
Ontological Approach to Data Warehouse
Source Integration

Francesco Di Tria, Ezio Lefons and Filippo Tangorra

Abstract In the early stages of data warehouse design, the integration of several
source databases must be addressed. Data-oriented and hybrid methodologies need
to consider a global schema coming from the integration of source databases, in
order to start the conceptual design. Since each database relies on its own conceptual
schema, in the integration process a reconciliation phase is necessary, in order to
solve syntactical and/or semantic inconsistencies among concepts. In this paper, we
present an ontology-based approach to perform the integration of different conceptual
schemas automatically.

1 Introduction

The data warehouse design based on hybrid or data-driven methodologies [1, 2]
always performs an analysis of the source databases, in order to understand the
underlying semantic concepts inherent to the domain of interest [3]. Then, a global
schema is produced that represents the source databases in an integrated way. To
accomplish the integration process, a reconciliation phase is useful to solve syntacti-
cal and/or semantic inconsistencies among the concepts represented in the different
databases.

While syntactical problems are traditionally solved using data dictionaries, the
current trend to solve semantic problems is based on using an ontological approach
[4] instead of the Entity/Relationship (ER) model. The reason is that ER schemas are
used to represent locally-true concepts, or concepts that are true in the domain to be
modeled. On the contrary, ontologies are used to represent necessarily-true concepts,
or concepts that are true in any domain and, therefore, widely accepted and shared.

F. D. Tria (B) · E. Lefons · F. Tangorra
Dipartimento di Informatica, Università degli Studi di Bari “Aldo Moro”,
via Orabona 4, 70125 Bari, Italy
e-mail: francescoditria@di.uniba.it

E. Gelenbe and R. Lent (eds.), Information Sciences and Systems 2013, 251
Lecture Notes in Electrical Engineering 264, DOI: 10.1007/978-3-319-01604-7_25,
© Springer International Publishing Switzerland 2013

252 F. D. Tria et al.

The process of constructing ontologies is called knowledge representation and it
requires a lot of effort, because of the difficulties in formulating a comprehensive
and rigorous conceptualization in the scope of a given domain. For these reasons, an
ontology must be treated as a “reusable” artifact. When used in data warehousing,
the designer must rely on a well-formed ontology, avoiding ad hoc modifications
and extracting the parts of interest.

In this paper, we present an integration strategy based on an ontological approach
to produce a global conceptual schema. This is then transformed into a relational
schema to be given in input to a methodology for data warehouse design (in particular,
the hybrid one we described in [5]).

The paper is organized as follows Sect. 2 presents the related work to the
exploitation of ontologies in data warehouse design. Section 3 introduces our hybrid
design methodology. Section 4 explains the integration strategy we propose. Section
5 shows a step-by-step example. Finally, Sect. 6 contains a few concluding remarks.

2 Related Work

The main issue in source integration deals with semantic inconsistencies among
conceptual schemas. This can be addressed using techniques derived from artificial
intelligence [6] and adopting an ontological approach, which is widely used in the
semantic web [7].

An important work is described in [8]. The authors’ approach is based on local
ontologies for designing and implementing a single data source, inherent to a specific
domain. Next, the data warehouse design process aims to create a global ontology
coming from the integration of the local ontologies. Finally, the global ontology is
used along with the logical schemas of the data sources to produce an integrated and
reconciled schema, by mapping each local concept to a global ontological concept
automatically.

The work of Romero and Abelló [9] is also based on an ontological approach
but it skips the integration process and directly considers the generation of a
multidimensional schema starting from a common ontology, namely Cyc. The final
schema must be validated by the user in order to solve inconsistencies.

In [10], the authors propose a methodology to integrate data sources using a
common ontology, enriched with a set of functional dependencies. These constraints
support the designer in the choice of primary keys for dimension tables and allow
the integration of similar concepts using common candidate keys.

Ontological Approach to Data Warehouse Source Integration 253

3 Methodology Overview

The data warehouse design methodology we propose here is composed of the
following phases, in that order:

• Requirement analysis. Decision makers’ business goals are represented using the
i∗ framework for data warehousing [11]. The designer has to detect the informa-
tion requirements and to translate them into a workload, containing the typical
queries that allow the extraction of the required information. Then, the goals of
the data warehouse must be transformed into a set of constraints, defining facts
and dimensions to be included in the multidimensional schema. To this aim, both
the workload and the constraints must be given in input to the conceptual design,
in order to start the modeling phase in an automatic way.

• Source analysis and integration. The schemas of the different data sources must be
analyzed and then reconciled, in order to obtain a global conceptual schema. The
integration strategy is based on an ontological approach and, therefore, we need to
work at the conceptual level. To this end, a reverse engineering from data sources to
a conceptual schema is necessary, in order to deal with the concepts. The conceptual
schema that results from the integration process must then be transformed into a
relational schema, which constitutes the input to the data warehouse conceptual
design. Since the transformation primitives from the conceptual to the logical
levels are a well-known topic in literature, they are not addressed in this paper.

• Data warehouse conceptual design. This phase is based on the Graph-oriented
Hybrid Multidimensional Model (Gr H yM M , [5]) that identifies the facts in the
source relational schema on the basis of constraints derived from the Requirement
analysis. For each correctly-identified fact, it builds an attribute tree [12] to be
remodeled using the constraints. Finally, the resulting attribute trees are checked
in order to verify whether all the trees agree with the workload [13].

• Data warehouse logical design. The attribute trees are transformed into a relational
schema—for instance, a snow-flake schema—considering each tree as a cube,
having the root as the fact and the branches as the dimensions, possibly structured
in hierarchies.

• Data warehouse physical design. The design process ends with the definition of
the physical properties of the database on the basis of the specific features provided
by the database system, such as indexing, partitioning, and so on.

We focus on Source analysis and integration phase of the methodology here.

4 Source Analysis and Integration

The preliminary step is the source analysis devoted to the study of the source data-
bases. If necessary, the designer has to produce, for each data source, a conceptual
schema along with a data dictionary, storing the description in the natural language

254 F. D. Tria et al.

of the concepts modeled by the database. Then, the integration process proceeds
incrementally using a binary operator that, given two conceptual schemas, produces
a new conceptual schema.

Assumption Given the conceptual schemas S1, S2, . . . , Sn, n ≥ 2, we assume that
G1 = integration (S1, S2) , and
Gi = integration (Gi−1, Si+1), for i = 2, . . . , n − 1. �

In detail, the integration process of two databases Si and S j is composed of the
following steps:

1. Ontological representation. In this step, we consider an ontology describing the
main concepts of the domain of interest. If such an ontology does not exist, it must
be built by domain experts. The aim is to build a shared and reusable ontology.

2. Predicate generation. For each concept in the ontology, we introduce a unary
predicate. The output of this step is a set of predicates, which represents a vocab-
ulary to build definitions of concepts using the first-order logic.

3. Ontological definition generation. For each concept in the ontology, we also
introduce a definition on the basis of its semantic relationships. This definition is
the description of the concept at the ontological level (that is, the common and
shared definition). The output of this step is a set of ontological definitions.

4. Entity definition generation. For each entity present in the data sources and
described in the data dictionary, we introduce a definition using the predicates.
Therefore, an entity definition is a logic-based description of a concept in the
database. The output of this step is a set of entity definitions.

5. Similarity comparison. Assuming that similar entities have a very close descrip-
tion, we can detect whether (a) entities that have different names refer to the same
concept, and (b) entities that have the same name refer to different concepts. To do
so, we utilize a set of inferring rules, the so-called similarity comparison rules,
to analyze the logic-based descriptions and a metric to calculate the pairwise
similarity of entity definitions.

In detail, given two schemas Si (A1
i , A2

i , . . . , Ao
i) and S j (A1

j , A2
j , . . . , Am

j), where

Ah
t is the hth entity of schema St , we compare the logic definition of Ah

t (for h =
1, . . . , o) with that of Aq

j (for q = 1, . . . , m). For each comparison, we calculate
a similarity degree d and an output list K . The output list contains the possible
ontological concepts shared by both the logic definitions.

Assuming we can compare the logical definitions of entities Ah
i and Aq

j and
calculate both the similarity degree d and the output list K , we can observe one of
the following cases:

(i) Ah
i is equivalent to Aq

j , if d ≥ x ;

(ii) Ah
i is a generalization of Aq

j , if the definition of Aq
j is part of the definition of

Ah
i (or vice versa);

(iii) Ah
i and Aq

j are both specializations of a concept present in the ontology, if
0 < d ≤ x and K �= ∅;

Ontological Approach to Data Warehouse Source Integration 255

Database

Database

Data
Dictionary

Data
Dictionary

4.
Entity

definitions

1. ontology

2.
predicates

3.
Ontological
definitions

5,
Similarity

comparison
rules

4.
Entity

definitions

6. global
conceptual

schema

Fig. 1 Integration process diagram

(iv) Ah
i and Aq

j are linked via the relationship γ present in the ontology;

where x is a fixed threshold value. For convenience, we fixed x at 0.70.

6. Global conceptual schema generation. The final global conceptual schema Gu is
built using the results obtained by the similarity comparison process and applying
some generation rules.

In detail, we have Gu(A1
u, A2

u,, Ap
u), where for s = 1, . . . , p,

(i) As
u = Ah

i ≈ Aq
j , if we observe case 5(i);

(ii) As
u = {Ah

i , Aq
j }, if we observe case 5(ii);

(iii) As
u = {K , Ah

i , Aq
j }, if we observe case 5(iii);

(iv) As
u = {γ, Ah

i , Aq
j }, if we observe case 5(iv).

Figure 1 shows the graphical representation of the integration process.
When a further schema Sw has to be integrated, the integration process starts from

step 4, using the result of step 6 and the schema Sw.

5 Working Example

In this Section, we provide a complete example of source analysis and integration
in order to highlight how the ontology supports the designer in the data warehouse
conceptual design.

The case study aims to integrate two databases: (1) Musical Instruments and
(2) Fruit & Vegetables. Musical Instruments is the database used by an on-line
shop, in order to manage the sales of musical instruments and accessories. Fruit
& Vegetables is the database used by a farm, in order to manage the wholesale of
fruit and vegetables. Their essential conceptual schemas are provided in Fig. 2.

256 F. D. Tria et al.

client orderpurchase productinclusion

membership category

companyproduction

customer orderpurchase productinclusion assignment price

packagecomposition

processing vegetable

(a)

(b)

Fig. 2 Source databases: a Musical Instruments, and b Fruit & Vegetables

The first phase of the source integration is the ontological representation. To this
end, we built our ontology starting from OpenCyc, the open source version of Cyc
[14].

Therefore, we extracted from OpenCyc the concepts of interest [15] related to
the business companies and sales activity, that is the most frequent domain in data
warehousing. The relationships considered are isA(X, Y) to indicate that X is a
specialization of Y , and has(X, Y) to indicate that X has an instance of Y .

Using the ontology previously introduced, we defined the predicates to be used as a
vocabulary for the logical definitions of database entities. Each predicate corresponds
to a concept present in the ontology. For each ontological concept, we also provide
an extended definition, using the predicates previously introduced. So, we obtained
a logical definition for each ontological concept.

The second phase is the generation of the entity definition.
For each database entity, we created a logical definition using the predicates we

had previously generated. Indeed, such predicates represent the vocabulary for the
construction of the concepts using the first-order logic.

Notice that these definitions often disagree with the ontological ones. In fact,
entities are always defined without considering common and shared concepts, since
entities represent local concepts. This means we assume that the database designer
ignores the ontology. So, given S1(client, order, product, company, category) and
S2(customer, order, product, vegetable, package, price), we have to create G1 =
integration (S1, S2), by comparing each entity of S1 with each entity of S2.

The third and last phase is the comparison of the entity definitions in order to
check whether two entities refer to the same concept or not. The comparison is done
automatically using inferring rules defined in first-order-logic. These rules check the
similarity degree between two lists L1 and L2 containing a logical definition of a
database entity [16].

The similarity degree d is given by

Ontological Approach to Data Warehouse Source Integration 257

d(n, l, m) = 0.5 × l + 1

l + n + 2
+ (1 − 0.5) × l + 1

l + m + 2
,

where

• n is the number of predicates p such that p ∈ L1 and p ∈ L2,
• l is the number of common predicates, and
• m is the number of predicates p such that p ∈ L1 and p ∈ L2.

The complete result of the case study is reported in Table 1. For each comparison
between entities, both the similarity degree d (in the top cell) and the generalization
list K (in the bottom cell) are reported. (The symbol “=” means that the entities are
equivalent.)

5.1 Global Conceptual Schema Generation

Now we examine the results of the similarity comparison. We note that client and
customer are always used as synonyms. However, the comparison results indicate
that the client and customer have not been defined in the same manner and, therefore,
they refer to different database entities. We observe that their similarity degree d is
not zero and they present one common ontological concept (viz, social Being). This
suggests introducing into the global schema G1 the Social Being entity and two
specializations corresponding to a client who is a social being with an account (that
is, a registered user) and a client who is a social being with a legal title (that is, a
company having a shop). This has been obtained by applying rule 6(iii) in Sect. 4.

Another generalization that has been detected is that between product in Musical
Instruments and product in Fruit & Vegetables. Even if there is a syntactical con-
cordance, the terms refer to very different items: the former refers to an instrument,

Table 1 Results of the comparison

Fruit & Vegetables

customer order product vegetable package price
Musical Instruments client 0.367 0.128 0.166 0.183 0.183 0.25

{social Being} ∅ ∅ ∅ ∅ ∅
order 0.155 0.888 0.252 0.284 0.311 0.222

∅ = ∅ ∅ ∅ ∅
product 0.162 0.118 0.583 0.325 0.287 0.229

∅ ∅ {goods} ∅ ∅ ∅
company 0.2 0.155 0.183 0.2 0.2 0.266

∅ ∅ ∅ ∅ ∅ ∅
category 0.225 0.18 0.385 0.417 0.225 0.291

∅ ∅ ∅ ∅ ∅ ∅

258 F. D. Tria et al.

SocialBeing

Registered

orderpurchase

Entitled

product

inclusion

membership category

companyproductioninstrumentvegetable

assignment price

package composition

processingvegetable

Fig. 3 Global conceptual schema

the latter to a fruit or a vegetable. However, these are both goods having a mone-
tary value and are produced to be sold. Then, we created a generalization, namely
product, which is an item having an assigned price. The specific products have been
introduced as specializations, each with its own relationships. For example, an
instrument is produced by a company. On the other hand, the producer of vegeta-
bles is missing information in the Fruit & Vegetables database. This has also been
obtained by applying rule 6(iii) in Sect. 4.

Finally, it is worth noting that the order entities have been defined in the same
way in both databases. So, they do not present a generalization because they refer to
the same concept. This is the only overlapping concept. This has been obtained by
applying rule 6(i) in Sect. 4.

The global conceptual schema G1 is shown in Fig. 3. If we had to add the schema
of another source database S3, we should perform G2 = integration (G1, S3). After
we have obtained a final global conceptual schema representing an integrated data
source, we have to transform this schema into a relational one in order to use it in
our hybrid data warehouse design methodology [5].

6 Conclusions

In this paper, we have presented an approach to construct a global conceptual schema
coming from the integration of (two) relational databases. This approach is mainly
based on an ontology containing common and shared concepts. The language we used
is the predicate calculus, in order to define a set of inferring rules to automatically
compare the similarity of two entities.

To this aim, we provide a logical definition for each database entity. For the
sake of simplicity, we measure the similarity of two logical definitions and, using the
comparison results, we are able to state whether the entities refer to the same concept
or not. The final conceptual schema is built analyzing the comparison results. Thus,

Ontological Approach to Data Warehouse Source Integration 259

the definition of an expert system able to reason on the comparison results is our next
step to obtain an integrated schema automatically.

Since we claim that this approach can be applied also to attributes, future work will
mainly focus on the problems arising when also the similarity between relationships
has to be measured. Moreover, we intend to investigate the use of ontology in order to
detect any type of ontological relationship existing between entities. In our opinion,
this will allow the designer to discover inter-schema relationships.

References

1. Ballard C, Herreman D, Schau D, Bell R, Kim E, Valencic A (1998) Data modeling technique
for data warehousing. IBM Corporation

2. Romero O, Abelló A (2009) A survey of multidimensional modeling methodologies. Int J Data
Warehouse Min 5:1–23

3. Di Tria F, Lefons E, Tangorra F (2012) Hybrid methodology for data warehouse conceptual
design by uml schemas. Inf Software Technol 54(4):360–379

4. Euzenat J, Shvaiko P (2007) Ontology matching. Springer
5. Di Tria F, Lefons E, Tangorra F (2011) GrHyMM: a graph-oriented hybrid multidimensional

model. In: Proceedings of the 30th international conference on ER 2011, Brussels, Belgium,
LNCS 6999. Springer, pp 86–97

6. Chen Z (2001) Intelligent data warehousing: from data preparation to data mining. CRC Press
7. Sure Y, Erdmann M, Angele J, Staab S, Studer R, Wenke D (2002) OntoEdit: collaborative

ontology development for the semantic web. In: Proceedings of the 1st international semantic
web conference, Sardinia, Italy, LNCS 2342. Springer Verlag, pp 221–235

8. Hakimpour F, Geppert A (2002) Global schema generation using formal ontologies. In: Pro-
ceedings of the 21st international conference on conceptual modeling, Tampere, Finland, LNCS
2503. Springer, pp 307–321

9. Romero O, Abelló A (2010) A framework for multidimensional design of data warehouses
from ontologies. Data Knowl Eng 69:1138–1157

10. Bakhtouchi A, Bellatreche L, Ait-Ameur Y (2011) Ontologies and functional dependencies
for data integration and reconciliation. In: Proceedings of the 30th international conference on
ER 2011, Brussels, Belgium, LNCS 6999. Springer, pp 98–107

11. Mazón JN, Trujillo J, Serrano M, Piattini M et al (2005) Designing data warehouses: from
business requirement analysis to multidimensional modeling. In: Cox K (ed) Requirements
engineering for business need and it alignment. University of New South, Wales Press, pp
44–53

12. dell’Aquila C, Di Tria F, Lefons E, Tangorra F (2009) Dimensional fact model extension
via predicate calculus. In: Proceedings of the 24th international symposium on computer and
information sciences. IEEE Press, North Cyprus, pp 211–217

13. dell’Aquila C, Di Tria F, Lefons E, Tangorra F (2010) Logic programming for data warehouse
conceptual schema validation. In: Proceedings of the 12th international conference on data
warehousing and knowledge discovery, Bilbao, Spain, LNCS 6263. Springer, pp 1–12

14. Lenat DB (1995) Cyc: a large-scale investment in knowledge infrastructure. Commun ACM
38(11):32–38

15. Reed S, Lenat DB (2002) Mapping ontologies in Cyc. AAAI 2002 Conference workshop on
ontologies for the semantic web. Edmonton, Canada

16. Ferilli S, Basile TMA, Biba M, Di Mauro N, Esposito F (2009) A general similarity framework
for Horn clause logic. Fundam Inf 90(1–2):43–66

	25 Ontological Approach to Data Warehouse Source Integration
	1 Introduction
	2 Related Work
	3 Methodology Overview
	4 Source Analysis and Integration
	5 Working Example
	5.1 Global Conceptual Schema Generation

	6 Conclusions
	References

