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Abstract Modern cryptology rests on the shoulders of three men of rare talents. 
William Friedman, Lester Hill and Claude Shannon moved cryptology from an 
esoteric, mystical, strictly linguistic realm into the world of mathematics and sta-
tistics. Once Friedman, Hill, and Shannon placed cryptology on firm mathematical 
ground, other mathematicians and computer scientists developed the new algo-
rithms to do digital encryption in the computer age. Despite some controversial 
flaws, the U.S. Federal Data Encryption Standard (DES) was the most widely 
used computer encryption algorithm in the 20th century. In 2001 a much stronger 
algorithm, the Advanced Encryption Standard (AES) that was vetted by a new bur-
geoning public cryptologic community, replaced it. This chapter introduces Hill 
and Shannon and explores the details of the DES and the AES.

8.1  The Shoulders of Giants

Modern cryptology rests on the shoulders of three giants of the 20th century. 
We’ve already talked about William F. Friedman and how his theoretical work, 
particularly the Index of Coincidence, brought statistics to cryptanalysis. Two 
other mathematicians made even more impressive impacts on cryptology in sig-
nificantly different ways.

Lester S. Hill (1890–1961) was a mathematician who spent most of his career 
at Hunter College in New York City. In the June/July 1929 issue of The American 
Mathematical Monthly he published a paper titled Cryptography in an Algebraic 
Alphabet that marched cryptography a long way down the road towards being a 
mathematical discipline [7]. Hill’s paper and its sequel in 1931 [8] were the first 
journal articles to apply abstract algebra to cryptography [9]. The substance of 
his paper was a new system of polygraphic encryption and decryption that used 
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invertible square matrices as the key elements and did all the arithmetic modulo 26. 
This is now known generally as matrix encryption, or the Hill cipher [3, p. 227]. 
The fundamental idea is to convert the letters of a message into numbers in the 
range 0 through 25 and to apply an invertible n × n square matrix to the numbers 
to create the ciphertext. The beauty of the system is that you can use as many of the 
letters of the message as you like and encrypt them all at once—a true polygraphic 
system. The system works by picking a size for the polygraphs, say 2. Then the 
user creates an invertible 2 × 2 matrix, M. The digraph letters are arranged as a 
two-row column vector (a 2 × 1 matrix) L and multiplying L by M creates the 
ciphertext. This looks like M · L = C where the · denotes matrix multiplication. 
Decryption just takes C and multiplies it by M−1 as in M−1 · C = L. This system 
is easy to use but provides very good security. More importantly, Hill took another 
giant step in applying the tools of mathematics to cryptography.

The other mathematician we will discuss had the most significant and impor-
tant impact on cryptology of the group. Claude Elwood Shannon (1916—2001) 
was both a mathematician and an electrical engineer and received his Ph.D. from 
M.I.T. in 1940. Two years earlier, his master’s thesis was the first published work 
that linked Boolean algebra with electronic circuits—the basis of all modern com-
puter arithmetic. In 1941 he joined the staff of Bell Telephone Laboratories and 
was soon working on communications and secrecy systems under contract from 
the War Department. In 1948 he was finally able to publish his work on commu-
nications systems as A Mathematical Theory of Communication [11], the foun-
dational paper in information theory. In 1949 he followed with another seminal 
paper, Mathematical Theory of Secrecy Systems [12]. What Friedman had started 
and Hill continued, Shannon completed. In 60 dense pages Secrecy Systems placed 
cryptology on a firm mathematical foundation and provided the vocabulary and 
the theoretical basis for all the new cryptographic algorithms that would be devel-
oped over the next half-century. Shannon explored concepts like message entropy, 
language redundancy, perfect secrecy, what it means for a cipher system to be 
computationally secure, the unicity distance of a cipher system, the twin concepts 
of diffusion and confusion in cryptologic systems, product ciphers, and substitu-
tion-permutation networks.

Important for our discussion of computer algorithms are the concepts of dif-
fusion and confusion. In general parlance, diffusion means spreading something 
widely across an area. A definition aptly used in Shannon’s work. In Shannon’s 
systems, messages are reduced to representations as numbers that are binary digits 
(bits) in a machine. A secrecy system is an algorithm that transforms a sequence of 
message bits into a different sequence of message bits. The idea of diffusion is to 
create a transformation that distributes the influence of each plaintext bit across a 
large number of ciphertext bits [3, p. 337]. Ideally the diffusion occurs across the 
entire ciphertext output. This is known as an avalanche effect because the effect 
of a single bit change is cascaded across many ciphertext bits. In a cipher, using 
transposition creates system diffusion. In diffusion the emphasis is on the relation-
ship between the plaintext and the ciphertext. Confusion is the process of making 
the relationship between the plaintext and the ciphertext as complex as possible. 
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A cipher system does this via substitution [3, p. 337]. This complicates the trans-
formation from plaintext to ciphertext, making the cryptanalyst’s work much more 
difficult. In confusion the relationship is between the key bits and the ciphertext (a 
change in the key bits will change ciphertext bits). Shannon combined these two 
ideas into a substitution-permutation network (S–P) that uses diffusion and confu-
sion to complicate the cipher. He also suggested that executing an S–P network a 
number of times—a product cipher—will also make the system that much more 
resistant to cryptanalysis.

8.2  Modern Computer Cipher Algorithms: The DES

Horst Feistel (1915–1990) struggled for many years to be allowed to do the cryp-
tologic research he really wanted to do. But working for the government and gov-
ernment contractors made it difficult. When he finally started work at IBM’s T.J. 
Watson Research Center in Yorktown, NY in the early 1970s he was finally able 
to do his cryptologic research. The result was a system called Lucifer. Lucifer was 
a very secure computer-based cipher system that IBM marketed and sold within 
the United States and—in a weakened version—abroad [6]. This was in response 
to the increasing amount of business being done via computer and the increasing 
number of financial transactions being handled across networks. Then, in 1973, 
the National Bureau of Standards put out a call for cryptographic algorithms 
that would be a federal standard and would be used to encrypt unclassified gov-
ernment data. It was clear that any algorithm that was a federal standard would 
also become very popular in the business world, so IBM submitted Lucifer as a 
candidate. It turned out that Lucifer was the only acceptable algorithm and it was 
adopted as Federal Information Processing Standard 46 (FIPS-46) on 15 July 1977 
and renamed the federal Data Encryption Standard or DES [1].

8.2.1  How Does the DES Work?

The DES is a symmetric block cipher algorithm. It uses a single key to both 
encrypt and decrypt data (the symmetric part). It operates on data in 64-bit blocks 
(eight characters at a time), using a 56-bit key. It passes each block through the 
heart of the algorithm—a round—16 times before outputting the result as cipher-
text. Each round breaks the 64-bit block into two 32-bit halves and then imple-
ments a substitution-permutation network using part of the key, called a sub-key, 
to produce an intermediate ciphertext that is then passed back again for the next 
round. Figure 8.1 diagrams the data flow of a round [1].

In more detail, the 64-bit input to DES is put through an initial permutation 
(IP) that rearranges the bits. The 64-bits are then divided into two halves, Left 
and Right and put through a round. In a round, nothing is done to the Right half.  

8.1 The Shoulders of Giants
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It becomes the Left half of the next round. The Right 32-bits are first put through a 
mixing function f(Right, Key) where Key is a sub-key generated by the key sched-
uler. The output of the function f() is exclusive-or’ed with the Left half. The result 
of this operation becomes the Right half input to the next round and the original 
Right half is the Left input to the next round. After the sixteenth round, the 64-bit 
output is put through a permutation that is the inverse of the initial permutation 
above. The resulting output is the 64-bit ciphertext.

Fig. 8.1  Sixteen rounds of DES [1]
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8.2.2  The f() Function

The f() function takes as input the 32-bit right half of the input and a 48-bit sub-
key generated by the key scheduler. This is illustrated in Fig. 8.2.

The first thing the f() function wants to do is XOR the right half with the sub-
key. However, the generated sub-key is 48-bits and the right half of the data is only 
32-bits. So the data must first go through the expansion block E. E performs a 
transformation that changes the right half into a 48-bit output using the expansion 
table in Fig. 8.3.

The 48-bit output of the exclusive or is broken up into 8 groups of 6 bits each 
and these 6-bit quantities are use as indexes into the substitution or S-boxes to 
select a four-bit output quantity. Block S1 in Fig. 8.4 illustrates this selection.

The four-bit values from the 8 S-boxes are then combined and permuted one 
last time to make the 32-bit output of the function.

8.2.3  The Key Scheduler

The 56-bit DES key is broken up via the key scheduler into 48-bit sub-keys and 
a different sub-key is used for each round. The diagram for the key scheduler is 
in Fig. 8.5.

Fig. 8.2  Internals of the f() function [1]

8.2 Modern Computer Cipher Algorithms: The DES
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The original key is permuted and then broken up into two 28-bit halves. These 
halves are left shifted by an amount that depends on which round the key is des-
tined for. The shift, though, is always either 1 or 2. The two 28-bit halves are then 
recombined, permuted, and 48-bits are selected for the round key. From the intro-
duction of DES, ciphers that have this particular design of round are said to have 
Feistel cipher structures or Feistel architectures.

While the DES looks complicated, note that the only operations that are per-
formed are XOR (exclusive or), bit shifting, and permutation of bits, all very sim-
ple operations in hardware. This allows DES to be fast.

8.2.4  Discussion of DES

With multiple substitutions and transpositions (disguised as permutations), the 
DES does a very good job of implementing Shannon’s confusion and diffusion. It 
was not without controversy, though. Two particular areas stand out.

First, the key is too short [5, 10]. A 56-bit key only yields a key space of 256 
possible keys. This is only about 1018 or a quintillion keys, about half of which 
would need to be tried before the correct key was found to decrypt a message 
using brute force. Now this is not a small number, but with 201x computers we 

Fig. 8.4  Substitution box S1

Fig. 8.3  E bit expansion table
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are talking less than a day to break a DES key. Even in the 1970s it was esti-
mated that one could spend about $20 million dollars and create a special purpose 
machine that would break DES. In 1997 a network of thousands of computers on 
the Internet broke a DES key in a little over a month’s time. And a year later, a 
special purpose computer built by the Electronic Frontier Foundation for less than 
$250,000 broke a DES key in less than three days [3, p. 385]. If a not-for-profit 
civil liberties organization can break a DES key in that short a time, surely a well-
funded corporation or government can do it in less.

Why was the key so short? The original Lucifer key lengths were 64-bits and 
128-bits, so why was the key shortened for DES? The prevailing theory at the time 
was that the NSA had requested the shorter key because their computing technol-
ogy could break a 56-bit key in short order, but not anything larger.

Fig. 8.5  The key scheduler for DES [1]

8.2 Modern Computer Cipher Algorithms: The DES
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The second piece of controversy is that at its introduction there was much 
complaint and discussion about the design of the substitution boxes of the DES. 
IBM and the NBS were closed-mouthed about how the particular values in each 
of the eight S-boxes were chosen and why [5, 10]. Again, suspicion fell on the 
NSA. This time the suspicion was that the design afforded the NSA a back door 
into the cipher. None of these accusations have been proven, and DES has stood 
up to heavy use for a quarter of a century. But by the mid-1990s it was begin-
ning to show its age. Moore’s law was making it more and more likely that cheap 
systems for breaking the DES would be available soon. So the National Institute 
of Science and Technology (the successor to the NBS) decided it was time for a 
new algorithm.

8.3  The Advanced Encryption Standard

In 1997 NIST sent out a call for potential successors for the DES. The climate 
was much different than in the early 1970s; by the 1990s there was a flourish-
ing international community of researchers and practitioners in cryptology. 
Fifteen candidates were accepted and presented their algorithms at a NIST confer-
ence in 1998. By August 1999 the list was down to the top five candidates, RC6 
from RSA, Inc in the U.S., MARS from IBM, Twofish from Counterpane in the 
U.S., Serpent from an English/Israeli/Danish group, and Rijndael from a group 
in Belgium. At this point all five algorithms were published and the international 
community was challenged to evaluate them and look for weaknesses. NIST also 
did its own evaluations.

In August 2000 Rijndael was chosen as the next standard and the new 
Advanced Encryption Standard (FIPS-197) was published in November 2001 [2].

AES is a symmetric key block cipher, just like DES. It uses a 128-bit input 
block, and gives the user three choices for key sizes, 128-bits, 192-bits, and 256-
bits. The number of rounds varies depending on the key size. AES-128 uses 10 
rounds, AES-192 uses 12 rounds, and AES-256 uses 14 rounds. The key data 
structure in AES is called The State. It is a 4 × 4 matrix of bytes (so 16 bytes * 8 
bits/byte = 128-bits) that is acted upon by the algorithm to produce a 128-bit out-
put. The basic algorithm for AES looks like Fig. 8.6.

In Fig. 8.6 Nb is the number of bytes in the input data block, and Nr is the num-
ber of rounds. Note that each round is basically four steps, SubBytes, ShiftRows, 
MixColumns, and AddRoundKey. The final round (outside the for loop) skips the 
MixColumns step.

Figures 8.7, 8.8, 8.9 and 8.10 illustrate each of these steps.
Notice that AES is not a Feistel architecture because it does not separate the 

input block into two halves; instead it is an iterative cipher, operating on the 
entire block in every round. It also is not invertible as written. To do decryp-
tion, you must apply the round structure in reverse. As with DES, AES provides 
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a key scheduler to create sub-keys, one for each round. The key scheduler is in 
Fig. 8.11.

Rijndael is designed to be easy to implement on architectures from 8-bit 
through at least 64-bit. Its operations can either be pre-computed or done using 
very simple operations. SubBytes just needs a table of 256 entries. ShiftRows is 
just simple byte shifting. MixColumns can also be implemented as a table look-
up, and AddRoundKey just uses XOR.

Fig. 8.6  The basic AES algorithm [2]

Fig. 8.7  The SubBytes substitution [2]

8.3  The Advanced Encryption Standard
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As opposed to DES, there has been no controversy with the adoption of 
Rijndael as the AES. This is because the entire process of picking the algorithm 
was open and transparent. After Rijndael was selected, the cryptographic commu-
nity was given over a year to try to find flaws or weaknesses in the algorithm. The 
authors also published their own book on the design of the algorithm, providing 
their reasons for all their design decisions [4].

Fig. 8.9  The MixColumns function [2]

Fig. 8.8  ShiftRows function [2]
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