
Chapter 2
Intuitionistic Fuzzy Sets as a Generalization
of Fuzzy Sets

Abstract. In the mid-1980s Atanassov introduced the concept of an intuitionistic
fuzzy set. Basically, his idea was that unlike the conventional fuzzy sets in which
imprecision is just modeled by the membership degree from [0,1], and for which
the non-membership degree is just automatically the complementation to 1 of the
membership degree, in an intuitionistic fuzzy set both the membership and non-
membership degrees are numbers from [0,1], but their sum is not necessarily 1.
Thus, one can express a well known psychological fact that a human being who ex-
presses the degree of membership of an element in a fuzzy set, very often does not
express, when asked, the degree of non-membership as the complementation to 1.
This idea has led to an interesting theory whose point of departure is such a concept
of intuitionistic fuzzy set. In this chapter we give brief introduction to intuitionis-
tic fuzzy sets. After recalling main definitions, concepts, operations and relations
over crisp sets, fuzzy sets, and intuitionistic fuzzy sets we discuss interrelationships
among the three types of sets. Two geometrical representations of the intuitionistic
fuzzy sets, useful in further considerations are discussed. Finally, two approaches of
constructing the intuitionistic fuzzy sets from data are presented. First approach is
via asking experts. Second one – the automatic, and mathematically justified method
to construct the intuitionistic fuzzy sets from data seems to be especially important
in the context of analyzing information in big data bases.

2.1 Main Definitions

As Atanassov’s concept of an intuitionistic fuzzy set can be viewed as a generaliza-
tion of a fuzzy set definition in the case when available information is not sufficient
for the definition of an imprecise concept by means of a conventional fuzzy set, we
start from the basic definitions of a set, and of a fuzzy set.

2.1.1 Crisp Sets (Classical Sets)

A set is one of the basic concepts in mathematics. Informally, a set is a collection of
objects (elements) having similar properties (attributes). A classical set A (crisp set)
has sharp boundaries, i.e., there are two possibilities only:
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– an element x belongs to the set (x ∈ A), or
– an element does not belong to the set (x /∈ A).

A classical set can be expressed by its characteristic function.

Definition 2.1. For a set X and a subset A of X (A ⊆ X) we call

ϕA(x) =

{
1 if x ∈ A
0 if x /∈ A

(2.1)

the characteristic function of the set A in X .

Using the notion of the characteristic function ϕA(x), a crisp set A can be given
as :

A = {< x,ϕA(x)> /x ∈ X} (2.2)

For a conventional (crisp) set an element can not belong “to some extent” to a set.

2.1.2 Fuzzy Sets

A generalization of a crisp set is a fuzzy set. The notion of a fuzzy set was introduced
by Zadeh [254]. A fuzzy set A′ in a universe of discourse X is characterized by
a membership function μA′ which assigns to each element x ∈ X a real number
μA′ (x) ∈ [0,1] expressing the membership grade of x in the fuzzy set A′.

Definition 2.2. (Zadeh [254])
A fuzzy set A′ in X = {x} is given by (Zadeh [254]):

A
′
= {< x,μA′ (x)> /x ∈ X} (2.3)

where μA′ : X → [0,1] is the membership function of the fuzzy set A
′
; μA′ for every

element x ∈ X describes its extent of membership to fuzzy set A
′
.

As mentioned above, a fuzzy set A
′
is a generalization of a conventional (crisp) set

A represented by its characteristic function ϕA : X → {0,1} (2.1). Full membership
of x in A

′
occurs for μ ′

A(x) = 1, full non-membership is for μ ′
A(x) = 0 but opposite

to a classical set other membership degrees are also allowed.
Every crisp set is a fuzzy set. The membership function of a crisp set A ⊆ X can

be expressed as its characteristic function

μA(x) =

{
1 if x ∈ A
0 if x /∈ A

(2.4)

2.1.3 Intuitionistic Fuzzy Sets

The notion of an intuitionistic fuzzy set was introduced by Atanassov (Atanas-
sov [4]). An intuitionistic fuzzy set is a generalization of a fuzzy set.
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Definition 2.3. (Atanassov [4], [6], [15] [22])
An intuitionistic fuzzy set A in X is given by:

A = {< x,μA(x),νA(x)> /x ∈ X} (2.5)

where
μA : X → [0,1]

νA : X → [0,1]

with the condition
0 ≤ μA(x)+νA(x)≤ 1 ∀x ∈ X

The numbers μA(x) and νA(x) denote, respectively, the degrees of membership and
non-membership of the element x ∈ X to the set A.

Obviously, every fuzzy set corresponds to the following intuitionistic fuzzy set:

FS : {< x,μA(x),1− μA(x)> /x ∈ X}. (2.6)

Definition 2.4. (Atanassov [4], [6], [15] [22])
For an intuitionistic fuzzy set A we will call

πA(x) = 1− μA(x)−νA(x) (2.7)

the intuitionistic fuzzy index (hesitation margin) of the element x in the set A. The
πA(x) expresses the lack of knowledge on whether x belongs to A or not.

It is obvious that
0 ≤ πA(x)≤ 1 for every x.

For every fuzzy set A
′
, where x ∈ X

πA(x) = 1− μA′ (x)− [1− μA′(x)] = 0.

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [165], [171], [188], entropy (Szmidt and Kacprzyk [175],
[192]), similarity (Szmidt and Kacprzyk [193]) for the intuitionistic fuzzy sets, i.e.,
the measures that play crucial role in virtually all information processing tasks. The
hesitation margin is shown to be indispensable also in the ranking of intuitionistic
fuzzy alternatives as it indicates how reliable (sure) information presented for an
alternative is (cf. Szmidt and Kacprzyk [198], [205]).

Making use of the intuitionistic fuzzy sets instead of fuzzy sets implies the intro-
duction of additional degrees of freedom (non-memberships and hesitation margins)
into the set description. Such a generalization of fuzzy sets gives us an additional
possibility to represent imprecise knowledge which may lead to describing many
real problems in a more adequate way.

It is woth stressing that from the point of view of the applications, taking into
account the hesitation margins (besides non-membership values) is crucial in many
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areas exemplified by image processing (cf. Bustince et al. [45], [46]), classification
of imbalanced and overlapping classes (cf. Szmidt and Kukier [229], [230], [231]),
group decision making, negotiations, voting and other situations (cf. Szmidt and
Kacprzyk [164], [167], [172], [174], [177], [178], [189]).

Intuitionistic fuzzy sets based models may be adequate mainly in the situations
when we face human testimonies, opinions, etc. involving answers of three types:

– yes,
– no,
– abstaining i.e. which can not be classified (because of different reasons, eg. “I do
not know”, “I am not sure”, “I do not want to answer”, “I am not satisfied with any
of the options” etc.).

Below we present an example given by Atanassov (Atanassov [15]). The example
illustrates the essence of the intuitionistic fuzzy sets, and stresses the differences
between them and the fuzzy sets.

Example 2.1. (Atanassov [15]) Let X be the set of all countries with elective gov-
ernments. Assume that we know for every country x ∈ X the percentage of the elec-
torate who have voted for the corresponding government. Let it be denoted by M(x)

and let μ(x) = M(x)
100 . Let ν(x) = 1− μ(x). This number corresponds to that part of

electorate who have not voted for the government. By means of the fuzzy set the-
ory we cannot consider this value in more detail. However, if we define ν(x) as the
number of votes given to parties or persons outside the government, then we can
show the part of electorate who have not voted at all and the corresponding number
will be 1− μ(x)−ν(x). Thus, we can construct the set {〈x,μ(x),ν(x)〉|x ∈ X} and
obviously, 0 ≤ μ(x)+ν(x)≤ 1. �

2.2 Brief Introduction to Fuzzy Sets

2.2.1 Basic Concepts

A fuzzy set A
′

in X is said to be empty, A
′
= /0, if and only if

μ
′
A(x) = 0, for each x ∈ X (2.8)

Two fuzzy sets A
′
and B

′
in the same universe of discourse X are said to be equal,

i.e., A
′
= B

′
, if and only if

μ
′
A(x) = μ

′
B(x), for each x ∈ X (2.9)

A fuzzy set A
′

defined in X is a subset of a fuzzy set B
′

in X , A
′ ⊆ B

′
, if and only

if
μ

′
A(x)≤ μ

′
B(x), for each x ∈ X (2.10)



2.2 Brief Introduction to Fuzzy Sets 11

A fuzzy set A
′

defined in X is said to be normal if and only if the membership
function takes on the value of 1 for at least one value of its argument, i.e.

max
x∈X

μ
′
A(x) = 1 (2.11)

Otherwise, a fuzzy set is said to be subnormal.

The support suppA
′

of a fuzzy set A
′

in X is the following (nonfuzzy, i.e. crisp)
set:

suppA
′
= {x ∈ X : μ

′
A(x)> 0} (2.12)

where /0 ⊆ suppA
′ ⊆ X .

The α-cut (or α-level set) Aα , of a fuzzy set A
′

in X is defined as the following
(nonfuzzy) set:

Aα = {x ∈ X : μA(x)≥ α}, for each α ∈ (0,1] (2.13)

and if “≥” in (2.13) is replaced by “>,” then we have the strong α-cut (or strong
α-level set), of a fuzzy set A

′
in X .

The α-cuts are quite important from the point of view of both theory and appli-
cations as they make it possible to uniquely replace a fuzzy set by a sequence of
nonfuzzy sets. More details and properties of α-cuts can be found in any book on
fuzzy set theory (cf. e.g., Dubois and Prade [61], Klir and Folger [107], or Klir and
Yuan [109]).

Another important issue is to define how many elements are contained in a fuzzy
set, i.e. to define its cardinality. The most often used definition is given below.

A nonfuzzy cardinality of a fuzzy set A
′
= μ ′

A(x1)/x1 + · · ·+ μ ′
A(xn)/xn, the so-

called sigma-count ∑Count(A
′
), is defined as (Zadeh [256], [257])

∑Count(A
′
) =

n

∑
i=1

μ
′
A(xi) (2.14)

Other definitions of cardinality making use of α-cuts were proposed by Zadeh [257]
(see also Kacprzyk [97]). More discussion, criticism, and new definitions of cardi-
nality are given by Ralescu [139], and Wygralak [247].

2.2.2 Selected Operations on Fuzzy Sets

Just like in the case of crisp sets, basic operations on fuzzy sets are complement,
union, and intersection. They are defined in terms of the respective membership
functions. The operations presented below correspond to the operations on intu-
itionistic fuzzy sets (cf. Section 2.3.2).

The complement A
′C of a fuzzy set A

′
in X , corresponds to negation “not”, and is

defined as
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μA′C(x) = 1− μ
′
A(x), for each x ∈ X (2.15)

The intersection of two fuzzy sets A
′

and B
′

in X , written A
′ ∩B

′
, corresponds to

the connective “and”, and is defined as

μA′∩B′ (x) = μ
′
A(x)∧μ

′
B(x), for each x ∈ X (2.16)

where “∧” is the minimum operation, i.e. a∧b = min(a,b).
The union of two fuzzy sets A

′
and B

′
in X , written A

′
+B

′
, corresponds to the

connective “or”, and is defined as

μA′
+B′ (x) = μ

′
A(x)∨μ

′
B(x), for each x ∈ X (2.17)

where “∨” is the maximum operation, i.e. a∨b = max(a,b).
More general than the intersection and the union defined above, are so-called

t-norms and s-norms (t-conorms).
A t-norm is defined as

t : [0,1]× [0,1]−→ [0,1] (2.18)

such that, for each a,b,c ∈ [0,1] the following properties are fulfilled:

1. the value 1 is the unit element, i.e.

t(a,1) = a

2. monotonicity, i.e.
a ≤ b =⇒ t(a,c)≤ t(b,c)

3. commutativity, i.e.
t(a,b) = t(b,a)

4. associativity, i.e.
t[a, t(b,c)] = t[t(a,b),c]

A t-norm is monotone non-decreasing in both arguments, and t(a,0) = 0.
Among the most used t-norms there are:

• the minimum
t(a,b) = a∧b = min(a,b) (2.19)

which is the most widely used,
• the algebraic product

t(a,b) = a ·b (2.20)

• Łukasiewicz t-norm
t(a,b) = max(0,a+ b− 1) (2.21)

An s-norm called also t-conorm is defined as
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s : [0,1, ]× [0,1]−→ [0,1] (2.22)

such that, for each a,b,c ∈ [0,1] the following properties are fulfilled:

1. the value 0 is the unit element, i.e.

s(a,0) = a

2. monotonicity
a ≤ b =⇒ s(a,c)≤ s(b,c)

3. commutativity, i.e.
s(a,b) = s(b,a)

4. associativity, i.e.
s[a,s(b,c)] = s[s(a,b),c]

The most used s-norms include:

• the maximum
s(a,b) = a∨b = max(a,b) (2.23)

which is the most widely used,
• the probabilistic product

s(a,b) = a+ b− ab (2.24)

• Łukasiewicz s-norm
s(a,b) = min(a+ b,1) (2.25)

It is worth noticing that a t-norm is dual to an s-norm in that

s(a,b) = 1− t(1− a,1− b) (2.26)

Another concept, crucial from the point of view of theory and application, is
that of a relation. It is discussed both for fuzzy sets and intuitionistic fuzzy sets in
Section 2.3.3.

2.3 Brief Introduction to the Intuitionistic Fuzzy Sets

We will start this section by discussing two geometrical representations of intuition-
istic fuzzy sets. The representation using two terms (membership values and non-
membership values) describing the intuitionistic fuzzy sets leads to the so called 2D
representation. Using three terms (membership values, non-membership values, and
hesitation margins) in the intuitionistic fuzzy set description results in the so called
3D representation.

Other geometrical representations of the intuitionistic fuzzy sets are given by
Atanassov [12], [13], [14], [15], [22]).

Later on, basic operators and relations over the intuitionistic fuzzy sets will be
discussed.
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2.3.1 Two Geometrical Representations of the Intuitionistic Fuzzy
Sets

Having in mind that for each element x belonging to an intuitionistic fuzzy set A,
the values of membership, non-membership and the intuitionistic fuzzy index sum
up to one, i.e.

μA(x)+νA(x)+πA(x) = 1 (2.27)

and that each of the membership, non-membership, and the intuitionistic fuzzy in-
dex belongs to [0,1], we can imagine a unit cube (Figure 2.1) inside which there is an
MNH triangle where the above equation is fulfilled (Szmidt and Kacprzyk [171]).

 

 

 

H(0,0,1)

O(0,0,0) M(1,0,0)

N(0,1,0)

x '

x
X

Fig. 2.1 Geometrical representation in 3D

In other words, the MNH triangle represents a surface where coordinates of any
element belonging to an intuitionistic fuzzy set can be represented. Each point be-
longing to the MNH triangle is described via three coordinates: (μ ,ν,π). Points
M and N represent crisp elements. Point M(1,0,0) represents elements fully be-
longing to an intuitionistic fuzzy set as μ = 1. Point N(0,1,0) represents elements
fully not belonging to an intuitionistic fuzzy set as ν = 1. Point H(0,0,1) repre-
sents elements about which we are not able at all to say if they belong or not to an
intuitionistic fuzzy set (intuitionistic fuzzy index π = 1). Such an interpretation is
intuitively appealing and provides means for the representation of many aspects of
imperfect information. The segment MN (where π = 0) represents elements belong-
ing to classical fuzzy sets (μ +ν = 1).
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Fig. 2.2 Geometrical representation in 2D

Any other combination of the values characterizing an intuitionistic fuzzy set can
be represented inside the triangle MNH. In other words, each element belonging to
an intuitionistic fuzzy set can be represented as a point (μ ,ν,π) belonging to the
triangle MNH (Figure 2.1).

It is worth mentioning that the geometrical interpretation is directly related to the
definition of an intuitionistic fuzzy set introduced by Atanassov [4], [15], and it does
not need any additional assumptions.

Remark: We use the capital letters (e.g., M, N, H) for the geometrical representa-
tion of xi’s (Figure 2.2) on the plane. The same notation (capital letters) is used in
this book for sets, but we always explain the current meaning of a symbol used.

Another possible geometrical representation of an intuitionistic fuzzy set can be
in two dimensions (2D) – Figure 2.2 (cf. Atanassov [15]). It is worth noticing that
although we use a 2D figure (which is more convenient to draw in many cases),
we still adopt our approach (e.g., Szmidt and Kacprzyk [171], [188], [175], [192],
[193], [218]) taking into account all three terms (membership, non-membership and
hesitation margin values) describing the intuitionistic fuzzy sets. As previously, any
element belonging to an intuitionistic fuzzy set may be represented inside an MNO
triangle (O is projection of H in Figure 2.1). Each point belonging to the MNO
triangle is still described by the three coordinates: (μ ,ν,π), and points M and N
represent, as previously, crisp elements. Point M(1,0,0) represents elements fully
belonging to an intuitionistic fuzzy set as μ = 1, and point N(0,1,0) represents el-
ements fully not belonging to an intuitionistic fuzzy set as ν = 1. Point O(0,0,1)
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0,0,1H
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Fig. 2.3 Illustration of the interrelations between 3D and 2D representations of intuitionistic
fuzzy sets
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represents elements about which we cannot say if they belong or not to an intuition-
istic fuzzy set (the intuitionistic fuzzy index π = 1). Segment MN (where π = 0)
represents elements belonging to the classic fuzzy sets (μ + ν = 1). For example,
point x1(0.2,0.8,0) (Figure 2.2), like any element of the segment MN, represents an
element of a fuzzy set. A line parallel to MN describes the elements with the same
values of the hesitation margin. In Figure 2.2 we can see point x3(0.5,0.1,0.4) rep-
resenting an element with the hesitation margin equal 0.4, and point x2(0.2,0,0.8)
representing an element with the hesitation margin equal 0.8. The closer a line that
is parallel to MN is to O, the higher the hesitation margin.

In Figure 2.3 (Szmidt [158]) relations between the 2D and 3D representations are
presented. It is worth stressing that 2D representation of the intuitionistic fuzzy sets
(Figure 2.2), i.e., the triangle MNO is the orthogonal projection of the triangle MNH
(3D representation – Figure 2.1) on the plane (Figure 2.3, the upper and the middle
parts). The orthogonal projection transfers x

′ ∈ MNH into x
′′ ∈ MNO. Segment MN

represents a fuzzy set described by μ and ν .
The orthogonal projection of the segment MN on the axis μ (the segment [0, 1]

is only considered) gives the fuzzy set represented by μ only (Figure 2.3, its bottom
part). This orthogonal projection transfers x

′′ ∈ MNO into x
′′′ ∈ OM.

2.3.2 Operations Over the Intuitionistic Fuzzy Sets

This section contains results introduced by Atanassov [15] on operations and rela-
tions over the intuitionistic fuzzy sets. The point of departure is constituted by the
respective definitions of relations and operations over fuzzy sets which are extended
here. In the reverse perspective, relations and operations on fuzzy sets turn out to be
particular cases of these new definitions.

Here is the definition of basic relations and operations on intuitionistic fuzzy sets.

Definition 2.5. (Atanassov [15])
For every two intuitionistic fuzzy sets A and B the following relations and operations
can be defined (“iff” means “if and only if”):

A = B iff (∀x ∈ X)(μA(x) = μB(x)&νA(x) = νB(x)), (2.28)

AC = {〈x,νA(x),μA(x)〉|x ∈ X}, (2.29)

A∩B = {〈x,min(μA(x),μB(x)),max(νA(x),νB(x))〉|x ∈ X}, (2.30)

A∪B = {〈x,max(μA(x),μB(x)),min(νA(x),νB(x))〉|x ∈ X}, (2.31)

A+B = {〈x,μA(x)

+μB(x)− μA(x).μB(x),νA(x).νB(x)〉, | x ∈ X} (2.32)
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A.B = {〈x,μA(x).μB(x),νA(x)

+νB(x)−νA(x).νB(x)〉 | x ∈ X}, (2.33)

A@B = {〈x,(μA(x)+ μB(x))
2

,
(νA(x)+νB(x))

2
〉|x ∈ X}, (2.34)

A$B = {〈x,
√

μA(x).μB(x),
√

νA(x).νB(x)〉|x ∈ X}, (2.35)

A∗B = {〈x, μA(x)+ μB(x)
2.(μA(x).μB(x)+ 1)

,

νA(x)+νB(x)
2.(νA(x).νB(x)+ 1)

〉|x ∈ X}, (2.36)

A �� B = {〈x,2. μA(x).μB(x)
μA(x)+ μB(x)

,2.
νA(x).νB(x)

(νA(x)+νB(x)
〉|x ∈ X}, (2.37)

for which we will accept that if

μA(x) = μB(x) = 0, then
μA(x).μB(x)

μA(x)+ μB(x)
= 0

and if νA(x) = νB(x) = 0, then
νA(x).νB(x)

νA(x)+νB(x)
= 0.

Operations (2.28)–(2.37) have also their counterparts in the fuzzy set theory.

Example 2.2. (Atanassov [15])
Let X = {a,b,c,d,e}, let the intuitionistic fuzzy sets A and B have the form
{< xi,μ(xi),ν(xi)>}:

A = {〈a,0.5,0.3〉,〈b,0.1,0.7〉,〈c,1.0,0.0〉,〈d,0.0,0.0〉,〈e,0.0,1.0〉},

B = {〈a,0.7,0.1〉,〈b,0.3,0.2〉,〈c,0.5,0.5〉,〈d,0.2,0.2〉,〈e,1.0,0.0〉}.
Then

A = {〈a,0.3,0.5〉,〈b,0.7,0.1〉,〈c,0.0,1.0〉,〈d,0.0,0.0〉,〈e,1.0,0.0〉},

A∩B = {〈a,0.5,0.3〉,〈b,0.1,0.7〉,〈c,0.5,0.5〉,〈d,0.0,0.2〉,〈e,0.0,1.0〉},

A∪B = {〈a,0.7,0.1〉,〈b,0.3,0.2〉,〈c,1.0,0.0〉,〈d,0.2,0.0〉,〈e,1.0,0.0〉},

A+B = {〈a,0.85,0.03〉,〈b,0.37,0.14〉,〈c,1.0,0.0〉,〈d,0.2,0.0〉,
〈e,1.0,0.0〉},
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A.B = {〈a,0.35,0.37〉,〈b,0.03,0.76〉,〈c,0.5,0.5〉,〈d,0.0,0.2〉,
〈e,0.0,1.0〉},

A@B = {〈a,0.6,0.2〉,〈b,0.2,0.45〉,〈c,0.75,0.25〉,〈d,0.1,0.1〉,
〈e,0.5,0.5〉},

A$B = {〈a,0.591...,0.173...〉,〈b,0.173...,0.374...〉,〈c,0.0707...,0.0〉,
〈d,0.0,0.0〉,〈e,0.0,0.0〉},

A∗B = {〈a,0.444...,0.194...〉,〈b,0.194...,0.394...〉,〈c,0.5,0.5〉,
〈d,0.1,0.1〉,〈e,0.5,0.5〉},

A �� B = {〈a,0.583...,0.15〉,〈b,0.15,0.311...〉,〈c,0.666...,0.0〉,
〈d,0.0,0.0〉,〈e,0.0,0.0〉}.

�

Proposition 2.1. (Atanassov [15])
For every three intuitionistic fuzzy sets A,B and C, following properties hold: :

A∩B = B∩A, (2.38)

A∪B = B∪A, (2.39)

A+B = B+A, (2.40)

A.B = B.A, (2.41)

A@B = B@A, (2.42)

A$B = B$A, (2.43)

A �� B = B �� A, (2.44)

A∗B = B∗A, (2.45)

A∩B)∩C = A∩ (B∩C), (2.46)

(A∪B)∪C = A∪ (B∪C), (2.47)

(A+B)+C = A+(B+C), (2.48)
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(A.B).C = A.(B.C), (2.49)

(A∩B)∪C = (A∪C)∩ (B∪C), (2.50)

(A∩B)+C = (A+C)∩ (B+C), (2.51)

(A∩B).C = (A.C)∩ (B.C), (2.52)

(A∩B)@C = (A@C)∩ (B@C), (2.53)

(A∩B) ��C = (A ��C)∩ (B ��C), (2.54)

(A∪B)∩C = (A∩C)∪ (B∩C), (2.55)

(A∪B)+C = (A+C)∪ (B+C), (2.56)

(A∪B).C = (A.C)∪ (B.C), (2.57)

(A∪B)@C = (A@C)∪ (B@C), (2.58)

(A∪B) ��C = (A ��C)∪ (B ��C), (2.59)

(A+B).C ⊂ (A.C)+ (B.C), (2.60)

(A+B)@C ⊂ (A@C)+ (B@C), (2.61)

(A.B)+C ⊃ (A+C).(B+C), (2.62)

(A.B)@C ⊃ (A@C).(B@C), (2.63)

(A@B)+C = (A+C)@(B+C), (2.64)

(A@B).C = (A.C)@(B.C), (2.65)

A∩A = A, (2.66)
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A∪A = A, (2.67)

A@A = A, (2.68)

A$A = A, (2.69)

A �� A = A, (2.70)

A∩B = A∪B, (2.71)

A∪B = A∩B, (2.72)

A+B = A.B, (2.73)

A.B = A+B, (2.74)

A@B = A@B, (2.75)

A$B = A$B, (2.76)

A �� B = A �� B, (2.77)

A∗B = A∗B. (2.78)

2.3.2.1 The “necessity” and “possibility” Operators

The operators over intuitionistic fuzzy sets, presented above, correspond to the re-
spective operators over fuzzy sets. Here we present two operators introduced by
Atanassov in 1983, which are “meaningless” (Atanassov [4], [15]) in the case of
fuzzy sets.

Definition 2.6. (Atanassov [4], [15]) Let us define, for every intuitionistic fuzzy set
A, the following operators:

• the necessity operator

A = {〈x,μA(x),1− μA(x)〉|x ∈ X}, (2.79)
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• the possibility operator
♦A = {〈x,1−νA(x),νA(x)〉|x ∈ X}. (2.80)

If A is a classical fuzzy set, then

A = A =♦A. (2.81)

From (2.81) it follows that both “ ” (2.79) and “♦” (2.80) are meaningless for
a fuzzy set. Atanassov [15] considers in length the properties, modifications, and

extensions of “ ” (2.79) and “♦” (2.80). Here we only recall their two extensions.
Let α ∈ [0,1] be a fixed number.

Definition 2.7. (Atanassov [15]) Given an intuitionistic fuzzy set A, an operator Dα
is defined as follows:

Dα(A) = {〈x,μA(x)+α.πA(x),νA(x)+ (1−α).πA(x)〉|x ∈ X} (2.82)

where α ∈ [0,1].

From definition 2.7 we see that Dα(A) is a fuzzy set, namely:

μA(x)+α.πA(x)+νA(x)+ (1−α).πA(x) = μA(x)+νA(x)+πA(x) = 1.

Several interesting properties of Dα(A) (2.82) are given by proposition 2.2:

Proposition 2.2. (Atanassov [15]) For every intuitionistic fuzzy set A and for every
α,β ∈ [0,1]:

if α < β , then Dα(A)⊂ Dβ (A), (2.83)

D0(A) = A, (2.84)

D1(A) = ♦A. (2.85)

The operator Dα is a generalization of the operators “necessity” and “possibil-
ity”. The operator Dα has been be extended even further. Namely, Atanassov [15]
introduced operator Fα ,β (2.86).

Let α,β ∈ [0,1] and α +β<1.

Definition 2.8. (Atanassov [7]) The operator Fα ,β , for an intuitionistic fuzzy set A,
is defined as:

Fα ,β (A) = {〈x,μA(x)+α.πA(x),νA(x)+β .πA(x)〉|x ∈ X}. (2.86)

The above operators are not only important from the theoretical point of view (in-
dicating that the intuitionistic fuzzy sets are a generalization of the fuzzy sets) but
they are also important from the point of view of applications. The operator Dα(A)
was applied in constructing a classifier recognizing imbalanced classes (Szmidt and
Kukier [229], [230], [231]). The operator Fα ,β has been applied for image recogni-
tion (Bustince et al. [131], [46], [48]).
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2.3.3 Intuitionistic Fuzzy Relations

As it was shown (cf. definitions in Section 2.1), one term, i.e., membership function,
fully describes a fuzzy set, whereas two terms are necessary when we discuss the
intuitionistic fuzzy sets. Similar differences hold when we define a fuzzy relation
and an intuitionistic fuzzy relation.

Definition 2.9. A fuzzy relation between two non-fuzzy sets X = {x} and Y = {y}
is defined on a Cartesian product X ×Y , i.e. R ⊂ X ×Y = {(x,y) : x ∈ X ,y ∈Y}, and
given by

R = {< (x,y),μR(x,y)> /x ∈ X ,y ∈ Y} (2.87)

where μR : X ×Y → [0,1] is a membership function of a fuzzy relation R assigning to
every pair (x,y), x ∈ X , y ∈ Y , its degree of membership μR(x,y) ∈ [0,1] describing
the measure of intensity of a fuzzy relation R between x and y.

Example 2.3. If X = {Al,Bob,Clark} and Y = {Paul,Jim}, the fuzzy relation R
labelled “resemblance” may be exemplified by

R = (Al,Paul)/0.5+(Al,Jim)/0.3+(Bob,Paul)/0.6+

+ (Bob,Jim)/0.4+(Clark,Paul)/0.9+(Clark,Jim)/0.1

to be read as: there is resemblance between Paul and Clark (with respect to “our
own” subjective aspects) to degree 0.9, i.e. to a very high extent, and rather low
resemblance between Jim and Clark - to degree 0.1 only, etc.

Any fuzzy relation (in a finite X ×Y ) may be represented in a matrix form. The
following matrix corresponds to the above relation “resemblance”

R = [ri j] =

Paul Jim
Al 0.5 0.3
Bob 0.6 0.4
Clark 0.9 0.1

�

Taking into account the definition of intuitionistic fuzzy set, the definition of an
intuitionistic fuzzy relation R can be introduced as a counterpart of fuzzy relation.

Definition 2.10. (Atanassov [5], [23], [15])
An intuitionistc fuzzy relation between two non-fuzzy sets X = {x} and Y = {y} is
defined on a Cartesian product X ×Y , i.e. R ⊂ X ×Y = {(x,y) : x ∈ X ,y ∈ Y}, and
given by

R = {< (x,y),μR(x,y),νR(x,y)> /x ∈ X ,y ∈ Y} (2.88)

with the condition

0 ≤ μA(x)+νA(x)≤ 1 ∀x ∈ X ,y ∈ Y
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where μR - as before, νR : X ×Y → [0,1] is a non-membership function of a fuzzy
relation R assigning to every pair (x,y), x ∈ X , y ∈Y , its degree of non-membership
νR(x,y) ∈ [0,1], being the measure of falsity of a fuzzy relation R between x and y.

Therefore, an intuitionistic fuzzy relation is described by any two terms from the
triplet: membership function, non-membership function, intuitionistic fuzzy index
function.

Example 2.4. If X = {Bob,Peter} and Y = {Liz,Jim,John}, the intuitionistic fuzzy
relation R labelled “cooperation” while preparing a new project, may be given as
{(x,y), μR(x,y),πR(x,y)}, i.e. intuitionistic fuzzy relation can be also described by
giving πR(x,y) instead of νR(x,y)

R = (Bob,Liz)/1,0+(Bob,Jim)/0.7,0.2+(Bob,John)/0.5,0.3+

+ (Peter,Liz)/0.7,0.2+(Peter,Jim)/0.9,0+(Peter,John)/0.4,0.5

or, in a matrix form

μR =

Bob Peter
Liz 1 0.7
Jim 0.7 0.9
John 0.5 0.2

πR =

Bob Peter
Liz 0 0.2
Jim 0.2 0
John 0.3 0.8

to be read as: excellent cooperation between Bob and Liz is foreseen (to the highest
degree: 1), and any difficulties are not expected (π = 0) about their cooperation.
Peter and Jim usually cooperate to a very high extent (to degree 0.9) but in a very
rare situations it is known that they have quite different opinions (π = 0 which means
ν = 0.1). Peter and John usually at the beginning do not agree (μ = 0.2 only), but
they are open for arguments (π = 0.8) so it is possible in almost all cases to convince
them to go for the same goal, etc. �

2.4 Interrelationships: Crisp Sets, Fuzzy Sets, Intuitionistic
Fuzzy Sets

On the basis of the definitions and properties presented in this chapter, the following
conclusions can be drawn:

• A membership function fully describes a fuzzy set (by specifying a membership
function we automatically know the non-membership function).

• If we want to describe fully an intuitionistic fuzzy set, we must use any two terms
from the triplet: {membership function, non-membership function, intuitionistic
fuzzy index function}.

In other words, applying intuitionistic fuzzy sets instead of fuzzy sets means
introducing another degree of freedom into the set description (apart from a function
μA there appears a function νA or πA).
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Crisp
sets

FS

IFS

Fig. 2.4 An illustration of interrelations among conventional sets, fuzzy sets (FS) and intu-
itionistic fuzzy sets (IFS)

Interrelations among conventional sets, fuzzy sets (FS) and intuitionistic fuzzy
sets (IFS) are given in Figure 2.4.

The meaning of Figure 2.4 is explained in Figure 2.5. For a crisp set, two points
only in the coordinate system given in Figure 2.5 can represent the elements belong-
ing to such a set. As an element corresponding to a crisp set fully belongs or fully
does not belong to a crisp set, only the point with coordinates: μ = 1 and ν = 0 (fully
belonging), or another point: μ = 0 and ν = 1 (fully not-belonging) can represent
the elements from crisp sets. The case is illustrated in the upper part of Figure 2.5.

In the case of a fuzzy set, because of the fact that μ +ν = 1, besides previously
described points (fully belonging, and fully not-belonging), also the entire segment
connecting these points can be an image of elements belonging to a fuzzy set. The
middle part of Figure 2.5 illustrates this fact.

Finally, for an intuitionistic fuzzy set, because of the condition: 0 ≤ μ + ν ≤ 1,
not only the points described above (the segment with its ends), but also the interior
of the shaded triangle at the bottom part of Figure 2.5 can represent the elements
belonging to an intuitionistic fuzzy set. Every one of the parallel lines (inside the
triangle) is an image of the elements with the same value of intuitionistic fuzzy
index.

In the above sense, the intuitionistic fuzzy sets contain fuzzy sets which, in turn,
contain conventional (crisp) sets (cf. Figure 2.4). In terms of information it means
that in the case of

• crisp sets – information is complete (elements fully belong or fully do not belong
to a crisp set),

• fuzzy sets – information is also complete but the elements can belong to a fuzzy
set to some degree; knowing the degree to which the elements belong to a fuzzy
set (μ), we immediately know the degree to which they do not belong to the set
(1− μ),
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crisp set :

FS :
1

:IFS
10

Fig. 2.5 Comparison of the possible images (in the same coordinate system) of elements
belonging to crisp sets, fuzzy sets (FS) and intuitionistic fuzzy sets (IFS)

• intuitionistic fuzzy sets – information may be not complete because of the intu-
itionistic fuzzy indices; on the other hand, using the intuitionistic fuzzy sets we
may express the same information as via crisp sets or fuzzy sets (cf. Figures 2.4
and 2.5).

In the next section, starting from relative frequency distributions, we describe the
automatic algorithm of deriving the intuitionistic fuzzy sets from data (Szmidt and
Baldwin [162]).
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2.5 Deriving the Intuitionistic Fuzzy Sets from Data

In order to apply the intuitionistic fuzzy sets, which seem to be a very good tool
for representation and processing of imperfect information, one should be able to
construct their membership and non-membership functions. In this section we pro-
pose two ways of deriving the membership and non-membership functions for the
intuitionistic fuzzy sets:

a) by asking experts;
b) from relative frequency distributions (histograms).

The second (automatic) method is justified by some similarities/parallels between
intuitionistic fuzzy set theory and mass assignment theory – a well known tool for
dealing with both probabilistic and fuzzy uncertainties. We also recall a semantic for
membership functions – the interpretation having its roots in the possibility theory.
Both mass assignment theory and a semantic interpretation of the membership func-
tions made it possible to construct the automatic algorithm assigning the functions
describing the intuitionistic fuzzy sets.

Uncertainty was identified and expressed for several centuries (starting from the
mid-seventeenth century) in terms of probability theory only. Uncertainty was a
synonym of randomness. This situation changed in the 1960s when other theories,
distinct from probability theory, characterizing different aspects of uncertain situ-
ations, were introduced. Uncertainty started to be perceived as a multidimensional
concept for which randomness became one of its dimension only. Other components
turned out equally important from the point of view of representing and processing
information.

The theory of fuzzy sets (Zadeh [254]), theory of evidence (Dempster-Shafer the-
ory [59, 150]), possibility theory (Zadeh [256]), theory of fuzzy measures (Sugeno
[155]) became the most visible theories dealing with different aspects of uncertainty.
Here we explore two of the theories dealing with widely understood uncertainty,
namely, intuitionistic fuzzy set theory (Atanassov [4]) which is a generalization of
fuzzy set theory, and mass assignment theory (Baldwin [30, 29]) related to the the-
ory of evidence (but the constraint that m(0) = 0 is not imposed). The theory of mass
assignment we apply also differs from the Dempster-Shafer theory of evidence since
the method of combining mass assignments is different. The theory discussed here
is consistent with probability theory.

We start from showing some similarities/parallels between intuitionistic fuzzy set
theory [Atanassov [6, 15]] and mass assignment theory (Baldwin [30], Baldwin et
al. [38, 35]). The similarities we stress do not mean that one of the theories could
replace the other or is better. To the contrary, the similarities we show seem to be
important from the point of view of further development of both theories. Here,
the noticed similarities made it possible to construct an algorithm of the automatic
derivation of the membership and non-membership functions for intuitionistic fuzzy
sets.

Making use of positive and (independently given) negative information, which
is the core of the intuitionistic fuzzy set approach, is natural in real life, and as an
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obvious consequence, is well-known in psychology [e.g., Sutherland [157], Kah-
neman [98]]. The idea also attracted attention of the scientists in soft computing.
It would be difficult to deal with machine learning (making use of examples and
counter-examples), modeling of preferences or voting without taking into account
positive and (independent) negative data.

Atanassov and Gargov [24]) noticed in 1989 that from the mathematical point
of view intuitionistic fuzzy sets are equipollent to interval-valued fuzzy sets. How-
ever, from the point of view of solving problems (starting from the stage of collect-
ing data), both kind of sets are different. The intuitionistic fuzzy sets make a user
consider independently positive and negative information whereas when employing
interval-valued fuzzy sets, user’s attention is focused on positive information (in
an interval) only. This fact, strongly connected with a psychological phenomenon
called by the Nobel Prize winner Kahneman (cf. Kahneman [98]) “bounded ratio-
nality” (see also Sutherland [157]), caused among others by the fact that people
tend to notice and take into account only most obvious aspects (e.g. advantages
only), places the intuitionistic fuzzy sets among the up-to-date means of knowledge
representation and processing.

To apply the intuitionistic fuzzy sets one should be able to assign respective mem-
bership values and non-membership values. Here we discuss two ways of assigning
the membership and non-membership values for the intuitionistic fuzzy sets: by
asking experts, and from the relative frequency distributions (histograms).

The models applying the intuitionistic fuzzy sets may be especially useful in
the situations when we face human testimonies, opinions, etc. involving answers of
three types:

– yes,
– no,
– abstaining, i.e. such that can not be classified in the former two (because of differ-
ent reasons, eg. “I do not know”, “I am not sure”, “I do not want to answer”, “I am
not satisfied with any of the options”, etc.).

Example 2.5. (Szmidt and Baldwin [162]) Let us assume that each individual xi

from a set X of n individuals who vote for/against building of nuclear power
plant (electors voting for/against a given candidate or his opponent, judges voting
for/against acquittal, consumers expressing/not expressing interest in buying a prod-
uct) belongs to

• a set of individuals (judges, electors) voting for – to the extent μ(xi),
• a set of individuals voting against – to the extent ν(xi).

It is worth emphasizing that by means of the fuzzy set theory it is not possible
to consider the situation in more details. By means of intuitionistic fuzzy set theory
we can also point out

• a set of individuals who did not answer neither “yes” nor “no”– to the extent
π(xi),
whereas: μA(x)+νA(x)+πA(x) = 1; π(xi) is an intuitionistic fuzzy index.
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From the point of view of e.g. market analysts (election committees) it seems
rather interesting to be able to assess the above data in terms of the possible final
results of voting, by giving intervals containing

• probability of voting for
Prf or ∈ [μ ,μ +π ]

where:

μ =
1
n

n

∑
i=1

μ (xi)

π =
1
n

n

∑
i=1

π (xi)

• probability of voting against

Pragainst ∈ [ν,ν +π ]

where:

ν =
1
n

n

∑
i=1

ν (xi)

with the condition Prf or +Pragainst = 1.

Interpreting the above results in terms of mass assignment (see Section 2.5.2) we
could say that the necessary support for is equal to μ , the necessary support against
is equal to ν , whereas the possible support for (the best possible result) Pos+ is
equal to μ +π , and the possible support against (the worst possible result) Pos− is
equal to ν +π .

It is necessary to stress that we have made a simplifying assumption in the above
example by assigning a sign of equality to probabilities and memberships/non-
memberships. This assumption is valid under the condition that each value of
membership/non-membership occurs with the same probability for each xi. Here,
for the sake of simpler notation, we follow this assumption. However, in general,
probabilities for the intuitionistic fuzzy sets are calculated as discussed in (Szmidt
and Kacprzyk [169, 170]) and recalled by Definitions 2.11 and 2.12.

Definition 2.11. (Szmidt and Kacprzyk [169, 170]) By an intuitionistic fuzzy event
A we will mean an intuitionistic fuzzy subset belonging to the elementary event
space X , i.e. A ⊂ X whose membership function μA(x), non-membership function
νA(x), and intuitionistic fuzzy index πA(x) are Borel measurable.

Definition 2.12. (Szmidt and Kacprzyk [169, 170]) Let us assign to every element
of an intuitionistic fuzzy event A⊂X = {x1, ...,xn} (where X is the elementary event
space) its probability of occurrence, i.e. p(x1) , ..., p(xn).
Minimal probability pmin(A) of an intuitionistic fuzzy event A is equal to

pmin(A) =
n

∑
i=1

p(xi)μ(xi)
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Maximal probability of an intuitionistic fuzzy event A is equal to

pmax(A) = pmin(A)+
n

∑
i=1

p(xi)π(xi)

so probability of an event A is a number from the interval [pmin(A), pmax(A)], or

p(A) ∈ [
n

∑
i=1

pA(xi)μA(xi),
n

∑
i=1

pA(xi)μA(xi)+

+
n

∑
i=1

pA(xi)πA(xi)], (2.89)

probability of a complement event AC is a number from the interval [pmin(AC),
pmax(AC)], or

p(AC) ∈ [
n

∑
i=1

pA(xi)νA(xi),
n

∑
i=1

pA(xi)νA(xi)+

+
n

∑
i=1

pA(xi)πA(xi)] (2.90)

Applications of the intuitionistic fuzzy sets to group decision making, negotia-
tions and other real situations are presented, e.g., in (Szmidt and Kacprzyk [163,
164, 167, 173, 177, 178, 179, 182]).

The question arises how to derive the membership and non-membership
functions.

2.5.1 Derivation of the Intuitionistic Fuzzy Sets by Experts

We will discuss the problem of deriving membership and non-membership functions
for the intuitionistic fuzzy models in the simplest case – when one person considers
one decision only (this simple case can be easily extended to more complicated
situations - with more persons and more decisions).

Assume that somebody considers a problem of changing his/her job. To decide
if a new job is interesting enough to give up a previous one it seems reasonable to
prepare a whole list of questions. The list would depend on the personal preferences
but in general the following questions presented in Table 2.1 seem to be important
(Szmidt and Baldwin [162].

Assuming that all the questions are equally important in Table 2.1, we can imme-
diately conclude how to evaluate the considered case – just by summing up:

• all the positive answers (7/12) - this is the value of the membership for the con-
sidered option,

• all the negative answers (3/12) - this is the value of the non-membership for the
considered option,
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Table 2.1 The questions considered when changing a job

No Questions +/?/−
1 Is the job interesting +

2 Salaries −
3 Possibilities of promotion ?
4 Expected pension −
5 Number of hours spent in work ?
6 Holidays – how long +

7 Is the work safe +

8 Responsibility +

9 Time of the travel: home–work −
10 Social reputation +

11 Necessary creativity +

12 Connected stress +

• all the answers for which it was impossible to say “yes” or “not” (2/12) - this is
the value of the intuitionistic fuzzy index for the considered option.

We can notice that employing the intuitionistic fuzzy sets just forces an indi-
vidual to consider both advantages (membership values) and disadvantages (non-
membership values) of a considered solution. Next, the imprecise area is taken into
account as well. The importance of such an approach lies in the fact that most peo-
ple concentrate usually on one or two “most visible” aspects of a problem. They do
not try to find out the contrary arguments or to consider uncertain (in wide sense,
i.e. not restricted to randomness) aspects of a situation (cf. Sutherland [157]).

The structure of the intuitionistic fuzzy sets make us consider a situation/problem
taking into account more aspects. We refer again an interested reader to (Szmidt and
Kacprzyk [163, 164, 167, 173, 177, 178, 179, 182]) where we exploit this fact - us-
ing the intuitionistic fuzzy sets to group decision making. In short, the problem boils
down to selecting an option or a set of options which are best accepted by most of
the individuals. The options are considered in pairs. Employing the intuitionistic
fuzzy sets forces each individual to look at each pair (i,j) of the options considering:
advantages of the first option over the second one (membership value), disadvan-
tages of the first option over the second one (non-membership value), and taking
into account lack of knowledge (intuitionistic fuzzy index) as far as the two options
are concerned. In other words, the intuitionistic fuzzy sets force a user to explore
a problem from different points of view – including all important aspects which
should be taken into account but, unfortunately, are often omitted by people mak-
ing decisions. This fact, strongly connected with a phenomenon called by the Nobel
Prize winner Kahneman (cf. Kahneman [98]) “bounded rationality”, caused, in par-
ticular, by the framing effect (explained in terms of salience and anchoring, playing
a central role in treatment of judgements and choice), makes the intuitionistic fuzzy
sets a highly effective means of knowledge representation and processing.
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2.5.2 Automatic Method of Deriving Intuitionistic Fuzzy Sets
from Relative Frequency Distributions (Histograms)

Baldwin (Baldwin [30], Baldwin et al. [38, 35]) developed the theory of mass as-
signment to provide a formal framework for manipulating both probabilistic and
fuzzy uncertainty.

A fuzzy set can be converted into a mass assignment (Baldwin [28], Dubois and
Prade [62]). This mass assignment represents a family of probability distributions.

Definition 2.13. (Mass Assignment) (Baldwin et al. [29], [35], [32], [37]) Let A
′
be

a fuzzy subset of a finite universe X such that the range of the membership function
of A

′
, is {μ1, ...,μn} where μi > μi+1. Then the mass assignment of A

′
denoted mA′ ,

is a probability distribution on 2X satisfying

mA′ (Fi) = μi − μi+1 where Fi = {x ∈ X |μ(x)≥ μi}
for i = 1, ...,n (2.91)

We call the sets F1, ...,Fn the focal elements of mA′ . The details of mass assignment
theory are presented by Baldwin et al. [38].

Example 2.6. (Baldwin [31])
For X = {x1, x2, x3, x4},
if A

′
= x1/1+ x2/0.7+ x3/0.4+ x4/0.3

then the associated mass assignment is
mA′ = x1 : 0.3, {x1, x2}= 0.3, {x1, x2, x3}= 0.1, {x1, x2, x3, x4}= 0.3

The basic representation of uncertainty in the language FRIL [Baldwin et al. [38,
32]) are the so called Support Pairs which are associated with mass assignments
and represent intervals containing unknown probabilities. Support Pairs are used to
characterize uncertainty in facts and conditional probabilities in rules. A Support
Pair (n, p) comprises a necessary and possible support and can be identified with an
interval in which the unknown probability lies. Baldwin and Pilsworth [33] gave a
voting interpretation of a support pair – the lower (necessary) support n represents
the proportions of a sample population voting in favor of a proposition, whereas
(1− p) represents the proportion voting against; (p− n) represents the proportion
abstaining.

On the other hand, considering a voting model in terms of the intuitionistic fuzzy
sets, [cf. Example 2.1 (Atanassov [15])] we have

• the membership values μ are equal to the proportion of a sample population
voting in favour of a proposition,

• the non-membership values ν are equal to the proportion of a sample population
voting against,

• the values of the hesitation margin π represents the proportion abstaining.

The interpretation of the parameters from Baldwin’s voting model, and from in-
tuitionistic fuzzy set (abbreviated IFS) voting model is presented in Table 2.2.
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Table 2.2 Equality of the parameters for Baldwin’s voting model and IFS voting model

Baldwin’s voting model IFS voting model
voting in favour n μ
voting against 1− p ν
abstaining p−n π

In other words, we can represent a Support Pair (n, p) using notation of the intu-
itionistic fuzzy sets by the following simple expression (Szmidt and Baldwin [162],
[159], [160]):

(n, p) = (n,n+ p− n)= (μ ,μ +π) (2.92)

i.e.: using notation of the intuitionistic fuzzy sets a Support Pair from the Bald-
win’s voting model can be expressed.

Moreover, one can note that the necessary support for the statement not being
true is equal to one minus the possibility of the support for the statement being true,
i.e. 1− p. Similarly, the possible support for the statement being not true is one
minus the necessary support for the statement being true i.e. 1− n. Having in mind
the correspondence of these parameters, we can express this fact making use of the
intuitionistic fuzzy set notation, namely

(1− p,1− n)= (ν,ν +π)

The following three Support Pairs (n, p) are especially interesting (Baldwin and
Pilsworth [33]):

• (1, 1) expresses total support for the associated statement,
• (0, 0) characterizes total support against and
• (0, 1) represents complete uncertainty in the support.

Certainly, the meaning of the above Support Pairs is just the same in the mod-
els expressed in terms of the intuitionistic fuzzy sets (assuming that we consider
probabilities for intuitionistic fuzzy membership/non-membership values as it was
explained in the context of Definition 2.12):

• (1, 1) means that μ = 1 and π = 0, i.e. total support,
• (0, 0) means μ = 0 and π = 0 which involves ν = 1, i.e. total support against,
• (0, 1) means μ = 0 and π = 1 i.e.: complete lack of knowledge concerning sup-

port.

So, to sum up, both the Support Pairs and the intuitionistic fuzzy set models give
the same intervals containing the probability of the fact being true. The difference
between the upper and lower bounds of the intervals is a measure of the uncertainty
associated with the fact [160], [159].

As Baldwin [34] has observed, the mass assignment structure is best used to
represent knowledge that is statistically based in the sense that the values can be
measured, even if the measurements themselves are approximate or uncertain.
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Next notion, useful in our considerations, is so called least prejudiced distribution
[62], [38].
For A′, a fuzzy subset of a finite universe X , the least prejudiced distribution of A′,
denoted l pA′ , is a probability distribution on X given by

l pA′ (x) = ∑
Fi:x∈Fi

mA′ (Fi)

|Fi| (2.93)

A mass assignment corresponding to a normalized fuzzy subset of X naturally
generates a family of probability distributions on X where each distribution cor-
responds to some redistribution of the masses associated with sets to elements of
those sets. The most intuitive seems to redistribute a priori the mass associated with
a set in the uniform manner among the elements of that set. In effect we obtain
the distribution which coincides with Smet’s pignistic probability [153], and with
Dubois and Prade’s [62] possibility-probability transformation based on a general-
ized Laplacean indifference principle.

It is worth emphasizing that the least prejudiced distribution (2.93) provides a
mechanism by which we can, in a sense, convert a fuzzy set into a probability dis-
tribution. That is, in the absence of any prior knowledge, we might on being told
A′ naturally infer the distribution l pA′ relative to a uniform prior. Certainly, if fuzzy
sets are to serve as descriptions of probability distributions, the converse must also
hold. The least prejudiced distribution provides the bijective possibility-probability
transformation. In other words, for a probability distribution P on a finite universe X
there is a unique fuzzy set A′ conditioning on which yields this distribution (Baldwin
et al. [37], Dubois and Prade [63]).

The mass assignment theory has been applied in some fields, such as induction
of decision trees [36], computing with words among others, giving good results for
real data.

Theorem 2.1. (Baldwin et al. [37] ) Let P be a probability distribution on a fi-
nite universe X taking the range of values {p1, ..., pn} where 0<pi+1 < pi<1 and

n
∑

i=1
pi = 1. Then P is the least prejudiced distribution of a fuzzy set A′ if and only if

A′ has a mass assignment given by

mA′ (Fi) = μi − μi+1 f or i = 1, ...,n− 1
mA′ (Fn) = μn

where

Fi = {x ∈ X |P(x)≥ pi}
μi = |Fi|pi +

n

∑
j=i+1

(|Fj|− |Fj+1|)p j (2.94)

The proof is given in (Baldwin at al. [37]).
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Dubois and Prade [63] proposed a bijection method identical with the above
algorithm, but it is worth mentioning that the motivation in [37] is quite different. A
similar approach to mapping between probability and possibility was considered by
Yager [248]. Yamada [251] has given a further justification for the transformation.

To sum up, Theorem 2.1 provides a general procedure converting a relative fre-
quency distribution into a fuzzy set, i.e. gives us means for generating fuzzy sets
from data. As the membership values of a fuzzy set univocally assign the non-
membership values, Theorem 2.1 fully describes a fuzzy set.

Moreover, Theorem 2.1 gives an idea how to convert the relative frequency dis-
tributions into an intuitionistic fuzzy set. However, when discussing intuitionistic
fuzzy sets we consider membership values and independent non-membership val-
ues [cf. (2.5)–(2.6)]. In result, Theorem 2.1 gives only a partial description we look
for. To obtain a complete description of an intuitionistic fuzzy set (with independent
membership and non-membership values), the procedure as in Theorem 2.1 should
be carried out twice. Consequently, we obtain two fuzzy sets. To interpret the two
fuzzy sets properly in terms of the intuitionistic fuzzy sets we recall first a semantic
for membership functions.

Depending on the particular applications, Dubois and Prade [64] have explored
three main semantics for membership functions. Here we make use of the interpre-
tation proposed by Zadeh [256] when he introduced the possibility theory. Mem-
bership μ(x) is there the degree of possibility that a parameter x has the value μ
(Zadeh [256]).

In effect of repeating the procedure as in Theorem 2.1 two times (first – for data
representing membership values, second – for data representing non-membership
values), and taking into account the interpretation that the obtained values are the
degrees of possibility, we obtain the following results (Szmidt and Baldwin [162]).

• First time the algorithm from Theorem 2.1 is performed for the relative frequen-
cies connected with membership values. In effect we obtain (fuzzy) possibilities
Pos+(x)= μ(x)+π(x) that x has the value Pos+.
Pos+(x) (left hand side of the above equation) means the values of a member-
ship function for a fuzzy set (possibilities). In terms of intuitionistic fuzzy sets
(right hand side of the above equation) these possibilities are equal to possible
(maximal) memberships of an intuitionistic fuzzy set, i.e.
μ(x)+ π(x), where μ(x) – the values of the membership function for an intu-
itionistic fuzzy set, and μ(x) ∈ [μ(x),μ(x)+π(x)].

• Second time the algorithm from Theorem 2.1 is performed for the (independent)
relative frequencies connected with non-membership values. In effect we obtain
(fuzzy) possibilities Pos−(x)= ν(x)+π(x) that x has not the value Pos−.
Pos−(x) (left hand side of the above equation) means the values of a member-
ship function for another (than in the previous step) fuzzy set (possibilities). In
terms of the intuitionistic fuzzy sets (right hand side of the above equation) these
possibilities are equal to the possible (maximal) non-membership values, i.e.
ν(x) + π(x), where ν(x) – the values of the non-membership function for an
intuitionistic fuzzy set, and ν(x) ∈ [ν(x),ν(x)+π(x)].
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The Algorithm of Constructing the Membership and Non-Membership
Functions of Intuitionistic Fuzzy Sets (Szmidt and Baldwin [162])

1. Due to the explanations above, from Theorem 2.1 we calculate the values of the
left hand sides of the equations:

Pos+(x) = μ(x)+π(x) (2.95)

and
Pos−(x) = ν(x)+π(x). (2.96)

2. Taking into account that μ(x) + ν(x)+π(x) = 1, from (2.95)–(2.96) we obtain
the values π(x)

Pos+(x)+Pos−(x) = μ(x)+π(x)+ν(x)+
+ π(x) = 1+π(x) (2.97)

π(x) = Pos+(x)+Pos−(x)− 1 (2.98)

3. Knowing the values π(x), from (2.95) and (2.96) we obtain for each x: the values
μ(x), and ν(x).

To illustrate the above procedure we will consider a simple example showing that
starting from relative frequency distributions, and using Theorem 2.1, we obtain full
description of an intuitionistic fuzzy set.

Example 2.7. (Szmidt and Baldwin [162]) The task is to classify products (taking
into account presence of 10 different levels of an element) as legal and illegal. Rel-
ative frequencies obtained from data for legal and illegal products are respectively

• relative frequencies p+(i) for legal products (for each i-th level of the presence
of the considered element), i = 1, . . . ,10

p+(1) = 0., p+(2) = 0., p+(3) = 0.034,

p+(4) = 0.165, p+(5) = 0.301, p+(6) = 0.301,

p+(7) = 0.165, p+(8) = 0.034, p+(9) = 0.,

p+(10) = 0. (2.99)

• relative frequencies p−(i) for illegal products (for each i-th level of the presence
of the considered element), i = 1, . . . ,10

p−(1) = 0.125, p−(2) = 0.128, p−(3) = 0.117,

p−(4) = 0.08, p−(5) = 0.05, p−(6) = 0.05,

p−(7) = 0.08, p−(8) = 0.117, p−(9) = 0.128,

p−(10) = 0.125 (2.100)
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From the data (2.99), and Theorem 2.1 we obtain possibilities Pos+(i) for legal
products

Pos+(1) = 0., Pos+(2) = 0., Pos+(3) = 0.205,

Pos+(4) = 0.727,Pos+(5) = 1., Pos+(6) = 1.,

Pos+(7) = 0.727,Pos+(8) = 0.205,Pos+(9) = 0.,

Pos+(10) = 0. (2.101)

From the data (2.100) and Theorem 2.1 we obtain possibilities Pos−(i) for illegal
products

Pos−(1) = 1., Pos−(2) = 1., Pos−(3) = 0.961,

Pos−(4) = 0.737,Pos−(5) = 0.503,Pos−(6) = 0.503,

Pos−(7) = 0.737,Pos−(8) = 0.961,Pos−(9) = 1.,

Pos−(10) = 1. (2.102)

From (2.101), (2.102), and (2.98), we obtain the following values of π(i)

π(1) = 0., π(2) = 0., π(3) = 0.166,

π(4) = 0.464,π(5) = 0.503,π(6) = 0.503,

π(7) = 0.464,π(8) = 0.166,π(9) = 0.,

π(10) = 0. (2.103)

Thus, (2.101) and (2.103) give μ(i)

μ(1) = 0., μ(2) = 0., μ(3) = 0.039,

μ(4) = 0.263,μ(5) = 0.497,μ(6) = 0.497,

μ(7) = 0.263,μ(8) = 0.039,μ(9) = 0.,

μ(10) = 0. (2.104)

next, from(2.102) and (2.103) we obtain ν(i)

ν(1) = 1., ν(2) = 1., ν(3) = 0.795,

ν(4) = 0.273,ν(5) = 0., ν(6) = 0.,

ν(7) = 0.273,ν(8) = 0.795,ν(9) = 1.,

ν(10) = 1. (2.105)

In result, making use of relative frequencies we have obtained the values μ (2.104),
ν (2.105), and π (2.103) characterizing the corresponding intuitionistic fuzzy set.

Finally, we would like to emphasize the decisive difference as far as the approach
discussed above is concerned, and the incorrect method of expressing an intuition-
istic fuzzy set via two fuzzy sets constructed in a such way that membership val-
ues of the first fuzzy set are treated as the membership values of the intuitionistic
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fuzzy set, whereas membership values of the second fuzzy set are treated as the
non-membership values of the same intuitionistic fuzzy set.

It is worth mentioning that the approach presented here was successfully applied
for benchmark data from

UCI Machine Learning Repository (www.ics.uci.edu/ mlearn/).
The resulting intuitionistic fuzzy models were applied in:

• constructing a classifier for imbalanced and overlapping classes (cf. Szmidt and
Kukier [229], [230], [231]),

• constructing intuitionistic fuzzy trees (Bujnowski [42]),

and were used for testing new approaches of calculating:

• Pearson correlation coefficient (Szmidt and Kacprzyk [211], [224]), (Szmidt et
al. [220], [221], [226]),

• Spearman correlation coefficient (Szmidt and Kacprzyk [212]),
• Kendall correlation coefficient (Szmidt and Kacprzyk [222], [223]),
• Principal Component Analysis (Szmidt and Kacprzyk [225], Szmidt et al. [227]),
• ranking procedures (Szmidt and Kacprzyk [197], [198], [205], [206], [208],

[214]).

2.6 Concluding Remarks

We have recalled basic definitions, and gave short introduction concerning the crisp
sets, the fuzzy sets, and the intuitionistic fuzzy sets.

Two geometrical representations of the intuitionistic fuzzy sets were presented.
The interrelations among the crisp sets, the fuzzy sets, and the intuitionistic fuzzy

sets were discussed.
Finally, two approaches to derivation of the intuitionistic fuzzy sets from data

were presented. The first approach is by asking the experts. The second approach is
automatic – starting from relative frequency distributions.

Both approaches seem to be useful. But the second one – the automatic, and
mathematically justified method of deriving the intuitionistic fuzzy sets from data
seems to be especially important in the context of analyzing information in big data
bases. The approach has been proved to be useful in the context of widely used
benchmark data.
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