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Foreword

The book I am glad to write my foreword to is a very relevant position in literature
on intuitionistic fuzzy sets or, maybe even more generally, in the fuzzy set theory.

In virtually all application issues related to the very essence of similarity, dis-
tances are crucial. Just to quote some more important examples, let me mention
data analysis and data mining, machine learning, decision theory and analysis, con-
trol etc. Of course, this short list is by no means exhaustive.

Professor Eulalia Szmidt presents in this excellent book a brief, yet an extremely
informative and constructive account of various tools and techniques to effectively
and efficiently define and determine similarity in the case of objects described in
terms of intuitionistic fuzzy sets.

The problem of quantifying similarity and distance can be viewed from at least
two perspectives. On the one hand it is a conceptual level, and Professor Szmidt pro-
vides here a survey of both well known and original new concepts and measures. On
the other hand, the calculations of similarity, dissimilarity, and distance in non triv-
ial cases have an explicit algorithmic character, and many computational problems
may appear. Here, again, Professor Szmidt provides the reader with a full-fledged
set of procedures that can be used to solve practical problems.

To summarize, we should congratulate the Author for writing an excellent book,
which certainly constitutes a part of the literature that will be widely used by the
scientific community.

Sofia, June 2013 Krassimir Atanassov



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets . . . . . . . . . . 7
2.1 Main Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Crisp Sets (Classical Sets) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Brief Introduction to Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Selected Operations on Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Brief Introduction to the Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . . . 13
2.3.1 Two Geometrical Representations of the Intuitionistic

Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2 Operations Over the Intuitionistic Fuzzy Sets . . . . . . . . . . . . . 17
2.3.3 Intuitionistic Fuzzy Relations . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Interrelationships: Crisp Sets, Fuzzy Sets, Intuitionistic
Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 Deriving the Intuitionistic Fuzzy Sets from Data . . . . . . . . . . . . . . . . . 27
2.5.1 Derivation of the Intuitionistic Fuzzy Sets by Experts . . . . . . 30
2.5.2 Automatic Method of Deriving Intuitionistic Fuzzy Sets

from Relative Frequency Distributions (Histograms) . . . . . . . 32
2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Distances . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.2 Norms and Metrics Over the Intuitionistic Fuzzy Sets or their

Elements – The Two Term Approach . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Distances between the Intuitionistic Fuzzy Sets – The Three Term

Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52



VIII Contents

3.3.1 Distances between the Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Distances between the Intuitionistic Fuzzy Sets . . . . . . . . . . . 59

3.4 Ranking of the Intuitionistic Fuzzy Alternatives . . . . . . . . . . . . . . . . . 73
3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4 Similarity Measures between Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . 87
4.1 Similarity Measures and Their Axiomatic Relation to Distance

Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.2 Some Other Counter-Intuitive Results Given by the Traditional

Similarity Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.1 Why the Measures Presented May Yield Counter-Intuitive

Results? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
4.3 An Example of Intuitively Justified and Operational Similarity

Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.3.1 Analysis of Agreement in a Group of Experts . . . . . . . . . . . . . 103

4.4 More Examples of Similarity Measures Including the Notion of
Complement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.5 Correlation of Intuitionistic Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . 116
4.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147



Chapter 1
Introduction

Dealing with imprecise information is a common task and challenge in everyday
life, as uncertainty is inevitably involved in every real world system. Models are con-
structed to control, predict, and diagnose such systems, and so uncertainty should
be properly incorporated into system description.

For a long time dealing with uncertain information was a big challenge. Until the
1960s, uncertainty was considered solely in terms of probability theory and under-
stood as randomness. This seemingly unambiguous connection between uncertainty
and probability was paralleled by several mathematical theories, distinct from prob-
ability theory, which are able to characterize situations under uncertainty.

The best known of these theories, which began to emerge in 1960s, are: the
theory of fuzzy sets (Zadeh [254]), evidence theory (Dempster [57], [58], [59],
Shafer [150]), possibility theory (Zadeh [256]), the theory of fuzzy measures (Suge-
no [155], [156]), rough set theory (Pawlak [132]), and lately – theory of intuitionis-
tic fuzzy sets (Atanassov [4], [15], [22]) which stimulates an increasing number of
researchers all over the world.

Development of the theories mentioned demonstrated that there are several dis-
tinct types of uncertainty (Klir [104], [106], Klir and Yuan [109], Klir and Wier-
man [108]), Klir and Folger [107]) and as the term uncertainty was for three ages
connected with randomness, in further considerations we will mainly use a more
general term – imperfect information (which includes also randomness).

To view intuitionistic fuzzy sets in a proper perspective and as a tool for repre-
senting imperfect information, it may be expedient to look first at the emergence and
significance of the fuzzy set theory. It was proposed by Zadeh in 1965 as a simple
and efficient tool for representing and processing imprecise concepts and quanti-
ties, exemplified by, say, tall men, large numbers etc. which fall beyond the scope
of conventional precise mathematics, because their very essence is a gradual (not
abrupt) transition between the membership and non-membership of elements in a
set. Zadeh attained this goal by replacing the conventional characteristic function of
the classical ”crisp” set, which takes on its values in {0,1} by the so-called mem-
bership function, which takes on the values in the interval [0,1], allowing for the
representation of membership to a degree.

E. Szmidt, Distances and Similarities in Intuitionistic Fuzzy Sets, 1
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2 1 Introduction

In other words, it is necessary to specify for each element of a fuzzy set a real
value from the unit interval, this value denoting the membership degree of the given
element. Clearly, one can view this requirement to be too strict because for an im-
precise concept we need to specify a precise number. Such a reasoning has led
Goguen [74], [75] to propose the so-called L-fuzzy sets in which the set of val-
ues of the membership function is an ordered set. So, the L-fuzzy sets lower the
requirements on the available information as in L-fuzzy sets one does not need to
know the precise values of the degrees of membership.

The concept of an intuitionistic fuzzy set can be viewed in this perspective as an-
other approach to the definition of a fuzzy set in the case when available information
is not sufficient for the definition of imprecise concept by means of a fuzzy set as
outlined above. The basic assumption of the fuzzy set theory is, namely, that if we
specify the degree of membership of an element in a fuzzy set as a real number from
[0,1], say a, then the degree of its non-membership is automatically determined as
1− a. This assumption need not hold. Instead, in the intuitionistic fuzzy set theory
it is assumed that the value of non-membership should only be at most equal 1− a
(in other words, the sum of membership and non-membership is at most 1). The
difference between the sum of membership and non-membership and the value of
1 lets us express the lack of knowledge (the hesitancy concerning both membership
and non-membership of an element to a set). In this way we can better model impre-
cise information. It is worth emphasizing again that analysis and modeling of any
real world phenomenon or process must take into account various, inherent facets
of imperfect information.

The inevitable connection between imperfect information and decision making
is explained by Shackle [151]:

In a predestinate world, decision would be illusory; in a world of a perfect foreknowl-
edge, empty; in a world without natural order, powerless. Our intuitive attitude to life
implies non-illusory, non-empty, non-powerless decision . . . . Since decision in this
sense excludes both perfect foresight and anarchy in nature, it must be defined as
choice in face of bounded uncertainty.

To deal successfully with imperfect information one needs to have a proper model
to represent the information, and adequate measures making it possible to process
this information. Among such measures the concepts of distance and similarity mea-
sures play the leading role.

One could expect that from the fact that the intuitionistic fuzzy sets are a gen-
eralization of the fuzzy sets, the measures of distances, and similarity between the
intuitionistic fuzzy sets are just straightforward generalizations of their respective
counterparts for the fuzzy sets. We examine carefully this idea, verifying two types
of distances and similarity measures, being the consequences of two types of repre-
sentations of the intuitionistic fuzzy sets.

The first representation of the intuitionistic fuzzy sets takes into account the
membership values and the non-membership values only, and indeed, it is a straight-
forward generalization of the fuzzy sets (additionally taking into account in an ex-
plicit manner the non-membership values). We call it two term representation of the
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intuitionistic fuzzy sets, and consider the corresponding measures of the distances
and similarity measures, which make use of the two terms only.

The second type of representation of the intuitionistic fuzzy sets that we use,
takes into account the membership values, the non-membership values, and the hes-
itation margin values, hence three terms, and so we call it three term representation.
This type of representation generates respective distances, and similarity measures
(which make use of the three terms).

Both types of representations are correct from the mathematical point of view.
The same concerns their corresponding measures. However, from the point of view
of decision making the results we obtain for the respective measures in the cases of
the two types of representations differ. We examine the problem in details.

Another issue we deal with is the well known correspondence (duality) of the
concepts of distance and similarity for crisp sets and for fuzzy sets. We consider
whether just the same interrelations are valid for the intuitionistic fuzzy sets.

We consider here only discrete models.
We are deeply convinced of the usefulness of the intuitionistic fuzzy sets in

widely understood decision making, just because of their natural ability to express
imprecise information (by taking – explicitly – into account the hesitation margins).

This opinion is supported in a sense by the general rule one should have in mind
while constructing a model (the key tool in decision making), i.e., by attempt to
maximize its usefulness. Some helpful hints how to do it are given by Klir and
Wierman [108]:

The aim is closely connected with the relationship among three key characteristics of
every systems model: complexity, credibility, and imprecision. This relationship, which
is a subject of current study in systems science, is not as yet fully understood. We only
know that uncertainty has a pivotal role in any efforts to maximize the usefulness of
systems models. Although usually undesirable when considered alone, imprecision
becomes very valuable when considered in connection to the other characteristics of
systems models: a slight increase in imprecision may often significantly reduce com-
plexity and, at the same time, increase credibility of the model. Imprecision is thus an
important commodity in the modeling business, a commodity which can be treated for
gains in the other essential characteristic of models.

We need only adequate (efficient) tools to express imprecision. The intuitionistic
fuzzy sets seem to be such a tool.

The purpose of this book is first of all to present the state of the art in the area
of quantifying of similarity and distances in the context of the intuitionistic fuzzy
sets. However, it also contains new elements regarding the measures of similarity
and distance, both in terms of new definitions and computational algorithms.

The scope of this book is as follows.
In Chapter 2, first, we briefly present crisp sets, fuzzy sets, and intuitionistic

fuzzy sets. Basic concepts, operations, and relations are given, so as to show that the
intuitionistic fuzzy sets are a generalization of the fuzzy sets.

Next, we consider two types of geometrical representations of the intuitionis-
tic fuzzy sets - taking into account two terms (membership and non-membership
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values), i.e., the 2D representation, and taking into account all three terms (mem-
bership and non-membership values, as well as hesitation margins) characterizing
the intuitionistic fuzzy sets, i.e., the 3D representation.

Next, we discuss interrelationships among crisp sets, fuzzy sets, and intuitionistic
fuzzy sets.

Chapter 2 terminates with two chosen methods of deriving the intuitionistic fuzzy
sets from data. The automatic method provided there may be useful from the point
of view of applications.

Chapter 3 is devoted to distances between the intuitionistic fuzzy sets. Distances
are discussed for two intuitionistic fuzzy set representations, namely the two term
representation (only membership and non-membership values are taken into ac-
count), and the three term representation (membership values, non-membership val-
ues and hesitation margins are accounted for). Both representations are mathemati-
cally correct.

After the basic definitions have been introduced, the norms and metrics over the
intuitionistic fuzzy sets in the two term representation are presented.

Next, the distances between intuitionistic fuzzy sets in the three term represen-
tation are discussed. The geometrical and analytical arguments are presented to in-
dicate why from the decision making point of view the three term representation is
important. Special attention is devoted to Hausdorff distances – it is shown that the
method working well for the interval-valued fuzzy sets does not work properly for
the intuitionistic fuzzy sets. We also show some problems with the Hausdorff dis-
tance when the Hamming metric is applied for the case of the two term intuitionistic
fuzzy set representation.

Chapter 3 ends with a development of application of the distances introduced
in a measure for ranking the intuitionistic fuzzy alternatives. Again, the three term
approach for calculating the distances (i.e. taking into account membership values,
non-membership values, and the hesitation margin values) is shown to be justified
in terms of usefulness.

In Chapter 4 similarity measures between the intuitionistic fuzzy sets are dis-
cussed. Axiomatic relations between fuzzy similarity measures and fuzzy distance
measures are presented. However, it is shown that distance alone does not suffice to
conclude about similarity between the intuitionistic fuzzy sets.

Some similarity measures, proposed in the respective literature, which make use
of the two term representation of the intuitionistic fuzzy sets, are recalled and their
reliability is discussed. Next, another array of similarity measures, making use of
the three term representation of the intuitionistic fuzzy sets and taking into account
the complements of the elements compared, is presented.

Chapter 4 closes with an extended analysis of the Pearson-like correlation coeffi-
cient between the intuitionistic fuzzy sets. The coefficient discussed, like Pearson’s
coefficient between crisp sets, measures how strong is relationship between the intu-
itionistic fuzzy sets, and indicates if the sets are positively or negatively correlated.
Again, all three terms characterizing the intuitionistic fuzzy sets are taken into ac-
count, and importance of each of them is stressed in a series of thorough numerical
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tests on two well known data benchmarks from the UC, Irvine, the Pima Indian
diabetes and Iris data.

Finally, conclusions and bibliography are provided.
We use in this book the term “intuitionistic fuzzy sets”, although there have been

vivid discussion concerning this term in 2005. However, since that time, Profes-
sor Atanassov has published many papers with new operators (especially, but not
uniquely, negations) which support his point of view as far as the name is concerned.
So we do not repeat the old arguments in the new situation (new publications) and
do not wish to start a new discussion about the term. We refer the interested reader
to the new book by Professor Atanassov where the subject is addressed: Atanassov
K.T. On Intuitionistic Fuzzy Sets Theory. Springer-Verlag 2012.



Chapter 2
Intuitionistic Fuzzy Sets as a Generalization
of Fuzzy Sets

Abstract. In the mid-1980s Atanassov introduced the concept of an intuitionistic
fuzzy set. Basically, his idea was that unlike the conventional fuzzy sets in which
imprecision is just modeled by the membership degree from [0,1], and for which
the non-membership degree is just automatically the complementation to 1 of the
membership degree, in an intuitionistic fuzzy set both the membership and non-
membership degrees are numbers from [0,1], but their sum is not necessarily 1.
Thus, one can express a well known psychological fact that a human being who ex-
presses the degree of membership of an element in a fuzzy set, very often does not
express, when asked, the degree of non-membership as the complementation to 1.
This idea has led to an interesting theory whose point of departure is such a concept
of intuitionistic fuzzy set. In this chapter we give brief introduction to intuitionis-
tic fuzzy sets. After recalling main definitions, concepts, operations and relations
over crisp sets, fuzzy sets, and intuitionistic fuzzy sets we discuss interrelationships
among the three types of sets. Two geometrical representations of the intuitionistic
fuzzy sets, useful in further considerations are discussed. Finally, two approaches of
constructing the intuitionistic fuzzy sets from data are presented. First approach is
via asking experts. Second one – the automatic, and mathematically justified method
to construct the intuitionistic fuzzy sets from data seems to be especially important
in the context of analyzing information in big data bases.

2.1 Main Definitions

As Atanassov’s concept of an intuitionistic fuzzy set can be viewed as a generaliza-
tion of a fuzzy set definition in the case when available information is not sufficient
for the definition of an imprecise concept by means of a conventional fuzzy set, we
start from the basic definitions of a set, and of a fuzzy set.

2.1.1 Crisp Sets (Classical Sets)

A set is one of the basic concepts in mathematics. Informally, a set is a collection of
objects (elements) having similar properties (attributes). A classical set A (crisp set)
has sharp boundaries, i.e., there are two possibilities only:

E. Szmidt, Distances and Similarities in Intuitionistic Fuzzy Sets, 7
Studies in Fuzziness and Soft Computing 307,
DOI: 10.1007/978-3-319-01640-5_2, c© Springer International Publishing Switzerland 2014



8 2 Intuitionistic Fuzzy Sets as a Generalization of Fuzzy Sets

– an element x belongs to the set (x ∈ A), or
– an element does not belong to the set (x /∈ A).

A classical set can be expressed by its characteristic function.

Definition 2.1. For a set X and a subset A of X (A ⊆ X) we call

ϕA(x) =

{
1 if x ∈ A
0 if x /∈ A

(2.1)

the characteristic function of the set A in X .

Using the notion of the characteristic function ϕA(x), a crisp set A can be given
as :

A = {< x,ϕA(x)> /x ∈ X} (2.2)

For a conventional (crisp) set an element can not belong “to some extent” to a set.

2.1.2 Fuzzy Sets

A generalization of a crisp set is a fuzzy set. The notion of a fuzzy set was introduced
by Zadeh [254]. A fuzzy set A′ in a universe of discourse X is characterized by
a membership function μA′ which assigns to each element x ∈ X a real number
μA′ (x) ∈ [0,1] expressing the membership grade of x in the fuzzy set A′.

Definition 2.2. (Zadeh [254])
A fuzzy set A′ in X = {x} is given by (Zadeh [254]):

A
′
= {< x,μA′ (x)> /x ∈ X} (2.3)

where μA′ : X → [0,1] is the membership function of the fuzzy set A
′
; μA′ for every

element x ∈ X describes its extent of membership to fuzzy set A
′
.

As mentioned above, a fuzzy set A
′
is a generalization of a conventional (crisp) set

A represented by its characteristic function ϕA : X → {0,1} (2.1). Full membership
of x in A

′
occurs for μ ′

A(x) = 1, full non-membership is for μ ′
A(x) = 0 but opposite

to a classical set other membership degrees are also allowed.
Every crisp set is a fuzzy set. The membership function of a crisp set A ⊆ X can

be expressed as its characteristic function

μA(x) =

{
1 if x ∈ A
0 if x /∈ A

(2.4)

2.1.3 Intuitionistic Fuzzy Sets

The notion of an intuitionistic fuzzy set was introduced by Atanassov (Atanas-
sov [4]). An intuitionistic fuzzy set is a generalization of a fuzzy set.
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Definition 2.3. (Atanassov [4], [6], [15] [22])
An intuitionistic fuzzy set A in X is given by:

A = {< x,μA(x),νA(x)> /x ∈ X} (2.5)

where
μA : X → [0,1]

νA : X → [0,1]

with the condition
0 ≤ μA(x)+νA(x)≤ 1 ∀x ∈ X

The numbers μA(x) and νA(x) denote, respectively, the degrees of membership and
non-membership of the element x ∈ X to the set A.

Obviously, every fuzzy set corresponds to the following intuitionistic fuzzy set:

FS : {< x,μA(x),1− μA(x)> /x ∈ X}. (2.6)

Definition 2.4. (Atanassov [4], [6], [15] [22])
For an intuitionistic fuzzy set A we will call

πA(x) = 1− μA(x)−νA(x) (2.7)

the intuitionistic fuzzy index (hesitation margin) of the element x in the set A. The
πA(x) expresses the lack of knowledge on whether x belongs to A or not.

It is obvious that
0 ≤ πA(x)≤ 1 for every x.

For every fuzzy set A
′
, where x ∈ X

πA(x) = 1− μA′ (x)− [1− μA′(x)] = 0.

The hesitation margin turns out to be important while considering the distances
(Szmidt and Kacprzyk [165], [171], [188], entropy (Szmidt and Kacprzyk [175],
[192]), similarity (Szmidt and Kacprzyk [193]) for the intuitionistic fuzzy sets, i.e.,
the measures that play crucial role in virtually all information processing tasks. The
hesitation margin is shown to be indispensable also in the ranking of intuitionistic
fuzzy alternatives as it indicates how reliable (sure) information presented for an
alternative is (cf. Szmidt and Kacprzyk [198], [205]).

Making use of the intuitionistic fuzzy sets instead of fuzzy sets implies the intro-
duction of additional degrees of freedom (non-memberships and hesitation margins)
into the set description. Such a generalization of fuzzy sets gives us an additional
possibility to represent imprecise knowledge which may lead to describing many
real problems in a more adequate way.

It is woth stressing that from the point of view of the applications, taking into
account the hesitation margins (besides non-membership values) is crucial in many
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areas exemplified by image processing (cf. Bustince et al. [45], [46]), classification
of imbalanced and overlapping classes (cf. Szmidt and Kukier [229], [230], [231]),
group decision making, negotiations, voting and other situations (cf. Szmidt and
Kacprzyk [164], [167], [172], [174], [177], [178], [189]).

Intuitionistic fuzzy sets based models may be adequate mainly in the situations
when we face human testimonies, opinions, etc. involving answers of three types:

– yes,
– no,
– abstaining i.e. which can not be classified (because of different reasons, eg. “I do
not know”, “I am not sure”, “I do not want to answer”, “I am not satisfied with any
of the options” etc.).

Below we present an example given by Atanassov (Atanassov [15]). The example
illustrates the essence of the intuitionistic fuzzy sets, and stresses the differences
between them and the fuzzy sets.

Example 2.1. (Atanassov [15]) Let X be the set of all countries with elective gov-
ernments. Assume that we know for every country x ∈ X the percentage of the elec-
torate who have voted for the corresponding government. Let it be denoted by M(x)

and let μ(x) = M(x)
100 . Let ν(x) = 1− μ(x). This number corresponds to that part of

electorate who have not voted for the government. By means of the fuzzy set the-
ory we cannot consider this value in more detail. However, if we define ν(x) as the
number of votes given to parties or persons outside the government, then we can
show the part of electorate who have not voted at all and the corresponding number
will be 1− μ(x)−ν(x). Thus, we can construct the set {〈x,μ(x),ν(x)〉|x ∈ X} and
obviously, 0 ≤ μ(x)+ν(x)≤ 1. �

2.2 Brief Introduction to Fuzzy Sets

2.2.1 Basic Concepts

A fuzzy set A
′

in X is said to be empty, A
′
= /0, if and only if

μ
′
A(x) = 0, for each x ∈ X (2.8)

Two fuzzy sets A
′
and B

′
in the same universe of discourse X are said to be equal,

i.e., A
′
= B

′
, if and only if

μ
′
A(x) = μ

′
B(x), for each x ∈ X (2.9)

A fuzzy set A
′

defined in X is a subset of a fuzzy set B
′

in X , A
′ ⊆ B

′
, if and only

if
μ

′
A(x)≤ μ

′
B(x), for each x ∈ X (2.10)
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A fuzzy set A
′

defined in X is said to be normal if and only if the membership
function takes on the value of 1 for at least one value of its argument, i.e.

max
x∈X

μ
′
A(x) = 1 (2.11)

Otherwise, a fuzzy set is said to be subnormal.

The support suppA
′

of a fuzzy set A
′

in X is the following (nonfuzzy, i.e. crisp)
set:

suppA
′
= {x ∈ X : μ

′
A(x)> 0} (2.12)

where /0 ⊆ suppA
′ ⊆ X .

The α-cut (or α-level set) Aα , of a fuzzy set A
′

in X is defined as the following
(nonfuzzy) set:

Aα = {x ∈ X : μA(x)≥ α}, for each α ∈ (0,1] (2.13)

and if “≥” in (2.13) is replaced by “>,” then we have the strong α-cut (or strong
α-level set), of a fuzzy set A

′
in X .

The α-cuts are quite important from the point of view of both theory and appli-
cations as they make it possible to uniquely replace a fuzzy set by a sequence of
nonfuzzy sets. More details and properties of α-cuts can be found in any book on
fuzzy set theory (cf. e.g., Dubois and Prade [61], Klir and Folger [107], or Klir and
Yuan [109]).

Another important issue is to define how many elements are contained in a fuzzy
set, i.e. to define its cardinality. The most often used definition is given below.

A nonfuzzy cardinality of a fuzzy set A
′
= μ ′

A(x1)/x1 + · · ·+ μ ′
A(xn)/xn, the so-

called sigma-count ∑Count(A
′
), is defined as (Zadeh [256], [257])

∑Count(A
′
) =

n

∑
i=1

μ
′
A(xi) (2.14)

Other definitions of cardinality making use of α-cuts were proposed by Zadeh [257]
(see also Kacprzyk [97]). More discussion, criticism, and new definitions of cardi-
nality are given by Ralescu [139], and Wygralak [247].

2.2.2 Selected Operations on Fuzzy Sets

Just like in the case of crisp sets, basic operations on fuzzy sets are complement,
union, and intersection. They are defined in terms of the respective membership
functions. The operations presented below correspond to the operations on intu-
itionistic fuzzy sets (cf. Section 2.3.2).

The complement A
′C of a fuzzy set A

′
in X , corresponds to negation “not”, and is

defined as
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μA′C(x) = 1− μ
′
A(x), for each x ∈ X (2.15)

The intersection of two fuzzy sets A
′

and B
′

in X , written A
′ ∩B

′
, corresponds to

the connective “and”, and is defined as

μA′∩B′ (x) = μ
′
A(x)∧μ

′
B(x), for each x ∈ X (2.16)

where “∧” is the minimum operation, i.e. a∧b = min(a,b).
The union of two fuzzy sets A

′
and B

′
in X , written A

′
+B

′
, corresponds to the

connective “or”, and is defined as

μA′
+B′ (x) = μ

′
A(x)∨μ

′
B(x), for each x ∈ X (2.17)

where “∨” is the maximum operation, i.e. a∨b = max(a,b).
More general than the intersection and the union defined above, are so-called

t-norms and s-norms (t-conorms).
A t-norm is defined as

t : [0,1]× [0,1]−→ [0,1] (2.18)

such that, for each a,b,c ∈ [0,1] the following properties are fulfilled:

1. the value 1 is the unit element, i.e.

t(a,1) = a

2. monotonicity, i.e.
a ≤ b =⇒ t(a,c)≤ t(b,c)

3. commutativity, i.e.
t(a,b) = t(b,a)

4. associativity, i.e.
t[a, t(b,c)] = t[t(a,b),c]

A t-norm is monotone non-decreasing in both arguments, and t(a,0) = 0.
Among the most used t-norms there are:

• the minimum
t(a,b) = a∧b = min(a,b) (2.19)

which is the most widely used,
• the algebraic product

t(a,b) = a ·b (2.20)

• Łukasiewicz t-norm
t(a,b) = max(0,a+ b− 1) (2.21)

An s-norm called also t-conorm is defined as
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s : [0,1, ]× [0,1]−→ [0,1] (2.22)

such that, for each a,b,c ∈ [0,1] the following properties are fulfilled:

1. the value 0 is the unit element, i.e.

s(a,0) = a

2. monotonicity
a ≤ b =⇒ s(a,c)≤ s(b,c)

3. commutativity, i.e.
s(a,b) = s(b,a)

4. associativity, i.e.
s[a,s(b,c)] = s[s(a,b),c]

The most used s-norms include:

• the maximum
s(a,b) = a∨b = max(a,b) (2.23)

which is the most widely used,
• the probabilistic product

s(a,b) = a+ b− ab (2.24)

• Łukasiewicz s-norm
s(a,b) = min(a+ b,1) (2.25)

It is worth noticing that a t-norm is dual to an s-norm in that

s(a,b) = 1− t(1− a,1− b) (2.26)

Another concept, crucial from the point of view of theory and application, is
that of a relation. It is discussed both for fuzzy sets and intuitionistic fuzzy sets in
Section 2.3.3.

2.3 Brief Introduction to the Intuitionistic Fuzzy Sets

We will start this section by discussing two geometrical representations of intuition-
istic fuzzy sets. The representation using two terms (membership values and non-
membership values) describing the intuitionistic fuzzy sets leads to the so called 2D
representation. Using three terms (membership values, non-membership values, and
hesitation margins) in the intuitionistic fuzzy set description results in the so called
3D representation.

Other geometrical representations of the intuitionistic fuzzy sets are given by
Atanassov [12], [13], [14], [15], [22]).

Later on, basic operators and relations over the intuitionistic fuzzy sets will be
discussed.
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2.3.1 Two Geometrical Representations of the Intuitionistic Fuzzy
Sets

Having in mind that for each element x belonging to an intuitionistic fuzzy set A,
the values of membership, non-membership and the intuitionistic fuzzy index sum
up to one, i.e.

μA(x)+νA(x)+πA(x) = 1 (2.27)

and that each of the membership, non-membership, and the intuitionistic fuzzy in-
dex belongs to [0,1], we can imagine a unit cube (Figure 2.1) inside which there is an
MNH triangle where the above equation is fulfilled (Szmidt and Kacprzyk [171]).

 

 

 

H(0,0,1)

O(0,0,0) M(1,0,0)

N(0,1,0)

x '

x
X

Fig. 2.1 Geometrical representation in 3D

In other words, the MNH triangle represents a surface where coordinates of any
element belonging to an intuitionistic fuzzy set can be represented. Each point be-
longing to the MNH triangle is described via three coordinates: (μ ,ν,π). Points
M and N represent crisp elements. Point M(1,0,0) represents elements fully be-
longing to an intuitionistic fuzzy set as μ = 1. Point N(0,1,0) represents elements
fully not belonging to an intuitionistic fuzzy set as ν = 1. Point H(0,0,1) repre-
sents elements about which we are not able at all to say if they belong or not to an
intuitionistic fuzzy set (intuitionistic fuzzy index π = 1). Such an interpretation is
intuitively appealing and provides means for the representation of many aspects of
imperfect information. The segment MN (where π = 0) represents elements belong-
ing to classical fuzzy sets (μ +ν = 1).
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Fig. 2.2 Geometrical representation in 2D

Any other combination of the values characterizing an intuitionistic fuzzy set can
be represented inside the triangle MNH. In other words, each element belonging to
an intuitionistic fuzzy set can be represented as a point (μ ,ν,π) belonging to the
triangle MNH (Figure 2.1).

It is worth mentioning that the geometrical interpretation is directly related to the
definition of an intuitionistic fuzzy set introduced by Atanassov [4], [15], and it does
not need any additional assumptions.

Remark: We use the capital letters (e.g., M, N, H) for the geometrical representa-
tion of xi’s (Figure 2.2) on the plane. The same notation (capital letters) is used in
this book for sets, but we always explain the current meaning of a symbol used.

Another possible geometrical representation of an intuitionistic fuzzy set can be
in two dimensions (2D) – Figure 2.2 (cf. Atanassov [15]). It is worth noticing that
although we use a 2D figure (which is more convenient to draw in many cases),
we still adopt our approach (e.g., Szmidt and Kacprzyk [171], [188], [175], [192],
[193], [218]) taking into account all three terms (membership, non-membership and
hesitation margin values) describing the intuitionistic fuzzy sets. As previously, any
element belonging to an intuitionistic fuzzy set may be represented inside an MNO
triangle (O is projection of H in Figure 2.1). Each point belonging to the MNO
triangle is still described by the three coordinates: (μ ,ν,π), and points M and N
represent, as previously, crisp elements. Point M(1,0,0) represents elements fully
belonging to an intuitionistic fuzzy set as μ = 1, and point N(0,1,0) represents el-
ements fully not belonging to an intuitionistic fuzzy set as ν = 1. Point O(0,0,1)
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0,0,1H

0,0,0O 1,0,0M

0,1,0N

x
'

x
''

0,0O=H 1,0M

0,1N

x
'''

0

NO=H � M

1

2

X

Fig. 2.3 Illustration of the interrelations between 3D and 2D representations of intuitionistic
fuzzy sets
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represents elements about which we cannot say if they belong or not to an intuition-
istic fuzzy set (the intuitionistic fuzzy index π = 1). Segment MN (where π = 0)
represents elements belonging to the classic fuzzy sets (μ + ν = 1). For example,
point x1(0.2,0.8,0) (Figure 2.2), like any element of the segment MN, represents an
element of a fuzzy set. A line parallel to MN describes the elements with the same
values of the hesitation margin. In Figure 2.2 we can see point x3(0.5,0.1,0.4) rep-
resenting an element with the hesitation margin equal 0.4, and point x2(0.2,0,0.8)
representing an element with the hesitation margin equal 0.8. The closer a line that
is parallel to MN is to O, the higher the hesitation margin.

In Figure 2.3 (Szmidt [158]) relations between the 2D and 3D representations are
presented. It is worth stressing that 2D representation of the intuitionistic fuzzy sets
(Figure 2.2), i.e., the triangle MNO is the orthogonal projection of the triangle MNH
(3D representation – Figure 2.1) on the plane (Figure 2.3, the upper and the middle
parts). The orthogonal projection transfers x

′ ∈ MNH into x
′′ ∈ MNO. Segment MN

represents a fuzzy set described by μ and ν .
The orthogonal projection of the segment MN on the axis μ (the segment [0, 1]

is only considered) gives the fuzzy set represented by μ only (Figure 2.3, its bottom
part). This orthogonal projection transfers x

′′ ∈ MNO into x
′′′ ∈ OM.

2.3.2 Operations Over the Intuitionistic Fuzzy Sets

This section contains results introduced by Atanassov [15] on operations and rela-
tions over the intuitionistic fuzzy sets. The point of departure is constituted by the
respective definitions of relations and operations over fuzzy sets which are extended
here. In the reverse perspective, relations and operations on fuzzy sets turn out to be
particular cases of these new definitions.

Here is the definition of basic relations and operations on intuitionistic fuzzy sets.

Definition 2.5. (Atanassov [15])
For every two intuitionistic fuzzy sets A and B the following relations and operations
can be defined (“iff” means “if and only if”):

A = B iff (∀x ∈ X)(μA(x) = μB(x)&νA(x) = νB(x)), (2.28)

AC = {〈x,νA(x),μA(x)〉|x ∈ X}, (2.29)

A∩B = {〈x,min(μA(x),μB(x)),max(νA(x),νB(x))〉|x ∈ X}, (2.30)

A∪B = {〈x,max(μA(x),μB(x)),min(νA(x),νB(x))〉|x ∈ X}, (2.31)

A+B = {〈x,μA(x)

+μB(x)− μA(x).μB(x),νA(x).νB(x)〉, | x ∈ X} (2.32)
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A.B = {〈x,μA(x).μB(x),νA(x)

+νB(x)−νA(x).νB(x)〉 | x ∈ X}, (2.33)

A@B = {〈x,(μA(x)+ μB(x))
2

,
(νA(x)+νB(x))

2
〉|x ∈ X}, (2.34)

A$B = {〈x,
√

μA(x).μB(x),
√

νA(x).νB(x)〉|x ∈ X}, (2.35)

A∗B = {〈x, μA(x)+ μB(x)
2.(μA(x).μB(x)+ 1)

,

νA(x)+νB(x)
2.(νA(x).νB(x)+ 1)

〉|x ∈ X}, (2.36)

A �� B = {〈x,2. μA(x).μB(x)
μA(x)+ μB(x)

,2.
νA(x).νB(x)

(νA(x)+νB(x)
〉|x ∈ X}, (2.37)

for which we will accept that if

μA(x) = μB(x) = 0, then
μA(x).μB(x)

μA(x)+ μB(x)
= 0

and if νA(x) = νB(x) = 0, then
νA(x).νB(x)

νA(x)+νB(x)
= 0.

Operations (2.28)–(2.37) have also their counterparts in the fuzzy set theory.

Example 2.2. (Atanassov [15])
Let X = {a,b,c,d,e}, let the intuitionistic fuzzy sets A and B have the form
{< xi,μ(xi),ν(xi)>}:

A = {〈a,0.5,0.3〉,〈b,0.1,0.7〉,〈c,1.0,0.0〉,〈d,0.0,0.0〉,〈e,0.0,1.0〉},

B = {〈a,0.7,0.1〉,〈b,0.3,0.2〉,〈c,0.5,0.5〉,〈d,0.2,0.2〉,〈e,1.0,0.0〉}.
Then

A = {〈a,0.3,0.5〉,〈b,0.7,0.1〉,〈c,0.0,1.0〉,〈d,0.0,0.0〉,〈e,1.0,0.0〉},

A∩B = {〈a,0.5,0.3〉,〈b,0.1,0.7〉,〈c,0.5,0.5〉,〈d,0.0,0.2〉,〈e,0.0,1.0〉},

A∪B = {〈a,0.7,0.1〉,〈b,0.3,0.2〉,〈c,1.0,0.0〉,〈d,0.2,0.0〉,〈e,1.0,0.0〉},

A+B = {〈a,0.85,0.03〉,〈b,0.37,0.14〉,〈c,1.0,0.0〉,〈d,0.2,0.0〉,
〈e,1.0,0.0〉},
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A.B = {〈a,0.35,0.37〉,〈b,0.03,0.76〉,〈c,0.5,0.5〉,〈d,0.0,0.2〉,
〈e,0.0,1.0〉},

A@B = {〈a,0.6,0.2〉,〈b,0.2,0.45〉,〈c,0.75,0.25〉,〈d,0.1,0.1〉,
〈e,0.5,0.5〉},

A$B = {〈a,0.591...,0.173...〉,〈b,0.173...,0.374...〉,〈c,0.0707...,0.0〉,
〈d,0.0,0.0〉,〈e,0.0,0.0〉},

A∗B = {〈a,0.444...,0.194...〉,〈b,0.194...,0.394...〉,〈c,0.5,0.5〉,
〈d,0.1,0.1〉,〈e,0.5,0.5〉},

A �� B = {〈a,0.583...,0.15〉,〈b,0.15,0.311...〉,〈c,0.666...,0.0〉,
〈d,0.0,0.0〉,〈e,0.0,0.0〉}.

�

Proposition 2.1. (Atanassov [15])
For every three intuitionistic fuzzy sets A,B and C, following properties hold: :

A∩B = B∩A, (2.38)

A∪B = B∪A, (2.39)

A+B = B+A, (2.40)

A.B = B.A, (2.41)

A@B = B@A, (2.42)

A$B = B$A, (2.43)

A �� B = B �� A, (2.44)

A∗B = B∗A, (2.45)

A∩B)∩C = A∩ (B∩C), (2.46)

(A∪B)∪C = A∪ (B∪C), (2.47)

(A+B)+C = A+(B+C), (2.48)
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(A.B).C = A.(B.C), (2.49)

(A∩B)∪C = (A∪C)∩ (B∪C), (2.50)

(A∩B)+C = (A+C)∩ (B+C), (2.51)

(A∩B).C = (A.C)∩ (B.C), (2.52)

(A∩B)@C = (A@C)∩ (B@C), (2.53)

(A∩B) ��C = (A ��C)∩ (B ��C), (2.54)

(A∪B)∩C = (A∩C)∪ (B∩C), (2.55)

(A∪B)+C = (A+C)∪ (B+C), (2.56)

(A∪B).C = (A.C)∪ (B.C), (2.57)

(A∪B)@C = (A@C)∪ (B@C), (2.58)

(A∪B) ��C = (A ��C)∪ (B ��C), (2.59)

(A+B).C ⊂ (A.C)+ (B.C), (2.60)

(A+B)@C ⊂ (A@C)+ (B@C), (2.61)

(A.B)+C ⊃ (A+C).(B+C), (2.62)

(A.B)@C ⊃ (A@C).(B@C), (2.63)

(A@B)+C = (A+C)@(B+C), (2.64)

(A@B).C = (A.C)@(B.C), (2.65)

A∩A = A, (2.66)
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A∪A = A, (2.67)

A@A = A, (2.68)

A$A = A, (2.69)

A �� A = A, (2.70)

A∩B = A∪B, (2.71)

A∪B = A∩B, (2.72)

A+B = A.B, (2.73)

A.B = A+B, (2.74)

A@B = A@B, (2.75)

A$B = A$B, (2.76)

A �� B = A �� B, (2.77)

A∗B = A∗B. (2.78)

2.3.2.1 The “necessity” and “possibility” Operators

The operators over intuitionistic fuzzy sets, presented above, correspond to the re-
spective operators over fuzzy sets. Here we present two operators introduced by
Atanassov in 1983, which are “meaningless” (Atanassov [4], [15]) in the case of
fuzzy sets.

Definition 2.6. (Atanassov [4], [15]) Let us define, for every intuitionistic fuzzy set
A, the following operators:

• the necessity operator

A = {〈x,μA(x),1− μA(x)〉|x ∈ X}, (2.79)
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• the possibility operator
♦A = {〈x,1−νA(x),νA(x)〉|x ∈ X}. (2.80)

If A is a classical fuzzy set, then

A = A =♦A. (2.81)

From (2.81) it follows that both “ ” (2.79) and “♦” (2.80) are meaningless for
a fuzzy set. Atanassov [15] considers in length the properties, modifications, and

extensions of “ ” (2.79) and “♦” (2.80). Here we only recall their two extensions.
Let α ∈ [0,1] be a fixed number.

Definition 2.7. (Atanassov [15]) Given an intuitionistic fuzzy set A, an operator Dα
is defined as follows:

Dα(A) = {〈x,μA(x)+α.πA(x),νA(x)+ (1−α).πA(x)〉|x ∈ X} (2.82)

where α ∈ [0,1].

From definition 2.7 we see that Dα(A) is a fuzzy set, namely:

μA(x)+α.πA(x)+νA(x)+ (1−α).πA(x) = μA(x)+νA(x)+πA(x) = 1.

Several interesting properties of Dα(A) (2.82) are given by proposition 2.2:

Proposition 2.2. (Atanassov [15]) For every intuitionistic fuzzy set A and for every
α,β ∈ [0,1]:

if α < β , then Dα(A)⊂ Dβ (A), (2.83)

D0(A) = A, (2.84)

D1(A) = ♦A. (2.85)

The operator Dα is a generalization of the operators “necessity” and “possibil-
ity”. The operator Dα has been be extended even further. Namely, Atanassov [15]
introduced operator Fα ,β (2.86).

Let α,β ∈ [0,1] and α +β<1.

Definition 2.8. (Atanassov [7]) The operator Fα ,β , for an intuitionistic fuzzy set A,
is defined as:

Fα ,β (A) = {〈x,μA(x)+α.πA(x),νA(x)+β .πA(x)〉|x ∈ X}. (2.86)

The above operators are not only important from the theoretical point of view (in-
dicating that the intuitionistic fuzzy sets are a generalization of the fuzzy sets) but
they are also important from the point of view of applications. The operator Dα(A)
was applied in constructing a classifier recognizing imbalanced classes (Szmidt and
Kukier [229], [230], [231]). The operator Fα ,β has been applied for image recogni-
tion (Bustince et al. [131], [46], [48]).
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2.3.3 Intuitionistic Fuzzy Relations

As it was shown (cf. definitions in Section 2.1), one term, i.e., membership function,
fully describes a fuzzy set, whereas two terms are necessary when we discuss the
intuitionistic fuzzy sets. Similar differences hold when we define a fuzzy relation
and an intuitionistic fuzzy relation.

Definition 2.9. A fuzzy relation between two non-fuzzy sets X = {x} and Y = {y}
is defined on a Cartesian product X ×Y , i.e. R ⊂ X ×Y = {(x,y) : x ∈ X ,y ∈Y}, and
given by

R = {< (x,y),μR(x,y)> /x ∈ X ,y ∈ Y} (2.87)

where μR : X ×Y → [0,1] is a membership function of a fuzzy relation R assigning to
every pair (x,y), x ∈ X , y ∈ Y , its degree of membership μR(x,y) ∈ [0,1] describing
the measure of intensity of a fuzzy relation R between x and y.

Example 2.3. If X = {Al,Bob,Clark} and Y = {Paul,Jim}, the fuzzy relation R
labelled “resemblance” may be exemplified by

R = (Al,Paul)/0.5+(Al,Jim)/0.3+(Bob,Paul)/0.6+

+ (Bob,Jim)/0.4+(Clark,Paul)/0.9+(Clark,Jim)/0.1

to be read as: there is resemblance between Paul and Clark (with respect to “our
own” subjective aspects) to degree 0.9, i.e. to a very high extent, and rather low
resemblance between Jim and Clark - to degree 0.1 only, etc.

Any fuzzy relation (in a finite X ×Y ) may be represented in a matrix form. The
following matrix corresponds to the above relation “resemblance”

R = [ri j] =

Paul Jim
Al 0.5 0.3
Bob 0.6 0.4
Clark 0.9 0.1

�

Taking into account the definition of intuitionistic fuzzy set, the definition of an
intuitionistic fuzzy relation R can be introduced as a counterpart of fuzzy relation.

Definition 2.10. (Atanassov [5], [23], [15])
An intuitionistc fuzzy relation between two non-fuzzy sets X = {x} and Y = {y} is
defined on a Cartesian product X ×Y , i.e. R ⊂ X ×Y = {(x,y) : x ∈ X ,y ∈ Y}, and
given by

R = {< (x,y),μR(x,y),νR(x,y)> /x ∈ X ,y ∈ Y} (2.88)

with the condition

0 ≤ μA(x)+νA(x)≤ 1 ∀x ∈ X ,y ∈ Y
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where μR - as before, νR : X ×Y → [0,1] is a non-membership function of a fuzzy
relation R assigning to every pair (x,y), x ∈ X , y ∈Y , its degree of non-membership
νR(x,y) ∈ [0,1], being the measure of falsity of a fuzzy relation R between x and y.

Therefore, an intuitionistic fuzzy relation is described by any two terms from the
triplet: membership function, non-membership function, intuitionistic fuzzy index
function.

Example 2.4. If X = {Bob,Peter} and Y = {Liz,Jim,John}, the intuitionistic fuzzy
relation R labelled “cooperation” while preparing a new project, may be given as
{(x,y), μR(x,y),πR(x,y)}, i.e. intuitionistic fuzzy relation can be also described by
giving πR(x,y) instead of νR(x,y)

R = (Bob,Liz)/1,0+(Bob,Jim)/0.7,0.2+(Bob,John)/0.5,0.3+

+ (Peter,Liz)/0.7,0.2+(Peter,Jim)/0.9,0+(Peter,John)/0.4,0.5

or, in a matrix form

μR =

Bob Peter
Liz 1 0.7
Jim 0.7 0.9
John 0.5 0.2

πR =

Bob Peter
Liz 0 0.2
Jim 0.2 0
John 0.3 0.8

to be read as: excellent cooperation between Bob and Liz is foreseen (to the highest
degree: 1), and any difficulties are not expected (π = 0) about their cooperation.
Peter and Jim usually cooperate to a very high extent (to degree 0.9) but in a very
rare situations it is known that they have quite different opinions (π = 0 which means
ν = 0.1). Peter and John usually at the beginning do not agree (μ = 0.2 only), but
they are open for arguments (π = 0.8) so it is possible in almost all cases to convince
them to go for the same goal, etc. �

2.4 Interrelationships: Crisp Sets, Fuzzy Sets, Intuitionistic
Fuzzy Sets

On the basis of the definitions and properties presented in this chapter, the following
conclusions can be drawn:

• A membership function fully describes a fuzzy set (by specifying a membership
function we automatically know the non-membership function).

• If we want to describe fully an intuitionistic fuzzy set, we must use any two terms
from the triplet: {membership function, non-membership function, intuitionistic
fuzzy index function}.

In other words, applying intuitionistic fuzzy sets instead of fuzzy sets means
introducing another degree of freedom into the set description (apart from a function
μA there appears a function νA or πA).
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Crisp
sets

FS

IFS

Fig. 2.4 An illustration of interrelations among conventional sets, fuzzy sets (FS) and intu-
itionistic fuzzy sets (IFS)

Interrelations among conventional sets, fuzzy sets (FS) and intuitionistic fuzzy
sets (IFS) are given in Figure 2.4.

The meaning of Figure 2.4 is explained in Figure 2.5. For a crisp set, two points
only in the coordinate system given in Figure 2.5 can represent the elements belong-
ing to such a set. As an element corresponding to a crisp set fully belongs or fully
does not belong to a crisp set, only the point with coordinates: μ = 1 and ν = 0 (fully
belonging), or another point: μ = 0 and ν = 1 (fully not-belonging) can represent
the elements from crisp sets. The case is illustrated in the upper part of Figure 2.5.

In the case of a fuzzy set, because of the fact that μ +ν = 1, besides previously
described points (fully belonging, and fully not-belonging), also the entire segment
connecting these points can be an image of elements belonging to a fuzzy set. The
middle part of Figure 2.5 illustrates this fact.

Finally, for an intuitionistic fuzzy set, because of the condition: 0 ≤ μ + ν ≤ 1,
not only the points described above (the segment with its ends), but also the interior
of the shaded triangle at the bottom part of Figure 2.5 can represent the elements
belonging to an intuitionistic fuzzy set. Every one of the parallel lines (inside the
triangle) is an image of the elements with the same value of intuitionistic fuzzy
index.

In the above sense, the intuitionistic fuzzy sets contain fuzzy sets which, in turn,
contain conventional (crisp) sets (cf. Figure 2.4). In terms of information it means
that in the case of

• crisp sets – information is complete (elements fully belong or fully do not belong
to a crisp set),

• fuzzy sets – information is also complete but the elements can belong to a fuzzy
set to some degree; knowing the degree to which the elements belong to a fuzzy
set (μ), we immediately know the degree to which they do not belong to the set
(1− μ),
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crisp set :

FS :
1

:IFS
10

Fig. 2.5 Comparison of the possible images (in the same coordinate system) of elements
belonging to crisp sets, fuzzy sets (FS) and intuitionistic fuzzy sets (IFS)

• intuitionistic fuzzy sets – information may be not complete because of the intu-
itionistic fuzzy indices; on the other hand, using the intuitionistic fuzzy sets we
may express the same information as via crisp sets or fuzzy sets (cf. Figures 2.4
and 2.5).

In the next section, starting from relative frequency distributions, we describe the
automatic algorithm of deriving the intuitionistic fuzzy sets from data (Szmidt and
Baldwin [162]).
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2.5 Deriving the Intuitionistic Fuzzy Sets from Data

In order to apply the intuitionistic fuzzy sets, which seem to be a very good tool
for representation and processing of imperfect information, one should be able to
construct their membership and non-membership functions. In this section we pro-
pose two ways of deriving the membership and non-membership functions for the
intuitionistic fuzzy sets:

a) by asking experts;
b) from relative frequency distributions (histograms).

The second (automatic) method is justified by some similarities/parallels between
intuitionistic fuzzy set theory and mass assignment theory – a well known tool for
dealing with both probabilistic and fuzzy uncertainties. We also recall a semantic for
membership functions – the interpretation having its roots in the possibility theory.
Both mass assignment theory and a semantic interpretation of the membership func-
tions made it possible to construct the automatic algorithm assigning the functions
describing the intuitionistic fuzzy sets.

Uncertainty was identified and expressed for several centuries (starting from the
mid-seventeenth century) in terms of probability theory only. Uncertainty was a
synonym of randomness. This situation changed in the 1960s when other theories,
distinct from probability theory, characterizing different aspects of uncertain situ-
ations, were introduced. Uncertainty started to be perceived as a multidimensional
concept for which randomness became one of its dimension only. Other components
turned out equally important from the point of view of representing and processing
information.

The theory of fuzzy sets (Zadeh [254]), theory of evidence (Dempster-Shafer the-
ory [59, 150]), possibility theory (Zadeh [256]), theory of fuzzy measures (Sugeno
[155]) became the most visible theories dealing with different aspects of uncertainty.
Here we explore two of the theories dealing with widely understood uncertainty,
namely, intuitionistic fuzzy set theory (Atanassov [4]) which is a generalization of
fuzzy set theory, and mass assignment theory (Baldwin [30, 29]) related to the the-
ory of evidence (but the constraint that m(0) = 0 is not imposed). The theory of mass
assignment we apply also differs from the Dempster-Shafer theory of evidence since
the method of combining mass assignments is different. The theory discussed here
is consistent with probability theory.

We start from showing some similarities/parallels between intuitionistic fuzzy set
theory [Atanassov [6, 15]] and mass assignment theory (Baldwin [30], Baldwin et
al. [38, 35]). The similarities we stress do not mean that one of the theories could
replace the other or is better. To the contrary, the similarities we show seem to be
important from the point of view of further development of both theories. Here,
the noticed similarities made it possible to construct an algorithm of the automatic
derivation of the membership and non-membership functions for intuitionistic fuzzy
sets.

Making use of positive and (independently given) negative information, which
is the core of the intuitionistic fuzzy set approach, is natural in real life, and as an
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obvious consequence, is well-known in psychology [e.g., Sutherland [157], Kah-
neman [98]]. The idea also attracted attention of the scientists in soft computing.
It would be difficult to deal with machine learning (making use of examples and
counter-examples), modeling of preferences or voting without taking into account
positive and (independent) negative data.

Atanassov and Gargov [24]) noticed in 1989 that from the mathematical point
of view intuitionistic fuzzy sets are equipollent to interval-valued fuzzy sets. How-
ever, from the point of view of solving problems (starting from the stage of collect-
ing data), both kind of sets are different. The intuitionistic fuzzy sets make a user
consider independently positive and negative information whereas when employing
interval-valued fuzzy sets, user’s attention is focused on positive information (in
an interval) only. This fact, strongly connected with a psychological phenomenon
called by the Nobel Prize winner Kahneman (cf. Kahneman [98]) “bounded ratio-
nality” (see also Sutherland [157]), caused among others by the fact that people
tend to notice and take into account only most obvious aspects (e.g. advantages
only), places the intuitionistic fuzzy sets among the up-to-date means of knowledge
representation and processing.

To apply the intuitionistic fuzzy sets one should be able to assign respective mem-
bership values and non-membership values. Here we discuss two ways of assigning
the membership and non-membership values for the intuitionistic fuzzy sets: by
asking experts, and from the relative frequency distributions (histograms).

The models applying the intuitionistic fuzzy sets may be especially useful in
the situations when we face human testimonies, opinions, etc. involving answers of
three types:

– yes,
– no,
– abstaining, i.e. such that can not be classified in the former two (because of differ-
ent reasons, eg. “I do not know”, “I am not sure”, “I do not want to answer”, “I am
not satisfied with any of the options”, etc.).

Example 2.5. (Szmidt and Baldwin [162]) Let us assume that each individual xi

from a set X of n individuals who vote for/against building of nuclear power
plant (electors voting for/against a given candidate or his opponent, judges voting
for/against acquittal, consumers expressing/not expressing interest in buying a prod-
uct) belongs to

• a set of individuals (judges, electors) voting for – to the extent μ(xi),
• a set of individuals voting against – to the extent ν(xi).

It is worth emphasizing that by means of the fuzzy set theory it is not possible
to consider the situation in more details. By means of intuitionistic fuzzy set theory
we can also point out

• a set of individuals who did not answer neither “yes” nor “no”– to the extent
π(xi),
whereas: μA(x)+νA(x)+πA(x) = 1; π(xi) is an intuitionistic fuzzy index.
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From the point of view of e.g. market analysts (election committees) it seems
rather interesting to be able to assess the above data in terms of the possible final
results of voting, by giving intervals containing

• probability of voting for
Prf or ∈ [μ ,μ +π ]

where:

μ =
1
n

n

∑
i=1

μ (xi)

π =
1
n

n

∑
i=1

π (xi)

• probability of voting against

Pragainst ∈ [ν,ν +π ]

where:

ν =
1
n

n

∑
i=1

ν (xi)

with the condition Prf or +Pragainst = 1.

Interpreting the above results in terms of mass assignment (see Section 2.5.2) we
could say that the necessary support for is equal to μ , the necessary support against
is equal to ν , whereas the possible support for (the best possible result) Pos+ is
equal to μ +π , and the possible support against (the worst possible result) Pos− is
equal to ν +π .

It is necessary to stress that we have made a simplifying assumption in the above
example by assigning a sign of equality to probabilities and memberships/non-
memberships. This assumption is valid under the condition that each value of
membership/non-membership occurs with the same probability for each xi. Here,
for the sake of simpler notation, we follow this assumption. However, in general,
probabilities for the intuitionistic fuzzy sets are calculated as discussed in (Szmidt
and Kacprzyk [169, 170]) and recalled by Definitions 2.11 and 2.12.

Definition 2.11. (Szmidt and Kacprzyk [169, 170]) By an intuitionistic fuzzy event
A we will mean an intuitionistic fuzzy subset belonging to the elementary event
space X , i.e. A ⊂ X whose membership function μA(x), non-membership function
νA(x), and intuitionistic fuzzy index πA(x) are Borel measurable.

Definition 2.12. (Szmidt and Kacprzyk [169, 170]) Let us assign to every element
of an intuitionistic fuzzy event A⊂X = {x1, ...,xn} (where X is the elementary event
space) its probability of occurrence, i.e. p(x1) , ..., p(xn).
Minimal probability pmin(A) of an intuitionistic fuzzy event A is equal to

pmin(A) =
n

∑
i=1

p(xi)μ(xi)
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Maximal probability of an intuitionistic fuzzy event A is equal to

pmax(A) = pmin(A)+
n

∑
i=1

p(xi)π(xi)

so probability of an event A is a number from the interval [pmin(A), pmax(A)], or

p(A) ∈ [
n

∑
i=1

pA(xi)μA(xi),
n

∑
i=1

pA(xi)μA(xi)+

+
n

∑
i=1

pA(xi)πA(xi)], (2.89)

probability of a complement event AC is a number from the interval [pmin(AC),
pmax(AC)], or

p(AC) ∈ [
n

∑
i=1

pA(xi)νA(xi),
n

∑
i=1

pA(xi)νA(xi)+

+
n

∑
i=1

pA(xi)πA(xi)] (2.90)

Applications of the intuitionistic fuzzy sets to group decision making, negotia-
tions and other real situations are presented, e.g., in (Szmidt and Kacprzyk [163,
164, 167, 173, 177, 178, 179, 182]).

The question arises how to derive the membership and non-membership
functions.

2.5.1 Derivation of the Intuitionistic Fuzzy Sets by Experts

We will discuss the problem of deriving membership and non-membership functions
for the intuitionistic fuzzy models in the simplest case – when one person considers
one decision only (this simple case can be easily extended to more complicated
situations - with more persons and more decisions).

Assume that somebody considers a problem of changing his/her job. To decide
if a new job is interesting enough to give up a previous one it seems reasonable to
prepare a whole list of questions. The list would depend on the personal preferences
but in general the following questions presented in Table 2.1 seem to be important
(Szmidt and Baldwin [162].

Assuming that all the questions are equally important in Table 2.1, we can imme-
diately conclude how to evaluate the considered case – just by summing up:

• all the positive answers (7/12) - this is the value of the membership for the con-
sidered option,

• all the negative answers (3/12) - this is the value of the non-membership for the
considered option,
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Table 2.1 The questions considered when changing a job

No Questions +/?/−
1 Is the job interesting +

2 Salaries −
3 Possibilities of promotion ?
4 Expected pension −
5 Number of hours spent in work ?
6 Holidays – how long +

7 Is the work safe +

8 Responsibility +

9 Time of the travel: home–work −
10 Social reputation +

11 Necessary creativity +

12 Connected stress +

• all the answers for which it was impossible to say “yes” or “not” (2/12) - this is
the value of the intuitionistic fuzzy index for the considered option.

We can notice that employing the intuitionistic fuzzy sets just forces an indi-
vidual to consider both advantages (membership values) and disadvantages (non-
membership values) of a considered solution. Next, the imprecise area is taken into
account as well. The importance of such an approach lies in the fact that most peo-
ple concentrate usually on one or two “most visible” aspects of a problem. They do
not try to find out the contrary arguments or to consider uncertain (in wide sense,
i.e. not restricted to randomness) aspects of a situation (cf. Sutherland [157]).

The structure of the intuitionistic fuzzy sets make us consider a situation/problem
taking into account more aspects. We refer again an interested reader to (Szmidt and
Kacprzyk [163, 164, 167, 173, 177, 178, 179, 182]) where we exploit this fact - us-
ing the intuitionistic fuzzy sets to group decision making. In short, the problem boils
down to selecting an option or a set of options which are best accepted by most of
the individuals. The options are considered in pairs. Employing the intuitionistic
fuzzy sets forces each individual to look at each pair (i,j) of the options considering:
advantages of the first option over the second one (membership value), disadvan-
tages of the first option over the second one (non-membership value), and taking
into account lack of knowledge (intuitionistic fuzzy index) as far as the two options
are concerned. In other words, the intuitionistic fuzzy sets force a user to explore
a problem from different points of view – including all important aspects which
should be taken into account but, unfortunately, are often omitted by people mak-
ing decisions. This fact, strongly connected with a phenomenon called by the Nobel
Prize winner Kahneman (cf. Kahneman [98]) “bounded rationality”, caused, in par-
ticular, by the framing effect (explained in terms of salience and anchoring, playing
a central role in treatment of judgements and choice), makes the intuitionistic fuzzy
sets a highly effective means of knowledge representation and processing.
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2.5.2 Automatic Method of Deriving Intuitionistic Fuzzy Sets
from Relative Frequency Distributions (Histograms)

Baldwin (Baldwin [30], Baldwin et al. [38, 35]) developed the theory of mass as-
signment to provide a formal framework for manipulating both probabilistic and
fuzzy uncertainty.

A fuzzy set can be converted into a mass assignment (Baldwin [28], Dubois and
Prade [62]). This mass assignment represents a family of probability distributions.

Definition 2.13. (Mass Assignment) (Baldwin et al. [29], [35], [32], [37]) Let A
′
be

a fuzzy subset of a finite universe X such that the range of the membership function
of A

′
, is {μ1, ...,μn} where μi > μi+1. Then the mass assignment of A

′
denoted mA′ ,

is a probability distribution on 2X satisfying

mA′ (Fi) = μi − μi+1 where Fi = {x ∈ X |μ(x)≥ μi}
for i = 1, ...,n (2.91)

We call the sets F1, ...,Fn the focal elements of mA′ . The details of mass assignment
theory are presented by Baldwin et al. [38].

Example 2.6. (Baldwin [31])
For X = {x1, x2, x3, x4},
if A

′
= x1/1+ x2/0.7+ x3/0.4+ x4/0.3

then the associated mass assignment is
mA′ = x1 : 0.3, {x1, x2}= 0.3, {x1, x2, x3}= 0.1, {x1, x2, x3, x4}= 0.3

The basic representation of uncertainty in the language FRIL [Baldwin et al. [38,
32]) are the so called Support Pairs which are associated with mass assignments
and represent intervals containing unknown probabilities. Support Pairs are used to
characterize uncertainty in facts and conditional probabilities in rules. A Support
Pair (n, p) comprises a necessary and possible support and can be identified with an
interval in which the unknown probability lies. Baldwin and Pilsworth [33] gave a
voting interpretation of a support pair – the lower (necessary) support n represents
the proportions of a sample population voting in favor of a proposition, whereas
(1− p) represents the proportion voting against; (p− n) represents the proportion
abstaining.

On the other hand, considering a voting model in terms of the intuitionistic fuzzy
sets, [cf. Example 2.1 (Atanassov [15])] we have

• the membership values μ are equal to the proportion of a sample population
voting in favour of a proposition,

• the non-membership values ν are equal to the proportion of a sample population
voting against,

• the values of the hesitation margin π represents the proportion abstaining.

The interpretation of the parameters from Baldwin’s voting model, and from in-
tuitionistic fuzzy set (abbreviated IFS) voting model is presented in Table 2.2.
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Table 2.2 Equality of the parameters for Baldwin’s voting model and IFS voting model

Baldwin’s voting model IFS voting model
voting in favour n μ
voting against 1− p ν
abstaining p−n π

In other words, we can represent a Support Pair (n, p) using notation of the intu-
itionistic fuzzy sets by the following simple expression (Szmidt and Baldwin [162],
[159], [160]):

(n, p) = (n,n+ p− n)= (μ ,μ +π) (2.92)

i.e.: using notation of the intuitionistic fuzzy sets a Support Pair from the Bald-
win’s voting model can be expressed.

Moreover, one can note that the necessary support for the statement not being
true is equal to one minus the possibility of the support for the statement being true,
i.e. 1− p. Similarly, the possible support for the statement being not true is one
minus the necessary support for the statement being true i.e. 1− n. Having in mind
the correspondence of these parameters, we can express this fact making use of the
intuitionistic fuzzy set notation, namely

(1− p,1− n)= (ν,ν +π)

The following three Support Pairs (n, p) are especially interesting (Baldwin and
Pilsworth [33]):

• (1, 1) expresses total support for the associated statement,
• (0, 0) characterizes total support against and
• (0, 1) represents complete uncertainty in the support.

Certainly, the meaning of the above Support Pairs is just the same in the mod-
els expressed in terms of the intuitionistic fuzzy sets (assuming that we consider
probabilities for intuitionistic fuzzy membership/non-membership values as it was
explained in the context of Definition 2.12):

• (1, 1) means that μ = 1 and π = 0, i.e. total support,
• (0, 0) means μ = 0 and π = 0 which involves ν = 1, i.e. total support against,
• (0, 1) means μ = 0 and π = 1 i.e.: complete lack of knowledge concerning sup-

port.

So, to sum up, both the Support Pairs and the intuitionistic fuzzy set models give
the same intervals containing the probability of the fact being true. The difference
between the upper and lower bounds of the intervals is a measure of the uncertainty
associated with the fact [160], [159].

As Baldwin [34] has observed, the mass assignment structure is best used to
represent knowledge that is statistically based in the sense that the values can be
measured, even if the measurements themselves are approximate or uncertain.
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Next notion, useful in our considerations, is so called least prejudiced distribution
[62], [38].
For A′, a fuzzy subset of a finite universe X , the least prejudiced distribution of A′,
denoted l pA′ , is a probability distribution on X given by

l pA′ (x) = ∑
Fi:x∈Fi

mA′ (Fi)

|Fi| (2.93)

A mass assignment corresponding to a normalized fuzzy subset of X naturally
generates a family of probability distributions on X where each distribution cor-
responds to some redistribution of the masses associated with sets to elements of
those sets. The most intuitive seems to redistribute a priori the mass associated with
a set in the uniform manner among the elements of that set. In effect we obtain
the distribution which coincides with Smet’s pignistic probability [153], and with
Dubois and Prade’s [62] possibility-probability transformation based on a general-
ized Laplacean indifference principle.

It is worth emphasizing that the least prejudiced distribution (2.93) provides a
mechanism by which we can, in a sense, convert a fuzzy set into a probability dis-
tribution. That is, in the absence of any prior knowledge, we might on being told
A′ naturally infer the distribution l pA′ relative to a uniform prior. Certainly, if fuzzy
sets are to serve as descriptions of probability distributions, the converse must also
hold. The least prejudiced distribution provides the bijective possibility-probability
transformation. In other words, for a probability distribution P on a finite universe X
there is a unique fuzzy set A′ conditioning on which yields this distribution (Baldwin
et al. [37], Dubois and Prade [63]).

The mass assignment theory has been applied in some fields, such as induction
of decision trees [36], computing with words among others, giving good results for
real data.

Theorem 2.1. (Baldwin et al. [37] ) Let P be a probability distribution on a fi-
nite universe X taking the range of values {p1, ..., pn} where 0<pi+1 < pi<1 and

n
∑

i=1
pi = 1. Then P is the least prejudiced distribution of a fuzzy set A′ if and only if

A′ has a mass assignment given by

mA′ (Fi) = μi − μi+1 f or i = 1, ...,n− 1
mA′ (Fn) = μn

where

Fi = {x ∈ X |P(x)≥ pi}
μi = |Fi|pi +

n

∑
j=i+1

(|Fj|− |Fj+1|)p j (2.94)

The proof is given in (Baldwin at al. [37]).
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Dubois and Prade [63] proposed a bijection method identical with the above
algorithm, but it is worth mentioning that the motivation in [37] is quite different. A
similar approach to mapping between probability and possibility was considered by
Yager [248]. Yamada [251] has given a further justification for the transformation.

To sum up, Theorem 2.1 provides a general procedure converting a relative fre-
quency distribution into a fuzzy set, i.e. gives us means for generating fuzzy sets
from data. As the membership values of a fuzzy set univocally assign the non-
membership values, Theorem 2.1 fully describes a fuzzy set.

Moreover, Theorem 2.1 gives an idea how to convert the relative frequency dis-
tributions into an intuitionistic fuzzy set. However, when discussing intuitionistic
fuzzy sets we consider membership values and independent non-membership val-
ues [cf. (2.5)–(2.6)]. In result, Theorem 2.1 gives only a partial description we look
for. To obtain a complete description of an intuitionistic fuzzy set (with independent
membership and non-membership values), the procedure as in Theorem 2.1 should
be carried out twice. Consequently, we obtain two fuzzy sets. To interpret the two
fuzzy sets properly in terms of the intuitionistic fuzzy sets we recall first a semantic
for membership functions.

Depending on the particular applications, Dubois and Prade [64] have explored
three main semantics for membership functions. Here we make use of the interpre-
tation proposed by Zadeh [256] when he introduced the possibility theory. Mem-
bership μ(x) is there the degree of possibility that a parameter x has the value μ
(Zadeh [256]).

In effect of repeating the procedure as in Theorem 2.1 two times (first – for data
representing membership values, second – for data representing non-membership
values), and taking into account the interpretation that the obtained values are the
degrees of possibility, we obtain the following results (Szmidt and Baldwin [162]).

• First time the algorithm from Theorem 2.1 is performed for the relative frequen-
cies connected with membership values. In effect we obtain (fuzzy) possibilities
Pos+(x)= μ(x)+π(x) that x has the value Pos+.
Pos+(x) (left hand side of the above equation) means the values of a member-
ship function for a fuzzy set (possibilities). In terms of intuitionistic fuzzy sets
(right hand side of the above equation) these possibilities are equal to possible
(maximal) memberships of an intuitionistic fuzzy set, i.e.
μ(x)+ π(x), where μ(x) – the values of the membership function for an intu-
itionistic fuzzy set, and μ(x) ∈ [μ(x),μ(x)+π(x)].

• Second time the algorithm from Theorem 2.1 is performed for the (independent)
relative frequencies connected with non-membership values. In effect we obtain
(fuzzy) possibilities Pos−(x)= ν(x)+π(x) that x has not the value Pos−.
Pos−(x) (left hand side of the above equation) means the values of a member-
ship function for another (than in the previous step) fuzzy set (possibilities). In
terms of the intuitionistic fuzzy sets (right hand side of the above equation) these
possibilities are equal to the possible (maximal) non-membership values, i.e.
ν(x) + π(x), where ν(x) – the values of the non-membership function for an
intuitionistic fuzzy set, and ν(x) ∈ [ν(x),ν(x)+π(x)].
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The Algorithm of Constructing the Membership and Non-Membership
Functions of Intuitionistic Fuzzy Sets (Szmidt and Baldwin [162])

1. Due to the explanations above, from Theorem 2.1 we calculate the values of the
left hand sides of the equations:

Pos+(x) = μ(x)+π(x) (2.95)

and
Pos−(x) = ν(x)+π(x). (2.96)

2. Taking into account that μ(x) + ν(x)+π(x) = 1, from (2.95)–(2.96) we obtain
the values π(x)

Pos+(x)+Pos−(x) = μ(x)+π(x)+ν(x)+
+ π(x) = 1+π(x) (2.97)

π(x) = Pos+(x)+Pos−(x)− 1 (2.98)

3. Knowing the values π(x), from (2.95) and (2.96) we obtain for each x: the values
μ(x), and ν(x).

To illustrate the above procedure we will consider a simple example showing that
starting from relative frequency distributions, and using Theorem 2.1, we obtain full
description of an intuitionistic fuzzy set.

Example 2.7. (Szmidt and Baldwin [162]) The task is to classify products (taking
into account presence of 10 different levels of an element) as legal and illegal. Rel-
ative frequencies obtained from data for legal and illegal products are respectively

• relative frequencies p+(i) for legal products (for each i-th level of the presence
of the considered element), i = 1, . . . ,10

p+(1) = 0., p+(2) = 0., p+(3) = 0.034,

p+(4) = 0.165, p+(5) = 0.301, p+(6) = 0.301,

p+(7) = 0.165, p+(8) = 0.034, p+(9) = 0.,

p+(10) = 0. (2.99)

• relative frequencies p−(i) for illegal products (for each i-th level of the presence
of the considered element), i = 1, . . . ,10

p−(1) = 0.125, p−(2) = 0.128, p−(3) = 0.117,

p−(4) = 0.08, p−(5) = 0.05, p−(6) = 0.05,

p−(7) = 0.08, p−(8) = 0.117, p−(9) = 0.128,

p−(10) = 0.125 (2.100)
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From the data (2.99), and Theorem 2.1 we obtain possibilities Pos+(i) for legal
products

Pos+(1) = 0., Pos+(2) = 0., Pos+(3) = 0.205,

Pos+(4) = 0.727,Pos+(5) = 1., Pos+(6) = 1.,

Pos+(7) = 0.727,Pos+(8) = 0.205,Pos+(9) = 0.,

Pos+(10) = 0. (2.101)

From the data (2.100) and Theorem 2.1 we obtain possibilities Pos−(i) for illegal
products

Pos−(1) = 1., Pos−(2) = 1., Pos−(3) = 0.961,

Pos−(4) = 0.737,Pos−(5) = 0.503,Pos−(6) = 0.503,

Pos−(7) = 0.737,Pos−(8) = 0.961,Pos−(9) = 1.,

Pos−(10) = 1. (2.102)

From (2.101), (2.102), and (2.98), we obtain the following values of π(i)

π(1) = 0., π(2) = 0., π(3) = 0.166,

π(4) = 0.464,π(5) = 0.503,π(6) = 0.503,

π(7) = 0.464,π(8) = 0.166,π(9) = 0.,

π(10) = 0. (2.103)

Thus, (2.101) and (2.103) give μ(i)

μ(1) = 0., μ(2) = 0., μ(3) = 0.039,

μ(4) = 0.263,μ(5) = 0.497,μ(6) = 0.497,

μ(7) = 0.263,μ(8) = 0.039,μ(9) = 0.,

μ(10) = 0. (2.104)

next, from(2.102) and (2.103) we obtain ν(i)

ν(1) = 1., ν(2) = 1., ν(3) = 0.795,

ν(4) = 0.273,ν(5) = 0., ν(6) = 0.,

ν(7) = 0.273,ν(8) = 0.795,ν(9) = 1.,

ν(10) = 1. (2.105)

In result, making use of relative frequencies we have obtained the values μ (2.104),
ν (2.105), and π (2.103) characterizing the corresponding intuitionistic fuzzy set.

Finally, we would like to emphasize the decisive difference as far as the approach
discussed above is concerned, and the incorrect method of expressing an intuition-
istic fuzzy set via two fuzzy sets constructed in a such way that membership val-
ues of the first fuzzy set are treated as the membership values of the intuitionistic
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fuzzy set, whereas membership values of the second fuzzy set are treated as the
non-membership values of the same intuitionistic fuzzy set.

It is worth mentioning that the approach presented here was successfully applied
for benchmark data from

UCI Machine Learning Repository (www.ics.uci.edu/ mlearn/).
The resulting intuitionistic fuzzy models were applied in:

• constructing a classifier for imbalanced and overlapping classes (cf. Szmidt and
Kukier [229], [230], [231]),

• constructing intuitionistic fuzzy trees (Bujnowski [42]),

and were used for testing new approaches of calculating:

• Pearson correlation coefficient (Szmidt and Kacprzyk [211], [224]), (Szmidt et
al. [220], [221], [226]),

• Spearman correlation coefficient (Szmidt and Kacprzyk [212]),
• Kendall correlation coefficient (Szmidt and Kacprzyk [222], [223]),
• Principal Component Analysis (Szmidt and Kacprzyk [225], Szmidt et al. [227]),
• ranking procedures (Szmidt and Kacprzyk [197], [198], [205], [206], [208],

[214]).

2.6 Concluding Remarks

We have recalled basic definitions, and gave short introduction concerning the crisp
sets, the fuzzy sets, and the intuitionistic fuzzy sets.

Two geometrical representations of the intuitionistic fuzzy sets were presented.
The interrelations among the crisp sets, the fuzzy sets, and the intuitionistic fuzzy

sets were discussed.
Finally, two approaches to derivation of the intuitionistic fuzzy sets from data

were presented. The first approach is by asking the experts. The second approach is
automatic – starting from relative frequency distributions.

Both approaches seem to be useful. But the second one – the automatic, and
mathematically justified method of deriving the intuitionistic fuzzy sets from data
seems to be especially important in the context of analyzing information in big data
bases. The approach has been proved to be useful in the context of widely used
benchmark data.



Chapter 3
Distances

Abstract. In many theoretical and practical issues we face the following problem.
Having two sets in the same universe, we want to calculate a difference between
them exemplified by a distance. In this Chapter we consider distances between the
intuitionistic fuzzy sets in two ways: while using the two term intuitionistic fuzzy
set representation (membership values and non-membership values only are taken
into account), and the three term intuitionistic fuzzy set representation (membership
values, non-membership values, and hesitation margins are taken into account). We
discuss norms and metrics for both types of representations. Both types are correct
from the mathematical point of view but, in the practical perspective, the three term
approach seems to be more justified. We discuss the problem in detail, consider-
ing its analytical, and geometrical aspects. We also show some problems with the
Hausdorff distance, while the Hamming metric is applied when using the two term
intuitionistic fuzzy set representation. We also show that the method of calculating
the Hausdorff distances, which is correct for the interval-valued fuzzy sets, does not
work for the intuitionistic fuzzy sets. Finally, we show the usefulness of the three
term distances in a measure for ranking the intuitionistic fuzzy alternatives.

3.1 Basic Definitions

Definition 3.1. A distance on a set X is a positive function d (also called metric)
from pairs of elements of X to the set R+ of non-negative real numbers with the
following properties, valid for all x1,x2,x3 ∈ X :

1. d(x1,x1) = 0 (reflexivity);
2. d(x1,x2) = 0 if and only if x1 = x2 (separability);
3. d(x1,x2) = d(x2,x1) (symmetry);
4. d(x1,x3)≤ d(x1,x2)+ d(x2,x3) (triangle inequality).

The pair (X ,d) is called metric space.

E. Szmidt, Distances and Similarities in Intuitionistic Fuzzy Sets, 39
Studies in Fuzziness and Soft Computing 307,
DOI: 10.1007/978-3-319-01640-5_3, c© Springer International Publishing Switzerland 2014
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If a measure fulfills requirements 1, 3 and 4, it is called a pseudometric (separa-
bility does not hold).

A semimetric is defined with requirements 1, 2 and 3 (triangle inequality does
not need to be satisfied).

A semi-pseudometric satisfies 1 and 3 only.

If a set of elements is identified with a vector space, the most known distances
correspond to norms.

A norm of a vector corresponds in a sense to the absolute value (magnitude) of
numbers.

Definition 3.2. (Bronshtein [41])
We assign a real positive number ‖ x ‖ (Norm x) to the vector x. A number ‖ x ‖,

in order to be a norm, must satisfy the norm axioms which for any vector x ∈ Rn

are the following:

1. ‖ x ‖≥ 0 for every x ;

2. ‖ x ‖= 0 if and only if x = 0 ;

3. ‖ αx ‖= |α| ‖ x ‖ for every x and every real number α;

4. ‖ x+ y ‖≤‖ x ‖+ ‖ y ‖ for every x and y.

Concrete norms are defined in many different ways.
If x = (x1,x2, . . . ,xn)

T is a real vector of n dimensions, i.e., x ∈ Rn then the most
often used vector norms are:

Euclidean norm

‖ x ‖=‖ x ‖2=

√
n

∑
i

x2
i . (3.1)

Supremum or Uniform Norm

‖ x ‖=‖ x ‖∞= max
1≤i≤n

|xi|. (3.2)

Sum Norm

‖ x ‖=‖ x ‖1=
n

∑
i
|xi|. (3.3)

In applications, the so called lr-norms and lr-norms are often used, defined as
follows.

Definition 3.3. For a vector x = (x1, . . . ,xn) ∈ Rn, its lr-norm, where r is a real
number ≥ 1, is:
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lr(x) =‖ x ‖r= (
n

∑
i

|xi|r) 1
r . (3.4)

Slight modification of the axioms in Definition 3.2 makes it possible to define i-th
power of lr-norm, i.e., the lr-norm:

lr(x) =‖ x ‖r=
n

∑
i
|xi|r. (3.5)

Euclidean norm (3.1) is a special case of the lr-norm (3.4).

Sum norm (3.3) is a special case of the lr-norm (3.5).

Norms on vector spaces correspond to certain metrics, i.e., every norm deter-
mines a metric, and some metrics determine a norm.

Given a normed vector space (X ‖ · ‖) we can define a metric on X by d(x,y) =
‖ x− y ‖. The metric d is said to be induced by the norm ‖ · ‖.

We give below the most often used metrics di, j = d(yi,y j) of vectors yi and y j

having one extreme at the origin of the coordinate axes.

• Manhattan distance

di, j =
n

∑
k=1

|yik − y jk| (3.6)

• Euclidean distance

di, j =

√
n

∑
k=1

(yik − y jk)2 (3.7)

• Minkowski distance

di, j = (
n

∑
k=1

|yik − y jk|p)
1
p (3.8)

Minkowski distance is induced by the norm lr, namely, for r = 1 (3.8) it be-
comes Manhattan distance (city block distance); for r = 2 it is equivalent to the
Euclidean distance.

• Chebyshev distance
di, j = max

k
|yik − y jk| (3.9)

Chebyshev distance is also induced by the norm lr when r → ∞.
• Canberra distance

di, j =
n

∑
k=1

|yik − y jk|
|yik|+ |y jk| (3.10)

Canberra distance (Lance and Williams [103]) is similar to the Manhattan dis-
tance. Each component of the sum (3.10) belongs to the interval [0,1]. If yik or
y jk is equal to 0, the respective component of the sum (3.10) is equal to 1 regard-
less of the value of the other component. The distance is rather sensitive to small
changes when both components tend to zero (Apolloni et al. [2]). For practical
purposes we assume value of 0 for both coordinates equal 0 (Emran and Ye [69]).
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• Sorensen distance (also known as Bray Curtis)

di, j =
∑n

k=1 |yik − y jk|
∑n

k=1(yik + y jk)
(3.11)

Sorensen distance (Bray and Curtis [40]) is a modified Manhattan distance.
Sorensen distance value is between zero and one if all coordinates are positive.
If denominator in (3.11) is zero, Sorensen distance is undefined.

• Mahalanobis distance

di, j =

√
n

∑
k=1

(yik − y jk)S−1(yik − y jk) (3.12)

where S is a covariance matrix. Mahalanobis distance ([121]) can also be defined
as a dissimilarity measure between two random vectors of the same distribution
with the covariance matrix S. If S is the identity matrix, the Mahalanobis distance
(3.12) ([121]) is equal to the Euclidean distance (3.7). For a diagonal covariance
matrix S, the Mahalanobis distance (3.12) reduces to the normalized Euclidean
distance. Mahalanobis distance is used in classification methods and cluster anal-
ysis (McLachlan [122]).

The above distances di j play often a role of measures corresponding to similarity
measures si j , i.e., si j = 1− di j, and are widely used for solving real problems
(cf. e.g., Bray and Curtis [40], Apolloni et al. [2], McLachlan [122], Emran and
Ye [69], Lance and Williams [103], Krebs [102], Hublek [84], Wolda [246],
Clarke et al. [54], Field et al. [71]).

In vector spaces also other similarity measures are used, for example:

• Angular Separation

si, j =
∑n

k=1 yiky jk√
∑n

k=1(yik)2 ∑n
k=1(y jk)2

(3.13)

Angular separation represents cosine between two vectors. The values of (3.13)
belong to the interval [-1, 1]. The higher the values of (3.13), the more similar
the vectors considered. If denominator is equal to zero, we assume 0 for angular
separation.

• Correlation Coefficient

si, j =
∑n

k=1(yik − ȳi)(y jk − ȳ j)√
∑n

k=1(yik − ȳi)2 ∑n
k=1(y jk − ȳ j)2

(3.14)

Correlation coefficient is a standarized angular separation resulting from centering
the coordinates with respect to the mean values.
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3.2 Norms and Metrics Over the Intuitionistic Fuzzy Sets or
their Elements – The Two Term Approach

It is worth stressing that this section will not be devoted to the usual set-theoretic
properties of the intuitionistic fuzzy sets (i.e. the properties which are a direct result
of the fact that the intuitionistic fuzzy sets are sets in the sense of set theory). For
example, in a metric space X , one can study the metric properties of the intuition-
istic fuzzy sets over X . This can be done directly by topological methods (cf. e.g.,
Schwartz [149]) without paying attention to the essential properties of the intuition-
istic fuzzy sets. On the other hand, all intuitionistic fuzzy sets (and hence, all fuzzy
sets) over a fixed universe X generate a space (in the sense of Schwartz [149]), but
with a special metric (cf., e.g., Kaufmann [99]) which is not related to the elements
of X but to the values of the functions μA and νA, defined for these elements.

We should have in mind that a “norm” of a given intuitionistic fuzzy element
is actually not a norm in the sense of Schwartz [149], but rather a “pseudo-norm”,
assigning a number to every element x ∈ X . This number depends on the values of
the functions μA and νA (which are calculated for this element).

In other words, the essential conditions for a norm, i.e.:

‖x‖= 0 iff x = 0, (3.15)

and
‖x‖= ‖y‖ iff x = y, (3.16)

are not fulfilled here.
Instead of (3.15)–(3.16), the following conditions hold:

‖x‖= ‖y‖ iff μA(x) = μA(y) (3.17)

and
νA(x) = νA(y). (3.18)

For any element x ∈ X in every fuzzy set over X , the value of μA(x) plays the role
of a norm (more precisely, a pseudo-norm).

In the case of the intuitionistic fuzzy sets, the presence of the second functional
component, namely, the function νA gives rise to different possibilities for the defi-
nition of a norm (in the sense of a pseudo-norm) over the subsets and the elements
of a given universe X (Atanassov [8], [11], [15], [22]).

Definition 3.4. The first norm given by Atanassov (Atanassov [15]) for every x ∈ X
with respect to a fixed set A ⊂ X is

σ1,A(x) = μA(x)+νA(x). (3.19)

Norm (3.19) represents the degree of definiteness (Atanassov [15]) of the ele-
ment x. From
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πA(x) = 1− μA(x)−νA(x)

we can express (3.19) as
σ1,A(x) = 1−πA(x).

For every two intuitionistic fuzzy sets A and B, and for every x ∈ X the following
properties of (3.19) hold (Atanassov [15]):

σ1,A(x) = σ1,A(x), (3.20)

σ1,A∩B(x) ≥ min(σ1,A(x),σ1,B(x)), (3.21)

σ1,A∪B(x) ≤ max(σ1,A(x),σ1,B(x)), (3.22)

σ1,A+B(x) ≤ 1, (3.23)

σ1,A.B(x) ≤ 1, (3.24)

σ1,A@B(x) =
(σ1,A(x)+σ1,B(x))

2
, (3.25)

σ1,A$B(x) ≤
(σ1,A(x)+σ1,B(x))

2
, (3.26)

σ1,A��B(x) ≤ max(σ1,A(x),σ1,B(x)), (3.27)

σ1,A∗B(x) ≥ max(σ1,A(x),σ1,B(x))
2

, (3.28)

σ1,�A(x) = 1, (3.29)

σ1,♦A(x) = 1, (3.30)

σ1,C(A)(x) ≥ max
x∈X

σ1,A(x), (3.31)

σ1,I(A)(x) ≤ min
x∈X

σ1,A(x), (3.32)

σ1,Dα (x) = 1 (3.33)

for every α ∈ [0,1],
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σ1,Fα,β (x) = α +β +(1−α −β ).σ1,A(x) (3.34)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ1,Gα,β (x) ≤ σ1,A(x), (3.35)

for every α,β ∈ [0,1],

σ1,Hα,β (x) ≤ β +(α +β ).σ1,A(x), (3.36)

for every α,β ∈ [0,1],

σ1,H∗
α,β (A)

(x) ≤ β +(1−β ).σ1,A(x), (3.37)

for every α,β ∈ [0,1],

σ1,Jα,β (x) ≤ α +(α +β ).σ1,A(x), (3.38)

for every α,β ∈ [0,1],

σ1,J∗α,β (A)
(x) ≤ α +(1−α).σ1,A(x), (3.39)

for every α,β ∈ [0,1],

σ1,!A(x) ≥ 0, (3.40)

σ1,?A(x) ≥ 0, (3.41)

σ1,Kα (x) ≥ 0, (3.42)

for every α ∈ [0,1],

σ1,Lα (x) ≥ 0, (3.43)

for every α ∈ [0,1],

σ1,Pα,β (x) ≥ 0, (3.44)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ1,Qα,β (x) ≥ 0, (3.45)

for every α,β ∈ [0,1] and α +β ≤ 1.

Definition 3.5. Another norm for every x ∈ X , with respect to a fixed A ⊂ X , is
defined as follows (Atanassov [15]):
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σ2,A(x) =
√
(μA(x)2 +νA(x)2). (3.46)

The norms σ1 (3.19) and σ2 (3.46) are analogous to the basic classical types of
norms.

For the norm σ2 (3.46), the following properties are fulfilled for every two intu-
itionistic fuzzy sets A and B, and for every x ∈ X (Atanassov [15]):

σ2,A(x) = σ2,A(x), (3.47)

σ2,A∩B(x) ≥ min(σ2,A(x),σ2,B(x)), (3.48)

σ2,A∪B(x) ≤ max(σ2,A(x),σ2,B(x)), (3.49)

σ2,A+B(x) ≤ 1, (3.50)

σ2,A.B(x) ≤ 1, (3.51)

σ2,A@B(x) ≤ 1√
2
.(σ2,A(x)+σ2,B(x)), (3.52)

σ2,A$B(x) ≤
√

σ2,A(x).σ2,B(x)), (3.53)

σ2,A��B(x) ≥ min(σ2,A(x),σ2,B(x)), (3.54)

σ2,A∗B(x) ≥ max(σ2,A(x),σ2,B(x))/2, (3.55)

σ2,�A(x) ≤ 1, (3.56)

σ2,♦A(x) ≤ 1, (3.57)

σ2,CA(x) ≤ max
x∈X

σ2,A(x), (3.58)

σ2,IA(x) ≥ min
x∈X

σ2,A(x), (3.59)

σ2,Dα (x) ≥ σ2,A(x), (3.60)

for every α ∈ [0,1],

σ2,Fα,β (x) ≥ σ2,A(x), (3.61)
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for every α,β ∈ [0,1] such that α +β ≤ 1,

σ2,Gα,β (x) ≤ σ2,A(x), (3.62)

for every α,β ∈ [0,1],

σ2,Hα,β (x) ≥ α.σ2,A(x), (3.63)

for every α,β ∈ [0,1],

σ2,H∗
α,β (A)

(x) ≥ α.σ2,A(x), (3.64)

for every α,β ∈ [0,1],

σ2,Jα,β (x) ≥ β .σ2,A(x), (3.65)

for every α,β ∈ [0,1],

σ2,J∗α,β (A)
(x) ≥ β .σ2,A(x), (3.66)

for every α,β ∈ [0,1],

σ2,!A(x) ≥ 1
2
, (3.67)

σ2,?A(x) ≥ 1
2
, (3.68)

σ2,Kα (A)(x) ≥ α, (3.69)

for every α ∈ [0,1],

σ2,Lα (A)(x) ≥ α, (3.70)

for every α ∈ [0,1],

σ2,Pα,β (A)
(x) ≥ α, (3.71)

for every α,β ∈ [0,1] and α +β ≤ 1,

σ2,Qα,β (A)
(x) ≥ β , (3.72)

for every α,β ∈ [0,1] and α +β ≤ 1.

Definition 3.6. Tanev [235]) defined the third norm over the elements of a given
intuitionistic fuzzy set A as:

σ3,A(x) =
μA(x)+ 1−νA(x)

2
. (3.73)
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The properties of (3.73) are similar to the properties of the first norm (3.19), and
the second one, (3.46).

Some other discrete norms introduced by Atanassov [15] are presented in Defi-
nition 3.7.

Definition 3.7. For a given finite universe X and for a given intuitionistic fuzzy set
A, we have the following discrete norms (Atanassov [15]):

nμ(A) = ∑
x∈X

μA(x), (3.74)

nν(A) = ∑
x∈X

νA(x), (3.75)

nπ(A) = ∑
x∈X

πA(x). (3.76)

The above norms (3.74)–(3.76) can be extended to continuous norms by replacing
the sum in (3.74)–(3.76) by an integral over X .

After normalizing the norms (3.74)–(3.76) on the interval [0,1], we obtain for
a given finite universe X and for a given intuitionistic fuzzy set A, the following
normalized discrete norms (Atanassov [15]):

• corresponding to the norm “nμ(A)” (3.74)

n∗μ(A) =
1

card(X) ∑
x∈X

μA(x), (3.77)

• corresponding to the norm “nν(A)” (3.76)

n∗ν(A) =
1

card(X) ∑
x∈X

νA(x), (3.78)

• corresponding to the norm “nπ(A)” (3.76)

n∗π(A) =
1

card(X) ∑
x∈X

πA(x), (3.79)

where card(X) is the cardinality of the set X .
The above norms have similar properties.
In the theory of fuzzy sets (see e.g. Kaufmann [99]) two different types of dis-

tances are defined, generated from the following metric

mA(x,y) = μA(x)− μA(y)

and the Hamming and Euclidean metrics coincide (Atanassov [15]).
In the case of the intuitionistic fuzzy sets these metrics are different (Atanas-

sov [15]):
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Definition 3.8. For an intuitionistic fuzzy set A the Hamming metric is defined as
(Atanassov [15]):

hA(x,y) =
1
2
(| μA(x)− μA(y)+νA(x)−νA(y) |). (3.80)

Definition 3.9. For an intuitionistic fuzzy set A the the Euclidean metric is defined
as (Atanassov [15]):

eA(x,y) =

√
1
2
((μA(x)− μA(y))2 +(νA(x)−νA(y))2). (3.81)

Under the assumption that

νA(x) = 1− μA(x)

both metrics, (3.80) and (3.81), reduce to the metric mA (x, y) (Atanassov [15]).
To show that hA and eA are pseudo-metrics over X (in the sense of [100, 149]), it is
necessary to prove that for every three elements x,y,z ∈X we have (Atanassov [15]):

hA(x,y)+ hA(y,z) ≥ hA(x,z), (3.82)

hA(x,y) = hA(y,x), (3.83)

eA(x,y)+ eA(y,z) ≥ eA(x,z), (3.84)

eA(x,y) = eA(y,x). (3.85)

As conditions (3.82) and (3.84) do not hold (Atanassov [15]) for the metrics, hA

and eA are pseudo-metrics. The proofs of the above equalities and inequalities are
trivial.

The well known types of distances for the fuzzy sets A and B are:

• the Hamming distance

d(A,B) = ∑
x∈X

| μA(x)− μB(x) |, (3.86)

• the Euclidean distance

e(A,B) =
√

∑
x∈X

(μA(x)− μB(x))2. (3.87)

The distances (3.86) and (3.87) transformed into the intuitionistic fuzzy sets, have
the following respective forms (Atanassov [15]):
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Definition 3.10. For two intuitionistic fuzzy sets A and B over a universe X , the
Hamming distance between A and B is defined as (Atanassov [15])

dIFS(2)(A,B) =
1
2 ∑

x∈X
| μA(x)− μB(x) |+ | νA(x)−νB(x) |, (3.88)

and the corresponding normalized Hamming distance is

lIFS(2)(A,B) =
1

2n ∑
x∈X

| μA(x)− μB(x) |+ | νA(x)−νB(x) | . (3.89)

Definition 3.11. For two intuitionistic fuzzy sets A and B over a universe X , the
Euclidean distance between A and B is defined as (Atanassov [15])

eIFS(2)(A,B) =

√
1
2
(∑

x∈X
(μA(x)− μB(x))2 +(νA(x)−νB(x))2), (3.90)

and the corresponding normalized Euclidean distance is

qIFS(2)(A,B) =

√
1

2n
(∑

x∈X
(μA(x)− μB(x))2 +(νA(x)−νB(x))2). (3.91)

Distances (3.88)–(3.91) correspond to the two term intuitionistic fuzzy set de-
scription – i.e. the membership values and the non-membership values are taken
into account only. In Section 3.3 we will discuss another form of the Hamming and
Euclidean distances, using the three term description of the intuitionistic fuzzy sets
(besides the membership values and the non-membership values also the hesitation
margin is taken into account):

l1
IFS(A,B) =

1
2n ∑

x∈E

| μA(x)−μB(x) |+ | νA(x)−νB(x) |+ | πA(x)−πB(x) | (3.92)

and

q1
IFS(A,B) =

√
1

2n
(∑

x∈E

(μA(x)− μB(x))2 +(νA(x)−νB(x))2)+ (πA(x)−πB(x))2).

(3.93)
Distances (3.92)–(3.93) correspond to the three term intuitionistic fuzzy set de-

scription (membership values, non-membership values and hesitation margins are
taken into account) and are useful from the point of view of practical applications.

In the next chapter we will discuss in details distances (3.88)–(3.90) and (3.92)–
(3.93).
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In (Atanassov [15]), other distances are also given (cf. [149]), which can be
defined over the intutionistic fuzzy sets:

Definition 3.12. For two intuitionistic fuzzy sets A and B over a universe X , the
following distances between A and B are defined (Atanassov [15]):

J1(A,B) = max
x∈X

| μA(x)− μB(x) |, (3.94)

J2(A,B) = max
x∈X

| νA(x)−νB(x) |, (3.95)

J(A,B) =
1
2
.(J1(A,B)+ J2(A,B)), (3.96)

J∗(A,B) =
1
2
.max

x∈X
(| μA(x)− μB(x) |+ | νA(x)−νB(x) |). (3.97)

It is easily seen that for every two intuitionistic fuzzy sets A and B we have (Ata-
nassov [15]):

J∗(A,B)≤ J1(A,B)+ J2(A,B).

In the distance J1(., .) (3.94) only the membership values are taken into account,
and so the distance is reduced directly to the distance for fuzzy sets. On the other
hand, the distances J2(., .) (3.95), J(., .) (3.96), and J∗(., .) (3.97) make use of both
membership and non-membership values, and thus they do not reduce to the dis-
tances for fuzzy sets.

Atanassov [21], [22] introduced also norms following one of the most impor-
tant ideas of Georg Cantor in set theory, calling the norms “Cantor’s intuitionistic
fuzzy norms”. Cantor’s intuitionistic fuzzy norms are substantially different from
the Euclidean and Hamming norms, existing in fuzzy set theory.

Let x ∈ X be fixed universe and let

μA(x) = 0.a1a2...

νA(x) = 0.b1b2...

Next, Atanassov [22] bijectively constructed the numbers:

||x||μ,ν = 0,a1b1a2b2...

and
||x||ν,μ = 0,b1a1b2a2...

and noticed that the following properties hold for these numbers:

1. ||x||μ,ν , ||x||ν,μ ∈ [0,1]
2. having both numbers it is possible to reconstruct directly the numbers μA(x) and
νA(x).
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The numbers ||x||μ,ν and ||x||ν,μ were called by Atanassov [22] Cantor norms of
element x ∈ X .

Atanassov [22] denotes these norms by ||x||2,μ,ν and ||x||2,ν,μ in order to stress
that they correspond to the two term intuitionistic fuzzy set description.

On the other hand, for the three term intuitionistic fuzzy set description intro-
duced by Szmidt and Kacprzyk, for point x we have (Atanassov [22]):

μA(x) = 0.a1a2...

νA(x) = 0.b1b2...

πA(x) = 0.c1c2...

with the condition: μA(x) + νA(x) + πA(x) = 1. (Atanassov [22]) introduced six
different Cantor norms:

||x||3,μ,ν,π = 0.a1b1c1a2b2c2...,

||x||3,μ,π ,ν = 0.a1c1b1a2c2b2...,

||x||3,ν,μ,π = 0.b1a1c1b2a2c2...,

||x||3,ν,π ,μ = 0.b1c1a1b2c2a2...,

||x||3,π ,μ,ν = 0.c1a1b1c2a2b2...,

||x||3,π ,ν,μ = 0.c1b1a1c2b2a2....

For the above three term Cantor norms it is possible, as previously, to reconstruct
bijectively the three degrees of element x ∈ X .

3.3 Distances between the Intuitionistic Fuzzy Sets – The Three
Term Approach

In this section we recall some new definitions of distances between intuitionistic
fuzzy sets (Szmidt and Kacprzyk [171]). By taking into account the three term char-
acterization of the intuitionistic fuzzy sets, and following the basic line of reasoning
on which the definition of distances between the fuzzy sets is based, we define four
basic distances between the intuitionistic fuzzy sets: Hamming distance, normalized
Hamming distance, Euclidean distance, and normalized Euclidean distance. While
deriving these distances a convenient geometric interpretation of the intuitionistic
fuzzy sets is employed. It is shown that the definitions proposed are consistent with
their counterparts traditionally used for the fuzzy sets, and that the consistency is



3.3 Distances between the Intuitionistic Fuzzy Sets – The Three Term Approach 53

ensured only under the condition that all three parameters characterizing the intu-
itionistic fuzzy sets are taken into account.

We will first reconsider some better known distances for the fuzzy sets in an
intuitionistic setting, and then extend those distances to the intuitionistic fuzzy sets.

3.3.1 Distances between the Fuzzy Sets

The most widely used distances for fuzzy sets A
′
, B

′
in X = {x1,x2, ...,xn} are

(Kacprzyk, 1997):

• the Hamming distance d(A
′
,B

′
)

d(A
′
,B

′
) =

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.98)

• the normalized Hamming distance l(A
′
,B

′
):

l(A
′
,B

′
) =

1
n

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.99)

• the Euclidean distance e(A
′
,B

′
):

e(A
′
,B

′
) =

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.100)

• the normalized Euclidean distance q(A
′
,B

′
):

q(A
′
,B

′
) =

√
1
n

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.101)

It is worth mentioning that in the above formulas, (3.98)-(3.101), only the mem-
bership functions are present. It is due to the fact that for a fuzzy set,μ(xi)+ν(xi)=1.

In Chapter 2, we have introduced for a fuzzy set A
′

in X an equivalent intuitio-
nistic-type representation given as

A
′
= {< x,μA′ (x),1− μA′ (x)> /x ∈ X}.

The above representation will be employed while rewriting the distances (3.98)-
(3.101).

So, first, taking into account an intuitionistic-type representation of a fuzzy set,
we can express the very essence of the Hamming distance by putting
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d
′
(A

′
,B

′
) =

n

∑
i=1

(∣∣μA′ (xi)− μB′ (xi)
∣∣+ ∣∣νA′ (xi)−νB′ (xi)

∣∣)=

=
n

∑
i=1

(∣∣μA′ (xi)− μB′ (xi)
∣∣+ ∣∣1− μA′ (xi)− 1+ μB′(xi)

∣∣)=

= 2
n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣= 2d(A

′
,B

′
) (3.102)

i.e. the Hamming distance in an intuitionistic-type representation of the fuzzy sets
is twice the Hamming distance between fuzzy sets calculated in a standard way,
(3.98).

Similarly, the normalized Hamming distance l
′
(A

′
,B

′
), when we take into ac-

count an intuitionistic-type representation of a fuzzy set, is in turn equal to

l
′
(A

′
,B

′
) =

1
n
·d ′

(A
′
,B

′
) =

2
n

n

∑
i=1

∣∣μA′ (xi)− μB′ (xi)
∣∣ (3.103)

i.e. the result of (3.103) is equal the well known normalized Hamming distance
(3.99) between fuzzy sets, multiplied by two.

Then, by the same line of reasoning, the Euclidean distance, taking into account
an intuitionistic-type representation of a fuzzy set, is equal to

e
′
(A

′
,B

′
) =

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
+
(
νA′ (xi)−νB′ (xi)

)2
=

=

√
n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
+
(
1− μA′ (xi)− 1+ μB′ (xi)

)2
=

=

√
2

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.104)

i.e. it is just multiplied by
√

2 Euclidean distance for the usual representation of
fuzzy sets given by (3.100).

The normalized Euclidean distance q
′
(A

′
,B

′
) considering the intuitionistic-type

representation of a fuzzy set is equal to

q
′
(A

′
,B

′
) =

√
1
n
· e′

(A
′
,B

′
) =

√
2
n

n

∑
i=1

(
μA′ (xi)− μB′ (xi)

)2
(3.105)

so again the result of (3.105) is the expression from (3.101) multiplied by
√

2.

Example 3.1. (Szmidt and Kacprzyk [171]) For simplicity we consider “degenerate”
fuzzy sets M,N,L,K,P in X = {1}. Complete description of each of them is given
by A = (μA,νA)/1, namely:
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L

K

P.

M.

N

Fig. 3.1 A geometrical interpretation of one-element fuzzy sets considered in Example 3.1

M = (1,0)/1, N = (0,1)/1, L = (
1
3
,

2
3
)/1, P = (

2
3
,

1
3
)/1, K = (

1
2
,

1
2
)/1

Figure 3.1 gives a geometrical interpretation of these one-element fuzzy sets.
First, let us calculate the Euclidean distances between the fuzzy sets using their

“normal” representation (i.e., taking into account the membership values only) as in
(3.100)

e(L,P) =

√
(

1
3
− 2

3
)2 =

1
3

(3.106)

e(L,K) =

√
(

1
3
− 1

2
)2 =

1
6

(3.107)

e(P,K) =

√
(

2
3
− 1

2
)2 =

1
6

(3.108)

e(L,M) =

√
(

1
3
− 1)2 =

2
3

(3.109)

e(K,M) =

√
(1− 1

2
)2 =

1
2

(3.110)

e(N,K) =

√
(0− 1

2
)2 =

1
2

(3.111)

e(N,M) =
√

12 = 1 (3.112)

The same Euclidean distances are calculated now using the intuitionistic-type
representation of fuzzy sets (3.104)
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e
′
(L,P) =

√
(

1
3
− 2

3
)2 +(

2
3
− 1

3
)2 =

√
2

3
(3.113)

e
′
(L,K) =

√
(

1
3
− 1

2
)2 +(

2
3
− 1

2
)2 =

√
2

6
(3.114)

e
′
(P,K) =

√
(

2
3
− 1

2
)2 +(

1
3
− 1

2
)2 =

√
2

6
(3.115)

e
′
(L,M) =

√
(

1
3
− 1)2 +(

2
3
− 0)2 =

2
√

2
3

(3.116)

e
′
(K,M) =

√
(

1
2
− 1)2 +(

1
2
)2 =

√
2

2
(3.117)

e
′
(N,K) =

√
(0− 1

2
)2 +(1− 1

2
)2 =

√
2

2
(3.118)

e
′
(N,M) =

√
12 + 12 =

√
2 (3.119)

Thus, as has been already noticed, the above results are just those of (3.106)–
(3.112) multiplied by the constant value equal to

√
2. Therefore, though the dis-

tances (3.106)–(3.112) and (3.113)–(3.119) are clearly different, their essence is the
same.

Example 3.2. (Szmidt and Kacprzyk [171]) Let us consider two fuzzy sets A
′
,B

′
in

X = {1,2,3,4,5,6,7}. Their intuitionistic - type representation is A
′
= (μA′ ,νA′ )/1,

given here as

A
′
= (0.7, 0.3)/1+(0.2, 0.8)/2+(0.6, 0.4)/4+(0.5, 0.5)/5+(1, 0)/6 (3.120)

B
′
= (0.2, 0.8)/1+(0.6, 0.4)/4+(0.8, 0.2)/5+(1, 0)/7 (3.121)

The Hamming distance d(A
′
,B

′
), accounting only for the membership functions

(3.98), is

d(A
′
,B

′
) = |0.7− 0.2|+ |0.2− 0|+ |0.6− 0.6|+ |0.5− 0.8|+ |1− 0|+ |0− 1|= 3

(3.122)
while the normalized distance (3.99) l(A

′
,B

′
) is equal to

l(A
′
,B

′
) =

1
7
·d(A′

,B
′
) =

3
7
= 0.43 (3.123)

On the other hand, when both the membership and non-membership values are
taken into account [cf.(3.102)], we obtain
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d
′
(A

′
,B

′
) = |0.7− 0.2|+ |0.3− 0.8|+ |0.2− 0|+ |0.8− 1|+ |0.6− 0.6|+
+ |0.4− 0.4|+ |0.5− 0.8|+ |0.5− 0.2|+ |1− 0|+ |0− 1|+
+ |0− 1|+ |1− 0|= 6 (3.124)

i.e. we get the value from (3.122) multiplied by two. The normalized Hamming
distance (3.103) is equal to

l
′
(A

′
,B

′
) =

1
n

d′(A
′
,B

′
) =

6
7
= 0.86 (3.125)

Let us compare the Euclidean distances obtained from (3.100) and (3.104). From
(3.100) we have

e(A
′
,B

′
) = ((0.7− 0.2)2+(0.2− 0)2+(0.6− 0.6)2+(0.5− 0.8)2+

+ (1− 0.2)2+(0− 1)2)
1
2 =

√
2.38 = 1.54 (3.126)

while the counterpart normalized Euclidean distance (3.101) is

q(A
′
,B

′
) =

√
1
7
· e(A,B) =

√
2.38

7
= 0.58 (3.127)

From (3.104) we have the Euclidean distance, taking into account the intuitionis-
tic-type representation of fuzzy sets, equal to

e
′
(A′,B′) = ((0.7− 0.2)2+(0.3− 0.8)2+(0.2− 0)2+(0.8− 1)2+(0.6− 0.6)2+

+ (0.4− 0.4)2+(0.5− 0.8)2+(0.5− 0.2)2+(1− 0)2+

+ (0− 0)2+(0− 1)2+(1− 0)2)
1
2 =

√
4.76 = 2.18 (3.128)

whereas the counterpart, the normalized Euclidean distance (3.105), accounting for
the intuitionistic-type representation of fuzzy sets is equal to

q
′
(A′,B′) =

√
4.76

7
= 0.83 (3.129)

Suppose we modify a little bit the fuzzy set B′ (making it closer to A′), i.e., these
two fuzzy sets are now

A′ = (0.7, 0.3)/1+(0.2, 0.8)/2+(0.6, 0.4)/4+(0.5, 0.5)/5+(1, 0)/6 (3.130)

B′ = (0.2, 0.8)/1+(0.6, 0.4)/4+(0.8, 0.2)/5+(0.4, 0.6)/6+(1, 0)/7 (3.131)

The Hamming distance calculated with (3.98) is
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d(A′,B′) = |0.7− 0.2|+ |0.2− 0|+ |0.6− 0.6|+ |0.5− 0.8|+ |1− 0.4|+ |0− 1|=
= 2.6 (3.132)

whereas the normalized Hamming distance (3.99) is

l(A′,B′) =
1
7
·d(A′,B′) =

2.6
7

= 0.37 (3.133)

From (3.102), taking into account the intuitionistic-type representation of fuzzy
sets, we obtain the Hamming distance equal to

d
′
(A

′
,B

′
) = |0.7− 0.2|+ |0.3− 0.8|+ |0.2− 0|+ |0.8− 1|+ |0.6− 0.6|+
+ |0.4− 0.4|+ |0.5− 0.8|+ |0.5− 0.2|+ |1− 0.4|+ |0− 0.6|+
+ |0− 1|+ |1− 0|= 5.2 (3.134)

while the normalized Hamming distance (3.103) taking into account the intuitionis-
tic-type representation of fuzzy sets, is equal to

l
′
(A

′
,B

′
) =

1
7
·5.2 = 0.74 (3.135)

Let us calculate the Euclidean distances now. From (3.100) we obtain

e(A
′
,B

′
) = ((0.7− 0.2)2+(0.2− 0)2+(0.6− 0.6)2+(0.5− 0.8)2+

+ (1− 0.4)2+(0− 1)2)
1
2 =

√
1.74 = 1.32 (3.136)

while from (3.101) we get the normalized Euclidean distance

q(A
′
,B

′
) =

√
1.74

7
= 0.5 (3.137)

Taking into account the intuitionistic-type representation of fuzzy sets, from
(3.104) we obtain the Euclidean distance

e
′
(A

′
,B

′
) = ((0.7− 0.2)2+(0.3− 0.8)2+(0.2− 0)2+(0.8− 1)2+

+ (0.6− 0.6)2+(0.4− 0.4)2+(0.5− 0.8)2+(0.5− 0.2)2+

+ (1− 0.4)2+(0− 0.6)2+(0− 1)2+(1− 0)2)
1
2 =

=
√

3.48 = 1.87 (3.138)

while the normalized Euclidean distance (3.105), taking into account the intuitio-
nistic-type representation of fuzzy sets, is equal to

q
′
(A

′
,B

′
) =

√
1
7
·3.48 = 0.705 (3.139)

As we analyze the results of Examples 3.1 and 3.2 we may notice that:
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• for any fuzzy sets A
′

and B
′
, when we calculate the distances between them in

a standard way (3.98)–(3.101), i.e., when we take into account the membership
values only, we have

0 ≤ d(A
′
,B

′
)≤ n (3.140)

0 ≤ l(A
′
,B

′
)≤ 1 (3.141)

0 ≤ e(A
′
,B

′
)≤√

n (3.142)

0 ≤ q(A
′
,B

′
)≤ 1 (3.143)

• for any fuzzy sets A
′

and B
′
, when we calculate distances between them taking

into account the intuitionistic-type representation of fuzzy sets (3.102)-(3.105),
we have

0 ≤ d
′
(A

′
,B

′
)≤ 2n (3.144)

0 ≤ l
′
(A

′
,B

′
)≤ 2 (3.145)

0 ≤ e
′
(A

′
,B

′
)≤

√
2n (3.146)

0 ≤ q
′
(A

′
,B

′
)≤

√
2 (3.147)

We would like to emphasize that it is not our purpose to introduce a new way
of calculating distances for fuzzy sets. To the contrary, we have shown that the
intuitionistic-type representation of fuzzy sets results in multiplying the distances
by constant values only. But similar reasoning for the case of the intuitionistic fuzzy
sets (i.e. omitting one of the three terms) would lead to incorrect results, as this is
discussed in detail in the next section.

3.3.2 Distances between the Intuitionistic Fuzzy Sets

Following the line of reasoning presented in Section 3.3.1, we will now extend the
concepts of distances to the case of the intuitionistic fuzzy sets.

The Hamming distance between two intuitionistic fuzzy sets A and B in X =
{x1,x2, ...,xn} is equal to (Szmidt and Kacprzyk [171])

d1
IFS(A,B) =

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|) (3.148)

Having in mind that
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πA(xi) = 1− μA(xi)−νA(xi) (3.149)

and

πB(xi) = 1− μB(xi)−νB(xi) (3.150)

we have

|πA(xi)−πB(xi)| = |1− μA(xi)−νA(xi)− 1+ μB(xi)+νB(xi)| ≤
≤ |μB(xi)− μA(xi)|+ |νB(xi)−νA(xi)| (3.151)

From inequality (3.151) it follows that the third term in (3.148) cannot be omitted
as it was in the case of fuzzy sets, for which taking into account the second term
would only result in the multiplication by a constant value.

For the Euclidean distance a similar situation occurs. Namely, for intuitionistic
fuzzy sets A and B in X = {x1,x2, ...,xn}, by following the line of reasoning as in
Section 3.3.1, their Euclidean distance is equal to (Szmidt and Kacprzyk [171])

e1
IFS(A,B) = (

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.152)

Let us verify the effect of omitting the third term (π) in (3.152). Having in mind
(3.149)–(3.150), we have (Szmidt and Kacprzyk [171]):

(πA(xi)−πB(xi))
2 = (1− μA(xi)−νA(xi)− 1+ μB(xi)+νB(xi))

2 =

= (μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ 2(μA(xi)− μB(xi))(νA(xi)−νB(xi)) (3.153)

which means that taking into account the third term π when calculating the Eu-
clidean distance for the intuitionistic fuzzy sets does have an influence on the final
result. This is obvious, because a two-dimensional geometrical interpretation (Fig-
ure 2.2) is an orthogonal projection of a real situation presented in Figure 2.3.

Taking into account (3.149)-(3.153), in order to be more in agreement with the
mathematical notion of normalization, the following distances for two intuitionistic
fuzzy sets A and B in X = {x1,x2, ...,xn} are proposed (Szmidt and Kacprzyk [171])

• the Hamming distance:

d1
IFS(A,B) =

1
2

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+

+ |πA(xi)−πB(xi)|) (3.154)

• the Euclidean distance :
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)0,0,1(M

)1,0,0(H

E  

)0,1,0(NG

Fig. 3.2 Geometrical representation of the one-element intuitionistic fuzzy sets from Exam-
ple 3.3

e1
IFS(A,B) = (

1
2

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.155)

• the normalized Hamming distance:

l1
IFS(A,B) =

1
2n

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|+

+ |πA(xi)−πB(xi)|) (3.156)

• the normalized Euclidean distance:

q1
IFS(A,B) = (

1
2n

n

∑
i=1

(μA(xi)− μB(xi))
2 +(νA(xi)−νB(xi))

2 +

+ (πA(xi)−πB(xi))
2)

1
2 (3.157)

The above distances satisfy the conditions of the metric (cf. Kaufmann [99]).

Example 3.3. (Szmidt and Kacprzyk [171]) Let us consider for simplicity the “de-
generate” intuitionistic fuzzy sets M,N, H,G,E in X = {1}. The full description of
each intuitionistic fuzzy set, i.e. A = (μA,νA,πA)/1, may be exemplified by

M = (1,0,0)/1, N = (0,1,0)/1, H = (0,0,1)/1,

G = (
1
2
,

1
2
,0)/1, E = (

1
4
,

1
4
,

1
2
)/1 (3.158)

The geometrical interpretation of the above sets is presented in Figure 3.2.
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Let us calculate the Euclidean distances between the above intuitionistic fuzzy
sets omitting the third term, i.e., using the following formula:

eIFS(2)(A,B) =

√
1
2

n

∑
i=1

(μA(xi)− μB(xi))2 +(νA(xi)−νB(xi))2 (3.159)

We obtain:

eIFS(2)(M,H) =

√
1
2
((1− 0)2 + 02) =

1
2

(3.160)

eIFS(2)(N,H) =

√
1
2
(02 +(0− 1)2) =

1
2

(3.161)

eIFS(2)(M,N) =

√
1
2
((1− 0)2+(0− 1)2) = 1 (3.162)

eIFS(2)(M,G) =

√
1
2
((1− 1

2
)2 +(0− 1

2
)2) =

1
2

(3.163)

eIFS(2)(N,G) =

√
1
2
((0− 1

2
)2 +(1− 1

2
)2) =

1
2

(3.164)

eIFS(2)(E,G) =

√
1
2
((

1
4
− 1

2
)2 +(

1
4
− 1

2
)2) =

1
4

(3.165)

eIFS(2)(H,G) =

√
1
2
((0− 1

2
)2 +(0− 1

2
)2) =

1
4

(3.166)

However, one can hardly agree with the above results. As it was shown (cf. Fig-
ure 2.3), the triangle MNH (Figure 3.2) has all edges equal to

√
2 (as they are di-

agonals of squares with sides equal to 1). So we should obtain eIFS(2)(M,H) =
eIFS(2)(N,H) = eIFS(2)(M,N). But our results show only that eIFS(2)(M,H) =
eIFS(2)(N,H) [cf. (3.160)–(3.161)], but unfortunately eIFS(2)(M,H) �= eIFS(2)(M,N),
and eIFS(2)(N,H) �= eIFS(2)(M,N). Also eIFS(2)(E,G), which is half of the height of

triangle MNH multiplied in (3.159) by
√

1/2, is not the value we expect (it is too
short, and the same concerns the height of eIFS(2)(H,G)).

On the other hand, upon calculating the same Euclidean distances using (3.155),
i.e., taking into account all three terms (membership values, non-membership val-
ues, and hesitation margins), we obtain:

e1
IFS(M,H) =

√
1
2
((1− 0)2 + 02 +(0− 1)2) = 1 (3.167)
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e1
IFS(N,H) =

√
1
2
(02 +(1− 0)2+(0− 1)2) = 1 (3.168)

e1
IFS(M,N) =

√
1
2
((1− 0)2 +(0− 1)2+ 02) = 1 (3.169)

e1
IFS(M,G) =

√
1
2
((1− 1

2
)2 +(0− 1

2
)2 + 02) =

1
2

(3.170)

e1
IFS(N,G) =

√
1
2
((0− 1

2
)2 +(1− 1

2
)2 + 02) =

1
2

(3.171)

e1
IFS(E,G) =

√
1
2
((

1
4
− 1

2
)2 +(

1
4
− 1

2
)2 +(

1
2
− 0)2) =

√
3

4
(3.172)

e1
IFS(H,G) =

√
1
2
((0− 1

2
)2 +(0− 1

2
)2 +(1− 0)2) =

√
3

2
(3.173)

From (3.155) we get the expected results, i.e.

e1
IFS(M,H) = e1

IFS(N,H) = e1
IFS(M,N) = 2e1

IFS(M,G) = 2e1
IFS(N,G)

and e1
IFS(E,G) is equal to half the height of a triangle with all edges equal

√
2

multiplied by 1/
√

2, i.e.
√

3
4 .

Example 3.4. (Szmidt and Kacprzyk [171]) Let A and B in X = {1,2,3,4,5,6,7}
be the following intuitionistic fuzzy sets

A = (0.5, 0.3, 0.2)/1+(0.2, 0.6, 0.2)/2+(0.3, 0.2, 0.5)/4+

+ (0.2, 0.2, 0.6)/5+(1, 0, 0)/6 (3.174)

B = (0.2, 0.6, 0.2)/1+(0.3, 0.2, 0.5)/4+(0.5, 0.2, 0.3)/5+(0.9, 0, 0.1)/7
(3.175)

Then, upon taking into account all three terms, we get the Hamming distance
(3.154) equal to

d1
IFS(A,B) =

1
2
(|0.5− 0.2|+ |0.3− 0.6|+ |0.2− 0.2|+ |0.2− 0|+ |0.6− 1|+

+ |0.2− 0|+ |0.3− 0.3|+ |0.2− 0.2|+ |0.5− 0.5|+ |0.2− 0.5|+
+ |0.2− 0.2|+ |0.6− 0.3|+ |1− 0|+ |0− 1|+ |0− 0|+
+ |0− 0.9|+ |1− 0|+ |0− 0.1|) = 3 (3.176)

Thus, taking into account all three terms, we get the normalized Hamming dis-
tance (3.156) as equal to
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l1
IFS(A,B) =

3
7
= 0.43 (3.177)

The Hamming distance, when we account for two terms only, is equal to

dIFS(2)(A,B) =
1
2
(|0.5− 0.2|+ |0.3− 0.6|+ |0.2− 0|+ |0.6− 1|+ |0.3− 0.3|+

+ |0.2− 0.2|+ |0.2− 0.5|+ |0.2− 0.2|+ |1− 0|+ |0− 1|+
+ |0− 0.9|+ |1− 0|) = 2.7 (3.178)

and the normalized Hamming distance accounting for two terms only is

lIFS(2)(A,B) =
1
7
·d(A,B) = 2.7

7
= 0.39 (3.179)

The Euclidean distance (3.155) based on all three terms is equal to

e1
IFS(A,B) = 0.50.5((0.5− 0.2)2+(0.3− 0.6)2+(0.2− 0.2)2+(0.2− 0)2+

+ (0.6− 1)2+(0.2− 0)2+(0.3− 0.3)2+(0.2− 0.2)2+

+ (0.5− 0.5)2+(0.2− 0.5)2+(0.2− 0.2)2+(0.6− 0.3)2+

+ (1− 0)2+(0− 1)2+ 02 +(0− 0.9)2+(1− 0)2+(0− 0.1)2)0.5 =

=
√

2.21 = 1.49 (3.180)

thus, the normalized Euclidean distance based on all three terms is

q1
IFS(A,B) =

e1
IFS(A,B)√

7
=

√
2.21

7
= 0.56 (3.181)

The Euclidean distance (3.159), calculated with two terms only is equal to

eIFS(2)(A,B) = 0.50.5((0.5− 0.2)2+(0.3− 0.6)2+(0.2− 0)2+(0.6− 1)2+

+ (0.3− 0.3)2+(0.2− 0.2)2+(0.2− 0.5)2+(0.2− 0.2)2+(1− 0)2+

+ (0− 1)2+(0− 0.9)2−(1− 0)2)0.5=
√

2.14 = 1.46 (3.182)

hence, the normalized Euclidean distance, based on only two terms is

qIFS(2)(A,B) =

√
1
7
· e(A,B) =

√
2.14

7
= 0.55 (3.183)

It is easy to notice, when analyzing the results obtained in Examples 3.3 and 3.4
that distances between the intuitionistic fuzzy sets should be calculated by taking
into account all three terms (membership values, non-membership values, and hesi-
tancy margin values). It is also easy to notice that for the formulas (3.154) –(3.157)
the following holds
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0 ≤ d1
IFS(A,B)≤ n (3.184)

0 ≤ l1
IFS(A,B)≤ 1 (3.185)

0 ≤ e1
IFS(A,B)≤

√
n (3.186)

0 ≤ q1
IFS(A,B)≤ 1 (3.187)

Using two terms only gives values of distances which are orthogonal projections
of the real distances (Figure 2.3), and this implies that they are lower.

So to sum up, after analyzing several definitions of distances between the intu-
itionistic fuzzy sets, it was shown that the distances should be calculated taking into
account all three terms describing an intuitionistic fuzzy set.

Taking into account all three terms describing the intuitionistic fuzzy sets when
calculating distances ensures that the distances for fuzzy sets and intuitionistic fuzzy
sets can be easily compared [cf. formulas (3.140)-(3.143) and formulas (3.184)-
(3.187)].

3.3.2.1 Hausdorff Distances

The Hausdorff distances (cf. Grünbaum [77]) are important from the point of view
of practical applications, namely, in image matching, image analysis, visual nav-
igation of robots, motion tracking, computer-assisted surgery and so on (cf. e.g.,
Huttenlocher et al. [89], Huttenlocher and Rucklidge [90], Olson [127], Peitgen
et al. [136], Rucklidge [142]-[146]). Although the definition of the Hausdorff dis-
tances is simple, the calculations needed to solve the real problems are complex. In
result the efficiency of the algorithms for computing the Hausdorff distances may
be crucial and the use of some approximations may be relevant and useful (e.g,
Aichholzer [1], Atallah [3], Huttenlocher et al. [89], Preparata and Shamos [137],
Rucklidge [146], Veltkamp [239]).

First of all, the formulas proposed for calculating the distances should be formally
correct. This is the motivation of this section. Namely, we consider the results of
using the Hamming distances between the intuitionistic fuzzy sets calculated in two
possible ways – taking into account the two term representation (the membership
and non-membership values) of the intuitionistic fuzzy sets, and next – taking into
account the three term representation (the membership, non-membership values,
and hesitation margin values) of the intuitionistic fuzzy sets. We will verify if the
resulting distances fulfill the properties of the Hausdorff distances.

The next problem we consider concerns calculating the Hausdorff distance based
on the Hamming metric for the interval-valued fuzzy sets. We prove that the formu-
las that are effective and efficient for the interval-valued fuzzy sets do not work well
in the case of the intuitionistic fuzzy sets.

The Hausdorff distance is the maximum distance of a set to the nearest point in
the other set (Rote [141]). More formal description is given by the following
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Definition 3.13. Given two finite sets A = {a1, ...,ap} and B = {b1, ...,bq}, the
Hausdorff distance H(A,B) is defined as:

H(A,B) = max{h(A,B),h(B,A)} (3.188)

where
h(A,B) = max

a∈A
min
b∈B

d(a,b) (3.189)

where:

– a and b are elements belonging to sets A and B respectively,
– d(a,b) is any metric between elements a and b,
– the two distances h(A,B) and h(B,A) (3.189) are called the directed Hausdorff
distances.

The directed Hausdorff distance from A to B, i.e., the function h(A,B) ranks each
element of A based on its distance to the nearest element of B, and then the highest
ranked element specifies the value of the distance. Usually, h(A,B) and h(B,A) can
be different values (the directed distances are not symmetric).

Following the way of calculating the Hausdorff distances (Definition 3.13) we
may notice that if A and B contain one element each (a1 and b1, respectively), the
Hausdorff distance is just equal to d(a1,b1). In other words, if for separate elements
a formula which is expected to express the Hausdorff distance gives a result which
is not consistent with the used metric d (e.g., the Hamming distance, the Euclidean
distance, etc.), the formula considered is not a proper definition of the Hausdorff
distance.

3.3.2.2 The Hausdorff Distance Between the InterVal-valued Fuzzy Sets

The Hausdorff distance between two intervals: U = [u1,u2] and W = [w1,w2] is
(Moore [125]):

h(U,W ) = max{|u1 −w1|, |u2 −w2|} (3.190)

Assuming the two-term representation for the intuitionistic fuzzy sets: A =
{x,μA(x),νA(x)} and B = {x,μB(x),νB(x)}, we may consider the two intuitionis-
tic fuzzy sets, A and B, as two intervals, namely:

[μA(x),1−νA(x)] and [μB(x),1−νB(x)] (3.191)

then
h(A,B) = max{|μA(x)− μB(x)|, |νA(x)−νB(x)|} (3.192)

Later on we will verify if (3.192) is a properly calculated Hausdorff distance
between the intuitionistic fuzzy sets while using the Hamming metric.
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3.3.2.3 Two Term Representation of the Intuitionistic Fuzzy Sets and the
Hausdorff Distance (Hamming Metric)

Following the algorithm of calculating the directed Hausdorff distances, when ap-
plying the two term type Hamming distance (3.88) between the intuitionistic fuzzy
sets, we obtain:

dh(A,B) =
1
n

n

∑
i=1

max{|μA(xi)− μB(xi)| , |νA(xi)−νB(xi)|} (3.193)

If the above distance (3.193) is a properly calculated Hausdorff distance, then in the
case of degenerate, i.e., one-element sets A = {< x,μA(x),νA(x) >} and B = {< x,
μB(x),νB(x) >}, it should give the same results as the two term type Hamming
distance (3.88). It means that in the case of the two term type Hamming distance,
for the degenerate, one element intuitionistic fuzzy sets, the following equations
should give just the same results (Szmidt and Kacprzyk [209]):

lIFS(2)(A,B) =
1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|) (3.194)

dh(A,B) = max{|μA(x)− μB(x)| , |νA(x)−νB(x)|} (3.195)

where (3.194) is the normalized two term type Hamming distance, and (3.195)
should be its counterpart Hausdorff distance.

We will verify on a simple example if (3.194) and (3.195) give the same results
as they should do following the essence of the Hausdorff measures.

Example 3.5. (Szmidt and Kacprzyk [210]) Consider the following one-element in-
tuitionistic fuzzy sets: A, B, D, G, E ∈ X = {x}

A = {< x,1,0 >}, B = {< x,0,1 >}, D = {< x,0,0 >},
G = {< x,

1
2
,

1
2
>}, E = {< x,

1
4
,

1
4
>} (3.196)

The results from (3.195) are:

dh(A,B) = max{|1− 0|, |0− 1|}= 1

dh(A,D) = max{|1− 0|, |0− 0|}= 1

dh(B,D) = max{|0− 0|, |1− 0|}= 1

dh(A,G) = max{|1− 1/2|, |0− 1/2|}= 0.5

dh(A,E) = max{|1− 1/4|, |0− 1/4|}= 0.75
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dh(B,G) = max{|0− 1/2|, |1− 1/2|}= 0.5

dh(B,E) = max{|0− 1/4|, |1− 1/4|}= 0.75

dh(D,G) = max{|0− 1/2|, |0− 1/2|}= 0.5

dh(D,E) = max{|0− 1/4|, |1− 1/4|}= 0.25

dh(G,E) = max{|1/2− 1/4|, |1/2−1/4|}= 0.25

Their counterpart Hamming distances calculated from (3.194) are:

lIFS(2)(A,B) = 0.5(|1− 0|+ |0−1|)= 1

lIFS(2)(A,D) = 0.5(|1− 0|+ |0−0||)= 0.5

lIFS(2)(B,D) = 0.5(|0− 0|+ |1−0||)= 0.5

lIFS(2)(A,G) = 0.5(|0− 1/2|+ |0−1/2|)= 0.5

lIFS(2)(A,E) = 0.5(|1− 1/4|+ |0−1/4||)= 0.5

lIFS(2)(B,G) = 0.5(|1− 1/4|+ |0−1/4|)= 0.5

lIFS(2)(B,E) = 0.5(|1− 1/4|+ |0−1/4|)= 0.5

lIFS(2)(D,G) = 0.5(|0− 1/2|+ |0−1/2|)= 0.5

lIFS(2)(D,E) = 0.5(|0− 1/4|+ |0−1/4|)= 0.25

lIFS(2)(G,E) = 0.5(|1/2− 1/4|+ |1/2−1/4|)= 0.25

i.e. the values of the Hamming distances (3.194) used to define the Hausdorff mea-
sures (3.195), and the values of the resulting Hausdorff distances (3.195) calculated
for the separate elements are not consistent (as they should be). The differences are:

dh(A,D) �= lIFS(2)(A,D) (3.197)
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dh(B,D) �= lIFS(2)(B,D) (3.198)

dh(A,E) �= lIFS(2)(A,E) (3.199)

dh(B,E) �= lIFS(2)(B,E) (3.200)

It is easy to show that the inconsistencies as shown above occur for an infinite
number of other cases.

Now we will verify the conditions under which the equations (3.194) and (3.195)
give consistent results, i.e., when for the separate elements we have (Szmidt and
Kacprzyk [218]):

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|) =

= max{|μA(x)− μB(x)| , |νA(x)−νB(x)|} (3.201)

Taking into account that

μA(x)+νA(x)+πA(x) = 1 (3.202)

μB(x)+νB(x)+πB(x) = 1 (3.203)

from (3.202) and (3.203) we obtain

(μA(x)− μB(x))+ (νA(x)−νB(x))+ (πA(x)−πB(x)) = 0 (3.204)

It is easy to notice that (3.204) is not fulfilled for all elements belonging to an
intuitionistic fuzzy set but for some elements only. Namely, equation (3.201) is ful-
filled for the following conditions (Szmidt and Kacprzyk [218])

• for πA(x)−πB(x) = 0, from (3.204) we have

|μA(x)− μB(x)|= |νA(x)−νB(x)| (3.205)

and having in mind (3.205), we can express (3.201) in the following way:

0.5(|μA(x)− μB(x)|+ |μA(x)− μB(x)|) =
= max{|μA(x)− μB(x)| , |μA(x)− μB(x)|} (3.206)

• if πA(x)−πB(x) �= 0, but, at the same time

μA(x)− μB(x) = νA(x)−νB(x) =−1
2
(πA(x)−πB(x)) (3.207)

then (3.201) boils down again to (3.206).
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In other words, (3.201) is fulfilled (which means that the Hausdorff measure
given by (3.195) is a natural counterpart of (3.194) ) only for such elements belong-
ing to an intuitionistic fuzzy set, for which some additional conditions are given,
like πA(x)− πB(x) = 0 or (3.207). However in general, for an infinite numbers of
elements, (3.201) is not valid.

In the above context it seems to be a bad idea to try constructing the Hausdorff
distance using the two term type Hamming distance between the intuitionistic fuzzy
sets.

An immediate conclusion is that, relating to the results concerning interval-
valued fuzzy sets (3.190)–(3.192) the Hausdorff distance for the intuitionistic fuzzy
sets can not be constructed in the same way as for the interval-valued fuzzy sets.

3.3.2.4 Three Term Hamming Distance Between the Intuitionistic Fuzzy
Sets and the Hausdorff Metric

Now we will show that by applying the three term type Hamming distance for the
intuitionistic fuzzy sets, we obtain correct (in the sense of Definition 3.13) Hausdorff
distance.

Namely, if we calculate the three term type Hamming distance between two de-
generate, i.e. one-element intuitionistic fuzzy sets, A and B in the spirit of Szmidt
and Kacprzyk [171], [188], Szmidt and Baldwin [159], [160], i.e., in the following
way:

l1
IFS(A,B) =

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|+

+ |πA(x)−πB(x)|) (3.208)

we can give a counterpart of the above distance in terms of the max function (Szmidt
and Kacprzyk [218]):

H3(A,B) = max{|μA(x)− μB(x)| , |νA(x)−νB(x)| ,
, |πA(x)−πB(x)|} (3.209)

If H3(A,B) (3.209) is a properly specified Hausdorff distance (in the sense that for
two degenerate, one element intuitionistic fuzzy sets, the result is equal to the metric
used), the following condition should be fulfilled (Szmidt and Kacprzyk [218]):

1
2
(|μA(x)− μB(x)|+ |νA(x)−νB(x)|)+ |πA(x)−πB(x)|) =

= max{|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|} (3.210)

Let us verify if (3.210) is valid. Without loss of generality we can assume

max {|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|}=
= |μA(x)− μB(x)| (3.211)
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For |μA(x)− μB(x)| fulfilling (3.211), and because of (3.202) and (3.203), we
conclude that both νA(x)− νB(x), and πA(x)− πB(x) are of the same sign (both
values are either positive or negative). Therefore

|μA(x)− μB(x)| = |νA(x)−νB(x)|+ |πA(x)−πB(x)| (3.212)

Applying (3.212) we can verify that (3.210) always is valid as

0.5{|μA(x)− μB(x)|+ |μA(x)− μB(x)|}=
= max{|μA(x)− μB(x)| , |νA(x)−νB(x)| , |πA(x)−πB(x)|}=
= |μA(x)− μB(x)| (3.213)

Now we will use the above formulas, (3.208) and (3.209), for the data used
in Example 1. But now, as we also take into account the hesitation margins π(x)
(2.7), instead of (3.196) we use the three term, “full” description of the data
{< x,μ(x),ν(x),π(x) >}, i.e. employing all three functions (the membership, non-
membership and hesitation margin) describing the considered intuitionistic fuzzy
sets (Szmidt and Kacprzyk [210]):

A = {< x,1,0,0 >}, B = {< x,0,1,0 >}, D = {< x,0,0,1 >},
G = {< x,

1
2
,

1
2
,0 >}, E = {< x,

1
4
,

1
4
,

1
2
>} (3.214)

From (3.209) we have:

H3(A,B) = max(|1− 0|, |0− 1|, |0−0|)= 1

H3(A,D) = max(|1− 0|, |0− 0|, |0−1|)= 1

H3(B,D) = max(|0− 0|, |1− 0|, |0−1|)= 1

H3(A,G) = max(|0− 1/2|, |0− 1/2|, |0− 0|)= 0.5

H3(A,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(B,G) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(B,E) = max(|1− 1/4|, |0− 1/4|, |0− 1/2|)= 0.75

H3(D,G) = max(|0− 1/2|, |0− 1/2|, |1− 0|)= 1

H3(D,E) = max(|0− 1/4|, |0− 1/4|, |1− 1/2|)= 0.5
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H3(G,E) = max(|1/2− 1/4|, |1/2−1/4|, |0−1/2|)= 0.5

The counterpart Hamming distances obtained from (3.208) (with all three functions)
are

l1
IFS(A,B) = 0.5(|1− 0|+ |0−1|+ |0−0|)= 1

l1
IFS(A,D) = 0.5(|1− 0|+ |0−0|+ |0−1|)= 1

l1
IFS(B,D) = 0.5(|0− 0|+ |1−0|+ |0−1|)= 1

l1
IFS(A,G) = 0.5(|0− 1/2|+ |0−1/2|+ |0−0|)= 0.5

l1
IFS(A,E) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(B,G) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(B,E) = 0.5(|1− 1/4|+ |0−1/4|+ |0−1/2|)= 0.75

l1
IFS(D,G) = 0.5(|0− 1/2|+ |0−1/2|+ |1−0|)= 1

l1
IFS(D,E) = 0.5(|0− 1/4|+ |0−1/4|+ |1−1/2|)= 0.5

l1
IFS(G,E) = 0.5(|1/2− 1/4|+ |1/2−1/4|+ |0−1/2|)= 0.5

As we can see, the Hausdorff distance (3.209) (using the membership values,
non-membership values and hesitation margins) and the tree term Hamming dis-
tance (3.208) give for one-element intuitionistic fuzzy sets fully consistent results.
The same situation occurs in a general case too.

In other words, for the normalized Hamming distance expressed in the spirit of
(Szmidt and Kacprzyk [171], [188]), given by (3.154), we can give the following
equivalent representation in terms of the max function:

H3(A,B) =
1
n

n

∑
i=1

max {|μA(xi)− μB(xi)| , |νA(xi)−νB(xi)| ,

|πA(xi)−πB(xi)|} (3.215)

Unfortunately, it can be easily verified that it is impossible to give the counterpart
pairs of the formulas like (3.154) and (3.215) for r > 1 in the Minkowski r-metrics
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(r = 1 is the Hamming distance, r = 2 is the Euclidean distance, etc.). More details
are given in [25] and [236].

Now we will show that the three term distances between the intuitionistic fuzzy
sets are useful in the ranking of intuitionistic fuzzy alternatives.

3.4 Ranking of the Intuitionistic Fuzzy Alternatives

Given their ability to model imperfect information, the intuitionistic fuzzy sets have
found applications in many areas, in particular, in decision making. Ranking of the
intuitionistic fuzzy alternatives (options), obtained, for example, as a result of deci-
sion analysis, aggregation, etc. is one of important problems. The intuitionistic fuzzy
alternatives may be understood in different ways. Here we mean them as elements of
a universe of discourse with their associated membership degrees, non-membership
degrees, and hesitation margins. In the context of decision making each option ful-
fills a set of criteria to some extent μ(.), it does not fulfill this set of criteria to
some extent ν(.) and, on the other hand we are not sure to the extent π(.) if an
option fulfills or does not fulfill a set of criteria. This implies that the alternatives
can be expressed via the intuitionistic fuzzy sets. Here we will call such alternatives
“intuitionistic fuzzy alternatives”.

The intuitionistic fuzzy alternatives may be ranked only under some additional
assumptions as there is no linear order among elements of the intuitionistic fuzzy
sets. The situation is different from that for fuzzy sets (Zadeh [254]), for which ele-
ments of the universe of discourse are naturally ordered because their membership
degrees are real numbers from [0,1].

There are not many approaches for ranking the intuitionistic fuzzy alternatives in
the literature. For instance, Chen and Tan [53], Hong and Choi [80], Li et al. [112],
[114], and Hua-Wen Liu and Guo-Jun Wang [119] proposed some approaches.

Chen and Tan [53] proposed a score function for vague sets [72], but, as Bustince
and Burillo [44] demonstrated that vague sets are equivalent to intuitionistic fuzzy
sets, we can consider the concept of a score function for an intuitionistic fuzzy
alternative a = (μ ,ν) meant as

S(a) = μ −ν, (3.216)

and, clearly, S(a) ∈ [−1,1].
It is easy to notice that the score function S(a) (3.216) can not alone evaluate

the intuitionistic fuzzy alternatives as it produces the same result for such different
intuitionistic fuzzy alternatives a = (μ ,ν) as, e.g.: (0.5,0.4), (0.4,0.3), (0.3,0.2),
(0.1,0) – for all of them S(a) = 0.1, which seems counterintuitive.

Next, Hong and Choi [80] introduced, in addition to the score function (3.216), a
so called accuracy function H

H(a) = μ +ν, (3.217)

where H(a) ∈ [0,1].
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Xu [253] made use of both (3.216) and (3.217), and proposed an algorithm rank-
ing the intuitionistic fuzzy alternatives. In the case of two alternatives ai and a j , the
algorithm is as follows [253]:

• if S(ai)≤ S(a j), then ai is smaller than a j;
• if S(ai) = S(a j), then:

– if H(ai) = H(a j), then ai and a j represent the same information (are equal);
– if H(ai)≤ H(a j), then ai is smaller than a j.

Unfortunately, the above method of ranking does not produce reliable results in
many cases. Let us consider two intuitionistic fuzzy alternatives (Szmidt and Kac-
przyk [205]) a1 = (0.5,0.45) and a2 = (0.25,0.05) for which we obtain S(a1) =
0.5−0.45 = 0.05, S(a2) = 0.25−0.05 = 0.2, suggesting that a1 is smaller than a2.
However, information provided by a1 (i.e. 0.5+0.45= 0.95) is certainly bigger than
that provided by a2 (i.e. 0.25+0.05= 0.3). In this context it is difficult to agree that
a1 is smaller than a2. Later on, we will return to ranking of two intuitionistic fuzzy
alternatives by the method we propose.

We give below an example showing some more weak sides of the above proce-
dure. Let us consider the following intuitionistic fuzzy alternatives:

a1 = (0.1,0,0.9),

a2 = (0.2,0.11,0.69),

a3 = (0.3,0.22,0.48),

a4 = (0.4,0.33,0.27),

a5 = (0.5,0.44,0.06),

for which the scores are:

S(a1) = 0.1− 0 = 0.1,

S(a2) = 0.2− 0.11= 0.09,

S(a3) = 0.3− 0.22= 0.08,

S(a4) = 0.4− 0.33= 0.07,

S(a5) = 0.5− 0.44= 0.06,

which, in the light of the above algorithm means that:

a1 > a2 > a3 > a4 > a5

In other words, due to the above ranking procedure, in this particular case, the less
we know, the better (it is worth noticing that the lack of knowledge is the biggest for
the “best” alternative a1 (equal to 0.9), and it decreases for the consecutive “worse”
(according to the considered procedure) alternatives. Next, the membership values
increase from 0.1 (for a1) to 0.5 (for a5). Thus, for increasing membership values
and decreasing lack of knowledge we obtain (from the ranking procedure consid-
ered) worse alternatives, which is obviously counterintuitive.
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Moreover, the ranking procedure considered produces answers that are not con-
tinuous. If we change a little the non-membership values in the above example, i.e.:

a1 = (0.1,0,0.9),

a2 = (0.2,0.1,0.7),

a3 = (0.3,0.2,0.5),

a4 = (0.4,0.3,0.3),

a5 = (0.5,0.4,0.1),

we obtain the same score for each ai, i = 1, . . . ,5, and from the second part of the
ranking procedure we obtain the reverse order, i.e.:

a5 > a4 > a3 > a2 > a1

Certainly, it makes no sense for a ranking procedure to be so sensitive to so small
changes of the parameters. Conclusion: the above ranking procedure should not be
used (especially in decision making tasks).

We have already mentioned the possibility of using the intuitionistic fuzzy sets in
voting models. Now we will consider some ways of ranking the voting alternatives
expressed via the intuitionistic fuzzy elements.

Let an element x belonging to an intuitionistic fuzzy set characterized via (μ ,ν,π)
express a voting situation: μ represents the proportion (from [0,1]) of voters who
vote for x, ν represents the proportion of those who vote against x, and π represents
the proportion of those who abstain. The simplest idea of comparing different vot-
ing situations (ranking the alternatives) would be to use a distance measure from
the ideal voting situation M = (x,1,0,0) (100% voting for, 0% vote against and 0%
abstain) to the alternatives considered. We will call M the ideal positive alternative.
Let

A = (x,0.5,0.5,0) – 50% vote for, 50% against, and 0% abstain,
B = (x,0.4,0.4,0.2) – 40% vote for, 40% vote against and 20% abstain,
C = (x,0.3,0.3,0.4) – 30% vote for, 30% vote against and 40% abstain.

First we confirm that the method of calculating distances between two intu-
itionistic fuzzy sets A and B described by two terms, i.e., the membership and
non-membership values only (3.218) does not work properly (cf. Szmidt and Kac-
przyk [171], [188], Szmidt and Baldwin [159], [160]) in this case, too:

lIFS(2)(A,B) =
1
2n

n

∑
i=1

(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|) (3.218)

The results obtained with (3.218), i.e., the distances for the above voting alterna-
tives represented by points A,B,C (cf. Figure 3.3) from the ideal positive alternative
represented by M(1,0,0) are, respectively (Szmidt and Kacprzyk [197]):

lIFS(2)(M,A) = 0.5(|1− 0.5|+ |0−0.5|)= 0.5 (3.219)
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Fig. 3.3 Geometrical representation of the intuitionistic fuzzy alternatives

lIFS(2)(M,B) = 0.5(|1− 0.4|+ |0−0.4|)= 0.5 (3.220)

lIFS(2)(M,C) = 0.5(|1− 0.3|+ |0−0.3|)= 0.5 (3.221)

The results seem to be counterintuitive as (3.218) suggests that all the alternatives
(represented by) A,B,C are “the same”. On the other hand, the normalized Hamming
distance (3.156), taking into account, besides the membership and non-membership,
also the hesitation margin, gives:

l1
IFS(M,A) = 0.5(|1− 0.5|+ |0−0.5|+ |0−0|)= 0.5 (3.222)

l1
IFS(M,B) = 0.5(|1− 0.4|+ |0−0.4|+ |0−0.2|)= 0.6 (3.223)

l1
IFS(M,C) = 0.5(|1− 0.3|+ |0−0.3|+ |0−0.4|)= 0.7 (3.224)

It is not difficult to accept the results (3.222)–(3.224), reflecting our intuition. Alter-
native A (cf. Figure 3.3) seems to be the best in the sense that the distance lIFS(M,A)
is the smallest (we know for sure that 50% vote for, 50% vote against). The alterna-
tive represented by A is just a fuzzy alternative (A lies on MN where the values of
the hesitation margin are equal 0). Alternatives B and C, on the other hand, are “less
sure” (with the hesitation margins equal 0.2, and 0.4, respectively).

Unfortunately, a weak point in the ranking of alternatives by calculating the
distances from the ideal positive alternative represented by M is that for a fixed
membership value, from (3.156) we obtain just the same value (for example, if the
membership value μ is equal 0.8, for any intuitionistic fuzzy element, i.e. such that
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Fig. 3.5 a) Distances (3.157) of any intuitionistic fuzzy element from the ideal alternative M;
b) contour plot

its non-membership degree ν and hesitation margin π fulfill ν +π = 0.2, we obtain
the value of 0.2). This fact is illustrated in Figure 3.4, a and b. To better see this, the
distances (3.156) for any alternative from M (Figure 3.4a) are presented for μ and
ν for the whole range [0,1] (instead of showing them for μ + ν ≤ 1 only). For the
same reason (to better see the effect), in Figure 3.4b the contour plot of the distances
(3.156) is given only for the range of μ and ν for which μ +ν ≤ 1.

Now we will verify if the normalized Euclidean distance (3.157) from the ideal
positive alternative represented by M(1,0,0) gives better results from the point of
view of ranking the alternatives.

Let A = (x,0.2,0.8,0) – 20% vote for, 80% against, and 0% abstain, B = (x, 0.2,
0, 0.8) – 20% vote for, 0% vote against and 80% abstain, The normalized Euclidean
distance (3.157) gives (Szmidt and Kacprzyk [214]) :
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e1
IFS(M,A) = (0.5((1− 0.2)2+(0− 0.8)2+(0− 0)2))0.5 = 0.8 (3.225)

e1
IFS(M,B) = (0.5((1− 0.2)2+(0− 0)2+(0− 0.8)2))0.5 = 0.8 (3.226)

Making use of (3.157) for ranking the alternatives suggests [cf. (3.225)–(3.226)]
that the alternatives (represented by) A,B seem to be “the same” which is counterin-
tuitive. A general illustration of the above counterintuitive result is given in Fig. 3.5.
We can see that the results of (3.157) are not univocally given for a given mem-
bership value μ ; for clarity, the distances (3.157) for any x from M (Fig. 3.5a) are
presented for μ and ν for [0,1], and not for μ +ν ≤ 1 only. For the same reason (to
better see the effect), in Fig. 3.5b the contour plot of the distances (3.157) is given
only for the range of μ and ν for which μ +ν ≤ 1. So, the distances (3.157) (cf. also
Szmidt and Kacprzyk [197]) from the ideal positive alternative alone do not make it
possible to rank the alternatives in the intended way.

The analysis of the above examples shows that the distances from the ideal posi-
tive alternative alone do not make it possible to rank the alternatives in the intended
way.

3.4.0.5 A New Method for Ranking Alternatives (Szmidt and
Kacprzyk [205])

The sense of a voting alternative (expressed via an intuitionistic fuzzy element) can

be analyzed by using the operators (cf. Atanassov [15]) of: necessity ( ), possibility
(♦), Dα(A) and Fα ,β (A) given as:

• The necessity operator ( )

A = {〈x,μA(x),1− μA(x)〉|x ∈ X} (3.227)

• The possibility operator (♦)

♦A = {〈x,1−νA(x),νA(x)〉|x ∈ X} (3.228)

• Operator Dα(A) (where α ∈ [0,1])

Dα(A) = {〈x, μA(x)+απA(x), νA(x)(1−α)πA(x)〉 |x ∈ X} (3.229)

• Operator Fα ,β (A) (where α,β ∈ [0,1]; α +β<1)

Fα ,β (A) = {〈x, μA(x)+απA(x),νA(x)β πA(x)〉 |x ∈ X} (3.230)

Considering alternative B(0.4,0.4,0.2), for example, and using the above op-

erators we obtain B = Bmin, where Bmin = (0.4,0.6), and ♦B = Bmax, where
Bmax = (0.6,0.4) (Figure 3.3). Operator Fα ,β (A) makes it possible for alterna-
tive B to become any alternative represented in triangle BBmaxBmin. A similar rea-
soning leads to the conclusion that alternative C (Figure 3.3) might become any
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Fig. 3.6 Ranking of alternatives Yi

alternative represented in triangle CCmaxCmin, and alternative O(0,0,1) (with the
hesitation margin equal 1)

may become any alternative (the whole area of the triangle MNO).
In the context of the above considerations we could say that the smaller the area

of the triangle YiYi,minYi,max (Figure 3.6) the better the alternative Yi from a set Y
of the alternatives considered. Alternatives having their representations on segment
MN (i.e., fuzzy alternatives) are the best in the sense that:

• the alternatives are fully reliable in the sense of the information represented, as
the hesitation margin is equal 0 here, and

• the alternatives are ordered – the closer an alternative to ideal positive alternative
M(1,0,0), the better it is (it is an obvious fact as fuzzy alternatives are univocally
ordered).

The above reasoning suggests that a promising way of ranking the intuitionistic
fuzzy alternatives Yi with the same values of πi is to convert them into the fuzzy
alternatives (which may be easily ranked).

The simplest way of ranking the alternatives Yi with different values of πi seems
to be to make use of the information carried by the triangles YiYi,minYi,max.

The amount of information connected with Yi is indicated by Y ∗
i , i.e., by “the

position” of triangle YiYi,minYi,max inside triangle MNO – expressed by the projection
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Fig. 3.7 a) R(Yi) as a function of distance lIFS(M,Y ∗
i ) (3.156) between Y ∗

i and M, and the
hesitation margin; b) contour plot

on the segment MN. The hesitation margin πYi indicates how reliable (sure) is the
information represented by Y ∗

i .
Y ∗

i are the orthogonal projections of Yi on MN. Such an orthogonal projection of
the intuitionistic fuzzy elements belonging to an intuitionistic fuzzy set A was con-
sidered by Szmidt and Kacprzyk [166]. This orthogonal projection may be obtained
via operator Dα(A) (3.229) with parameter α equal 0.5.

We can see that all the elements from the segment OA (Figure 3.3) are trans-
formed by D0.5(A) (3.229) into A(0.5,0.5) which reflects the lack of differences
between the membership and non-membership, irrespective of the value of the hes-
itation margin.

Having the above observations in mind, a reasonable measure R that can be used
for ranking the alternatives (represented by) Yi seems to be

R(Yi) = 0.5(1+πYi)distance(M,Y ∗
i ) (3.231)

where distance(M,Y ∗
i ) is a distance from the ideal positive alternative M(1,0,0),

Y ∗
i is the orthogonal projection of Yi on MN. The constant 0.5 was introduced in

(3.231) to ensure that 0 < R(Yi)≤ 1. The values of function R for any intuitionistic
fuzzy element and the distance lIFS(M,Y ∗

i ) (3.156) are presented in Figure 3.7a, and
the corresponding contour plot – in Figure 3.7b.

Unfortunately, the results obtained with (3.231) do not rank the alternatives in
the intended way. (The maximum value of (3.231) is not obtained for the alternative
(0,0,1) but for (0,1/2,1/2).)

Similarly, in the case of the normalized Euclidean distance (3.157) used in
(3.231) instead of l1

IFS(M,Y ∗
i ) (3.156), the results of (3.231) do not meet our ex-

pectations in the sense of their relations to the areas of the triangles YiYi,minYi,max

(cf. Figure 3.6). Let us consider the alternatives Yi, i = 1, . . . ,4. of Figure 3.6. We
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might expect that the alternatives be ordered by (3.231) from Y1 to Y4 as just such
an order renders the areas of the respective triangles. But the results from (3.231)
obtained using the normalized Euclidean distance (3.157) for the different alterna-
tives seem to be very much “the same”. For example (Szmidt and Kacprzyk [214]),
for Y1=(0, 0.8, 0.2), RE(Y ∗

1 )=0.54, for Y2=(0, 0.6, 0.4), RE(Y ∗
2 )=0.56, for Y3=(0, 0.3,

0.7), RE(Y ∗
3 )=0.55, for Y4=(0, 0, 1), RE(Y ∗

4 )=0.5.

So, again, the results obtained via (3.231) with the normalized Euclidean distance
(3.157) do not rank the alternatives in the intended way.

It seems that a better measure than (3.231) for ranking the alternatives (repre-
sented by) Yi might be the following measure R

R(Yi) = 0.5(1+πYi)distance(M,Yi) (3.232)

where distance means a distance (3.156) of Yi from the ideal positive alternative
M(1,0,0).

Definition (3.232) tells us about the “quality” of an alternative – the lower the
value of R(Yi), (3.232), the better the alternative in the sense of the amount of posi-
tive information included, and reliability of information.

For the distance l1
IFS(M,Yi) (3.156), the best is alternative M(1,0,0) for which

R(M) = 0. For the alternative N(0,1,0) we obtain R(N) = 0.5 (alternative N is fully
reliable as the hesitation margin is equal 0, but the distance l1

IFS(M,N) = 1). The
alternative A (Figures 3.3) gives R(A) = 0.25. In general, on MN, the values of R
decrease from 0.5 (for alternative N) to 0 (for the best alternative M). The maximum
value of R, i.e. 1, is obtained for O(0,0,1) for which both distances from M and the
hesitation margin are equal 1 (alternative O “indicates” the whole triangle MNO).
All other alternatives Yi “indicate” smaller triangles YiYi,minYi,max (Figure 3.6), so
their corresponding values of R are smaller (better in the sense of amount of reliable
information).

The values of function R (3.232) for any intuitionistic fuzzy element are presented
in Figure 3.8a, and the counterpart contour plot – in Figure 3.8b. Considering the
numbers obtained via R (3.232), we may notice that the value 0.25 obtained for the
alternative (0.5, 0.5, 0) constitutes the “border” of the “interesting” alternatives – in
the sense of the amount of positive knowledge.

Let us consider again the ranking of two alternatives (which were ranked counter-
intuitively by the algorithm presented in [253] as shown in the beginning of Sec-
tion 3.4), namely Y1 =(0.5,0.45,0.05) and Y2 =(0.25,0.05,0.7) (we stress here that
we take into account all three terms: the degrees of membership, non-membership
and hesitation margin). From (3.232) we obtain: R(Y1) = 0.26, R(Y2) = 0.64 which
means that Y1 is better than Y2 (previously, according to the algorithm from [253] Y2

was better/bigger than Y1). Obviously, Y1 is not a “good” option as R(Y1) is bigger
than 0.25 which follows from the fact that the non-membership value is quite big
(equal 0.45). It might mean that we would not accept the option Y1. But option Y2

seems even less interesting – with the smaller membership value (equal 0.25 instead
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of 0.5 for Y1 ), and with the bigger hesitation margin (equal 0.7 instead of 0.05 for
Y1).

Example 3.6. (Szmidt and Kacprzyk [205]) Let us evaluate (rank) six medical treat-
ments. The treatments C1 – C6, affect a patient in the following way (Szmidt and
Kacprzyk [205]):

• C1 : (0.6,0.2,0.2) – influences in a positive way 60% of symptoms, in a negative
way – 20% of symptoms, and its impact is unknown (was not confirmed) in the
case of 20% of symptoms;

• C2 : (0.7,0.3,0) – influences in a positive way 70% symptoms, in a negative way
– 30% of symptoms, and its impact is unknown (was not confirmed) in the case
of 0% of symptoms;

• C3 : (0.7,0.15,0.15) – influences in a positive way 70% of symptoms, in a nega-
tive way – 15% of symptoms, and its impact is unknown (was not confirmed) in
the case of 15% of symptoms;

• C4 : (0.775,0.225,0) – influences in a positive way 77.5% of symptoms, in a neg-
ative way – 22.5% of symptoms, and its impact is unknown (was not confirmed)
in the case of 0% of symptoms;

• C5 : (0.8,0.1,0.1) – influences in a positive way 80% of symptoms, in a negative
way – 10% of symptoms, and its impact is unknown (was not confirmed) in the
case of 10% of symptoms;

• C6 : (0.8,0.2,0) – influences in a positive way 80% of symptoms, in a negative
way – 20% of symptoms, and its impact is unknown (was not confirmed) in the
case of 0% of symptoms.

Table 3.1 shows the ranking of C1, . . . ,C6 with (3.232) – from the worst one, C1
to the best one, C6.

It is worth emphasizing that the ranking function R (3.232) is constructed taking
strongly into account the lack of knowledge. Let us consider the pair: C1 and C2
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Table 3.1 Ranking alternatives by R (3.232) – results for the data from Example 3.6

No. Ci : (μi,νi,πi) RE(Ci)

1 C1 : (0.6,0.2,0.2) 0.240
2 C2 : (0.7,0.3,0) 0.150
3 C3 : (0.7,0.15,0.15) 0.173
4 C4 : (0.775,0.225,0) 0.113
5 C5 : (0.8,0.1,0.1) 0.110
6 C6 : (0.8,0.2,0) 0.100

(Table 3.1). In the case of C1 the lack of knowledge is equal to 0.2, so that theoreti-
cally, we might expect “on the average” that the hesitation margin representing the
lack of knowledge will be divided equally between the membership value and non-
membership value giving as a result the case C2. Assuming that we wish to avoid
the most disadvantageous cases, we will rank C2 higher than C1 so as to avoid the
possibility which might by implied by C1, namely: (0.6,0.4,0) (while the entire
hesitation margin is added to the non-membership value). The best result which
could happen (if the entire hesitation margin is added to the membership value of
C1), namely (0.8,02,0), (i.e. case C6 ranked as the best one – R(C6) = 0.1) does
not influence the ranking of C1(3.232).

Analogous situation can be observed for the pairs: C3 and C4, and next for C5
and C6. It is easy to notice that the existence of the non-zero hesitation margin
influences negatively the ranking.

The obtained results seem to meet our expectations pretty well.

Finally, we will verify the results produced by (3.232) with the normalized Eu-
clidean distance (3.157).

At the beginning, we will rank the same alternatives using (3.232) as we have
done previously using (3.231), i.e.: Y1=(0, 0.8, 0.2), Y2=(0, 0.6, 0.4), Y3=(0, 0.3, 0.7),
and Y4=(0, 0, 1). We obtain RE(Y1)=0.55, RE(Y2)=0.61, RE(Y3)=0.85, RE(Y4)=1.
The results seem to render our intuition now.

The results obtained via (3.232) for the most characteristic alternatives are still
the same for the normalized Euclidean distance (3.157) as they were for the nor-
malized Hamming distance (3.156). As previously (i.e., with the normalized Ham-
ming distance (3.157)), the best is alternative M(1,0,0) (RE(M) = 0). For alternative
N(0,1,0), again, we obtain RE(N) = 0.5 (N is fully reliable as the hesitation margin
is equal 0 but the distance eIFS(M,N) = 1). In general, on MN, the values of RE

decrease from 0.5 (for alternative N) to 0 (for the best alternative M). The maxi-
mal value of RE , i.e. 1, is for O(0,0,1) for which eIFS(M,O),πO = 1 (alternative
O “indicates” the whole triangle MNO). All other alternatives Yi “indicate” smaller
triangles YiYi,minYi,max (Figure 3.6), so that their RE ’s are smaller (better as to the
amount of reliable information).

It is worth emphasizing that the results obtained via (3.232), which reflect
our intuition concerning ranking of the alternatives, are obtained using all three
terms describing the intuitionistic fuzzy alternatives, i.e., membership values,
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non-membership values, and the hesitation margin values. Also the distances (3.157)
in (3.232) are calculated taking into account all three terms. In other words, we use
a 3D representation of the intuitionistic fuzzy sets.

Moreover, the proposed measure (3.232) strongly emphasizes the difference be-
tween knowledge (represented by the membership and non-membership values) and
lack of knowledge (represented by the hesitation margins). Even if an alternative
does not fulfill our criteria at all (alternative N), it is ranked higher (RE(N) = 0.5)
than an alternative about which we can say nothing (alternative O). Other examples
are given in Table 3.2 (Szmidt and Kacprzyk [208]).

Table 3.2 Examples of results showing that (3.232) reflects differences between negative
knowledge and lack of knowledge in the ranking of the alternatives

No. Alternative (μ,ν,π) RE(Yi)

1 (0,0.8,0.2) 0.550
2 (0,0.2,0.8) 0.825

3 (0,0.7,0.3) 0.578
4 (0,0.3,0.7) 0.755

5 (0,0.6,0.4) 0.610
6 (0,0.4,0.6) 0.697

7 (0,1,0) 0.5
8 (0,0,1) 1

The results provided in Table 3.2 make it possible to come to some conclusions
concerning the situations for which we have a fixed membership value of the alter-
natives (membership value is equal to 0 in Table 3.2), namely:

• an alternative is ranked lower (which means bigger values from (3.232)) the
smaller the non-membership function and the bigger the hesitation margin (cf.
the sequence of cases: 1, 3, 5, 8);

• an alternative is ranked higher (i.e., the smaller the values from (3.232)) the
higher the non-membership function and the lower the hesitation margin (cf. the
sequence of cases: 2, 4, 6, 7);

• “negative knowledge” represented by the non-membership values, and lack of
knowledge represented by the hesitation margins are different from the point of
view of (3.232) (cf. the pairs: 1 and 2, 3 and 4, 5 and 6, 7 and 8).

Other examples, presented in Table 3.3 (Szmidt and Kacprzyk [208]) make it
possible to notice that:

• an alternative is ranked higher (which means that the values from (3.232) are
lower) for a fixed value of the non-membership function (cf. Table 3.3, the cases:
2, 4, 6, 8, for which the non-membership value is equal 0) the higher the values
of the membership function (lower hesitation margins);
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Table 3.3 Examples of results showing that (3.232) reflects differences between positive
knowledge and lack of knowledge in the ranking of the alternatives

No. Alternative (μ,ν,π) RE(Yi)

1 (0,0.8,0.2) 0.550
2 (0.8,0,0.2) 0.12

3 (0,0.7,0.3) 0.578
4 (0.7,0,0.3) 0.195

5 (0,0.6,0.4) 0.610
6 (0.6,0,0.4) 0.280

7 (0,1,0) 0.5
8 (1,0,0) 0.

• the ranking function (3.232) does make a difference between the positive and
negative knowledge (cf. Table 3.3, the pairs: 1 and 2, 3 and 4, 5 and 6, 7 and 8).

To sum up, the proposed ranking function (3.232) expresses differences both be-
tween knowledge and lack of knowledge, and between the positive and negative
knowledge. In other words, the proposed function (3.232) seems to reflect the be-
havior of a human being in the process of ranking alternatives pretty well.

3.5 Concluding Remarks

We have considered distances between the intuitionistic fuzzy sets in two ways,
employing:

– two term intuitionistic fuzzy set representation (membership values and non-
membership values only were taken into account), and
– three term intuitionistic fuzzy set representation (membership values, non-mem-
bership values, and hesitation margins were taken into account).

We have discussed norms and metrics for both types of representations stressing
their correctness from the mathematical point of view. However, the three term ap-
proach seems to be more justified and intuitively appealing from the practical point
of view (which has its roots in some analytical and geometrical aspects).

Some problems have been shown concerning the Hausdorff distance while the
Hamming metric was applied for the two term intuitionistic fuzzy set representation.
It was shown, as well, that the method of calculating the Hausdorff distances in the
same way which is correct for the interval-valued fuzzy sets does not work for the
intuitionistic fuzzy sets.

Finally, the usefulness of the three term distances was emphasized in a measure
of ranking of the intuitionistic fuzzy alternatives.



Chapter 4
Similarity Measures between Intuitionistic
Fuzzy Sets

Abstract. In this chapter we consider similarity measures between intuitionistic
fuzzy sets starting from reminding the axiomatic relation between distance and simi-
larity measures. We show that this relation is not satisfied for the intuitionistic fuzzy
sets. We also consider some similarity measures for the intuitionistic fuzzy sets,
known from the literature. We show that neither similarity measures treating an in-
tuitionistic fuzzy set as a simple interval-valued fuzzy set, nor straightforward gen-
eralizations of the similarity measures well-known for the classic fuzzy sets work
under reasonable circumstances. Next, expanding upon our previous work, we con-
sider a family of similarity measures constructed by taking into account both all
the three terms (membership values, non-membership values, and hesitation mar-
gins) describing an intuitionistic fuzzy set, and the complements of the elements
we compare. That is, we use all kinds and fine shades of information available. We
also point out the traps one should be aware of while examining similarity between
intuitionistic fuzzy sets. Finally, we consider correlation of the intuitionistic fuzzy
sets.

4.1 Similarity Measures and Their Axiomatic Relation to
Distance Measures

First we recall the well known relation of the distances and similarity measures for
fuzzy sets (Liu [117]), and consider the correctness of the corresponding relation
for the intuitionistic fuzzy sets.

Liu [117] proposed a definition of the axiomatic distance measure, and of the
axiomatic similarity measure for fuzzy sets. The axioms make it possible to find the
relationship between distance and similarity for fuzzy sets.

The distance measure d
′
between fuzzy sets (FS) proposed by Liu [117] is a real

function d
′
: FS×FS → R+ which for any fuzzy sets A

′
, B

′
, C

′
and a crisp set D has

the following properties:
d
′
(A

′
,B

′
) = d

′
(B

′
,A

′
); (4.1)

E. Szmidt, Distances and Similarities in Intuitionistic Fuzzy Sets, 87
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DOI: 10.1007/978-3-319-01640-5_4, c© Springer International Publishing Switzerland 2014
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d
′
(A

′
,A

′
) = 0; (4.2)

d
′
(D,DC) = max

A′
,B′ d

′
(A

′
,B

′
) if D is a crisp set; (4.3)

i f A
′ ⊂ B

′ ⊂C
′
, then d

′
(A

′
,B

′
)≤ d

′
(A

′
,C

′
) and d

′
(B

′
,C

′
)≤ d

′
(A

′
,C

′
). (4.4)

The similarity measure s
′

between fuzzy sets (FS) proposed by Liu [117] is a
real function s

′
: FS×FS → R+ which for any fuzzy sets A

′
, B

′
, C

′
and a crisp set

D has the following properties:

s
′
(A

′
,B

′
) = s

′
(B

′
,A

′
); (4.5)

s
′
(D,DC) = 0 if D is a crisp set; (4.6)

s
′
(E,E) = max

A′
,B′ s

′
(A

′
,B

′
) if E is a fuzzy set; (4.7)

i f A
′ ⊂ B

′ ⊂C
′
, then s

′
(A

′
,B

′
)≥ s

′
(A

′
,C

′
) and s

′
(B

′
,C

′
)≥ s

′
(A

′
,C

′
). (4.8)

After normalizing distance d
′
, and similarity s

′
, we have

0 ≤ d
′
(A

′
,B

′
)≤ 1

and
0 ≤ s

′
(A

′
,B

′
)≤ 1

for any fuzzy sets A
′

and B
′
. For normalized d

′
and s

′
we have (Liu [117]):

d
′
= 1− s

′
. (4.9)

In other words, the distance d
′
and the similarity measure s

′
are dual concepts in the

case of fuzzy sets.

The above approach, which gives correct results in the case of fuzzy sets, has
been applied also for the intuitionistic fuzzy sets (cf. Hung and Yang [88]).

The distance measure d between intuitionistic fuzzy sets (IFS) proposed by Hung
and Yang [88] is a real function d : IFS× IFS → R+ which for any intuitionistic
fuzzy sets A, B, C and a crisp set D has the following properties:

d(A,B) = d(B,A); (4.10)
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d(A,A) = 0; (4.11)

d(D,DC) = max
A,B

d(A,B) if D is a crisp set; (4.12)

i f A ⊂ B ⊂C, then d(A,B)≤ d(A,C) and (B,C)≤ d(A,C). (4.13)

The similarity measure s between intuitionistic fuzzy sets (IFS) proposed by
Hung and Yang [88] is a real function s : IFS× IFS → R+ which for any intu-
itionistic fuzzy sets A and B and a crisp set D has the following properties:

s(A,B) = s(B,A); (4.14)

s(D,DC) = 0 if D is a crisp set; (4.15)

s(E,E) = max
A,B

s(A,B) if E is an intuitionistic fuzzy set; (4.16)

i f A ⊂ B ⊂C, then s(A,B)≥ s(A,C) and s(B,C)≥ s(A,C). (4.17)

After normalizing distance d, and similarity s, we have

0 ≤ d(A,B)≤ 1,

and
0 ≤ s(A,B)≤ 1

for any intuitionistic fuzzy sets A and B, so it is easy to notice that

d = 1− s. (4.18)

In other words, the distance d and the similarity measure s are presented in literature
(e.g., [88]) as dual concepts in the case of the intuitionistic fuzzy sets, too.

However, in Szmidt and Kacprzyk [205] it is shown that the (1-Hamming dis-
tance), where the normalized Hamming distance between the intuitionistic fuzzy
sets is given by (3.156), should not be used as a similarity measure between them.

The similarity measure, corresponding to distance (3.156), is, due to (4.18), equal
to:

SimH = 1− l1
IFS(A,B) = 1− 1

2n

n

∑
i=1

(|μA(xi)− μB(xi)|+

+ |νA(xi)−νB(xi)|+ |πA(xi)−πB(xi)|). (4.19)

Figures 4.1 and 4.2 show that for a fixed membership value all the elements
(with membership value equal to the fixed value) are at the same distance from the
element (1,0,0). The situation repeats when we examine distances to any element
x : (μ ,ν,π) making use of the normalized Hamming distance. We obtain the same
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Fig. 4.1 Values of similarity (4.19) for any element from an intuitionistic fuzzy set and the
element (1, 0, 0)
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Fig. 4.2 Contourplot of (4.19) for any element from an intuitionistic fuzzy set and the element
(1,0,0)

type of shapes (Figures 4.1 and 4.2) showing the elements equally distant from a
fixed element.

Now we will demonstrate the result of using the (1- normalized Euclidean dis-
tance) as a similarity measure where the normalized Euclidean distance between the
intuitionistic fuzzy sets is given by (3.157).

The similarity measure, corresponding to distance (3.157) is, due to (4.18), equal:

Sime(A,B) = 1− q1
IFS(A,B) = 1− ((

1
2n

n

∑
i=1

(μA(xi)− μB(xi))
2 +

+ (νA(xi)−νB(xi))
2 +(πA(xi)−πB(xi))

2)
1
2 . (4.20)

The results obtained from (4.20) are illustrated in Figures 4.3 and 4.4. Expressing
similarity via distances means looking for geometric shapes, and while using (4.20),
because of employing the Euclidean distance, we look in fact for the elements at a
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Fig. 4.3 Shape of Sime(A,B) (4.20) for any element from an intuitionistic fuzzy set and
(1, 0, 0)
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Fig. 4.4 Contourplot of (4.20) for any element from an intuitionistic fuzzy set and (1, 0, 0)

“radius” distance from a chosen element (object). It is obviously a correct approach
(looking for some shapes in a coordinate space) but we should be rather careful
while making conclusions about similarity as a dual measure of a distance as it is
shown in the following example.

Example 4.1. For simplicity let us consider “degenerate”, “one point type” in-
tuitionistic fuzzy sets whose full description, including all three terms, is: A =
< x,μA,νA,π > /1 exemplified by: M,N,L in X = {1}.

M = (1,0,0)/1, N = (0,1,0)/1, H = (0,0,1)/1

From (4.20) we obtain:
Sime(M,N) = 0, and
Sime(M,H) = 0
though N and H are obviously different. But the “the radius length” from M to N is
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Fig. 4.5 Values obtained from (4.21) for any element from an intuitionistic fuzzy set and
(1, 0, 0)
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Fig. 4.6 Contourplot of (4.21) for any element from an intuitionistic fuzzy set and (1, 0, 0)

equal to the “radius length” from M to H. It is easy to accept for a crisp case that
the elements on a circle are in the same distance from the middle of the circle which
does not mean that all the elements belonging to the circle are “the same”. Here we
have the same situation.

We should also be cautious when considering similarity of the elements with a
symmetry of terms in their description, e.g.:

M = (1,0,0)/1, K = (0.5,0.3,0.2)/1,

L = (0.5,0.2,0.3)/1

for which the exchange between non-membership value and hesitation margin in K
and L results in Sime(M,K) = Sime(M,L) although for sure K and L are different
but the “radiuses” MK and ML are the same.

We have shown previously in Chapter 3.3 (cf. also Szmidt and Kacprzyk [171],
[188], [218]) that from the practical point of view it is necessary to take into account
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Fig. 4.7 Values obtained from (4.22) for any element from an intuitionistic fuzzy set and
(1, 0, 0)

all three terms describing an intuitionistic fuzzy set while calculating distances. But
it is interesting to verify the results for the “two term distances” between the in-
tuitionistic fuzzy sets and their effects as the measures dual to similarity. We will
examine the “two term” normalized Hamming and Euclidean distances.

The similarity measure corresponding to the normalized Hamming distance be-
tween the intuitionistic fuzzy sets A,B in X = {x1,, . . . ,xn} when we use two terms
only in the set description is:

SimH2D = 1− lIFS(2)(A,B) = 1− 1
2n

n

∑
i=1

(|μA(xi)− μB(xi)|+

+ |νA(xi)−νB(xi)|). (4.21)

The similarity measure corresponding to the normalized Euclidean distance be-
tween the intuitionistic fuzzy sets A,B in X = {x1,, . . . ,xn} when we use two terms
only in the set description is:

Sime2D(A,B) = 1− qIFS(2)(A,B) = 1− (
1
2n

n

∑
i=1

(μA(xi)− μB(xi))
2 +

+ (νA(xi)−νB(xi))
2)

1
2 . (4.22)

By analyzing (4.22) it is easy again to give examples of different situations (from
the point of view of decision making) for which we obtain from (4.22) the same
values.

Example 4.2. Again, consider “degenerate”, “one point type” intuitionistic fuzzy
sets, whose full description is A = < x,μA,νA,π > /1 exemplified by: M,P,R in
X = {1}.

M = (1,0,0)/1, P = (0.5,0.3,0.2)/1, R = (0.4,0,0.6)/1
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Fig. 4.8 Contourplot of (4.22) for any element from an intuitionistic fuzzy set and (1, 0, 0)

From (4.22) we obtain:
Sime2D(M,P) = 0.7, and
Sime2D(M,R) = 0.7
though P and R are obviously different. But the “the radius length” from M to P is
equal to the “radius length” from M to R.

Figures 4.5–4.8 show that when we make use of the two term distances as dual
concepts of similarity measures the situation does not change in the sense of the
information obtained (certainly we do not suggest here that in general both ways of
intuitionistic fuzzy set representations are equal, having in mind other drawbacks
of the two term representation as compared to the three term representation of the
intuitionistic fuzzy sets - cf. Chapter 3.3, Szmidt and Kacprzyk [218]).

Another similarity measure that is often used in practice is the cosine similarity
measure which is based on Bhattacharya’s distance [39], [148] and is expressed as
the inner product of two vectors divided by the product of their lengths. In other
words, it is the cosine of the angle between two vectors. The cosine similarity is
often used in information retrieval [148]. Taking as a point of departure the three
term intuitionistic fuzzy set representation, the cosine similarity measure is given
by (4.23).

Simmult(A,B) =
1
n

n

∑
i=1

((μA(xi)μB(xi)+νA(xi)νB(xi)+πA(xi)πB(xi))/

/ (μA(xi)
2 +νA(xi)

2 +πA(xi)
2)

1
2 (μB(xi)

2 +νB(xi)
2 +πB(xi)

2))
1
2 ) (4.23)

Figures 4.9 and 4.10 show values obtained from (4.23) illustrating similarity of the
element (1,0,0) and any other element belonging to an intuitionistic fuzzy set.

It is worth mentioning again that in (4.23) we might change the places of ν and
π , and the result of (4.23) will be the same although we consider quite different
situations. This is clearly an undesired effect.
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Example 4.3. Let us consider again “degenerate” intuitionistic fuzzy sets with full
description (three term description) A = {< x,μA,νA,π > /1}, exemplified by:
M,R,S in X = {1}, where
M = (1,0,0)/1, and

R = (0.5,0.3,0.2)/1, S = (0.5,0.2,0.3)/1

From (4.23) we obtain:
Simmult(M,R) = Simmult(M,S) = 0.81, whereas R and S are obviously different, so
that we assume that their similarity to the same M should be different, too.

Measure (4.23) cannot differentiate, e.g., between: (0,0,1), and (0,1,0) regard-
ing their similarity to (1,0,0) (cf. Figures 4.9 and 4.10). Certainly, we may point
out many such cases with respect to (4.23).
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Fig. 4.9 Values obtained from measure (4.23) for any element from an intuitionistic fuzzy
set and (1, 0, 0)
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Fig. 4.10 Contourplot of measure (4.23) for any element from an intuitionistic fuzzy set and
(1,0,0)
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It is necessary to emphasize again that the above measures give correct answers
in the sense of the formula used (geometrical shapes are recognized in respect to
a chosen element) but in many situations we would expect that from the similarity
measures we would be able at least to notice the existence of the complement ele-
ment which seems to be the least similar to the considered element. This problem
will be discussed in Section 4.3. Now we will verify other measures of similarity
between the intuitionistic fuzzy sets, well known from the literature.

4.2 Some Other Counter-Intuitive Results Given by the
Traditional Similarity Measures

There is a multitude of similarity measures both for the intuitionistic fuzzy sets
(Atanassov [4, 6, 15]), and vague sets (Gau and Buehrer [72]) which have also been
proved to be equivalent to the intuitionistic fuzzy sets (Bustince and Burillo [44]).
Here we adopt the notation for the intuitionistic fuzzy sets but we will consider the
measures originally introduced for vague sets, too. We consider the measures paying
attention to the question whether the results produced are reliable.

One of the similarity measures between two intuitionistic fuzzy sets A and B was
considered by Chen [51, 52], namely

SC(A,B) = 1− ∑n
i=1 |SA(xi)− SB(xi)|

2n
(4.24)

where: SA(xi) = μA(xi)−νA(xi), SA(xi) ∈ [−1,1] and
SB(xi) = μB(xi)−νB(xi), SB(xi) ∈ [−1,1].

But, as Hong and Kim [83] noticed

μA(xi)−νA(xi) = μB(xi)−νB(xi)⇒ SC(A,B) = 1 (4.25)

which is counterintuitive, since, e.g. [113], for A = (x,0,0) and B = (x,0.5,0.5), we
have SC(A,B) = 1.

Hong and Kim [83] proposed the similarity measures SH and SL to overcome the
problem of SC (4.24)

SH(A,B) = 1− (
n

∑
i=1

|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|)/2n (4.26)

SL(A,B) = 1− 1
4n

((
n

∑
i=1

|SA(xi)− SB(xi)|)−

(
n

∑
i=1

|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|)). (4.27)

However, since SH(A,B) takes into account the absolute values, it does not dis-
tinguish between the positive and negative differences, e.g. (Li et al [113]):
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for A = {(x,0.3,0.3)}, B = {(x,0.4,0.4)}, C = {(x,0.3,0.4)}, and D = {(x,0.4,
0.3)}, we obtain from (4.26) that SH(A,B) = SH(C,D) = 0.9, which seems counter-
intuitive.

SL(A,B) also gives counter-intuitive results, e.g. (Li et al [113]):
for A= {(x,0.4,0.2)}, B= {(x,0.5,0.3)}, C = {(x,0.5,0.2)}, we obtain from (4.27)
SL(A,B)=SL(A,C) = 0.95, which definitely seems counter-intuitive.

The same problem as with SH occurs with the following similarity measure (cf.
Li et al. [115]):

SO(A,B) = 1− (1/2n)0.5(
n

∑
i=1

(μA(xi)−

μB(xi))
2 +(νA(xi)−νB(xi))

2)0.5. (4.28)

Another similarity measure, considered by Dengfeng and Chuntian [111] was:

SDC(A,B) = 1− (1/n1/p)(
n

∑
i=1

(|mA(xi)−mB(xi)|)p)1/p (4.29)

where:
mA(xi) = (μA(xi) + 1− νA(xi))/2, mB(xi) = (μB(xi) + 1− νB(xi))/2, 1 ≤ p < ∞.
Unfortunately, since in (4.29) the medians of two intervals are compared only, it is
rather easy to point out the counter-intuitive examples, e.g., A = (x,0.4,0.2), B =
(x,0.5,0.3), so that SDC(A,B) = 1, for each p.

Dengfeng and Chuntian’s measure SDC (4.29) was modified by Mitchell [123],
who applied a statistical approach by interpreting the intuitionistic fuzzy sets as
families of ordered fuzzy sets. Let ρμ(A,B) and ρν(A,B) denote a similarity mea-
sure between the “low” membership functions μA and μB, and between the “high”
membership functions 1−νA and 1−νB, respectively, as:

ρμ(A,B) = SDC(μA,μB) = 1− (1/n1/p)(
n

∑
i=1

(|μA(xi)− μB(xi)|)p)1/p

ρν(A,B) = SDC(1−νA,1−νB) = 1− (1/n1/p)(
n

∑
i=1

(|νA(xi)−νB(xi)|)p)1/p,

then the modified similarity measure between A and B is

SHB(A,B) = (ρμ(A,B)+ρν(A,B))/2. (4.30)

Unfortunately, SHB gives the same counter-intuitive results as SH , for p = 1 and for
one-element sets.

Liang and Shi [116] proposed other measures, namely, Sp
e (A,B), Sp

s (A,B), and
Sp

h(A,B) to overcome the drawbacks of SDC:

Sp
e (A,B) = 1− (1/n1/p)(

n

∑
i=1

(φμAB(xi)−φνAB(xi)|)p)1/p (4.31)
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where: φμAB(xi) = |μA(xi)− μB(xi)|/2,
φνAB(xi) = |(1−νA(xi))/2− (1−νB(xi))/2|.
Unfortunately, for p = 1 and for one-element sets, Sp

e (A,B)=SHB=SH , which are
again the same counter-intuitive results.

Sp
s (A,B) = 1− (1/n1/p)(

n

∑
i=1

(ϕs1(xi)−ϕs2(xi))
p)1/p (4.32)

where: ϕs1(xi) = |mA1(xi)−mB1(xi)|/2,
ϕs2(xi) = |mA2(xi)−mB2(xi)|/2,
mA1(xi) = (μA(xi)+mA(xi))/2,
mA2(xi) = (mA(xi)+ 1−νA(xi))/2,
mB1(xi) = (μB(xi)+mB(xi))/2,
mB2(xi) = (mB(xi)+ 1−νB(xi))/2,
mA(xi) = (μA(xi)+ 1−νA(xi))/2,
mB(xi) = (μB(xi)+ 1−νB(xi))/2.

Measure Sp
s (4.32) does not produce the problematic results like those ob-

tained from SDC (4.29) (for the intervals with equal medians) but, again, a prob-
lem of counter-intuitive results remains. For example (Li et al. [113]), for A =
{(x,0.4,0.2)}, B= {(x,0.5,0.3)},C = {(x,0.5,0.2)}, we obtain Sp

s (A,B) = Sp
s (A,C)

= 0.95 which seems difficult to accept.
Sp

h is given as

Sp
h(A,B) = 1− (1/(3n)1/p)(

n

∑
i=1

(η1(i)+η2(i)+η3(i))
p)1/p (4.33)

where:

η1(i) = φμ(xi)+φν(xi) (the same as for Sp
e ),

η2(i) = mA(xi)−mB(xi)) (the same as for SDC),
η3(i) = max(lA(i), lB(i))−min(lA(i), lB(i)),
lA(i) = (1−νA(xi)− μA(xi))/2,
lB(i) = (1−νB(xi)− μB(xi))/2.

However, again, this measure also does not avoid the counter-intuitive cases. For
A = (x,0.3,0.4), and B = (x,0.4,0.3), i.e., for an element and its complement, we
obtain Sp

h(A,B) = 0.933 (which seems to be rather too big a similarity for an element
and its complement).

The similarity measures S1
HY , S2

HY , S3
HY , in which Hausdorff distances are em-

ployed, were proposed by Hung and Yang [87]:

S1
HY (A,B) = 1− dH(A,B) (4.34)

S2
HY (A,B) = 1− (edH(A,B)− e−1)/(1− e−1) (4.35)
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S3
HY (A,B) = (1− dH(A,B))/(1+ dH(A,B)) (4.36)

where:
dH(A,B))=∑n

i=1 max(|μA(xi)−μB(xi)|, |νA(xi)−νB(xi)|).
But (4.34)–(4.36) do also give counter-intuitive results (implied by the calcula-

tion of the distance dH(A,B) – cf. Section 3.3.2.2, and Szmidt and Kacprzyk [218]).
For example, if A= (x,0.4,0.5), B = (x,0.5,0.4), C = (x,0.5,0.3), D = (x,0.6,0.4),
E = (x,0.6,0.3), F = (x,0.4,0.3) then S1

HY (A,B) = 0.9 (a counter-intuitive large
similarity for A and its complement as B = AC), and also S1

HY (C,D) = S1
HY (C,E) =

S1
HY (C,F) = 0.9. Next, S2

HY (A,B) = S2
HY (C,D) = S2

HY (C,E) = S2
HY (C,F) = 0.85,

and also S3
HY (A,B) = S3

HY (C,D) = S3
HY (C,E) = S3

HY (C,F) = 0.85.
Hung and Yang [88] made a straightforward attempt to calculate the similarity

between the intuitionistic fuzzy sets just by adding the non-memberships values to
the existing similarity measures for fuzzy sets. Their measures (4.37) and (4.38) are
the extension of Wang’s measures [241]:

Sw1(A,B) = (1/n)
n

∑
i=1

min(μA(xi),μB(xi))+min(νA(xi),νB(xi))

max(μA(xi),μB(xi))+max(νA(xi),νB(xi))
. (4.37)

But again, it is easy to give counter-examples. For example, for A = {(x,0, 0.5)},
B= {(x,0.1,0.5)},C = {(x,0,0.6)}, we obtain from (4.37): Sw1(A,B)= Sw1(A,C)=
0.8(3) (for different B and C we obtain the same result), for A = {(x,0,0.5)},
B = {(x,0.18,0.5)}, C = {(x,0,0.68)}, we obtain Sw1(A,B) = Sw1(A,C) = 0.735
(again - for different B and C the same result) etc., which seems to be difficult to
accept (Sw1 is not bijective).

Sw2(A,B) = (1/n)
n

∑
i=1

(1− 0.5(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi|)) (4.38)

However, for A = {(x,0,0.5)}, B = {(x,0,0.4)}, C = {(x,0,0.6)}, we obtain:
Sw2(A,B) = Sw2(A,C) = 0.95 (again - for different B and C the same similarity),
which seems to be difficult to accept (Sw2 is not bijective).

Three extensions of Pappis and Karacapilidis’ [129] similarity measures for fuzzy
sets were proposed by Hung and Yang [88]. The introduced measures (4.39), (4.40)
and (4.41), proposed for the intuitionistic fuzzy sets, are straightforward extensions
of fuzzy similarity measures.

Spk1(A,B) =
∑n

i=1(min(μA(xi),μB(xi))+min(νA(xi),νB(xi)))

∑n
i=1(max(μA(xi),μB(xi))+max(νA(xi),νB(xi)))

, (4.39)

for which the counter-intuitive examples are the same as for (4.37).

Spk2(A,B) = 1− 0.5(max
i

(|μA(xi)−μB(xi)|)+
max

i
(|νA(xi)−νB(xi)|)) (4.40)
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It is easy to give counter-examples for (4.40), which is especially well visible
for one-element sets. For example, for A = {(x,0,0.5)}, B = {(x,0.1,0.5)}, C =
{(x,0,0.6)}, we obtain Spk2(A,B) = Spk2(A,C) = 0.95 (for different B and C just
the same result).

Spk3(A,B) = 1− ∑n
i=1(|μA(xi)− μB(xi)|+ |νA(xi)−νB(xi)|)

∑n
i=1(|μA(xi)+ μB(xi)|+ |νA(xi)+νB(xi)|) , (4.41)

but again, for A = {(x,0,0.5)}, B = {(x,0,0.26)}, C = {(x,0,0.965)}, we obtain
Spks(A,B) = Spk3(A,C) = 0.68 (for different B and C we obtain the same similarity),
which seems to be difficult to accept.

4.2.1 Why the Measures Presented May Yield Counter-Intuitive
Results?

All the similarity measures presented above at first glance seem to be different.
However, all o them were constructed to satisfy the following conditions:

S(A,B) ∈ [0,1] (4.42)

S(A,B) = 1 ⇐⇒ A = B (4.43)

S(A,B) = S(B,A) (4.44)

I f A ⊆ B ⊆C, then S(A,C)≤ S(A,B) and

S(A,C)≤ S(B,C) (4.45)

Conditions (4.42)–(4.44) are obvious. The problem lies in (4.45) as this condition
is meant as:

A ⊂ B iff ∀x ∈ X , μA(x)≤ μB(x) and

νA(x)≥ νB(x) (4.46)

It is worth emphasizing that condition (4.46) is not constructive and operational
for the intuitionistic fuzzy sets as for many cases it can not be used. For example,
for the elements (x : (μ ,ν,π)):
x1: (0.12,0.4,0.48) and x2: (0.1,0.3,0.6) we can not come to a conclusion. More-
over, element x: (0,0,1) seems to be always beyond consideration in the sense of
(4.46) which is very specific, and mostly practically irrelevant.

Next, the measures presented above were constructed making use of two term
representation of the intuitionistic fuzzy sets – only the membership values and
non-membership values were taken into account. It is worth noticing that using the
two term representation is equivalent to representing an intuitionistic fuzzy set by
an interval (in several discussed above similarity measures just two intervals were
compared – each interval representing one of the intuitionistic fuzzy sets under com-
parison). But if we bear in mind that the elements of an intuitionistic fuzzy set are
described via the membership values, non-membership values, and the hesitation



4.3 An Example of Intuitively Justified and Operational Similarity Measure 101

margins, i.e., accepting the three term description, comparison of two intervals only
is not enough. Making use of the three term description of the intuitionistic fuzzy
sets, in the terms of intervals, we have both the membership value in an interval, and
the non-membership value in an interval so that we should represent an intuitionistic
fuzzy set via two (not one) intervals.

Considering the two term representation of the intuitionistic fuzzy sets, which
is equivalent to representing the intuitionistic fuzzy sets as single intervals implies
some problems while calculating distances. Distances used in the (counter-intuitive)
similarity measures mentioned in the previous section are calculated without taking
into account the hesitation margins as the membership and non-membership values
only are taken into account. The counter-intuitive results obtained in such situations
are discussed in Chapter 3, as well as in Szmidt and Kacprzyk [171], [188], [218].

4.3 An Example of Intuitively Justified and Operational
Similarity Measure

First we recall the measure of similarity between the intuitionistic fuzzy sets pre-
sented by Szmidt and Kacprzyk [181], [180]).

Let us calculate the similarity of any two elements belonging to an intuitionistic
fuzzy set (sets) which are geometrically represented by points X and F (Figure 4.11)
belonging to the triangle MNH. The proposed measures indicate whether X is more
similar to F or to FC, where FC is the complement of F . In other words, the pro-
posed measures answer the question if X is more similar or more dissimilar to F
(Figure 4.11), expressed as:

Simrule(X ,F) =
l1
IFS(X ,F)

l1
IFS(X ,FC)

(4.47)

where: l1
IFS(X ,F) is a distance from X(μX ,νX ,πX) to F(μF ,νF ,πF),

l1
IFS(X ,FC) is a distance from X(μX ,νX ,πX ) to FC(νF ,μF ,πF),

FC is a complement of F , distances l1
IFS(X ,F) and l1

IFS(X ,FC) are calculated from
(3.156).

The following conditions are fulfilled for (4.47)

0<Simrule(X ,F)<∞ (4.48)

Simrule(X ,F) = Simrule(F,X) (4.49)

The similarity has typically been assumed to be symmetric. Tversky [237], how-
ever, has provided some empirical evidence that similarity should not always be
treated as a symmetric relation. We recall this to show that a similarity mea-
sure (4.47) may have some features which can be useful in some situations but
are not welcome in others (see Cross and Sudkamp [55], Wang et al. [244],
Veltkamp [239]).
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Fig. 4.11 The triangle MNH explaining the ratio-based measure of similarity

Szmidt and Kacprzyk [180] have noticed that the formula (4.47) can also be
stated as

Simrule(X ,F) =
lIFS(X ,F)

lIFS(X ,FC)
=

lIFS(XC,FC)

lIFS(X ,FC)
=

=
lIFS(X ,F)

lIFS(XC,F)
=

lIFS(XC,FC)

lIFS(XC,F)
(4.50)

It can be noticed that

• Simrule(X ,F) = 0 means that X and F are identical.
• Simrule(X ,F) = 1 means that X is to the same extent similar to F and FC, whereas

the values bigger than 1 mean a closer similarity of X and FC to X and F .
• When X = FC (or XC = F), there is l1

IFS(X ,FC) = l1
IFS(X

C,F) = 0 meaning the
complete dissimilarity of X and F (or in other words, the identity of X and FC),
and then Simrule(X ,F)→ ∞.

• X = F = FC means the highest possible entropy (see [175]) for both elements F
and X i.e. the highest “fuzziness” – not too constructive a case when looking for
compatibility (both similarity and dissimilarity).

The above properties mean that while applying the measure (4.47) to analyze the
similarity of two objects, one should be interested in the values
0<Simrule(X ,F)< 1.

The proposed measure (4.47) was constructed for selecting objects which are
more similar than dissimilar [and well-defined in the sense of possessing (or not)
attributes we are interested in].

Now we will show that a measure of similarity defined as above, (4.47), between
X(μX ,νX ,πX) and F(μF ,νF ,πF) is more powerful than a simple distance between
them.
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Example 4.4. (Szmidt and Kacprzyk [181])
Let X and F be two elements belonging to an intuitionistic fuzzy set (with the

coordinates (μ ,ν,π)),
X = (0.5,0.4,0.1)

F = (0.4,0.5,0.1)

so that
FC = (0.5,0.4,0.1)

and from (4.47) we have

l1
IFS(X ,F) =

1
2
(|0.5− 0.4|+ |0.4− 0.5|+ |0.1− 0.1|) = 0.1 (4.51)

which means that the distance is small – and just taking this into account, we would
say that X and F are similar. However

l1
IFS(X ,FC) =

1
2
(|0.5− 0.5|+ |0.4− 0.4|+ |0.1− 0.1|) = 0 (4.52)

which means that X is just the same as FC. We can not speak at all about similarity
of X and F despite the fact that the distance between them is small. �

It is worth stressing again that a measure of similarity defined as above, (4.47),
between X(μX ,νX ,πX ) and F(μF ,νF ,πF) is more powerful than a simple distance
between them.

So to sum up:

• a big distance between two (or more) objects/elements, or sets means for sure
that the similarity does not occur.

• when a distance is small, we can say nothing for sure about similarity just on the
basis of a distance between two objects [when not taking into account comple-
ments of the objects as in (4.47)]. The distance between objects can be small and
the compared objects can be more dissimilar than similar.

4.3.1 Analysis of Agreement in a Group of Experts

Now, we will use the similarity measure (4.47) to evaluate the extent of agree-
ment between experts. The concept of consensus, as stressed by Loewer and Lad-
daga [120], i.e. a full and unanimous agreement, should be softened because in
practice consensus means that “most of the individuals agree as to most of the op-
tions”. Many works have been published along this line, notably in Kacprzyk and
Fedrizzi [93, 94] a new measure of consensus was proposed. Here we follow that
line of reasoning but in the intuitionistic fuzzy setting, using a different perspective
based on the use of a similarity measure.

So, if all of the considered pairs of experts’ preferences are
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• just the same (i.e. full agreement meaning consensus in a traditional sense) – the
proposed measure of similarity (4.47) is equal to 0,

• quite opposite (i.e. full disagreement) – similarity (4.47) tends to infinity,
• different to some extent – distance from the consensus belongs to the open inter-

val (0,1)
• to the same extent similar as dissimilar – the proposed measure (4.47) is equal

to 1.

Preferences given by each individual are expressed via intuitionistic fuzzy sets
(describing intuitionistic fuzzy preferences). Having in mind that distances between
intuitionistic fuzzy sets should be calculated taking into account all three terms char-
acterizing an intuitionistic fuzzy set, we start from a set of data which consists of
three types of matrices describing individual preferences. The first type of matrices
is the same as for classical fuzzy sets, i.e. membership functions [rk

i j] given by each
individual k concerning each pair of options i j. But, additionally, it is necessary to
take into account hesitation margins [πk

i j] and non-membership functions [νk
i j].

Generally, the extent of similarity for two experts k1, k2 considering n options is
given as (Szmidt and Kacprzyk [181])

Simk1,k2 =
1
A

n−1

∑
i=1

n

∑
j=i+1

Simk1,k2(i, j) =

=
1
A
[
n−1

∑
i=1

n

∑
j=i+1

(| μi j(k1)− μi j(k2) |+

+ | νi j(k1)−νi j(k2) |+ | πi j(k1)−πi j(k2) |)]/

/ [
n−1

∑
i=1

n

∑
j=i+1

(| μi j(k1)−νi j(k2) |+

+ | νi j(k1)− μi j(k2) |+ | πi j(k1)−πi j(k2) |)] (4.53)

where

A =
1

2C2
n
=

1
n(n− 1)

(4.54)

For m experts, we examine similarity of their preferences in pairs (4.53) and next,
we find an agreement of all experts

Sim =
1

m(m− 1)

m−1

∑
p=1

m

∑
r=p+1

Simkp,kr (4.55)

where Simkp,kr is given by (4.53).

Example 4.5. (Szmidt and Kacprzyk [181]) Suppose that there are 3 individuals
(m = 3) considering 3 options (n = 3), and the individual intuitionistic fuzzy
preference relations are:
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μ1(i, j) =

⎡
⎣− .1 .5
.9 − .5
.4 .3 −

⎤
⎦ν1(i, j) =

⎡
⎣− .9 .4
.1 − .3
.5 .5 −

⎤
⎦π1(i, j) =

⎡
⎣− 0 .1

0 − .2
.1 .2 −

⎤
⎦

μ2(i, j) =

⎡
⎣− .1 .5
.9 − .5
.2 .2 −

⎤
⎦ν2(i, j) =

⎡
⎣− .9 .2
.1 − .2
.5 .5 −

⎤
⎦π2(i, j) =

⎡
⎣− 0 .3

0 − .3
.3 .3 −

⎤
⎦

μ3(i, j) =

⎡
⎣− .2 .1
.8 − .6
.2 .3 −

⎤
⎦ν3(i, j) =

⎡
⎣− .8 .2
.2 − .3
.1 .6 −

⎤
⎦π3(i, j) =

⎡
⎣− 0 .7

0 − .1
.7 .1 −

⎤
⎦

It is worth noticing that the following conditions for each pair of options (i, j)
and expert k should be fulfilled:

μk(i, j) = νk( j, i) (4.56)

which guarantee that
– rk(i, j)+ rk( j, i) = 1 is obtained in the particular fuzzy case, and
– the natural relation l p,r(i, j) = l p,r( j, i) for each pair of experts is satisfied in this
way.

To find the extent of agreement in the group, we must calculate similarity
Simp,r(i, j) for each pair of experts (p,r) considering each pair of options (i, j).

First, we calculate similarity for each pair of experts concerning the first and the
second option. For example, the data and the calculations for the second and the
third experts are (Szmidt and Kacprzyk [181]):
F2(1,2) = (0.1,0.9,0) - preferences of the second expert,
F3(1,2) = (0.2,0.8,0) - preferences of the third expert,
F3,C(1,2) = (0.8,0.2,0) - the complement of F3(1,2), i.e., opposite preferences of
the third expert.

From (4.47) and (4.53) we have

Sim2,3(1,2) =
l(F2(1,2),F3(1,2))

l(F2(1,2),F3,C(1,2))
= 0.14 (4.57)

For experts (1,2) and (1,3) we obtain

Sim1,2(1,2) =
l(F1(1,2),F2(1,2))

l(F1(1,2),F2,C(1,2))
= 0 (4.58)

Sim1,3(1,2) =
l(F1(1,2),F3(1,2))

l(F1(1,2),F3,C(1,2))
= 0.2 (4.59)

The average similarities for the three considered experts considering options
(1,2) are obtained from (4.57)-(4.59), namely
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Sim(1,2) =
1
3
(0+ 0.2+ 0.14)= 0.11 (4.60)

For options (1,3) we obtain the following results

Sim1,2(1,3) =
l(F1(1,3),F2(1,3))

l(F1(1,3),F2,C(1,3))
= 0.67 (4.61)

Sim1,3(1,3) =
l(F1(1,3),F3(1,3))

l(F1(1,3),F3,C(1,3))
= 1 (4.62)

Sim2,3(1,3) =
l(F2(1,3),F3(1,3))

l(F2(1,3),F3,C(1,3))
= 1 (4.63)

Aggregating the above values we obtain the similarity for options (1,3)

Sim(1,3) =
1
3
(0.67+ 1+ 1)= 0.89 (4.64)

Finally, for options (2,3) we have

Sim1,2(2,3) =
l(F1(2,3),F2(2,3))

l(F1(2,3),F2,C(2,3))
= 0.33 (4.65)

Sim1,3(2,3) =
l(F1(2,3),F3(2,3))

l(F1(2,3),F3,C(2,3))
= 0.33 (4.66)

Sim2,3(2,3) =
l(F2(2,3),F3(2,3))

l(F2(2,3),F3,C(2,3))
= 0.57 (4.67)

Aggregating the above values we obtain the similarity for options (2,3)

Sim(2,3) =
1
3
(0.33+ 0.33+ 0.57)= 0.41 (4.68)

The above results show that the biggest agreement in our group concerns options
(1,2) – the similarity measure is equal to 0.11. The smallest agreement concerns
options (1,3) for which the similarity measure is equal to 0.89.

Certainly, similar calculations can be performed for experts (aggregation is per-
formed by experts). The results are (Szmidt and Kacprzyk [181]):

Sim1,2 = 0.33 (4.69)

Sim1,3 = 0.51 (4.70)
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Sim2,3 = 0.57 (4.71)

The most similar are the preferences of the first and the second expert (4.69), the
least similar are the preferences of the second and the third experts (4.71).

The similarity measure aggregated both by options and by experts, i.e., the gen-
eral similarity for the group, is obtained by the aggregation of results (4.69)-(4.71)

Sim =
1
3
(0.33+ 0.51+ 0.57)= 0.47 (4.72)

Certainly, just the same results will be obtained when aggregating (4.60), (4.64) and
(4.68).

In our example the agreement of the group of experts (the similarity concerning
all options) is equal to 0.47 (not bad). �

In the method of group agreement analysis, presented above, it is possible to take
into account the fact that some experts can be more important than others – proper
weights for pairs of individuals can be taken into account in formula (4.55).

4.4 More Examples of Similarity Measures Including the
Notion of Complement

In the previous section we have shown on a simple example (see also Szmidt and
Kacprzyk [181]) that the measure (4.47) gives reasonable results when applied to as-
sessing agreement in a group of experts. However, the measure has its disadvantage,
namely, it does not follow the range of the usually assumed values for the similarity
measures. It is possible, though, to construct a whole array of similarity measures
following the philosophy, and preserving the advantages of the measure (4.47), and
whose numerical values are consistent with the common scientific tradition (i.e. be-
longing to [0,1]).

To be more specific, when constructing the new similarity measures we used the
same two kinds of distances as in (4.47) (i.e., l1

IFS(X ,F), l1
IFS(X ,FC)) but we were

looking for a function with values from [0,1]. Specifically, following (Szmidt and
Kacprzyk [193])

f (l1
IFS(X ,F), l1

IFS(X ,FC)) =
l1
IFS(X ,F)

l1
IFS(X ,F)+ l1

IFS(X ,FC)
(4.73)

In (Szmidt and Kacprzyk [193]) it is stressed that the above function is con-
structed under the condition that case when X = F = FC (which is, by obvious
reasons, not interesting in practice) was excluded from the considerations. The as-
sumption X = F = FC means that one tries to compare an element (represented by)
X about which nothing is known, to another element about which nothing is known.
F = FC in terms of geometrical representation in Figure 4.11 means that X , F and
FC representing respective elements from an intuitionistic fuzzy set are at the same
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point on the HG segment. So the cases for which l1
IFS(X ,F) = l1

IFS(X ,FC) = 0 were
excluded from the considerations. Other cases are presented in Table 4.1.

Table 4.1 Possible values of (4.73) c,d ∈ (0,1)

l1
IFS(X ,F) l1

IFS(X ,FC) f
0 1 0
1 0 1
1 1 0.5
c less than d c/(c+d)<0.5
c bigger than d d/(c+d)>0.5
c equal to d 0.5

In this way a function has been constructed which takes into account the same
two distances as the previous measure (4.47) but now the new measure is normalized
(its values are in [0,1]) (Szmidt and Kacprzyk [193]). It is obvious (see Table 4.1)
that (4.73) is a concept dual to a similarity measure (if (4.73) is equal to zero then
similarity is equal to 1; if (4.73) is equal to 1 then similarity is equal to zero). In
other words, we may use (4.73) to construct a similarity measure.

As
0< f (l1

IFS(X ,F), l1
IFS(X ,FC))<1 (4.74)

we would like to find a monotone decreasing function g fulfilling:

g(1)<g( f (l1
IFS(X ,F), l1

IFS(X ,FC)))<g(0) (4.75)

which means that

0<g( f (l1
IFS(X ,F), l1

IFS(X ,FC)))− g(1)<g(0)− g(1) (4.76)

0<
g( f (l1

IFS(X ,F), l1
IFS(X ,FC)))− g(1)

g(0)− g(1)
<1 (4.77)

In this way we obtain a function having the properties of a similarity measure in a
sense that it is monotone decreasing function of (4.73).

Definition 4.1. (Szmidt and Kacprzyk [193])

Sim(l1
IFS(X ,F), l1

IFS(X ,FC)) =
g( f (l1

IFS(X ,F), l1
IFS(X ,FC)))− g(1)

g(0)− g(1)
(4.78)

where f (l1
IFS(X ,F), l1

IFS(X ,FC)) is given by (4.73)

The simplest function g which may be applied in both definitions is

g(x) = 1− x (4.79)

which gives, from (4.78) (Szmidt and Kacprzyk [193]),
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Sim1(X ,F) = Sim(l1
IFS(X ,F), l1

IFS(X ,FC)) =

= 1− f (l1
IFS(X ,F), l1

IFS(X ,FC)) = 1− l1
IFS(X ,F)

l1
IFS(X ,F)+ l1

IFS(X ,FC)
(4.80)

Another function g(x) could be

g(x) =
1

1+ x
(4.81)

giving (Szmidt and Kacprzyk [193])

Sim2(X ,F) = Sim(l1
IFS(X ,F), l1

IFS(X ,FC)) =

=
1− f (l1

IFS(X ,F), l1
IFS(X ,FC))

1+ f (l1
IFS(X ,F), l1

IFS(X ,FC))
(4.82)

Function

g(x) =
1

1+ x2 (4.83)

gives (Szmidt and Kacprzyk [193])

Sim3(X ,F) = Sim(l1
IFS(X ,F), l1

IFS(X ,FC)) =

=
1− f (l1

IFS(X ,F), l1
IFS(X ,FC))2

1+ f (l1
IFS(X ,F), l1

IFS(X ,FC))2
(4.84)

Theoretically, we could use as well g(x) = 1
1+xn where n = 3,4, . . . ,k but the

counterpart similarity measures ( 1−xn

1+xn ) give the values which are less convenient for
comparing when the values of x are small (Szmidt and Kacprzyk [193]). This fact
is illustrated in Figure 4.12 – the bigger n, the flatter the similarity measures ( 1−xn

1+xn )
for smaller values of x. It means that formal satisfaction of some mathematical as-
sumptions is necessary but may be not sufficient for using a measure.

Another function which may be applied is the exponential function (cf. Pal and
Pal [128])

g(x) = e−x (4.85)

giving for our function (4.73) (Szmidt and Kacprzyk [193])

Sim4(X ,F) = Sim(l1
IFS(X ,F), l1

IFS(X ,FC)) =

=
e− f (l1

IFS(X ,F),l1
IFS(X ,FC))− e−1

1− e−1 (4.86)

It is obvious that one could continue generating more complicated functions g(x)
(being the decreasing functions of f ) but it would not give any additional insight as
far as similarity is concerned.

From the measures (4.80) – (4.86) intuitively acceptable results are obtained.
Some examples, troublesome for other measures, are presented in Table 4.2. It
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Fig. 4.12 The shapes of 1−xn

1+xn

Table 4.2 Examples of results obtained from the similarity measures (4.80)–(4.86)

1 2 3 4 5
X = (μ,ν,π) (0.3,0.4,0.3) (0.4,0.2,0.4) (0.4,0.2,0.4) (0,0,0)
F = (μ,ν,π) (0.4,0.3,0.3) (0.5,0.3,0.2) (0.5,0.2,0.3) (0.5,0.5,0)

Sim1 0 0.6 0.75 0.5
Sim2 0 0.43 0.6 0.33
Sim3 0 0.72 0.88 0.6
Sim4 0 0.48 0.65 0.38

is worth noticing that each measure assigns similarity equal 0 for an element
(0.3,0.4,0.3) and its complement (0.4,0.3,0.3). In general, similarity measures
(4.80) – (4.86) satisfy the following properties:

Simi(X ,F) ∈ [0,1], (4.87)

Simi(X ,X) = 1, (4.88)

Simi(X ,XC) = 0, (4.89)

Simi(X ,F) = Simi(F,X), (4.90)

for i = 1, . . . ,4.
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The similarity measures discussed in this section assess similarity of any two ele-
ments (X and F) belonging to an intuitionistic fuzzy set (or sets). The corresponding
similarity measures for the intuitionistic fuzzy sets A and B, containing n elements
each, are:

Simk(A,B)=
1
n

n

∑
i=1

Simk(l
1
IFS(Xi,Fi), l

1
IFS(Xi,F

C
i )) (4.91)

for k = 1, . . . ,4.
Although in the formulas presented above we used the normalized Hamming

distance, it is possible to replace it by other kinds of distances.
To be more specific, function f (l1

IFS(X ,F), l1
IFS(X ,FC)) (4.73), making use of the

Hamming distance in (4.80) – (4.86), can be replaced by the corresponding function
making use of the Euclidean distance, i.e.:

f (q1
IFS(X ,F),q1

IFS(X ,FC)) =
q1

IFS(X ,F)

q1
IFS(X ,F)+ q1

IFS(X ,FC)
(4.92)

where q1
IFS(X ,F) is given by (3.157). For example, the measure corresponding to

similarity measure (4.80), in which (4.92) instead of (4.73) was applied, is:

Sim1(q
1
IFS(X ,F),q1

IFS(X ,FC)) = 1− f (q1
IFS(X ,F),q1

IFS(X ,FC)) =

= 1− q1
IFS(X ,F)

q1
IFS(X ,F)+ q1

IFS(X ,FC)
. (4.93)

The measure, corresponding to similarity measure (4.82), in which (4.92) instead
of (4.73) was applied, is:

Sim2(q
1
IFS(X ,F),q1

IFS(X ,FC)) =
1− f (q1

IFS(X ,F),q1
IFS(X ,FC))

1+ f (q1
IFS(X ,F),q1

IFS(X ,FC))
(4.94)

The measure, corresponding to similarity measure (4.84), in which (4.92) instead
of (4.73) was applied, is:

Sim3(q
1
IFS(X ,F),q1

IFS(X ,FC)) =
1− f (q1

IFS(X ,F),q1
IFS(X ,FC))2

1+ f (q1
IFS(X ,F),q1

IFS(X ,FC))2
(4.95)

The measure, corresponding to similarity measure (4.86), in which (4.92) instead
of (4.73) was applied, is:

Sim4(q
1
IFS(X ,F),q1

IFS(X ,FC)) =
e− f (q1

IFS(X ,F),q1
IFS(X ,FC))− e−1

1− e−1 (4.96)

In the similarity measures discussed here (Section 4.4), the problem of symmetry
between the membership, non-membership and hesitation margin (cf. Szmidt and
Kreinovich [228]) was partly removed by introducing into the definitions of the
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Fig. 4.13 Values obtained from measure (4.80) for any element from an intuitionistic fuzzy
set and (0.7, 0.2, 0.1)
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Fig. 4.14 Contourplot of measure (4.80) for any element from an intuitionistic fuzzy set and
(0.7, 0.2, 0.1)

similarity measures not only the relation to an element we are interested in, but
also that to its complement. In result, the measures discussed here better meet our
expectations than the similarity measures being just concepts dual to distance (cf.
Section 4.1). We avoid, for example, high values of similarity of an element and its
complement. However, we still should use the similarity measures carefully.

In Figures 4.13–4.14 we have an illustration of the results generated by the
similarity measure (4.80), while in Figures 4.15–4.16 the results given by the
similarity measure (4.93) are presented. The results produced by both similarity
measures (4.80) and (4.93) are analogous in the sense of pointing out some geomet-
rical “shapes” but still the problem of symmetry concerning terms (describing an
intuitionistic fuzzy set) in the formulas was not completely solved as quite different
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Fig. 4.15 Values obtained from (4.93) for any element from an intuitionistic fuzzy set and
(0.7, 0.2, 0.1)

elements from the point of view of, for instance, decision making are “the same”
in the sense of the values obtained from the proposed measures in respect to a cho-
sen element. A simple “weighting” of the terms describing the elements does not
solve the problem either. In Figures 4.17 and 4.18 we have the results from (4.93)
with “weighted” membership values (in Figure 4.17 the membership value is two
times more important, and in Figure 4.18 it is ten times more important than the
non-membership and hesitation margin). The geometrical shapes implied by the
weighted similarity measures change (cf. Figures 4.16, 4.17 and 4.18).

The question arises what should be done if we wish, e.g., to use similarity mea-
sure (4.93) and to differentiate between elements (0.3, 0, 0.7) and (0.5, 0.4, 0.1),
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1.0

Fig. 4.16 Contourplot of (4.93) for any element from an intuitionistic fuzzy set and
(0.7, 0.2, 0.1)
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Fig. 4.17 Contourplot of (4.93) (with two times more important membership values) for any
element from an intuitionistic fuzzy set and (0.7, 0.2, 0.1)
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Fig. 4.18 Contourplot of (4.93) (with ten times more important membership values) for any
element from an intuitionistic fuzzy set and (0.7, 0.2, 0.1)

which are obviously different from the point of view of decision making but both are
similar to element (0.7, 0.2, 0.1) to the same extent equal to 0.6 (cf. Figures 4.15 and
4.16). Most important is that we should not conclude about similarity of (0.3, 0, 0.7)
and (0.5, 0.4, 0.1) before calculating their direct similarity from (4.93), whereupon
we obtain the value 0.51 (different from 0.6). This observation about examining
similarity seems important when one tries to conclude about similarity of different
elements on the basis of their direct distances to “the ideal” element (1,0,0).
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Fig. 4.19 Values of similarity (4.97) for any element from an intuitionistic fuzzy set and
element (0.7, 0.2, 0.1)
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Fig. 4.20 Contourplot of measure (4.97) for any element from an intuitionistic fuzzy set and
element (0.7, 0.2, 0.1)

Finally, we will introduce another definition of similarity using the Hausdorff
distance (cf. Grünbaum [77]). We have shown (Section 3.3.2.1) that in the case of
the Hausdorff distance between the intuitionistic fuzzy sets we should use a formula
with all three terms describing the sets. If we apply distance (3.215) in the formulas
(4.80) – (4.86) instead of (4.73), we obtain new similarity measures. For example,
the counterpart of (4.80) with (3.215) replacing (4.73) is:

Sim(H3(X ,F),H3(X ,FC)) = 1− f (H3(X ,F),H3(X ,FC)) =

= 1− H3(X ,F)
H3(X ,F)+H3(X ,FC)

. (4.97)
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In Figures 4.19 and 4.20 we have exemplary results from (4.97) – the presence of
the complement element and its influence on the results are visible.

Accounting for the complement elements in the similarity measures seems im-
portant in many tasks (for example, in image recognition, the most “dissimilar”
image is a negative image which can be understood as an image consisting of the
complement elements).

4.5 Correlation of Intuitionistic Fuzzy Sets

In Section 3.1 correlation coefficient was mentioned in the case of crisp sets as the
standarized angular separation (3.13) resulting from centering the coordinates to the
mean values. Here we will discuss the notion of correlation of intuitionistic fuzzy
sets as introduced by Szmidt and Kacprzyk [211].

The correlation coefficient r (so called Pearson’s coefficient) was proposed by
Karl Pearson in 1895, and is one of the most used indices in statistics [140]. Cor-
relation indicates how well two variables move together in a linear fashion, i.e.,
correlation reflects a linear relationship between two variables. Consequently, cor-
relation coefficient became an important measure in data analysis and classification,
in particular in decision making, medical diagnosis, predicting market behavior, pat-
tern recognition, and other real world problems concerning political, legal, financial,
economic, social, environmental, educational, artistic, etc. systems.

The concept has been extended further to fuzzy observations (cf. e.g., Chiang and
Lin [50], Hong and Hwang [82], Liu and Kao [118]).

As relations between intuitionistic fuzzy sets (representing, e.g., preferences,
attributes) seem to be of vital importance both in theory and practice, there are
many papers discussing the correlation of the intuitionistic fuzzy sets: Bustince and
Burillo [43], Gersternkorn and Mańko [73], Hong and Hwang [81], Hung [85],
Hung and Wu [86], Zeng and Li [261]. Some of those papers evaluate only the
strength of relationship (cf. Gersternkorn and Mańko [73], Hong and Hwang [81],
Zeng and Li [261]). In other papers (cf. Hung [85], Hung and Wu [86]), a posi-
tive and negative type of relationship is reflected, but the third term describing an
intuitionistic fuzzy set, which is important from the point of view of all distance,
similarity, or entropy measures (cf. Szmidt and Kacprzyk, e.g., [165], [171], [188],
[175], [192]), [193]) is not taken into account.

This section deals with a concept of correlation for data represented as intuition-
istic fuzzy sets by adopting the concepts from statistics. We calculate it by showing
both positive and negative relationships of the sets, and showing that it is important
to take into account all three terms describing intuitionistic fuzzy sets.

The correlation coefficient (Pearson’s r) between two variables is a measure of
the linear relationship between them, equal to:

• 1 in the case of a positive (increasing) linear relationship,
• -1 in the case of a negative (decreasing) linear relationship,
• some value between -1 and 1 in all other cases.
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The closer the coefficient is to either -1 or 1, the stronger the correlation between
the variables.

Correlation between Crisp Sets

For a random sample of size n, i.e.: (X1,Y1), (X2,Y2), . . . , (Xn,Yn) from a joint prob-
ability density function fX ,Y (x,y), let X and Y be the sample means of variables X
and Y , respectively, then the sample correlation coefficient r(X ,Y ) is given as (e.g.,
[140]):

r(A,B) =

n
∑

i=1
(xi −X)(yi −Y )

(
n
∑

i=1
(xi −X)2

n
∑

i=1
(yi −Y )2)0.5

(4.98)

where: X = 1
n

n
∑

i=1
xi, Y = 1

n

n
∑

i=1
yi.

Correlation between Fuzzy Sets ([50])

For a random sample of size n, i.e. x1,x2, . . . ,xn ∈ X with a sequence of paired data
(μA(x1),μB(x1)), (μA(x2),μB(x2)), . . ., (μA(xn),μB(xn)) which correspond to the
membership values of fuzzy sets A and B defined on X , the correlation coefficient
r f (A,B) is defined as ([50]):

r f (A,B) =

n
∑

i=1
(μA(xi)− μA)(μB(xi)− μB)

(
n
∑

i=1
(μA(xi)− μA)2)0.5(

n
∑

i=1
(μB(xi)− μB)2)0.5

(4.99)

where: μA = 1
n

n
∑

i=1
μA(xi), μB = 1

n

n
∑

i=1
μB(xi).

Correlation between Intuitionistic Fuzzy Sets (Szmidt and Kacprzyk [211])

We consider a correlation coefficient for two intuitionistic fuzzy sets, A and B, so
that we could express not only a relative strength but also a positive or negative re-
lationship between A and B. Next, we take into account all three terms describing an
intuitionistic fuzzy set (membership, non-membership and the hesitation margins)
because each of them influences the results.

Suppose that we have a random sample x1,x2, . . . ,xn ∈ X with a sequence
of paired data [(μA(x1),νA(x1),πA(x1)),(μB(x1),νB(x1),πB(x1))], [(μA(x2), νA(x2),
πA(x2)), (μB(x2), νB(x2), πB(x2))], . . . , [(μA(xn), νA(xn), πA(xn)), (μB(xn),
νB(xn), πB(xn))] which correspond to the membership values, non-memberships val-
ues and hesitation margins of the intuitionistic fuzzy sets A and B defined on X , then
the correlation coefficient rA−IFS(A,B) is given by Definition 4.2.
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Definition 4.2. The correlation coefficient rA−IFS(A,B) between two intuitionistic
fuzzy sets, A and B in X , is:

rA−IFS(A,B) =
1
3
(r1(A,B)+ r2(A,B)+ r3(A,B)) (4.100)

where

r1(A,B) =

n
∑

i=1
(μA(xi)− μA)(μB(xi)− μB)

(
n
∑

i=1
(μA(xi)− μA)2)0.5(

n
∑

i=1
(μB(xi)− μB)2)0.5

(4.101)

r2(A,B) =

n
∑

i=1
(νA(xi)−νA)(νB(xi)−νB)

(
n
∑

i=1
(νA(xi)−νA)2)0.5(

n
∑

i=1
(νB(xi)−νB)2)0.5

(4.102)

r3(A,B) =

n
∑

i=1
(πA(xi)−πA)(πB(xi)−πB)

(
n
∑

i=1
(πA(xi)−πA)2)0.5(

n
∑

i=1
(πB(xi)−πB)2)0.5

(4.103)

where: μA = 1
n

n
∑

i=1
μA(xi), μB = 1

n

n
∑

i=1
μB(xi), νA = 1

n

n
∑

i=1
νA(xi),

νB = 1
n

n
∑

i=1
νB(xi), πA = 1

n

n
∑

i=1
πA(xi), πB = 1

n

n
∑

i=1
πB(xi).

In the correlation coefficient (4.100) two factors play an important role:

• the amount of information expressed by the membership and non-membership
degrees (4.101)–(4.102), and

• the reliability of information, expressed by the hesitation margins (4.103).

Remark: It should be emphasized that analogously as for the crisp and fuzzy data,
rA−IFS(A,B) makes sense for the intuitionistic fuzzy variables whose values vary.
If, for instance, the temperature is constant and the amount of ice cream sold does
not change, then it is impossible to conclude about their relationship (as, from the
mathematical point of view, we avoid zero in the denominator).

The correlation coefficient rA−IFS(A,B) (4.100) fulfills the following properties:

1. rA−IFS(A,B) = rA−IFS(B,A)

2. If A = B then rA−IFS(A,B) = 1

3. |rA−IFS(A,B)| ≤ 1

The above properties are not only fulfilled by the correlation coefficient rA−IFS(A,B)
(4.100) but also by its every component (4.101)–(4.103).
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Fig. 4.21 Example 4.6: we can see from the data that there is no perfect negative linear
relationship between elements from A and B

Remark: It is worth mentioning that rA−IFS(A,B) = 1 occurs not only for A = B
but also in the cases of a perfect linear correlation of the data (cf. Example 4.7) (the
same concerns each component (4.101)–(4.103)).

Now some simplified examples will be shown. The data set size is too small to
look at them as at significant samples, but the purpose is just illustration.

Example 4.6. (Szmidt and Kacprzyk [211])
Let A and B be intuitionistic fuzzy sets in X = {x1,x2,x3}:

A = {(x1,0.1,0.2,0.7),(x2,0.2,0.09,0.71),(x3,0.3,0.01,0.69)}

B = {(x1,0.3,0,0.7),(x2,0.2,0.2,0.6),(x3,0.1,0.6,0.3)}
Examining the above data in details, it is easy to notice that

• the membership values of the elements in A (i.e.: 0.1,0.2,0.3) increase whereas
the membership values of the elements in B (i.e.: 0.3,0.2,0.1) decrease. In the
result (4.101) we have r1(A,B) =−1;

• the non-membership values of the elements in A (i.e.: 0.2,0.09,0.01) decrease
whereas the non-membership values of the elements in B (i.e.: 0.0,0.2,0.6) in-
crease. In the result (4.102) we have r2(A,B)≈−0.96.

• the hesitation margins of the elements in A (i.e.: (0.7,0.71,0.0.69) and the hes-
itation margins of the elements in B (i.e.: 0.7,0.6,0.2) give the result (4.103)
r3(A,B) = 0.73.
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Fig. 4.22 Example 4.7: we can see from the data the perfect positive linear relationship
among elements from A and B

Therefore, finally, from (4.100) we obtain rA−IFS(A,B) = 1
3 (−1− 0.96+ 0.73) =

−0.41.
If we exclude from considerations the hesitation margins, and take into account

two components (4.101) and (4.102) only, we obtain rA−IFS(A,B)= 1
2 (−1−0.96)=

−0.98 which means that there is a substantial negative linear relationship between
A and B (which is difficult to agree with).

A geometrical interpretation (cf. Section 2.3.1) of the data from Example 4.6 is
given in Figure 4.21.

It should be emphasized that, e.g., in decision making or other practical purposes
it seems important to know the third component (4.103) of the correlation coefficient
(4.100), concerning lack of knowledge represented by the variables considered. For
example, if the data represent reactions of patients to a new medicine, it seems
highly useful to examine carefully the component (4.103) of the correlation coeffi-
cient (4.100) as it may happen that a new medicine/treatment increases unforseen
reactions. In such situations it may be important not only to assess all components
separately but even to give them different weights in (4.100).

On the other hand, it is possible to give examples in which r3(A,B) does not influ-
ence the final result (the obtained value) of the correlation coefficient rA−IFS(A,B).
But such situations are exceptions, not a rule.

Example 4.7. (Szmidt and Kacprzyk [211]) Let A and B be intuitionistic fuzzy sets
in X = {x1,x2,x3}:
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Table 4.3 “Saturday Morning” data [138] in terms of intuitionistic fuzzy sets

No. Attributes Class
Outlook Temperature Humidity Windy

1 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) N
2 (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) (0, 0.33, 0.67) N
3 (1, 0, 0) (0, 0.33, 0.67) (0, 0.33, 0.67) (0.2, 0, 0.8) P
4 (0.2, 0.11, 0.69) (0, 0, 1) (0, 0.33, 0.67) (0.2, 0, 0.8) P
5 (0.2, 0.11, 0.69) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0.2, 0, 0.8) P
6 (0.2, 0.11, 0.69) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0, 0.33, 0.67) N
7 (1, 0, 0) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0, 0.33, 0.67) P
8 (0, 0.33, 0.67) (0, 0, 1) (0, 0.33, 0.67) (0.2, 0, 0.8) N
9 (0, 0.33, 0.67) (0.4, 0.11, 0.49) (0.6, 0, 0.4) (0.2, 0, 0.8) P
10 (0.2, 0.11, 0.69) (0, 0, 1) (0.6, 0, 0.4) (0.2, 0, 0.8) P
11 (0, 0.33, 0.67) (0, 0, 1) (0.6, 0, 0.4) (0, 0.33, 0.67) P
12 (1, 0, 0) (0, 0, 1) (0, 0.33, 0.67) (0, 0.33, 0.67) P
13 (1, 0, 0) (0, 0.33, 0.67) (0.6, 0, 0.4) (0.2, 0, 0.8) P
14 (0.2, 0.11, 0.69) (0, 0, 1) (0, 0.33, 0.67) (0, 0.33, 0.67) N

A = {(x1,0.1,0.2,0.7),(x2,0.2,0.1,0.7),(x3,0.29,0.0,0.71)}

B = {(x1,0.1,0.3,0.6),(x2,0.2,0.2,0.6),(x3,0.29,0.1,0.61)}
It is easy to notice that

• the membership values of the elements in A (i.e.: 0.1,0.2,0.29) increase, the
membership values of the elements in B (i.e.: 0.1,0.2,0.29) are the same as in A,
so from (4.101) we have r1(A,B) = 1.

• the non-membership values of the elements in A (i.e.: 0.2,0.1,0.) decrease and
the non-membership values of the elements in B (i.e.: 0.3,0.2,0.1) decrease, and
from (4.102) we have r2(A,B) = 1.

• the hesitation margins of the elements in A are equal to (0.7,0.7,0.71), and the
hesitation margins of the elements in B are equal to (0.6,0.6,0.61), so from
(4.103) we have r3(A,B) = 1.

Finally, from (4.100) we obtain rA−IFS(A,B) =
1
3 (1+1+1) = 1. It is easy to notice

that now the result is just the same whether we take into account r3(A,B) or not
(i.e. when we consider (4.101) and (4.102) only, and divide their sum by 2). But, in
general, r3(A,B) plays an important role in the correlation coefficient.

A geometric interpretation (cf. Section 2.3.1) of the data from Example 4.7 is shown
in Figure 4.22. We can notice the perfect positive linear relationship between the
elements from A and B (the perfect positive linear relationship of hesitation margins
is expressed by the parallel lines formed by the elements from A and B – the two
lines are also parallel to MN segment).

Now, following the results in (Szmidt and Kacprzyk [224]) we will verify on
a more complicated example - the well known “Saturday Morning” [138] bench-
mark – if all the three parts of (4.100) play an important role. The data set is small
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Table 4.4 Values of the correlation component (4.101) between each pair of attributes for the
“Saturday Morning” data from [138]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.01 0.03 -0.01

Temperature 0.01 1 0.63 -0.1
Humidity 0.03 0.63 1 0

Windy -0.01 - 0.1 0 1

Table 4.5 Values of the correlation component (4.102) between each pair of attributes for the
“Saturday Morning” data from [138]

Attr 0utlook Temperature Humidity Windy
Outlook 1 0.01 0.12 -0.07

Temperature 0.01 1 0.12 -0.22
Humidity 0.12 0.12 1 0

Windy -0.07 -0.22 0 1

Table 4.6 Values of the correlation component (4.103) between each pair of attributes for the
“Saturday Morning” from [138]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.15 -0.005 0.09

Temperature 0.15 1 0.45 -0.1
Humidity -0.005 0.45 1 0

Windy 0.09 -0.1 0 1

and hence illustrative. Moreover, we know which interrelations to expect – three
attributes are not strongly related (as each of them is important from the point of
view of classification), the fourth one is not very important from the point of view
of classification (more correlated with the others).

There are 14 examples in the “Saturday Morning” [138] data set, 4 nominal at-
tributes, and the target attribute with two classes. The nominal attributes are: out-
look, with values {sunny, overcast, rain}, temperature, with values {cold, mild,
hot}, humidity, with values {high, normal}, and windy, with values {true, false}.

Making use of the idea presented in Section 2.5.2 (also in Szmidt and Bald-
win [162], and in Szmidt and Kacprzyk [213]), we have obtained “Saturday Morn-
ing” data [138] description in terms of intuitionistic fuzzy sets (Table 4.3), i.e., we
have expressed each attribute in terms of the membership values, non-membership
values, and hesitation margin values. Next, we have calculated the three components
of the correlation coefficient (4.100) for each pair of the attributes. The results are
provided in Tables 4.4–4.6.

It is easy to notice that the correlation component (4.101) resulting from the cor-
relation stemming from the membership values of attributes is significant only in one
case (just as we have expected) – between Humidity and Temperature. The second
component of (4.100), i.e., (4.102), in practically all cases produces values which
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Table 4.7 Values of the correlation (4.100) between each pair of attributes for the “Saturday
Morning” data from [138]

Attr Outlook Temperature Humidity Windy
Outlook 1 0.06 0.05 0.003

Temperature 0.06 1 0.4 -0.14
Humidity 0.05 0.4 1 0

Windy 0.003 -0.14 0 1

Table 4.8 Values of the first correlation component r1(A,B) (4.101) between each pair of
attributes for Pima data

Attr plasmgl blopre triceps serins bmi dpf age
pregn 0.15 0 -0.1 -0.1 -0.03 0.02 0.66

plasmgl - 0.04 0.08 0.24 0.14 0.09 0.25
blopre - - -0.05 -0.1 0.18 0.02 0.02
triceps - - - 0.36 0.32 0.14 -0.1
serins - - - - 0.08 0.16 -0.05

bmi - - - - - 0.1 -0.03
dpf - - - - - - 0.09

Table 4.9 Values of the second correlation component r2(A,B) (4.102) between each pair of
attributes for the Pima Indians data

Attr plasmgl blopre triceps serins bmi dpf age
pregn -0.07 -0.13 -0.2 -0.14 -0.08 0.04 0.03

plasmgl - 0.06 0.11 -0.08 0.12 -0.07 -0.02
blopre - - 0.04 0 0.15 0.03 0.02
triceps - - - 0.42 0.19 0 0
serins - - - - -0.12 0.03 -0.09

bmi - - - - - 0.04 0.15
dpf - - - - - - 0

are not significant in terms of correlation. Next, the third component of (4.100), i.e.,
(4.103), confirms the conclusions we have drawn from (4.101). In other words, the
values of the correlation expressed in terms of lack of knowledge (4.103) count,
and should not be excluded from considerations when examining the correlation
between the attributes.

We have obtained similar results for Pima Indians Diabetes Database [264].
Namely, we tried verify if the situation is similar (if all the three parts of

rA−IFS(A,B) (4.100) count) for a well known benchmark example - the Pima Indian
Diabetes Database [264]. The data set, known as Pima, contains 768 data examples
in total, and 8 continuous attributes plus the target attribute with two classes. The
continuous attributes are: number of times pregnant (pregn), plasma glucose con-
centration (plasmgl), diastolic blood pressure (blopre), triceps skin fold thickness
(triceps), 2-hour serum insulin (serins), body mass index (bmi), diabetes pedigree
function (dpf), age (age). The class distribution of the database is 500 data examples
for class 1 and 268 data examples for class 2.
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Table 4.10 Values of the third correlation component r3(A,B) (4.103) between each pair of
attributes for the Pima data

Attr plasmgl blopre triceps serins bmi dpf age
pregn 0.04 -0.08 -0.21 -0.13 -0.10 0.03 0.55

plasmgl - -0.02 0 0.02 0 -0.01 0.09
blopre - - -0.06 -0.07 0.15 0.02 -0.06
triceps - - - 0.44 0.12 0.08 -0.19
serins - - - - -0.08 0.13 -0.12

bmi - - - - - 0.03 -0.08
dpf - - - - - - 0.07

Table 4.11 Values of the total correlation rA−IFS(A,B) (4.100) between each pair of at-
tributes for the Pima data

Attr plasmgl blopre triceps serins bmi dpf age
pregn 0.04 -0.07 -0.17 -0.12 -0.07 0.03 0.41

plasmgl - 0.03 0.06 0.06 0.09 0 0.11
blopre - - -0.03 -0.06 0.16 0.02 -0.01
triceps - - - 0.41 0.21 0.07 -0.09
serins - - - - -0.04 0.11 -0.09

bmi - - - - - 0.06 0.02
dpf - - - - - - 0.05

We used the algorithm based on the mass assignment theory proposed by Szmidt
and Baldwin [162] to describe the data in terms of the intuitionistic fuzzy sets, i.e.,
to derive the parameters of an intuitionistic fuzzy set model which describes each
attribute in terms of membership values, non-membership values, and hesitation
margin values. Having description of the attributes in terms of intuitionistic fuzzy
sets, we have calculated the three components of rA−IFS(A,B) (4.100) for each pair
of the attributes. The results are given in Tables 4.8–4.10 (Szmidt et al. [226]).

It is easy to notice (Szmidt et al. [226]) that the attributes pregn and age are
strongly correlated [0.66 for r1(A,B) (4.101) and 0.55 for r3(A,B) (4.103)]. Also the
attributes triceps and serins are positively correlated [0.36 for r1(A,B) (4.101), 0.42
for r2(A,B) (4.102), 0.44 for r3(A,B) (4.103)]. The attribute triceps and bmi are also
more significantly correlated [0.32 for r1(A,B) (4.101)] than the remaining pairs of
attributes. We may notice again that the values r3(A,B) (4.103) are significant for
the attributes mentioned. However, the significance of r3(A,B) (4.103) does not nec-
essarily mean its substantial values - this depends on the values of r1(A,B) (4.101)
and r2(A,B) (4.102). If both r1(A,B) (4.101) and r2(A,B) (4.102) are similar (and,
e.g. “big”, then “small” values of r3(A,B) (4.103) have influence on rA−IFS(A,B)
(4.100) - see, e.g, plasmgl and serins, plasmgl and age - in effect of small values of
both r2(A,B) (4.102) and r3(A,B) (4.103), the total correlation rA−IFS(A,B) (4.100)
is small although in the studies of some real populations [78] plasmgl reflects risk
for diabetes and is correlated with the mentioned attributes (which is reflected by
r1(A,B) (4.101)). This fact speaks again for a careful insight into each component
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Table 4.12 Values of the first correlation component r1(A,B) (4.101) between each pair of
attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.3 0.86 0.84
sepal width - 1 0.6 0.6
petal length - - 1 0.99
petal width - - - 1

Table 4.13 Values of the second correlation component r2(A,B) (4.102) between each pair
of attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.2 0.85 0.83
sepal width - 1 0.51 0.5
petal length - - 1 0.99
petal width - - - 1

Table 4.14 Values of the third correlation component r3(A,B) (4.103) between each pair of
attributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0.14 0.67 0.61
sepal width - 1 0.2 -0.14
petal length - - 1 0.6
petal width - - - 1

Table 4.15 Values of the total correlation rA−IFS(A,B) (4.100) between each pair of at-
tributes for the Iris Setosa data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.13 0.79 0.76
sepal width - 1 0.43 0.32
petal length - - 1 0.86
petal width - - - 1

r1(A,B), r2(A,B), r3(A,B) (4.101)–(4.103). Especially that for diverse populations
correlation coefficient between the pairs of the attributes vary [78]. Identification of
the attributes having different association with incidence of diabetes reflects distinct
metabolic processes about which important information may be lost easily when not
examined in detail through r1(A,B), r2(A,B), and r3(A,B) (4.101)–(4.103).

We have also examined the correlation coefficient using Iris data [265] expressed
in terms of the intuitionistic fuzzy sets (just the same as for the Pima data previ-
ously). Iris data consist of 3 classes with 50 instances each. Each class refers to a
variety of the iris plant (Iris Setosa, Iris Versicolor, Iris Virginica). There are four at-
tributes: sepal length, sepal width, petal length, petal width. Tables 4.12–4.24 show
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Table 4.16 Values of the first correlation component r1(A,B) (4.101) between each pair of
attributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.35 0.81 0.77
sepal width - 1 0.36 0.36
petal length - - 1 0.94
petal width - - - 1

Table 4.17 Values of the second correlation component r2(A,B) (4.102) between each pair
of attributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 -0.09 0.82 0.72
sepal width - 1 -0.07 -0.15
petal length - - 1 0.92
petal width - - - 1

Table 4.18 Values of the third correlation component (4.103) between each pair of attributes
for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.2 0.8 0.61
sepal width - 1 0.32 0.28
petal length - - 1 0.76
petal width - - - 1

Table 4.19 Values of the total correlation rA−IFS(A,B) (4.100) between each pair of at-
tributes for the Iris Versicolor data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.16 0.8 0.7
sepal width - 1 0.2 0.17
petal length - - 1 0.88
petal width - - - 1

Table 4.20 Values of the first correlation component r1(A,B) (4.101) between each pair of
attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.25 0.6 0.51
sepal width - 1 0.51 0.56
petal length - - 1 0.89
petal width - - - 1

the results. We have examined the components r1(A,B), r2(A,B), r3(A,B) (4.101)–
(4.103) of rA−IFS(A,B) (4.100) with respect to each class first. Results for Iris Setosa
are given in Tables 4.12–4.15. It is easy to see that the petal length and petal width
attributes are considerably correlated with one another and with other attributes es-
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Table 4.21 Values of the second correlation component r2(A,B) (4.102) between each pair
of attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.28 0.36 0.32
sepal width - 1 0.49 0.52
petal length - - 1 0.89
petal width - - - 1

Table 4.22 Values of the third correlation component r3(A,B) (4.103) between each pair of
attributes for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.04 0.54 0.33
sepal width - 1 0.17 0.29
petal length - - 1 0.34
petal width - - - 1

Table 4.23 Values of total correlation rA−IFS(A,B) (4.100) between each pair of attributes
for the Iris Virginica data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.19 0.5 0.38
sepal width - 1 0.39 0.46
petal length - - 1 0.7
petal width - - - 1

Table 4.24 Values of total correlation rA−IFS(A,B) (4.100) between each pair of attributes
for all Iris data

Attribute sepal length sepal width petal length petal width
sepal length 1 0.16 0.7 0.62
sepal width - 1 0.34 0.31
petal length - - 1 0.81
petal width - - - 1

pecially with respect to r1(A,B), r2(A,B) (4.101)–(4.102) – Tables 4.12–4.13. The
component r3(A,B) (4.103) – Table 4.14 influences a little the common result, i.e.
rA−IFS(A,B) (4.100) – Table 4.15, but the trend remains the same.

Results for Iris Versicolor are provided in Tables 4.16–4.19. We can observe
the same trend (as for Iris Setosa) but with lower correlation of petal length and
petal width with regard to sepal width – Tables 4.17–4.18 (the components r2(A,B)
(4.102) and r3(A,B) (4.103), respectively). The same is reflected in Table 4.19 (in
respect with (4.100)).

For Iris Virginica – Tables 4.20–4.23, petal length and petal width are again con-
siderably correlated with each other (especially with respect to component r1(A,B)
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(4.101) – Table 4.20). As for the other classes, we may observe again low correlation
between sepal length and sepal width.

The correlation among the attributes for all three classes of the Iris data are sum-
marized in Table 4.24. Although the trend of correlation between the attributes is
still preserved, the previous detailed results give more and better insight into the
data.

So, to sum up, we have discussed a correlation coefficient between the intu-
itionistic fuzzy sets. The coefficient proposed, like Pearson’s coefficient between
crisp sets, measures the strength of relationship between the intuitionistic fuzzy
sets, and shows if the sets are positively or negatively correlated. All three terms
describing the intuitionistic fuzzy sets are taken into account (the membership, non-
membership and hesitation margin). Each term plays an important role in data anal-
ysis and decision making, so that each of them should be reflected when assessing
the correlation between the intuitionistic fuzzy sets.

4.6 Concluding Remarks

At the beginning of this chapter we considered the notion of similarity between the
intuitionistic fuzzy sets as a dual concept to distance. Unfortunately, in the case of
the intuitionistic fuzzy sets this well known concept does not meet our expectations.

Next, two groups of similarity measures between the intuitionistic fuzzy sets were
recalled. First, we presented a whole array of similarity measures (known from the
literature) for the intuitionistic fuzzy sets, viewed in terms of single intervals. Sec-
ond, we considered measures being straightforward generalizations of those well
known for the fuzzy sets. However, both approaches do not meet our expectations,
and both give counter-intuitive results.

Then, we reconsidered our concept of similarity measure between the intuition-
istic fuzzy sets accounting for all three terms describing an intuitionistic fuzzy
set (membership, non-membership and hesitation margin), which is different from
viewing an intuitionistic fuzzy set as a single interval. We also took into account
the complements of the elements compared. We have applied this measure of sim-
ilarity to assess the extent of agreement in a group of experts giving their opinions
expressed by intuitionistic fuzzy preference relations. We emphasized the intuitive
appeal of the measure.

Further, we considered several modified similarity measures but still following
the philosophy of employing all three terms describing the intuitionistic fuzzy sets,
and making use of the complement elements. This may be viewed as an attempt of
using all kinds and fine shades of information available. These last measures are
the most promising, because, first of all, they help to avoid some strongly counter-
intuitive results. This is crucial for both theory and applications. However, we have
also pointed out the situations in which the measures should not be applied.

Finally, we presented an extended analysis of a Person’s like correlation coeffi-
cient between the intuitionistic fuzzy sets. The coefficient proposed, like Pearson’s
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coefficient between crisp sets, measures the strength of relationship between the
intuitionistic fuzzy sets, and shows whether the sets are positively or negatively cor-
related. All three terms describing the intuitionistic fuzzy sets are taken into account
(the membership value, non-membership value and hesitation margin). Each term
plays an important role in data analysis and decision making, so that each should be
reflected in the assessment of the correlation between the intuitionistic fuzzy sets.



Chapter 5
Summary and Conclusions

The intuitionistic fuzzy sets are a generalization of fuzzy sets with an additional
degree of freedom, as compared to fuzzy sets, which are fully described by the
degree of membership. In the definition of an intuitionistic fuzzy set a degree of
non-membership is added, and the value of membership plus the value of non-
membership for an element does not necessarily make one. Some psychological ex-
periments demonstrate that in many judgments of human beings such a phenomenon
happens. The additional degree of freedom means inherent possibility to model and
process more adequately and more human consistently the imprecise information,
and makes the intuitionistic fuzzy sets a useful tool in decision making.

The ability of expressing imprecise information leads to construction of more
reliable models. The use of these models is connected with processing of imprecise
information via different measures. The measures of distance and similarity are the
basic and extremely important tools in processing of information.

In this book we dealt with measures of distance and similarity for the intuitionis-
tic fuzzy sets, having in mind not only their mathematical correctness but also their
practical aspects.

From the point of view of practical applications, provision of an automatic
method of deriving the intuitionistic fuzzy sets from data (from relative frequency
distributions) seems useful, especially in the context of analyzing information con-
tained in big data bases. The approach has been shown to be useful in the context of
benchmark data sets.

Two kinds of intuitionistic fuzzy set representations were considered. First, only
two terms, namely membership values and non-membership values were taken into
account (the two term representation). Next, all three terms, namely, membership
values, non-membership values, and hesitation margin values were accounted for
(the three term representation). We have considered these two representations from
both geometrical and analytical points of view. The three term representation seems
to be more justified and intuitively appealing from the practical point of view (this
fact having its roots in some analytical and geometrical aspects).

Definite problems have been shown concerning the Hausdorff distance, in which
Hamming metric was applied while using the two term intuitionistic fuzzy set
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representation. It has been also demonstrated that the method of calculating the
Hausdorff distances in the same way, which is correct for the interval-valued fuzzy
sets, does not work for the intuitionistic fuzzy sets.

The three term representation of the intuitionistic fuzzy sets has proved its use-
fulness when applied (as a component) in a measure of ranking of the intuitionistic
fuzzy alternatives.

It has been also demonstrated that distance alone cannot be treated as a reliable
concept dual to similarity in the case of the intuitionistic fuzzy sets.

Also the similarity measures between the intuitionistic fuzzy sets formulated as
straightforward generalizations of those well known for fuzzy sets, do not meet our
expectations. The situation is the same for another group of similarity measures for
the intuitionistic fuzzy sets, viewed in terms of single intervals (which means using
two terms only in the intuitionistic fuzzy set description).

On the other hand, the concept of the similarity measures between the intuition-
istic fuzzy sets, accounting for all the three terms (membership, non-membership
and hesitation margin), and taking into account the complements of the elements
compared, avoids some counter-intuitive results, and meet better our expectations.

The same conclusion concerns Pearson’s like correlation coefficient between the
intuitionistic fuzzy sets – taking into account all of the three terms (the membership
value, the non-membership value and the hesitation margin) is justified.

Summing up: intuitionistic fuzzy sets seem to be a comprehensive tool for han-
dling many aspects of imprecise information. By taking into account the hesitation
margin values besides the membership and non-membership values in construction
of measures of distance and similarity, we can ensure better behavior and higher
intuitive appeal of the measures considered.
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set
crisp, 7
fuzzy, 8
intuitionistic fuzzy, 8

sigma-count, 11
similarity

angular separation, 42
correlation coefficient, 42

similarity measure, corresponding to
distance, 90

subset, of fuzzy set, 10
support pair, 32, 33
support, of fuzzy set, 11

union, of fuzzy sets, 12
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