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Abstract In this paper, we study the fractional optimal control problem and its
spectral approximation. The problem under investigation consists in finding the
optimal solution governed by the time fractional diffusion equation with constraints
on the control variable. We construct a suitable weak formulation, study its well-
posedness, and design a Galerkin spectral method for its numerical solution. The
main contribution of the paper includes: (1) a priori error estimates for the space-
time spectral approximation is derived; (2) a projection gradient algorithm is
designed to efficiently solve the discrete minimization problem; (3) some numerical
experiments are carried out to confirm the efficiency of the proposed method. The
obtained numerical results show that the convergence is exponential for smooth
exact solutions.

1 Introduction

Let � D .�1; 1/; I D .0; T /; T > 0. We consider the following linear-quadratic
optimal control problem for the control variable q under constraints:

min
q
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Z T

0

Z

�

.u.x; t/ � Nu.x; t//2dxdt C �

2

Z T

0

Z

�

q2.x; t/dxdt
o
; (1)
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where � and Nu are given, u is governed by:

0@
˛
t u.x; t/ � @2

xu.x; t/ D f .x; t/ C q.x; t/; 8.x; t/ 2 � � I;

u.x; 0/ D u0.x/; 8x 2 �;

u.�1; t/ D u.1; t/ D 0; 8t 2 I;

(2)

with 0@
˛
t (0 < ˛ < 1) denoting the left Caputo fractional derivative and q satisfying

Z T

0

Z

�

q.x; t/dxdt � 0: (3)

The optimal control problem (1)–(3) has been subject of many research in
scientific and engineering computing. Although most research on control problems
have been focused on partial differential equations of integer order, we are seeing a
growing interest for research on using fractional partial differential equations, which
are novel extensions of the traditional models. It has been found that the fractional
order model can provide a more realistic description for some kind of complex
systems in the fields covering control theory [16], viscoelastic materials [11, 13],
anomalous diffusion [3, 5, 10], advection and dispersion of solutes in porous or
fractured media [2], and etc. [6, 14, 19].

An approach for the numerical solution of the fractional optimal control problem
(FOCP) was first proposed in [1], where the fractional variational principle and
the Lagrange multiplier technique were used. Following this idea, Frederico and
Torres [8, 9] formulated a Noether-type theorem in the general context and studied
fractional conservation laws. In [17], a scheme using eigenfunctions expansion
was derived for FOCP in a 2-dimensional distributed system. Also, by means of
eigenfunction expansion approach, ROzdemir [18] investigated the control problem
of a distributed system in cylindrical coordinates.

More recently, Mophou [15] applied the classical control theory to a fractional
diffusion equation, involving a Riemann-Liouville fractional time derivative. The
existence and uniqueness of the solution were established. Dorville et al. [7]
extended the results of [15] to a boundary fractional optimal control with finite
observation expressed in terms of the Riemann-Liouville integral of order ˛:

However, none of the above work has studied the error estimates of the approaches.
In this paper we consider the optimal control problem associated to the time

fractional diffusion equation (2) with Caputo fractional derivative. Differing from
the approach based on the GrRunwald-Letnikov or eigenfunctions expansion, we con-
struct a spectral approximation in both space and time directions based on the weak
formulation introduced in [12]. We will see that the spectral method shows great
advantages over low-order methods in approximating the optimal control problem
with control integral constraints. Moreover, as compared to the unconstrained
method considered in our previous work [20], the presence of the control constraints
here leads to many additional difficulties, one of which is that the constrained
problem requires some additional variational inequalities. The purpose of this work
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is to derive a priori error estimates for the space-time spectral approximation to the
underlying problem, and propose an efficient algorithm to solve the discrete control
problem.

The outline of the paper is as follows: In the next section we formulate the
optimal control problem under consideration and derive the optimality conditions.
Section 3 is devoted to the spectral discretization of the optimal problem. In Sect. 4,
a priori error estimates for the control, state, and adjoint variables are provided.
Finally we carry out, in Sect. 5, some numerical tests to verify the theoretical results.

2 Formulation of the Problem and Optimization

Let c be a generic positive constant. We use the expression A . B to mean that
A � cB , and use the expression A Š B to mean that A . B . A.

Let ˝ D � � I . For a domain O , which may be �; I or ˝ , we use
L2.O/; H s.O/, and H s

0 .O/ to denote the usual Sobolev spaces, equipped with the
norms k�k0;O and k�ks;O respectively. For the Sobolev space X with norm k�kX ,
we define the space H s.I I X/ WD fvj kv.�; t/kX 2 H s.I /g, endowed with the
normkvkH s.I IX/ WD kkv.�; t/kXks;I . Particularly, when X stands for H �.�/ or
H

�
0 .�/, the norm of the space H s.I I X/ will be denoted by k�k�;s;˝ . Hereafter,

in cases where no confusion would arise, the domain symbols I; �; ˝ may be
dropped from the notations.

We also introduce the state space Bs.˝/ D H s.I; L2.�// \ L2.I; H 1
0 .�//;

8s > 0; equipped with the norm kvkBs.˝/ D .kvk2
H s.I;L2.�// C kvk2

L2.I;H 1
0 .�//

/1=2.
Now we consider the following weak formulation of the state equation (2): given

q; f 2 L2.˝/, find u 2 B
˛
2 .˝/, such that

A .u; v/ D .f C q; v/˝ C
�

u0.x/t�˛

� .1 � ˛/
; v

�

˝

; 8v 2 B
˛
2 .˝/; (4)

where the bilinear form A .�; �/ is defined by

A .u; v/ WD
�

R
0 @

˛
2
t u; R

t @
˛
2

T v
�

˝
C .@xu; @xv/˝:

Here, R
0 @

˛
2
t and R

t @
˛
2

T respectively denote the left and right Riemann-Liouville
fractional derivative of order ˛

2
.

It has been proved [12] that the following continuity and coercivity hold

A .u; v/ . kuk
B

˛
2 .˝/

kvk
B

˛
2 .˝/

; A .v; v/ & kvk2

B
˛
2 .˝/

; 8u; v 2 B
˛
2 .˝/;

and the problem (4) is well-posed.
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To formulate the problem we introduce the admissible set K associated to (3) as
K WD ˚

q 2 L2.˝/ W R
˝

q.x; t/dxdt � 0
�
, and define the cost functional:

J .q; u/ WD 1

2
ku � Nuk2

0;˝ C �

2
kqk2

0;˝ ; .q; u/ 2 K � B
˛
2 .˝/: (5)

Then the optimal control problem reads: find .q�; u.q�// 2 K � B
˛
2 .˝/, such that

J .q�; u.q�// D min
.q;u/2K�B

˛
2 .˝/

J .q; u/ subject to (4): (6)

The well-posedness of the state problem ensures the existence of a control-to-
state mapping q 7! u D u.q/ defined through (4). By means of this mapping we
introduce the reduced cost functional J.q/ WD J .q; u.q//; q 2 L2.˝/: Then the
optimal control problem (6) is equivalent to: find q� 2 K , such that

J.q�/ D min
q2K

J.q/: (7)

The first order necessary optimality condition for (7) reads

J 0.q�/.ıq � q�/ � 0; 8ıq 2 K; (8)

where J 0.q�/.�/ is the gradient of J.q/, defined through the GOateaux derivative. The
convexity of the quadratic functional implies that (8) is also sufficient for optimality.

Lemma 1. It holds

J 0.q/.ıq/ D .�q C z.q/; ıq/˝; 8ıq 2 L2.˝/; (9)

where z.q/ D z is the solution of the following adjoint state equation

t @
˛
T z.x; t/ � @2

xz.x; t/ D u.x; t/ � Nu.x; t/; 8.x; t/ 2 ˝;

z.x; T / D 0; 8x 2 �;

z.�1; t/ D z.1; t/ D 0; 8t 2 I;

(10)

with t @
˛
T being the right Caputo fractional derivative of order ˛.

Proof. The proof goes along the same lines as Theorem 3.1 in [20]. ut
The weak form of (10) reads: find z 2 B

˛
2 .˝/, such that

A .'; z/ D .u � Nu; '/˝; 8' 2 B
˛
2 .˝/: (11)

It can also be proved that (11) admits a unique solution for any given u 2 B
˛
2 .˝/.

In what follows we will need the mapping q ! u.q/ ! z.q/, where for any
given q, u.q/ is defined by (4), and once u.q/ is known z.q/ is defined by (11).
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Theorem 1. Let .q�; u.q�// be the solution of the optimal control problem (6) and
z.q�/ be the corresponding adjoint state. Then we have

�q� D maxf0; z.q�/g � z.q�/

where z.q�/ D R
˝

z.q�/=
R

˝
1.

Proof. The proof is similar to Theorem 3.1 in [4]. ut

3 Space-Time Spectral Discretization

We define the polynomial space P 0
M .�/ WD PM .�/ \ H 1

0 .�/; SL WD P 0
M .�/ ˝

PN .I /, where PM denotes the space of all polynomials of degree less than or equal
to M , L stands for the parameter pair .M; N /.

Then we consider the spectral approximation to (4): find uL.q/ 2 SL such that

A .uL.q/; vL/ D .f C q; vL/˝ C
�

u0.x/t�˛

� .1 � ˛/
; vL

�

˝

; 8vL 2 SL: (12)

The following estimate, derived in [12], will be used in the analysis later on.

Lemma 2. For any q 2 L2.˝/, let u.q/ be the solution of (4), uL.q/ be the solution
of (12). Suppose u 2 H

˛
2 .I I H �.�// \ H � .I I H 1

0 .�//, 0 < ˛ < 1; � > 1; � � 1,
then we have

ku.q/ � uL.q/k
B

˛
2 .˝/

. N
˛
2 �� kuk0;� C N �� kuk1;� C N

˛
2 ��M �� kuk�;�

CM �� kuk�; ˛
2

C M 1�� kuk�;0 :
(13)

Similar to the continuous case, we introduce the semidiscrete reduced cost
functional JL W L2.˝/ ! R W

JL.q/ WD J .q; uL.q//; q 2 L2.˝/; (14)

where uL.q/ is given by (12). Then we consider the following auxiliary optimal
problem: find q� 2 K , such that

JL.q�/ D min
q2K

JL.q/: (15)

The solution q� of above problem fulfills the first order optimality condition

J 0
L.q�/.ıq � q�/ � 0; 8ıq 2 K; (16)
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where

J 0
L.q/.�/ D .�q C zL.q/; �/˝; 8q; � 2 K; (17)

with zL.q/ 2 SL being the solution of the semidiscrete adjoint problem:

A .'L; zL.q// D .uL.q/ � Nu; 'L/˝; 8'L 2 SL: (18)

Now we consider the approximation of the control space to obtain the fully
discrete optimal control problem. To this end, we introduce the finite dimensional
subspace for the control variable: KL D K \ .PM .�/ ˝ PN .I //. Then the full
discrete optimal control problem reads: find q�

L 2 KL, such that

JL.q�
L/ D min

qL2KL

JL.qL/; (19)

where JL.�/ is defined in (14). The unique solution of (19), q�
L, satisfies:

J 0
L.q�

L/.ıq � q�
L/ � 0; 8ıq 2 KL: (20)

Remark 1. Although the polynomial degree used to approximate the control
variable may be different from those for the discretization of the state variable,
we choose to use the same degree pair .M; N / for simplification of the notation.

4 A Priori Error Estimates

In order to carry out an error analysis for the spectral approximation (19), we first
recall two results to be used in what follows.

Lemma 3 ([20]). For all p; q 2 L2.˝/, we have

J 0
L.p/.p � q/ � J 0

L.q/.p � q/ � � kp � qk2
0;˝ : (21)

Lemma 4 ([20]). Let q 2 L2.˝/ be a given control. Suppose z.q/ 2 B
˛
2 .˝/ is the

continuous adjoint state determined by (11) and zL.q/ is the solution of (18). Then

kz.q/ � zL.q/k
B

˛
2 .˝/

. ku.q/ � uL.q/k0;˝ C inf8'L2SL

kz.q/ � 'Lk
B

˛
2 .˝/

: (22)

We are now in a position to derive one of the main results of this paper.

Lemma 5. Let q� 2 K be the solution of the continuous optimization problem (7),
q�

L 2 KL be the solution of its discrete counterpart (19). Suppose q� 2
L2.I I H �.�// \ H �.I I L2.�//, � > 1; � � 1, then it holds

kq� � q�
Lk0;˝ � N �� kq�k0;� C M �� kq�k�;0 C kz.q�/ � zL.q�/k0;˝ : (23)
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Proof. It follows from (21), (8) and (20) that for any pL 2 KL,

� kq� � q�
Lk2

0;˝

� J 0
L.q�/.q� � q�

L/ � J 0
L.q�

L/.q� � q�
L/

D J 0
L.q�/.q� � q�

L/ � J 0.q�/.q� � q�
L/ C J 0.q�/.q� � q�

L/ � J 0
L.q�

L/.q� � q�
L/

� J 0
L.q�/.q� � q�

L/ � J 0.q�/.q� � q�
L/ � J 0

L.q�
L/.q� � pL/

D .zL.q�/ � z.q�/; q� � q�
L/˝ C .zL.q�

L/ C �q�
L; pL � q�/˝

� c.ı/ kzL.q�/ � z.q�/k2
0;˝ C ı kq� � q�

Lk2
0;˝ C .zL.q�

L/ C �q�
L; pL � q�/˝;

(24)

where ı is an arbitrary small positive number, c.ı/ is a constant dependent on ı.
Furthermore, for the last term in the above estimate, we have

.zL.q�
L/ C �q�

L; pL � q�/˝

D .z.q�/ C �q�; pL � q�/˝ C .�q�
L � �q�; pL � q�/˝

C.zL.q�
L/ � zL.q�/; pL � q�/˝ C .zL.q�/ � z.q�/; pL � q�/˝

� .z.q�/ C �q�; pL � q�/˝ C �ı kq� � q�
Lk2

0;˝ C .� C 2/C.ı/ kpL � q�k2
0;˝

Cı kzL.q�
L/ � zL.q�/k2

0;˝ C ı kzL.q�/ � z.q�/k2
0;˝ : (25)

Notice that zL.q�
L/ � zL.q�/ solves

A .'L; zL.q�
L/ � zL.q�// D .uL.q�

L/ � uL.q�/; 'L/˝; 8'L 2 SL; (26)

and uL.q�
L/ � uL.q�/ satisfies

A .uL.q�
L/ � uL.q�/; vL/ D .q�

L � q�; vL/˝; 8vL 2 SL: (27)

Thus taking 'L D zL.q�
L/ � zL.q�/ in (26) and vL D uL.q�

L/ � uL.q�/ in (27) gives

kzL.q�
L/ � zL.q�/k

B
˛
2 .˝/

� c1 kuL.q�
L/ � uL.q�/k

B
˛
2 .˝/

� c1 kq� � q�
Lk0;˝ :

(28)

Then plugging (25) and (28) into (24) yields

�
��q� � q�

L

��2

0;˝ � .z.q�/ C �q�; pL � q�/˝ C c2ı
��q� � q�

L

��2

0;˝ C .� C 2/c.ı/
��pL � q�

��2

0;˝

C .ı C c.ı//
��zL.q�/ � z.q�/

��2

0;˝ ;
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where c2 D 1 C � C c1. Now by taking ı D �
2c2

, we obtain, 8pL 2 KL,

��q� � q�

L

��2

0;˝
. .z.q�/ C �q�; pL � q�/˝ C ��pL � q�

��2

0;˝
C ��zL.q�/ � z.q�/

��2

0;˝
:

(29)

Let ˘N and ˘M be the standard L2-orthogonal projectors defined in I and �,
respectively. Then, it holds

.q� � ˘N ˘M q�; rL/˝ D 0; 8rL 2 PM .�/ ˝ PN .I /;

and in particular

.q� � ˘N ˘M q�; 1/˝ D 0;

that is
Z

˝

˘N ˘M q�dxdt D
Z

˝

q�dxdt � 0:

This means ˘N ˘M q� 2 KL. Thus by taking pL D ˘N ˘M q� in (29), we get

��q� � q�

L

��2

0;˝

. .z.q�/ C �q�; ˘N ˘M q� � q�/˝ C N �2�
��q�

��2

�;0 C M �2�
��q�

��2

0;� C ��zL.q�/ � z.q�/
��2

0;˝ :

(30)

Next, it follows from Theorem 1 that

z.q�/ C �q� D maxf0; z.q�/g D const;

and hence

.z.q�/ C �q�; ˘N ˘M q� � q�/˝ D 0: (31)

Finally, (23) results from (30) and (31). ut
Using the above Lemmas and following the same lines as the proof of

Theorem 4.1 in [20], we obtain the main result concerning the approximation
errors.

Theorem 2. Suppose q� and q�
L are respectively the solutions of the continuous

optimization problem (7) and its discrete counterpart (19), u.q�/ and uL.q�
L/

are the state solutions of (4) and (12) associated to q� and q�
L respectively,

and z.q�/ and zL.q�
L/ are the associated solutions of (11) and (18) respectively.



A Spectral Method for Optimal Control Problems Governed by the Time. . . 411

If q� 2 L2.I I H �.�// \ H �.I I L2.�// and u.q�/; z.q�/ 2 H
˛
2 .I I H �.�// \

H �.I I H 1
0 .�//, 0 < ˛ < 1; � > 1 and � � 1, then the following estimate holds:

kq� � q�
Lk0;˝ C ku.q�/ � uL.q�

L/k
B

˛
2 .˝/

C kz.q�/ � zL.q�
L/k

B
˛
2 .˝/

. N �� kq�k0;� C M �� kq�k�;0 C N
˛
2 �� .ku.q�/k0;� C kz.q�/k0;� /

CN �� .ku.q�/k1;� C kz.q�/k1;� / C N
˛
2 �� M ��.ku.q�/k�;� C kz.q�/k�;� /

CM ��.kz.q�/k�; ˛
2

C ku.q�/k�; ˛
2
/ C M 1��.ku.q�/k�;0 C kz.q�/k�;0/:

5 Optimization Algorithm and Numerical Results

We carry out in this section a series of numerical experiments and present some
results to validate the obtained error estimates. We first propose below a projection
gradient optimization algorithm to solve the optimization problems.

Projection gradient optimization algorithm Choose an initial control q
.0/
L , and

set k D 0.

(a) Solve problems

A
�

uL

�
q

.k/
L

	
; vL

�
D

�
f C q

.k/
L ; vL

�
˝

C
�

u0.x/t�˛

� .1 � ˛/
; vL

�

˝

; 8vL 2 SL;

(32)

A
�
'L; zL

�
q

.k/
L

	� D
�

uL

�
q

.k/
L

	 � Nu; 'L

�
˝

; 8'L 2 SL:

(33)

Let d
.k/
L D zL.q

.k/
L / C �q

.k/
L ;

(b) Solve problems

A .Qu.k/
L ; vL/ D.d

.k/
L ; vL/˝; 8vL 2 SL; (34)

A .'L; Qz.k/
L / D.Qu.k/

L ; 'L/˝; 8'L 2 SL; (35)

and set Qd .k/
L D Qz.k/

L C �d
.k/
L , �k D .d

.k/
L ;d

.k/
L /˝

. Qd.k/
L ;d

.k/
L /˝

;

(c) Update: q
.kC 1

2 /

L D q
.k/
L � �kd

.k/
L , q

.kC1/
L D � min



0; q

.kC 1
2 /

L

�
C q

.kC 1
2 /

L ;

(d) If
���d

.k/
L

��� �tolerance, then take q�
L D q

.kC1/
L and solve problems (12) and (18)

to get uL.q�
L/ and zL.q�

L/;

Else, set k D k C 1, repeat (a)–(d).
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Fig. 1 Convergence history of the gradient of the objective function. (a) q.0/ D 15q� . (b) q.0/ D c
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Fig. 2 Impact of � on the convergence rate of the gradient of the cost functional

Numerical results Let T D 1 and consider problem (6) with the exact solutions:

u.q�/ D sin 	x cos 	t; z.q�/ D sin 	x sin 	.1�t/; �q� D maxf0; z.q�/g�z.q�/:

In the first test, we investigate the impact of the initial guess on the
convergence of the projection gradient optimization algorithm. We start by
considering q.0/ D 15q�. In Fig. 1a, we present the convergence history of the
gradient of the objective function as a function of the iteration number with
M D 20; N D 20; ˛ D 0:5; � D 1. We see that the iterative method converges
within eight iterations. We then take q.0/ to be constant c with c D 0 or 10, and
repeat the same computation as the previous test. The result is given in Fig. 1b.
These results seem to tell that the initial guess has no significant effects on the
convergence of the projection gradient iterative algorithm.

We then study the effect of the regularization parameter � on the convergence
rate of the optimization algorithm. In Fig. 2 we plot the convergence history versus
the iteration number with M D N D 18; ˛ D 0:5, and q.0/ D 0 for several values
of � ranging from 0 to 1. It is observed that the algorithm has better convergence
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property for � D 1. The convergence slows down as � decreases. In particular, the
algorithm fails to converge with � D 0.

In what follows we fix q.0/ D 0 and � D 1 to investigate the error behavior of
the numerical solution. In Fig. 3 we plot the errors as functions of the polynomial
degrees M with ˛ D 0:4; N D 20. As expected, the errors show an exponential
decay. The errors versus N with M D 20 are shown in Fig. 4. The error curves
indicate that the convergence in time is also exponential.

6 Concluding Remarks

We have presented an efficient optimization algorithm for the fractional control
problem based on the spectral approximation. A priori error estimates for the
numerical solution are derived. Some numerical experiments have been carried
out to confirm the theoretical results. However there are many important issues
needed to be addressed. For example, we can consider more complicated control
problems and constraint sets. Besides, although our analysis and algorithm are
designed for the optimization of the distributed control problem, we hope that they
are generalizable to a greater variety of situations such as minimization problems
associated to boundary conditions, diffusion coefficient, and so on.
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