traffic. In other words, the superposition of many

independent and identically distributed (i.i.d.) ON/OFF sources results in self-

similar aggregate traffic.
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Suppose there are N traffic sources, let the ON time of the ith traffic by τ(i) and
OFF time be θ(i). The random variables τ(i) and θ(i) are i.i.d.; they satisfy

P X > tð Þ � at�α, with t !1, 1 < α < 2 (10.18)

where X is the length of the ON or OFF period. Since Pareto distribution is the

simplest example of a heavy-tailed distribution, we may say that X follows Pareto

distribution with finite mean and infinite variance.

There are several statistical methods that can be used for testing the time scale of

self-similarity in traffic generation. These methods are used in the estimation of the

Hurst parameter. They include R-S (Rescaled adjusted Range statistic) analysis and

Variance-Time analysis.

Variance-Time Analysis

The method applies the following fact. The process X is said to be exactly second-
order self-similar with Hurst parameter

H ¼ 1� β

2
0 < β < 2ð Þ (10.19)

if, for any m ¼ 1, 2, 3, . . .,

Var X mð Þ
� �

/ m�β (10.20)

We take advantage of this equation. Taking the logarithm of both sides results in

log Var X mð Þ
� �h i

¼ c1 � βlog mð Þ (10.21)

for some constant c1. Plotting log[Var(X
(m))] versus log(m) (i.e. a log-log graph) for

many values of m of a self-similar process will result in a linear series of points with

slope � β or 2H � 2. This plot is known as a variance-time plot.

R-S Analysis

This is rescaled-adjusted range method. It obtains H based on overlapped data

windows. Define a sequence Xi(i ¼ 1, 2, 3, . . ., M ). Let X M and S(M) be the

sample mean and the sample variance of the sequence respectively. We evaluate

W0,Wm ¼
Xm
i¼1

Xi � mX mð Þ, m ¼ 1, 2, 3, . . . ,M (10.22)
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The adjusted range is defined as

R Mð Þ ¼ Max Wmð Þ �Min Wmð Þ, 0 � m �M (10.23)

The ratio R(M)/S(M) is called the rescaled adjusted range or R/S statistic. The

log of R/S statistics (for several values of M) plotted against log(M) will have an

asymptotic slope, which is the approximation of H.

10.4 Single Queue

Classical modeling techniques of queues assume Poisson arrival rates. However,

several different types of input processes have been found to exhibit self-similar or

fractal-like behavior. In this section, we consider the performance of a single server

queue with interarrival times having a large variance [16, 17].

Let X be the random variable denoting the interarrival time of packets. X is

assumed to have a Gamma distribution, i.e. the packet interarrival times are

assumed to have a Gamma distribution.

f X tð Þ ¼ rλ rλtð Þr�1

Γ rð Þ e�rλt, λ, t > 0, 0 < r < 1 (10.24)

Packet interarrival times which have a Gamma distribution with a specific range

of parameter values give large values of variances. The service time is assumed to

be exponentially distributed with parameter μ. The results of the G/M/1 queue can

be readily used. Let pn be the probability that k packets are in the queue at the

arrival moment. Then

pn ¼ 1� σð Þσk (10.25)

where σ is the unique root of

σ ¼ FX μ� μσð Þ, 0 < σ < 1 (10.26)

FX(s) is the Laplace transform of fX(t).

FX sð Þ ¼
ð1

0

f X tð Þe�stdt ¼ rλ

sþ rλ

� �r
(10.27)

If Wq is the random variable which denotes the waiting time of a packet in the

queue, the mean and variance of Wq are respectively
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E Wq

� � ¼ σ

μ 1� σð Þ (10.28)

Var Wq

� � ¼ σ2Wq
¼ 1� 1� σð Þ2

μ2 1� σð Þ2 (10.29)

The complimentary queue waiting time distribution is

Prob Wq > t
� � ¼ σe�μ 1�σð Þt, t � 0 (10.30)

It remains to solve for σ. The value of σ is evaluated as follows. Using

Eqs. (10.26) and (10.27),

σ ¼ rρ

1� σ þ rρ

� �r

(10.31)

where ρ ¼ λ/μ. If we define

z ¼ rρ

1� σ þ rρ
(10.32)

then

σ ¼ 1þ rρ� rρ

z
(10.33)

From Eqs. (10.31) to (10.33), we obtain

z ¼ rρ

1þ rρð Þ þ
zrþ1

1þ rρð Þ (10.34)

which can be evaluated using Lagrange series. Now we let

z ¼ aþ ξϕ zð Þ, a ¼ rρ= 1þ rρð Þ, ξ ¼ 1= 1þ rρð Þ, and ϕ zð Þ ¼ zrþ1

(10.35)

in the Lagrange series expansion, we get

z ¼
X1
n¼0

ξnΓ nr þ nþ 1ð Þ
n!Γ nr þ 2ð Þ anrþ1 (10.36)

This series can be summed by letting
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z ¼
X1
n¼0

dn (10.37)

where

dn ¼ ξn

n!

Γ nr þ nþ 1ð Þ
Γ nr þ 2ð Þ anrþ1 (10.38)

The values of dn can be evaluated recursively as follows.

d0 ¼ a

d1 ¼ ξard0 (10.39)

d2 ¼ ξar r þ 1ð Þd1
dn ¼ bndn�1, n � 3

where

bn ¼ ξar r þ 1ð Þ
Yn�2

k¼1

nr þ k þ 1ð Þ
nr � r þ k þ 1ð Þ, n � 3 (10.40)

Only a finite number of terms in Eq. (10.37) is needed in practice. Once we

calculate z using Eq. (10.38), we use Eq. (10.33) to obtain σ.
One should keep in mind that the application of self-similar traffic model does

not mean that traditional queueing analysis is now irrelevant. It only means that

under certain conditions, performance analysis critically depend on taking self-

similarity into account.

10.5 Wireless Networks

Although self-similarity was originally found for Ethernet traffic [1, 2, 18], research

has shown that the same holds for wireless networks [19]. This implies that

simulating a wireless network with Poisson distributed input traffic will give

wrong results.

A logistic function or logistic curve can be described by the following differen-

tial equation.
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dP

dt
¼ rP 1� P

K

� �
(10.41)

where P is population size, K is capacity, and t is time. Setting x ¼ P/K in

Eq. (10.41) gives

dx

dt
¼ rx 1� xð Þ (10.42)

Logistic map is a discrete representation of Eq. (10.42) and is written as

recurrence relation as follows:

xnþ1 ¼ rxn 1� xnð Þ (10.43)

This equation has been used to obtain self-similar time sequence which could be

used for traffic generation for wireless network systems [19]. Values of r in the

range 3.50 < r < 3.88 and 0 < x0 < 0.5 have been used.

10.6 Summary

1. Studies of both Ethernet traffic and variable bit rate (VBR) video have

demonstrated that these traffics exhibit self-similarity. A self-similar phenome-

non displays the same or similar statistical properties when viewed at different

times scales.

2. Pareto distribution is a heavy-tailed distribution with infinite variance and is

used in modeling self-similar traffic.

3. The most common method of generating self-similar traffic is to simulate several

sources that generate constant traffic and then multiplex then with ON/OFF

method using heavy-tailed distribution such as Pareto.

4. We analytically modeled the performance of a single server queue with almost

self-similar input traffic and exponentially distributed service times.

5. Logistic map for self-similar traffic generation is used for wireless network.

6. OPNET can be used to simulate the network traffic’s self-similarity [20].

Problems

10.1 (a) Explain the concept of self-similarity.

(b) What is a self-similar process?

10.2 Show that the Brownian motion process B(t) with parameter H ¼ 1/2 is

self-similar. Hint: Prove that B(t) satisfy conditions in Eqs. (10.1) to (10.3).

10.3 Show that the Eq. (10.14) is valid and that the variance of Pareto distribution

is infinite.
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10.4 If X is a random variable with a Pareto distribution with parameters α and δ,
then show that the random variable Y ¼ ln (X/δ) has an exponential distribu-
tion with parameter α.

10.5 Evaluate and plot σ in Eq. (10.24) for 0 < ρ < 0.2 with r ¼ 0.01.
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