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Abstract In this work, a geometric discretization of the Navier-Stokes equations
is sought by treating momentum as a covector-valued volume-form. The novelty
of this approach is that we treat conservation of momentum as a tensor equation
and describe a higher order approximation to this tensor equation. The resulting
scheme satisfies mass and momentum conservation laws exactly, and resembles a
staggered-mesh finite-volume method. Numerical test-cases to which the discretiza-
tion scheme is applied are the Kovasznay flow, and lid-driven cavity flow.

1 Navier-Stokes Equations

Mimetic discretizations aim to represent physics in a discrete sense, in contrast to
differential formulations, which are concerned with the limit h ! 0. For the case
in which h ¤ 0 geometrical considerations play an important role in the correct
discrete formulation, [1,2,4,7,10]. Application of these ideas to continuum models
are described in [5, Appendix A] and [8, 13]. The novel aspect in this paper is that
continuum ideas are applied to incompressible, viscous flows using spectral basis
functions.
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We start with the incompressible Navier-Stokes equations (� D 1), written in the
integral formulation, as given in many textbooks and we try to make precise what
these statements mean. It is important to give an accurate meaning to all variables,
because when we want to represent these physical quantities on finite grids, we
want to preserve the main structure of the equations. Conservation of mass (� D 1)
is usually given by

Z
@˝

v � n dS D 0 ; (1)

and conservation of momentum,

Z
˝

@v
@t

dV C
Z

@˝

v ˝ v � n dS D
Z

@˝

� � n dS (2)

and Newtonian stress relation

� D �pI C �
�
rv C .rv/T

�
: (3)

Here v; p; � and � denote velocity, pressure, total stress tensor and dynamic
viscosity, respectively; I and n are the identity matrix and the outward unit normal
to the boundary, respectively. The above are balance equations for volumetric
quantities that depend on their fluxes through surfaces and are more physical than
their differential counterparts.

1.1 Momentum and Velocity

The first term in (2) indicates that velocity (and its time derivative) can be integrated
over a volume. But velocity is generally not associated to volumes, but is defined
as the tangent vector at a given point along the trajectory of a particle. Velocity
is therefore a vector-valued 0-form. This statement means that to every point in
space-time (a zero-dimensional object) we associate a vector. Let V be the linear
vector-space of all possible vectors at a given point in space, then we can define
the space V � of all linear functionals on V . Elements of V � are called covectors.
The spaces V and V � are isomorphic, but there is no canonical isomorphism which
relates an element v 2 V to an element ˛ 2 V �. Once a metric is defined, one can
associate with every vector at a point a corresponding covector. This map is called
the flat operator: [ W V ! V �. The covector associated with a vector v is then
denoted by v[.

The linear vector space V associated to a point p is called the tangent space at p,
denoted by Tp˝ . The corresponding dual space is called the cotangent space at p

denoted by T �
p ˝ . The collection of all tangent spaces in the domain ˝ is called the

tangent bundle, T ˝ and the collection of cotangent spaces is called the cotangent
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bundle, T �˝ . Let ˛ 2 T �˝ and v 2 T ˝ , then h˛; vi associates to each point p in
˝ the value ˛jp .vjp/.

With every k-form we can associate a .n � k/-form with a different type of
orientation, see [2]. The collection of all k-forms on ˝ is denoted by �k.˝/.
The metric dependent operator which establishes this connection is the Hodge-?
operator. For continuum models we need to combine the [ and Hodge-? into the
operator ?[, (see also [13] for such operations)

?[ W T ˝ ˝ �k.˝/ ! T �˝ ˝ �n�k.˝/ :

If we apply this operator to velocity v 2 T ˝ ˝ �0.˝/ we obtain

m WD ?[.v/ 2 T �˝ ˝ �n˝ :

Similarly, we can define ?] W T �˝ ˝ �k.˝/ ! T ˝ ˝ �n�k.˝/. The physical
quantity m is called momentum density or the momentum per unit volume. This is a
covector-valued volume form. So instead of integrating ‘velocity’ over the domain
we are tempted to write

Z
˝

m D
Z

˝

?[.v/ :

This integral is not defined, because it assumes that we can integrate over the tangent
spaces in ˝ . The basis in each tangent space, however, may differ from point to

point. In order to define the momentum integral we introduce the operator
�^

�^ W �
T �˝ ˝ �k.˝/

� ˝ �
T ˝ ˝ �l.˝/

� ! �kCl .˝/ ;

given by ˛ 2 T �˝ ˝ �k.˝/ and w 2 T ˝ ˝ �l.˝/

˛
�^ w D h˛; widx.k/ ^ dx.l/ :

This operation yields a .k C l/-form which can be integrated over .k C l/-dimensi-
onal submanifolds.

If we apply momentum density m to any vector field w (not necessarily a velocity

field) using this operator we get m
�^ w 2 �n.˝/ and this can be integrated over

a volume. So the proper way to interpret the time rate of change of momentum
should be

Z
˝

@

@t
?[ .v/

�^ w ; 8w 2 T ˝ ˝ �0.˝/ : (4)

In many textbooks on fluid dynamics the distinction between momentum density
(usually called ‘momentum’) and velocity is ignored; one is just a scalar multiple of
the other, m D �v, but the use of the vector w in (4) is generally incorporated. The
textbooks then say: ‘We consider this equation for each component separately . . . ’.
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This is a strange sentence, because components have no physical relevance, only
vectors, i.e. components plus associated basis vectors are physically relevant. But
what is meant by this statement is that for the vector field w in (4) a uniform
vector field in the xi -direction is taken. The generality ‘all vector fields’ is in these
textbooks compensated by the fact that momentum conservation should hold for ‘all
volumes’.

1.2 Convection

Now that we understand how momentum density should be integrated over a
volume, we can also define convection of momentum density. After pairing with an
arbitrary vector field, w, we obtain a volume form and we apply the Lie derivative to
this volume form, see [11]. The Lie derivative for a volume form, ˇ.n/, is given by

Lvˇ.n/ D divˇ.n/ ;

and then the generalized Stokes theorem converts this exact form to a boundary
integral

Z
˝

Lvm
�^ w D

Z
@˝

iv.m
�^ w/ : (5)

Compare this expression with the convective term in (2) and note that it does not
require an inner product nor the definition of an outward unit normal. The inner
product is avoided since we work with differential forms and duality pairing is
metric-free and the orientation of the elements in the mesh, [7], avoids the use of
explicitly defined normals.

1.3 Stress Tensor and Surface Force Density

The last term in (2) denotes the action of the viscous forces on the flow represented
by the stress tensor � . The stress tensor is an infinitesimal quantity in the limit for
h ! 0. On a finite mesh we can identify volumes over which we integrate the
momentum density and the boundary of these volumes where surface forces act.
In continuum mechanics forces are ‘smeared out’, so we introduce the surface force
density given by t 2 T �˝ ˝ �n�1.˝/. This is a covector-valued .n � 1/-form.
Forces are generally associated with covectors, [2, 12], and in the current setting
need to be covectors in order to equate them to the time rate of change of momentum
which was also covector-valued. It is furthermore a .n � 1/-form since it acts on the
boundary of n-dimensional volumes, see also [5, Appendix A] and [8, 13]. Again,
covector-valued forms cannot be integrated, so the proper way is to pair it with an
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arbitrary vector field w before integration over surfaces is possible. The momentum
equation then becomes

d

dt

Z
˝

?[.v/
�^ w C

Z
@˝

iv.?[.v/
�^ w/ D

Z
@˝

t
�^ w ; 8w 2 T ˝ ˝ �0.˝/ :

(6)

1.4 Newtonian Stress Relation

The pressure scalar is an outer-oriented volume form, p.n/. Pressure force density is
represented as a covector-valued .n � 1/-form

p D .?p/ dxi ˝ dx1 ^ : : :bdxi : : : ^ dxn ;

where the notation O� indicates that this term is omitted and dxi ˝ dx1 ^ : : :bdxi : : : ^
dxn is the identity tensor, see also example [5, §9.3a]. This description agrees

with [9] for Stokes flow. Note that p
�^ w D iwp.n/.

The velocity gradient is represented as the covariant differential of the velocity
vector field, rv which is a vector-valued 1-form, see [5, §9.3b]. In this paper we
restrict ourselves to Euclidean space for which the connection 1-forms vanish.
Applying ?[

�.rv/ transforms the vector-valued 1-form into a covector-valued
.n � 1/-form, where the diffusion coefficient is contained in the Hodge-? operator.
In this paper we assume � to be constant.

1.5 Conservation of Mass

Let !.n/ be the standard volume form, then the divergence of a vector field is defined
as .div v/!.n/ D Lv!.n/ D div!.n/. Integration over a volume and applying Stokes
theorem gives

Z
˝

div!.n/ D
Z

@˝

iv!.n/ :

This is the proper translation of (1) as found in textbooks on incompressible flow.
The velocity flux field, iv!.n/, is isomorphic to the velocity vector field. The velocity
flux field will be used in the discrete representation of velocity in the Navier-Stokes
equations. The relation between the velocity fluxes iv!.n/ and ?[.v/ is given by

?[ .v/
�^ w D w[ ^ iv!.n/ ; 8w 2 T ˝ ˝ �0.˝/ : (7)

The volume forms and .n � 1/-forms appearing in all integrals are all outer-
oriented.



398 D. Toshniwal et al.

Fig. 1 The velocities are
discretized as outer-oriented
mass-fluxes, and live on
surfaces (S) of the
Gauss-Lobatto grid shown
above, while pressure is
discretized on volumes (˝).
Momenta are discretized on
staggered volumes ( Q̋ ) and
their fluxes on the surfaces
( QS ) surrounding these
staggered volumes

2 Discrete Representation

In the full differential geometric setting as described above, the integration only
makes sense when paired with all vector fields w. Here we choose the uniform
vector field in the x- and y-direction only and impose that conservation should hold
for all volumes in our spectral elements. These volumes are generated by the Gauss-
Lobatto grid in the spectral element and will be denoted by ˝ij . So in this section
w is either @x or @y .

Figure 1 displays one spectral element and its Gauss-Lobatto grid (solid lines)
in 2D. The dotted gray lines represent the dual grid, see [7, 10].

Momentum is reduced onto a volume consisting of a primal .n � 1/-chain and
a dual 1-chain. In 2D these volumes consist of tensor products of primal and dual
edge as shown in Fig. 1 by volumes enclosed by solid (primal) and dashed (dual)
lines. The location of the unknowns coincides with those in staggered finite volume
methods. The difference is that in this formulation the unknowns represent integral
values, whereas in finite volume methods the unknowns either represent average
or nodal values. Let us denote the primal surfaces by Si , then discrete velocity is
given by

Nvi D
Z

Si

iv!.n/ :

This yields a metric-free description of conservation as mass as shown in [6,9]. The
reduction of the pressure field is on outer-oriented volumes, see also [9].
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Integrals of momentum flux, F .n�1/, pressure force, iwp.n/, and velocity gradi-
ents are represented on the boundary of the momentum volumes indicated in Fig. 1.

Once we have the discrete variables for mass flux, momentum and pressure, we
use the spectral element functions described in [6,10], to interpolate these values in
such a way that the integral values are preserved.

Using (7) we can write the relation between momentum and velocity flux as

Z
Q̋ ij

m
�^ w �

Z
Q̋ ij

w[ ^ iv!.n/ D 0 �! Nmw � P m
w Nu D 0 ; (8)

where Q̋ ij are the volume where momentum is reduced, see Fig. 1, and P m
w is the

matrix which maps discrete velocity (which is discretized as mass-fluxes) to discrete
momentum (on the staggered-grid). The discrete representation of momentum-flux,
pressure force iwp.n/ and traction forces, ?[

�.rwv/ (which can be equivalently

written as ?[
�.r ?] ?[v/

�^ w D ?[
�.r ?] m/

�^ w, which, in Cartesian coordinates

and with constant w becomes d ?
�.m

�^ w/), are given by

• Convective-flux, see [11], F .1/
w D iv.m

�^ w/:

�
F .1/

w ; ˇ.1/
�

˝
�

�
m

�^ w; v[ ^ ˇ.1/
�

˝
; D 0 ;

�! QM11
NFw � QCv Nmw D 0 :

(9)

• Pressure-force, H .1/
w D iwp.2/:

H .1/
w � p.2/.w/ D 0 �! NHw � P p

w Np D QBP : (10)

• Diffusive-fluxes, T .1/
w D d ?

�.m
�^ w/:

�
T .1/

w ; ˇ.1/
�

˝
�

�
m

�^ w; dˇ.1/
�

˝
D �

Z
@˝

ˇ.1/ ^ ?.m
�^ w/ ;

�! QM11
NTw � QDT

21
QM22 Nm D QBT :

(11)

The discrete continuity equation is given by

D21 Nu D 0 : (12)

In the above, ˇ.1/ is an arbitrary 1-form; QM11 and QM22 are mass-matrices for
1- and 2-forms on the staggered mesh; Cv is the convection matrix and depends on v
(which can be retrieved from reconstruction of Nv using the edge basis, [7]); P

p
w is the

matrix which converts the scalar Np to pressure-force 1-forms; QBP and QBT are the
boundary integrals for pressure and stress, respectively, obtained from integration
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Fig. 2 Convergence plots for Kovasznay flow with mesh size, h, and order, p. Optimal rates are
shown ( ) for the h-refinement cases. nElemX and nElemY refer to the number of elements
in X and Y directions, and p refers to the order of elements used. (a) Pressure, h-refinement. (b)
Pressure, p-refinement. (c) Velocity, h-refinement. (d) Velocity, p-refinement

by parts; and D21 and QD21 are incidence matrices which discretely represent the
exterior-derivative with entries containing only f�1; 0; 1g. The algebraic system
thus obtained is solved for Nv and Np for w D f@x; @yg.

3 Results

3.1 Kovasznay Flow

Kovasznay flow is an analytical solution to Navier-Stokes’ equations. The solution
is u D 1 � e�xcos.2�y/, v D �

2�
e�xsin.2�y/ and p D 1

2
.1 � e2�x/, where � D

1
2�

�
q

1
4�2 C 4�2. The kinematic-viscosity chosen for this flow was � D �

�
D 1

40

and the computational domain considered was ˝ D Œ�0:5 1	 � Œ�0:5 � 0:5	. The
h; p-adaptivity plots for this problem are given in Fig. 2 for pressures (Fig. 2a, b)
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a b

c d

Fig. 3 (Top) Streamfunction and pressure contours with a single spectral element of order 16.
(Bottom) Centerline velocities are plotted ( ) and compared with the solutions of [3] ( ), and
the solutions are found to be reasonably close. Mesh size is 4�4 and made up of elements of order
6. (a) Stream-function contours. (b) Pressure contours. (c) X-velocity at x D 0.5. (d) Y-velocity at
y D 0.5

and velocities (Fig. 2c, d). It can be seen that the solutions converge exponentially
and optimally. Some oscillatory behaviour is observed in convergence for a mesh
with a single element, and this is attributed to the fact that our basis may not be
capturing certain modes (even/odd).

3.2 Lid-Driven Cavity Flow

The second numerical test-case chosen was the classic lid-driven cavity flow on a
unit square domain with the top-lid velocity, uL D �1 and a Reynolds number
of 1000. The solutions for the pressure and streamfunction contours calculated for
a single spectral element of order p D 16 are shown in the top-half of Fig. 3.



402 D. Toshniwal et al.

Centerline-velocity solutions with a lower order of p D 6 but with multiple
elements (4 � 4 mesh) and comparisons with the results of [3] are also shown in
the bottom-half of Fig. 3. Good agreement is seen between the benchmark results
and our results.
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