
Chapter 3
Distances

Abstract. In many theoretical and practical issues we face the following problem.
Having two sets in the same universe, we want to calculate a difference between
them exemplified by a distance. In this Chapter we consider distances between the
intuitionistic fuzzy sets in two ways: while using the two term intuitionistic fuzzy
set representation (membership values and non-membership values only are taken
into account), and the three term intuitionistic fuzzy set representation (membership
values, non-membership values, and hesitation margins are taken into account). We
discuss norms and metrics for both types of representations. Both types are correct
from the mathematical point of view but, in the practical perspective, the three term
approach seems to be more justified. We discuss the problem in detail, consider-
ing its analytical, and geometrical aspects. We also show some problems with the
Hausdorff distance, while the Hamming metric is applied when using the two term
intuitionistic fuzzy set representation. We also show that the method of calculating
the Hausdorff distances, which is correct for the interval-valued fuzzy sets, does not
work for the intuitionistic fuzzy sets. Finally, we show the usefulness of the three
term distances in a measure for ranking the intuitionistic fuzzy alternatives.

3.1 Basic Definitions

Definition 3.1. A distance on a set X is a positive function d (also called metric)
from pairs of elements of X to the set R+ of non-negative real numbers with the
following properties, valid for all x1,x2,x3 ∈ X :

1. d(x1,x1) = 0 (reflexivity);
2. d(x1,x2) = 0 if and only if x1 = x2 (separability);
3. d(x1,x2) = d(x2,x1) (symmetry);
4. d(x1,x3)≤ d(x1,x2)+ d(x2,x3) (triangle inequality).

The pair (X ,d) is called metric space.
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If a measure fulfills requirements 1, 3 and 4, it is called a pseudometric (separa-
bility does not hold).

A semimetric is defined with requirements 1, 2 and 3 (triangle inequality does
not need to be satisfied).

A semi-pseudometric satisfies 1 and 3 only.

If a set of elements is identified with a vector space, the most known distances
correspond to norms.

A norm of a vector corresponds in a sense to the absolute value (magnitude) of
numbers.

Definition 3.2. (Bronshtein [41])
We assign a real positive number ‖ x ‖ (Norm x) to the vector x. A number ‖ x ‖,

in order to be a norm, must satisfy the norm axioms which for any vector x ∈ Rn

are the following:

1. ‖ x ‖≥ 0 for every x ;

2. ‖ x ‖= 0 if and only if x = 0 ;

3. ‖ αx ‖= |α| ‖ x ‖ for every x and every real number α;

4. ‖ x+ y ‖≤‖ x ‖+ ‖ y ‖ for every x and y.

Concrete norms are defined in many different ways.
If x = (x1,x2, . . . ,xn)

T is a real vector of n dimensions, i.e., x ∈ Rn then the most
often used vector norms are:

Euclidean norm

‖ x ‖=‖ x ‖2=

√
n

∑
i

x2
i . (3.1)

Supremum or Uniform Norm

‖ x ‖=‖ x ‖∞= max
1≤i≤n

|xi|. (3.2)

Sum Norm

‖ x ‖=‖ x ‖1=
n

∑
i
|xi|. (3.3)

In applications, the so called lr-norms and lr-norms are often used, defined as
follows.

Definition 3.3. For a vector x = (x1, . . . ,xn) ∈ Rn, its lr-norm, where r is a real
number ≥ 1, is:
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lr(x) =‖ x ‖r= (
n

∑
i

|xi|r) 1
r . (3.4)

Slight modification of the axioms in Definition 3.2 makes it possible to define i-th
power of lr-norm, i.e., the lr-norm:

lr(x) =‖ x ‖r=
n

∑
i
|xi|r. (3.5)

Euclidean norm (3.1) is a special case of the lr-norm (3.4).

Sum norm (3.3) is a special case of the lr-norm (3.5).

Norms on vector spaces correspond to certain metrics, i.e., every norm deter-
mines a metric, and some metrics determine a norm.

Given a normed vector space (X ‖ · ‖) we can define a metric on X by d(x,y) =
‖ x− y ‖. The metric d is said to be induced by the norm ‖ · ‖.

We give below the most often used metrics di, j = d(yi,y j) of vectors yi and y j

having one extreme at the origin of the coordinate axes.

• Manhattan distance

di, j =
n

∑
k=1

|yik − y jk| (3.6)

• Euclidean distance

di, j =

√
n

∑
k=1

(yik − y jk)2 (3.7)

• Minkowski distance

di, j = (
n

∑
k=1

|yik − y jk|p)
1
p (3.8)

Minkowski distance is induced by the norm lr, namely, for r = 1 (3.8) it be-
comes Manhattan distance (city block distance); for r = 2 it is equivalent to the
Euclidean distance.

• Chebyshev distance
di, j = max

k
|yik − y jk| (3.9)

Chebyshev distance is also induced by the norm lr when r → ∞.
• Canberra distance

di, j =
n

∑
k=1

|yik − y jk|
|yik|+ |y jk| (3.10)

Canberra distance (Lance and Williams [103]) is similar to the Manhattan dis-
tance. Each component of the sum (3.10) belongs to the interval [0,1]. If yik or
y jk is equal to 0, the respective component of the sum (3.10) is equal to 1 regard-
less of the value of the other component. The distance is rather sensitive to small
changes when both components tend to zero (Apolloni et al. [2]). For practical
purposes we assume value of 0 for both coordinates equal 0 (Emran and Ye [69]).
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• Sorensen distance (also known as Bray Curtis)

di, j =
∑n

k=1 |yik − y jk|
∑n

k=1(yik + y jk)
(3.11)

Sorensen distance (Bray and Curtis [40]) is a modified Manhattan distance.
Sorensen distance value is between zero and one if all coordinates are positive.
If denominator in (3.11) is zero, Sorensen distance is undefined.

• Mahalanobis distance

di, j =

√
n

∑
k=1

(yik − y jk)S−1(yik − y jk) (3.12)

where S is a covariance matrix. Mahalanobis distance ([121]) can also be defined
as a dissimilarity measure between two random vectors of the same distribution
with the covariance matrix S. If S is the identity matrix, the Mahalanobis distance
(3.12) ([121]) is equal to the Euclidean distance (3.7). For a diagonal covariance
matrix S, the Mahalanobis distance (3.12) reduces to the normalized Euclidean
distance. Mahalanobis distance is used in classification methods and cluster anal-
ysis (McLachlan [122]).

The above distances di j play often a role of measures corresponding to similarity
measures si j , i.e., si j = 1− di j, and are widely used for solving real problems
(cf. e.g., Bray and Curtis [40], Apolloni et al. [2], McLachlan [122], Emran and
Ye [69], Lance and Williams [103], Krebs [102], Hublek [84], Wolda [246],
Clarke et al. [54], Field et al. [71]).

In vector spaces also other similarity measures are used, for example:

• Angular Separation

si, j =
∑n

k=1 yiky jk√
∑n

k=1(yik)2 ∑n
k=1(y jk)2

(3.13)

Angular separation represents cosine between two vectors. The values of (3.13)
belong to the interval [-1, 1]. The higher the values of (3.13), the more similar
the vectors considered. If denominator is equal to zero, we assume 0 for angular
separation.

• Correlation Coefficient

si, j =
∑n

k=1(yik − ȳi)(y jk − ȳ j)√
∑n

k=1(yik − ȳi)2 ∑n
k=1(y jk − ȳ j)2

(3.14)

Correlation coefficient is a standarized angular separation resulting from centering
the coordinates with respect to the mean values.
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3.2 Norms and Metrics Over the Intuitionistic Fuzzy Sets or
their Elements – The Two Term Approach

It is worth stressing that this section will not be devoted to the usual set-theoretic
properties of the intuitionistic fuzzy sets (i.e. the properties which are a direct result
of the fact that the intuitionistic fuzzy sets are sets in the sense of set theory). For
example, in a metric space X , one can study the metric properties of the intuition-
istic fuzzy sets over X . This can be done directly by topological methods (cf. e.g.,
Schwartz [149]) without paying attention to the essential properties of the intuition-
istic fuzzy sets. On the other hand, all intuitionistic fuzzy sets (and hence, all fuzzy
sets) over a fixed universe X generate a space (in the sense of Schwartz [149]), but
with a special metric (cf., e.g., Kaufmann [99]) which is not related to the elements
of X but to the values of the functions μA and νA, defined for these elements.

We should have in mind that a “norm” of a given intuitionistic fuzzy element
is actually not a norm in the sense of Schwartz [149], but rather a “pseudo-norm”,
assigning a number to every element x ∈ X . This number depends on the values of
the functions μA and νA (which are calculated for this element).

In other words, the essential conditions for a norm, i.e.:

‖x‖= 0 iff x = 0, (3.15)

and
‖x‖= ‖y‖ iff x = y, (3.16)

are not fulfilled here.
Instead of (3.15)–(3.16), the following conditions hold:

‖x‖= ‖y‖ iff μA(x) = μA(y) (3.17)

and
νA(x) = νA(y). (3.18)

For any element x ∈ X in every fuzzy set over X , the value of μA(x) plays the role
of a norm (more precisely, a pseudo-norm).

In the case of the intuitionistic fuzzy sets, the presence of the second functional
component, namely, the function νA gives rise to different possibilities for the defi-
nition of a norm (in the sense of a pseudo-norm) over the subsets and the elements
of a given universe X (Atanassov [8], [11], [15], [22]).

Definition 3.4. The first norm given by Atanassov (Atanassov [15]) for every x ∈ X
with respect to a fixed set A ⊂ X is

σ1,A(x) = μA(x)+νA(x). (3.19)

Norm (3.19) represents the degree of definiteness (Atanassov [15]) of the ele-
ment x. From
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πA(x) = 1− μA(x)−νA(x)

we can express (3.19) as
σ1,A(x) = 1−πA(x).

For every two intuitionistic fuzzy sets A and B, and for every x ∈ X the following
properties of (3.19) hold (Atanassov [15]):

σ1,A(x) = σ1,A(x), (3.20)

σ1,A∩B(x) ≥ min(σ1,A(x),σ1,B(x)), (3.21)

σ1,A∪B(x) ≤ max(σ1,A(x),σ1,B(x)), (3.22)

σ1,A+B(x) ≤ 1, (3.23)

σ1,A.B(x) ≤ 1, (3.24)

σ1,A@B(x) =
(σ1,A(x)+σ1,B(x))

2
, (3.25)

σ1,A$B(x) ≤
(σ1,A(x)+σ1,B(x))

2
, (3.26)

σ1,A��B(x) ≤ max(σ1,A(x),σ1,B(x)), (3.27)

σ1,A∗B(x) ≥ max(σ1,A(x),σ1,B(x))
2

, (3.28)

σ1,�A(x) = 1, (3.29)

σ1,♦A(x) = 1, (3.30)

σ1,C(A)(x) ≥ max
x∈X

σ1,A(x), (3.31)

σ1,I(A)(x) ≤ min
x∈X

σ1,A(x), (3.32)

σ1,Dα (x) = 1 (3.33)

for every α ∈ [0,1],
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σ1,Fα,β (x) = α +β +(1−α −β ).σ1,A(x) (3.34)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ1,Gα,β (x) ≤ σ1,A(x), (3.35)

for every α,β ∈ [0,1],

σ1,Hα,β (x) ≤ β +(α +β ).σ1,A(x), (3.36)

for every α,β ∈ [0,1],

σ1,H∗
α,β (A)

(x) ≤ β +(1−β ).σ1,A(x), (3.37)

for every α,β ∈ [0,1],

σ1,Jα,β (x) ≤ α +(α +β ).σ1,A(x), (3.38)

for every α,β ∈ [0,1],

σ1,J∗α,β (A)
(x) ≤ α +(1−α).σ1,A(x), (3.39)

for every α,β ∈ [0,1],

σ1,!A(x) ≥ 0, (3.40)

σ1,?A(x) ≥ 0, (3.41)

σ1,Kα (x) ≥ 0, (3.42)

for every α ∈ [0,1],

σ1,Lα (x) ≥ 0, (3.43)

for every α ∈ [0,1],

σ1,Pα,β (x) ≥ 0, (3.44)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ1,Qα,β (x) ≥ 0, (3.45)

for every α,β ∈ [0,1] and α +β ≤ 1.

Definition 3.5. Another norm for every x ∈ X , with respect to a fixed A ⊂ X , is
defined as follows (Atanassov [15]):



46 3 Distances

σ2,A(x) =
√
(μA(x)2 +νA(x)2). (3.46)

The norms σ1 (3.19) and σ2 (3.46) are analogous to the basic classical types of
norms.

For the norm σ2 (3.46), the following properties are fulfilled for every two intu-
itionistic fuzzy sets A and B, and for every x ∈ X (Atanassov [15]):

σ2,A(x) = σ2,A(x), (3.47)

σ2,A∩B(x) ≥ min(σ2,A(x),σ2,B(x)), (3.48)

σ2,A∪B(x) ≤ max(σ2,A(x),σ2,B(x)), (3.49)

σ2,A+B(x) ≤ 1, (3.50)

σ2,A.B(x) ≤ 1, (3.51)

σ2,A@B(x) ≤ 1√
2
.(σ2,A(x)+σ2,B(x)), (3.52)

σ2,A$B(x) ≤
√

σ2,A(x).σ2,B(x)), (3.53)

σ2,A��B(x) ≥ min(σ2,A(x),σ2,B(x)), (3.54)

σ2,A∗B(x) ≥ max(σ2,A(x),σ2,B(x))/2, (3.55)

σ2,�A(x) ≤ 1, (3.56)

σ2,♦A(x) ≤ 1, (3.57)

σ2,CA(x) ≤ max
x∈X

σ2,A(x), (3.58)

σ2,IA(x) ≥ min
x∈X

σ2,A(x), (3.59)

σ2,Dα (x) ≥ σ2,A(x), (3.60)

for every α ∈ [0,1],

σ2,Fα,β (x) ≥ σ2,A(x), (3.61)
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for every α,β ∈ [0,1] such that α +β ≤ 1,

σ2,Gα,β (x) ≤ σ2,A(x), (3.62)

for every α,β ∈ [0,1],

σ2,Hα,β (x) ≥ α.σ2,A(x), (3.63)

for every α,β ∈ [0,1],

σ2,H∗
α,β (A)

(x) ≥ α.σ2,A(x), (3.64)

for every α,β ∈ [0,1],

σ2,Jα,β (x) ≥ β .σ2,A(x), (3.65)

for every α,β ∈ [0,1],

σ2,J∗α,β (A)
(x) ≥ β .σ2,A(x), (3.66)

for every α,β ∈ [0,1],

σ2,!A(x) ≥ 1
2
, (3.67)

σ2,?A(x) ≥ 1
2
, (3.68)

σ2,Kα (A)(x) ≥ α, (3.69)

for every α ∈ [0,1],

σ2,Lα (A)(x) ≥ α, (3.70)

for every α ∈ [0,1],

σ2,Pα,β (A)
(x) ≥ α, (3.71)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ2,Qα,β (A)
(x) ≥ β , (3.72)

for every α,β ∈ [0,1] and α +β ≤ 1.

Definition 3.6. Tanev [235]) defined the third norm over the elements of a given
intuitionistic fuzzy set A as:

σ3,A(x) =
μA(x)+ 1−νA(x)

2
. (3.73)
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The properties of (3.73) are similar to the properties of the first norm (3.19), and
the second one, (3.46).

Some other discrete norms introduced by Atanassov [15] are presented in Defi-
nition 3.7.

Definition 3.7. For a given finite universe X and for a given intuitionistic fuzzy set
A, we have the following discrete norms (Atanassov [15]):

nμ(A) = ∑
x∈X

μA(x), (3.74)

nν(A) = ∑
x∈X

νA(x), (3.75)

nπ(A) = ∑
x∈X

πA(x). (3.76)

The above norms (3.74)–(3.76) can be extended to continuous norms by replacing
the sum in (3.74)–(3.76) by an integral over X .

After normalizing the norms (3.74)–(3.76) on the interval [0,1], we obtain for
a given finite universe X and for a given intuitionistic fuzzy set A, the following
normalized discrete norms (Atanassov [15]):

• corresponding to the norm “nμ(A)” (3.74)

n∗μ(A) =
1

card(X) ∑
x∈X

μA(x), (3.77)

• corresponding to the norm “nν(A)” (3.76)

n∗ν(A) =
1

card(X) ∑
x∈X

νA(x), (3.78)

• corresponding to the norm “nπ(A)” (3.76)

n∗π(A) =
1

card(X) ∑
x∈X

πA(x), (3.79)

where card(X) is the cardinality of the set X .
The above norms have similar properties.
In the theory of fuzzy sets (see e.g. Kaufmann [99]) two different types of dis-

tances are defined, generated from the following metric

mA(x,y) = μA(x)− μA(y)

and the Hamming and Euclidean metrics coincide (Atanassov [15]).
In the case of the intuitionistic fuzzy sets these metrics are different (Atanas-

sov [15]):
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Definition 3.8. For an intuitionistic fuzzy set A the Hamming metric is defined as
(Atanassov [15]):

hA(x,y) =
1
2
(| μA(x)− μA(y)+νA(x)−νA(y) |). (3.80)

Definition 3.9. For an intuitionistic fuzzy set A the the Euclidean metric is defined
as (Atanassov [15]):

eA(x,y) =

√
1
2
((μA(x)− μA(y))2 +(νA(x)−νA(y))2). (3.81)

Under the assumption that

νA(x) = 1− μA(x)

both metrics, (3.80) and (3.81), reduce to the metric mA (x, y) (Atanassov [15]).
To show that hA and eA are pseudo-metrics over X (in the sense of [100, 149]), it is
necessary to prove that for every three elements x,y,z ∈X we have (Atanassov [15]):

hA(x,y)+ hA(y,z) ≥ hA(x,z), (3.82)

hA(x,y) = hA(y,x), (3.83)

eA(x,y)+ eA(y,z) ≥ eA(x,z), (3.84)

eA(x,y) = eA(y,x). (3.85)

As conditions (3.82) and (3.84) do not hold (Atanassov [15]) for the metrics, hA

and eA are pseudo-metrics. The proofs of the above equalities and inequalities are
trivial.

The well known types of distances for the fuzzy sets A and B are:

• the Hamming distance

d(A,B) = ∑
x∈X

| μA(x)− μB(x) |, (3.86)

• the Euclidean distance

e(A,B) =
√

∑
x∈X

(μA(x)− μB(x))2. (3.87)

The distances (3.86) and (3.87) transformed into the intuitionistic fuzzy sets, have
the following respective forms (Atanassov [15]):
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Definition 3.10. For two intuitionistic fuzzy sets A and B over a universe X , the
Hamming distance between A and B is defined as (Atanassov [15])

dIFS(2)(A,B) =
1
2 ∑

x∈X
| μA(x)− μB(x) |+ | νA(x)−νB(x) |, (3.88)

and the corresponding normalized Hamming distance is

lIFS(2)(A,B) =
1

2n ∑
x∈X

| μA(x)− μB(x) |+ | νA(x)−νB(x) | . (3.89)

Definition 3.11. For two intuitionistic fuzzy sets A and B over a universe X , the
Euclidean distance between A and B is defined as (Atanassov [15])

eIFS(2)(A,B) =

√
1
2
(∑

x∈X
(μA(x)− μB(x))2 +(νA(x)−νB(x))2), (3.90)

and the corresponding normalized Euclidean distance is

qIFS(2)(A,B) =

√
1

2n
(∑

x∈X
(μA(x)− μB(x))2 +(νA(x)−νB(x))2). (3.91)

Distances (3.88)–(3.91) correspond to the two term intuitionistic fuzzy set de-
scription – i.e. the membership values and the non-membership values are taken
into account only. In Section 3.3 we will discuss another form of the Hamming and
Euclidean distances, using the three term description of the intuitionistic fuzzy sets
(besides the membership values and the non-membership values also the hesitation
margin is taken into account):

l1
IFS(A,B) =

1
2n ∑

x∈E

| μA(x)−μB(x) |+ | νA(x)−νB(x) |+ | πA(x)−πB(x) | (3.92)

and

q1
IFS(A,B) =

√
1

2n
(∑

x∈E

(μA(x)− μB(x))2 +(νA(x)−νB(x))2)+ (πA(x)−πB(x))2).

(3.93)
Distances (3.92)–(3.93) correspond to the three term intuitionistic fuzzy set de-

scription (membership values, non-membership values and hesitation margins are
taken into account) and are useful from the point of view of practical applications.

In the next chapter we will discuss in details distances (3.88)–(3.90) and (3.92)–
(3.93).
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In (Atanassov [15]), other distances are also given (cf. [149]), which can be
defined over the intutionistic fuzzy sets:

Definition 3.12. For two intuitionistic fuzzy sets A and B over a universe X , the
following distances between A and B are defined (Atanassov [15]):

J1(A,B) = max
x∈X

| μA(x)− μB(x) |, (3.94)

J2(A,B) = max
x∈X

| νA(x)−νB(x) |, (3.95)

J(A,B) =
1
2
.(J1(A,B)+ J2(A,B)), (3.96)

J∗(A,B) =
1
2
.max

x∈X
(| μA(x)− μB(x) |+ | νA(x)−νB(x) |). (3.97)

It is easily seen that for every two intuitionistic fuzzy sets A and B we have (Ata-
nassov [15]):

J∗(A,B)≤ J1(A,B)+ J2(A,B).

In the distance J1(., .) (3.94) only the membership values are taken into account,
and so the distance is reduced directly to the distance for fuzzy sets. On the other
hand, the distances J2(., .) (3.95), J(., .) (3.96), and J∗(., .) (3.97) make use of both
membership and non-membership values, and thus they do not reduce to the dis-
tances for fuzzy sets.

Atanassov [21], [22] introduced also norms following one of the most impor-
tant ideas of Georg Cantor in set theory, calling the norms “Cantor’s intuitionistic
fuzzy norms”. Cantor’s intuitionistic fuzzy norms are substantially different from
the Euclidean and Hamming norms, existing in fuzzy set theory.

Let x ∈ X be fixed universe and let

μA(x) = 0.a1a2...

νA(x) = 0.b1b2...

Next, Atanassov [22] bijectively constructed the numbers:

||x||μ,ν = 0,a1b1a2b2...

and
||x||ν,μ = 0,b1a1b2a2...

and noticed that the following properties hold for these numbers:

1. ||x||μ,ν , ||x||ν,μ ∈ [0,1]
2. having both numbers it is possible to reconstruct directly the numbers μA(x) and
νA(x).



52 3 Distances

The numbers ||x||μ,ν and ||x||ν,μ were called by Atanassov [22] Cantor norms of
element x ∈ X .

Atanassov [22] denotes these norms by ||x||2,μ,ν and ||x||2,ν,μ in order to stress
that they correspond to the two term intuitionistic fuzzy set description.

On the other hand, for the three term intuitionistic fuzzy set description intro-
duced by Szmidt and Kacprzyk, for point x we have (Atanassov [22]):

μA(x) = 0.a1a2...

νA(x) = 0.b1b2...

πA(x) = 0.c1c2...

with the condition: μA(x) + νA(x) + πA(x) = 1. (Atanassov [22]) introduced six
different Cantor norms:

||x||3,μ,ν,π = 0.a1b1c1a2b2c2...,

||x||3,μ,π ,ν = 0.a1c1b1a2c2b2...,

||x||3,ν,μ,π = 0.b1a1c1b2a2c2...,

||x||3,ν,π ,μ = 0.b1c1a1b2c2a2...,

||x||3,π ,μ,ν = 0.c1a1b1c2a2b2...,

||x||3,π ,ν,μ = 0.c1b1a1c2b2a2....

For the above three term Cantor norms it is possible, as previously, to reconstruct
bijectively the three degrees of element x ∈ X .

3.3 Distances between the Intuitionistic Fuzzy Sets – The Three
Term Approach

In this section we recall some new definitions of distances between intuitionistic
fuzzy sets (Szmidt and Kacprzyk [171]). By taking into account the three term char-
acterization of the intuitionistic fuzzy sets, and following the basic line of reasoning
on which the definition of distances between the fuzzy sets is based, we define four
basic distances between the intuitionistic fuzzy sets: Hamming distance, normalized
Hamming distance, Euclidean distance, and normalized Euclidean distance. While
deriving these distances a convenient geometric interpretation of the intuitionistic
fuzzy sets is employed. It is shown that the definitions proposed are consistent with
their counterparts traditionally used for the fuzzy sets, and that the consistency is
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ensured only under the condition that all three parameters characterizing the intu-
itionistic fuzzy sets are taken into account.

We will first reconsider some better known distances for the fuzzy sets in an
intuitionistic setting, and then extend those distances to the intuitionistic fuzzy sets.

3.3.1 Distances between the Fuzzy Sets

The most widely used distances for fuzzy sets A
′
, B

′
in X = {x1,x2, ...,xn} are

(Kacprzyk, 1997):

• the Hamming distance d(A
′
,B

′
)

d(A
′
,B

′
) =

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.98)

• the normalized Hamming distance l(A
′
,B

′
):

l(A
′
,B

′
) =

1
n

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.99)

• the Euclidean distance e(A
′
,B

′
):

e(A
′
,B

′
) =

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.100)

• the normalized Euclidean distance q(A
′
,B

′
):

q(A
′
,B

′
) =

√
1
n

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.101)

It is worth mentioning that in the above formulas, (3.98)-(3.101), only the mem-
bership functions are present. It is due to the fact that for a fuzzy set,μ(xi)+ν(xi)=1.

In Chapter 2, we have introduced for a fuzzy set A
′

in X an equivalent intuitio-
nistic-type representation given as

A
′
= {< x,μA′ (x),1− μA′ (x)> /x ∈ X}.

The above representation will be employed while rewriting the distances (3.98)-
(3.101).

So, first, taking into account an intuitionistic-type representation of a fuzzy set,
we can express the very essence of the Hamming distance by putting
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d
′
(A

′
,B

′
) =

n

∑
i=1

(∣∣μA′ (xi)− μB′ (xi)
∣∣+ ∣∣νA′ (xi)−νB′ (xi)

∣∣)=

=
n

∑
i=1

(∣∣μA′ (xi)− μB′ (xi)
∣∣+ ∣∣1− μA′ (xi)− 1+ μB′(xi)

∣∣)=

= 2
n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣= 2d(A

′
,B

′
) (3.102)

i.e. the Hamming distance in an intuitionistic-type representation of the fuzzy sets
is twice the Hamming distance between fuzzy sets calculated in a standard way,
(3.98).

Similarly, the normalized Hamming distance l
′
(A

′
,B

′
), when we take into ac-

count an intuitionistic-type representation of a fuzzy set, is in turn equal to

l
′
(A

′
,B

′
) =

1
n
·d ′

(A
′
,B

′
) =

2
n

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.103)

i.e. the result of (3.103) is equal the well known normalized Hamming distance
(3.99) between fuzzy sets, multiplied by two.

Then, by the same line of reasoning, the Euclidean distance, taking into account
an intuitionistic-type representation of a fuzzy set, is equal to

e
′
(A

′
,B

′
) =

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
+
(
νA′ (xi)−νB′ (xi)

)2
=

=

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
+
(
1− μA′ (xi)− 1+ μB′ (xi)

)2
=

=

√
2

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.104)

i.e. it is just multiplied by
√

2 Euclidean distance for the usual representation of
fuzzy sets given by (3.100).

The normalized Euclidean distance q
′
(A

′
,B

′
) considering the intuitionistic-type

representation of a fuzzy set is equal to

q
′
(A

′
,B

′
) =

√
1
n
· e′

(A
′
,B

′
) =

√
2
n

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.105)

so again the result of (3.105) is the expression from (3.101) multiplied by
√

2.

Example 3.1. (Szmidt and Kacprzyk [171]) For simplicity we consider “degenerate”
fuzzy sets M,N,L,K,P in X = {1}. Complete description of each of them is given
by A = (μA,νA)/1, namely:
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L

K

P.

M.

N

Fig. 3.1 A geometrical interpretation of one-element fuzzy sets considered in Example 3.1

M = (1,0)/1, N = (0,1)/1, L = (
1
3
,

2
3
)/1, P = (

2
3
,

1
3
)/1, K = (

1
2
,

1
2
)/1

Figure 3.1 gives a geometrical interpretation of these one-element fuzzy sets.
First, let us calculate the Euclidean distances between the fuzzy sets using their

“normal” representation (i.e., taking into account the membership values only) as in
(3.100)

e(L,P) =

√
(

1
3
− 2

3
)2 =

1
3

(3.106)

e(L,K) =

√
(

1
3
− 1

2
)2 =

1
6

(3.107)

e(P,K) =

√
(

2
3
− 1

2
)2 =

1
6

(3.108)

e(L,M) =

√
(

1
3
− 1)2 =

2
3

(3.109)

e(K,M) =

√
(1− 1

2
)2 =

1
2

(3.110)

e(N,K) =

√
(0− 1

2
)2 =

1
2

(3.111)

e(N,M) =
√

12 = 1 (3.112)

The same Euclidean distances are calculated now using the intuitionistic-type
representation of fuzzy sets (3.104)
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e
′
(L,P) =

√
(

1
3
− 2

3
)2 +(

2
3
− 1

3
)2 =

√
2

3
(3.113)

e
′
(L,K) =

√
(

1
3
− 1

2
)2 +(

2
3
− 1

2
)2 =

√
2

6
(3.114)

e
′
(P,K) =

√
(

2
3
− 1

2
)2 +(

1
3
− 1

2
)2 =

√
2

6
(3.115)

e
′
(L,M) =

√
(

1
3
− 1)2 +(

2
3
− 0)2 =

2
√

2
3

(3.116)

e
′
(K,M) =

√
(

1
2
− 1)2 +(

1
2
)2 =

√
2

2
(3.117)

e
′
(N,K) =

√
(0− 1

2
)2 +(1− 1

2
)2 =

√
2

2
(3.118)

e
′
(N,M) =

√
12 + 12 =

√
2 (3.119)

Thus, as has been already noticed, the above results are just those of (3.106)–
(3.112) multiplied by the constant value equal to

√
2. Therefore, though the dis-

tances (3.106)–(3.112) and (3.113)–(3.119) are clearly different, their essence is the
same.

Example 3.2. (Szmidt and Kacprzyk [171]) Let us consider two fuzzy sets A
′
,B

′
in

X = {1,2,3,4,5,6,7}. Their intuitionistic - type representation is A
′
= (μA′ ,νA′ )/1,

given here as

A
′
= (0.7, 0.3)/1+(0.2, 0.8)/2+(0.6, 0.4)/4+(0.5, 0.5)/5+(1, 0)/6 (3.120)

B
′
= (0.2, 0.8)/1+(0.6, 0.4)/4+(0.8, 0.2)/5+(1, 0)/7 (3.121)

The Hamming distance d(A
′
,B

′
), accounting only for the membership functions

(3.98), is

d(A
′
,B

′
) = |0.7− 0.2|+ |0.2− 0|+ |0.6− 0.6|+ |0.5− 0.8|+ |1− 0|+ |0− 1|= 3

(3.122)
while the normalized distance (3.99) l(A

′
,B

′
) is equal to

l(A
′
,B

′
) =

1
7
·d(A′

,B
′
) =

3
7
= 0.43 (3.123)

On the other hand, when both the membership and non-membership values are
taken into account [cf.(3.102)], we obtain
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d
′
(A

′
,B

′
) = |0.7− 0.2|+ |0.3− 0.8|+ |0.2− 0|+ |0.8− 1|+ |0.6− 0.6|+
+ |0.4− 0.4|+ |0.5− 0.8|+ |0.5− 0.2|+ |1− 0|+ |0− 1|+
+ |0− 1|+ |1− 0|= 6 (3.124)

i.e. we get the value from (3.122) multiplied by two. The normalized Hamming
distance (3.103) is equal to

l
′
(A

′
,B

′
) =

1
n

d′(A
′
,B

′
) =

6
7
= 0.86 (3.125)

Let us compare the Euclidean distances obtained from (3.100) and (3.104). From
(3.100) we have

e(A
′
,B

′
) = ((0.7− 0.2)2+(0.2− 0)2+(0.6− 0.6)2+(0.5− 0.8)2+

+ (1− 0.2)2+(0− 1)2)
1
2 =

√
2.38 = 1.54 (3.126)

while the counterpart normalized Euclidean distance (3.101) is

q(A
′
,B

′
) =

√
1
7
· e(A,B) =

√
2.38

7
= 0.58 (3.127)

From (3.104) we have the Euclidean distance, taking into account the intuitionis-
tic-type representation of fuzzy sets, equal to

e
′
(A′,B′) = ((0.7− 0.2)2+(0.3− 0.8)2+(0.2− 0)2+(0.8− 1)2+(0.6− 0.6)2+

+ (0.4− 0.4)2+(0.5− 0.8)2+(0.5− 0.2)2+(1− 0)2+

+ (0− 0)2+(0− 1)2+(1− 0)2)
1
2 =

√
4.76 = 2.18 (3.128)

whereas the counterpart, the normalized Euclidean distance (3.105), accounting for
the intuitionistic-type representation of fuzzy sets is equal to

q
′
(A′,B′) =

√
4.76

7
= 0.83 (3.129)

Suppose we modify a little bit the fuzzy set B′ (making it closer to A′), i.e., these
two fuzzy sets are now

A′ = (0.7, 0.3)/1+(0.2, 0.8)/2+(0.6, 0.4)/4+(0.5, 0.5)/5+(1, 0)/6 (3.130)

B′ = (0.2, 0.8)/1+(0.6, 0.4)/4+(0.8, 0.2)/5+(0.4, 0.6)/6+(1, 0)/7 (3.131)

The Hamming distance calculated with (3.98) is
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d(A′,B′) = |0.7− 0.2|+ |0.2− 0|+ |0.6− 0.6|+ |0.5− 0.8|+ |1− 0.4|+ |0− 1|=
= 2.6 (3.132)

whereas the normalized Hamming distance (3.99) is

l(A′,B′) =
1
7
·d(A′,B′) =

2.6
7

= 0.37 (3.133)

From (3.102), taking into account the intuitionistic-type representation of fuzzy
sets, we obtain the Hamming distance equal to

d
′
(A

′
,B

′
) = |0.7− 0.2|+ |0.3− 0.8|+ |0.2− 0|+ |0.8− 1|+ |0.6− 0.6|+
+ |0.4− 0.4|+ |0.5− 0.8|+ |0.5− 0.2|+ |1− 0.4|+ |0− 0.6|+
+ |0− 1|+ |1− 0|= 5.2 (3.134)

while the normalized Hamming distance (3.103) taking into account the intuitionis-
tic-type representation of fuzzy sets, is equal to

l
′
(A

′
,B

′
) =

1
7
·5.2 = 0.74 (3.135)

Let us calculate the Euclidean distances now. From (3.100) we obtain

e(A
′
,B

′
) = ((0.7− 0.2)2+(0.2− 0)2+(0.6− 0.6)2+(0.5− 0.8)2+

+ (1− 0.4)2+(0− 1)2)
1
2 =

√
1.74 = 1.32 (3.136)

while from (3.101) we get the normalized Euclidean distance

q(A
′
,B

′
) =

√
1.74

7
= 0.5 (3.137)

Taking into account the intuitionistic-type representation of fuzzy sets, from
(3.104) we obtain the Euclidean distance

e
′
(A

′
,B

′
) = ((0.7− 0.2)2+(0.3− 0.8)2+(0.2− 0)2+(0.8− 1)2+

+ (0.6− 0.6)2+(0.4− 0.4)2+(0.5− 0.8)2+(0.5− 0.2)2+

+ (1− 0.4)2+(0− 0.6)2+(0− 1)2+(1− 0)2)
1
2 =

=
√

3.48 = 1.87 (3.138)

while the normalized Euclidean distance (3.105), taking into account the intuitio-
nistic-type representation of fuzzy sets, is equal to

q
′
(A

′
,B

′
) =

√
1
7
·3.48 = 0.705 (3.139)

As we analyze the results of Examples 3.1 and 3.2 we may notice that:
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• for any fuzzy sets A
′

and B
′
, when we calculate the distances between them in

a standard way (3.98)–(3.101), i.e., when we take into account the membership
values only, we have

0 ≤ d(A
′
,B

′
)≤ n (3.140)

0 ≤ l(A
′
,B

′
)≤ 1 (3.141)

0 ≤ e(A
′
,B

′
)≤√

n (3.142)

0 ≤ q(A
′
,B

′
)≤ 1 (3.143)

• for any fuzzy sets A
′

and B
′
, when we calculate distances between them taking

into account the intuitionistic-type representation of fuzzy sets (3.102)-(3.105),
we have

0 ≤ d
′
(A

′
,B

′
)≤ 2n (3.144)

0 ≤ l
′
(A

′
,B

′
)≤ 2 (3.145)

0 ≤ e
′
(A

′
,B

′
)≤

√
2n (3.146)

0 ≤ q
′
(A

′
,B

′
)≤

√
2 (3.147)

We would like to emphasize that it is not our purpose to introduce a new way
of calculating distances for fuzzy sets. To the contrary, we have shown that the
intuitionistic-type representation of fuzzy sets results in multiplying the distances
by constant values only. But similar reasoning for the case of the intuitionistic fuzzy
sets (i.e. omitting one of the three terms) would lead to incorrect results, as this is
discussed in detail in the next section.

3.3.2 Distances between the Intuitionistic Fuzzy Sets

Following the line of reasoning presented in Section 3.3.1, we will now extend the
concepts of distances to the case of the intuitionistic fuzzy sets.

The Hamming distance between two intuitionistic fuzzy sets A and B in X =
{x1,x2, ...,xn} is equal to (Szmidt and Kacprzyk [171])

d1
IFS(A,B) =

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|) (3.148)

Having in mind that
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πA(xi) = 1− μA(xi)−νA(xi) (3.149)

and

πB(xi) = 1− μB(xi)−νB(xi) (3.150)

we have

|πA(xi)−πB(xi)| = |1− μA(xi)−νA(xi)− 1+ μB(xi)+νB(xi)| ≤
≤ |μB(xi)− μA(xi)|+ |νB(xi)−νA(xi)| (3.151)

From inequality (3.151) it follows that the third term in (3.148) cannot be omitted
as it was in the case of fuzzy sets, for which taking into account the second term
would only result in the multiplication by a constant value.

For the Euclidean distance a similar situation occurs. Namely, for intuitionistic
fuzzy sets A and B in X = {x1,x2, ...,xn}, by following the line of reasoning as in
Section 3.3.1, their Euclidean distance is equal to (Szmidt and Kacprzyk [171])

e1
IFS(A,B) = (

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.152)

Let us verify the effect of omitting the third term (π) in (3.152). Having in mind
(3.149)–(3.150), we have (Szmidt and Kacprzyk [171]):

(πA(xi)−πB(xi))
2 = (1− μA(xi)−νA(xi)− 1+ μB(xi)+νB(xi))

2 =

= (μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ 2(μA(xi)− μB(xi))(νA(xi)−νB(xi)) (3.153)

which means that taking into account the third term π when calculating the Eu-
clidean distance for the intuitionistic fuzzy sets does have an influence on the final
result. This is obvious, because a two-dimensional geometrical interpretation (Fig-
ure 2.2) is an orthogonal projection of a real situation presented in Figure 2.3.

Taking into account (3.149)-(3.153), in order to be more in agreement with the
mathematical notion of normalization, the following distances for two intuitionistic
fuzzy sets A and B in X = {x1,x2, ...,xn} are proposed (Szmidt and Kacprzyk [171])

• the Hamming distance:

d1
IFS(A,B) =

1
2

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+

+ |πA(xi)−πB(xi)|) (3.154)

• the Euclidean distance :
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)0,0,1(M

)1,0,0(H

E  

)0,1,0(NG

Fig. 3.2 Geometrical representation of the one-element intuitionistic fuzzy sets from Exam-
ple 3.3

e1
IFS(A,B) = (

1
2

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.155)

• the normalized Hamming distance:

l1
IFS(A,B) =

1
2n

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+

+ |πA(xi)−πB(xi)|) (3.156)

• the normalized Euclidean distance:

q1
IFS(A,B) = (

1
2n

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.157)

The above distances satisfy the conditions of the metric (cf. Kaufmann [99]).

Example 3.3. (Szmidt and Kacprzyk [171]) Let us consider for simplicity the “de-
generate” intuitionistic fuzzy sets M,N, H,G,E in X = {1}. The full description of
each intuitionistic fuzzy set, i.e. A = (μA,νA,πA)/1, may be exemplified by

M = (1,0,0)/1, N = (0,1,0)/1, H = (0,0,1)/1,

G = (
1
2
,

1
2
,0)/1, E = (

1
4
,

1
4
,

1
2
)/1 (3.158)

The geometrical interpretation of the above sets is presented in Figure 3.2.
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Let us calculate the Euclidean distances between the above intuitionistic fuzzy
sets omitting the third term, i.e., using the following formula:

eIFS(2)(A,B) =

√
1
2

n

∑
i=1

(μA(xi)− μB(xi))2 +(νA(xi)−νB(xi))2 (3.159)

We obtain:

eIFS(2)(M,H) =

√
1
2
((1− 0)2 + 02) =

1
2

(3.160)

eIFS(2)(N,H) =

√
1
2
(02 +(0− 1)2) =

1
2

(3.161)

eIFS(2)(M,N) =

√
1
2
((1− 0)2+(0− 1)2) = 1 (3.162)

eIFS(2)(M,G) =

√
1
2
((1− 1

2
)2 +(0− 1

2
)2) =

1
2

(3.163)

eIFS(2)(N,G) =

√
1
2
((0− 1

2
)2 +(1− 1

2
)2) =

1
2

(3.164)

eIFS(2)(E,G) =

√
1
2
((

1
4
− 1

2
)2 +(

1
4
− 1

2
)2) =

1
4

(3.165)

eIFS(2)(H,G) =

√
1
2
((0− 1

2
)2 +(0− 1

2
)2) =

1
4

(3.166)

However, one can hardly agree with the above results. As it was shown (cf. Fig-
ure 2.3), the triangle MNH (Figure 3.2) has all edges equal to

√
2 (as they are di-

agonals of squares with sides equal to 1). So we should obtain eIFS(2)(M,H) =
eIFS(2)(N,H) = eIFS(2)(M,N). But our results show only that eIFS(2)(M,H) =
eIFS(2)(N,H) [cf. (3.160)–(3.161)], but unfortunately eIFS(2)(M,H) �= eIFS(2)(M,N),
and eIFS(2)(N,H) �= eIFS(2)(M,N). Also eIFS(2)(E,G), which is half of the height of

triangle MNH multiplied in (3.159) by
√

1/2, is not the value we expect (it is too
short, and the same concerns the height of eIFS(2)(H,G)).

On the other hand, upon calculating the same Euclidean distances using (3.155),
i.e., taking into account all three terms (membership values, non-membership val-
ues, and hesitation margins), we obtain:

e1
IFS(M,H) =

√
1
2
((1− 0)2 + 02 +(0− 1)2) = 1 (3.167)
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e1
IFS(N,H) =

√
1
2
(02 +(1− 0)2+(0− 1)2) = 1 (3.168)

e1
IFS(M,N) =

√
1
2
((1− 0)2 +(0− 1)2+ 02) = 1 (3.169)

e1
IFS(M,G) =

√
1
2
((1− 1

2
)2 +(0− 1

2
)2 + 02) =

1
2

(3.170)

e1
IFS(N,G) =

√
1
2
((0− 1

2
)2 +(1− 1

2
)2 + 02) =

1
2

(3.171)

e1
IFS(E,G) =

√
1
2
((

1
4
− 1

2
)2 +(

1
4
− 1

2
)2 +(

1
2
− 0)2) =

√
3

4
(3.172)

e1
IFS(H,G) =

√
1
2
((0− 1

2
)2 +(0− 1

2
)2 +(1− 0)2) =

√
3

2
(3.173)

From (3.155) we get the expected results, i.e.

e1
IFS(M,H) = e1

IFS(N,H) = e1
IFS(M,N) = 2e1

IFS(M,G) = 2e1
IFS(N,G)

and e1
IFS(E,G) is equal to half the height of a triangle with all edges equal

√
2

multiplied by 1/
√

2, i.e.
√

3
4 .

Example 3.4. (Szmidt and Kacprzyk [171]) Let A and B in X = {1,2,3,4,5,6,7}
be the following intuitionistic fuzzy sets

A = (0.5, 0.3, 0.2)/1+(0.2, 0.6, 0.2)/2+(0.3, 0.2, 0.5)/4+

+ (0.2, 0.2, 0.6)/5+(1, 0, 0)/6 (3.174)

B = (0.2, 0.6, 0.2)/1+(0.3, 0.2, 0.5)/4+(0.5, 0.2, 0.3)/5+(0.9, 0, 0.1)/7
(3.175)

Then, upon taking into account all three terms, we get the Hamming distance
(3.154) equal to

d1
IFS(A,B) =

1
2
(|0.5− 0.2|+ |0.3− 0.6|+ |0.2− 0.2|+ |0.2− 0|+ |0.6− 1|+

+ |0.2− 0|+ |0.3− 0.3|+ |0.2− 0.2|+ |0.5− 0.5|+ |0.2− 0.5|+
+ |0.2− 0.2|+ |0.6− 0.3|+ |1− 0|+ |0− 1|+ |0− 0|+
+ |0− 0.9|+ |1− 0|+ |0− 0.1|) = 3 (3.176)

Thus, taking into account all three terms, we get the normalized Hamming dis-
tance (3.156) as equal to
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l1
IFS(A,B) =

3
7
= 0.43 (3.177)

The Hamming distance, when we account for two terms only, is equal to

dIFS(2)(A,B) =
1
2
(|0.5− 0.2|+ |0.3− 0.6|+ |0.2− 0|+ |0.6− 1|+ |0.3− 0.3|+

+ |0.2− 0.2|+ |0.2− 0.5|+ |0.2− 0.2|+ |1− 0|+ |0− 1|+
+ |0− 0.9|+ |1− 0|) = 2.7 (3.178)

and the normalized Hamming distance accounting for two terms only is

lIFS(2)(A,B) =
1
7
·d(A,B) = 2.7

7
= 0.39 (3.179)

The Euclidean distance (3.155) based on all three terms is equal to

e1
IFS(A,B) = 0.50.5((0.5− 0.2)2+(0.3− 0.6)2+(0.2− 0.2)2+(0.2− 0)2+

+ (0.6− 1)2+(0.2− 0)2+(0.3− 0.3)2+(0.2− 0.2)2+

+ (0.5− 0.5)2+(0.2− 0.5)2+(0.2− 0.2)2+(0.6− 0.3)2+

+ (1− 0)2+(0− 1)2+ 02 +(0− 0.9)2+(1− 0)2+(0− 0.1)2)0.5 =

=
√

2.21 = 1.49 (3.180)

thus, the normalized Euclidean distance based on all three terms is

q1
IFS(A,B) =

e1
IFS(A,B)√

7
=

√
2.21

7
= 0.56 (3.181)

The Euclidean distance (3.159), calculated with two terms only is equal to

eIFS(2)(A,B) = 0.50.5((0.5− 0.2)2+(0.3− 0.6)2+(0.2− 0)2+(0.6− 1)2+

+ (0.3− 0.3)2+(0.2− 0.2)2+(0.2− 0.5)2+(0.2− 0.2)2+(1− 0)2+

+ (0− 1)2+(0− 0.9)2−(1− 0)2)0.5=
√

2.14 = 1.46 (3.182)

hence, the normalized Euclidean distance, based on only two terms is

qIFS(2)(A,B) =

√
1
7
· e(A,B) =

√
2.14

7
= 0.55 (3.183)

It is easy to notice, when analyzing the results obtained in Examples 3.3 and 3.4
that distances between the intuitionistic fuzzy sets should be calculated by taking
into account all three terms (membership values, non-membership values, and hesi-
tancy margin values). It is also easy to notice that for the formulas (3.154) –(3.157)
the following holds
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0 ≤ d1
IFS(A,B)≤ n (3.184)

0 ≤ l1
IFS(A,B)≤ 1 (3.185)

0 ≤ e1
IFS(A,B)≤

√
n (3.186)

0 ≤ q1
IFS(A,B)≤ 1 (3.187)

Using two terms only gives values of distances which are orthogonal projections
of the real distances (Figure 2.3), and this implies that they are lower.

So to sum up, after analyzing several definitions of distances between the intu-
itionistic fuzzy sets, it was shown that the distances should be calculated taking into
account all three terms describing an intuitionistic fuzzy set.

Taking into account all three terms describing the intuitionistic fuzzy sets when
calculating distances ensures that the distances for fuzzy sets and intuitionistic fuzzy
sets can be easily compared [cf. formulas (3.140)-(3.143) and formulas (3.184)-
(3.187)].

3.3.2.1 Hausdorff Distances

The Hausdorff distances (cf. Grünbaum [77]) are important from the point of view
of practical applications, namely, in image matching, image analysis, visual nav-
igation of robots, motion tracking, computer-assisted surgery and so on (cf. e.g.,
Huttenlocher et al. [89], Huttenlocher and Rucklidge [90], Olson [127], Peitgen
et al. [136], Rucklidge [142]-[146]). Although the definition of the Hausdorff dis-
tances is simple, the calculations needed to solve the real problems are complex. In
result the efficiency of the algorithms for computing the Hausdorff distances may
be crucial and the use of some approximations may be relevant and useful (e.g,
Aichholzer [1], Atallah [3], Huttenlocher et al. [89], Preparata and Shamos [137],
Rucklidge [146], Veltkamp [239]).

First of all, the formulas proposed for calculating the distances should be formally
correct. This is the motivation of this section. Namely, we consider the results of
using the Hamming distances between the intuitionistic fuzzy sets calculated in two
possible ways – taking into account the two term representation (the membership
and non-membership values) of the intuitionistic fuzzy sets, and next – taking into
account the three term representation (the membership, non-membership values,
and hesitation margin values) of the intuitionistic fuzzy sets. We will verify if the
resulting distances fulfill the properties of the Hausdorff distances.

The next problem we consider concerns calculating the Hausdorff distance based
on the Hamming metric for the interval-valued fuzzy sets. We prove that the formu-
las that are effective and efficient for the interval-valued fuzzy sets do not work well
in the case of the intuitionistic fuzzy sets.

The Hausdorff distance is the maximum distance of a set to the nearest point in
the other set (Rote [141]). More formal description is given by the following
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Definition 3.13. Given two finite sets A = {a1, ...,ap} and B = {b1, ...,bq}, the
Hausdorff distance H(A,B) is defined as:

H(A,B) = max{h(A,B),h(B,A)} (3.188)

where
h(A,B) = max

a∈A
min
b∈B

d(a,b) (3.189)

where:

– a and b are elements belonging to sets A and B respectively,
– d(a,b) is any metric between elements a and b,
– the two distances h(A,B) and h(B,A) (3.189) are called the directed Hausdorff
distances.

The directed Hausdorff distance from A to B, i.e., the function h(A,B) ranks each
element of A based on its distance to the nearest element of B, and then the highest
ranked element specifies the value of the distance. Usually, h(A,B) and h(B,A) can
be different values (the directed distances are not symmetric).

Following the way of calculating the Hausdorff distances (Definition 3.13) we
may notice that if A and B contain one element each (a1 and b1, respectively), the
Hausdorff distance is just equal to d(a1,b1). In other words, if for separate elements
a formula which is expected to express the Hausdorff distance gives a result which
is not consistent with the used metric d (e.g., the Hamming distance, the Euclidean
distance, etc.), the formula considered is not a proper definition of the Hausdorff
distance.

3.3.2.2 The Hausdorff Distance Between the InterVal-valued Fuzzy Sets

The Hausdorff distance between two intervals: U = [u1,u2] and W = [w1,w2] is
(Moore [125]):

h(U,W ) = max{|u1 −w1|, |u2 −w2|} (3.190)

Assuming the two-term representation for the intuitionistic fuzzy sets: A =
{x,μA(x),νA(x)} and B = {x,μB(x),νB(x)}, we may consider the two intuitionis-
tic fuzzy sets, A and B, as two intervals, namely:

[μA(x),1−νA(x)] and [μB(x),1−νB(x)] (3.191)

then
h(A,B) = max{|μA(x)− μB(x)|, |νA(x)−νB(x)|} (3.192)

Later on we will verify if (3.192) is a properly calculated Hausdorff distance
between the intuitionistic fuzzy sets while using the Hamming metric.
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3.3.2.3 Two Term Representation of the Intuitionistic Fuzzy Sets and the
Hausdorff Distance (Hamming Metric)

Following the algorithm of calculating the directed Hausdorff distances, when ap-
plying the two term type Hamming distance (3.88) between the intuitionistic fuzzy
sets, we obtain:

dh(A,B) =
1
n

n

∑
i=1

max{|μA(xi)− μB(xi)| , |νA(xi)−νB(xi)|} (3.193)

If the above distance (3.193) is a properly calculated Hausdorff distance, then in the
case of degenerate, i.e., one-element sets A = {< x,μA(x),νA(x) >} and B = {< x,
μB(x),νB(x) >}, it should give the same results as the two term type Hamming
distance (3.88). It means that in the case of the two term type Hamming distance,
for the degenerate, one element intuitionistic fuzzy sets, the following equations
should give just the same results (Szmidt and Kacprzyk [209]):

lIFS(2)(A,B) =
1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|) (3.194)

dh(A,B) = max{|μA(x)− μB(x)| , |νA(x)−νB(x)|} (3.195)

where (3.194) is the normalized two term type Hamming distance, and (3.195)
should be its counterpart Hausdorff distance.

We will verify on a simple example if (3.194) and (3.195) give the same results
as they should do following the essence of the Hausdorff measures.

Example 3.5. (Szmidt and Kacprzyk [210]) Consider the following one-element in-
tuitionistic fuzzy sets: A, B, D, G, E ∈ X = {x}

A = {< x,1,0 >}, B = {< x,0,1 >}, D = {< x,0,0 >},
G = {< x,

1
2
,

1
2
>}, E = {< x,

1
4
,

1
4
>} (3.196)

The results from (3.195) are:

dh(A,B) = max{|1− 0|, |0− 1|}= 1

dh(A,D) = max{|1− 0|, |0− 0|}= 1

dh(B,D) = max{|0− 0|, |1− 0|}= 1

dh(A,G) = max{|1− 1/2|, |0− 1/2|}= 0.5

dh(A,E) = max{|1− 1/4|, |0− 1/4|}= 0.75
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dh(B,G) = max{|0− 1/2|, |1− 1/2|}= 0.5

dh(B,E) = max{|0− 1/4|, |1− 1/4|}= 0.75

dh(D,G) = max{|0− 1/2|, |0− 1/2|}= 0.5

dh(D,E) = max{|0− 1/4|, |1− 1/4|}= 0.25

dh(G,E) = max{|1/2− 1/4|, |1/2−1/4|}= 0.25

Their counterpart Hamming distances calculated from (3.194) are:

lIFS(2)(A,B) = 0.5(|1− 0|+ |0−1|)= 1

lIFS(2)(A,D) = 0.5(|1− 0|+ |0−0||)= 0.5

lIFS(2)(B,D) = 0.5(|0− 0|+ |1−0||)= 0.5

lIFS(2)(A,G) = 0.5(|0− 1/2|+ |0−1/2|)= 0.5

lIFS(2)(A,E) = 0.5(|1− 1/4|+ |0−1/4||)= 0.5

lIFS(2)(B,G) = 0.5(|1− 1/4|+ |0−1/4|)= 0.5

lIFS(2)(B,E) = 0.5(|1− 1/4|+ |0−1/4|)= 0.5

lIFS(2)(D,G) = 0.5(|0− 1/2|+ |0−1/2|)= 0.5

lIFS(2)(D,E) = 0.5(|0− 1/4|+ |0−1/4|)= 0.25

lIFS(2)(G,E) = 0.5(|1/2− 1/4|+ |1/2−1/4|)= 0.25

i.e. the values of the Hamming distances (3.194) used to define the Hausdorff mea-
sures (3.195), and the values of the resulting Hausdorff distances (3.195) calculated
for the separate elements are not consistent (as they should be). The differences are:

dh(A,D) �= lIFS(2)(A,D) (3.197)
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dh(B,D) �= lIFS(2)(B,D) (3.198)

dh(A,E) �= lIFS(2)(A,E) (3.199)

dh(B,E) �= lIFS(2)(B,E) (3.200)

It is easy to show that the inconsistencies as shown above occur for an infinite
number of other cases.

Now we will verify the conditions under which the equations (3.194) and (3.195)
give consistent results, i.e., when for the separate elements we have (Szmidt and
Kacprzyk [218]):

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|) =

= max{|μA(x)− μB(x)| , |νA(x)−νB(x)|} (3.201)

Taking into account that

μA(x)+νA(x)+πA(x) = 1 (3.202)

μB(x)+νB(x)+πB(x) = 1 (3.203)

from (3.202) and (3.203) we obtain

(μA(x)− μB(x))+ (νA(x)−νB(x))+ (πA(x)−πB(x)) = 0 (3.204)

It is easy to notice that (3.204) is not fulfilled for all elements belonging to an
intuitionistic fuzzy set but for some elements only. Namely, equation (3.201) is ful-
filled for the following conditions (Szmidt and Kacprzyk [218])

• for πA(x)−πB(x) = 0, from (3.204) we have

|μA(x)− μB(x)|= |νA(x)−νB(x)| (3.205)

and having in mind (3.205), we can express (3.201) in the following way:

0.5(|μA(x)− μB(x)|+ |μA(x)− μB(x)|) =
= max{|μA(x)− μB(x)| , |μA(x)− μB(x)|} (3.206)

• if πA(x)−πB(x) �= 0, but, at the same time

μA(x)− μB(x) = νA(x)−νB(x) =−1
2
(πA(x)−πB(x)) (3.207)

then (3.201) boils down again to (3.206).
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In other words, (3.201) is fulfilled (which means that the Hausdorff measure
given by (3.195) is a natural counterpart of (3.194) ) only for such elements belong-
ing to an intuitionistic fuzzy set, for which some additional conditions are given,
like πA(x)− πB(x) = 0 or (3.207). However in general, for an infinite numbers of
elements, (3.201) is not valid.

In the above context it seems to be a bad idea to try constructing the Hausdorff
distance using the two term type Hamming distance between the intuitionistic fuzzy
sets.

An immediate conclusion is that, relating to the results concerning interval-
valued fuzzy sets (3.190)–(3.192) the Hausdorff distance for the intuitionistic fuzzy
sets can not be constructed in the same way as for the interval-valued fuzzy sets.

3.3.2.4 Three Term Hamming Distance Between the Intuitionistic Fuzzy
Sets and the Hausdorff Metric

Now we will show that by applying the three term type Hamming distance for the
intuitionistic fuzzy sets, we obtain correct (in the sense of Definition 3.13) Hausdorff
distance.

Namely, if we calculate the three term type Hamming distance between two de-
generate, i.e. one-element intuitionistic fuzzy sets, A and B in the spirit of Szmidt
and Kacprzyk [171], [188], Szmidt and Baldwin [159], [160], i.e., in the following
way:

l1
IFS(A,B) =

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|+

+ |πA(x)−πB(x)|) (3.208)

we can give a counterpart of the above distance in terms of the max function (Szmidt
and Kacprzyk [218]):

H3(A,B) = max{|μA(x)− μB(x)| , |νA(x)−νB(x)| ,
, |πA(x)−πB(x)|} (3.209)

If H3(A,B) (3.209) is a properly specified Hausdorff distance (in the sense that for
two degenerate, one element intuitionistic fuzzy sets, the result is equal to the metric
used), the following condition should be fulfilled (Szmidt and Kacprzyk [218]):

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|)+ |πA(x)−πB(x)|) =

= max{|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|} (3.210)

Let us verify if (3.210) is valid. Without loss of generality we can assume

max {|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|}=
= |μA(x)− μB(x)| (3.211)
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For |μA(x)− μB(x)| fulfilling (3.211), and because of (3.202) and (3.203), we
conclude that both νA(x)− νB(x), and πA(x)− πB(x) are of the same sign (both
values are either positive or negative). Therefore

|μA(x)− μB(x)| = |νA(x)−νB(x)|+ |πA(x)−πB(x)| (3.212)

Applying (3.212) we can verify that (3.210) always is valid as

0.5{|μA(x)− μB(x)|+ |μA(x)− μB(x)|}=
= max{|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|}=
= |μA(x)− μB(x)| (3.213)

Now we will use the above formulas, (3.208) and (3.209), for the data used
in Example 1. But now, as we also take into account the hesitation margins π(x)
(2.7), instead of (3.196) we use the three term, “full” description of the data
{< x,μ(x),ν(x),π(x) >}, i.e. employing all three functions (the membership, non-
membership and hesitation margin) describing the considered intuitionistic fuzzy
sets (Szmidt and Kacprzyk [210]):

A = {< x,1,0,0 >}, B = {< x,0,1,0 >}, D = {< x,0,0,1 >},
G = {< x,

1
2
,

1
2
,0 >}, E = {< x,

1
4
,

1
4
,

1
2
>} (3.214)

From (3.209) we have:

H3(A,B) = max(|1− 0|, |0− 1|, |0−0|)= 1

H3(A,D) = max(|1− 0|, |0− 0|, |0−1|)= 1

H3(B,D) = max(|0− 0|, |1− 0|, |0−1|)= 1

H3(A,G) = max(|0− 1/2|, |0− 1/2|, |0− 0|)= 0.5

H3(A,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(B,G) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(B,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(D,G) = max(|0− 1/2|, |0− 1/2|, |1− 0|)= 1

H3(D,E) = max(|0− 1/4|, |0− 1/4|, |1− 1/2|)= 0.5
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H3(G,E) = max(|1/2− 1/4|, |1/2−1/4|, |0−1/2|)= 0.5

The counterpart Hamming distances obtained from (3.208) (with all three functions)
are

l1
IFS(A,B) = 0.5(|1− 0|+ |0−1|+ |0−0|)= 1

l1
IFS(A,D) = 0.5(|1− 0|+ |0−0|+ |0−1|)= 1

l1
IFS(B,D) = 0.5(|0− 0|+ |1−0|+ |0−1|)= 1

l1
IFS(A,G) = 0.5(|0− 1/2|+ |0−1/2|+ |0−0|)= 0.5

l1
IFS(A,E) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(B,G) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(B,E) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(D,G) = 0.5(|0− 1/2|+ |0−1/2|+ |1−0|)= 1

l1
IFS(D,E) = 0.5(|0− 1/4|+ |0−1/4|+ |1−1/2|)= 0.5

l1
IFS(G,E) = 0.5(|1/2− 1/4|+ |1/2−1/4|+ |0−1/2|)= 0.5

As we can see, the Hausdorff distance (3.209) (using the membership values,
non-membership values and hesitation margins) and the tree term Hamming dis-
tance (3.208) give for one-element intuitionistic fuzzy sets fully consistent results.
The same situation occurs in a general case too.

In other words, for the normalized Hamming distance expressed in the spirit of
(Szmidt and Kacprzyk [171], [188]), given by (3.154), we can give the following
equivalent representation in terms of the max function:

H3(A,B) =
1
n

n

∑
i=1

max {|μA(xi)− μB(xi)| , |νA(xi)−νB(xi)| ,

|πA(xi)−πB(xi)|} (3.215)

Unfortunately, it can be easily verified that it is impossible to give the counterpart
pairs of the formulas like (3.154) and (3.215) for r > 1 in the Minkowski r-metrics
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(r = 1 is the Hamming distance, r = 2 is the Euclidean distance, etc.). More details
are given in [25] and [236].

Now we will show that the three term distances between the intuitionistic fuzzy
sets are useful in the ranking of intuitionistic fuzzy alternatives.

3.4 Ranking of the Intuitionistic Fuzzy Alternatives

Given their ability to model imperfect information, the intuitionistic fuzzy sets have
found applications in many areas, in particular, in decision making. Ranking of the
intuitionistic fuzzy alternatives (options), obtained, for example, as a result of deci-
sion analysis, aggregation, etc. is one of important problems. The intuitionistic fuzzy
alternatives may be understood in different ways. Here we mean them as elements of
a universe of discourse with their associated membership degrees, non-membership
degrees, and hesitation margins. In the context of decision making each option ful-
fills a set of criteria to some extent μ(.), it does not fulfill this set of criteria to
some extent ν(.) and, on the other hand we are not sure to the extent π(.) if an
option fulfills or does not fulfill a set of criteria. This implies that the alternatives
can be expressed via the intuitionistic fuzzy sets. Here we will call such alternatives
“intuitionistic fuzzy alternatives”.

The intuitionistic fuzzy alternatives may be ranked only under some additional
assumptions as there is no linear order among elements of the intuitionistic fuzzy
sets. The situation is different from that for fuzzy sets (Zadeh [254]), for which ele-
ments of the universe of discourse are naturally ordered because their membership
degrees are real numbers from [0,1].

There are not many approaches for ranking the intuitionistic fuzzy alternatives in
the literature. For instance, Chen and Tan [53], Hong and Choi [80], Li et al. [112],
[114], and Hua-Wen Liu and Guo-Jun Wang [119] proposed some approaches.

Chen and Tan [53] proposed a score function for vague sets [72], but, as Bustince
and Burillo [44] demonstrated that vague sets are equivalent to intuitionistic fuzzy
sets, we can consider the concept of a score function for an intuitionistic fuzzy
alternative a = (μ ,ν) meant as

S(a) = μ −ν, (3.216)

and, clearly, S(a) ∈ [−1,1].
It is easy to notice that the score function S(a) (3.216) can not alone evaluate

the intuitionistic fuzzy alternatives as it produces the same result for such different
intuitionistic fuzzy alternatives a = (μ ,ν) as, e.g.: (0.5,0.4), (0.4,0.3), (0.3,0.2),
(0.1,0) – for all of them S(a) = 0.1, which seems counterintuitive.

Next, Hong and Choi [80] introduced, in addition to the score function (3.216), a
so called accuracy function H

H(a) = μ +ν, (3.217)

where H(a) ∈ [0,1].
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Xu [253] made use of both (3.216) and (3.217), and proposed an algorithm rank-
ing the intuitionistic fuzzy alternatives. In the case of two alternatives ai and a j , the
algorithm is as follows [253]:

• if S(ai)≤ S(a j), then ai is smaller than a j;
• if S(ai) = S(a j), then:

– if H(ai) = H(a j), then ai and a j represent the same information (are equal);
– if H(ai)≤ H(a j), then ai is smaller than a j.

Unfortunately, the above method of ranking does not produce reliable results in
many cases. Let us consider two intuitionistic fuzzy alternatives (Szmidt and Kac-
przyk [205]) a1 = (0.5,0.45) and a2 = (0.25,0.05) for which we obtain S(a1) =
0.5−0.45 = 0.05, S(a2) = 0.25−0.05 = 0.2, suggesting that a1 is smaller than a2.
However, information provided by a1 (i.e. 0.5+0.45= 0.95) is certainly bigger than
that provided by a2 (i.e. 0.25+0.05= 0.3). In this context it is difficult to agree that
a1 is smaller than a2. Later on, we will return to ranking of two intuitionistic fuzzy
alternatives by the method we propose.

We give below an example showing some more weak sides of the above proce-
dure. Let us consider the following intuitionistic fuzzy alternatives:

a1 = (0.1,0,0.9),

a2 = (0.2,0.11,0.69),

a3 = (0.3,0.22,0.48),

a4 = (0.4,0.33,0.27),

a5 = (0.5,0.44,0.06),

for which the scores are:

S(a1) = 0.1− 0 = 0.1,

S(a2) = 0.2− 0.11= 0.09,

S(a3) = 0.3− 0.22= 0.08,

S(a4) = 0.4− 0.33= 0.07,

S(a5) = 0.5− 0.44= 0.06,

which, in the light of the above algorithm means that:

a1 > a2 > a3 > a4 > a5

In other words, due to the above ranking procedure, in this particular case, the less
we know, the better (it is worth noticing that the lack of knowledge is the biggest for
the “best” alternative a1 (equal to 0.9), and it decreases for the consecutive “worse”
(according to the considered procedure) alternatives. Next, the membership values
increase from 0.1 (for a1) to 0.5 (for a5). Thus, for increasing membership values
and decreasing lack of knowledge we obtain (from the ranking procedure consid-
ered) worse alternatives, which is obviously counterintuitive.
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Moreover, the ranking procedure considered produces answers that are not con-
tinuous. If we change a little the non-membership values in the above example, i.e.:

a1 = (0.1,0,0.9),

a2 = (0.2,0.1,0.7),

a3 = (0.3,0.2,0.5),

a4 = (0.4,0.3,0.3),

a5 = (0.5,0.4,0.1),

we obtain the same score for each ai, i = 1, . . . ,5, and from the second part of the
ranking procedure we obtain the reverse order, i.e.:

a5 > a4 > a3 > a2 > a1

Certainly, it makes no sense for a ranking procedure to be so sensitive to so small
changes of the parameters. Conclusion: the above ranking procedure should not be
used (especially in decision making tasks).

We have already mentioned the possibility of using the intuitionistic fuzzy sets in
voting models. Now we will consider some ways of ranking the voting alternatives
expressed via the intuitionistic fuzzy elements.

Let an element x belonging to an intuitionistic fuzzy set characterized via (μ ,ν,π)
express a voting situation: μ represents the proportion (from [0,1]) of voters who
vote for x, ν represents the proportion of those who vote against x, and π represents
the proportion of those who abstain. The simplest idea of comparing different vot-
ing situations (ranking the alternatives) would be to use a distance measure from
the ideal voting situation M = (x,1,0,0) (100% voting for, 0% vote against and 0%
abstain) to the alternatives considered. We will call M the ideal positive alternative.
Let

A = (x,0.5,0.5,0) – 50% vote for, 50% against, and 0% abstain,
B = (x,0.4,0.4,0.2) – 40% vote for, 40% vote against and 20% abstain,
C = (x,0.3,0.3,0.4) – 30% vote for, 30% vote against and 40% abstain.

First we confirm that the method of calculating distances between two intu-
itionistic fuzzy sets A and B described by two terms, i.e., the membership and
non-membership values only (3.218) does not work properly (cf. Szmidt and Kac-
przyk [171], [188], Szmidt and Baldwin [159], [160]) in this case, too:

lIFS(2)(A,B) =
1
2n

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|) (3.218)

The results obtained with (3.218), i.e., the distances for the above voting alterna-
tives represented by points A,B,C (cf. Figure 3.3) from the ideal positive alternative
represented by M(1,0,0) are, respectively (Szmidt and Kacprzyk [197]):

lIFS(2)(M,A) = 0.5(|1− 0.5|+ |0−0.5|)= 0.5 (3.219)
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Fig. 3.3 Geometrical representation of the intuitionistic fuzzy alternatives

lIFS(2)(M,B) = 0.5(|1− 0.4|+ |0−0.4|)= 0.5 (3.220)

lIFS(2)(M,C) = 0.5(|1− 0.3|+ |0−0.3|)= 0.5 (3.221)

The results seem to be counterintuitive as (3.218) suggests that all the alternatives
(represented by) A,B,C are “the same”. On the other hand, the normalized Hamming
distance (3.156), taking into account, besides the membership and non-membership,
also the hesitation margin, gives:

l1
IFS(M,A) = 0.5(|1− 0.5|+ |0−0.5|+ |0−0|)= 0.5 (3.222)

l1
IFS(M,B) = 0.5(|1− 0.4|+ |0−0.4|+ |0−0.2|)= 0.6 (3.223)

l1
IFS(M,C) = 0.5(|1− 0.3|+ |0−0.3|+ |0−0.4|)= 0.7 (3.224)

It is not difficult to accept the results (3.222)–(3.224), reflecting our intuition. Alter-
native A (cf. Figure 3.3) seems to be the best in the sense that the distance lIFS(M,A)
is the smallest (we know for sure that 50% vote for, 50% vote against). The alterna-
tive represented by A is just a fuzzy alternative (A lies on MN where the values of
the hesitation margin are equal 0). Alternatives B and C, on the other hand, are “less
sure” (with the hesitation margins equal 0.2, and 0.4, respectively).

Unfortunately, a weak point in the ranking of alternatives by calculating the
distances from the ideal positive alternative represented by M is that for a fixed
membership value, from (3.156) we obtain just the same value (for example, if the
membership value μ is equal 0.8, for any intuitionistic fuzzy element, i.e. such that
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Fig. 3.5 a) Distances (3.157) of any intuitionistic fuzzy element from the ideal alternative M;
b) contour plot

its non-membership degree ν and hesitation margin π fulfill ν +π = 0.2, we obtain
the value of 0.2). This fact is illustrated in Figure 3.4, a and b. To better see this, the
distances (3.156) for any alternative from M (Figure 3.4a) are presented for μ and
ν for the whole range [0,1] (instead of showing them for μ + ν ≤ 1 only). For the
same reason (to better see the effect), in Figure 3.4b the contour plot of the distances
(3.156) is given only for the range of μ and ν for which μ +ν ≤ 1.

Now we will verify if the normalized Euclidean distance (3.157) from the ideal
positive alternative represented by M(1,0,0) gives better results from the point of
view of ranking the alternatives.

Let A = (x,0.2,0.8,0) – 20% vote for, 80% against, and 0% abstain, B = (x, 0.2,
0, 0.8) – 20% vote for, 0% vote against and 80% abstain, The normalized Euclidean
distance (3.157) gives (Szmidt and Kacprzyk [214]) :
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e1
IFS(M,A) = (0.5((1− 0.2)2+(0− 0.8)2+(0− 0)2))0.5 = 0.8 (3.225)

e1
IFS(M,B) = (0.5((1− 0.2)2+(0− 0)2+(0− 0.8)2))0.5 = 0.8 (3.226)

Making use of (3.157) for ranking the alternatives suggests [cf. (3.225)–(3.226)]
that the alternatives (represented by) A,B seem to be “the same” which is counterin-
tuitive. A general illustration of the above counterintuitive result is given in Fig. 3.5.
We can see that the results of (3.157) are not univocally given for a given mem-
bership value μ ; for clarity, the distances (3.157) for any x from M (Fig. 3.5a) are
presented for μ and ν for [0,1], and not for μ +ν ≤ 1 only. For the same reason (to
better see the effect), in Fig. 3.5b the contour plot of the distances (3.157) is given
only for the range of μ and ν for which μ +ν ≤ 1. So, the distances (3.157) (cf. also
Szmidt and Kacprzyk [197]) from the ideal positive alternative alone do not make it
possible to rank the alternatives in the intended way.

The analysis of the above examples shows that the distances from the ideal posi-
tive alternative alone do not make it possible to rank the alternatives in the intended
way.

3.4.0.5 A New Method for Ranking Alternatives (Szmidt and
Kacprzyk [205])

The sense of a voting alternative (expressed via an intuitionistic fuzzy element) can

be analyzed by using the operators (cf. Atanassov [15]) of: necessity ( ), possibility
(♦), Dα(A) and Fα ,β (A) given as:

• The necessity operator ( )

A = {〈x,μA(x),1− μA(x)〉|x ∈ X} (3.227)

• The possibility operator (♦)

♦A = {〈x,1−νA(x),νA(x)〉|x ∈ X} (3.228)

• Operator Dα(A) (where α ∈ [0,1])

Dα(A) = {〈x, μA(x)+απA(x), νA(x)(1−α)πA(x)〉 |x ∈ X} (3.229)

• Operator Fα ,β (A) (where α,β ∈ [0,1]; α +β<1)

Fα ,β (A) = {〈x, μA(x)+απA(x),νA(x)β πA(x)〉 |x ∈ X} (3.230)

Considering alternative B(0.4,0.4,0.2), for example, and using the above op-

erators we obtain B = Bmin, where Bmin = (0.4,0.6), and ♦B = Bmax, where
Bmax = (0.6,0.4) (Figure 3.3). Operator Fα ,β (A) makes it possible for alterna-
tive B to become any alternative represented in triangle BBmaxBmin. A similar rea-
soning leads to the conclusion that alternative C (Figure 3.3) might become any
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Fig. 3.6 Ranking of alternatives Yi

alternative represented in triangle CCmaxCmin, and alternative O(0,0,1) (with the
hesitation margin equal 1)

may become any alternative (the whole area of the triangle MNO).
In the context of the above considerations we could say that the smaller the area

of the triangle YiYi,minYi,max (Figure 3.6) the better the alternative Yi from a set Y
of the alternatives considered. Alternatives having their representations on segment
MN (i.e., fuzzy alternatives) are the best in the sense that:

• the alternatives are fully reliable in the sense of the information represented, as
the hesitation margin is equal 0 here, and

• the alternatives are ordered – the closer an alternative to ideal positive alternative
M(1,0,0), the better it is (it is an obvious fact as fuzzy alternatives are univocally
ordered).

The above reasoning suggests that a promising way of ranking the intuitionistic
fuzzy alternatives Yi with the same values of πi is to convert them into the fuzzy
alternatives (which may be easily ranked).

The simplest way of ranking the alternatives Yi with different values of πi seems
to be to make use of the information carried by the triangles YiYi,minYi,max.

The amount of information connected with Yi is indicated by Y ∗
i , i.e., by “the

position” of triangle YiYi,minYi,max inside triangle MNO – expressed by the projection



80 3 Distances

0

0.25

0.5

0.75

1 0

0.25

0.5

0.75

1

0

0.2

0.4

0

0.25

0.5

0.75

1
0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

a) b)

Fig. 3.7 a) R(Yi) as a function of distance lIFS(M,Y ∗
i ) (3.156) between Y ∗

i and M, and the
hesitation margin; b) contour plot

on the segment MN. The hesitation margin πYi indicates how reliable (sure) is the
information represented by Y ∗

i .
Y ∗

i are the orthogonal projections of Yi on MN. Such an orthogonal projection of
the intuitionistic fuzzy elements belonging to an intuitionistic fuzzy set A was con-
sidered by Szmidt and Kacprzyk [166]. This orthogonal projection may be obtained
via operator Dα(A) (3.229) with parameter α equal 0.5.

We can see that all the elements from the segment OA (Figure 3.3) are trans-
formed by D0.5(A) (3.229) into A(0.5,0.5) which reflects the lack of differences
between the membership and non-membership, irrespective of the value of the hes-
itation margin.

Having the above observations in mind, a reasonable measure R that can be used
for ranking the alternatives (represented by) Yi seems to be

R(Yi) = 0.5(1+πYi)distance(M,Y ∗
i ) (3.231)

where distance(M,Y ∗
i ) is a distance from the ideal positive alternative M(1,0,0),

Y ∗
i is the orthogonal projection of Yi on MN. The constant 0.5 was introduced in

(3.231) to ensure that 0 < R(Yi)≤ 1. The values of function R for any intuitionistic
fuzzy element and the distance lIFS(M,Y ∗

i ) (3.156) are presented in Figure 3.7a, and
the corresponding contour plot – in Figure 3.7b.

Unfortunately, the results obtained with (3.231) do not rank the alternatives in
the intended way. (The maximum value of (3.231) is not obtained for the alternative
(0,0,1) but for (0,1/2,1/2).)

Similarly, in the case of the normalized Euclidean distance (3.157) used in
(3.231) instead of l1

IFS(M,Y ∗
i ) (3.156), the results of (3.231) do not meet our ex-

pectations in the sense of their relations to the areas of the triangles YiYi,minYi,max

(cf. Figure 3.6). Let us consider the alternatives Yi, i = 1, . . . ,4. of Figure 3.6. We
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might expect that the alternatives be ordered by (3.231) from Y1 to Y4 as just such
an order renders the areas of the respective triangles. But the results from (3.231)
obtained using the normalized Euclidean distance (3.157) for the different alterna-
tives seem to be very much “the same”. For example (Szmidt and Kacprzyk [214]),
for Y1=(0, 0.8, 0.2), RE(Y ∗

1 )=0.54, for Y2=(0, 0.6, 0.4), RE(Y ∗
2 )=0.56, for Y3=(0, 0.3,

0.7), RE(Y ∗
3 )=0.55, for Y4=(0, 0, 1), RE(Y ∗

4 )=0.5.

So, again, the results obtained via (3.231) with the normalized Euclidean distance
(3.157) do not rank the alternatives in the intended way.

It seems that a better measure than (3.231) for ranking the alternatives (repre-
sented by) Yi might be the following measure R

R(Yi) = 0.5(1+πYi)distance(M,Yi) (3.232)

where distance means a distance (3.156) of Yi from the ideal positive alternative
M(1,0,0).

Definition (3.232) tells us about the “quality” of an alternative – the lower the
value of R(Yi), (3.232), the better the alternative in the sense of the amount of posi-
tive information included, and reliability of information.

For the distance l1
IFS(M,Yi) (3.156), the best is alternative M(1,0,0) for which

R(M) = 0. For the alternative N(0,1,0) we obtain R(N) = 0.5 (alternative N is fully
reliable as the hesitation margin is equal 0, but the distance l1

IFS(M,N) = 1). The
alternative A (Figures 3.3) gives R(A) = 0.25. In general, on MN, the values of R
decrease from 0.5 (for alternative N) to 0 (for the best alternative M). The maximum
value of R, i.e. 1, is obtained for O(0,0,1) for which both distances from M and the
hesitation margin are equal 1 (alternative O “indicates” the whole triangle MNO).
All other alternatives Yi “indicate” smaller triangles YiYi,minYi,max (Figure 3.6), so
their corresponding values of R are smaller (better in the sense of amount of reliable
information).

The values of function R (3.232) for any intuitionistic fuzzy element are presented
in Figure 3.8a, and the counterpart contour plot – in Figure 3.8b. Considering the
numbers obtained via R (3.232), we may notice that the value 0.25 obtained for the
alternative (0.5, 0.5, 0) constitutes the “border” of the “interesting” alternatives – in
the sense of the amount of positive knowledge.

Let us consider again the ranking of two alternatives (which were ranked counter-
intuitively by the algorithm presented in [253] as shown in the beginning of Sec-
tion 3.4), namely Y1 =(0.5,0.45,0.05) and Y2 =(0.25,0.05,0.7) (we stress here that
we take into account all three terms: the degrees of membership, non-membership
and hesitation margin). From (3.232) we obtain: R(Y1) = 0.26, R(Y2) = 0.64 which
means that Y1 is better than Y2 (previously, according to the algorithm from [253] Y2

was better/bigger than Y1). Obviously, Y1 is not a “good” option as R(Y1) is bigger
than 0.25 which follows from the fact that the non-membership value is quite big
(equal 0.45). It might mean that we would not accept the option Y1. But option Y2

seems even less interesting – with the smaller membership value (equal 0.25 instead
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of 0.5 for Y1 ), and with the bigger hesitation margin (equal 0.7 instead of 0.05 for
Y1).

Example 3.6. (Szmidt and Kacprzyk [205]) Let us evaluate (rank) six medical treat-
ments. The treatments C1 – C6, affect a patient in the following way (Szmidt and
Kacprzyk [205]):

• C1 : (0.6,0.2,0.2) – influences in a positive way 60% of symptoms, in a negative
way – 20% of symptoms, and its impact is unknown (was not confirmed) in the
case of 20% of symptoms;

• C2 : (0.7,0.3,0) – influences in a positive way 70% symptoms, in a negative way
– 30% of symptoms, and its impact is unknown (was not confirmed) in the case
of 0% of symptoms;

• C3 : (0.7,0.15,0.15) – influences in a positive way 70% of symptoms, in a nega-
tive way – 15% of symptoms, and its impact is unknown (was not confirmed) in
the case of 15% of symptoms;

• C4 : (0.775,0.225,0) – influences in a positive way 77.5% of symptoms, in a neg-
ative way – 22.5% of symptoms, and its impact is unknown (was not confirmed)
in the case of 0% of symptoms;

• C5 : (0.8,0.1,0.1) – influences in a positive way 80% of symptoms, in a negative
way – 10% of symptoms, and its impact is unknown (was not confirmed) in the
case of 10% of symptoms;

• C6 : (0.8,0.2,0) – influences in a positive way 80% of symptoms, in a negative
way – 20% of symptoms, and its impact is unknown (was not confirmed) in the
case of 0% of symptoms.

Table 3.1 shows the ranking of C1, . . . ,C6 with (3.232) – from the worst one, C1
to the best one, C6.

It is worth emphasizing that the ranking function R (3.232) is constructed taking
strongly into account the lack of knowledge. Let us consider the pair: C1 and C2
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Table 3.1 Ranking alternatives by R (3.232) – results for the data from Example 3.6

No. Ci : (μi,νi,πi) RE(Ci)

1 C1 : (0.6,0.2,0.2) 0.240
2 C2 : (0.7,0.3,0) 0.150
3 C3 : (0.7,0.15,0.15) 0.173
4 C4 : (0.775,0.225,0) 0.113
5 C5 : (0.8,0.1,0.1) 0.110
6 C6 : (0.8,0.2,0) 0.100

(Table 3.1). In the case of C1 the lack of knowledge is equal to 0.2, so that theoreti-
cally, we might expect “on the average” that the hesitation margin representing the
lack of knowledge will be divided equally between the membership value and non-
membership value giving as a result the case C2. Assuming that we wish to avoid
the most disadvantageous cases, we will rank C2 higher than C1 so as to avoid the
possibility which might by implied by C1, namely: (0.6,0.4,0) (while the entire
hesitation margin is added to the non-membership value). The best result which
could happen (if the entire hesitation margin is added to the membership value of
C1), namely (0.8,02,0), (i.e. case C6 ranked as the best one – R(C6) = 0.1) does
not influence the ranking of C1(3.232).

Analogous situation can be observed for the pairs: C3 and C4, and next for C5
and C6. It is easy to notice that the existence of the non-zero hesitation margin
influences negatively the ranking.

The obtained results seem to meet our expectations pretty well.

Finally, we will verify the results produced by (3.232) with the normalized Eu-
clidean distance (3.157).

At the beginning, we will rank the same alternatives using (3.232) as we have
done previously using (3.231), i.e.: Y1=(0, 0.8, 0.2), Y2=(0, 0.6, 0.4), Y3=(0, 0.3, 0.7),
and Y4=(0, 0, 1). We obtain RE(Y1)=0.55, RE(Y2)=0.61, RE(Y3)=0.85, RE(Y4)=1.
The results seem to render our intuition now.

The results obtained via (3.232) for the most characteristic alternatives are still
the same for the normalized Euclidean distance (3.157) as they were for the nor-
malized Hamming distance (3.156). As previously (i.e., with the normalized Ham-
ming distance (3.157)), the best is alternative M(1,0,0) (RE(M) = 0). For alternative
N(0,1,0), again, we obtain RE(N) = 0.5 (N is fully reliable as the hesitation margin
is equal 0 but the distance eIFS(M,N) = 1). In general, on MN, the values of RE

decrease from 0.5 (for alternative N) to 0 (for the best alternative M). The maxi-
mal value of RE , i.e. 1, is for O(0,0,1) for which eIFS(M,O),πO = 1 (alternative
O “indicates” the whole triangle MNO). All other alternatives Yi “indicate” smaller
triangles YiYi,minYi,max (Figure 3.6), so that their RE ’s are smaller (better as to the
amount of reliable information).

It is worth emphasizing that the results obtained via (3.232), which reflect
our intuition concerning ranking of the alternatives, are obtained using all three
terms describing the intuitionistic fuzzy alternatives, i.e., membership values,
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non-membership values, and the hesitation margin values. Also the distances (3.157)
in (3.232) are calculated taking into account all three terms. In other words, we use
a 3D representation of the intuitionistic fuzzy sets.

Moreover, the proposed measure (3.232) strongly emphasizes the difference be-
tween knowledge (represented by the membership and non-membership values) and
lack of knowledge (represented by the hesitation margins). Even if an alternative
does not fulfill our criteria at all (alternative N), it is ranked higher (RE(N) = 0.5)
than an alternative about which we can say nothing (alternative O). Other examples
are given in Table 3.2 (Szmidt and Kacprzyk [208]).

Table 3.2 Examples of results showing that (3.232) reflects differences between negative
knowledge and lack of knowledge in the ranking of the alternatives

No. Alternative (μ,ν,π) RE(Yi)

1 (0,0.8,0.2) 0.550
2 (0,0.2,0.8) 0.825

3 (0,0.7,0.3) 0.578
4 (0,0.3,0.7) 0.755

5 (0,0.6,0.4) 0.610
6 (0,0.4,0.6) 0.697

7 (0,1,0) 0.5
8 (0,0,1) 1

The results provided in Table 3.2 make it possible to come to some conclusions
concerning the situations for which we have a fixed membership value of the alter-
natives (membership value is equal to 0 in Table 3.2), namely:

• an alternative is ranked lower (which means bigger values from (3.232)) the
smaller the non-membership function and the bigger the hesitation margin (cf.
the sequence of cases: 1, 3, 5, 8);

• an alternative is ranked higher (i.e., the smaller the values from (3.232)) the
higher the non-membership function and the lower the hesitation margin (cf. the
sequence of cases: 2, 4, 6, 7);

• “negative knowledge” represented by the non-membership values, and lack of
knowledge represented by the hesitation margins are different from the point of
view of (3.232) (cf. the pairs: 1 and 2, 3 and 4, 5 and 6, 7 and 8).

Other examples, presented in Table 3.3 (Szmidt and Kacprzyk [208]) make it
possible to notice that:

• an alternative is ranked higher (which means that the values from (3.232) are
lower) for a fixed value of the non-membership function (cf. Table 3.3, the cases:
2, 4, 6, 8, for which the non-membership value is equal 0) the higher the values
of the membership function (lower hesitation margins);
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Table 3.3 Examples of results showing that (3.232) reflects differences between positive
knowledge and lack of knowledge in the ranking of the alternatives

No. Alternative (μ,ν,π) RE(Yi)

1 (0,0.8,0.2) 0.550
2 (0.8,0,0.2) 0.12

3 (0,0.7,0.3) 0.578
4 (0.7,0,0.3) 0.195

5 (0,0.6,0.4) 0.610
6 (0.6,0,0.4) 0.280

7 (0,1,0) 0.5
8 (1,0,0) 0.

• the ranking function (3.232) does make a difference between the positive and
negative knowledge (cf. Table 3.3, the pairs: 1 and 2, 3 and 4, 5 and 6, 7 and 8).

To sum up, the proposed ranking function (3.232) expresses differences both be-
tween knowledge and lack of knowledge, and between the positive and negative
knowledge. In other words, the proposed function (3.232) seems to reflect the be-
havior of a human being in the process of ranking alternatives pretty well.

3.5 Concluding Remarks

We have considered distances between the intuitionistic fuzzy sets in two ways,
employing:

– two term intuitionistic fuzzy set representation (membership values and non-
membership values only were taken into account), and
– three term intuitionistic fuzzy set representation (membership values, non-mem-
bership values, and hesitation margins were taken into account).

We have discussed norms and metrics for both types of representations stressing
their correctness from the mathematical point of view. However, the three term ap-
proach seems to be more justified and intuitively appealing from the practical point
of view (which has its roots in some analytical and geometrical aspects).

Some problems have been shown concerning the Hausdorff distance while the
Hamming metric was applied for the two term intuitionistic fuzzy set representation.
It was shown, as well, that the method of calculating the Hausdorff distances in the
same way which is correct for the interval-valued fuzzy sets does not work for the
intuitionistic fuzzy sets.

Finally, the usefulness of the three term distances was emphasized in a measure
of ranking of the intuitionistic fuzzy alternatives.
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