
An Algorithm for Finding Shortest Path
Tree Using Ant Colony Optimization
Metaheuristic

Mariusz Głąbowski, Bartosz Musznicki,
Przemysław Nowak, and Piotr Zwierzykowski

Poznań University of Technology, Faculty of Electronics and Telecommunications
Chair of Communication and Computer Networks, Poznań, Poland
bartosz@musznicki.com, przemyslaw.nowak@inbox.com

Summary. This paper introduces the ShortestPathTreeACO algorithm de-
signed for finding near-optimal and optimal solutions for the shortest path
tree problem. The algorithm is based on Ant Colony Optimization meta-
heuristic, and therefore it is of significant importance to choose proper oper-
ation parameters that guarantee the results of required quality. The operation
of the algorithm is explained in relation to the pseudocode introduced in the
paper. An exemplary execution of the algorithm is depicted and discussed on
a step-by-step basis. The experiments carried out within the custom-made
framework of the experiment are the source of suggestions concerning the
parameter values. The influence of the choice of the number of ants and
the pheromone evaporation speed is investigated. The quality of generated
solutions is addressed, as well as the issues of execution time.

1 Introduction

This article aims at presenting available possibilities of application of the Ant
Colony Optimization (ACO) technique in finding the Shortest Path Tree
(SPT) as a novel technique and alternative to the methods based on con-
ventional algorithms for finding the shortest path such as the Dijkstra’s or
Bellman-Ford algorithm [1]. It should be stressed that the Ant Colony Op-
timization metaheuristic has been constructed to seek solutions of NP-hard
problems [2]. As such, there is thus no guarantee that the most optimum
solution will be always found. Therefore, the obtained results may be both
optimal (accurate) and approximations that depend on the degree of fitness
of the algorithm itself for each individual problem to be solved. Therefore, it
is crucial to first analyse a given task and to properly select the operations
running parameters to be executed and to perform their optimization. Hav-
ing carried out many research studies and tests, the authors have eventually

R.S. Choraś (ed.), Image Processing and Communications Challenges 5, 317
Advances in Intelligent Systems and Computing 233,
DOI: 10.1007/978-3-319-01622-1_36, © Springer International Publishing Switzerland 2014



318 M. Głąbowski et al.

established and chosen appropriate parameters, methods and ways that prove
to be the most effective in solving a given specific problem.

The two following subsections of the article present the base algorithm and
define the problem of the shortest path tree. Section 2 provides a presenta-
tion of the proposed algorithm, discusses its pseudocode, as well as discusses
its operation based on an example of a selected graph. Then, in Section 3,
the authors present the results of the simulation study of the operation of
the algorithm. The first subsection is focused at the percentage of correct
solutions, while the second subsection discusses the duration of operation of
the algorithm. Final remarks and conclusions are presented in the summary.

1.1 ShortestPathACO Algorithm

The ShortestPathACO algorithm is a method and a set of recommendations
to ensure that the Ant Colony Optimization metaheuristic for solving the
shortest path problem is properly applied. A detailed introduction to the
methodology, discussion on the context and methods for finding paths, as well
as a discussion on the classes of parameters and the methods for updating
pheromones, are introduced by the authors in [3]. The subsequent paper [4]
presents a thorough analysis of the ShortestPathACO based strategy to find
the shortest path between two nodes.

1.2 Shortest Path Tree Problem

It can be proved [5, 6] that the shortest paths from one vertex of a graph
to all of the remaining vertices create a shortest paths tree. A characteristic
feature of this tree is the fact that its root is formed from the initial (source)
vertex, all of its edges are directed in the direction opposite to the vertex, and
each path that can be created from the initial vertex to any other vertex is
the shortest path to this vertex. By having the vector d = {di : i ∈ N}, whose
each element di is called vertex label and takes on numerical values or is equal
to infinity and denotes the shortest distance between a given vertex and the
initial vertex, we are in position to create this tree. All labels, however, have
to satisfy the following conditions called Bellman’s Equation [7]:

ds = 0 (1a)

and
dj = min

(i,j)∈A
{di + aij}, ∀ j 
= s (1b)

The solution for the problem of finding the shortest path tree in a graph
finds most of its recent applications in different demanding applications that
are based upon multicast routing in communication networks [8, 9, 10, 11].



An Algorithm for Finding Shortest Path Tree Using ACO Metaheuristic 319

2 The Application of the ShortestPathACO Algorithm
for Finding the Shortest Path Tree

Using the ShortestPathACO algorithm, the ShortestPathTreeACO algorithm
has been developed – an algorithm that aims at constructing the shortest path
tree. In this way, the Single-Source Shortest Paths problem (SSSP), related
to finding the shortest paths from a single initial node to all other nodes in
a weighted graph [5], is solved at the same time. Thanks to a construction of
the shortest path tree it is not necessary to find the shortest paths from the
source to all of the nodes one by one, but only to such nodes that have not
yet been included in the tree. By taking this kind of approach to a solution
of the single-source problem, we obtain full and extensive information on the
shortest paths but with a lower number of operational counts and initiations
of the ShortestPathACO algorithm.

Data: G = (N ,A) – graph, a – edge cost vector, s – initial node, t – end node, m – the
number of ants, α – the parameter that defines the influence of pheromones on the
choice of the next node, β – parameter that determines the influence of remaining
data on the choice of the next node, ρ – parameter that determines the speed at
which evaporation of the pheromone trail occurs; takes on values from the interval
〈0, 1〉, τ0 – initial level of pheromones on the edges, τmin – the minimum
acceptable level of pheromones on edges, τmax – maximum acceptable level of
pheromones on edges, iteration_limit – the limit of ShortestPathACO iterations

Result: d – vector of labels, pred – vector of predecessors
foreach i ∈ N do

di ← +∞;
predi ← 0;

end
ds ← 0;
remaining ← N − 1;
t ← N ;
while remaining > 0 do

while dt �= +∞ and t > 1 do
t ← t− 1;

end
if t > 1 then

path, length ←
ShortestPathACO(G, a, s, t,m, α, β, ρ, τ0, τmin, τmax, iteration_limit);
current_length ← 0;
foreach (i, j) ∈ path do

current_length ← current_length + aij ;
if dj > current_length then

if dj = +∞ then
remaining ← remaining − 1;

end
dj ← current_length;
predj ← i;

end
end

end
end

Algorithm 1. ShortestPathTreeACO Algorithm



320 M. Głąbowski et al.

2.1 Pseudo-code and a Discussion on the Algorithm

The operation of the ShortestPathTreeACO algorithm is based on the itera-
tive implementation of the ShortestPathACO algorithm with a variable value
of the parameter t. At the beginning, the variables d and pred are initiated.
The variables are responsible for respectively storing the vector for the labels
of vertices (the length of the shortest path from the initial node to a given
node) and for memorization of the vector of vertices that have been previ-
ously in the path to the initial node. Then, the label of the initial vertex ds
is set to 0, the variable remaining to N − 1 (this is the number of labels of
vertices that are still to be calculated), whereas the variable t is set to the
last vertex in the graph.

The remaining operations are performed in the loop for as long as there are
any vertices whose labels have not yet been ultimately calculated (the variable
remaining is greater than 0) available. Initially, the label dt of vertex t is
checked whether it is already set and whether t is greater than 1. Then, the
variable t is decreased by 1 until both of the conditions are satisfied. If t is
still greater than 1, the next action the algorithm has to perform is to initiate
the ShortestPathACO algorithm for the current value of the variable t, which
results in obtaining a calculated path between nodes s and t, as well as its
length.

The next step is to set an auxiliary variable current_length for a given
path to 0 and to follow thus obtained path to update the variables d and
pred. For each edge of the path path, the length of this edge is added to the
variable current_length. Later, only when the label of a vertex in which this
edge terminates is greater than the variable mentioned earlier further action
is performed. If the label of the vertex in which the current edge terminates
has not been set earlier, the variable remaining is decreased by 1. Then,
this label is set to the current value of the variable current_length, while
the variable pred for this vertex is being set to the vertex from which the
considered edge starts.

2.2 Illustration of the Operation of the Algorithm

Fig. 1 shows subsequent steps in an exemplary process of building up the
shortest path tree with the help of the ShortestPathTreeACO algorithm in the
hand-made graph constructed from 10 vertices that were joined together by 19
edges. At each of the stages a partial tree is shown, as well as it is shown what
values are taken on by particular parameters before the ShortestPathACO
algorithm for the operative value t is activated. The edges marked with broken
line indicate the elements that belong to SPT.

Fig. 1a shows the state of the graph after the initial stage, i.e., after all
actions from the line 1-7 of the 1 algorithm have been executed. All labels of
the vertices except the initial vertex 1 are not set, which means that there
are 9 vertices to be calculated left. The first vertex to be considered is the



An Algorithm for Finding Shortest Path Tree Using ACO Metaheuristic 321

d =
[
0 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞]

pred =
[
0 0 0 0 0 0 0 0 0 0

]

remaining = 9
t = 10

(a) Step 1

d =
[
0 2 ∞ 4 ∞ ∞ 7 ∞ ∞ 9

]

pred =
[
0 1 0 2 0 0 4 0 0 7

]

remaining = 5
t = 9

(b) Step 2

d =
[
0 2 ∞ 4 ∞ 7 7 ∞ 8 9

]

pred =
[
0 1 0 2 0 4 4 0 6 7

]

remaining = 3
t = 8

(c) Step 3

d =
[
0 2 ∞ 4 ∞ 7 7 8 8 9

]

pred =
[
0 1 0 2 0 4 4 7 6 7

]

remaining = 2
t = 5

(d) Step 4

d =
[
0 2 ∞ 4 7 7 7 8 8 9

]

pred =
[
0 1 0 2 2 4 4 7 6 7

]

remaining = 1
t = 3

(e) Step 5

d =
[
0 2 4 4 7 7 7 8 8 9

]

pred =
[
0 1 1 2 2 4 4 7 6 7

]

remaining = 0
t = 0

(f) Step 6

Fig. 1. Consecutive steps in the operation of the ShortestPathTreeACO algorithm

vertex 10. After the execution of the first iteration of the main loop of the
algorithm, its state is presented in Fig. 1b. The shortest path to vertex 10
has been found and thus to all vertices that are included in it, i.e., vertices
2, 4 and 7. There are now 5 vertices without labels left, while the next end
vertex will be vertex 9. The next iteration complements the list of labels d



322 M. Głąbowski et al.

by the next 2 values related to the end vertex 9 and vertex 6, which is shown
in Fig. 1c. Now there are only 3 vertices left that still have to have their
labels established. The next end vertex is vertex 8. In the next 3 iterations
the paths to vertices 8, 5 and 3 are found and the elements of the vector
of labels d are complemented, while the value of the variable remaining is
being decreased to 0, which terminates the operation of the algorithm.

In the discussed example, to construct the shortest path tree, and in this
way to solve the single-pair shortest path problem, the ShortestPathACO
algorithm had to be activated 5 times.

3 Study on the Operation of the Algorithm

Exactly as in the study on the general application of the ShortestPathACO [3]
algorithm, a number of tests was performed to find out whether the solutions
given by the ShortestPathTreeACO algorithm are correct, as well as to check
how the selection of parameters influences the operation of the method in dif-
ferent kinds of graphs. For the discussion in this paper, the hand-constructed
graph that is presented in Fig. 1 has been chosen. All the experiments were
conducted in a simulation environment prepared using programming lan-
guage C#. To obtain reliable results, each test was performed 100 times.
To diminish the influence of the simulation environment, extreme results
were rejected, and then the average values for the remaining results were
calculated.

The values of the parameters of the algorithm were the same as during the
conducted simulation tests of the ShortestPathACO algorithm to find the
shortest path between two nodes [4]. Therefore, the values of the parameter
α was determined as 1. The value β was adopted here as the one equal to 0.6,
since for lower values the algorithm was not capable of finding accurately an
optimum solution to the SPT. The parameters τ0, τmin and τmax were set
to 0, 0 and 200, respectively, while the parameter iteration_limit was set to
25000. It should be reminded that due to the heuristic nature of ACO-based
methods, the values of these parameters are extremely important and in the
case of different types of graphs these values should be verified.

In the following subsections we discuss the experiments aimed at verifying
the influence of the choice of the number of ants m and of the parameter ρ on
the quality of generated solutions and on the execution time of the algorithm.
The methodology for the calculation of the quality of a solution was modified.
In the case of the ShortestPathACO algorithm it was equal to the number of
optimal lengths of paths divided by the number of tests performed. This time,
taking into consideration the fact that a greater number of paths included
in a tree was to be analysed, the quality of solution takes additionally into
account the number of properly constructed labels of vertices in relation to
the number of vertices. This value, taken from all the tests, was then added
up and divided by the number of tests, which means that it is the average of



An Algorithm for Finding Shortest Path Tree Using ACO Metaheuristic 323

the results of one test. For example, if the algorithm properly calculates the
shortest path for 9 out of 10 vertices, then the quality of solution will amount
to 90%. If in the second attempt the number of correct paths decreases to 7,
then for the two tests the average of the quality of solution will be 80%, with
the standard deviation equal to 10%.

3.1 Percentage of Correct Solutions

The percentage of optimal solutions in relation to the parameters m and
ρ can be retraced in Graph 2. In the case of the considered graph, it is
already with a small number of ants that the percentage of correct solutions
ranges within the boundaries of 70%, while the results for different values
of ρ are similar. It should not be forgotten, however, that this value means
that for 9 of sought-after paths, for nearly 7 of them the found path was
the shortest. In addition, the result is also influenced by the fact that the
resulting value is the average for 100 measurements. By watching closely
the standard deviation we can observe that with a small number of ants it
exceeds even 15% for ρ = 0.001. This results from a large differentiation in
the obtained results between individual measurements and is tantamount to
the fact that during some of the tests the quality of solution dropped below
50%, while on other occasions was well above 90%. Along with the increase
in the number of ants the percentage number of correct solutions increases,
while the standard deviation decreases, which translates into a decrease in
the width of confidence intervals in the obtained results. With 14 ants, or
more, all paths that have been found are the shortest paths, whereas the
standard deviation is equal to 0, which means that in all attempts the results
were the same.

Fig. 2. The quality of generated solutions provided by the ShortestPathTreeACO
algorithm for the graph from Figure 1 depending on the parameters m and ρ



324 M. Głąbowski et al.

By analysing the influence of the parameter ρ we can observe that for
its higher values, with a small number of ants, the standard deviation takes
on higher values, whereas from the number of at least 6 ants the obtained
results are remarkably similar for different values of ρ. It is clearly visible
that despite the worse results for ρ = 0.1 with a small number of ants, after
an increase in the number of ants to 6, all three graphs are very similar. With
8 ants, the algorithm approaches 99%, and from the number of 14 ants all
found paths are optimal regardless of the number of tests. The data presented
in the graph are non-decreasing functions, whereas from a certain threshold,
in fact, solid functions.

3.2 Duration of Operation

While analysing the operation times of the algorithm in relation to the pa-
rametersm and ρ shown in Graph 3 some interesting dependencies are clearly
observable. With a small number of ants, the operation time of the algorithm
is very long — considerably longer than that with a substantially higher num-
ber of ants. The reason for the above might be the fact that with a small
number of ants the time necessary to check as large number of edges as pos-
sible prolongs. A colony composed of just 2 ants is not capable of effectively
checking available paths, hence the convergence is reached very late. Starting
from 4 ants and with ρ = 0.001 and ρ = 0.01, the operating time of the
algorithm stabilizes and increases proportionally to the number of ants. For
ρ = 0.1, the situation looks quite differently. Despite very similar results for
different ρ with 2 ants, from the number of 4 ants, the operation time of
the algorithm doubles and drops to an acceptable level with as many as 10
ants. Such results are derived from the fact that the exploration features of

Fig. 3. Execution time of the ShortestPathTreeACO algorithm for the graph from
Figure 1 depending on the parameters m and ρ



An Algorithm for Finding Shortest Path Tree Using ACO Metaheuristic 325

ants become too high. This in turn causes pheromones to be deposited on a
great number of edges, while the paths obtained in successive iterations do
not repeat, which makes it difficult for the algorithm to reach convergence.
From the number of 10 ants, regardless of the value of the parameter ρ, the
operation time of the algorithm improves gradually along with the increase
in the number of ants.

One can conclude unequivocally from graph 3 that an excessive increase
in the value of the value of the parameter ρ may lead to a prolongation of
the operation time of the algorithm that ultimately does not improve at all
obtained results — as referred to Graph 2.

Taking into consideration both the analysis of the obtained results and the
operation time of the algorithm, it is possible to determine that for ρ = 0.001
and ρ = 0.01 and from the number of about 8 ants, the algorithm performs
very well and generates good quality solutions with relatively short time of
its operation.

4 Conclusion

The study described in the present article proves that the proposed Shortest-
PathTreeACO algorithm can be successfully used for constructing the short-
est path tree based on the method that has been derived from Ant Colony
Optimization metaheuristic. It results from the the simulation tests that, for
the graph under consideration, it is possible to establish the minimum value
of the number of ants that makes the most optimum solutions obtainable.
Any further increase would make no sense because it would only translate
into an increase in the operation time of the algorithm and a further demand
for calculation resources. The number of ants used cannot though be too
small because this leads to an increase in time required for the solution to be
found. A similar dependence is observable in the case of the parameter that
defines the speed of the evaporation of pheromones.

There is a clear need for a careful selection of appropriate parameters for
the operation of the algorithm to a specific application, in this particular case
to the type of the structure of the graph. This necessity can have its detri-
mental effect on the possibility of a wide application of the algorithm for any
graphs in practice. The initial analysis of the performance of the algorithm
in other types of graphs carried out by the authors clearly indicates that in
order to obtain acceptable results in more complex and complicated struc-
tures, for example in multi-stage graphs, it may be necessary to carry on with
additional studies aimed at developing methods for even better improvement
in obtainable results.



326 M. Głąbowski et al.

References

1. Wu, B.Y., Chao, K.-M.: Spanning Trees and Optimization Problems. Chapman
& Hall/CRC Press, USA (2004)

2. Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge
(2004)

3. Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: Shortest Path
Problem Solving Based on Ant Colony Optimization Metaheuristic. Interna-
tional Journal of Image Processing & Communications 17(1-2), 7–17 (2012)

4. Głąbowski, M., Musznicki, B., Nowak, P., Zwierzykowski, P.: ShortestPathACO
based strategy to find the Shortest Path between two nodes. In: Proceedings
of 2013 IEICE Information and Communication Technology Forum (ICTF),
Sarajevo, Bosnia and Herzegovina, pp. 29–31 (May 2013)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algo-
rithms. The MIT Press, Cambridge (2009)

6. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms,
and Applications. Prentice Hall, Englewood Cliffs (1993)

7. Bertsekas, D.P.: Network Optimization: Continuos and Discrete Models.
Athena Scientific, Belmont (1998)

8. Maxemchuk, N.F., Shur, D.H.: An Internet multicast system for the stock mar-
ket. ACM Transactions on Computer Systems 19(3), 384–412 (2001)

9. Pragyansmita, P., Raghavan, S.V.: Survey of Multicast Routing Algorithms and
Protocols. In: Proceedings of ICCC 2002, the Fifteenth International Confer-
ence on Computer Communication, Washington, DC, USA, pp. 902–926 (2002)

10. Piechowiak, M., Zwierzykowski, P.: The Evaluation of Unconstrained Multicast
Routing Algorithms in Ad-Hoc Networks. In: Kwiecień, A., Gaj, P., Stera, P.
(eds.) CN 2012. CCIS, vol. 291, pp. 344–351. Springer, Heidelberg (2012)

11. Musznicki, B., Tomczak, M., Zwierzykowski, P.: Dijkstra-based Localized Mul-
ticast Routing in Wireless Sensor Networks. In: Proceedings of CSNDSP 2012,
8th IEEE, IET International Symposium on Communication Systems, Net-
works and Digital Signal Processing, Poznań, Poland, pp. 18–20 (July 2012)


	An Algorithm for Finding Shortest Path Tree Using Ant Colony Optimization Metaheuristic
	1 Introduction
	1.1 ShortestPathACO Algorithm
	1.2 Shortest Path Tree Problem

	2 The Application of the ShortestPathACO Algorithm for Finding the Shortest Path Tree
	2.1 Pseudo-code and a Discussion on the Algorithm
	2.2 Illustration of the Operation of the Algorithm

	3 Study on the Operation of the Algorithm
	3.1 Percentage of Correct Solutions
	3.2 Duration of Operation

	4 Conclusion
	References




