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1            Introduction 

 Infertility is one of the major health problems that affect human sociocultural life. It 
affects 8–15% of couples around the world, and about 50% of infertility cases are 
attributed to male factors (WHO  1991 ; Cui  2010 ; Hamada et al.  2011 ). Among the 
factors that cause male infertility are exposures to environmental toxicants 
(Akingbemi et al.  2004 ). Bisphenol A ([2,2-bis(4-hydroxyphenyl)propane]: BPA) is 
among the most prominent of toxic environmental contaminants worldwide. The 
original synthesis of BPA is attributed to two scientists: Dianin, who is thought to 
have been the fi rst to design the molecule in 1891, and Zincke, who reportedly syn-
thesized the molecule in 1905 (Huang et al.  2011 ). Since then, BPA has been widely 
produced and used as a common ingredient in the manufacture of plastics. Plastics 
are broadly integrated into today’s lifestyle and make a major contribution to almost 
all product areas (Olea et al.  1996 ; Völkel et al.  2011 ; Hammer et al.  2012 ). The 
wide and heavy use of plastics has contributed to BPA having been spread through-
out the environment. 

 Humans are mainly exposed to BPA through food ingestion (Yamada et al. 
 2002 ), and increasing evidence supports its association with impairment of male 
reproductive function, as well as other health problems and diseases; such diseases 
include diabetes, obesity, cardiovascular diseases, and cancer (Li et al.  2010a ,  2011 ; 
Salian et al.  2011 ; Batista et al.  2012 ; Shankar and Teppala  2012 ; Lee et al.  2012 ; 
Wang et al.  2012a ). BPA acts primarily by mimicking the effect of estrogen hor-
mones, modifying DNA methylation, and modulating enzyme activities in utero and 
in vivo, resulting in metabolic diseases, spermatogenesis defects, and/or infertility 
in males. The deleterious effect of BPA on male reproductive function may occur 
during embryonic, pubertal, and/or adult life. The fact that BPA is a causal agent in 
such effects is supported by its repeated detection in human biological samples (Sun 
et al.  2004 ; He et al.  2009a ; Li et al.  2010a ). 

 In this review, we address the topic of BPA effects on male reproductive function 
and emphasize its effects on testicular steroidogenesis, spermatogenesis, and sperm 
function.  

2     Sources and Routes of Bisphenol A Exposure 

 BPA is a man-made industrial chemical that is used as a component of plastics. The 
USA, Japan, and Europe are the areas in which the majority of BPA is produced. 
BPA’s annual production capacity now exceeds six billion pounds, and this high pro-
duction level is sustained and encouraged by the widespread use of plastics to manu-
facture food containers, water bottles, medical devices, and other objects that must be 
made of materials that are both fl exible and durable. More than 100 t of the annual 
BPA production volume is released into the atmosphere (Vandenberg et al.  2009 ; Cao 
et al.  2011 ). This volume of release has made BPA environmentally ubiquitous; BPA 
residues are found in air, drinking water, lakes, the seas, sewage sludge, soil, house 
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dust, foodstuffs, paper currency, among other objects and media (Ignatius et al.  2010 ; 
Liao and Kannan  2011 ; Geens et al.  2012 ; Hammer et al.  2012 ; Liao et al.  2012 ; 
Molina-García et al.  2012 ; Rudel et al.  2011 ; Wang et al.  2012b ; Rocha et al.  2013 ). 

 BPA enters the human body mainly via consuming contaminated food and drink-
ing water, although exposure via environmental (from polluted air and water), 
domestic (household products, cosmetics), medical (from contaminated equipment 
and devices), and occupational sources (inhalation, dermal contact, and ingestion 
during manufacturing processes or industrial use) also occurs (Toppari et al.  1996 ; 
Demierre et al.  2012 ; Cho et al.  2012 ). Intake by the oral route may be enhanced 
when certain food preparation practices are used, such as wrapping food in plastic 
bags prior to thermal treatment or cooking—processes that enhance leakage of BPA 
from the bag into the food. BPA is known to be used in the manufacture of micro-
wave oven ware, from which it may be released to food (EFSA  2006 ; Geens et al. 
 2012 ). Oral exposure to BPA may also be enhanced from the presence in the mouth 
of dental composites (Olea et al.  1996 ; Doerge et al.  2012 ), or from using epoxy 
resin-based food cans, water bottles, or plastic baby bottles (Cao et al.  2011 ; Kang 
et al.  2011 ; Völkel et al.  2011 ; Cho et al.  2012 ). 

 Absorption of BPA may also be indirect, as occurs when the fetus absorbs the 
chemical from maternal blood plasma (after maternal exposure). Indeed, BPA is 
transported across the human placenta (Mørck et al.  2010 ), and BPA’s effect on the 
fetus may be exacerbated, because the production of toxic effects is inversely cor-
related with age (Kline and Ruhter  2012 ). Transdermal BPA exposure and inhala-
tion are of greater concern because such exposure routes avoid the fi rst-pass 
metabolic effect that occurs with oral intake (Welshons et al.  2006 ; Mørck et al. 
 2010 ; Demierre et al.  2012 ). 

 Occupational exposure to BPA occurs in those countries where the compound is 
manufactured. Although most intake occurs from ingestion, people who are engaged 
in the manufacturing or use of BPA (or related chemicals) can easily absorb it 
through the skin, or take it up via inhalation (He et al.  2009b ; Kaddar et al.  2009 ; 
Geens et al.  2012 ). 

 Absorption or uptake of BPA into the human body is ascertained by analyzing 
for the presence of the chemical or its metabolites in biological fl uids such as blood, 
breast milk, urine, etc. (Zhang et al.  2011 ; Geens et al.  2012 ). For instance, a study 
conducted in a reference human population of the United States showed the pres-
ence of BPA in ≥95% of urinary samples collected from urban and rural residents 
(Calafat et al.  2005 ). Similarly, BPA was detected in spot samples of urine collected 
from both urban and rural girls in Egypt (Nahar et al.  2012 ). Urinary levels of BPA, 
detected in children and adolescents, were reported to be higher than in adults 
(Calafat et al.  2009 ; Zhang et al.  2011 ). 

 High levels of BPA have been measured in human placental tissue, in maternal 
urine, and in maternal and fetal plasma. Maternal BPA levels were positively cor-
related with BPA concentrations detected in the fetal umbilical cord (Schönfelder 
et al.  2002 ; Lee et al.  2008 ; Callan et al.  2012 ; Ünüvar and Büyükgebiz  2012 ). In 
utero exposure appears to be more harmful in humans, since BPA accumulates in 
amniotic fl uid of pregnant women (Schönfelder et al.  2002 ; Sun et al.  2004 ). 
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BPA concentrations in maternal plasma were found to be fi vefold lower than levels 
measured in amniotic fl uid (Ikezuki et al.  2002 ), indicating that the fetus is more 
highly exposed than is the mother. These observations suggest that BPA exposure is 
higher during fetal life, and diminishes as age increases. 

 Urinary BPA levels detected in workers were also consistent with degree of 
occupational exposure to the chemical. He et al. ( 2009b ) reported high levels of 
BPA in urine and blood of people working in epoxy-resin and BPA manufacturing 
factories in China. 

 Several researchers have noted that BPA produces estrogenic and antiandronenic 
activity, thus emphasizing the importance of its potential harmful effects on human 
health upon entry into the organism (Olea et al.  1996 ; Lee et al.  2003 ; Wetherill 
et al.  2002 ,  2007 ; Alonso-Magdalena et al.  2012 ). In males, such endocrine disrup-
tion may also affect the regulation of the hypothalamic–pituitary–gonadal axis, 
resulting in reproductive disorders and infertility.  

3     Effects of In Utero Exposure to Bisphenol A 
on Male Reproductive Function 

 The harmful effects of BPA on male reproductive function, following in utero expo-
sure, have been widely studied in laboratory animals such as rodents. vom Saal et al. 
( 1998 ) studied prenatal BPA exposure on male mice and found increased size for pre-
putial glands and reduced epididymides size, as well as decreased effi ciency of sperm 
production (daily sperm production). A decrease in fertility, daily sperm production, 
sperm count and motility in BPA-exposed male offspring during adulthood was also 
reported (Salian et al.  2009a ,  2011 ). Oral administration of 2–20 ng BPA/g body 
weight (bwt) to female mice on gestational day (GD) 11–17 resulted in a signifi cant 
decrease of relative testis weight of male pups at 8 and 12 weeks of age (Kawai et al. 
 2003 ). When female mice were concomitantly administered BPA and di(2-ethylhexyl)
phthalate (another plastic component), the expression level of Anti-Müllerian hor-
mone (AMH) and Steroidogenic Acute Regulatory Protein (StAR) was reduced in the 
testes of the exposed male pups, and the pups’ testicular size was reduced. Importantly, 
the adverse effects were persistent in the sexually mature pups at postnatal day (PND) 
42, and were consistent with signifi cant reductions of epididymal sperm counts (Xi 
et al.  2012 ). Analysis of RNA samples from the hypothalamus, testes, and epididymi-
des of rat fetuses, exposed to BPA in utero from GD 11–20, or GD 6–21, revealed 
modifi cation of the gene expression profi le, including hypothalamic estrogen receptors 
(ERs), testicular luteinizing hormone receptor (LHR), cholesterol side chain cleavage 
enzyme (Cyp11a1), and StAR (Naciff et al.  2005 ; Cao et al.  2013 ). BPA exposure 
affects hypothalamic development in the embryo. This was evidenced by enhanced 
dendritic and synaptic development in cultured hypothalamic cells from fetal rats, as 
manifested by increases in the area of dot-like staining of synapsin I and MAP2-
positive area (Iwakura et al.  2010 ). Treatment of Ishikawa cell cultures with BPA also 
modulated the expression of the INSIG1 and FOS genes, which are implicated in regu-
lating transcription and steroid metabolic processes, respectively (Naciff et al.  2010 ). 
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 In pregnant female rats exposed to BPA from GD 1 throughout parturition, serum 
testosterone levels were decreased in male fetuses and pups (Tanaka et al.  2006 ). 
Exposures of the dams from GD 12 to PND 21 also resulted in decreased testosterone 
levels in the testicular interstitial fl uid of male pups in adulthood (Akingbemi et al. 
 2004 ). The testosterone inhibition is probably induced by the BPA-suppressive effect 
on testicular Leydig cell steroidogenic proteins. In fact, BPA inhibits expression of 
the StAR protein, and the 17-β-hydroxysteroid dehydrogenase enzyme (17β-HSD) 
(  Horstman     et al.  2012 ; Nanjappa et al.  2012 ). Protein expression of the LHR is also 
compromised following BPA exposure, and may lead to decreasing androgen secre-
tion by testicular Leydig cells (Nanjappa et al.  2012 ). The testosterone concentration 
increased in 9-week-old male pups exposed to BPA in utero and through lactation 
(Watanabe et al.  2003 ), and this could be attributed to in utero BPA-induced prolifera-
tive activity (mitogenic effect) on testosterone-producing Leydig cells (Nanjappa 
et al.  2012 ). In addition to modulating the Leydig cells, BPA also induced down-
regulation of several genes associated with Sertoli cell function (Msi1h, Ncoa1, Nid1, 
Hspb2, and Gata6) in 6-week-old male mice after prenatal exposure (Tainaka et al. 
 2012 ), thereby disrupting the blood–testis barrier (BTB) and impairing spermatogen-
esis (Cheng et al.  2011 ; Su et al.  2011 ). Perturbation of BTB (reduction in the expres-
sion of Connexin 43 and increases in the expression of N-cadherin and Zona 
Occludin-1) and spermatogenesis were also observed in 45/90-day-old rats neona-
tally exposed to BPA (≥400 μg/kg bwt/day, during PND 1–5) (Salian et al.  2009b ). 

 The biological effect of thyroid hormones that act on male reproductive function 
by modulating germ cell development (Krassas and Pontikides  2004 ) can also be 
compromised by BPA exposure during fetal life. BPA affects the expression of thy-
roid specifi c genes that have been implicated in thyroid development, as well as 
control of gene expression in rat thyroid cells and zebra fi sh embryos in vitro 
(Gentilcore et al.  2013 ). BPA antagonizes triiodothyronine (T3) action at the tran-
scriptional level in human TSA201 cells, through displacement of T3 from the hor-
mone receptor (TSH) and recruitment of a transcriptional repressor (a T3- negatively 
regulated TSHalpha promoter), resulting in gene suppression (Moriyama et al. 
 2002 ). A BPA antithyroid effect in rats was also observed in vivo. In fact, feeding 
pregnant Sprague-Dawley rats a BPA-containing diet during pregnancy and lacta-
tion caused an increase in serum total thyroxin in male pups on PND 15, with up- 
regulation of the expression of the thyroid hormone-responsive gene RC3/
neurogranin in the dentate gyrus. This suggests a thyroid-hormone antagonist effect 
of BPA on the beta-thyroid receptor, which mediates the negative feedback effect of 
the hormone on the pituitary gland (Zoeller et al.  2005 ). In utero exposure of CD-1 
pregnant mice to BPA (50 μg BPA/kg/day, during GD 16–18) also resulted in 
increasing the anogenital distance (AGD: distance from the center of the anus to the 
anterior base of the penis, an androgen-dependent variable, used as a sensitive 
marker of androgenic and antiandrogenic effects of in utero chemical exposure) in 
male pups (Gupta  2000 ; Foster and McIntyre  2002 ). This contrasted with studies of 
Talsness et al. ( 2000 ), who reported shortening of the AGD, following prenatal BPA 
exposure. Notwithstanding, these two studies indicated that BPA has the ability to 
modulate AGD during prenatal life. 
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 These in utero effects are likely to also occur in BPA exposed human males. Such 
evidence has been derived from a recent epidemiological study conducted by Braun 
et al. ( 2012 ), who detected BPA in urine samples of pregnant women, suggesting 
gestational exposure. Moreover, Miao et al. ( 2011a   ) demonstrated an association 
between parental occupational BPA exposure during pregnancy and shortened AGD 
in male offspring. The latter association was stronger for maternal exposure, and the 
authors found a dose–response relationship between increased BPA levels in preg-
nancy and greater magnitude of shortened AGD. In Table  1 , we summarize data 
from selected studies that addressed BPA’s male reproductive effects.

   Because of its accumulation in amniotic fl uid of pregnant women, BPA exposure 
appears to be more harmful in utero (Schönfelder et al.  2002 ; Sun et al.  2004 ), a 
critical hormonally dependent step in development of the individual. BPA acts as an 
endocrine disruptor (estrogenic, antiandrogenic, or antithyroid). It has been shown 
to reduce total blood T4 levels in pregnant women, with associated decreased TSH 
in their respective male neonates (Olea et al.  1996 ; Moriyama et al.  2002 ; Lee et al. 
 2003 ; Zoeller et al.  2005 ; Wetherill et al.  2007 ; Chevrier et al.  2013 ). BPA binds to 
ERs, inhibits androgen-induced androgen receptor (AR) transcriptional activity and 
androgen (dihydroxytestosterone) binding to AR (Lee et al.  2003 ; Alonso- 
Magdalena et al.  2012 ). However, recent fi ndings support an additional BPA action 
mechanism, through a non-genomic pathway, initiated at membrane receptors, 
including classical ERs and/or G protein-coupled receptor 30 (reviewed by Iwakura 
et al.  2010 ). The estrogenicity of BPA can also prevent AMH action on the Müllerian 
ducts in the male (Pryor et al.  2000 ), leading to the feminization of male fetus 
(Hutson et al.  1994 ). Such feminization may be triggered by up-regulation of genes 
required for ovary development ( Foxl2  and  Wnt4 ), with concomitant repression of 
genes responsible for testis development ( Sox9  and  Fgf9 ) in the embryo, as reported 
elsewhere (Aoki and Takada  2012 ). By disrupting hormone levels or receptor activ-
ity, the detrimental effect of BPA may be to alter male reproductive-organ develop-
ment during fetal life (Miao et al.  2011a ,  b ). Moreover, the BPA effect may be more 
pronounced and irreversible during this development stage, unlike in adults, who 
have a matured and functional sex-specifi c physiology, in which the deleterious 
effect is potentially reversible once exposure ends (Kline and Ruhter  2012 ).  

4     Effects of Bisphenol A on Spermatogenesis and Sperm 
Function Following Postnatal Exposure 

4.1     Effects on the Hypothalamic–Pituitary–Testicular Axis 

 The spermatogenesis process in mammals is coordinated by the hypothalamic– 
pituitary–testicular axis and the thyroid gland (Zoeller et al.  2005 ; Moriyama et al. 
 2002 ). Dysfunction of the axis, triggered by endocrine disruptors such as BPA, may 
result in arrest or alteration of spermatogenesis (Table  1 ). 
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    Table 1    Investigations that have addressed the effects of BPA on male reproductive function   

 Experimental model 
 BPA dose or 
concentration  Major fi ndings  Reference(s) 

 In vitro (rat and 
human testis 
microsomes) 

 10 −8 –10 −4  M, 3 h 
incubation 

 Decrease of 3β-HSD, 
and 17β-HSD 
activities 

 Ye et al. ( 2011 ) 

 In vitro exposure 
(Leydig cells 
from adult rats) 

 0.01 nM, 18 h 
incubation 

 Inhibition of CYP19 
expression, and 
estradiol release 

 Akingbemi et al. 
( 2004 ) 

 In vitro exposure 
(human 
spermatozoa) 

 1 μM, 2 h incubation  Absence of effect on 
calcium fl uxes, and 
acrosome reaction 

 Luconi et al. ( 2001 ) 

 Ex vivo (Leydig cells 
from BPA-treated 
male rats) 

 2.4 μg/kg/day, PND 
21–35 

 Inhibition of 
testosterone release 

 Akingbemi et al. 
( 2004 ) 

 In utero exposure 
(Male rats) 

 2 and 20 μg/kg dam/
day, GD 11–17 

 Enlargement of the 
prostate 

 Nagel et al. ( 1997 ) 

 In utero exposure 
(Male mice) 

 2–20 ng/g dam, GD 
11–17 

 Decrease of testis 
weight 

 Kawai et al. ( 2003 ) 

 In utero exposure 
(CD-1 mice) 

 50 μg/kg dam/day, 
GD16–18 

 Enlargement of the 
prostate, increase of 
AGD, and reduction 
of epididymal weight 

 Gupta ( 2000 ) 

 In utero (male rat 
fetuses) 

 0.002–400 mg/kg 
dam/day, 
GD11–20 

 Modulation of LHR, 
Cyp11a1, and StAR 

 Naciff et al. ( 2005 ) 

 In utero (male rat 
fetuses), and 
postnatal 
exposures 

 2.4 μg/kg dam/day, 
GD12–PND35; 
20 and 200 μg/kg 
dam/day, 
GD 1–PND 0 

 Decrease in serum 
testosterone 

 Akingbemi et al. 
( 2004 ); Tanaka 
et al. ( 2006 ) 

 In utero and 
postnatal 
exposures 

 1.2–2.4 μg/kg dam/
day, G6–PND21 

 Spermatogenesis 
inhibition, reduction 
of fertility of male 
offspring 

 Salian et al. ( 2009a ) 

 In vivo (male mice 
and rats) and in 
utero exposures 

 6.25–125 ng/mouse; 
12.5–500 ng/rat; 
1.2–2.4 μg/kg/day 
dam from GD 6–21 

 Disruption of BTB  Toyama and Yuasa 
( 2004 ); Salian 
et al. ( 2009b ) 

 In vivo (adult male 
rats) 

 1 mg/rat, 14 days  Decrease in serum 
testosterone, and 
testicular 
antioxidant enzymes 

 Tohei et al. ( 2001 ); 
El-Beshbishy 
et al. ( 2012 ); 
D’Cruz et al. 
( 2012 a) 

 10 mg/kg/day 
(14 days) 

 0.005–500 μg/kg/day, 
45 days 

 In vivo (adult 
male rats) 

 1 mg/rat/day, 14 days  Increase in plasma LH  Tohei et al. ( 2001 ) 

 In vivo (3-week-old 
male rats) 

 200 mg/kg/day, 
5 days/week, 
6 weeks 

 Decrease in serum LH  Nakamura et al. 
( 2010 ) 

 2.1 μg/kg/day, 70 
days (PND 21–90) 

 Decrease in seminal 
vesicles size 

 Akingbemi et al. 
( 2004 ) 

(continued)
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 Experimental model 
 BPA dose or 
concentration  Major fi ndings  Reference(s) 

 In vivo (young mice)  50 μg/mL (in 
drinking water), 
8 weeks 

 Decrease in serum 
testosterone 

 Takao et al. ( 1999 ) 

 In vivo (male mice)  10–40 mg/kg/day, 
2 weeks 

 Induction of DNA 
standard breaks in 
germ cells, decrease 
of sperm count and 
motility 

 Dobrzyńska and 
Radzikowska 
( 2013 ) 

 In vivo (adult male 
rats) 

 20 μg–2 mg/kg/day, 
6 days 

 Decrease in sperm 
production 

 Sakaue et al. ( 2001 ) 

 In vivo (male rats)  0.2–20 μg BPA/kg/
day, 45–60 days 

 Increase of ventral 
prostate weight, 
decrease of 
epididymal and 
testicular weights 

 Chitra et al. 
( 2003a ,  b ) 

 In vivo (male 
chicks) 

 2 μg–200 mg/kg/day, 
3–23 weeks 

 Decreased testis size  Furuya et al. ( 2006 ) 

 In vivo (brown trout, 
prespawning and 
spawning 
exposures, in 
aquarium) 

 1.75–2.40 μg/L, late 
prespawning and 
spawning periods 

 Decrease of semen 
quality 

 Lahnsteiner et al. 
( 2005 ) 

 In vivo (male rats, 
oral; and male 
goldfi sh, in 
aquarium) 

 200 mg/kg, 10 days; 
0.2 and 20 μg/L, 
20-90 days 

 Alteration of sperm 
motility and 
velocity, increase of 
sperm DNA damage 

 De Flora et al. 
( 2011 ); Hatef 
et al. ( 2012a ,  b ) 

 In vivo (adult male 
guppies, in 
aquarium) 

 274–549 μg/L, 
21 days 

 Decline in total sperm 
counts 

 Haubruge et al. 
( 2000 ) 

 Male workers 
(humans) 
exposed to high 
levels of BPA at 
work 

 ND (exposure 
ascertained by 
higher BPA levels 
in blood, urine, or 
personal air) 

 Erectile and ejaculatory 
diffi culties, 
reduction of sexual 
desire and sperm 
morphology and 
density 

 Xiao et al. ( 2009 ); 
Li et al. ( 2010b ) 

 Men occupationally 
exposed to BPA 
diglycidyl ether 

 ND (exposure 
ascertained by 
higher urinary 
BPA levels) 

 Decrease of plasma 
FSH 

 Hanaoka et al. 
( 2002 ) 

  Available data relating to the deleterious effect of BPA on male reproductive function were 
 gathered and tabularly summarized from studies on rodents (rats and mice). Fish and chicks have 
also been included as experimental (animal) models; results gathered for all examined species sup-
port the view that BPA causes an endocrine-disrupting effect, i.e., decreased testosterone levels, 
altered sperm quality, etc. Moreover, altered sperm quality effects were confi rmed in men who 
were occupationally exposed to BPA 
  3β-HSD  3-β-hydroxysteroid dehydrogenase,  17β-HSD  17-β-hydroxysteroid dehydrogenase 
enzyme,  AGD  anogenital distance,  BTB  blood–testis barrier,  CYP19  aromatase,  Cyp11a  
Cytochrome P450, subfamily 11A,  GD  gestational day,  FSH  follicular-stimulating hormone,  LHR  
luteinizing hormone receptor,  ND  not determined,  PND  postnatal day,  StAR  steroidogenic acute 
regulatory protein  

Table 1 (continued)
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 One adverse effect attributable to BPA is atrophy of the testes, as reported to 
have occurred in adult male Swiss mice treated with BPA glycerolate dimethacry-
late (BISGMA, 100 μg/kg/day) for 60 days (Al-Hiyasat and Darmani  2006 ). White 
Leghorn male chicks treated with BPA (2 μg-200 m/kg/day) from 2 to 25 weeks of 
age also showed decreased testes size, and growth inhibition of androgen-dependent 
organs such as comb and wattle. The chicks receiving a higher BPA dose (≥20 μg/
kg) showed inhibition of seminiferous tubuli development and spermatogenesis 
(Furuya et al.  2006 ), conditions more likely attributed to inhibition of testosterone 
synthesis. BPA’s modulatory effect on testosterone synthesis has been reported in 
several studies (Table  2 ).

   Oral administration of BPA to young mice for 4–8 weeks resulted in a dramatic 
decrease of plasma free-testosterone levels (Takao et al.  1999 ). BPA exposure also 
decreased the serum testosterone level in adult male rats, and suppressed human 
chorionic gonadotropin (hCG)-induced testosterone release by the testis (Tohei 
et al.  2001 ; El-Beshbishy et al.  2012 ; D’Cruz et al.  2012 a). This antiandrogenic 
activity results from the BPA inhibitory effect on testicular Leydig cell StAR  protein 
and steroidogenic enzymes, such as 3-β-hydroxysteroid dehydrogenase (3β- HSD), 
and 17β-HSD (D’Cruz et al.  2012 a; Hatef et al.  2012a ). 

 Decreased activity of 3β-HSD and 17β-HSD, following BPA exposure, was also 
observed in both rat and human testis microsomes, together with inhibition of 
17α-hydroxylase/17,20-lyase (CYP17A1) (Ye et al.  2011 ). Similarly, Akingbemi 
et al. ( 2004 ) reported that BPA inhibited Leydig cell CYP17A1. The inhibitory 
effect of BPA on CYP17 is likely a competitive-type inhibition, as demonstrated in 
 Escherichia coli  that expressed steroidogenic CYP17 (Niwa et al.  2001 ). Aromatase 
(CYP19) catalyzes conversion of androgens (testosterone) to estrogens (Carreau and 
Hess  2010 ; Carreau et al.  2010 ), and BPA exposure increased its expression in testes 
of male chicks, or in rat testicular Leydig cells (Furuya et al.  2006 ; Kim et al.  2010 ). 
This induction of testicular aromatase by BPA may thus contribute to decreased 
serum levels of androgens. However, Akingbemi et al. ( 2004 ) reported that postnatal 
BPA exposure of rats resulted in inhibited Leydig cell CYP19 expression and 
decreased serum 17β-estradiol levels. The latter authors exposed Long- Evans rats to 
BPA during perinatal period (PND 21–35) and noticed that serum estradiol was 
inhibited in the animals treated with the lower doses of BPA (0.2 μg–100 mg/kg bwt/
day). The inhibitory effect was not observed at the highest dose (100 mg BPA/
kg bwt/day), suggesting a dose-dependent effect of BPA on aromatase. 

 The fact that BPA causes an antisteroidogenic effect is further sustained by its 
ability to inhibit cAMP formation by preventing adenylate cyclase coupling to the 
luteinizing hormone (LH) receptor in vitro in mLTC-1 Leydig tumor cells (Nikula 
et al.  1999 ). Secretion of LH was also compromised in male animals exposed to 
BPA (Nakamura et al.  2010 ). The suppressed serum LH was associated with 
decreased LHbeta, decreased hypothalamic KiSS1 mRNA levels, and increased 
pituitary and testicular estrogen receptor (ER) mRNA levels (Akingbemi et al. 
 2004 ; Furuya et al.  2006 ; Navarro et al.  2009 ; Bai et al.  2011 ; Hatef et al.  2012a ). 
An increased excretion (vs. matched controls) of BPA and decreased plasma 

Adverse Effects of Bisphenol A on Male Reproductive Function



66

   Ta
bl

e 
2  

  Se
le

ct
ed

 d
at

a 
re

la
tin

g 
to

 B
PA

 e
ff

ec
ts

 o
n 

an
dr

og
en

/e
st

ro
ge

n 
sy

nt
he

si
s 

an
d 

ac
tio

n   

 E
xp

er
im

en
ta

l m
od

el
 

 D
os

es
 o

f 
B

PA
 

 E
ff

ec
t (

es
tr

og
en

ic
/a

nt
ia

nd
ro

ge
ni

c)
 

 M
ec

ha
ni

sm
 o

f 
ac

tio
n/

en
dp

oi
nt

 
 R

ef
er

en
ce

(s
) 

 Pe
ri

na
ta

l e
xp

os
ur

e 
(m

al
e 

ra
t f

et
us

es
 

an
d 

pu
ps

) 

 2.
4 
μg

/k
g 

da
m

/d
ay

, 
G

D
12

–P
N

D
35

 
 A

nt
ia

nd
ro

ge
ni

c 
 D

ec
re

as
e 

of
 te

st
os

te
ro

ne
 le

ve
ls

 
 A

ki
ng

be
m

i e
t a

l. 
( 2

00
4 )

; T
an

ak
a 

et
 a

l. 
( 2

00
6 )

 
 Pe

ri
na

ta
l e

xp
os

ur
e,

 
m

al
e 

ra
t f

et
us

es
 a

nd
 

pu
ps

 

 40
0 

m
g/

kg
 d

am
/d

ay
 

G
D

6–
PN

D
20

 
 A

nd
ro

ge
ni

c 
 In

cr
ea

se
 o

f 
te

st
os

te
ro

ne
 le

ve
ls

 
 W

at
an

ab
e 

et
 a

l. 
( 2

00
3 )

; 
N

an
ja

pp
a 

et
 a

l. 
( 2

01
2 )

 
 In

du
ct

io
n 

of
 A

R
 in

 L
ey

di
g 

ce
lls

 

 In
 u

te
ro

, a
nd

 e
x-

vi
vo

 
(L

ey
di

g 
ce

ll 
cu

ltu
re

s,
 f

ro
m

 
pe

ri
na

ta
lly

 
B

PA
-e

xp
os

ed
 r

at
s)

 
ex

po
su

re
s 

 2.
5 

an
d 

25
 μ

g/
kg

 d
am

/d
ay

, 
G

D
12

–P
N

D
21

; 1
0 
μg

/
kg

 d
am

/d
ay

, G
D

11
–2

0 

 A
nt

ia
nd

ro
ge

ni
c/

es
tr

og
en

ic
 

 In
hi

bi
tio

n 
of

 te
st

os
te

ro
ne

 
re

le
as

e,
 L

H
 r

ec
ep

to
r, 

St
A

R
, 

an
d 

17
β-

H
SD

 e
xp

re
ss

io
n 

in
 

L
ey

di
g 

ce
lls

 

 H
or

st
m

an
 e

t a
l. 

( 2
01

2 )
; 

N
an

ja
pp

a 
et

 a
l. 

( 2
01

2 )
 

 In
du

ct
io

n 
of

 E
R

s 
(E

R
1)

 in
 

L
ey

di
g 

ce
lls

 
 In

 u
te

ro
 e

xp
os

ur
e 

(C
D

-1
 m

al
e 

m
ic

e 
fe

tu
se

s)
 

 50
 μ

g 
B

PA
/k

g 
da

m
/d

, 
G

D
16

–1
8 

 A
nt

ia
nd

ro
ge

ni
c 

 In
cr

ea
se

 o
f A

G
D

 a
nd

 p
ro

st
at

e,
 

re
du

ct
io

n 
of

 e
pi

di
dy

m
al

 
w

ei
gh

t 

 G
up

ta
 (

 20
00

 ) 

 Pe
ri

na
ta

l e
xp

os
ur

e 
(m

al
e 

ra
t p

up
s)

 
 1.

2–
2.

4 
μg

/k
g 

da
m

 f
ro

m
 

G
D

6–
PN

D
21

 
 A

nt
ia

nd
ro

ge
ni

c 
 D

ec
re

as
e 

in
 te

st
ic

ul
ar

 s
te

ro
id

 
re

ce
pt

or
s 

 Sa
lia

n 
et

 a
l. 

( 2
00

9a
 ) 

 In
 v

iv
o 

ex
po

su
re

 
(m

al
e 

ch
ic

ks
) 

 2 
μg

–2
00

 m
g/

kg
/d

ay
, f

ro
m

 
2 

to
 2

5 
w

ee
ks

 o
f 

ag
e 

 A
nt

ia
nd

ro
ge

ni
c 

 D
ec

re
as

e 
of

 te
st

is
 s

iz
e,

 
in

hi
bi

tio
n 

of
 

sp
er

m
at

og
en

es
is

 

 Fu
ru

ya
 e

t a
l. 

( 2
00

6 )
 

 In
 v

iv
o 

ex
po

su
re

 
(m

al
e 

m
ic

e)
 

 50
 μ

g/
m

L
 (

in
 d

ri
nk

in
g 

w
at

er
),

 8
 w

ee
ks

 
 A

nt
ia

nd
ro

ge
ni

c 
 D

ec
re

as
e 

of
 p

la
sm

a 
te

st
os

te
ro

ne
 

 Ta
ka

o 
et

 a
l. 

( 1
99

9 )
 

 In
 v

iv
o 

ex
po

su
re

 
(a

du
lt 

m
al

e 
ra

ts
) 

 1 
m

g/
ra

t (
≈3

 m
g/

kg
/d

ay
),

 
14

 d
ay

s;
 1

0 
m

g/
kg

/d
ay

, 
14

 d
ay

s 

 A
nt

ia
nd

ro
ge

ni
c 

 D
ec

re
as

e 
of

 s
er

um
 te

st
os

te
ro

ne
 

 To
he

i e
t a

l. 
( 2

00
1 )

; 
E

l-
B

es
hb

is
hy

 e
t a

l. 
( 2

01
2 )

 
 In

 v
iv

o 
ex

po
su

re
 

(a
du

lt 
m

al
e 

ra
ts

) 
 0.

00
5–

50
0 
μg

/k
g/

da
y,

 
45

 d
ay

s 
 A

nt
ia

nd
ro

ge
ni

c 
 D

ec
re

as
e 

in
 te

st
ic

ul
ar

 a
ct

iv
iti

es
 

of
 3
β-

H
SD

, 1
7β

-H
SD

, a
nd

 
se

ru
m

 te
st

os
te

ro
ne

 

 D
’C

ru
z 

et
 a

l. 
( 2

01
2 a

) 

F.P.T. Manfo et al.



67
 E

xp
er

im
en

ta
l m

od
el

 
 D

os
es

 o
f 

B
PA

 
 E

ff
ec

t (
es

tr
og

en
ic

/a
nt

ia
nd

ro
ge

ni
c)

 
 M

ec
ha

ni
sm

 o
f 

ac
tio

n/
en

dp
oi

nt
 

 R
ef

er
en

ce
(s

) 

 In
 v

iv
o 

ex
po

su
re

 
(m

al
e 

go
ld

fi s
h)

 
 0.

2 
an

d 
20

 μ
g/

L
, 

30
–9

0 
da

ys
 

 A
nt

ia
nd

ro
ge

ni
c 

an
d 

es
tr

og
en

ic
 

 R
ed

uc
tio

n 
of

 S
tA

R
, i

nc
re

as
e 

of
 

te
st

ic
ul

ar
 E

R
β2

 m
R

N
A

 
tr

an
sc

ri
pt

 a
t 0

.2
 μ

g 
B

PA
/L

; 
In

cr
ea

se
 o

f A
R

, E
R
β1

 a
nd

 
C

Y
P1

9 
m

R
N

A
 tr

an
sc

ri
pt

 in
 

te
st

is
 a

t 2
0 
μg

 B
PA

/L
 

 H
at

ef
 e

t a
l. 

( 2
01

2a
 ) 

 In
 v

itr
o 

(r
at

 L
ey

di
g 

ce
lls

, r
at

 a
nd

 h
um

an
 

te
st

is
 m

ic
ro

so
m

es
) 

 0.
01

 n
M

; 1
0 −

8  –
10

 −
4   M

 
 A

nt
ia

nd
ro

ge
ni

c 
 D

ec
re

as
ed

 a
ct

iv
ity

 o
f 

3β
-H

SD
, 

an
d 

17
β-

H
SD

 
 A

ki
ng

be
m

i e
t a

l. 
( 2

00
4 )

; Y
e 

et
 a

l. 
( 2

01
1 )

 
 In

 v
iv

o 
(m

al
e 

ch
ic

k)
, 

an
d 

in
 v

itr
o 

(r
at

 
L

ey
di

g 
ce

lls
) 

 2 
μg

/k
g–

20
0 

m
g/

kg
; 

0.
1–

10
 n

M
 

 E
st

ro
ge

ni
c 

 In
cr

ea
se

s 
of

 C
Y

P1
9 

ac
tiv

ity
 

 Fu
ru

ya
 e

t a
l. 

( 2
00

6 )
; 

K
im

 e
t a

l. 
( 2

01
0 )

 

 In
 v

iv
o 

(p
ub

er
ta

l a
nd

 
ad

ul
t r

at
s)

 
 ≥0

.2
 μ

g 
B

PA
/k

g/
da

y,
 

45
–6

0 
da

ys
 

 A
nt

ia
nd

ro
ge

ni
c 

 D
ec

re
as

ed
 e

pi
di

dy
m

al
 

an
d 

te
st

ic
ul

ar
 w

ei
gh

ts
 

 C
hi

tr
a 

et
 a

l.
 (

 20
03

a ,
  b

 ) 

 In
cr

ea
se

d 
ve

nt
ra

l p
ro

st
at

e 
w

ei
gh

t 

   17
β-

H
SD

  1
7-
β-

hy
dr

ox
ys

te
ro

id
 d

eh
yd

ro
ge

na
se

,  3
β-

H
SD

  3
-β

-h
yd

ro
xy

st
er

oi
d 

de
hy

dr
og

en
as

e,
  A

G
D

  a
no

ge
ni

ta
l 

di
st

an
ce

,  A
R

  a
nd

ro
ge

n 
re

ce
pt

or
,  C

Y
P

19
  a

ro
m

a-
ta

se
,  E

R
s  

es
tr

og
en

 r
ec

ep
to

rs
 (

e.
g.

, E
R
β2

, E
R
β1

),
  G

D
  g

es
ta

tio
na

l d
ay

,  L
H

R
  L

H
 r

ec
ep

to
r, 

 P
N

D
  p

os
tn

at
al

 d
ay

,  S
tA

R
  s

te
ro

id
og

en
ic

 a
cu

te
 r

eg
ul

at
or

y 
pr

ot
ei

n  

Adverse Effects of Bisphenol A on Male Reproductive Function



68

follicle- stimulating hormone (FSH) was reported in men occupationally exposed to 
epoxy-resin hardening agents containing BPA diglycidyl ether (Hanaoka et al. 
 2002 ), suggesting inhibition of FSH release by the chemical (Salian et al.  2011 ). In 
contrast, Tohei et al. ( 2001 ) reported increased plasma LH, following treatment of 
adult male rats of the Wistar-Imamichi strain (300–350 g) with BPA (1 mg/rat/day 
for 2 weeks). The LH stimulatory effect was associated with decreased plasma con-
centrations of testosterone and prolactin, as well as testicular contents of inhibin, 
suggesting that BPA directly inhibits testicular functions. The increased level of 
plasma LH was probably due to a reduction in the negative feedback regulation of 
the hypothalamic–pituitary axis by testosterone. Discrepancies in modulation of LH 
secretion by BPA (stimulation, or inhibition) as demonstrated by Tohei et al. ( 2001 ) 
and Nakamura et al. ( 2010 ), emphasize that the BPA endocrine- disrupting effect 
may be affected by the age of the animal at the onset of exposure. 

 Inhibin is synthesized in adult rat testes by Sertoli cells. Any reduction of inhib-
in’s concentration in plasma, or in the testis (Tohei et al.  2001 ), therefore, suggests 
a dysfunction of the Sertoli cells. BPA-induced apoptosis of rat Sertoli cell was 
reported by Iida et al. ( 2003 ), and may result from an induction of caspase-3 by BPA 
(Mørck et al.  2010 ). BPA also promotes contact between harmful substances and 
developing sperm cells, by inducing inter-Sertoli cell BTB impairment (Toyama 
and Yuasa  2004 ; Salian et al.  2009b ; Cheng et al.  2011 ). Sertoli cell function is 
pivotal in spermatogenesis, because it coordinates the differentiation of spermato-
gonia to mature spermatozoa, under stimulation of the FSH. Modulation of the 
Sertoli cells by BPA, directly or indirectly via inhibition of FSH synthesis (Hanaoka 
et al.  2002 ), may impair reproductive function in exposed males.  

4.2     Effects of Bisphenol A on Spermatogenesis 

 The antiandrogenic and estrogenic effects of BPA that have been described in male 
goldfi sh ( Carassius auratus ) were associated with impairment of their spermato-
genesis, as illustrated by the altered sperm parameters that were observed (viz., 
reduction in total sperm number, volume, density, motility, and velocity) (Hatef 
et al.  2012a ,  b ). Lower semen quality was also observed in brown trout exposed to 
1.75–2.40 μg/L BPA during the late prespawning and spawning periods (Lahnsteiner 
et al.  2005 ). Similarly, Haubruge et al. ( 2000 ) demonstrated declines in total sperm 
counts in adult male guppies exposed to BPA (274–549 μg/L) for 21 days. Such 
adverse effects of BPA on fi sh spermatogenesis have been documented to occur in 
rodents following the postnatal and pubertal periods, and in adulthood. 

 In mice, BPA induced the formation of morphologically multinucleated giant 
cells in testicular seminiferous tubules, having greater than three nuclei each (Takao 
et al.  1999 ). Similarly, a decrease of sperm count and motility was observed, and an 
increase of sperm morphological abnormalities, following 2 weeks of BPA admin-
istration (10–40 mg/kg bwt) (Dobrzyńska and Radzikowska  2013 ). The latter sperm 
parameters were also affected by a BPA derivative, BPA glycerolate dimethacrylate; 
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this derivative induced decreased male mouse fertility (Al-Hiyasat and Darmani 
 2006 ). Administration of BPA (≥20 μg/kg bwt/day) to adult rats for 6 days decreased 
daily sperm production (Sakaue et al.  2001 ). Similarly, Chitra et al. ( 2003a ) reported 
a reduction in epididymal sperm motility in adult rats exposed to BPA for 60 days. 

 The antispermatogenic effect of BPA demonstrated in experimental animals has 
been confi rmed by several epidemiological studies conducted among groups of 
BPA-exposed human males. Examples include a study carried out in China in 2008, 
in which it was revealed that male factory workers exposed to high levels of BPA at 
work experienced a sexual dysfunction, characterized by reduced sexual desire, and 
greater erectile and ejaculatory diffi culties (Li et al.  2010b ). During a cross- sectional 
pilot study, Xiao et al. ( 2009 ) analyzed blood BPA and semen quantity in workers 
exposed to BPA, and compared results to a control group. The sperm density of 
exposed workers was signifi cantly lower than that of the control group, which had a 
lower blood BPA concentration. Furthermore, there was a negative correlation 
between blood BPA concentration and the percentage of normal sperm, indicating 
the negative infl uence of BPA on the semen quality. 

 Meeker et al. ( 2010 ) found a positive association, though not statistically signifi -
cant, between BPA exposure (urinary BPA concentration) and altered sperm param-
eters (viz., decreased sperm count, altered morphology and motility, and increased 
sperm DNA damage) among infertile men. In a study carried out in fertile men, the 
correlation of urinary BPA concentration with semen quality was suggestive of an 
inverse association with sperm count and sperm motility (Mendiola et al.  2010 ). 
The urinary BPA concentration of the subjects was inversely associated with the 
free androgen index (FAI) and the FAI/LH ratio, and positively correlated to sex 
hormone-binding globulin (SHBG), indicating a deregulation of spermatogenesis. 
Similarly, Wang et al. ( 2012c ) reported an association between higher urinary BPA 
concentrations and clinically abnormal thyroid hormones (elevated serum free T3 
levels) that also infl uence spermatogenesis. 

 Although a three-generation reproductive toxicity study of BPA exposure in CD 
Sprague-Dawley rats showed no treatment-related effects from BPA exposure on 
reproductive organs/parameters (Tyl et al.  2002 ), other adverse effects appeared to 
be consistent with those caused by BPA in previous studies. Furthermore, Tyl et al. 
( 2002 ) investigated physiological parameters, but did not assess biochemical 
changes. Other authors have studied BPA and have reported that it caused various 
effects, including genotoxicity and clastogenicity in blood cells (Ulutaş et al.  2010 ; 
Dobrzyńska and Radzikowska  2013 ; Tiwari et al.  2012 ), increased susceptibility to 
chemically induced mammary carcinogenesis (Jenkins et al.  2012 ), and induced 
meiotic aneuploidy in oocytes (Hunt et al.  2003 ), suggesting possible modifi cation 
of the DNA in male germ cells that may be transmitted to the next generation (Salian 
et al.  2011 ). 

 Further evidence that BPA causes adverse effects is provided by the results of an 
in vitro binding assay involving proteins that transport sex hormones (Déchaud 
et al.  1999 ). BPA is a xenoestrogen that binds to SHBG (a steroid transporter in 
human plasma), with a reversible and competitive binding activity for both testos-
terone and estradiol, and produces a dose-dependent increase in concentrations of 
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hSHBG-unbound testosterone and/or estradiol. BPA may thus displace endogenous 
sex steroid hormones from hSHBG binding sites and disrupt the androgen-to-estro-
gen balance that is required for normal spermatogenesis (Déchaud et al.  1999 ; 
Carreau and Hess  2010 ).  

4.3     Effects of Bisphenol A on the Testicular 
and Epididymal Antioxidant System 

 Another important mechanism by which environmental toxicants exert their adverse 
effects on male reproductive function is to disturb the pro-oxidant–antioxidant bal-
ance of the testis, resulting in impairment of testicular function (Mathur et al.  2008 ). 
Testicular function is associated with production of reactive oxygen species (ROS) 
that are regulated by an antioxidant system, under normal physiologic conditions. 
Exposure to environmental toxicants such as BPA aggravates the production of 
ROS, leading to testicular oxidative stress (see Fig.  1 ). El-Beshbishy et al. ( 2012 ), 
orally administered BPA to male rats at a dose of 10 mg/kg bwt for 14 days, and 
observed a decrease of testicular antioxidant enzymes such as glutathione reduc-
tase, glutathione peroxidase, superoxide dismutase, and catalase. The levels of 
hydrogen peroxide (H 2 O 2 ) and lipid peroxidation were also increased in testes and 
spermatozoa of BPA-treated animals. In another study, testicular antioxidant 
enzymes were impaired by a very low-dose (viz., 0.005 mg/kg bwt/day) of BPA 
following 45 days of exposure (De Flora et al.  2011 ; D’Cruz et al.  2012 a, b). BPA 
also decreased antioxidant enzyme activities and induced lipid peroxidation in both 
epididymides and sperm cells (Chitra et al.  2003a ) (Fig.  1 ). The latter antioxidant 
enzymes were negatively affected in liver (Bindhumol et al.  2003 ), the organ that 
synthesizes steroid transport proteins such as hSHBG (Pugeat et al.  2010 ).

   BPA acts to signifi cantly disturb the pro-oxidant–antioxidant balance; therefore, 
reinforcing the ROS scavenging activity in the reproductive organs may represent a 
promising strategy to mitigate the BPA-related disturbances. To illustrate, in a 
recent study, Fang et al. ( 2013 ) reported that adolescent male mice, whose diet was 
supplemented with vitamin E during BPA exposure, showed an enhanced antioxi-
dant response (i.e., increased SOD activity), and vitamin E protected against the 
reproductive inhibition normally caused by BPA.  

4.4     Effects of Bisphenol A on Sperm Function 

 Whether BPA directly affects spermatozoa is still unclear. Luconi et al. ( 2001 ) incu-
bated human spermatozoa in the presence of 1 μM BPA, and the results revealed no 
signifi cant modifi cation in calcium infl uxes and acrosome reaction in the spermato-
zoa. Similarly, the DNA integrity of sperm cells, as assessed using the Comet and 
TUNEL assays, and redox activity were not affected by BPA treatment in vitro 
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(Bennetts et al.  2008 ). This suggests that the adverse effects on male reproductive 
function caused by BPA are mediated in vivo by other mechanisms, such as altera-
tion of the hypothalamic–pituitary–gonadal axis and thyroid function (Akingbemi 
et al.  2004 ; Zoeller et al.  2005 ). Other examples of the effects caused by in vivo BPA 
exposure include altered sperm motility and velocity in goldfi sh (i.e., following 
20–90 days exposure to 0.2 and 20 μg BPA/L) (Hatef et al.  2012a ,  b ), and enhanced 
fragility of spermatozoa (i.e., as revealed by DNA fragmentation or sperm chroma-
tin dispersion) in rats, following 10 days of administration of 200 mg BPA/kg bwt 

  Fig. 1    A schematic diagram showing the main effects and action sites of BPA on male  reproductive 
function: This schematic drawing depicts the hypothalamic–pituitary–testicular axis, and acces-
sory organs. It also summarizes the spermatogenesis and sperm maturation processes. The main 
action sites where BPA modulates male reproductive function are indicated in the chart. The posi-
tive and negative signs indicate the following: (−): BPA disrupts cell function, reduces the weight 
of accessory organs, or inhibits hormone levels; (+): BPA induces increased hormone levels or 
reactive oxygen species (ROS), or stimulates enlargement of the prostate; (+/−): BPA exposure 
results in either induction (+) or inhibition (−) of hormone production. The numbers 1 to 7 refer to 
germ cells, at different developmental/maturation stages, viz. 1: spermatogonium; 2: preleptotene 
spermatocyte; 3: pachytene spermatocyte; 4: round spermatid; 5: elongated spermatid; 6 and 7: 
spermatozoa, before and after capacitation, respectively. Abbreviations:  BTB  blood–testis barrier, 
 E2  estradiol,  LC  Leydig cell,  FSH  follicle-stimulating hormone,  GnRH  gonadotropin-releasing 
hormone,  SC  Sertoli cell,  T  testosterone       
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(De Flora et al.  2011 ). Meeker et al. ( 2010 ) also studied human male partners of 
subfertile couples seeking treatment from the Vincent Andrology Lab at 
Massachusetts General Hospital, and observed increased DNA damage in sperm, 
and reduced semen quality that were associated with BPA exposure (Fig.  1 ).   

5     Effects of Bisphenol A on Accessory Reproductive Organs 

 Secretions of male reproductive accessory organs have been implicated in the matu-
ration, motility, and vitality of spermatozoa in the female tract. These organs repre-
sent potential targets for antifertility compounds, such as BPA. When female rats 
were orally dosed to 2 and 20 μg BPA/kg bwt/day on GD 11–17, their male off-
spring showed enlargement of the prostate in adulthood (Nagel et al.  1997 ). The 
latter effect was also reported by Gupta ( 2000 ) in CD-1 mice, whose female pro-
genitors received 50 μg BPA/kg/day, during GD 16–18. In addition, the pups showed 
reduced AGD and decreased epididymal weight (Gupta  2000 ; Talsness et al.  2000 ). 
Exposure of rats to low doses of BPA (≥0.2 μg BPA/kg/day for 45 days) during 
pubertal and adult life also induced decreased epididymal and testicular weights, as 
well as increased weight of ventral prostate (Chitra et al.  2003a ,  b ). BPA also 
affected the prostate epigenome during development, and thereby promoted pros-
tate cancer (Ho et al.  2006 ). Mitogenic effects in the prostatic gland have been fur-
ther affi rmed by in vitro studies on human prostatic adenocarcinoma (LNCaP). In 
fact, BPA initiated both an androgen-independent (inappropriate proliferation, 
through activation of the tumor-derived androgen receptor, AR-T877A) and an 
estrogen/androgen-dependent proliferation signalling pathway in LNCaP (Wetherill 
et al.  2002 ; Lee et al.  2012 ). Moreover, treatment of Ishikawa cell cultures with BPA 
modulated several genes implicated in regulation of transcription (SUZ12, HES2, 
FST, ATF3) (Naciff et al.  2010 ). The increased size of the preputial glands and atro-
phy of epididymides were also reported in mice prenatally exposed to BPA (vom 
Saal et al.  1998 ).  

6     Effects of Bisphenol A Derivatives on Male Reproduction 

 Because of concerns for the effects of BPA, Canada was the fi rst country to regulate 
the products in which BPA could be used. Canada banned the use of BPA in baby 
bottles in 2008. Since this occurred, other developed countries (e.g., Japan and the 
USA) have also acted to restrict the use of BPA in baby bottles, and to some degree, 
the manufacture or production of BPA. These countries have also promoted the 
development of alternative BPA isomers, such as Bisphenol S ((BPS; 4,4′-sulfonyl-
diphenol), Bisphenol F (BPF; 4,4′-dihydrox-ydiphenylmethane), Bisphenol AF 
(BPAF; 4,4′-(hexa fl uoroisopropylidene)diphenol), and Bisphenol B (BPB; 
2,2-bis(4-hydroxyphenyl)butane), all of which are thought to be safer (Health 
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Canada  2008 ; Liao et al.  2012 ). Unfortunately, the biological activity (genotoxicity 
and estrogenicity) of these derivatives appears to be similar to that of BPA (Liao 
et al.  2012 ). BPAF acts as an agonist or antagonist to estrogen receptor alpha (ERα) 
or estrogen receptor beta (ERβ) (Matsushima et al  2010 ), and its administration to 
adult male rats for 14 days induced dysregulation of the hypothalamic–pituitary–
testicular axis, characterized by increased LH and FSH levels, reduced serum tes-
tosterone, and a decline in testicular mRNA levels of inhibin B, ERα, and LHR 
(Feng et al.  2012 ).  

7     Implications of Updated Data for Bisphenol A Exposure 
in Risk Assessment Studies 

 Human exposure to BPA is now of great concern, because of how widespread the 
chemical has become in the environment and because it is detected in human bio-
logical fl uids. The harmful effects of BPA on male reproductive function have been 
clearly illustrated in animal-based studies, and the effects it produces appear to be 
more pronounced during fetal life (Lagos-Cabré and Moreno  2012 ). The reported 
data were essentially gathered from investigations that used rodents (rats and mice) 
as the animal model. However, BPA’s kinetics within rodent and primate (chimpan-
zee and monkey) systems are similar (Taylor et al.  2011 ), and support a conclusion 
that BPA effects observed in rodents may well be expected to occur in humans. 
Moreover, although glucuronidation of BPA (prior to urinary elimination) occurs 
both in rat and human liver microsomes, human liver microsomes do this less effi -
ciently than do those of rats (Elsby et al.  2001 ), and this can lead to BPA bioaccu-
mulation in humans, as recently suggested by Stahlhut et al. ( 2009 ). It is also of 
concern that human fetal testes are more sensitive to the deleterious effects (inhibi-
tion of testosterone secretion and insulin-like 3 mRNA levels in Leydig cells) of 
BPA than are testes of rodents (N’Tumba-Byn et al.  2012 ). 

 Therefore, we believe that regulators should reinforce actions to prevent 
 exposures to BPA and BPA-related products, with particular emphasis on reducing 
exposures during fetal life (pregnancy) and babyhood, since these are the stages that 
are most sensitive to toxicity by this chemical. BPA also preferentially attacks the 
developing (rather than adult) testis during the puberty stage. 

 The current BPA tolerable daily intake values (TDI) proposed by the European 
Food Safety Authority and by Health Canada are 0.025 and 0.05 mg/kg bwt/day, 
respectively (EFSA  2010 ; Cao et al.  2011 ; Hengstler et al.  2011 ; Geens et al. 
 2012 ). These values are respectively based on animal studies, in which the lowest-
observed- effect-level (LOEL) for BPA is 0.025 μg/kg bwt and 0.05 μg/kg bwt. 
These TDIs were derived from LOEL values using an uncertainty factor of 1,000 
(10 for interspecies differences, 10 for interindividual differences, and 10 for 
LOEL to no-observed- effect-level or TDI). However, recent studies included in 
this review have provided evidence that harmful or adverse effects result from 
administering very low doses of BPA. D’Cruz et al. ( 2012 a, b) showed that 
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administering 0.005 μg BPA/kg bwt/day for 45 days inhibited rat testicular 
 steroidogenic and  antioxidant enzymes. This indicates that a more appropriate 
LOEL for BPA may be 0.005 μg/kg bwt in rats. Hence, we suggest a proper TDI to 
be 5 μg/kg bwt/day, instead of 25 or 50 μg/kg bwt/day (with an uncertainty factor 
of 1,000). Establishing a lower TDI that is more appropriate will assist in guiding 
authorities to limit human BPA exposure, and reduce the risk burden it places on 
health, and particularly on male reproductive function.  

8     Summary 

 BPA is a ubiquitous environmental contaminant, resulting mainly from manufactur-
ing, use or disposal of plastics of which it is a component, and the degradation of 
industrial plastic-related wastes. Growing evidence from research on laboratory 
 animals, wildlife, and humans supports the view that BPA produces an endocrine- 
disrupting effect and adversely affects male reproductive function. To better under-
stand the adverse effects caused by exposure to BPA, we performed an up-to- date 
literature review on the topic, with particular emphasis on in utero exposure, and 
associated effects on spermatogenesis, steroidogenesis, and accessory organs. 

 BPA studies on experimental animals show that effects are generally more detri-
mental during in utero exposure, a critical developmental stage for the embryo. BPA 
has been found to produce several defects in the embryo, such as feminization of 
male fetuses, atrophy of the testes and epididymides, increased prostate size, short-
ening of AGD, disruption of BTB, and alteration of adult sperm parameters (e.g., 
sperm count, motility, and density). BPA also affects embryo thyroid development. 

 During the postnatal and pubertal periods and adulthood, BPA affects the 
 hypothalamic–pituitary–testicular axis by modulating hormone (e.g., LH and FSH, 
androgen and estrogen) synthesis, expression and function of respective receptors 
(ER, AR). These effects alter sperm parameters. BPA also induces oxidative stress 
in the testis and epididymis, by inhibiting antioxidant enzymes and stimulating lipid 
peroxidation. This suggests that employing antioxidants may be a promising strat-
egy to relieve BPA-induced disturbances. 

 Epidemiological studies have also provided data indicating that BPA alters male 
reproductive function in humans. These investigations revealed that men occupa-
tionally exposed to BPA had high blood/urinary BPA levels, and abnormal semen 
parameters. BPA-exposed men also showed reduced libido and erectile ejaculatory 
diffi culties; moreover, the overall BPA effects on male reproduction appear to be 
more harmful if exposure occurs in utero. 

 The regulation of BPA and BPA-related products should be reinforced, particu-
larly where exposure during the fetal period can occur. The current TDI for BPA is 
proposed as 25 and 50 μg/kg bwt/day (European Food Safety Authority and Health 
Canada, respectively). Based on the evidence available, we believe that a TDI value 
of 5 μg/kg bwt/day is more appropriate (the endpoint is modulation of rat testicular 
function). Certain BPA derivatives are being considered as alternatives to BPA. 
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However, certain of these related products display adverse effects that are similar to 
those of BPA. These effects should be carefully considered before using them as 
fi nal alternatives to BPA in plastic production.     
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