
Mejdi Azaïez · Henda El Fekih
Jan S. Hesthaven Editors

Spectral and High Order 
Methods for Partial 
Diff erential Equations 
ICOSAHOM 2012

Editorial Board
T. J. Barth

M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

95



Lecture Notes
in Computational Science
and Engineering 95

Editors:

Timothy J. Barth
Michael Griebel
David E. Keyes
Risto M. Nieminen
Dirk Roose
Tamar Schlick

For further volumes:
http://www.springer.com/series/3527

http://www.springer.com/series/3527




Mejdi Azaïez � Henda El Fekih
Jan S. Hesthaven
Editors

Spectral and High Order
Methods for Partial
Differential Equations
ICOSAHOM 2012

Selected papers from the ICOSAHOM
conference, June 25-29, 2012, Gammarth,
Tunisia

123



Editors
Mejdi Azaïez
Institut Polytechnique de Bordeaux
Université de Bordeaux
Pessac, France

Jan S. Hesthaven
Ecole Polytechnique Fédérale de Lausanne
EPFL-SB-MATHICSE-MCSS
Lausanne, Switzerland

Henda El Fekih
Ecole Nationale d’Ingénieurs de Tunis
Université de Tunis El Manar
Tunis, Tunisia

ISSN 1439-7358
ISBN 978-3-319-01600-9 ISBN 978-3-319-01601-6 (eBook)
DOI 10.1007/978-3-319-01601-6
Springer Cham Heidelberg New York Dordrecht London

Mathematics Subject Classification (2010): Primary: 65M70; 65N35; 65N30; 74S25; 76M10; 76M22;
78M10; 78M22

Secondary: 33Cxx; 41Axx; 65Cxx; 65Dxx; 65Lxx; 65Mxx;
65Nxx; 74Jxx; 76Mxx; 78Mxx; 80Mxx76

c� Springer International Publishing Switzerland 2014
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

www.springer.com


Foreword

This volume presents selected papers from the ninth International Conference on
Spectral and High Order Methods (ICOSAHOM’12) conference that was held at
Gammarth, Tunisia, during the week June 25–29, 2012. These selected papers were
refereed by members of the scientific committee of ICOSAHOM as well as by other
leading scientists.

The first ICOSAHOM conference was held in Como, Italy, in 1989 and marked
the beginning of an international conference series in Montpelier, France (1992);
Houston, Texas, USA (1995); Tel Aviv, Israel (1998); Uppsala, Sweden (2001);
Providence, Rhode Island, USA (2004); Beijing, China (2007); and Trondheim,
Norway (2009).

The ICOSAHOM conferences have established itself as the main meeting place
for researchers with interest in the theoretical, applied and computational aspects of
highorder methods for the numerical solution of partial differential equations.

The number of registered participants for this most recent event, the first of its
kind to be held at the African continent, exceeded 130, while the total number of
talks was 105, comprising nine invited talks, 43 talks in nine different topicspecific
mini-symposia, and 53 talks in sessions devoted to contributed papers.

The content of the proceedings is organized as follows. First, contributions from
the invited speakers are included, listed in alphabetical order according to name
of the invited speaker. Next, contributions from the speakers in mini-symposia and
from contributed sessions are included and listed in alphabetical order according to
the first author of each paper.

The success of the meeting was ensured through the generous financial support
by Institut de Mécanique et d’Ingénierie - Bordeaux, Laboratoire de Modélisation
Mathématique et Numérique pour les Sciences de l’Ingénieur (LAMSIN),
Ecole Nationale d’Ingénieurs de Tunis, Université de Tunis El Manar, Agence
Nationale de Promotion de la Recherche en Tunisie, Laboratoire de Mathématiques
Appliquées de Compiègne, Institut Français de Tunisie and European Office of
Aerospace Research and Development, Air Force Office of Scientific Research
(AFOSR) and US Air Force Research Laboratory (AFRL).
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vi Foreword

Special thanks go to our colleagues and partners, Faker Ben Belgacem and
Nabil Gmati, both central members of the organizing committee, who help enable
and share with us this wonderful experience.

Finally, the conference could not have happened without the invaluable support
and assistance of the members and graduate students of LAMSIN.

Pessac, France Mejdi Azaïez
Tunis, Tunisia Henda El Fekih
Lausanne, Switzerland Jan S. Hesthaven
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A Quasi-optimal Sparse Grids Procedure
for Groundwater Flows

Joakim Beck, Fabio Nobile, Lorenzo Tamellini, and Raúl Tempone

Abstract In this work we explore the extension of the quasi-optimal sparse grids
method proposed in our previous work “On the optimal polynomial approximation
of stochastic PDEs by Galerkin and Collocation methods” to a Darcy problem
where the permeability is modeled as a lognormal random field. We propose an
explicit a-priori/a-posteriori procedure for the construction of such quasi-optimal
grid and show its effectiveness on a numerical example. In this approach, the two
main ingredients are an estimate of the decay of the Hermite coefficients of the
solution and an efficient nested quadrature rule with respect to the Gaussian weight.

1 Introduction

Uncertainty quantification plays a crucial role in the area of groundwater flows
where, given the time and length scale of most problems, it is quite common to have
partial and fragmented knowledge about most of the system properties, e.g. on the
permeability field, forcing terms, boundary conditions. Broad classes of applications
of interest could be oil or water reservoir management, see e.g. [4].

Given the complexity of the deterministic solvers for such problems, a non-
intrusive computational approach to perform the uncertainty quantification analysis
is quite appealing. In this work we consider a Darcy problem with uncertain
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2 J. Beck et al.

permeability modeled as a lognormal random field, and we explore (rather
heuristically) the possibility to extend to this problem the quasi-optimal sparse
grid method that we had proposed in [5] for problems depending instead on a set of
uniform random variables. See also [18, 19, 21] for other probabilistic collocation
approaches to the Darcy problem, where however only isotropic approximations are
proposed.

The well-posedness of the lognormal problem has been thoroughly investi-
gated in [9, 13]. The optimal convergence rate of its so-called Polynomial Chaos
Expansion approximation has been analyzed theoretically in [16]. Although the
deterministic Darcy problem is more commonly approximated numerically in its
mixed form (see e.g. [1,6]), in this work we will consider a standard Finite Element
discretization of the primal elliptic formulation of the Darcy problem, in which the
unknown is the water pressure.

The rest of this work is organized as follows. In Sect. 2 we specify the model
assumptions on the random permeability field, on the deterministic problem and on
the quantity of interest. Section 3 deals with the finite dimensional Fourier expansion
of the random field, and Sect. 4 with the derivation of the quasi-optimal sparse grid
for the problem at hand. Finally, we present some numerical results in Sect. 5, and
draw some conclusions in Sect. 6.

2 Problem Setting

Let .˝;F ; P / be a complete probability space, where ˝ denotes the set of
outcomes, F its �-algebra, and P W F ! Œ0; 1� a probability measure. Following a
standard notation, we denote with H1.D/ the Sobolev space of square-intergrable
functions in D with square integrable derivatives. LqP .˝/ will denote the Banach
space of random functions with bounded q-th moment with respect to the probability
measureP , andLqP .˝IH1.D// the Bochner space ofH1.D/-valued random fields
with q-th bounded moment with respect to P , that is f 2 L

q
P .˝IH1.D// ,R

˝ kf .�; !/kqH1.D/
C dP.!/ <1 :

As mentioned in the introduction, the permeability field is supposed to
be uncertain. Moreover, since in hydrogeological applications the pointwise
permeability values can vary within several orders of magnitude it is rather
common to model the logarithm of the permeability as a random field, rather than
the permeability itself. Observe also that this approach automatically guarantees
positivity of the permeability. More in detail, we will make the following
assumption.

Assumption 1. The permeability a.x; !/ W D�˝ ! R is a lognormal field, that is

a.x; �/ D e�.x;�/; �.x; �/ � N .�; �2/ 8x 2 D;
where N .�; �2/ denotes a Gaussian probability distribution with expected value �
and variance �2, and �.x; !/ W D�˝ ! R is such that for x; x0 2 D the covariance
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function C�.x; x0/ D Cov Œ�.x; �/�.x0; �/� depends only on the distance kx � x0k
(“second-order isotropic stationary field”). Moreover, C�.x; x0/ D C�.kx � x0k/ is
Lipschitz continuous, and is a positive definite function.

As for the choice of C� , several models have been proposed in the literature,
depending on the specific application (exponential, spherical, gaussian, matern, hole
effect and others, see e.g. [4, 22]). Given the exploratory level of this work, we
choose here to work with with a simple Gaussian covariance function

Assumption 2. The Gaussian field �.x; !/ has a Gaussian covariance function
with correlation length Lc > 0,

C�.x; x0/ D �2 exp

 

�kx � x0k2
L2c

!

:

The Darcy problem will be set in a horizontal square domain D D .0; L/2,
L D 1, with no forcing terms. We impose a pressure gradient acting on the water
by setting p D 1 on the left boundary B1 D fx 2 D W x1 D 0 g and p D 0 on the
right boundary B2 D fx 2 D W x1 D L g. Finally, we consider a no-flux Neumann
condition on the upper and lower boundaries B3 D fx 2 D W x2 D 0 g and B4 D
fx 2 D W x2 D L g. The Darcy problem thus reads:

Strong Formulation 1. Find a random pressure p W D � ˝ ! R such that
P -almost everywhere the following equation holds

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

� div.a.x; !/rp.x; !// D 0 x 2 D;
p.x; !/ D 1 x 2 B1;
p.x; !/ D 0 x 2 B2;
a.x; !/rp.x; !/ � n D 0 x 2 B3 [ B4:

(1)

It is straightforward to see that, thanks to the Lax–Milgram lemma, (1) is well-posed
for almost every ! 2 ˝ . Proving the well-posedness of (1) in the Bochner spaces
L
q
P .˝IH1.D// for q > 0 is instead not trivial, since a is not uniformly bounded nor

uniformly coercive with respect to !. It is however possible to prove the following
result (see e.g. [2, 9, 10, 13]):

Proposition 1. For every q > 0, there exists a unique H1.D/-valued random
pressure p D p.x; !/ in LqP .˝IH1.D// solving (1).

As for quantities of interest, we aim at computing the expected value of the total
flux crossing the right boundary B2. This is indeed a random variable,

Zp.!/ D
Z

B2
a.x; !/@np.x; !/dx ; (2)

and also represents the “effective permeability” of the random medium in D.
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3 Series Expansion of the Log-Permeability Random Field

To get to a computable representation of p we need to derive an approximation of
a in terms of a finite set of N random variables yi .!/, i D 1; : : : ; N (“finite noise
approximation”). Such approximation is usually obtained by suitably truncating
a series expansion such as the Karhunen-Loève expansion, see e.g. [20]. As an
alternative, we consider here a Fourier-based decomposition of � (see e.g. [15]),
which uses trigonometric polynomials as basis functions in the physical space.
This choice allows analytical computation of the expansion and highlights the
contribution of each spatial frequency to the total field a.

Proposition 2 (Fourier expansion). Let �.x; !/ W Œ0; L�2 � ˝ ! R be a weakly
stationary gaussian random field as in Assumption 1, with pointwise variance �2.
Then the covariance function can be expanded in cosine-Fourier series

C�.
�
�x � x0�� / D �2

X

kD.k1;k2/2N20
c k cos.!k1 .x1 � x0

1// cos.!k2 .x2 � x0
2//; (3)

with !k1 D k1�
L

, !k2 D k2�
L

, and normalized Fourier coefficient c k so thatP
k2N20 c k D 1. In particular, for the Gaussian covariance function in Assumption 2

and sufficiently small values of Lc , c k are well approximated by

c k � �k1�k2 ; where �k D

8
ˆ̂
<

ˆ̂
:

Lc
p
�

2L
if k D 0

Lc
p
�

L
exp

�

� .k�Lc/
2

4L2

�

if k > 0 :
(4)

The random field � admits then the following expansion

�.x; !/ D E Œ�.x; �/�C �
X

k2N2

4X

iD1

�p
c kyk;i .!/�k;i .x/

�
(5)

where yk;i .!/ are identically distributed and independent standard Gaussian
random variables, and �k;i are defined as �k;1.x/ D cos.!k1x1/ cos.!k2x2/;
�k;2.x/ D sin.!k1x1/ sin.!k2x2/; �k;3.x/ D cos.!k1x1/ sin.!k2x2/, �k;4.x/ D
sin.!k1x1/ cos.!k2x2/.

Proof. See [27, Chap. 4].

A good approximation of � , �N , can be achieved by retaining in (5) only the N
random variables corresponding to the frequencies k in the set

K	 D
˚
k 2 N

2
0 W k21 C k22 � 	2

�
; (6)
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Table 1 Random variables needed to represent ˛% of the total
variance of a random field with Gaussian covariance function
for different correlation lengths Lc

˛ D 0:7 ˛ D 0:9 ˛ D 0:99

Lc D 0:35 N D 13 N D 25 N D 49

Lc D 0:25 N D 25 N D 49 N D 97

Lc D 0:1 N D 161 N D 293 N D 593

for a given 	 2 N. Following the argument of [9], it can be shown in particular that
�N converges to � almost surely in C0.D/ as 	 !1.

Example 1. Table 1 shows the number of random variables that need to be included
into (5) to take into account a fraction ˛ of the total variance of � for different
correlation lengths Lc . The need to include a high number of random variables
in the approximation of the random field � , and hence the high-dimensionality
of the vector y of input random variables clearly emerges. Observe that less
regular covariance functions C� will experience a slower eigenvalue decay than (4),
see e.g. [25], further enlarging the set of input random variables needed to represent
the solution. In practice, the level of truncation should be related to the error in the
variance of the solution of the PDE.

Let us now denote 
i D R the support of yi .!/, 
 D 
1 � : : : � 
N the
support of y D Œy1; : : : ; yN �, �i .yi / W 
i ! R the probability density function
of yi and �.y/ W 
 ! R the joint probability density function of y, with �.y/ D
QN
nD1 �i .yi /; �i .yi / D 1p

2�
e� y2i

2 : Having introduced the random variables yi ,

we can replace the abstract probability space .˝;F ; P / with .
;B.
 /; �.y/dy/,
where B.
 / denotes the Borel �-algebra, and hence LqP .˝/ with Lq�.
 / and
L
q
P .˝IH1.D// with L

q
�.
 IH1.D//. Moreover, the permeability and pressure

fields can now be seen as functions of x and y, a.x; !/ � aN .x; y.!// D e�N .x;y.!//,
p.x; !/ � pN .x; y.!// and the quantity of interest (2) becomes a random function
Zp W 
 ! R. We will not however address here the study on the convergence of
pN to p, see e.g. [9] to this end. Here we just mention that, following again the
argument in [9], it is possible to show that the almost sure convergence of �N to
� guarantees the almost sure convergence of aN to a in C0.D/, and that for any
q > 0 there holds kaN.	/ � akLq.˝;C0.D// � C1.q/	e

�C2.L;Lc /	2; N.	/ being the
cardinality of the set K	 defined in (6). In the rest of this work, with a slight abuse
of notation, we will therefore omit subscript �N if no confusion arise. Moreover, the
quasi-optimal Sparse Grid Collocation technique that we will present in the next
Section is able to automatically select the “most important” random variables that
should be retained for the approximation of p. This would allow us to work without
truncating the expansion of the permeability, i.e. with formally N D 1 random
variables.

The previous results on the well-posedness of the problem still hold after having
replaced ! with y, and we can write the problem in weak form.
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Weak Formulation 1. Find p 2 H1.D/˝ L2�.
 / such that p D 1 on B1, p D 0

on B2 and 8 v 2 H1
fB1[B2g.D/˝ L2�.
 /

Z




Z

D

a.x; y/rp.x; y/ � rv.x; y/ �.y/ dx dyD 0: (7)

where H1
fB1[B2g.D/ is the subset of H1.D/ functions that vanish on the Dirichlet

boundary B1 [ B2.

4 Quasi-optimal Sparse Grid Approximation

As highlighted in Example 1, both the permeability a and the pressure p depend on
a large number of random variables yi . To obtain efficiently an approximation of p
over 
 we then resort to the sparse grid method [2,3,7,23,28], that allows to obtain
an accurate representation of p while keeping the number of interpolation points
considerably lower than what would be needed if a full tensor grid approximation
was employed. In formulae, the sparse grid approximation of p is written as

pw.y/ D SmI.w/Œp�.y/ D
X

i2I.w/

NO

nD1
�m.in/
n Œp�.y/; (8)

where

• i 2 N
NC is a multiindex with non-zero components;

• �
m.in/
n D Um.in/

n � Um.in�1/
n is called “detail operator”, and is the difference

between two consecutive one-dimensional interpolants, usingm.i/ andm.i � 1/
points respectively;

• �m.i/Œp� DNN
nD1 �m.in/Œp� is called “hierarchical surplus”;

• fI.w/gw2N denotes a sequence of index sets. Each of these sets has to be admis-
sible in the following sense for the sparse grid to be consistent (see e.g. [12]):

8 i 2 I; i� ej 2 I for 1 � j � N; ij > 1; (9)

ej being the j -th canonical vector. Roughly speaking, the sparse grid approximation
of p can be understood as a linear combination of tensor grid approximations of p
over 
 , each one built over “few” points.

The efficiency of the sparse grid depends on the choice of the interpolation points
used in Um.i/

n and of the index sets I.w/. The interpolation points should be chosen
in agreement with the probability measure over
 , a good choice being given e.g. by
the Gauss-Hermite points (see e.g. [8]).

Regarding the index sets I.w/, the best strategy is to include in (8) only the
hierarchical surpluses with the highest profits [5,12,14]. The latter is defined as the
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ratio between the expected error decrease by adding a given hierarchical surplus to
the sparse grid approximation and the corresponding cost, quantified here by the
number of interpolation points in the hierarchical surplus,

I.w/ D
�

i 2 N
NC W

�E.i/
�W.i/

	 w

	

(10)

with fwgw2N decreasing to 0 as w! 1 and �E.i/, �W.i/ representing the error
and work contribution of each hierarchical surplus respectively. Note that I.w/
in (10) may not satisfy the admissibility condition (9), that has to be explicitly
enforced.

This criterion can be implemented in an adaptive procedure (see e.g. [12]) that
explores the space of hierarchical surpluses and adds to I.w/ the most profitable
according to (10). As an alternative, in [5] we have detailed an a-priori/a-posteriori
procedure to detect I.w/ based on estimates of�E.i/ and�W.i/. On the one hand,
the a-priori approach saves the computational cost of the exploration of the space of
hierarchical surpluses, but on the other hand it will be effective only if the estimates
of �E.i/ and �W.i/ are sufficiently sharp. In [5] only the case of uniform random
variables has been investigated. Deriving sharp estimates for the problem at hand,
that depends on Gaussian random variables, is the goal of the present work.

We begin with the estimate of the work contribution corresponding to an
additional index i, which can be easily computed if the considered interpolant
operators Um.in/

n are nested and the set I.w/ is admissible:

�W.i/ D
NY

nD1
.m.in/ �m.in � 1//: (11)

The estimate of the error contribution requires instead more effort. As a
preliminary step, we need to introduce a spectral basis for L2�.
 /. To this end,
let
˚
Hp.yn/

�
p2N be the family of orthonormal Hermite polynomials relative to the

weight e�y2=2=
p
2� in the n-th direction [8]. The set of multidimensional Hermite

polynomials Hq.y/ DQN
nD1 Hqn.yn/;8q 2 N

N is an orthonormal basis forL2�.
 /,
that can be used to formally construct the spectral expansion of p.y/

p.y/ D
X

q2NN
pqHq.y/; pq D

Z




p.y/Hq.y/�.y/dy: (12)

We can now state a heuristic estimate for the error contribution of the hierarchical
surplus�m.i/ in the spirit of what was done in [5], Eq. (4.9):

�E.i/ � B.i/ ��pm.i�1/

�
�
H1.D/

; (13)
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Gauss−Hermite

Fig. 1 First 35 KPN and Gauss-Hermite knots

where pm.i�1/ is the m.i � 1/-th coefficient of the spectral expansion (12), and
B.i/ is a factor that depends on the interpolation points only, in the spirit of the
Lebesgue constant. This is a reasonable heuristic assumption, since in this way the
error contribution estimate “encodes” information on both the quality of the solution
(through the decay of the spectral coefficients), and the quality of the interpolant
operator itself. Numerical results in the next section will also show the effectiveness
of (13).

To make estimates (11) and (13) computable we still need to:

1. Choose a family of nested univariate interpolant operators for the Gaussian
measure;

2. Provide an estimate for the factor B.i/ in (13);
3. Provide an estimate for the coefficients pm.i�1/ in (12) and (13).

4.1 Nested Quadrature Formulae for Gaussian Measure

The family of nested points we choose is the so-called “Kronrod-Patterson-Normal”
(KPN in short, see Fig. 1). Such family of interpolation/quadrature points is due to
Genz and Keister, see [11], that applied the Kronrod-Patterson procedure [17, 24]
to the classical Gauss-Hermite quadrature points (i.e. the roots of the Hermite
polynomials Hp.yn/). We recall that the Kronrod-Patterson procedure is a way to
modify a quadrature rule, by adding new points in a nested fashion retaining the
highest degree of exactness possible. The knots and the corresponding quadrature
weights are tabulated up to level 5 (35 nodes) and can be found e.g. at http://www.
sparse-grids.de/. For such family of points there holds

m.in/ D 1; 3; 9; 19; 35 for in D 1; : : : ; 5 (14)

i.e. consecutive interpolants are built over 1; 3; 9; 19; 35 points respectively.

4.2 Estimate for B.i/

In [5] the constant B.i/ in Eq. (13) was chosen to be equal to the product of the
Lebesgue constants of interpolant operators in each direction, B.i/ D QN

nD1 L
m.in/
n .

Such an estimate is also supported by numerical verification.

http://www.sparse-grids.de/
http://www.sparse-grids.de/
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Fig. 2 Numerical comparison between �E.i/ and jpm.i�1/j for p of the form p.y1; y2/ D
e�1�b1y�1�b2y2 . The quantities �E.i/ for i s.t. maxfi1; i2g � 4 have been computed with a
standard Smolyak sparse grid, with I.w/ D fi 2 N

N
C

W ji � 1j � wg, w D 10, and “doubling”
function m.i/: m.0/ D 0;m.1/ D 1;m.i/ D 2i�1 C 1. The Hermite coefficients jpm.i�1/j have
been computed analytically with the formula stated in Lemma 1. (a) p.y1; y2/ D e�1�1:5y1�1:5y2 .
(b) p.y1; y2/ D e�1�y1�0:2y2

However, it is not easy to obtain a sharp bound for the Lebesgue constant in case
of interpolation in spaces with Gaussian measure. Thus, we propose here a different
estimate for B.i/, which on the one hand gives good numerical results when tested
on model problems (see Fig. 2) and on the other hand is close to the original choice
when applied to a problem with uniform random variables.

To this end, we go back to the definition of error contribution for a hierarchical
surplus, and exploit the fact that p admits a Hermite expansion. To improve the
readability we will use k�k˝ to denote the norm k�kH1.D/˝L2�.
 /.

�E.i/ D
�
�
�


p � SmfJ [igŒp�

�
�


p � SmJ Œp�

���
�˝ D

�
��m.i/Œp�

�
�˝ (15)

D
�
�
��m.i/� X

q2NN
pqHq

 ��
�˝ D

�
�
�
X

q2NN
pq�

m.i/ŒHq�
�
�
�˝:

Observe now that by construction of hierarchical surplus there holds�m.i/ŒHq� D 0
for polynomials such that 9n W qn < m.in � 1/. Next, we apply the triangular
inequality and get to

�E.i/ �
X

q�m.i�1/

�
�pq

�
�
H1.D/

�
��m.i/ŒHq�

�
�
L2�.
 /

: (16)

Therefore, the error estimate (13) is equivalent to assuming that the summation on
the right-hand side of (16) is dominated by the first term, with

B.i/ D ���m.i/ŒHm.i�1/�
�
�
L2�.
 /

D
NY

nD1
Bn.in/ ; (17)



10 J. Beck et al.

Bn.in/ D
�
��m.in/ŒHm.in�1/�

�
�
L2�n .
n/

:

The quantityBn.in/ can be easily computed numerically, and has a moderate growth
with respect to in:

Bn.in/ D 1; 1; 1; 1:28; 5:46 for i D 1; : : : ; 5: (18)

Finally, we test estimate (13) on the model function p.y1; y2/ D 1= exp.1 C
b1y1 C b2y2/, so that we can compute each�E.i/ as

�E.i/ D ���m.i/Œp�
�
�
L2�.
 /

D
�
�
�SmfJ [igŒp� � SmJ Œp�

�
�
�
L2�.
 /

using a sufficiently accurate sparse grid quadrature. The Hermite coefficients of p
can be computed either numerically or analytically, see Lemma 1 in the next section.
Once such quantities are available, we can verify the accuracy of (13), with B.i/ as
in (17). The results are shown in Fig. 2: the proposed estimate is thus seen to be
quite reasonable.

Remark 1. As mentioned earlier, the procedure used here to derive an estimate for
B.i/ could be applied to the problems investigated in [5] as well. It can be seen
numerically (see [27]) that estimating B.i/ in this way would end up in results not
significantly different from the original choice, namely B.i/ D QN

nD1 L
m.in/
n .

4.3 Convergence of Hermite Expansions

To derive an estimate for
�
�pq

�
�
H1.D/

we first consider a simplified Darcy
problem with a lognormal permeability field a constant over D, a D a.y/ D
exp



b0 CPN

iD1 biyi
�

and with homogeneous Dirichlet boundary conditions,

(
� div .a.y/rp.x; y// D f .x/ x 2 D;
p.x; y/ D 0 x 2 @D: (19)

Furthermore, let h.x/ be the solution of the Poisson problem ��h D f with
homogeneous Dirichlet boundary conditions. We can then write the analytic
expression for p solving (19), which is separable with respect to y, p.x; y/ D
h.x/e�b0QN

nD1 exp .� bnyn/ ; and further derive the exact expression of the
coefficients of the Hermite expansion.
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Fig. 3 Assessment of the rates gn, n D 0; 2; 5, used to build the quasi-optimal set (22), estimated
according to Eq. (21). For each random variable yn the corresponding harmonic in the Fourier

expansion (23) is specified. The plots show the decay of
�
�
�Zn�

p;w �Zn�

p;i�

�
�
�
H1.D/

as a function of the

number of pointm.w/ and its fitting according to the proposed estimate e�gnm.w/=
p
m.w/Š. (a) y0,

constant, g D 2:07 . (b) y2, sin.�x=L/, g D 1:95 . (c) y5, cos.3�x=L/, g D 1:37

Lemma 1. Given problem (19), the H1.D/ norm of the Hermite coefficients (12)
of p can be estimated as

�
�pq

�
�
H1.D/

D CH

NY

nD1

e�gnqn
p
qnŠ

; (20)

with CH D khkH1.D/ e
�b0QN

nD1 eb
2
n=2 and gn D � log.bn/.

Proof. See [27] for details.

Our numerical experience shows that estimate (20) is satisfactory even in the
more general case where a.x; y/ D e�.x;y/, and the boundary conditions are those
specified in Eq. (1); on the other hand, the more general estimate

�
�pq

�
�
H1.D/

D
Ce�P

n gn
p
qn that applies to analytic (but not entire) functions seems to be too

pessimistic in this context.
As pointed out in [5], it is generally better to estimate the rates gn numerically

to get sharper bounds. This is achieved by freezing all the variables yi but the n�-th
one e.g. at the midpoint of their support, and computing the solution pn

�

w of such
reduced problem increasing the sparse grid level w from 1 to i�. If the quadrature
points are accurate enough (i.e. Gaussian quadrature points), then the intermediate
solutions pn

�

w will converge to pn
�

i�
with the same rate, and the same holds for any

quantity of interest Zp D Zp.y/ depending on pw, that is

�
�
�pn

�

w � pn
�

i�

�
�
�˝ � C

e�gnm.w/
p
m.w/Š

;
�
�
�Zn�

p;w �Zn�

p;i�

�
�
�
L2�.
 /

� C e�gnm.w/
p
m.w/Š

: (21)

It is then possible to use a least square fitting on the computed errors to derive an
estimated value for gn. Figure 3 in next Section shows the results of such procedure
applied to a test case, and confirms the quality of the method proposed. Alternative
estimates for the decay of the Hermite coefficients are available in [16].
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4.4 A Computable Expression for I.w/

We are now in position to write a computable expression for the quasi-optimal
set (10). Combining together the work contribution (11), the error contribution
estimate (13), the estimate (20) for

�
�pm.i�1/

�
�
H1.D/

and the numerical values
obtained for m.in/, Bn.in/ and gn, see respectively Eqs. (14), (18), and (21),
we obtain the following expression

I.w/ D

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

i 2 N
NC W

NY

nD1
Bn.in/

e�gnm.in � 1/
p
m.in � 1/Š

NY

nD1
.m.in/ �m.in � 1//

	 w

9
>>>>>=

>>>>>;

: (22)

Again, note that (22) may not satisfy the admissibility condition (9), that has to be
enforced by adding the missing multiindices.

5 Numerical Results

In this section we test on an example the effectiveness of the proposed sparse
grid. We consider the case of a stratified material in the direction transversal to
the flow: that is, the log-permeability field � depends only on x1 and is constant
along x2. Thus the covariance function is

C�.s; t/ D �2 exp

�

�js � t j
2

L2c

�

; s; t 2 Œ0; 1�;

and the truncated Fourier expansion of � (5) simplifies to

�.x1; y/ D �.x1/C �pc0y0 C �
KX

kD1

p
ck Œ y2k�1 cos.!kx1/C y2k sin.!kx1/�

(23)

with � D E Œ��. As in Proposition 2, we have yk � N .0; 1/, !k D k�=L, L D 1,
and �k as in Eq. (4). Obviously, in this case it holds ck � �k rather than ck �
�k1�k2 , due to the layer structure of � . We set the correlation length to Lc D 0:2,
the pointwise standard deviation to � D 0:3 and �.x1/ D 0.

We consider three different levels of truncation for � in (23): K D 6; 10; 16

corresponding to N D 11; 21; 33 random variables. With these truncation we take
into account up to 2, 10�2 and 10�9 % respectively of the total variance of � . For
each truncation we compute the quasi-optimal sparse grid approximationpN;w using
the sets (22) with w D e�w;w D 0; 1; 2; : : :, and then compute the expected value
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Fig. 4 Convergence for MC and sparse grid methods. (a) Convergence of quasi-optimal sparse
grid approximations. (b) Convergence with respect to the reference solution with N D 33 random
variables

for the total outgoing flux Z (see Eq. (2)), using the resulting sparse grid quadrature
rule. We also perform a classical Monte Carlo simulation, repeated three times. The
deterministic problems are solved with P1 finite elements on an unstructured regular
mesh with approximately 1,400 vertices.

We first fix the number of random variables N and study the convergence of the
sparse grid approximation as the number of points in the sparse grid increases. Since
we do not have an exact solution, we compute errors with respect to a reference

solution, i.e. we measure the error as
ˇ
ˇ
ˇE
�
ZpN;w

 � E

h
ZpN;w�

i ˇˇ
ˇ, with w� D 13.

Results are shown in Fig. 4a. The Monte Carlo simulations converge with the
expected rate 1=2; we also show the convergence rate 1 that would be obtained with
a quasi-Monte Carlo method, like Sobol’ sequences (see e.g. [26]). As for the sparse
grids approximation, it is important to observe that not only they all converge with a
rate higher than 1=2, but such rate seems to be almost independent of the truncation
level N . This would mean that the strategy detailed in Sect. 4 is quite effective in
reducing the deterioration of the performance of the standard sparse grids as the
number of random variables increases. Indeed, the selection of the most profitable
hierarchical surpluses manages to “activate” (i.e. to put interpolation points) only in
those directions that are most useful in explaining the total variance of the solution,
so that the less influent random variables get activated only for small approximation
errors. Beside the number of “active” variables, another interesting indicator is the
number of “interacting” variables in the sparse grid. As was previously mentioned,
a sparse grid is indeed a linear combinations of a number of “small” tensor grids,
that put interpolation points only in some of the directions y1; : : : ; yN at a time, say
Nn directions out ofN . We call the largest Nn in a sparse grid the number of interacting
variables, that could be much lower than the number of active ones. The convergence
curve for N D 33 is also shown in Fig. 4b (grey line), where for each level w we
show the number of active variables followed by the number of interacting variables
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in parenthesis. For instance, the sparse grid labeled 18.3/ places collocation points
in 18 variables, but each tensor grid covers 3 dimensions at most.

We then repeat the analysis by computing the error for all the three approx-
imations with respect to the same reference solution, i.e. p33;w� , again with
w� D 13. Results are shown in Fig. 4b, where we also show the convergence
of a standard isotropic sparse grid obtained using the “doubling” function m.i/:
m.0/ D 0;m.1/ D 1;m.i/ D 2i�1 C 1 and Gauss-Hermite quadrature points.
As expected, the convergence of the solutions with N D 11 and 21 stagnates
when the error due to the truncation of the random field becomes predominant.
Moreover, the convergence rate of the optimized grid is independent of the number
of random variables up to the stagnation, while the convergence of the isotropic grid
shows the well-known “curse of dimensionality” effect. Observe however that the
performances of the isotropic and optimized sparse grids are equivalent up to about
1,000 collocation points (18 random variables), after which using the optimized
sparse grid outperforms the standard one. Using a sharper profit estimate to build
the optimized set (22) would further improve the efficiency of the optimized sparse
grid. We finally remark that, even if the performances are similar for low tolerances,
the advantage of using the optimized sparse grid with respect to the isotropic one
is that it allows to work with virtually N D 1 random variables, and provides an
automatic truncation the permeability field at each tolerance level.

6 Conclusions

In this work we have considered a Darcy problem with uncertain permeability,
modeled as a lognormal random field with Gaussian covariance function, and we
have applied the quasi-optimal sparse grid paradigm derived in [5] to the problem
at hand: we have introduced a nested quadrature/interpolation rule and we have
estimated the proportionality constant B.i/ between error contribution of the sparse
grids and the coefficients of the Hermite expansion of the solution, for which
we have derived an estimate.

We have applied our quasi-optimal sparse grid thus obtained to a test case
describing a layered material, that has been discretized with a Fourier expansion
withN D 11; 21 and 33 random variables. Numerical results on this preliminary test
seem to suggest that the quasi-optimal sparse grid procedure achieves a convergence
rate higher than the ones of the most common sampling methods. Moreover, it is
quite effective in reducing considerably the degradation of the performance suffered
by the standard sparse grids approach when the number of input random variables
increases.
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The Geometric Basis of Numerical Methods

Marc Gerritsma, René Hiemstra, Jasper Kreeft, Artur Palha, Pedro Rebelo,
and Deepesh Toshniwal

Abstract The relation between physics, its description in terms of partial differ-
ential equations and geometry is explored in this paper. Geometry determines the
correct weak formulation in finite element methods and also dictates which basis
functions should be employed to obtain discrete well-posedness.

1 Introduction

Tonti in 1972 [43], made the classification for a very large number of physical
theories based on geometry. Reading Tonti is a fascinating experience, because his
work sheds a completely new light on how we perceive physical equations.

Mattiussi [33], wrote in 2000 a very clear paper based on Tonti’s work. Mattiussi
relates the geometric concepts to numerical methods. Bossavit explains the whole
geometric structure underlying the Maxwell equations in [6]. See also [4, 27] for a
description in terms of differential forms and cochains.
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Originally, the reconstruction of differential forms from discrete cochains was
established by means of Whitney forms [6,7,24,39,40]. Later other basis functions
were developed. In the finite element setting important contributions are made by
Arnold, Falk and Winther [1, 2] and Hiptmair [23]. Application of these ideas
to finite difference/finite volume methods can be found in [8, 9, 28, 42]. For the
application of these ideas to isogeometric methods, see [11, 15, 16, 21, 22]. A very
geometric approach was developed at Caltech [12, 25, 26]. Application to fluid
dynamics and a motivation to use these structure-preserving techniques is described
by Perot [37, 38] and the description of incompressible flow in terms of the
Lie group of volume-preserving diffeomorphisms with associated Lie algebra of
divergence-free vector fields can be found in [17, 36].

The above cited references serve as an excellent introduction into the relation
between physical models, partial differential equations, numerical methods and the
underlying geometrical structure.

Understanding the geometry associated with physical variables also has profound
implications for numerical methods. If one faithfully respects the underlying
geometrical structure, some of the discrete relations become exact. This exactness
is preserved under a large class of transformations and should be independent of the
basis functions.

2 Physics and Geometry

All physical variables are associated with geometric objects. Mass is associated to a
volume. A flux is associated to a surface and circulation is associated to a contour.
Although these examples are trivial, there are situations where this association is
less clear. Consider, for instance, the perfect fluid given by

div u D 0 ; (1)

@u
@t
C .u;r/ uCrp D 0 ; (2)

where p is the pressure and u is the velocity. But what we commonly call ‘velocity’
is slightly more difficult when we take geometry into account. In (1) the velocity
is associated with a surface, while in (2) the convective velocity (the u between
brackets) is associated with a line. The remaining velocities (momentum) in (2) is
probably the most difficult one in terms of geometry and it is associated with both
lines and volumes, see [44] for a treatment of momentum. In the remainder of this
paper we will focus on variables which are easier to associate with geometry.

Mass and mass density The physical variable ‘mass’ is associated with three
dimensional volumes. It is important to note that the relation between mass and
volume is independent of the actual shape and size of the volume.
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In engineering we usually do not work with mass directly, but prefer mass
density. If we have a mass occupying a certain volume, we can calculate its average
density, N�, using N� DM=V .

The average mass density is considered to contain too little detail to be useful,
it tells us nothing about the mass distribution. So what one can do is to divide the
brick in two and calculate the average mass densities for the two halves, N�1 and N�2.
If these two average densities are equal, one might be tempted to conclude that
the mass distribution was uniform before cutting the brick in two. This remains a
hypothesis which cannot be corroborated, but only falsified by successively cutting
the brick in smaller parts. Mathematicians are less inhibited by physical reality and
define the mass density as

� D lim
V!0

M

V
:

Physically this limiting process is not feasible.
Given the physical limitations of mass density, it is easier to work with the

global quantity mass and the volume it is associated with. Another advantage is
that mass and volume are additive, whereas mass densities are not. These rather
trivial observations are very relevant for numerical methods, where, no matter how
small we make our mesh, we always work with finite cells or elements.

Flux and flux density The instantaneous flow through a surface is generally
called the flux. This suggests that the physical variable flux is associated with
two dimensional objects, i.e. surfaces. If the area or the orientation of the surface
changes, the flux will generally also change. In order to remove the dependence on
the area of the surface, the flux density normal to the surface is defined as the limit
of the average flux density for the area to zero.

�flux D lim
A!0

F

A
:

Similar considerations as for mass density apply to flux density. Mathematically this
might be a well-defined concept, but physically it is questionable. We might be able
to measure the flux through a very small surface, but never the flux in a point.

Again, for numerical methods it is usually preferable to work with the global
quantities such as mass and flux, then the limiting variables mass density and
flux density, because our meshes will be far too coarse (no matter what your
computational resources are) to come close to these limiting values. The only thing
we can hope for is that we approximate the mass density and the flux density,
whereas mass and flux can be represented exactly on a mesh.

Displacement and velocity The final example concerns the measurement of
velocity. One way to do this, is to release tracer particles in the flow. Make two
snapshots of the flow while the tracer particles are illuminated by a laser beam. This
allows one to determine the position, r1, of a tracer particle at t1 and the position
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of the tracer particle, r2, at time t2 > t1. This is in practice more difficult then
described here, but for the moment we assume that we can determine t1, t2, r1 and
r2 with infinite precision. Then we know that

r2 � r1 D
Z t2

t1

dr

dt
dt D

Z t2

t1

v dt :

Here r2 � r1 denotes the displacement of the particle in the time interval �t D
t2 � t1 and v is the velocity of the particle in the time interval �t . This relation
between displacement and velocity is exact. We have no idea what the particle did
between t1 and t2. It could go in a straight line from r1 to r2, but it could also have
oscillated several times between the points r1 and r2, or the particle could have taken
a grand detour to get from r1 to r2. So we cannot say much about the velocity in the
time interval �t , but we do know that the time integral of the velocity equals the
displacement.

The measurement described above is called particle image velocimetry (PIV)
and the velocity measurement from PIV is usually done by approximating the
velocity by

v � r2 � r1
t2 � t1 :

This approximation is exact if the direction and speed of the particle is constant
during the time interval�t , in which case we have

r2 � r1 D
Z t2

t1

v dt D v
Z t2

t1

dt D v.t2 � t1/ :

However, this is based on the assumption that the direction and speed of the
particle is constant. But this assumption is unknowable. We could decrease the
time interval to test our assumption, but we can never corroborate this assumption.
Basis functions and interpolation in numerical methods play the same role as the
assumption made by the experimentalist about the behaviour of the system between
the observations.

In this example, velocity is a physical quantity associated with curves, the particle
path or the streamline for steady flows. Any attempt to define the velocity in the PIV
experiment at a certain point and time instant may be mathematically correct, but
physically not realistic.

These three simple examples serve to illustrate the connection between physical
variables and geometric objects such as volumes, surfaces, lines and points. In fact,
all physical variables are associated with geometric objects, but due to a twist of
fate we have been working with point-wise defined quantities in engineering and
have tried to apply this nodal approach in our numerical schemes; instead of using
surface forces we use the stress tensor and mass density instead of mass. The reader
may easily find more examples.
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∂ ∂ ∂

a b c

Fig. 1 Application of boundary operator. (a) The boundary operator @ which maps a volume onto
its six faces. (b) The boundary operator @ which maps a surface onto its four edges. (c) The
boundary operator @ which maps a curve onto its two endpoints

a b

Fig. 2 The two types or orientation for a surface. Inner-orientation (left), outer-orientation (right).
(a) The two ways of choosing an orientation in the surface. (b) Selecting a positive orientation
through a surface

3 Geometry, Orientation and Basic Operations

The most important operator that we need to discuss is the boundary operator.
The picture given in Fig. 1a we see the boundary operator, @, applied to a volume.

It maps the volume onto its six faces. Similarly, the boundary operator applied to a
surface yields its four edges as shown in Fig. 1b. We also have the boundary operator
applied to a curve which returns its two endpoints as shown in Fig. 1c. Note that
although in these three figures we use an orthogonal volume and square for a surface
and a straight line segment for the curve, nothing changes if we deform the volume,
surface or curve. This indicates that the boundary operator is a topological operator
which does not depend on a specific shape or size.

The boundary operator maps a k-dimensional object onto a .k � 1/-dimensional
object as the above examples show. Now that we use higher dimensional objects than
points, we also need to take orientation into account. In Fig. 2a we see a surface with
the two possible ways of orientation. We can either choose a clockwise rotation to
be the default orientation or the counter-clockwise rotation. There is no preferred
orientation, but once you choose a default orientation, you need to stick to it during
further analysis.

Besides orienting a surface by choosing a sense of rotation in the surface, there
is a second type of orientation where you choose a positive direction through the
surface, as shown in Fig. 2b. The first type of orientation, shown in Fig. 2a, is
called inner orientation, whereas the second type of orientation, shown in Fig. 2b,
is referred to as outer orientation.

It turns out that the representation of physical variables are not only associated
with geometric objects, but to geometric objects with a specific type of orientation,
inner- or outer-oriented. Mass and flux are associated to outer-oriented objects,
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∂

∂

Fig. 3 The boundary
operator, @, and the switch
between inner- and outer
orientation, *

while velocity, in the PIV example, is associated to inner-oriented curves. So a
full geometric description needs to take this aspect also into account. Note that
inner-orientation can be defined without reference to the ambient space in which
the geometric object is embedded, whereas outer-orientation depends explicitly on
the dimension of the ambient space, see [6, 32, 34].

Now that we have inner and outer orientation, we can set up the loop displayed in
Fig. 3. We see that the boundary operator maps inner-oriented k-dimensional objects
onto inner-oriented .k � 1/-dimensional objects and outer-oriented k-dimensional
objects onto outer-oriented .k�1/-dimensional objects. The boundary operator does
not change the type of orientation. In Fig. 3 we also included an operation, *, which
leaves the ‘sense of orientation invariant’ but changes the associated geometric
object. On the left we see a sense of rotation in a plane (top left) and a sense of
rotation around a line (bottom left), while on the right, we have the direction along
a line (top right) and the same direction, but now considered as through a plane
(bottom right). In general, the *-operator associates a k-dimensional object to an
.n� k/-dimensional object and thereby changes the type of orientation (from inner
to outer and vice versa). Here n is the dimension of the space in which the objects
are embedded. Whereas the boundary operator is a purely topological operator, the
*-operator is metric-dependent. See, Harrison, [20], for a more formal description
of the geometric *-operator.

With this *-operator and the boundary operator we can define a map from
.k � 1/-dimensional objects to k-dimensional objects (of the same type of orien-
tation), by

@� WD *@* W .k � 1/-dim ! k-dim :
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Inner Orientation

Outer Orientation

∂ ∂ ∂
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Fig. 4 Inner- and outer-oriented geometric objects and the operators @ and @� D *@*

P1 P2

P3 P4

L3 L4

L2

L1
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P1 P2

P3 P4

L3 L4

L2

L1

S1

b

Fig. 5 Oriented grid. Relation between line segments and points (left) and surface and line
segments (right). (a) The numbering of inner-oriented points and surfaces to set up the incidence
matrix. (b) Orientation of the surface and the boundary for the incidence matrix

If we start with the inner-oriented line in the top right of Fig. 3, apply the * to get
the traverse direction through the plane, then apply the boundary operator @ to get
the circulation around the line and finally the *-operator again to get a sense of
orientation in the plane. Since this *-operator is metric-dependent, @� will depend
on the metric as well.

The loop in Fig. 3 can be extended to include all k-dimensional objects in 3D
and this is depicted in Fig. 4. Inner-oriented volumes are usually oriented with right
hand rules and inner-oriented points are oriented as source or sinks. The geometric
framework displayed in Fig. 4 forms the geometric basis for the double DeRham
complex. The boundary operator @ and its metric-dependent antagonist @� will play
a crucial role in numerical methods. Many operations we perform in numerical
analysis find their origin in these two operations, as we will see.

The boundary operator also has a very natural matrix representation in terms of
incidence matrices.

In Fig. 5 we have a two-dimensional ‘grid’ consisting of four points, four
line segments and one surface. Although all the lines are straight and all angles
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rectangular, we can deform the figure without changing the connectivity between
points, lines and the surface. We see that the boundary of the line labeled L1 is
given byCP2 and �P1, usually abbreviated as @L1 D P2�P1. We write aC when
the line points in the direction of the point and a � when the line departs from a
point. This allows us to set up a matrix representation for the boundary operator
given by

0

B
B
@

@L1

@L2
@L3
@L4

1

C
C
A D

2

6
6
4

�1 1 0 0

0 0 �1 1
�1 0 1 0

0 �1 0 1

3

7
7
5

0

B
B
@

P1

P2
P3
P4

1

C
C
A :

Similarly, we can set up an incidence matrix which connects the oriented surface,
S1 with the four bounding line segments, see Fig. 5b. The incidence matrix, which
connects the oriented surface to the bounding line segments, is constructed such that
if the orientation of the line segmentLi is in the same direction as the orientation of
the surface, we writeCLi , otherwise �Li . This gives the matrix representation

@S D Œ1 � 1 � 1 1�

0

B
B
@

L1

L2
L3
L4

1

C
C
A :

So we have a matrix representation for the boundary operator. If we deform our
‘grid’ without changing the connectivity between points, lines and the surface, the
incidence matrices remain the same. Note that @ ı @S 
 ;. So the boundary of the
boundary is empty. This result is not specific for this example, but is generally true.
For all geometric objects, the boundary of the boundary is the empty set. The reverse
is generally not true, i.e. if the boundary of an object is empty, the object does not
need to be a boundary itself.

4 Assigning Values to Objects

We started this paper with the fact that physical variables are associated to geometric
objects. We then discussed geometric objects briefly and now we will add values
to geometric objects. To make life easier, we are going to introduce some simple
notation: Suppose we have a collection of points, lines which connect them, surfaces
bounded by lines and volumes bounded by surfaces. We will call the points 0-cells
and denote them by �.0/;i where the subscript .0/ indicates that it is a point and
i is just a label to distinguish different points, just as we did in the example for
the incidence matrices. Similarly, �.1/;i will refer to the oriented line segments (not
necessarily straight) in our mesh, �.2/;i the oriented and labeled surfaces and finally
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Manifold

Cell complex

0-cells 1-cells 2-cells 3-cells

Fig. 6 Subdivision of the domain (manifold) in points (0-cells), line segments (1-cells), faces (2-
cells) and volumes (3-cells)

�.3/;i will refer to oriented volumes, all of the same type of orientation (either
inner-oriented or outer-oriented). Together these building blocks will constitute a
so-called cell complex, but in computational science we usually refer to such a
collection as a grid or a mesh, see Fig. 6. The main difference is that a grid or mesh
is usually not oriented whereas a cell complex is.

A collection of oriented k-dimensional cells will be called a k-chain, c.k/, and is
usually written as a formal sum

c.k/ D
#kX

iD1
mi�.k/;i ;

where #k denotes the number of k-cells in the complex and mi is 0, when the cell
�.k/;i is not part of the chain, is equal to 1 when the cell �.k/;i is in the chain and
mi D �1 when �.k/;i is in the chain but the orientation is opposite to its default
orientation.

In the examples given above (mass, flux and velocity) we assigned values to
geometric objects. Now we are going to assign values to the k-cells. Let �.k/;j be
the operator which assigns the value 1 to the k-cell �.k/;j and 0 to all the other
k-cells. This will be denoted by

h�.k/;j ; �.k/;i i D ıji D
8
<

:

1 if i D j

0 if i ¤ j
:

If we want to assign a different value to a k-cell, say the value cj , then we apply
cj �

.k/;j to the k-cells. We can collect all these assignments into a formal sum and
write
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Di Di
~

*

a b

Fig. 7 The geometric construction of a staggered grid consisting of an overlapping inner-oriented
and outer-oriented mesh. (a) Outer-oriented 2D mesh on the left and the corresponding inner-
oriented mesh on the right. (b) A staggered grid is obtained by putting the two dual cell-complexes
displayed in Fig. 7a on top of each other

c.k/ D
#kX

iD1
ci�

.k/;i ; ci 2 R :

So if we have mass, k D n D 3 and ci denotes the mass assigned to the 3-cell �.3/;i .
If we have a k-chain c.k/, we can assign a value to the whole chain by

hc.k/; c.k/i D
*

#kX

iD1
ci�

.k/;i ;

#kX

iDj
�.k/;j

+

D
#kX

iD1

#kX

iDj
ci h�.k/;i ; �.k/;j i D

#kX

iD1
ci :

The operator c.k/ is called the k-cochain. So we now have a discrete description
of geometry and a way of assigning values to geometric objects. Note that this
assignment of a number to a collection of geometric objects is the discrete analogue
of integration over a k-dimensional manifold˝k, as given by

˝
a.k/;˝k

˛ WD
Z

˝k

a.k/ 2 R ;

where a.k/ is differential k-form and ˝k the k-dimensional submanifold. So
integration can be considered as the continuous analogue of assigning numbers
to geometric objects. Both the duality pairing of cochains and chains as well as
integration of differential forms are metric-free operations.

Typical examples of these abstract constructions are the association of mass to a
volume (integration of mass density over a volume in the continuous case), assigning
a flux to a surface (integration of flux density in the continuous case) or assigning
circulation to a curve (integration of velocity along a curve at the continuous level).

We considered inner-orientation and outer-orientation and in order to represent
both types of orientation we need to use two meshes. One representing the inner-
oriented variables the other the outer-oriented variables, see Fig. 7a.
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The two meshes on which we represent inner- and outer orientation constitute
a staggered grid as shown in Fig. 7b. This configuration is quite common in finite
volume methods for incompressible flow.

5 Discrete Derivative

Duality pairing between cochains and chains allows us to introduce the discrete
derivative as the formal adjoint of the boundary operator.

8c.kC1/; 8c.k/ 9Šc.kC1/ s:t: hc.kC1/; c.kC1/i D hc.k/; @c.kC1/i :

The map which associates the unique c.kC1/ to each c.k/ in the above relation, is
called the coboundary operator, ı

ı C k ! CkC1 s:t: hıc.k/; c.kC1/i D hc.k/; @c.kC1/i 8c.kC1/ ;

where Ck denotes the space of all k-cochains on our grid. Note that we have here
the discrete analogue of well-known integral relations: Let C be an arbitrary curve
going from the point A to the point B

k D 0 W
Z

C

grad� � ds D
Z

@C

� D �.B/� �.A/ :

Let S be a surface bounded by @S then

k D 1 W
Z

S

curl � A dS D
Z

@S

A � ds :

Let V be a volume, bounded by @V then

k D 2 W
Z

V

div F dV D
Z

@V

F � dS :

So the coboundary is the discrete analogue of the gradient, curl and divergence
operator. Note that duality pairing is metric-free and the boundary operator is
metric-free, therefore we have a metric-free representation of grad, curl and div,
see also [42]. This implies that if we use basis functions in a finite element method
or interpolations in finite difference or finite volume methods, the above integral
should hold ALWAYS. On nice orthogonal grids this needs to hold, but also on
highly curved grids (even self-overlapping grids). It should hold for low order
approximations (linear basis functions), but also for high order methods (spectral
elements). In fact, these relations can be satisfied without the introduction of basis
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Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

Fig. 8 The double DeRham complex with the metric-free operations in the top row and the metric-
dependent operations via the detour along the dual cell-complex.The scalar Laplace operator which
maps scalars defined in points to scalars defined in points (red arrow on the left) and scalars
associated with volumes to volumes (red arrow on the right)

functions and if you do introduce basis functions, they should cancel from the
equation, see [18, 19, 32].

Since we have a matrix representation for the boundary operator in terms of the
incidence matrices as we described above, we also have a matrix representation for
the coboundary operator. The discrete derivative is therefore completely determined
by the mesh.

We can also define – formally – the adjoint of the *-operator which switched the
type of orientation. For every c.n�k/ there exists a unique c.k/ such that

hc.k/; c.k/i D hc.n�k/; *c.k/i ; 8c.k/

We will denote the map which associates this unique c.k/, by ?c.n�k/, i.e. ? W
Cn�k ! Ck. This duality relation allows us to write the formal adjoint of @�

hı�c.kC1/; c.k/i D hc.kC1/; @�c.k/i :

It is easy to verify that, just like the coboundary operator, ı� is a discrete derivative
operator which represents the grad, curl and div. However, it cannot be the same
grad, curl and div as represented by ı, because ı is purely topological, independent
of angles, length, curvature, while ı� is a metric operator because it is composed
of the metric-dependent ?-operator. In order to make this distinction explicit,
we will refer to grad�, curl� and div� whenever we refer to the vector operator
represented by ı�. The associated geometric picture is displayed in Fig. 8. This is
one of the reasons to use a more geometric approach, because now we can see the
distinction between the topological vector operations, grad, curl and div, and the
metric-dependent vector operations, grad�, curl� and div�; a distinction which is
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completely obscured by vector calculus. We noted that discretization of topological
operators needs to be independent of basis functions, while the discrete version of
the metric-dependent vector operators will always depend on the basis functions.

As a consequence of the fact that the boundary of the boundary is empty, we
have that ı ı ı 
 0 and ı� ı ı� 
 0, which in vector calculus is represented by
curlı grad
 0, divı curl
 0 and curl�ı grad� 
 0, div�ı curl� 
 0. So geometric
identities immediately provide well-known vector identities [42].

Figure 8 also gives us the various Laplace operators in 3D. For instance, the well-
known scalar Laplace operator defined in points is illustrated by the left red arrow
in Fig. 8. Following the red arrow in Fig. 8 shows that we first apply the topological
grad followed by the metric-dependent div�, so � D div� grad. Alternatively, we
can write the Laplace operator for scalars associated with volumes as shown by
the rightmost red arrow in Fig. 8. The Laplace operator associated with volumes is
then given by � D div grad�. At first sight there is no difference with the Laplace
operator defined on points, however closer inspection reveals that now the grad is
the metric dependent operator, while for the scalar Laplace defined in points is was
the div. This seemingly minor change has consequences for finite element methods,
see Sect. 7.

6 Going from Continuous to Discrete and Back Again

In the previous sections we mainly focused on the discrete setting in terms of chains
(geometry) and cochains (variables). At the continuous level we have k-dimensional
manifolds (geometry) and differential k-forms (variables). Generally a physical
problem is given in terms of continuous variables. These need to be converted to
discrete values (cochains) to apply the above ideas. However, not everything can
be accomplished fully at the discrete level. Once in a while we need to reconstruct
a continuous representation from the discrete values. This is for instance the case
with metric-dependent operations such as the ?-operator and when presenting the
final solution. So here we will briefly outline the reduction operation, R which
maps continuous variables to cochains and the reconstruction operator, I , which
reconstructs continuous differential forms from discrete cochains. For more details,
see [32].

Reduction [4] Given a differential k-form, a.k/, and a discrete k-cells, �.k/;i then
the associated k-cochains is defined as

R.a.k// D ck D
X

i

"Z

�.k/;i

a.k/

#

�.k/;i :

So if the continuous variable is the mass density �, then integration over all volumes
in the mesh gives us the mass contained in all volumes and this discrete value
associated to a volume is a cochain. The reduction operator is denoted by R.
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Reduction commutes with differentiation, i.e. the following diagram commutes

Rd D ıR ,
�k d�����! �kC1
?
?
yR

?
?
yR

Ck ı�����! CkC1

In plain vector calculus, we can take grad, curl or div and then reduce or first reduce
to discrete values and then apply the coboundary which acts as grad, curl and div as
was shown previously. Here �k is the space of differential k-forms and Ck is the
space of k-cochains.

Reconstruction [4] Reconstruction, denoted by I , is a representation of the
discrete variables at the continuous level. While reduction R is more or less fixed,
reconstruction allows more freedom and essentially the various ways in which one
can reconstruct discrete data has lead to the plethora of numerical methods. The
reconstruction operator should satisfy the following criteria:

1. I should be the right inverse of the reduction operator R, i.e. R ıI 
 I;
2. I should be an approximate left inverse of the reduction operator R, i.e. I ı

R D IC O.hp/, where h denotes a characteristic mesh size and p the order of
the method;

3. I should commute with continuous and discrete differentiation, i.e.

I ı D dI ,
Ck ı�����! CkC1
?
?
yI

?
?
yI

�k d�����! �kC1

The first condition is obvious and when applied to 0-cochains it is just nodal
interpolation. For k-cochains, other than k D 0, things are less obvious. In [18, 32]
spectral element basis functions are given which interpolate 1-cochains in 1D,
see Fig. 9, and Hiemstra [21, 22] discusses B-spline reconstructions for 0- and
1-cochains in 1D. Higher-dimensional reconstructions are obtained using tensor
products, which restricts the reconstruction to quadrilateral elements. On triangular
grids the well-known Whitney forms have the desired interpolation property, see
for instance [6, 39] and the families P�

r �
k.Th/ and Pr�

k.Th/ developed by
Arnold, Falk and Winter [1, 2], which apply to regular simplicial triangulations of
polyhedra in any dimension. Recently, Arnold and Awanou have extended finite
element exterior calculus to cubical meshes [3]. The use of quadrilateral elements
could be beneficial in dealing with thin solids or boundary layer resolving meshes
in viscous, incompressible flow.

The basis functions in Fig. 9 have the property that
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Fig. 9 (a) Nodal interpolation for the reconstruction of 0-forms from 0-cochains and (b) edge
functions to reconstruct 1-forms from 1-cochains. These spectral basis functions are defined for
any order

hi .�j / D ıij

Z �j

�j�1

ej .�/ D ıij ;

which is another way of writing R ıI D I as described in [18] and [32, Lemma 7,
p. 52]

The second condition is an approximability condition necessary for convergence.
Spectral and high-order methods focus on reconstructions for high values of p. The
third requirement states that reconstruction commutes with differentiation. So, we
can take the discrete derivative (coboundary) and then reconstruct or first reconstruct
and then take the continuous derivative, I ı D dI . When these basis functions are
used, the expansion coefficients are precisely the cochains discussed in the previous
section.

Mimetic discretization We define the discretization as � D I ıR. It follows that

d� D dI R D I ıR D I Rd D �d ,
�k d�����! �kC1
?
?
y�

?
?
y�

�k
h

d�����! �kC1
h

Here we have underlined the expression in the middle, because this is the form we
actually use in numerical computations. Note that we have a matrix expression for
the coboundary operator in terms of the incidence matrices, so this whole expression
only depends on the choice of I . This commutation relation has some immediate
consequences. For instance, we satisfy vector identities at the discrete level (not
only on orthogonal grids but also on curvilinear grids). For example

divh curlh uh D divh curlh .�u/ D divh � .curl u/ D � .div curl u/ D 0 :
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If we have a conservation law of the form div u D f , then at the discrete level we
have

divh uh � fh D divh .�u/ � �f D � .div u � f / D 0 :

• If f 2 Im.div/, then fh 2 Im.divh/, therefore existence of a discrete solution.
• Ker.divh/ � Ker.div/.
• divh uh D fh holds pointwise, in particular, divh uh D 0 is strongly divergence

free.

Especially, the fact that the discrete null space of the divergence operator (but
also the other vector operators) is a proper subspace of the continuous divergence
operator is an important property in mixed formulations [10, 29, 30]. Mixed
formulations are in another aspect closely related to geometry as we will show in §7
for the Laplace equations for volume forms.

If operations commute many nice properties follow. However, this is all based
on the coboundary operator, ı, i.e. the formal adjoint of boundary operator, @. But
these relations do NOT hold for ı�. So everything works fine for grad, curl and
div, but these properties are lost when we consider grad�, curl� or div�. This is
another reason to make a distinction between the metric-free vector operations and
the metric-dependent vector operations. It would be nice if we could remove the
metric dependent operations from our models, but as the examples of the scalar
Laplacian above show, they need to be incorporated.

7 Discretization of Metric in Finite Element Methods

In finite volume methods one needs to explicitly construct the ?-operator, while in
finite element methods the ?-operator is hidden in the inner product. Let ak and bk

be differential forms (the continuous analogues of the cochains), then we have that
[13, p. 16/17] and [14, Eq. (14.6), p. 362]

.ak; bk/!n WD ak ^ ?bk :

Here !n is a standard volume form. .ak; bk/ is the inner-product of k-forms
and ^ is the wedge product of differential forms. We see by this relation that the
inner-product and the wedge define the ?-operator. So the inner-product employed
in finite element methods implicitly defines the metric and orientation. The exterior
derivate d is the continuous analogue of the coboundary operator ı, whereas
the codifferential d� is the continuous analogue of the discrete metric-dependent
operator ı�. The inner-product provides a relation between the metric-dependent
vector operations and the topological vector operations by integration by parts. On
a domain without boundary we have
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.dak; bkC1/!n D dak ^ ?bkC1 D .�1/kC1ak ^ d ? bkC1

D ak ^ ?d�bkC1 D .ak; d�bkC1/!n

The whole purpose of integration by parts is to convert metric-dependent vector
operators represented by d�, into metric-free vector operators, represented by d,
which have all the nice commuting properties. In order to do so, one has to have a
sound geometric understanding which vector operations depend on the metric and
which ones do not.

The scalar Laplace equation associated with points, see Fig. 8, leads to the scalar
Laplace equation div� grad' D f . Taking the inner-product with a test function  ,
integrating over the domain˝ and applying integration by parts gives

� .grad'; grad / D .f;  / ; 8 2 �0.˝/ ;

modulo a boundary integral. This is the standard weak formulation of the Laplacian.
The main purpose of integration by parts is to convert the metric-dependent div� into
the topological grad using the metric of the inner-product.

Next consider the scalar Laplace equation associated with volumes as shown in
Fig. 8. This equation is given by div grad�' D f . We see that in Galerkin methods
integration by parts converts the metric-free div to the metric-dependent grad�, so
instead of removing metric dependence we introduce even more metric-dependence.
One way to resolve this, is to rewrite the Laplace equation as an equivalent first order
system by introducing q D grad�' which gives

q � grad�' D 0 ; divq D f :

The second equation does not depend on the metric and only the first equation
requires integration by parts to convert grad� into div.

.q; p/C .'; divp/ D 0 ; .divq;  / D .f;  / ; 8p 2 �2.˝/ ;  2 �3.˝/ ;

modulo a boundary integral. And here we have the weak formulation in which
all metric-dependent operations have been removed. This is a well-known mixed
formulation [10]. When appropriate reconstructions are employed, this formulation
satisfies automatically the inf-sup relation for q and ' if at the discrete level the
Poincaré inequality is satisfied, see [5, § 7.1][30, Lemma 3, p. 12]. The important
message of these two examples is that one is not free to choose between a direct
weak formulation or a mixed formulation. This is determined by the geometry. In the
first case we had scalars associated with points, in the second scalars associated with
volumes. Whether we consider a variable to be associated to points or volumes is
not up to us, but this is determined by the physics. Applications of these ideas can
be found in these proceedings [7, 29–31, 35, 41].

Acknowledgements The authors want to thank the reviewers for their critical remarks and useful
suggestions.
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Spectral Element Methods on Simplicial Meshes

Richard Pasquetti and Francesca Rapetti

Abstract We present a review in the construction of accurate and efficient
multivariate polynomial approximations on elementary domains that are not
Cartesian products of intervals, such as triangles and tetrahedra. After the
generalities for high-order nodal interpolation of a function over an interval,
we introduce collapsed coordinates and warped tensor product expansions. We then
discuss about the choice of interpolation and quadrature points together with the
assembling of the final system matrices in the case of elliptic operators. We also
present two efficient ways of solving the associated linear system, namely a Schur
complement strategy and a p-multigrid solver. Two applications to Computational
Fluid Dynamics problems conclude this contribution.

1 Introduction

Spectral element methods (SEMs) combine the flexibility of finite element methods
(FEMs) with some basic facts from polynomial approximation theory which allow
to construct a good interpolant. Applied in a domain subdivided into elements, they
can provide accurate approximations to solutions of many problems with fewer
degrees of freedom (dof) than low-order approaches. High accuracy results from
the use of orthogonal polynomial basis to construct the interpolating functions
over the elements. The Galerkin projection operators link the differential to the
algebraic problem and keep the global system matrices sparse by imposing minimal
continuity requirement on the approximated solution.
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In this work we focus on SEMs based on Jacobi polynomials. These polynomials
are defined as the eigenfunctions of a particular singular Sturm-Liouville problem,
which constitute a basis for the expansion of square integrable functions. It is known
that eigenfunction expansions of a function u based on singular Sturm-Liouville
problems converge to u with a rate which depends only on the regularity of u.
Approximated solutions of partial differential equations (PDEs) based on these
expansions enjoy the same property. Namely, if u is sufficiently smooth, the
discretization error between u and its SE approximation uN decays exponentially
fast to zero, asymptotically with respect to the polynomial degree N . However,
exponential convergence is always at risk in simulations of complex phenomena
since the non-uniformity of the meshes, the singularities of the geometry, the
discontinuities of the boundary conditions and the jumps in the physical param-
eters of the problem degrade the convergence. Hopefully, the accuracy of SE
approximations can be improved in two ways, by increasing either the number of
mesh elements (h-refinement, where h denotes the maximal diameter of the mesh
elements) or the interpolation polynomial degree in the elements (N -refinement),
and this makes the SE approach robust. Other advantages of such methods are
low dissipation and dispersion errors (see an example in [34]), their possible
generalization to include non-conforming elements and their efficient/scalable
implementation on modern computer architectures. Classical references on SEMs
are [1, 7–9, 14, 22, 25, 33, 48], and many others therein. Early work with SEMs
focused on meshes composed of quadrilateral or hexahedral elements. More recent
advances concern the formulation of a nodal SEM for meshes composed of
Triangles or Tetrahedra (TSEM) that will be emphasized in these pages.

2 Three Aspects of the TSEM

The key ingredients for the success of the TSEM are: (i) the definition of an
orthogonal polynomial basis on non tensorial domains T through the warped
tensor product (Sect. 2.1); (ii) the nodal interpolation of functions in T at suitable
points which result from either a minimization procedure or a generating formula
(Sect. 2.2); (iii) the computation of integrals over T by high-order quadrature
formulas (Sect. 2.3).

2.1 Warped Tensor Product

Let PN .I / be the space of polynomials of maximal degree N over an interval
I � IR. The polynomial fitting of a function f at n D N C 1 points fxkg
of the interval I consists in finding a polynomial INf 2 PN .I / such that
INf .xk/ D fk WD f .xk/, for k D 1; : : : ; n. In terms of the (canonical)
functions fxj�1gjD1;:::;n of PN .I /, we may write IN f .x/ D Pn

jD1 aj xj�1 with
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the coefficients aj solution of the Vandermonde linear system V a D f where

V D .Vkj/ D .x
j�1
k /, a D .aj / and f D .fk/. Adopting a different basis f j g

for PN .I / and representing f in terms of the (cardinal) functions f�ig of PN .I /
defined by �i .xj / D ıij, we may write IN .f /.x/ DPn

kD1 fk �k.x/ with �k.x/ DPn
jD1 ckj j .x/. For each k, the vector ck D .ck1; ck2; : : : ; ckn/

t is solution of the
generalized Vandermonde linear system V ck D ek where V D .Vkj/ D . j .xk//
and .ek/j D ıkj. The conditioning of the Vandermonde matrix V is sensitive to
the choice of the basis f j g in PN .I /: the best condition numbers are obtained
when the basis f j g is L2-orthogonal. Yes, but which orthogonal basis could be
defined on simplices? Earlier in the literature, the answer has been given in [28, 42]
but highly determinant in the spectral method community has been the work [15].
Dubiner introduces the warped tensor product expansion to marry the tensor product
idea with the flexibility of simplices. Warped tensor product expansions exploit
collapsed coordinate systems in simplices, see Fig. 1 for d D 2 and Fig. 2 for
d D 3, to transform a simplicial region T into a region with constant bounds (as the
d -dimensional cube Q D Œ�1; 1�d ). In 2D for example, integrals in the variables
.r; s/ over T D f.r; s/ 2 IR2 W �1 � r; s � 1; r C s � 0g are transformed into
integrals in the variables .�1; �2/ overQ D Œ�1; 1�2:
R
T

u.r; s/dr ds D R 1
�1

R
�s

�1
u.r; s/ dr ds

D R 1
�1

R 1
�1

u.�1; �2/
ˇ
ˇ
ˇ @.r;s/@.�1;�2/

ˇ
ˇ
ˇ d�1 d�2 D

R
Q

u.�1; �2/


1��2
2

�
d�1 d�2:

In 3D, we have T D f.r; s; t/ 2 IR3 W �1 � r; s; t � 1; rCsCt � 0g,Q D Œ�1; 1�3
and

R
T

u.r; s; t/dr ds dt D R
Q

u.�1; �2; �3/


1��2
2

� 

1��3
2

�2
d�1 d�2 d�3:

We now introduce the Koornwinder-Dubiner (KD) orthogonal polynomials on
the reference triangle (and similarly on the tetrahedron). Let fP˛;ˇ

i .x/gi�0 be the
family of Jacobi polynomials evaluated at x, orthogonal in L2w.Œ�1; 1�/, with the
weight w D .1�x/˛.1Cx/ˇ, being ˛; ˇ > �1 reals. Just define the warped tensor
product basis functions on Œ�1; 1�2 as follows

 `.r; s/ D '�.i;j /.�1; �2/ D �i.�1/�i;j .�2/ D P .0;0/
i .�1/

�

.
1 � �2
2

/iP
.2iC1;0/
j .�2/

�

;
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.1��2/.1��3 /

2
.1��3/

0

2.1C�1/
.1��2/.1��3 /

.1C�2/

.1��3/
1

1

C
C
C
C
A

r�1;�2;�3
.

with the variables �1 and �2 replaced by their expression in r; s given in Fig. 1.
Here, ` D �.i; j / denotes a bijective index mapping, and �i , �i;j are the principal
functions in the collapsed coordinates (�1 and �2, resp.). Note that '�.i;j / (resp.  `)
is a polynomial of degree i in �1 (resp. r) and i C j in �2 (resp. s). Moreover,
if s ! 1 then r ! �1, so that .2r C s C 1/=.1 � s/ ! �1, and we have
'�.0;j /.�1; �2/ D cijP

1;0
j .�2/ with cij a normalizing factor. It can be proven that

Legendre polynomials result in KD ones when Q ! T , that KD polynomials are
orthonormal in L2.T / and that f `; ` D �.i; j /; i; j D 0; : : : ; N; i C j � N g
constitutes a basis of PN .T /, the space of polynomials defined in T of maximal
degree N . In a tetrahedron, we have

 `.r; s; t/ D '�.i;j;k/.�1; �2; �3/ D �i .�1/�i;j .�2/�i;j;k.�3/

D P0;0
i .�1/

�

1��2
2

�i
P
2iC1;0
j .�2/

� �

1��3
2

�iCj
P
2iC2jC2;0
k .�3/

�

;

with ` D �.i; j; k/ and the variables �1, �2, �3 replaced by their expression in r; s; t
given in Fig. 2 (more details are in [25]). Just remark that if t ! 1 then r; s ! �1,
whereas if .�s � t/ ! 0 then r ! �1 and s ! 1. Note that the expression
of '�.i;j;k/.�1; �2; �3/ has to be updated for �.0; j; k/, �.i; 0; k/ and �.0; 0; k/. The
cardinality of PN .T / is n D .NC1/.NC2/

2
in 2D and n D .NC1/.NC2/.NC3/

6
in 3D.

2.2 Set of Interpolation Points

The question of generating reasonable sets of points in a simplex has been
extensively discussed in the literature (see Figs. 3 and 4 for some simple ideas).
We ask the set of points fxj g to be unisolvent for PN .T /, i.e., given any set of
n real values ffj g at points fxj g there exists a unique polynomial INf 2 PN .T /
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GLL points in Q Mapped GLL points in T

Fig. 3 We may create a set
of interpolation points in T
by mapping the GLL defined
inQ. We preserve the
accuracy but we generate
more points than necessary
and useless accumulation of
points at .�1; 1/

GLL points in Quniform points in Q

uniform points in T GLL points in T

Interior Fekete point in T

Fig. 4 We may create a set
of interpolation points in T
by truncating the GLL
distribution inQ, as it occurs
for equally-spaced points in
FEMs. We have the correct
number of points in T but low
accuracy (apart from the case
where internal � points are
replaced by others 	)

such that INf .xj / D fj , j D 1; : : : ; nwhich is equivalent to ask that the associated
generalized Vandermonde matrix V is invertible. Moreover, we may impose to the
set of points fxj g to fulfill certain symmetries and boundary constraints. Most of all,
we ask to the interpolation operator IN W C 0. NT /!PN .T /, which exists due to the
unisolvence requirement, to have good approximation properties. The unisolvence
condition yields the existence of a nodal basis in PN .T / associated with the
points fxj g given by the characteristic Lagrange polynomials f'j g at these points
(i.e., 'j 2 PN .T / such that 'j .xk/ D ıjk). The symmetry condition enhances the
efficiency of the interpolation process in the sense that the number of degrees of
freedom (dofs), represented by the unknown coordinates of the points fxj g, can be
drastically reduced. As an example, in 2D, while searching for rotationally invariant
configurations, we may pass from 2n to bn=3c dofs which can be further reduced
by imposing N C 1 constraints on each side to ensure inter-element continuity.
When we ask for good approximation properties for the operator IN , we are
implicitly thinking to the Runge’s phenomenon [47] and to the growth with N
of the so-called Lebesgue’s constant �N . Runge [47] remarked that polynomial
fitting on equally spaced (ES) nodes fxj g in a domain may lead to unbounded and
oscillatory interpolations even for smooth functions. A classical example is given
by the averisera of Agnesi, that in 1D reads f .x/ D 1=.x2 C 1/, x 2 IR. Indeed,
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if one constructs the polynomial I ES
N f which fits the exact values of f at N C 1 ES

nodes in Œ�1; 1�, one gets limN!1jf � I ES
N f j ¤ 0. Wild oscillations appear in a

neighborhood of˙1 suggesting that the regions near the interval extremities are not
enough resolved. To reduce oscillations, modern methods combine a partitioning
(called mesh) of the domain into elements (images of Q or T ) with a clever choice
of the interpolation points in each element. As an example, when the interpolation
polynomial IGLN is built at Gauss-Lobatto (GL) points of Chebyshev or Legendre
type, it verifies jjf .x/� IGL

N f .x/jjL2w � N�sjjf jjHs
w

where s denotes the regularity
of f . We remark in fact that GL points are spaced O.1=N 2/ close to the interval
extremities and O.1=N/ at the center of the interval. We know that GL points
can be straightforwardly extended to higher dimension on tensor product domains
(Cartesian products of 1D intervals) but on other domains there is no equivalent of
GL points defined as zeroes or extrema of suitable orthogonal polynomials, thus
solving the Runge’s phenomenon problem in a simplex.

The quality of the interpolation in a domain ˝ is measured by the Lebesgue’s
constant �N D maxx2˝

P
jD1;n j'j .x/j, a positive real number which depends on

the interpolation points fxj g. The Lebesgue’s function �.x/ D P
jD1;n j'j .x/j

takes value 1 at the nodes xj and reaches maximal values where nodal coverage
is poor. Indeed, due to the Runge’s phenomenon, the Lagrangians 'j can wildly
oscillate when going from a zero value at a point xk , k ¤ j , to 1 at the point xj ,
and these oscillations accumulate in the constant�N . The Lebesgue’s constant�N

plays an important role in the Lebesgue’s lemma, linking the interpolation error in
the maximum norm to the best approximation error in the same norm. This lemma
states that kf � INf k � .1 C kIN k/kf � f �k for all f 2 C 0. NT / where f �
is the best fit of f in the norm kf k D maxx2˝ jf .x/j (that is, kf � f �k D
infp2PN .T / kf � pk) and kIN k D maxkf kD1 kIN .f /k D �N . If �N increases
faster with N than kf � f �k goes to zero, uniform convergence to f can never be
attained. In 1D, for Chebyshev (C) points the Lebesgue’s constant increases slowly
with N ! C1, namely�N <

2
�

log.N C 1/C 1, whereas for ES points we have
an exponential grow, indeed �N � 2NC1=.e N logN/. The Lebesgue’s constant
is defined in terms of the Lagrangians which depend on the points fxj g regardless
of the basis functions  j of PN .T / used to express them in T (the latter instead
influence the conditioning of V ). If one wants to limit �N , one has to optimize
the position of nodes xj in T . The points which give the best Lebesgue’s constant
(thus called Lebesgue’s points) are not known even in 1D and what researchers try
to do is to select the properties of the GL points in 1D and extend them to higher
dimension while keeping an eye on the Lebesgue’s constant (see for example [43]
and the references therein).

In [50] it has been established that GL points over an interval or tensor product
domains can be determined as the steady-state, minimum energy solution to an
electrostatic problem and in [52] that this minimum is unique. This idea led
to the definition of the so-called electrostatic points in a triangle [23] and in a
tetrahedron [24]. Another approach to the construction of a set of points in a simplex
with the required conditions is based on the minimization of the Lebesgue’s constant
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Fig. 5 Fekete nodes in a
triangle T for N D 9 and
Lagrangians associated to
nodes located in a vertex, on a
side, at the interior of T . Note
that Fekete nodes on the
triangle sides are distributed
as GLL ones, allowing in 2D
conforming meshes of
triangles and quadrilaterals

or the optimization of related quantities. The Lebesgue’s function is not convex
in 2D or 3D, thus in [10, 11] it has been proposed to minimize the L2-average
.
R
T

P
j j'j .x/j2dx/1=2. A slightly different strategy, which leads to Fekete’s points

(after the Hungarian mathematician Michael Fekete, 1886–1957), relies on the
generalized Vandermonde matrix V D V.x1; : : : ; xn/ D . j .xi // where f j g
is any (better if L2-orthogonal) basis in PN .T /. It exists a relation between the
Lagrangians 'j and the basis functions  i of PN .T / through the Vandermonde
matrix, namely Vij'i D  j . By Cramer’s rule, one has

'j .x/ D detŒ .x1/; : : : ;  .xi�1/;  .x/; .xiC1/; : : : ;  .xn/�= detŒ .x1/; : : : ;  .xn/�
(1)

where the vector  .:/ stands for . i .://iD1;n. To minimize Runge’s phenomenon,
thus reducing the Lebesgue’s constant, one should choose points fxj g that maxi-
mizes detŒV �.

2.2.1 Fekete Nodes

For a fixed set of basis functions f i g of PN .T /, Fekete [17] nodes fxj g are those
which maximize over NT the determinant of the Vandermonde matrix V , with Vij D
 j .xi /. If detŒV � has been really maximized, the numerator in (1) can never be
larger than the denominator and thus, by construction, j'j .x/j � 1 for all x 2
NT (see Fig. 4). This yields a bound on the Lebesgue’s constant, that is �N � n

(numerical simulations indicate that�N � N ) and by bounding the Lebesgue norm
of the interpolation polynomial, Fekete nodes ensure spectral convergence (Fig. 5).

Theoretically, Fekete points fxj g do not depend on the choice of the basis
of PN .T /. The Vandermonde matrices constructed from two different bases of
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PN .T / at a given set of points are such that their determinants differ by a
multiplicative constant which has no influence in the maximization process. But
numerically, the choice of the basis matters a lot, since the inversion of V is
necessary to get, at any point in T , the values of the Lagrangians that are involved
in the construction of the interpolation operator. From (1) we may understand that
the success of the interpolation procedure depends on the selection of a basis
such that V is well-conditioned (a possible choice is the L2.T /-orthogonal KD
basis introduced in Sect. 1) and of a set of points fxj g that maximize detŒV �
(i.e., Fekete’s).

Fekete’s points are a possible generalization of GLL points over not tensor
product domains. Indeed, it has been shown that GLL points are Fekete points on
tensor product domains (see [16] in 1D and [5] in higher dimension). Fekete points
were firstly determined in a triangle up to degree 7 (and analytically up to degree 4)
in [4]. Later, in [53] it has been developed an algorithm to approximate sets of points
that locally maximize detŒV � up to degree 19. Through a coupling of a modified
version of this algorithm with a simple global perturbation method, computations
have been run up to degree 30 in [46]. For large values of N , the resulting
(symmetric) Fekete-like configurations are the best, measured by the Lebesgue
norm, found to date. The difficulty related to the computation of Fekete-like nodes
in 3D suggested the researchers to look for other more direct strategies where the
nodes’ construction has a generating formula.

2.2.2 Generating Formulas

Recently, some authors introduced node distributions that have a generating formula
for their construction. This is of great practical interest. Moreover, it reveals basic
structural properties of the distributions that are responsible for the interpolation
quality demonstrated by the optimization-based node sets discussed in Sect. 2.2.1.
Among these node distributions, we recall the Lobatto grid introduced in a
triangle [3] where the nodes are generated by deploying Lobatto interpolation points
along the three edges of the triangle and computing interior nodes by averaged
intersections to achieve a three-fold rotational symmetry. This construction has been
extended to the tetrahedron in [31]. In [30], interpolation points in the triangle T are
obtained from the GLL ones in Q through a new rectangle-to-triangle mapping,
which pulls one edge (at the middle point) of T to two edges of Q. The idea
of defining interpolation nodes on concentric triangles was firstly analyzed in [4].
An alternative to this construction, which results in a very easy recursive generation
algorithm, has been later generalized to arbitrarily shaped domains in [19]. A very
efficient approach is the one presented in [54], where the task of creating a nodal
distribution is replaced with the closely related task of building a coordinate-
warping transformation for the triangle/tetrahedron. This is a familiar problem
faced when using curvilinear finite elements [21]. New contributions of this work
include the application of the warp & blend transform to create nodal elements, and
the construction of coordinate transforms that do not actually change the overall
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geometry of the triangle. A summary of these nodal distributions is given in [40]
where we compare them numerically in terms of Lebesgue constants, generalized
Vandermonde matrix conditioning and accuracy when adopted as approximation
points in a TSEM approach applied to a model problem.

2.3 High-Order Quadrature Formulas

The cornerstone of nodal spectral-element methods is the co-location of the
interpolation and integration points, yielding a diagonal mass matrix that is efficient
for explicit time-integration. In classical SEMs over meshes composed of tensor
product elements, GLL points are both good interpolation and integration points;
on simplices, analogous points have not yet been found. Moreover, quadrature
formulas centered at Fekete nodes as well as at all other sets of interpolation nodes
described in Sect. 2 for a given polynomial degree N are precise only in PN .T /,
yielding to a loss of exponential convergence [37]. Therefore, either we try to find
another set of points with both interpolation and quadrature good properties or we
separate the interpolation nodes from the quadrature ones. The first possibility has
been considered in [20] (see also references therein) where cubature points have
been used for interpolation up to degree 7 through a careful filtering of the basis.
The other possibility, presented in [38], involves two sets of points: the set of n
points fxi g for a polynomial interpolation of degree � N over T and the set of m
points fyi g allowing for an exact quadrature in PM.T /. Given the values at the
approximation points of any polynomial in PN .T /, one can set up interpolation
and differentiation matrices to compute its values and derivatives at the quadrature
points.

Let uN 2 PN .T /. Knowing the uN .xi /, i D 1; : : : ; n, one can easily compute
the uN .yi /, i D 1; : : : ; m. To this end we use the KD polynomials. With ui for
uN .xi /, we have:

ui D
nX

jD1
Ouj j .xi / D

nX

jD1
Vij Ouj ;

where the Ouj are the components of uN in the KD basis. In matrix form, with Ou the
vector of the Ouj , we have u D V Ou. Similarly, with u0 for the vector gathering the
u.yi / and V 0

ij D  j .yi /, we obtain u0 D V 0 Ou D V 0V �1u. To differentiate, e.g., with
respect to r , we use again the KD polynomials:

 j .x/ D
nX

kD1
 j .xk/�k.x/; @r j .yi / D

nX

kD1
 j .xk/@r�k.yi /;

thus for the differentiation matrix:D0r D V 0rV �1, with .V 0r /ij D @r j .yi /.
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Once knowing such differentiation matrices, D0r and D0s , it is an easy task,
by applying the chain rule, to compute derivatives at the quadrature points. Note
that if the mapping g between the reference triangle T and the current mesh triangle
is a non-linear mapping, such an approach is not equivalent to the computation of
the derivatives at the Fekete points followed by an interpolation at the Gauss points.

The TSEM is thus efficient, (i) in terms of computational time, especially to set
up the stiffness matrix, (ii) because it does not require much memory for deformed
triangles and finally (iii) because it is very flexible with respect to the choice of
interpolation and quadrature nodes.

The TSEM requires of course the use of highly accurate quadrature rules based
on Gauss points, as proposed in [12, 51]. Unfortunately, in practice such quadrature
rules are not yet known (or accessible) for large values of N . One possibility is to
use Gauss points based quadrature rules for the quadrilateral and map them to the
triangle through a mapping, say b W Œ�1; 1�d ! T . Such a mapping is, e.g., recalled
in Sect. 1 and detailed in [25] where it is moreover suggested to use the quadrature
points and weights associated to the tensor product of Jacobi polynomials P1;0

i

and P0;0
j (Legendre polynomials) of suitable degree i; j . Such polynomials show

indeed the property to be orthogonal with a weight proportional to the Jacobian
determinant of b (2D case). Within polynomial Galerkin methods, it is a general
practice to use quadrature rules that allow to integrate linear differential terms
exactly. We have seen that, for integrands resulting from the TSEM applied to
discretize linear differential terms, we may enforce exact quadratures in PM .T /

with M D 2N � 1 or M D 2N � 2 rather than P2N .T /, without loosing in
accuracy. However an opposite strategy should be adopted in presence of nonlinear
terms [26, 27]. Indeed, an insufficient quadrature rule for nonlinear terms leads to
an aliasing pollution that degrades the accuracy of the solution and in some cases
lead to numerical instabilities. To avoid these numerical problems, the use of more
quadrature points than what would be necessary to integrate linear differential terms
exactly is required. Quadrature formulas in T with minimal number of nodes for a
prescribed degree of precision q are known for several values of q but not for all.
Note that for high values of q, some weights are negative and some quadrature
points can be out of the triangle. The latter aspect is manageable with the TSEM
since the interpolation points are different from the quadrature ones. One can define
a quadrature rule in T by mapping a quadrature rule defined in Q. However, when
using such a quadrature rule, the quadrature points are no-longer symmetric in T
and their number is maximal: .N C 1/2 quadrature points are required for an exact
quadrature of polynomials of maximum degree 2N C 1 in each variable. Moreover,
an a priori useless accumulation of points occurs at the upper vertex. To avoid the
singularity in the simplex top vertex, quadrature formulas of Gauss type, rather than
of Gauss-Lobatto type, should be adopted. On a generic triangle Tk D gk.T / of a
simplicial mesh, the approximatedL2-inner product in PN .T / is defined as

.u; v/Tk;N D
mX

iD1
.u ı gk/.yi /.v ı gk/.yi /jJgk .yi /jwi ; (2)
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where wi are the original quadrature weights. In terms of grid-point values at the
interpolation set, we may write:

.u; v/Tk;N D vtM u; M D .V �1/t .V 0/tWV 0V �1; W D diag.wi /:

3 Solving the TSEM Systems

Another non-negligible area of research covers the efficient resolution of the
algebraic linear systems resulting from the TSEM application to discretize PDEs.
The matrices resulting from applying the TSEM to second-order elliptic PDEs are
indeed less sparse than the corresponding SEM ones and more ill-conditioned, since
its condition number grows as O.N4h�2/ rather than O.N3h�2/ in 2D, where N
is the total degree of the polynomial approximation in each element and h is the
maximal diameter of the mesh elements.

Finite-element matrices constructed on piecewise linear (in 1D), bilinear (in 2D)
or trilinear (in 3D) shape functions centered at GLL nodes of the reference cube
Œ�1; 1�d provide optimal preconditioners for SEM matrices built on Œ�1; 1�d .
A simple Rayleigh quotient argument shows that the spectral condition number is
optimal, that is, uniformly bounded with respect to both the polynomial degrees N
and the element sizes h in the case of quadrilateral (or parallelepiped) elements.
This is known as the FEM-SEM equivalence. Conversely, it is shown that the finite-
element preconditioners are not optimal on simplices when constructed on Fekete
points or other interpolation points (see details in [8, 55]). Thus, other types of
preconditioners or multi-level solvers have to be considered (for a general intro-
duction to domain decomposition methods and preconditioners we refer to [49]).

The following methods have been considered. (i) Neumann-Neumann Schur
complement methods [35], with each spectral element being considered as a
subdomain: Addressing the Schur complement with Balancing Neumann-Neumann
(BNN) type preconditioners has yielded promising results. Without any numerical
manipulation, the condition number of the Schur complement matrix only shows a
O.Nh�2/ behavior. (ii) Overlapping Schwarz (OS) methods [36], with subdomains
containing more than one spectral element: Impressive results can be obtained but
with the drawback that, differently to the SEM, a “generous overlap” (overlap of
one entire mesh element) must be adopted due to the not tensor product distribution
of the Fekete points in the element.

On the basis of these considerations, we present two strategies. On the one hand,
the Schur complement approach with a simple local implementation, as in [29].
On the other hand, the p-multigrid approach which makes use of a fixed simplicial
mesh and of different approximation levels, each of them associated with a different
polynomial degree to solve elliptic problems [39]. Let us consider the 2D model
problem

� r � .�ru/C �u D f in ˝; uj
 D 0 (3)
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where �, � > 0 are given in ˝ and where f is a given function in L2.˝/.
For simplicity, homogeneous Dirichlet conditions have been assumed. The weak
formulation of problem (3) reads: Given f 2 L2.˝/, find u 2 E D H1

0 .˝/ such
that

a.u; v/ WD
Z

˝

.� r u � r vC u v/ d˝ D
Z

˝

f v d˝ ; 8 v 2 E: (4)

The variational formulation (4) is discretized by the conforming TSEM over a mesh
of K simplices Tk , where the approximation space, say EK;N , contains continuous,
piecewise polynomials of total degree � N ,

EK;N D fv 2 E W vjTk ı gk 2PN .T /; 1 � k � Kg: (5)

Knowing how to compute derivatives and integrals, we can use the usual FEM
methodology to set the discrete problem

KX

kD1
ak;N .u; v/ D

KX

kD1
.f; v/k;N 8 v 2 EK;N ; (6)

where ak;N .�; �/ is obtained from a.�; �/ by replacing each integral with the
quadrature rule (2). By using for the test functions all the involved (Lagrangian)
basis functions, Eq. (6) can be written in matrix form as a linear system Au D b.

3.1 Schur Complement with Local Implementation

Let us consider the matrix form of Eq. (6) restricted to each element Tk , k D
1; : : : ; K . Using for the test functions v ı gk the Lagrangians based on the Fekete
points we obtain, Akuk D bk C rk where uk is the vector of the unknowns at the
interpolation nodes in the element Tk whereas rk stands for the contribution of an
(unknown) Neumann condition at the edges shared by two elements. Note however
that such terms compensate when assembled, i.e.

P
k

0rk D 0, where
P0 is used to

denote the assembling procedure.
By reordering (if necessary) the boundary nodes and then the interior ones, and

since rk has no contribution to the inner nodes, the matrix system Akuk D bk C rk
can be rewritten as

�
Ak;�� Ak;�I
Ak;I� Ak;II

��
uk;�
uk;I

�

D
�

bk;� C rk;�
bk;I

�

:
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where the subscript .k; �/ (resp. .I; �/) refers to the boundary (resp. inner) nodes of
element Tk. Assuming now that Ak;II is not singular, we can eliminate the variables
uk;I and set up the following equation for uk;� :

Skuk;� D gk with Sk D .Ak;�� �Ak;�IA�1
k;IIAk;I� /

gk D bk;� C rk;� � Ak;�IA�1
k;IIbk;I :

The Schur complement matrix Sk is of smaller dimension than matrix Ak , i.e. 3N
rather than n D .N C 1/.N C 2/=2. Moreover, since Ak is symmetric Sk is also
symmetric.

By the assembling procedure and taking into account the compensatory equationP
k

0rk D 0, one obtains:

Su� D g� where S D
X

k

0
Sk (7)

g� D
X

k

0
bk;� � Ak;�IA�1

k;IIbk;I (8)

where � refers to the union of all element boundaries, included those elements that
touch the domain boundary 
 (in the present formulation of the Schur complement
method, 
 � � ). The dimension of the Schur complement matrix S is O.N/,
thus smaller than the dimension O.N2/ of the matrix A. Indeed, S results from
the assembling of elemental matrices of dimension O.N/. Moreover, S is better
conditioned than A since its condition number is O.Nh�2/, as proved in [35]
(we recall that the Schur complement method has been here considered in the case
where each mesh element is a subdomain).

In practice we assemble the source term g� but do not assemble the Schur
complement matrix S , for memory space reasons. Because the Schur complement
system is solved by using a PCG method, we indeed only need to realize matrix
vector product, which is easy from:

Su� D
X

k

0
Skuk;� :

This is an alternative to the more common approach based on the use of low storage
algorithms for sparse matrices. For the preconditioner, we simply use the diagonal
term of S , which is also assembled to this end. Details concerning the imposition of
boundary conditions with a non assembled system are given in [29].

In the implementation all operators specific to each element, i.e. A�1
k;II , Ak;I� ,

Ak;�IA
�1
k;II and Sk, are computed and stored in a preliminary calculation. The storage

requirement is then O.KN2/, with K the number of mesh elements. Such storage
capacity remains reasonable and provides the guaranty of an efficient resolution.
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3.2 p-Multigrid for TSEM

In the frame of classical SEMs, the p-multigrid solver was initially proposed
in [32, 44, 45] and recently used in conjunction with Overlapping Schwarz precon-
ditioners for CFD purposes in [18]. To develop a p-multigrid strategy we have to
define the prolongation/restriction operators between different approximation levels,
an efficient way to set up the coarse level algebraic systems and the smoothing
procedure.

For the sake of simplicity we address the two level case, but the approach can
be easily extended to an arbitrary number of levels. Each level corresponds to a
given approximation polynomial degree N over T and is associated to the set of
Fekete points fxi g in T for the assigned N at that level. The superscripts c and f
are hereafter used to denote the coarse and fine polynomial approximations. Thus,
Nc is the polynomial approximation degree, fxci giD1;:::;nc the set of Fekete points
and f'ci giD1;:::;nc the corresponding Lagrange polynomials. Accordingly, we useNf ,

fxfi giD1;:::;nf and f'fi giD1;:::;nf , with Nf > Nc .
In the frame of spectral methods, defining the prolongation operator is natural.

Using the polynomial interpolant yields :

uf .x
f
i / D

ncX

jD1
uc.x

c
j /'

c
j .x

f
i / ; 1 � i � nf

where uc (resp. uf ) denotes uNc (resp. uNf ). In matrix notation we thus obtain the
prolongation operator P , such that, for the element Tk :

uf D P uc ; ŒP �ij D 'cj .xfi / :

Note that the side point values of uf only depend on the side point values of uc ,
so that the approximation remains conforming. There are indeed N C 1 Fekete
points on each side of T , so that the Lagrange polynomials based on points on the
other sides or inside T vanish at this side. As a result, the operatorP shows a special
structure.

Defining the restriction operator, say R, is less trivial. As just done for the
prolongation operator, one may proceed by interpolation, but a clever handling of
the highest frequencies cannot really be expected from the interpolation strategy.
One may then prefer to proceed by projection or more generally by filtering, in,
e.g., the KD orthogonal hierarchical basis, so that uc.xci / D

Pnf
jD1 Qj Ouj j .xci /.

For a projection, one simply uses Qj D 1 if j � nc and Qj D 0 if nc <
j � nf . For a filtering, the values of the Qj should be associated with the
total degree of the polynomial  j , say N.j /. Using, e.g., the raised cosine filter
Qj D .cos.N.j /=Nf /� C 1/=2.
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In the frame of variational methods, weak formulations with L2.T / inner
products are involved. Taking this into account yields to set up a restriction operator
by transposition of the prolongation operator. Indeed,

.uf ; '
c
i / D .uf ;

nfX

jD1
'ci .x

f
j /'

f
j / D

nfX

jD1
'ci .x

f
j /.uf ; '

f
j /

so that R D P t . Note that if R is obtained by transposition of P , then its structure
is such that the inner point values of the right-hand side bc only depend on the inner
point values of the residual rf .

The prolongation and restriction operators being chosen, it remains to set up the
coarse level matrix, say Ac . Matrix Ac may be set up directly, i.e., like the fine level
matrix A, or by aggregation of A : .Ac/k D RAkP , with Ak for the elementary
matrix of element Tk. Concerning the boundary conditions to be implemented
in Ac , or more generally at all sublevels if more than two approximation levels
are considered, they must be taken homogeneous and of the same type, Dirichlet,
Neumann or Robin, involved in the initial problem.

The aggregation approach is generally coupled to the definition of the restriction
operator by transposition. One can indeed observe that, because of the previously
mentioned properties of the prolongation and restriction operators, one obtains for
the full system something similar to what was obtained for each element. Keeping
unchanged the notations, for the sake of simplicity, one has then Ac D RAP and
R D P t , where R and P are easily identifiable matrices. One can check that if A
is symmetric and positive definite, the coarse level error ec such that Acec D Rrf
solves the constrained optimization problem : Minimize

�.u�/ D 1

2
.Au�;u�/� .b;u�/ constrained by (9)

u� D uf C P ec :

On the basis of a standard Gauss-Seidel smoothing, tests have shown that the most
satisfactory results were obtained by using the transposition strategy,R D P t , to set
up the restriction operator and by adopting the aggregation of the system matrix A
to set up the coarse grid matrix Ac , as detailed in [39].

4 Two Numerical Results in CFD and Concluding Remarks

The Fekete-Gauss TSEM methodology has been implemented in a numerical solver
for the incompressible Navier-Stokes equations. The solver is based on a projection
method, to enforce the divergence free velocity constraint, and a second order time
approximation, with an implicit/explicit treatment of the diffusion/advection terms.
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Fig. 6 Flow between eccentric cylinders at Reynold number Re D 37:2 [29]. Here, N D 9 and
M D 2N , over a mesh (left) of 222 triangles, the vorticity field is presented when using either
linear elements (center) or isoparametric elements (right)

The Schur complement approach is used to solve the resulting elliptic problems.
Two applications are here briefly presented (see [29] for complete details).

Results obtained for the flow between eccentric cylinders, the inner one being
rotating, are presented in Fig. 6. This test case allows to point out the requirement
of using isoparametric elements when a curved boundary is involved, that means
rely on a polynomial parametrization of the sides of triangles touching the curved
boundary of the same order as the TSEM basis functions. For some interesting
remarks on standard mapping techniques based on conformal transformations to go
from Œ�1; 1�d into a domain with curved boundaries, see [2]. In Fig. 6, we show the
TSEM mesh and compare the vorticity fields obtained with straight triangles to the
one obtained with deformed triangles at the boundary. Thanks to a correct treatment
of the circular boundaries, the vorticity peaks that appear at the element vertices in
the former case have disappeared in the latter.

Results obtained for the driven cavity flow are presented in Fig. 7. The boundary
condition is u D .�1; 0/ at the upper boundary and u D .0; 0/ elsewhere. Such
a driven cavity flow is challenging to be captured with a high-order method as it
involves singularities in the upper corners of˝ . Indeed, ux is not continuous at those
corners and consequently the vorticity ! D @xuy � @yux blows up. At these points
we simply enforce the no-slip condition, i.e. no sophisticated singularity treatment
is implemented.

Finally, it should be mentioned that here we have used a PN �PN approximation,
i.e., equal polynomial degrees for the velocity components and for the pressure,
which contrasts with the usual PN � PN�2 SEM formulation, see [33]. Despite
the fact that our Navier-Stokes solver is based on a projection method, one may
conjecture that the TSEM formulation developed here, i.e., based on different sets
of points for interpolation and quadrature, yields no spurious modes, see e.g. [1],
and so has a filtering effect. This conjecture has been validated numerically for the
Stokes problem, by verifying that the dimension of ker.Bt/ is 1, where B is the
matrix associated to the constraint of incompressibility, for N 2 f3; 6; 9; 12g and
either 2N or 2N � 1 as maximal polynomial degree for which the integration is
exact. We hope to be more precise on this point in near future.
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Fig. 7 Driven cavity flow at Re D 1;000 [29]. Mesh (at left) and vorticity (at right). The
computation has been done with N D 9, M D 2N and 682 elements, so that dof D 28;090.
Such a result compares well with the reference one of [6]. The computed vorticity at the upper left
corner is ! 
 1;000

Concerning the theoretical analysis, little is known to date about the
approximation properties of the interpolation operators at Fekete’s or other points
in T . The proposed TSEM has proved to be a high-order approach to PDEs
that enjoys the SEM properties of high-accuracy, low dispersion and dissipation,
efficiency and scalability on modern computer architectures and with possible
extension to include non-conforming elements.
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Exponential Convergence of hp-DGFEM
for Elliptic Problems in Polyhedral Domains

Dominik Schötzau, Christoph Schwab, Thomas Wihler, and Marcel Wirz

Abstract We review the recent results of D. Schötzau et al. (hp-dGFEM for
elliptic problems in polyhedra. I: Stability and quasioptimality on geometric meshes.
Technical report 2009-28, Seminar for applied mathematics, ETH Zürich, 2009.
To appear in SIAM J Numer Anal, 2013; hp-dGFEM for elliptic problems in poly-
hedra. II: Exponential convergence. Technical report 2009-29, Seminar for applied
mathematics, ETH Zürich, 2009. To appear in SIAM J Numer Anal, 2013), and
establish the exponential convergence of hp-version discontinuous Galerkin finite
element methods for the numerical approximation of linear second-order elliptic
boundary-value problems with homogeneous Dirichlet boundary conditions and
constant coefficients in three-dimsional and axiparallel polyhedra. The exponential
rates are confirmed in a series of numerical tests.

1 Introduction

A key feature of the hp-version finite element method (FEM) is the possibility
to achieve exponential convergence rates in terms of the number of degrees of
freedom. Indeed, in the mid eighties, Babuška and Guo proved that using hp-FEM
for the numerical approximation of elliptic boundary-value problems with piecewise
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analytic data in a polygonal domain ˝ leads to energy norm error bounds of the
form C exp.�bN 1=3/, where N is the dimension of the hp-version finite element
space, and C and b are constants independent of N ; see [2, 10, 11] and the
references therein. Exponential convergence is achieved by employing geometric
mesh refinement towards the singular support S of the solutions (i.e., the set
of vertices of ˝), and nonuniform elemental polynomial degrees which increase
linearly with the elements’ distance from S . The proof of elliptic regularity in
countably weighted Sobolev spaces of the solutions, which constitutes an essential
ingredient of the convergence proof, has been a major technical achievement. Let
us mention that generalizations to conforming methods for higher-order elliptic
problems and hp-version mixed methods for Stokes flow in polygons can be found
in [8, 14, 18].

In the 1990s, steps to extend the analytic regularity and the hp-convergence
analysis to polyhedral domains in three dimensions were undertaken in [3,9,12,13]
and the references therein. The difficulty in this case is the appearance of anisotropic
edge and corner-edge singularities. It was claimed and confirmed numerically that
the energy norm errors decay exponentially as C exp.�bN1=5/, i.e., with an exponent
containing the fifth root of N .

The discontinuous Galerkin finite element method (DGFEM) emerged in the
seventies as a stable discretization of first-order transport-dominated problems,
and as a nonconforming discretization of second-order elliptic problems; see the
historical survey [1] and the references therein. Later, in the 1990s, DGFEM was
employed to realize hp-version methods for first-order transport and for advection-
reaction-diffusion problems in two- and three-dimensional domains (see [15, 16]).
Exponential convergence rates were established for piecewise analytic solutions
excluding, in particular, corner singularities as occurring in polygonal domains.
In the context of purely elliptic problems, the well-posedness of hp-version
local discontinuous Galerkin methods was shown in [17]. Finally, exponential
convergence of hp-DGFEM in polygonal domains was proved in [25] for diffusion
problems, and in [24] for Stokes flow, thereby extending the results of Babuška
and Guo to the discontinuous Galerkin framework. In the recent articles [21, 22],
the hp-DGFEM for the approximation of three-dimensional elliptic problems in
polyhedra was considered. In addition, the paper [26] addresses mixed hp-DGFEM
discretizations of the linear elasticity and Stokes equations in polyhedral domains;
this work is based on the inf-sup stability of mixed hp-DGFEM (based on uniform
isotropic, but variable polynomial degrees) for our class of hp-discretizations, which
has been established in [19, 20].

In this paper, we will review the recent results of [21, 22], and, in particular,
the proof of exponential convergence with a fifth root in N for an hp-version
DGFEM for elliptic problems with constant coefficients in axiparallel polyhedra.
Our proof is based on the recent analytic regularity results of [5], which measure
corner, edge and corner-edge singularities in analytic classes of anisotropically
weighted Sobolev spaces. We begin by introducing hp-version DG approximations
on general meshes consisting of axiparallel and possibly anisotropic cuboids, along
with elemental degree vectors which may also be anisotropic. Moreover, we review
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the well-posedness of the resulting finite element methods, show the Galerkin
orthogonality property, and derive abstract error estimates for the DG energy errors.
To resolve singularities, we shall then construct a family of anisotropically and
geometrically refined meshes, characterized by a subdivision ratio � 2 .0; 1/ and a
number ` of refinements. The corresponding degree vectors are linearly increasing
with slope s > 0 away from corners and edges. This family of hp-discretizations
contains, in particular, three-dimensional and anisotropic generalizations of all
mesh-degree combinations which were found to be optimal in the univariate case
in [7]. By proceeding as in [22], we will then specify suitable polynomial interpo-
lation operators, and show that our estimates lead to the exponential convergence
bound C exp.�bN 1=5/ in the DG energy norm. We will also present a series of
new numerical tests which verify the exponential convergence in three dimensions.
In particular, we confirm the fifth root in N for corner-edge singularities.

The outline of the article is as follows: In Sect. 2, we introduce a model problem,
and recapitulate its analytic regularity in the weighted Sobolev spaces of [5].
In Sect. 3, we introduce and analyze an hp-version interior penalty DGFEM with
anisotropic elemental polynomial degrees on meshes of anisotropic and axiparallel
elements. Section 4 is devoted to proving our exponential convergence estimate on
geometric mesh families. Finally, Sect. 5 contains a series of numerical results.

2 Model Problem and Analytic Regularity

We consider the boundary-value problem

�r � .Aru/ D f in ˝ � R
3; (1)

u D 0 on 
 D @˝; (2)

where ˝ is an axiparallel Lipschitz polyhedron, A a constant symmetric positive
definite coefficient matrix, and f an analytic right-hand side (more precise assump-
tions will be made in Proposition 1 below).

We specify the precise regularity of the solution u of (1)–(2) in countably normed
weighted Sobolev spaces. To that end, we follow [5], but mention the papers [9, 12,
13] where alternative definitions of countably normed weighted Sobolev spaces in
terms of local spherical coordinates have originally been defined and studied.

Let us denote by C the set of corners c, and by E the set of edges e of ˝ . The
singular support of the solution u is given by

S D
 
[

c2C

c

!

[
 
[

e2E

e

!

� 
: (3)

For c 2 C , e 2 E and x 2 ˝ , we define the distance functions:

rc.x/ D dist.x; c/; re.x/ D dist.x; e/; �ce.x/ D re.x/=rc.x/: (4)
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For each corner c 2 C , we define by Ec D f e 2 E W c \ e ¤ ; g the set of all
edges of ˝ which meet at c. For any e 2 E , the set of corners of e is given by
Ce D f c 2 C W c \ e ¤ ; g. Then, for c 2 C , e 2 E respectively e 2 Ec , and a
parameter " > 0, we define the neighborhoods

!c D f x 2 ˝ W rc.x/ < " ^ �ce.x/ > " 8 e 2 Ec g;
!e D f x 2 ˝ W re.x/ < " ^ rc.x/ > " 8 c 2 Ce g;
!ce D f x 2 ˝ W rc.x/ < " ^ �ce.x/ < " g:

(5)

By choosing " sufficiently small, we may then partition the domain ˝ into four
disjoint parts,

˝ D ˝0

:[ ˝C

:[ ˝E

:[ ˝CE ; (6)

where

˝C D
[

c2C

!c; ˝E D
[

e2E

!e; ˝CE D
[

c2C

[

e2Ec

!ce: (7)

We shall refer to the subdomains ˝C , ˝E and ˝CE as corner, edge and corner-
edge neighborhoods of˝ , respectively, and define the remaining interior part of the
domain˝ by ˝0 WD ˝ n˝C [˝E [˝CE .

To each c 2 C and e 2 E , we associate a corner and an edge exponent ˇc; ˇe 2
R, respectively. We collect these quantities in the multi-exponent

ˇ D fˇc W c 2 C g [ fˇe W e 2 E g 2 R
jC jCjE j: (8)

Inequalities of the form ˇ < 1 and expressions like ˇ ˙ s are to be understood
componentwise.

Near corners c 2 C and edges e 2 E , we shall use local coordinate systems
in !e and !ce , which are chosen such that e corresponds to the direction .0; 0; 1/.
Then, we denote quantities that are transversal to e by .�/?, and quantities parallel
to e by .�/k. In particular, if ˛ 2 N

3
0 is a multi-index corresponding to the three

local coordinate directions in !e or !ce , then we have ˛ D .˛?; ˛k/, where ˛? D
.˛1; ˛2/ and ˛k D ˛3. Following [5, Definition 6.2 and Eq. (6.9)], we introduce the
anisotropically weighted semi-norm

juj2Mm
ˇ .˝/
D juj2Hm.˝0/

C
X

e2E

X

˛2N
3
0

j˛jDm

�
�r

ˇeCj˛?j
e D˛u

�
�2
L2.!e/

C
X

c2C

X

˛2N
3
0

j˛jDm

0

@
�
�rˇcCj˛j
c D˛u

�
�2
L2.!c/

C
X

e2Ec

�
�rˇcCj˛j
c �

ˇeCj˛?j
ce D˛u

�
�2
L2.!ce /

1

A ;

(9)
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for m 2 N0, and define the norm kukMm
ˇ .˝/

by kuk2Mm
ˇ .˝/

D Pm
kD0 juj2Mk

ˇ .˝/
. Here,

juj2Hm.˝0/
is the usual Sobolev semi-norm of order m on ˝0, and the operator D˛

denotes the partial derivative in the local coordinate directions corresponding to
the multi-index ˛. The space Mm

ˇ .˝/ is the weighted Sobolev space obtained as

the closure of C1
0 .˝/ with respect to the norm k�kMm

ˇ .˝/
. Finally, for a weight

� 2 R
jC jCjE j, we define the analytic class

A�.˝/ D
�

u 2
\

m�0
Mm
� .˝/ W 9Cu > 0 s.t. jujMm

� .˝/
� CmC1

u mŠ 8m 2 N0

	

I

(10)

cf. [5, Definition 6.3]. The following shift theorem from [5, Corollary 7.1] now
establishes the analytic regularity of solutions to problem (1)–(2).

Proposition 1. There exist bounds ˇE ; ˇC > 0 (depending on ˝ and the coeffi-
cients in (1)) such that, for all weight vectors ˇ satisfying

0 < ˇe < ˇE ; 0 < ˇc <
1

2
C ˇC ; e 2 E ; c 2 C ; (11)

the following property holds: if the right-hand side f in (1) belongs to A1�ˇ.˝/,
then the solution u of (1)–(2) belongs to A�1�ˇ.˝/.

3 Discretization

3.1 Finite Element Spaces

We consider (a family of) meshes M consisting of axiparallel cuboids fKg. Hence,
each element K is the image of the reference cube OQ D .�1; 1/3 under a
composition ˚K W OQ ! K of a translation and a dilation. We allow for anisotropic
elements and irregular meshes. Additional assumptions will be introduced in (22)
below. With each cuboid K 2 M , we associate a polynomial degree vector p

K
D

.pK;1; pK;2; pK;3/ 2 N
3, whose components correspond to the coordinate directions

in OQ D ˚�1
K .K/. For technical reasons, we shall assume throughout that pK;i 	 3.

The polynomial degree is called isotropic if pK;1 D pK;2 D pK;3 D pK .
We combine the elemental polynomial degrees p

K
into the polynomial degree

vector p D fp
K
W K 2M g, and introduce the hp-version finite element space

Sp.M / D ˚ u 2 L2.˝/ W ujK 2 Q
p
K .K/; K 2M

�
: (12)
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The local polynomial approximation space Q
p
K .K/ is defined as follows: first, on

the reference element OQ and for a polynomial degree vector p D .p1; p2; p3/ 2 N
3
0,

we introduce the tensor product polynomial space:

Q
p. OQ/ D P

p1. OI /˝ P
p2 . OI /˝ P

p3. OI / D span
˚ Ox˛11 Ox˛22 Ox˛33 W ˛i � pi ; 1 � i � 3

�
:

(13)

Here, for p 2 N0, we denote by P
p. OI / the space of all polynomials of degree at

most p on the reference interval OI D .�1; 1/. Then, if K is an axiparallel element
of M with associated elemental mapping ˚K W OQ ! K and polynomial degree
vector p

K
D .pK;1; pK;2; pK;3/, we set

Q
p
K .K/ D

n
u 2 L2.K/ W .ujK ı ˚K/ 2 Q

p
K . OQ/

o
: (14)

If the polynomial degrees are uniform and isotropic, i.e., pK;1 D pK;2 D pK;3 D
pK D p 	 1 for all K 2M , we simply write Sp.M / instead of Sp.M /.

3.2 Element Boundary Operators

We denote the set of all interior faces in M by FI .M /, and the set of all boundary
faces by FB.M /. In addition, let F .M / D FI .M / [FB.M / signify the set of
all (smallest) faces of M . Furthermore, for an element K 2 M , we denote the set
of its faces by FK D f f 2 F W f � @K g. If f 2 FK , then we denote by h?

K;f

the diameter of K perpendicular to the face f . Similarly, if p
K

is the polynomial

degree vector onK , we denote by p?
K;f the polynomial degree perpendicular to f .

Next, we recall the standard DG trace operators. For this purpose, consider
an interior face f D @K] \ @K[ 2 FI .M / shared by two neighboring
elements K];K[ 2 M . Furthermore, let v and w be a scalar-valued function
and a vector-valued function, respectively, both sufficiently smooth inside the
elements K];K[. Then we define the following trace operators along f :

ŒŒv�� D vjK]nK] C vjK[nK[; hhwii D 1=2 .wjK] C wjK[/ : (15)

Here, for an element K 2 M , we denote by nK the outward unit normal vector
on @K . For a boundary face f D @K \@˝ 2 FB.M / forK 2M , and sufficiently
smooth functions v;w on K , we let ŒŒv�� D vjKn˝ , hhwii D wjK , where n˝ is the
outward unit normal vector on @˝ .

3.3 Discontinuous Galerkin Discretizations

For a given mesh M and associated polynomial degree distribution p, we define the
hp-version symmetric interior penalty DG solution uDG 2 Sp.M / by
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uDG 2 Sp.M / W aDG.uDG; v/ D
Z

˝

f v dx 8 v 2 Sp.M /; (16)

where the bilinear form aDG.u; v/ is given by

aDG.u; v/ D
Z

˝

.Arhu/ � rhv dx �
Z

F .M /

hhArhvii � ŒŒu�� ds

�
Z

F .M /

hhArhuii � ŒŒv�� ds C �
Z

F .M /

j ŒŒu�� � ŒŒv�� ds:
(17)

Here, rh is the elementwise gradient, and � > 0 is the interior penalty parameter
that will be chosen sufficiently large. Furthermore, j 2 L1.F .M // is the face-
wise constant function given by

j jf D

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

max


p?
K];f

; p?
K[;f

�2

min


h?
K];f

; h?
K[;f

� if f D @K] \ @K[ 2 FI .M /;

.p?
K;f /

2

h?
K;f

if f D @K \ @˝ 2 FB.M /:

(18)

We remark that we have omitted an explicit dependence of the penalty jump terms
on the diffusion tensor A.

3.4 Well-Posedness

We show the well-posedness of the hp-DGFEM in the standard DG energy norm
defined by

jjjvjjj2DG D
Z

˝

jrhvj2 dx C �
Z

F
j jŒŒv��j2 ds; (19)

for any v 2 Sp.M / C H1.˝/. To that end, we recall the anisotropic polynomial
trace inequality from [21, Lemma 4.3 (a)]: let K D .0; h1/ � .0; h2/ � .0; h3/ be
an axiparallel element, then there exists a constant CI > 0 only depending on the
reference element such that

kqkL2.f / � CI .p?
K;f /

2.h?
K;f /

�1 kqk2L2.K/ (20)

for all f 2 FK , K 2M , and q 2 Q
p
K .K/.

Proceeding as in [21, Theorem 4.4], the following result can be shown.
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Proposition 2. There is a threshold parameter �min > 0 such that for � 	 �min

the DG bilinear form aDG.�; �/ is continuous and coercive over Sp.M /. That is, we
have

jaDG.v;w/j � C1jjjvjjjDGjjjwjjjDG 8 v;w 2 Sp.M /;

aDG.v; v/ 	 C2jjjvjjj2DG 8 v 2 Sp.M /:

The constants �min, C1 and C2 only depend on � appearing in (17) and (19), the
coefficient matrix A, and the constant CI in the trace inequality (20).

Next, we discuss the Galerkin orthogonality of the DG scheme (16) under the
assumption that the solution u of (1)–(2) belongs toM2�1�ˇ.˝/ for a weight vectorˇ

as in (11). We notice that, in this case, it is not obvious that the expression aDG.u; v/
is well defined for v 2 Sp.M /, since u may exhibit corner and/or edge singularities.
Here, integrals of the form

Z

f

Aru � v ds; f 2 FK \FB.M /; (21)

appearing in the bilinear form aDG require some special care, in particular, for
faces f which abut at the singular support S . However, in [21, Sect. 4.5], it is
shown that the regularity u 2 M2�1�ˇ.˝/ implies Aru 2 L1.f /, f 2 FK \
FB.M /. Thus, the above integrals are in fact properly defined as bilinear forms on
L1.f / � L1.f /. Consequently, a Green’s formula can be established which leads
to the following result; see [21, Theorem 4.9].

Proposition 3. Let the solution u of (1)–(2) satisfy u 2 M2�1�ˇ.˝/ for ˇ as

in (11), and let uDG be the DG approximation of (16) obtained with � 	 �min

(cf. Proposition 2). Then we have the Galerkin orthogonality property aDG.u �
uDG; v/ D 0 for all v 2 Sp.M /.

3.5 Error Estimates

To derive error estimates, we shall now assume the following bounded variation
property in the mesh size: there is a constant � 2 .0; 1/ such that

� � h?
K[;f

=h?
K];f

� ��1; (22)

for all interior faces f D @K[ \K] 2 FI .M /, uniformly in the mesh family.
To account for the singular solution behavior near corner and edges, we disjointly

partition M into

M D O
:[ T; (23)
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where elements in O are bounded away from S , and elements in the terminal
layer T have a nontrivial intersection with the singular support S .

Let now u 2 M2�1�ˇ.˝/ be the solution of problem (1)–(2), and uDG 2 Sp.M /

be the DG approximation from (16). As usual we split the error into the two parts

u � uDG D �C �; with � D u �˘u and � D ˘u � uDG 2 Sp.M /; (24)

for an appropriate hp-version (quasi)interpolation operator˘u 2 Sp.M / of u.
To bound jjj�jjjDG in terms of quantities involving �, we apply the coercivity of

the DG form in Proposition 2, the Galerkin orthogonality property in Proposition 3,
and the anisotropic trace inequality: given a cuboidK D .0; h1/� .0; h2/� .0; h3/,
v 2 W 1;t .K/ for t 	 1, there exists a constant Ct > 0 only depending on t and the
reference element such that

kvktLt .f / � Ct.h?
K;f /

�1 
kvktLt .K/ C .h?
K;f /

t
�
�DK;f;?v

�
�t
Lt .K/

�
; (25)

for any f 2 FK ; cf. [21, Lemma 4.2]. Here, the operator DK;f;? signifies the partial
derivative on elementK in direction perpendicular to f .

Consequently, we find the following generic error bound; see [21, Theorem 4.10]
for details.

Theorem 1. Assume (22) and let u 2 M2�1�ˇ.˝/ with ˇ as in (11). Then we have

the error estimate

jjju � uDGjjj2DG � C jpj4 .EOŒ��CETŒ��/ ; (26)

where

EOŒ�� D
X

K2O

�

max
f 2FK



h?
K;f

��2 k�k2L2.K/ C kD�k2L2.K/
�

C
X

K2O

X

f 2FK



h?
K;f

�2 �
�DK;f;?D�

�
�2
L2.K/

;

(27)

and

ETŒ�� D
X

K2T

�

max
f 2FK



h?
K;f

��2 k�k2L2.K/ C kD�k2L2.K/
�

C
X

K2T

X

f 2FK

jf j�1 h?
K;f kD�k2L1.f / :

(28)

The constant C > 0 is independent of the elemental aspect ratios, mesh sizes, and
polynomial degree vectors. The quantity jf j is the surface measure of a face f ,
and jpj D maxK2M maxfpK;1; pK;2; pK;3g is the maximal polynomial degree.
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Fig. 1 Canical geometric refinements in QQ with subdivision ratio � D 1
2
. (Ex2): isotropic towards

the corner c (left), (Ex3): anisotropic towards the edge e (center), (Ex4): anisotropic towards the
edge-corner pair ce (right). The sets c; e; ce are shown in boldface

4 Exponential Convergence on hp-Version Subspaces

4.1 Geometric Meshes

To construct geometrically refined meshes, we start from a coarse regular and shape-
regular, quasi-uniform partition M 0 D fQj gJjD1 of ˝ into J convex axiparallel
hexahedra. Each of these elements Qj 2 M 0 is the image under an affine
mapping Gj of the reference patch QQ D .�1; 1/3, i.e., Qj D Gj . QQ/. The
mappingsGj are again compositions of (isotropic) dilations and translations.

We then introduce three canonical geometric refinements towards corners, edges
and corner-edges of QQ, which are referred to as extensions (Ex2), (Ex3), and (Ex4)
in [21], and which are illustrated in Fig. 1. The extension (Ex1) introduced in [21]
corresponds to the case where no refinement is considered on QQ.

Geometric meshes in ˝ are now obtained by applying the patch mappings Gj
to transform these canonical geometric mesh patches on the reference patch QQ to
the macro-elementsQj 2M 0. More precisely, we denote by QMj D f QKg QK2 QMj

the

elements in the canonical geometric mesh patch associated with Qj 2 M 0. The
patches Qj away from the singular support S (i.e., with Qj \ S D ;) are left

unrefined by taking QMj D f QQg. Then, we denote by Mj D fK D Gj . QK/ W QK 2
QMj g the patch mesh on Qj , and a geometric mesh in ˝ is given by

M D
J[

jD1
Mj : (29)

It is important to note that the geometric refinements in the canonical patches have to
be suitably selected, oriented and combined in order to achieve a proper geometric
refinement towards corners and edges of ˝ . By construction, each element K 2
M is the image of the reference cube OQ D .�1; 1/3 under an element mapping
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˚K D Gj.K/ ıHK W OQ ! K 2M , where HK W OQ ! QK, QK � QMj , is a possibly
anisotropic dilation combined with a translation, andGj .K/ W QQ! Qj is the patch
map.

In what follows, we will consider a sequence of �-geometrically refined meshes
denoted by M� D fM .`/

� g`�1. Here, � 2 .0; 1/ is a fixed parameter defining
the ratio of the geometric subdivisions in the canonical refinements in Fig. 1. The
index ` is the refinement level. There holds: if K 2 M

.`/
� , then there exists K 0 2

M
.`�1/
� such that K � K 0. We shall refer to the sequence M� as a �-geometric

mesh family; see [21, Sect. 3].
In addition to the mesh refinements, the extensions (Ex1)–(Ex4) in [21, Sect. 3]

also provide appropriate polynomial degree distributions fp.`/g`�1. They increase
s-linearly away from the singular set S . In particular, in the edge and corner-edge
patches the polynomial degrees are anisotropic. On elements in the interior of the
domain, they are uniform, isotropic and proportional to the number ` of geometric
refinements.

Let us point out that the geometric mesh family constructed in [21, Sect. 3] satis-
fies the bounded variation property (22) with a constant � 2 .0; 1/ depending on �
and M 0. In addition, the associated family of polynomial degree vectors fp.`/g`�1
satisfies a similar property: there is a constant � 2 .0; 1/ depending on the slope
parameter s such that

� � p?
K[;f

=p?
K];f

� ��1; (30)

for all interior faces f D @K[ \K] 2 FI .M / and ` 	 1.

4.2 Exponential Convergence Rates

The main result of this review is the following exponential convergence result
from [22, Theorem 6.1].

Theorem 2. Assume that the right-hand side f of the boundary-value problem (1)–
(2) belongs to A1�ˇ.˝/ for a weight vector ˇ as in (11) (hence, the solution u is
in A�1�ˇ.˝/ due to Proposition 1).

Let M� D fM .`/
� g`�1 be a �-geometric mesh family with a geometric refinement

factor � 2 .0; 1/ and fp.`/g`�1 the associated (possibly anisotropic) s-linear degree
distribution vectors with a slope parameter s > 0, generated by the hp-extensions
(Ex1)–(Ex4) in [21, Sect. 3]. Consider the resulting hp-version finite element spaces

V .`/
�;s WD Sp

.`/

.M .`/
� /; ` 	 1: (31)

Then, for each ` 	 1, the DG approximation uDG 2 V .`/
�;s is well defined for � 	 �min

(see Proposition 2), and we have the error estimate
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jjju � uDG jjjDG � C exp.�bN1=5/; (32)

where N D dim.V .`/
�;s /. The constants C > 0 and b > 0 are independent of N , and

solely depend on the constants in the trace inequalities (20) and (25), respectively,
the parameters � , s, the initial mesh M 0, the analyticity constant Cu in (10) of the
solution u, the weight vector ˇ, the diffusion tensor A, and the penalty parameter � .

Remark 1. As proved in [22, Theorem 6.1 and Corollary 5.19], the exponential
convergence result (32) also holds for spaces with uniform and isotropic polynomial
degrees, i.e., for the family

V `
� D Sp

.`/

.M .`/
� /; ` 	 1; (33)

provided that p.`/ ' maxf3; `g. However, in this case, the constant b in the exponent
has to be replaced by a smaller constant b > 0.

Remark 2. The discontinuous hp-version interpolant constructed to prove Theo-
rem 2 yields an exponential DG norm approximation bound of the form (32) for
any function u 2 A�1�ˇ.˝/ with weights given by (11). In particular, for more
general diffusion-reaction problems with non-constant coefficients as in [21] or for
second-order elliptic systems as in [26], exponential convergence of hp-DGFEM
can be achieved for solutions in A�1�ˇ.˝/.

4.3 Ingredients of the Proof

Let us give some insights into the proof of Theorem 2. We apply the error estimates
of Theorem 1. To that end and according to (23), we subdivide the geometric
mesh M

.`/
� into

M .`/
� D O.`/

�

:[ T.`/� : (34)

After specification of the hp-version interpolation operator ˘u in (24), Theorem 1
requires bounding the two termsE

O
.`/
�
Œ�� andE

T
.`/
�
Œ�� in (27) and (28), respectively.

Since the approximation spaces are discontinuous, we can choose different interpo-
lation operators in the two submeshes O.`/

� and T
.`/
� .

Bounding E
O

.`/
�

Œ��: In the elements away from S , we choose ˘u to be an
elementwise tensorized operator of univariate hp-interpolation operators: for an
elementK 2 O

.`/
� and a polynomial degree p

K
D .p1; p2; p3/, we set

.˘u/jK D �1p1;2 ˝ �2p2;2 ˝ �3p3;2ujK; K 2 O.`/
� ; (35)
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where �ipi ;2 is a properly scaled version of the C1-conforming univariate projector
into polynomials of degree pi , constructed and analyzed in [6, Sect. 8] and acting in
coordinate direction xi .

To take into account different weighting of the singularities in the different
neighborhoods, we shall further subdivide O

.`/
� into discrete corner, edge, corner-

edge and interior neighborhoods of the form

O`
� D O`

C

:[ O`
E

:[ O`
CE

:[ O`
int: (36)

In each of these neighborhoods, the geometrically refined elements can be grouped
into certain subsets of elements with identical scaling properties in terms of their
relative distance to the sets C and E . Hence, combining the analytic regularity
properties in each of the discrete neighborhoods with classical hp-approximation
techniques for u �˘u (similarly to the two-dimensional case) yields

E
O
.`/
�
Œ�� � C exp.�2b`/; (37)

with constants C > 0 and b > 0 independent of `. We refer to [22, Sects. 5.2
and 5.3] for details.

Bounding E
T

.`/
�

Œ��: For elements K 2 T
.`/
� at the boundary of ˝ , the zero

interpolation operator ˘u 
 0 is sufficient; indeed, this may be motivated by the
fact that the exact solution u satisfies homogeneous Dirichlet boundary conditions.
In addition, the weights appearing in the k:kM2

�1�ˇ
-norm from (9) carry negative

exponents for j˛j D 0; 1, which results in exponentially small scaled element
contributions in T

.`/
� . Thence, the following bound can be obtained:

E
T
.`/
�
Œ�� � C exp.�2b`/; (38)

with constants C > 0 and b > 0 independent of `, see [22, Sect. 5.4].

Counting the degrees of freedom: From Theorem 1 and the bounds (37), (38), we
conclude that

jjju� uDGjjjDG � C exp.�b`/:

Then we note that N D dim.V .`/
�;s / ' `5 C O.`4/ for ` ! 1, which implies the

bound (32).

5 Numerical Experiments

For the numerical experiments the software library deal.ii [4] is employed.
Our computations are based on the geometrically (with ratio � D 1=2) refined
hp-spaces V `

� from (33) featuring uniform and isotropic polynomial degree p ' `,
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Fig. 2 Performance of the
hp-DGFEM in corner and
edge patches

where ` is the number of mesh layers. We test the hp-DGFEM (16) for the
three reference situations ‘corner patch’, ‘edge patch’, ‘corner-edge patch’, as
displayed in Fig. 1 (and scaled to the unit cube .0; 1/3). They correspond to the hp-
extensions (Ex2), (Ex3), (Ex4) in [21], respectively. In all experiments, the penalty
parameter in (17) is chosen to be � D 10. Then, we monitor the decay of the error
measured in the DG-energy norm (19) as the number of refinements ` is increased.
In all experiments we prescribe the exact solution u, and choose the right-hand
side f in (1) (as well as the (nonhomogeneous) Dirichlet boundary conditions)
accordingly.

• Corner patch (Ex2): The exact solution is chosen to be uc.rc/ D r
�c
c , with �c D

1=3, where rc denotes the distance to the origin. This solution has an isotropic
singularity at 0, and is resolved using the isotropic geometric corner mesh shown
in Fig. 1 (left). The number of degrees of freedom N in the corresponding hp-
spaces is proportional to `4 ' p4. In Fig. 2, we observe that the DG energy
error decays with a nearly constant slope in a semi-logarithmic plot, thereby
confirming exponential convergence (with respect to N1=4).

• Edge patch (Ex3): Here, we choose ue.re/ D r�ee , for �e D 1=2, with re signifying
the distance to the edge e D fx1 D 0g � fx2 D 0g � f0 < x3 < 1g. The solution
exhibits an anisotropic and non-local edge singularity along e, and is refined by
means of the anisotropic geometric edge-mesh depicted in Fig. 1 (center). Again,
the number of degrees of freedom is proportional to `4 ' p4, and the exponential
decay of the DG energy error is clearly visible in Fig. 2.

• Corner-edge patch (Ex4): Finally, we consider the anisotropic corner-edge
singularity solution uce.rc; re/ D r

�c
c r

�e
e , with �c D 1=3 and �e D 1=2. It is

refined by employing the anisotropic corner-edge mesh presented in Fig. 1
(right). This is the most complex of the three model cases discussed here; in
fact, in contrast to the previous examples, it features N ' `5 ' p5 degrees of
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Fig. 3 Performance of the
hp-DGFEM in corner-edge
patch

freedom. Correspondingly, the DG energy error is plotted against the fifth root
of N . As before, exponential convergence is achieved already after a few initial
refinements (Fig. 3).

Our experiments show that the hp-DGFEM (16) on the proposed geometric hp-
meshes is able to resolve isotropic as well as anisotropic singularities, and, in
particular, that exponential rates of convergence are attained in all the reference
configurations shown in Fig. 1.

6 Concluding Remarks

Ongoing research is concerned with extensions of the exponential convergence
theory for hp-DGFEM in three dimensions to elliptic problems with mixed and
Neumann boundary conditions, see [23], to problems with more complicated
geometries and non-constant coefficients, as well as to more general elliptic systems.

Acknowledgements This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada (NSERC), the European Research Council AdG grant STAHDPDE
247277, and the Swiss National Science Foundation (SNF, Grant 200020 144442/1).

References

1. D. N. Arnold, F. Brezzi, B. Cockburn, and L. D. Marini. Unified analysis of discontinuous
Galerkin methods for elliptic problems. SIAM J. Numer. Anal., 39:1749–1779, 2001.



72 D. Schötzau et al.

2. I. Babuška and B. Q. Guo. Regularity of the solution of elliptic problems with piecewise
analytic data. I. Boundary value problems for linear elliptic equation of second order.
SIAM J. Math. Anal., 19(1):172–203, 1988.

3. I. Babuška and B. Q. Guo. Approximation properties of the h-p version of the finite element
method. Comput. Methods Appl. Mech. Engrg., 133(3–4):319–346, 1996.

4. W. Bangerth, R. Hartmann, and G. Kanschat. deal.II – a general purpose object oriented finite
element library. ACM Trans. Math. Softw., 33(4):24/1–24/27, 2007.

5. M. Costabel, M. Dauge, and S. Nicaise. Analytic regularity for linear elliptic systems in
polygons and polyhedra. Math. Models Methods Appl. Sci., 22(8), 2012.

6. M. Costabel, M. Dauge, and C. Schwab. Exponential convergence of hp-FEM for Maxwell’s
equations with weighted regularization in polygonal domains. Math. Models Methods Appl.
Sci., 15(4):575–622, 2005.

7. W. Gui and I. Babuška. The h; p and h-p versions of the finite element method in 1 dimension.
II. The error analysis of the h- and h-p versions. Numer. Math., 49(6):613–657, 1986.

8. B. Q. Guo. The h-p version of the finite element method for elliptic equations of order 2m.
Numer. Math., 53(1–2):199–224, 1988.

9. B. Q. Guo. The h-p version of the finite element method for solving boundary value problems
in polyhedral domains. In Boundary Value Problems and Integral Equations in Nonsmooth
Domains, volume 167 of Lecture Notes in Pure and Applied Mathematics, pages 101–120.
Dekker, New York, 1995.

10. B. Q. Guo and I. Babuška. The hp-version of the finite element method. Part I: The basic
approximation results. Comp. Mech., 1:21–41, 1986.

11. B. Q. Guo and I. Babuška. The hp-version of the finite element method. Part II: General results
and applications. Comp. Mech., 1:203–220, 1986.

12. B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth
domains in R

3. I. Countably normed spaces on polyhedral domains. Proc. Roy. Soc. Edinburgh
Sect. A, 127(1):77–126, 1997.

13. B. Q. Guo and I. Babuška. Regularity of the solutions for elliptic problems on nonsmooth
domains in R

3. II. Regularity in neighbourhoods of edges. Proc. Roy. Soc. Edinburgh Sect. A,
127(3):517–545, 1997.

14. B. Q. Guo and C. Schwab. Analytic regularity of Stokes flow on polygonal domains in
countably weighted Sobolev spaces. J. Comp. Appl. Math., 119:487–519, 2006.

15. P. Houston, C. Schwab, and E. Süli. Stabilized hp-finite element methods for first-order
hyperbolic problems. SIAM J. Numer. Anal., 37:1618–1643, 2000.

16. P. Houston, C. Schwab, and E. Süli. Discontinuous hp-finite element methods for
advection–diffusion–reaction problems. SIAM J. Numer. Anal., 39:2133–2163, 2002.

17. I. Perugia and D. Schötzau. An hp-analysis of the local discontinuous Galerkin method for
diffusion problems. J. Sci. Comput., 17:561–571, 2002.

18. D. Schötzau and C. Schwab. Exponential convergence in a Galerkin least squares hp-FEM for
Stokes flow. IMA J. Numer. Anal., 21:53–80, 2001.

19. D. Schötzau, C. Schwab, and A. Toselli. Stabilized hp-DGFEM for incompressible flow. Math.
Models Methods Appl. Sci., 13(10):1413–1436, 2003.

20. D. Schötzau, C. Schwab, and A. Toselli. Mixed hp-DGFEM for incompressible flows. II.
Geometric edge meshes. IMA J. Numer. Anal., 24(2):273–308, 2004.

21. D. Schötzau, C. Schwab, and T. P. Wihler. hp-dGFEM for elliptic problems in polyhedra. I:
Stability and quasioptimality on geometric meshes. Technical Report 2009-28, Seminar for
Applied Mathematics, ETH Zürich, 2009. To appear in SIAM J. Numer. Anal., 2013.

22. D. Schötzau, C. Schwab, and T. P. Wihler. hp-dGFEM for elliptic problems in polyhedra. II:
Exponential convergence. Technical Report 2009-29, Seminar for Applied Mathematics, ETH
Zürich, 2009. To appear in SIAM J. Numer. Anal., 2013.

23. D. Schötzau, C. Schwab, and T. P. Wihler. Exponential convergence of hp-dGFEM for
elliptic problems with mixed and Neumann boundary conditions in polyhedral domains.
In preparation, 2013.



Exponential Convergence of hp-DGFEM for Elliptic Problems in Polyhedral Domains 73

24. D. Schötzau and T. P. Wihler. Exponential convergence of mixed hp-DGFEM for Stokes flow
in polygons. Numer. Math., 96:339–361, 2003.

25. T. P. Wihler, P. Frauenfelder, and C. Schwab. Exponential convergence of the hp-DGFEM for
diffusion problems. Comput. Math. Appl., 46:183–205, 2003.

26. T. P. Wihler and M. Wirz. Mixed hp-Discontinuous Galerkin FEM for linear elasticity in three
dimensions. Math. Models Methods Appl. Sci., 22(8), 2012.



A Contribution to the Outflow Boundary
Conditions for Navier-Stokes Time-Splitting
Methods

E. Ahusborde, M. Azaïez, S. Glockner, and A. Poux

Abstract We present in this paper a numerical scheme for incompressible
Navier-Stokes equations with open boundary conditions, in the framework of the
pressure and velocity correction schemes. In Poux et al. (J Comput Phys 230:4011–
4027, 2011), the authors presented an almost second-order accurate version of
the open boundary condition with a pressure-correction scheme in finite volume
framework. This paper proposes an extension of this method in spectral element
method framework for both pressure- and velocity-correction schemes. A new way
to enforce this type of boundary condition is proposed and provides a pressure and
velocity convergence rate in space and time higher than with the present state of the
art. We illustrate this result by computing some numerical tests.

1 Introduction

A difficulty in obtaining the numerical solution of the incompressible Navier-Stokes
equations, lies in the Stokes stage and specifically in the determination of the
pressure field which will ensure a solenoidal velocity field. Several approaches
are possible. We can for instance consider exact methods as the Uzawa [1] and
augmented lagrangian [5] ones. In complex geometries or three dimensional
methods, theses techniques are inappropriate since their computational time costs
are very high. An alternative consists in decoupling the pressure from the velocity
by means of a time splitting scheme. A large number of theoretical and numerical
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studies have been published that discuss the accuracy and the stability properties of
such approaches. The most popular methods are pressure-correction schemes. They
were first introduced by Chorin-Temam [2,18], and improved by Goda (the standard
incremental scheme) in [6], and later by Timmermans in [19] (the rotational
incremental scheme). They require the solution of two sub-steps: the pressure is
treated explicitly in the first one, and is corrected in the second one by projecting the
predicted velocity onto an ad-hoc space. A less studied alternative technique known
as the velocity-correction scheme, developed by Orszag et al. in [15], Karniadakis
et al. in [11], Leriche et al. in [12] and more recently by Guermond et al. in [10],
consists in switching the two sub-steps.

In [17] and [7], the authors proved the reliability of such approaches from the
stability and the convergence rate points of view. A series of numerical issues related
to the analysis and implementation of fractional step methods for incompressible
flows are addressed in the review paper of Guermond et al. [9]. In this reference the
authors describe the state of the art for both theoretical and numerical results related
to the time splitting approach.

Another difficulty consists in the treatment of outflow boundary conditions.
Indeed the majority of the studies made on these methods consider only Dirichlet
boundary conditions. We are interested here in outflow boundary conditions. A large
variety of boundary conditions of this type exists, such as the non reflecting bound-
ary condition developed by Orlanski [14] or Engquist [4]. Here we present some
results on the open and traction boundary condition, Liu [13] and Guermond [8].

With open or traction boundary conditions, while no studies have been reported
with a velocity-correction scheme, a few have been done with pressure-correction
schemes. Guermond et al. proved in [9] that only spatial and time convergence rates
betweenO.�xC�t/ andO.�x3=2C�t3=2/ on the velocity andO.�x1=2C�t1=2/
on the pressure are to be expected with the standard incremental scheme, and
between O.�x C �t/ and O.�x3=2 C �t3=2/ on the velocity and pressure for
the rotational incremental scheme. In [16], the authors presented a new version
of the boundary condition for the pressure-correction scheme in the finite volume
framework. They obtained a second-order accuracy for the velocity and rates
between O.�x3=2 C �t3=2/ and O.�x2 C �t2/ with the standard incremental
scheme while with the rotational version, a second order convergence is reached for
both velocity and pressure. The goal of this paper is to extend this method in spectral
element method framework for both pressure-correction and velocity-correction
schemes.

2 Pressure-Correction Scheme for Open Boundary
Condition

2.1 Governing Equations

Let ˝ be a regular bounded domain in Rd with n a unit vector on the outward
normal along the boundary 
 D @˝ oriented outward. We suppose that 
 is
partitioned into two portions 
D and 
N .
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Our study consists, for a given finite time interval �0; t�� in computing velocity
u D u.x; t/ and pressure p D p.x; t/ fields satisfying:

�
@u
@t
� ��uCrp D f in ˝��0; t��; (1)

r � u D 0 in ˝��0; t��; (2)

u D g on 
D��0; t��; (3)

.�ru � pI/ n D t on 
N��0; t��; (4)

where � and � are the density and the dynamic viscosity of the flow respectively
and I the unit tensor. The body force f D f.x; t/, the constraint t D t.x; t/ and the
boundary condition g D g.x; t/ are known. For the sake of simplicity, we chose
g D 0. Finally, the initial state is characterised by a given u.:; 0/.

We shall compute two sequences .un/0�n�N and .pn/0�n�N in a recurrent way
that approximates in some sense the quantities .u.:; tn//0�n�N and .p.:; tn//0�n�N ,
solutions of unsteady Stokes problem (1)–(4). Using a second order backward
difference formula (BDF) time scheme, its semi-discrete version reads:

�
˛unC1 C ˇun C �un�1

�t
� ��unC1 CrpnC1 D f nC1 in ˝; (5)

r � unC1 D 0 in ˝; (6)

unC1 D g on 
D; (7)
�
�runC1 � pnC1I

�
n D tnC1 on 
N : (8)

Values of parameters ˛; ˇ; � depend on the temporal scheme used. Namely:

• ˛ D 1, ˇ D �1, � D 0 for the first order Euler time scheme,
• ˛ D 3

2
, ˇ D �2, � D 1

2
for the second order Backward Difference Formulae time

scheme.

Equations (5)–(8) are split into two sub-problems. The first one is a prediction
diffusion problem that computes a predicted velocity field: Find unC1=2 such that

�
˛unC1=2 C ˇun C �un�1

�t
� ��unC1=2 Crpn D f nC1 in ˝; (9)

unC1=2 D 0 on 
D; (10)
�
�runC1=2 � QpnC1Id

�
n D tnC1 on 
N : (11)
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Expression of QpnC1 depends on the time scheme:

• For the first order time scheme

QpnC1 D pn; (12)

• For the second order time scheme

QpnC1 D 2pn � pn�1: (13)

The second step is a correction pressure-continuity: Find .unC1; 'nC1/ such that

�˛

�t

�
unC1 � unC1=2�Cr'nC1 D 0 in ˝; (14)

r � unC1 D 0 in ˝; (15)

unC1 � n D 0 on 
D; (16)

B:C: .'nC1/ on 
N : (17)

The pressure is upgraded via:

pnC1 D pn C 'nC1 � ��r � unC1=2 in ˝: (18)

The parameter � is used to switch between the standard incremental scheme and the
rotational one:

• � D 0 for the standard incremental scheme,
• � D 0:7 for the rotational incremental scheme.1

In practice, this second step is replaced by a Poisson problem on 'nC1:

�t

˛�
�'nC1 D r � unC1=2 in ˝; (19)

@'nC1

@n
D 0 on 
D; (20)

B:C: .'nC1/ on 
N ; (21)

completed by:

pnC1 D pn C 'nC1 � ��r � unC1=2 in ˝; (22)

1Ideally, � D 1 but as Guermond proved [8], for stability issues, � is necessarily strictly lower than 2�=d .
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unC1 D unC1=2 � �t
˛�
r'nC1 in ˝: (23)

The natural choice for B.C. .'nC1/ consists in choosing 'nC1 D 0 on 
N . Such a
choice involves a numerical locking for � D 0 since the boundary condition on the
pressure increment causes the pressure on the limit to be equal to its initial value.
A real improvement is obtained for � D 0:7 but the expected rates of convergence
are not reached.

In the next section we will keep the nature of the boundary condition of 'nC1
and will suggest a value of it allowing the reduction of the boundary layer effect
mentioned previously.

2.2 Improvement of the Pressure Boundary Conditions

For the sake of simplicity we choose a square domain ˝ with 
N at its right
boundary. The starting point of our approach is the derivation on x1 of the first
component of (14):

� �t
˛�

@2'nC1

@x21
D @ux1

nC1

@x1
� @ux1

nC 1
2

@x1
: (24)

Then, we project on direction x1 the Eqs. (4) and (8):

�
@unC1

x1

@x1
� pnC1 D tnC1

x1
; (25)

�
@u

nC 1
2

x1

@x1
� QpnC1 D tnC1

x1
: (26)

The combination of those three last Eqs. (24)–(26) gives:

��t
˛�

@2'nC1

@x21
D 1

�
.pnC1 � QpnC1/: (27)

Replacing QpnC1 by its expressions (12) gives for the first order scheme:

�
�t

˛�

@2

@x21
C 1

�

�

'nC1 D C�r � unC 1
2 : (28)
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Or for a second order scheme using (13) :

�
�t

˛�

@2

@x21
C 1

�

�

'nC1 D 'n

�
C �r �



unC 1

2 � un� 1
2

�
: (29)

Moreover taking into account the Poisson problem (19):

@2'nC1

@x21
C @2'nC1

@x22
D r � unC1=2; (30)

and subtracting (28) or (29) in (30) one obtains:

• First-order open boundary condition (OBC1):

�
�t

˛�

@2

@x22
� 1

�

�

'nC1 D .1 � �/r � unC 1
2 ; (31)

• Second-order open boundary condition (OBC2):

�
�t

˛�

@2

@x22
� 1

�

�

'nC1 D .1 � �/r � unC 1
2 � '

n

�
C �r � un� 1

2 : (32)

To summarize, we propose a pressure-correction step that writes: Find 'nC1
such that

�t

˛�
�'nC1 D r � unC1=2 in ˝; (33)

@'nC1

@n
D 0 on 
D; (34)

'nC1 D '� on 
N ; (35)

where '� is solution of:

�
�t

˛�

@2

@x22
� 1

�

�

'� D .1 � �/r � unC 1
2 � 2�

�
'n

�
� �r � un� 1

2

�

on 
N ; (36)

@'�

@x2
.˙1/ D 0: (37)
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2.3 Numerical Experiments

2.3.1 Spectral Element Method Implementation

The domain˝ is the union of quadrangular elements˝ D [KkD1˝k .
For simplification, we consider only rectilinear elements with edges collinear to the
axis x and y, that is:

˝k D�ck ; c0
kŒ��dk; d 0

kŒ:

The partition is conforming in the sense that the intersection of two adjacent
elements is either a verte or a whole edge.
The discrete and stable subspaces to approximate the velocity and the pressure,
Xp � .H1

0 .˝//
2 and Mp � L20 .˝/ are chosen to be:

Xp D
n
wp 2 .H1

0 .˝//
2; wk

p D wpj˝k 2 .Pp .˝//
2
o
; (38)

Mp D
n
qp 2 L2 .˝/; qkp D qpj˝k 2 Pp�2 .˝k/;

Z

˝

qp dx D 0
o
: (39)

The spectral Legendre approach consists in using the Legendre-Galerkin meth-
ods introduced in [3] applied to the variational formulation of elliptic problems
introduced in our algorithms.

2.3.2 Numerical Results for the Stokes Problem

Exact solutions for uex D �uexx1 ; uexx2
�

and pex correspond to these data:

uexx1 .x1; x2; t/ D sin .x1/ sin .x2/ cos .2�!t/ ; (40)

uexx2 .x1; x2; t/ D cos .x1/ cos .x2/ cos .2�!t/ ; (41)

pex.x1; x2; t/ D �2 cos .1/ sin .2 .x1 � 1/� x2/ cos .2�!t/ : (42)

To study the time splitting error, we consider the unsteady case ! D 0:7 and the
errors at t� D 1 with a second order time discretization for a range of time steps
5 � 10�4 � �t � 10�1.

Figure 1 depicts results when we use the natural choice for the boundary
conditions for 'nC1 that is 'nC1 D 0 on 
N . The left part of the figure displays
the error in L2-norm for both pressure and velocity when using the standard
incremental scheme (� D 0). We can see that the results are very bad and no order
of convergence can be calculated. The right part exhibits the same quantities when
using the rotational scheme with � D 0:7. We can see that only rates close to 1 are
obtained while order 2 is expected.
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Fig. 1 Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t� D 1 with K D 1 and p D 18 with standard open boundary conditions
and spectral element method
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Fig. 2 Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t� D 1 with K D 1 and p D 18 with the proposed open boundary conditions
and spectral element method

Figure 2 displays the same results using our boundary condition (32). Again, the
left part of the figure depicts the errors with standard incremental scheme whereas
the right part depicts the errors with the rotational scheme. Contrary to [16], where
the authors obtained an almost second-order for the standard incremental scheme
and a full second-order for the rotational scheme, we obtain here, in both cases,
convergence rates equal to 2.

3 Velocity-Correction Scheme for Open Boundary Condition

3.1 Governing Equations

We propose now to extend our boundary condition for the velocity-correction
scheme. The scheme developed by Guermond and Shen in [10] consists on two
sub-steps.
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The first one is the prediction problem that computes a pressure increment and a
solenoidal velocity: find 'nC1 and unC1 such that:

�
˛unC1 C .ˇ � ˛/ Qun C .� � ˇ/ Qun�1 � � Qun�2

�t
Cr'nC1 D fnC1 � fn in ˝;

(43)

r � unC1 D 0 in ˝;
(44)

unC1 � n D 0 on 
D;
(45)

�@n.unC1 � n/ � pnC1 D tnC1 � n on 
N ;
(46)

where ' is the pressure increment defined as:

'nC1 D pnC1 � pn C ��r � Qun: (47)

In practice, this step is processed by solving the following problem: find 'nC1 such
that:

r �
�
�t

�
r'nC1

�

D r �
�
�t

�

�
fnC1 � fn

�� .ˇ � ˛/Qun � .� � ˇ/Qun�1 C � Qun�2

�

in ˝;

(48)

@n'
nC1 D �

fnC1 � fn
� � n on 
D;

(49)

B:C: .'nC1/ on 
N ;
(50)

and upgrading the pressure and the solenoidal velocity via (47) and (43).
The second step is a correction-diffusion problem: find QunC1 such that:

�
˛ QunC1 C ˇ Qun C � Qun�1

�t
� �� QunC1 D f nC1 � rpnC1 in ˝; (51)

QunC1 D 0 on 
D; (52)

�@n. Qu � n/nC1 D tnC1 � nC pnC1 on 
N ; (53)

�@n. Qu � �/nC1 D tnC1 � � on 
N : (54)

Again the main difficulty lies on the boundary condition (50). The natural choice
consisting in choosing '� D 0 leads to the same issues as for the pressure-correction
scheme since rates of convergences are lower that the expected ones. We have
carried out the same reasoning as for the pressure-correction scheme and we propose
this formulation for the pressure computation step : Find 'nC1 such that
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�t

�
�'nC1 D r �

�
�t

�



f nC1 � f n

�
� .ˇ � ˛/ Qun � .� � ˇ/ Qun�1 C � Qun�2

�

in ˝;

(55)

@n'
nC1 D



f nC1 � f n

�
� n on 
D;

(56)

'nC1 D '� on 
N ;
(57)

where '� is solution of:

�
�t

�
@x22

� ˛

�

�

'nC1 D @x2
�t

�



f nC1
x2

� f nx2

�
� r � �.ˇ � ˛/Qun C .� � ˇ/Qun�1 � � Qun�2

��Hn;

(58)

with:

Hn D �r � �˛ Qun C ˇ Qun�1 C � Qun�2� � 1

�

�
ˇ'n C �'n�1�

� 1

�

�
˛ .tnC1

x1
� tnx1/C ˇ.tnx1 � tn�1

x1
/C � .tn�1

x1
� tn�2

x1
/
�
: (59)

3.2 Numerical Experiments

The same numerical experiments as for the pressure-correction scheme are carried
out. Again we present firstly in Fig. 3 the results using the natural choice for '�
that is '� D 0 on 
N . The left part of the figure displays the error in L2-norm for
the pressure and velocity when we use the standard incremental scheme. We can
see that the results are very bad and no order of convergence can be calculated.
The right part exhibits the same quantities when using the rotational scheme with
� D 0:7. We can see that only rates close to 1 for the pressure and 3

2
for the velocity

are obtained.
In Fig. 4, results corresponding to the proposed boundary condition are exhibited.

Again, the left part of the figure depicts the errors with standard incremental scheme
whereas the right part depicts the errors with the rotational scheme. We can see that
for the standard incremental scheme rates of convergence close to 2 are obtained
as expected. For the rotational scheme, we can remark that unlike the pressure-
correction scheme for which the standard and rotational schemes give the same
results with a slight improvement with the rotational scheme, the results show
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Fig. 3 Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t� D 1 with K D 1 and p D 18 with standard open boundary conditions
and spectral element method

10-3

Time step

10-6

10-5

10-4

10-3

10-2

10-1

E
rr

or
 (

L
2 )

Error L2 velocity
Error L2 pressure

Slope = 1.8

Slope = 1.9

10-3 10-2

Time step

10-6

10-5

10-4

10-3

10-2

E
rr

or
 (

L
2 )

Error L2 velocity
Error L2 pressure Slope = 1.4

Slope = 1.8

Fig. 4 Time convergence rates with the standard incremental scheme (left) and the rotational
scheme (right) at t� D 1 with K D 1 and p D 18 with the proposed open boundary conditions
and spectral element method

here a distinct advantage for the standard version. Indeed, for the pressure, the
convergence rate is now 1:4. This conclusion is confirmed by several numerical
tests. A similar observation can be found in the paper of Guermond et al. [10] where
the Dirichlet boundary condition is considered for the Stokes problem (on the right
part of figure [3]).
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High Order Space-Time Discretization
for Elastic Wave Propagation Problems

Paola F. Antonietti, Ilario Mazzieri, Alfio Quarteroni, and Francesca Rapetti

Abstract In this work we consider the numerical solution of elastic wave prop-
agation problems in heterogeneous media. Our approximation is based on a
Discontinuous Galerkin spectral element method coupled with a fourth stage
Runge-Kutta time integration scheme. We partition the computational domain
into non-overlapping subregions, according to the involved materials, and in each
subdomain a spectral finite element discretization is employed. The partitions
do not need to be geometrically conforming; furthermore, different polynomial
approximation degrees are allowed within each subdomain. The numerical results
show that the proposed method is accurate, flexible and well suited for wave
propagation analysis.

1 Introduction

The possibility of inferring the physical parameter distribution of the Earth’s
substratum, from information provided by elastic wave propagations, has increased
the interest for computational seismology. The rapid development of efficient
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numerical tools makes it possible to simulate with high accuracy the complete
seismic wavefront field in highly heterogeneous media, even in complex geometries.
Recent developments on computational seismology have been based on high-
order spectral element (SE) methods (see, for example, [2, 6, 8–10, 15]). Spectral
element methods, which stem from a weak variational formulation, allow a flexible
treatment of boundaries, or subdomain interfaces, and deal with free-surface
boundary conditions naturally. They feature both combine the geometrical flexibility
typical of low-order methods and the exponential convergence rate associated with
spectral techniques; as a matter of fact, they yield minimal numerical dispersion
and dissipation errors. Moreover, they retain a high level parallel structure, and are
therefore well suited for parallel computations.

In this paper we consider a non-conforming high-order technique, namely the
Discontinuous Galerkin (DG) spectral element method to simulate seismic wave
propagation in heterogeneous media. In contrast to standard conforming discretiza-
tions, like the SE method, DG techniques can accommodate discontinuities, not only
in the parameters, but also in the wave-field, and they are energy conservative.

The paper is organized as follows. In Sect. 2 we describe the model of linear
elastodynamics. In Sect. 3 we introduce the semi-discrete formulation obtained
by using the DG spectral element approximation. The corresponding algebraic
formulation and the time integration scheme are described in Sect. 4. Numerical
results are presented and discussed in Sect. 5. Finally in Sect. 6 we draw some
conclusions. All along the paper, matrix or tensor quantities are denoted by Greek
or capital letters, while vectors are typed in bold. Moreover, we adopt the standard
notation .�; �/˝ to denote the L2-inner product for regular enough scalar, vectorial
and tensorial functions defined in ˝ .

2 Problem Formulation

We consider an elastic heterogeneous medium occupying an open and bounded
region ˝ � R

d , for d D 2; 3, with boundary 
 WD @˝ . The boundary can
be composed by three disjoint parts: 
D where displacements are prescribed, 
N
where external loads are applied and 
NR where suitable non-reflecting conditions
are imposed. To simplify, we assume that the measure of 
D is positive. For a given
displacement vector v, let � .v/ be the Cauchy stress tensor � .v/ WD �.r � v/I C
2��.v/, where �.v/ WD 1=2.rvC rv>/ is the strain tensor, I is the identity tensor
and �, � are the Lamé parameters. For a given density of body forces f, and a given
vector field t, we consider the linear elastodynamics system:

�utt � r � � .u/ D f; in ˝ � .0; T �; (1)

coupled with boundary conditions

u D 0 on 
D; � .u/n D t� on 
N [ 
NR; (2)
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where n is the unit outward normal vector to 
 and t� WD t on 
N and

t� WD �.cP � cS /.ut � n/nC �cSut on 
NR: (3)

Here, cP WD
p
.�C 2�/=� and cS WD

p
�=� are the propagation velocities of P

and S waves, respectively. The representation of the radiation condition associated
with external boundary is a difficult problem, and numerous numerical schemes
have been proposed in literature (see for instance [7]). In (3) we adopt a first
order approximation close to the one proposed by Stacey [16] that is based upon
a one-way treatment that perfectly absorbs waves impinging at right angles to the
boundary, but that is less effective for waves that graze the boundary [3]. Finally, to
complete the system (1)–(3) we prescribe initial conditions u D u0 and ut D u1 for
the displacement and the velocity, respectively. We remark that for heterogeneous
media, �, � and � are bounded functions of the spatial variable, not necessarily
continuous, i.e., �, � and � 2 L1.˝/.

3 Discontinuous Galerkin Spectral Element Method

In this section we describe the non-conforming technique adopted to approximate
(1)–(3). To simplify the discussion, we present the method in the case ˝ is
decomposed into two non-overlapping subdomains; the extension to any partition
of ˝ into a fixed number of subdomains is straightforward [1, 14]. Moreover we
suppose 
 D 
D [ 
N , the general case is obtained similarly.

Let ˝1 and ˝2 be two open and connected subsets of ˝ , with Lipschitz
boundaries @˝i such that ˝ D ˝1 [ ˝2 with ˝1 \ ˝2 D ;. Let ni denote the
unit normal to @˝i , exterior to ˝i and let 
12 denote the interface between ˝1 and
˝2, that is 
12 WD @˝1 \ @˝2. For any smooth enough functions v and � , we
set vi WD vj˝i and � i WD � j˝i , i D 1; 2. The jump and average trace of v and �

through 
12 are defined as fvg WD 1
2
.v1 C v2/, ŒŒv�� WD v1 ˝ n1 C v2 ˝ n2; and

f� g WD 1
2
.� 1 C � 2/, ŒŒ� �� WD � 1n1 C � 2n2; where a˝ b 2 R

d	d is the tensor with
entries .a ˝ b/ij WD aibj ; 1 � i; j � d , for all a;b 2 R

d . We remark that in this
setting, problem (1) can be reformulated equivalently as

�.ui /tt � r � � .ui / D f; in ˝i � .0; T �; (4)

for i D 1; 2 coupled with transmission conditions ŒŒu�� D 0 and ŒŒ� �� D 0 on 
12:
Next, in each˝i we introduce a conforming partition Thi , made by quadrilateral

elements ˝j
i with typical linear size hi and ˝i D S

jD1 ˝
j

i . Each element ˝j
i is

the image of the reference square Ő D .�1; 1/d by means of a suitable map Fji
with Jacobian matrix Jji , i.e., ˝j

i D Fji . Ő /. We define an interior edge (face for
d D 3) as the non-empty interior of the intersection of two neighbouring elements
belonging to different subdomains. More precisely, let ˝i

1 2 ˝1 and ˝k
2 2 ˝2 be
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two neighbouring elements, we set � WD @˝i

1 \ @˝k

2 . We remark that in this setting
the skeleton 
12 can be expressed as 
 12 DSjD1 �j .

Now, in each ˝j
i , we introduce the space QNi .˝

j
i / WD fv D Ov ı .F j

i /
�1 W

Ov 2 QNi .
Ő /g; where QNi .

Ő / is the space of vectorial functions defined over Ő
and such that each component is an algebraic polynomial of degree less than or
equal to Ni 	 2 in each space variable. Finally we define the finite dimensional
spaces Xı.˝i / WD fvı 2 C0.˝i / W v

ıj˝j
i
2 QNi .˝

j
i /; 8˝j

i 2 Thi g; and Vı WD
fvı 2 L2.˝/ W vıj˝i 2 Xı.˝i /; i D 1; 2 W vıj
D D 0g; where ı WD fh;Ng with
h WD .h1; h2/ and N WD .N1;N2/ are couplets of discretization parameters. Each
component hi and Ni represents the mesh size and the degree of the polynomial
interpolation in the region˝i , respectively.

A nodal basis for Vı is obtained introducing on each element ˝j
i a set of inter-

polation points fpi g (Gauss-Legendre-Lobatto (GLL) points) and corresponding
degrees of freedom which allow to identify uniquely a generic function in Vı . In the
SE approach the interpolation points are used as quadrature points. Thus, we have

.f; g/
˝
j
i
� .f; g/

NI;˝
j
i
WD

.NiC1/dX

kD1
.f ı Fji /.pk/ � .g ı Fji /.pk/jdet.Fji /j!k; (5)

where !k are the weights of the GLL quadrature formula [5]. The spectral shape
functions ˚ i 2 Vı are defined as ˚ i .pj / D ıij, i; j D 1; : : : ; .Ni C 1/2, where
ıij is the Kronecker symbol. It is straightforward to see that by the definition of
Vı, the basis functions will not be globally continuous on the whole domain and
that the restriction of any spectral function to ˝j

i either coincides with a Lagrange
polynomial or vanishes. Moreover, the support of any shape function is limited to
the neighbouring elements if the spectral node lies on the interface between two or
more elements, while it is limited to only one element for internal nodes.

To introduce the non-conforming semi-discrete DG variational formulation, we
multiply by a generic test function v 2 Vı Eq. (4), integrate it by parts and sum over
the elements˝j

i 2 Thi . For each t 2 .0; T �, we now seek for .u1;ı;u2;ı/ 2 Vı such
that

2X

iD1
.�dttui;ı; vi /˝i CA .ui;ı ; vi /˝i D

2X

iD1
L .vi /˝i 8 .v1; v2/ 2 Vı; (6)

where L .vi /˝i WD .f; vi /˝i C .t; vi /
N and

2X

iD1
A .u; v/˝i WD

2X

iD1
.� .u/; �.v//˝i

C
X

j W�j2
12
� .ŒŒu��; f� .v/g/�j � .f� .u/g; ŒŒv��/�j C �j .ŒŒu��; ŒŒv��/�j :

(7)
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Here � 2 f�1; 0; 1g and �j are positive constants depending on the discretization
parameters h and N and on the Lamé coefficients. More precisely, �j WD ˛f� C
2�gA Nj2=hj, where fqgA represents the harmonic average of the quantity q, defined
by fqgA WD .2q1q2/=.q1 C q2/, Nj WD max.N1;N2/, hj WD min.h1; h2/ and ˛ is a
positive constant at disposal.

It is possible to prove that problem (6) admits a unique solution uDG.t/ 2 Vı ,
satisfying optimal a-priori error bound with respect to a suitable DG-norm. See
[1, 13] for further details.

4 Algebraic Formulation and Time Integration Scheme

In this section we discuss the algebraic formulation of the DG spectral element
method presented in the previous section and we introduce the time integration
scheme. We start by introducing a basis f˚1

i ;˚
2
i gDiD1, for the finite dimensional

space Vı , where D represents the degrees of freedom of the problem. Omitting the
subscript ı, we write the discrete function u 2 Vı as

u.x; t/ WD
DX

jD1
˚1
j .x/U

1
j .t/C˚2

j .x/U
2
j .t/:

Then, using the above expression, we recast Eq. (6) for any test function ˚`
j .x/ 2

Vı, for ` D 1; 2, obtain the following set of discrete ordinary differential equations
for the nodal displacement U WD ŒU1;U2�>:

M RUC AU D F; (8)

where RU represents the vector of nodal acceleration and F the vector of externally
applied loads:

F`i WD .f;˚`
i /˝ C .t;˚`

i /
N ; for i D 1; : : : D:

Equation (8) can be written equivalently as

�
M1 0

0 M2

� � RU1

RU2

�

C
�

A11 A12

A21 A22

� �
U1

U2

�

D
�

F1

F2

�

:

As a consequence of (5) and of assumptions on the basis functions, the mass matrix
M has a diagonal structure with elements

M`
ij WD .�˚`

j ;˚
`
i /˝; for i; j D 1; : : : ;D;

The matrix A associated to the bilinear form A .�; �/ defined in (7) is such that for
i; j D 1; : : : ;D it holds
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A11
ij WD A .˚1

j ;˚
1
i /˝; A12

ij WD A .˚2
j ;˚

1
i /˝;

A21
ij WD A .˚1

j ;˚
2
i /˝; A22

ij WD A .˚2
j ;˚

2
i /˝:

In order to apply the four-stage Runge-Kutta method to system (8) we define V WD PU
the vector of nodal velocities and we prescribe initial conditions U.0/ WD u0 and
V.0/ WD u1. Then, we subdivide the interval .0; T � intoN subintervals of amplitude
�t D T=N and set tn D n�t , for n D 1; : : : ; N . Using the notation just introduced,
we rewrite (8) as the following first order system of equations

�
I 0
0 M

� � PU.t/
PV.t/

�

D
�

0 I
�A 0

� �
U.t/
V.t/

�

C
�

0
F.t/

�

;

that is equivalent to

PW.t/ D g.t;W.t//;

where W.t/ WD ŒU.t/ V.t/�>, and

g.t;W.t// WD
�

0 I
�M�1A 0

�

W.t/C
�

0
M�1F.t/

�

:

Then, the four stage Runge-Kutta method [11] takes the form

W.tnC1/ DW.tn/C �t

6
.K1 C 2K2 C 2K3 CK4/ ; (9)

where

K1 WD g.tn;W.tn//; K2 WD g.tnC 1
2
;W.tn/C �t

2
K1/;

K3 WD g.tnC 1
2
;W.tn/C �t

2
K2/; K4 WD g.tnC1;W.tn/C�tK3/:

We remark that the above scheme is fourth order accurate, explicit and conditionally
stable. In order to guarantee boundedness of the discrete solution for all the obser-
vation time the Courant-Friedrich-Levy condition (CFL) prescribes a restriction on
the time step �t that reads �t � CCFL�x=cP ; where �x is the shortest distance
between two GLL nodes and CCFL is a constant depending on the dimension, the
order of the scheme, the mesh geometry and the polynomial order. Since�x � N�2
(see [5]) it follows that CCFL � N�2 as for the well-known (and widely used
in seismic applications) leap-frog scheme [4]. Moreover, a direct computation of
the CCFL constant shows that the stability bounds for the Runge-Kutta scheme (9)
are less restrictive of the leap-frog one, see [13] for details. The grid dispersion
and dissipation properties of the four stage Runge Kutta method coupled with DG
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discretization has been analyzed in [13], in particular it is shown that, heuristically,
5 points per wavelength are sufficient for providing negligible errors (less that
10�6). This makes the proposed scheme well suited for the approximation of wave
propagation problems.

5 Elastic Scattering by Circular Inclusion

This example illustrates the scattering of a plane wave by an elastic circle included in
a homogeneous halfspace, see Fig. 1. Such an example appears frequently in non-
destructive testing and near-surface seismic studies (cavity, gas inclusions). From
the numerical point of view, the main difficulty lies in meshing the curved internal
interface, specially in the case of two media with high velocity contrast where both
an accurate approximation of the body and of the interface waves are mandatory.

In order to illustrate the flexibility of the proposed DG approximation we
consider the case of a compliant inclusion buried in a stiffer elastic space since
we want to test the accuracy of the DG spectral element method for an extremely
high velocity contrast.

The physical model that we are considering consists in a circular inclusion (CI)
of diameter 500m embedded in the square elastic half space (ES) of dimension
.0; 2;000/ � .0;�2;000/m. In Table 1 we report the different material properties
for the case considered. The set of parameters is borrowed form [12] and was used
firstly in [15] to study a two quarter space problem, that is two elastic half-spaces
in contact along a vertical material discontinuity, with special emphasis in the
simulation of the interface waves travelling along the vertical interface, a geometry
well suited for classical spectral element methods based on quadrilateral meshes.
Here, we consider the scattering by an elastic circle of a plane wave travelling
upwards.

In this example, an interface wave is expected to travel along the circular
boundary of the buried circle.

We set the mesh sizes hCI D 35m and hES D 70m, for the circular inclusion
(CI) and the elastic space (ES), respectively. The partition within the circle and
the halfspace is designed in order to have at least 5 points per wavelength with
polynomial degree NCI D NES D 4 and do not match at the interface.

We apply free-surface boundary conditions, i.e. t D 0, on the top of the domain,
while non-reflecting boundary conditions are imposed on the remaining parts of the
boundary. A body force f.x; t/ is prescribed along the bottom boundary by an initial
displacement u0 and velocity u1. The force time history is represented by Ricker
plane wave R.t/ with incident angle # D 0 (see Fig. 1) and modulation of 5Hz
central frequency: R.t/ D Œ1 � 2ˇ.t � t0/2� expŒ�ˇ.t � t0/2�; where t0 D 1 s and
ˇ D 246:7401 s�1.

Along the curved interface, starting from the point R1 D .1;000;�1;250/m,
50 receivers are placed in a counter clockwise order. The wave field is propagated
using the Runge-Kutta scheme, described in the previous section, for T D 7 s using
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Fig. 1 Circular inclusion
with center
C D .0;�1;000/m and
radius R D 500m in the
elastic space
.0; 2;000/ 	 .0;�2;000/m

Table 1 Dynamic and
mechanical parameters for the
circular inclusion (CI) and the
elastic space (ES)

Layers � [kg/m3] cP [m/s] cS [m/s]

CI 1 600 1,400
ES 2 2,310 4,000

R1 R10 R20 R30 R40 R50
1

1.5

2

2.5

3

3.5

4

4.5

5

Ti
m

e 
[s

]

Receivers along circular inclusion

Hor. Displ. [m]Fig. 2 Horizontal
displacement along the
circle’s boundary computed
with the DG approach (black
line) and the conforming
spectral element approach
(red line)

a time step �t D 10�4 s. All the results are compared with those obtained with a
conforming spectral element approximation choosing fourth order polynomials and
hCI D hES D 35m. In Fig. 2 we report the horizontal displacement recorded by the
receivers along the interface. Notice that as expected the displacement turns out to
be symmetric with respect to the vertical axis.
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Fig. 3 Displacement recorded by R11 and corresponding residual

Fig. 4 Snapshots of the horizontal and vertical displacements obtained with the DG method
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In Fig. 3 we report in the same graphics the displacement recorded by the receiver
R11 D .239:67;�1;071:1/m and the difference (magnified by 10 for visualization
purposes) between the solution obtained with the DG scheme and the reference
one obtained with the conforming SE method. It can be observed that DG method
reproduces accurately the wave front field for all observation times. It is evident the
effect on the wavefield induced by the softer inclusion: the waves that travel across
the circle are trapped within it and then phenomena of reflection and refraction arise.
This is more evident from the snapshots of the computed solution shown in Fig. 4.

6 Conclusions

In this note we have presented a DG spectral element method combined with the
fourth order Runge-Kutta scheme for the discretization of elastic wave propagation
in heterogeneous materials. The test case analyzed showed the flexibility of the
proposed method when complex mesh geometries are considered (curved internal
interfaces). The results, compared with those obtained with the conforming spectral
element method, show that the non-conforming strategy is both accurate and com-
putationally efficient. We refer to [1, 13, 14] for a more comprehensive comparison
of the methods in term of convergence, accuracy, grid dispersion and stability.
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Laguerre Simulation of Boundary Layer Flows:
Conditions at Large Distance from the Wall

F. Auteri and L. Quartapelle

Abstract In this contribution, a fully spectral projection method for simulating the
flow over a flat plate is presented. The incompressible Navier–Stokes equations
are integrated in time using a second order fractional step method, while suitable
Legendre and Laguerre polynomial basis functions are combined with a Fourier
expansion in the spanwise direction to represent the spatial dependence in the truly
unbounded domain. An original feature of the proposed method is the treatment
of the asymptotic free-stream condition far from the wall on the normal velocity
component by a Petrov-Galerkin method. Convergence tests assess the spectral
accuracy of the proposed method in space and its second order accuracy in time.
Results from the first large scale, with �30 millions of unknowns, simulation of
boundary layer flow exploiting Laguerre polynomials are also reported.

1 Introduction

The active control of turbulent flows over a flat plate is a very active current research
area, see, e.g., [1]. Amongst the various numerical techniques employed so far to
investigate this kind of flows and boundary layer transition, spectral methods are
the most convenient by virtue of their accuracy and efficiency. Owing to the semi-
infinite character of the flow domain in the direction normal to the wall, truncation
of the corresponding unbounded coordinate is typically adopted in connection with
the use of Chebyshev polynomials as basis functions [2].

An alternative and more sound approach to solve elliptic equations in unbounded
domains with spectral accuracy relies on Laguerre functions [3]. The aim of the
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present contribution is to describe an innovative fully spectral DNS code for the
simulation of boundary layer flows which uses different bases in the three spatial
directions: Laguerre functions are employed in the wall normal direction (y)
together with Legendre polynomials for the streamwise coordinate (x) and the
Fourier representation for the periodic spanwise direction (z).

In Blasius boundary layer simulations, of interest here, satisfying the asymptotic
condition at large distance from the wall is particularly difficult. In fact, the
asymptotic behaviour of the velocity component v normal to the wall is such that
v! a as y !1, where the quantity a is unknown and part of the solution.

We have devised an original procedure that, in the context of a Laguerre spectral
approximation which is naturally homogeneous at infinity, accounts for both the
asymptotic Neumann specification and the unknown embedded level of the solution
variable.

A second order projection method is employed to advance the solution in
time [10] and a Galerkin formulation has been adopted for the spectral discretization
in space. The reported results show the spectral accuracy of the method with respect
to the spatial discretization and second order accuracy with respect to the time
discretization.

2 Problem Definition

This paper deals with the simulation of the incompressible flow of a Newtonian fluid
over a flat plate. The governing partial differential equations are the Navier–Stokes
equations

8
<

:

@u
@t
C .u �r /u� �r2uC rp D f.r; t/;

r� u D 0;
(1)

over the computational domain consisting in an infinite region bounded by five
planes, which can be defined as ˝ D Œx; x C L� � Œ0;1/ � Œ�S; S�, see Fig. 1.
Our simulations will assume a flow field with uniform velocity and zero pressure
gradient at large distance from the plate. Thus, the initial and boundary conditions
for the flow field will based on the similar 2D flow over a semi-infinite flat plate
as given by the solution f .�/ to the Blasius equation, with � representing the
similarity variable. It is therefore convenient to introduce the Blasius velocity field
uB D uB Ox C vB Oy with components uB parallel and vB perpendicular to the wall
defined in terms of f .�/ and g.x/ D p�x=U by the relations

uB.x; y/ D Uf 0.�/

vB.x; y/ D Ug0.x/Œ�f 0.�/ � f .�/� (2)
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L 2S

x
y

Fig. 1 Geometry and
computational domain sketch

where � D �.x; y/ D y=g.x/ and U is the uniform velocity at large distance from
the wall.

The initial condition is assumed to be

u.x; y; z; 0/ D uB.x; y/: (3)

Five different kinds of boundary conditions are enforced in the present problem.

1. On the plate surface @˝w, for y D 0, the velocity is prescribed including
the possibility of wall oscillations parallel to its plane and of normal suction,
namely, u.x; 0; z; t/ D aw.x; z; t/, t > 0. A typical suction condition will be
v.x; 0; z; t/ D ay;w.x; z; t/, together with the no-slip conditions u.x; 0; z; t/ D 0

and w.x; 0; z; t/ D 0. No condition on pressure.
2. On the inlet section @˝i, for x D x, the vector velocity is imposed u.x; y; z; t/ D

uB.x; y/, t > 0, (thus w.x; y; z; t/ D 0/, and again no condition on pressure.
3. For y !1, asymptotic conditions are imposed on the velocity components and

on pressure. In detail:

lim
y!1 u.x; y; z; t/ D lim

y!1 uB.x; y/ D U

lim
y!1 @yv.x; y; z; t/ D 0

lim
y!1 w.x; y; z; t/ D 0

lim
y!1p.x; y; z; t/ D c1

c1 being an arbitrary constant. The derivative condition for the normal velocity
v is a consequence of enforcing asymptotically the incompressibility constraint,
and can be imposed only in conjunction with a condition for pressure (the last
one) imposing a zero gradient, with the constant value c1 remaining completely
arbitrary.
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4. The downstream surface, @˝o, at x D x C L is an outflow boundary for the
considered problem. Owing to the ellipticity and nonlinearity of the problem,
the velocity and pressure fields on this surface depend on the fluid conditions
outside the computational domain. Normally, on outflow surfaces non-reflective
boundary conditions ought to be imposed capable of mimicking pure transport
phenomena. In this case, for the sake of simplicity, a condition of flow alignment
is imposed, prescribing the tangent components of velocity,

@xu.x C L; y; z; t/ D bo.y; z; t/ .D 0/
v.x C L; y; z; t/ D ay;o.y; z; t/ .D 0/
w.x C L; y; z; t/ D az;o.y; z; t/ .D 0/
p.x C L; y; z; t/ D co.y; z/:

Typically, when the external pressure is prescribed uniformly, the condition
respecting compatibility is p.x C L; y; z; t/ D c1, with the same constant c1
of the asymptotic pressure condition (with for instance c1 D 0, without any loss
of generality).

5. On the lateral sides @˝l, for z D ˙S , periodicity conditions on all the variables
are imposed, namely, u.x; y;�S; t/ D u.x; y; S; t/ and p.x; y;�S; t/ D
p.x; y; S; t/.

3 Time Discretization: Incremental Projection Method

The problem is discretized in time by a fractional-step projection method introduced
by Chorin [4, 5] and Temam [6]. The incremental version of the method was
first proposed in [7] and was subsequently modified by eliminating the end-of-
step velocity from the final solution algorithm in [8] and [9]. We consider the
second order BDF incremental method, which has been fully analysed in [10] and
implemented in a spectral context for a bounded domain in [11].

The first step is performed using a first order, semi-implicit, Euler scheme
without the pressure in the momentum equation and the first pressure field is found
as solution of a Poisson equation, for details see [11].

For all the subsequent (incremental) steps a linear extrapolation of the pressure
is employed, so that the viscous equation, reads, after the end-of-step velocity has
been eliminated, for k 	 1,

3ukC1 � 4uk C uk�1

2�t
� �r2ukC1 D fkC1 � .ukC1

? �r /ukC1
? � rpk? (4)
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where ukC1
? D 2uk � uk�1 and pk? D 1

3
.7pk � 5pk�1 C pk�2/, for k 	 3. The

projection half-step is written as a Poisson equation for the pressure increment and
reads, for k 	 1,

� r2.pkC1 � pk/ D � 3

2�t
r� ukC1; k 	 1: (5)

The boundary conditions for pkC1 � pk are homogeneous Neumann conditions on
the wall and the inflow portion of the boundary, together with the asymptotically
uniform condition pkC1 � pk ! 0 as y ! 1 and the homogeneous Dirichlet
condition at x D x C L, which is artificially requested by the domain truncation.

In order to enforce the asymptotic condition on velocity as y !1, the unknown
variables of the velocity components are redefined as follows

u D .U C u/ OxC v OyC w Oz (6)

so that the new parallel velocity u ! 0 as y ! 1. The semi-discrete momentum
equation (4) is recast for the new unknowns u; v and w by expanding the linear and
nonlinear terms appropriately.

4 Spatial Discretization: Legendre–Laguerre–Fourier
Method

The flow variables are described by a fully spectral approximation which is based,
first, on the Fourier representation for the dependence on the periodic coordinate z.
The dimensionless spatial coordinates

� D 2.x � x/
L

� 1; � D y

H
; � D 2� z

S
; (7)

are first introduced, whereH is a length scale in direction normal to the plane y D 0.
Then the velocity and pressure fields u.�; �; �/ and p.�; �; �/ at a given time t are
expanded in the truncated Fourier series

�
u
p

�

D
�

u0

p0

�

C 2
N�1X

mD1

��
um

pm

�

cos.m�/�
�

u�m
p�m

�

sin.m�/

�

C
�

uN

pN

�

cos.N �/

(8)

since the solution is assumed to be periodic in �, with period 2� .
Focusing on the 3D Helmholtz equation in Cartesian coordinates

��r2 C ��u D f .x; y; z/ (9)
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for a scalar unknown u, it is reduced by the Fourier expansion to a set of 2D elliptic
equations for the Fourier coefficients um.�; �/, with �N C 1; : : : ; N � 1;N , of the
form, after multiplication by L2=4,

��@2� � r2y @2� C 	jmj
�

�
um D L2

4
f m.�; �/; (10)

By multiplying the equation by L2=4, one obtains where ry D L=2H ,

	jmj
� D


�L

S

�2
m2 C �L2

4
D r2z m2 C �L2

4
(11)

and f m.�; �/ is the Fourier transform of function f
�
x C L

2
.1C �/;H�; z�.

The spectral approximation of the velocity and pressure Fourier expansion
coefficients um.�; �/ and pm.�; �/ is based on Legendre polynomials in the
longitudinal direction and on Laguerre polynomials in the normal direction. Due
to the different boundary conditions, different bases are required for each unknown
variable. In particular, along the � coordinate, Dirichlet conditions are imposed at
both extremes � D �1 for the two velocity components vm and wm, while mixed
conditions of Dirichlet–Neumann and Neumann–Dirichlet type are imposed on the
velocity component um and on the pressure pm, respectively. In the direction �
normal to the wall, the boundary condition on it is Dirichlet for um while Neumann
for pm. Finally, the asymptotic condition as y ! 1 is homogeneous Dirichlet for
all variables, except for a Neumann condition on the velocity component vm normal
to the wall.

Thus, the Legendre basis used for variables vm and wm will be

L�
0 .�/ D 1; L�

1 .�/ D
�p
2
; L�

i .�/ D
Li�2.�/ � Li.�/p

2.2i � 1/ ; i D 2; 3; : : : (12)

Li.�/ being the Legendre polynomial of degree i . The two bases for coping with
the alternate mixed Dirichlet–Neumann conditions on the variables um and pm will
be denoted by LDN

i .�/ and LND
i .�/, respectively. The functions of these bases are all

coincident with L�
i .�/ except for the second one, which is defined by

LDN
1 .�/ D

1C �p
2

and LND
1 .�/ D

1 � �p
2

(13)

in the two cases.
As the normal coordinate � is concerned, the basis function will be defined by

Bj .�/ 

8
<

:

e��=2 for j D 0
�e��=2 L

.1/
j .�/

jC1 for j 	 1
(14)
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where L .1/
j .�/ are the generalized Laguerre polynomials of degree j . The normal

component of velocity v is supplemented by Dirichlet conditions at both extremes
x D x and x D x C L, and also on the plate y D 0, and by the asymptotic
condition of being constant as y ! 1, v ! a. The unknown asymptotic constant
a is taken into account in the weak formulation by introducing a special expansion
function endowed with the appropriate asymptotic behaviour and satisfying also the
homogeneous boundary condition on the wall, namely

B ?.�/ D 1 � e��=2: (15)

This function will replace the last basis function BJ .�/ of the Laguerre basis (14).
The modified basis is denoted by

�
B ?
j .�/I j D 0; 1; 2; : : : ; J

�
, with B ?

j .�/ D
Bj .�/, for 0 � j � J � 1, and B ?

J .�/ D B ?.�/.
We list the spectral expansion of the four unknown variables um, vm, wm and pm:

um.�; �/ D
IX

iD0
LDN
i .�/ umi;j Bj .�/

J X

jD0
;

vm.�; �/ D
IX

iD0
L�
i .�/ vmi;j B ?

j .�/

J X

jD0
;

wm.�; �/ D
IX

iD0
L�
i .�/ wmi;j Bj .�/

J X

jD0
;

pm.�; �/ D
OIX

OıD0
LND

Oı .�/ OpmOı; Oj B Oj .�/
OJ X

OjD0
:

(16)

Here, the hats in the pressure expansion remind one that the basis employed to
represent this variable have an order different (smaller by one or two modes) from
those of the bases for the velocity, in order to satisfy the LBB stability condition.

These expansions are introduced in the momentum and pressure equations
written in weak form. Exploiting the Galerkin method and imposing the Dirichlet
conditions by a lifting, the following four linear systems for the three velocity
components and the pressure are obtained, respectively

UUU mM
1

C r2y M UUU m C �jmj
� M UUU mM

1

D FFFm;

VmM ?T

1

C r2yMVmD?T

1

C 	jmj
� MVmM?T

1

D Gm;

WmM
1

C r2yMWm C �jmj
� MWmM

1

D Hm;

OPPPm OM
1

Cr2y OM OPPPm OD
1

C 	
jmj
0
OM OPPPm OM

1

D OKKK m
;

(17)
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Fig. 2 Space (left) and time (right) convergence for the test with closed form solution

where �jmj
� D r2zm2 C 1

4

�
�L2 � r2y

�
. The boldface symbols UUU m, Vm, Wm and OPPPm

denote rectangular arrays of the expansion coefficients of the unknowns. The M
letters, in various faces, denote the mass matrices, whose elements are computed
by the following inner products: Mi;j D .LDN

i ; L
DN
j /, Mi;j D .L�

i ; L
�
j /, OMi;j D

.LND
Oı ; L

ND
Oj /M1Ii;j D .Bi ;Bj /,M

?

1Ii;j D .Bi ;B ?
j / and OM

1IOı; Oj D .BOı;B Oj /. The

D letters denote stiffness matrices, which are all sparse, most tridiagonal, defined
as: D?

1Ii;j D .B0
i ;B

0 ?
j / and OD

1IOı; Oj D .B0
Oı ;B

0
Oj /.

For each time step, the algorithm requires to compute the right hand side of
the momentum and pressure equations. This can be done efficiently since the
contribution of the pressure gradient and of the velocity divergence can be computed
by multiplying the pressure and velocity coefficients by sparse matrices. Moreover,
the nonlinear terms are evaluated pseudospectrally. Finally, all the linear systems
above are solved very efficiently by the double diagonalization method.

5 Numerical Results

To assess the spectral accuracy of the spatial discretization and the second order
accuracy in time, the Navier–Stokes equation with a closed form solution, obtained
by introducing a suitable forcing term, have been solved. The steady velocity field
is defined by:

us.x; y; z/ D .cos x/ sin.2�z=S/ e�y

vs.x; y; z/ D .sin x/ sin.2�z=S/ e�y C .cos x/ cos.2�z=S/

ws.x; y; z/ D �.S=�/.sinx/ cos.2�z=S/ e�y
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Fig. 3 Evolution of a hairpin vortex in a Blasius boundary layer, streamlines and isobars. Rex D
92;400, discretization (dealiased): 512 	 128 	 128 modes, �t D 3:9 	 10�6 . In lexicographic
order: t1 D 0:4630, t2 D 0:4834, t3 D 0:5033, t4 D 0:5234, t5 D 0:5435, t6 D 0:5637. Plotted
box size: 1:30 	 0:13 	 0:41
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in conjunction with the following pressure field ps.x; y; z/ D .sin x/
cos.2�z=S/ e�y . For the time convergence test, the unsteady velocity field has
been assumed in the form u.r; t/ D us.r/ sin t , and similarly for the pressure.

Results of the convergence tests are reported in Fig. 2 whose left plot shows the
spectral accuracy of the spatial discretization and the right one the second order
accuracy of the time integration scheme.

As an application, the response of a Blasius boundary layer to a wall forcing has
been computed. The Reynolds number based on the inlet abscissa x D 1 and on the
freestream velocity U D 1 is 92;400. The dimensions of the computational domain
are L D 2 and S D 0:4. The wall forcing is implemented as a normal velocity
boundary condition which mimics the presence of a bumper. The normal velocity is
given by v D 0:0325 f .x/ cos.ˇz/ sin.!t/, where ˇ D 15:4 is the wavenumber
in the z direction and ! D 1:16 is the pulsation. f .x/ is a Gaussian function
necessary to restrict the action of the actuation to the interval x 2 .1:19; 1:21/ in
the x direction. All quantities are nondimensionalized by the same quantities used
to compute the Reynolds number. In Fig. 3 isobars are reported which clearly show
the formation of a hairpin vortex by the nonlinear evolution of the perturbation.

6 Conclusion

A new spectral-projection solver for incompressible flows in an unbounded box has
been presented which implements the asymptotic conditions typically occurring in
simulations of a boundary layer over a flat plate. The method leverages Laguerre
functions to expand the flow variables in direction normal to the plate. The spectral
accuracy in space of the Legendre–Laguerre–Fourier approximation and the second
order accuracy in time of the BDF2 projection method are assessed by solving the
equation with a suitable forcing term to obtain a solution in closed form. Finally, the
formation of hairpin vortices in a Blasius boundary layer is investigated by the first
large scale simulation of a boundary layer flow using Laguerre polynomials.
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Implementation of an Explicit Algebraic
Reynolds Stress Model in an Implicit Very
High-Order Discontinuous Galerkin Solver

F. Bassi, L. Botti, A. Colombo, A. Ghidoni, and S. Rebay

Abstract In this work we present the main features of an implicit implementation
of the explicit algebraic Reynolds stress model (EARSM) of Wallin and Johansson
(J Fluid Mech 403:89–132, 2000) in the high-order Discontinuous Galerkin
(DG) solver named MIGALE (Bassi et al. (2011) Discontinuous Galerkin for
turbulent flows. In: Wang ZJ (ed) Adaptive high-order methods in computational
fluid dynamics. Volume 2 of Advances in computational fluid dynamics. World
Scientific). Explicit Algebraic Reynolds stress models replace the linear Boussinesq
hypothesis by an algebraic approximation of the anisotropy transport equations,
resulting in a non-linear constitutive relation for the Reynolds stress tensor in terms
of mean flow strain-rate and rate-of-rotation tensors. The EARSM model has been
implemented in the existing k-! model of the DG code MIGALE without any
recalibration of the constants and a basic assessment and validation of its near-near
wall behaviour has been done on a turbulent flat plate test case (Slater et al. (2000)
The NPARC verification and validation archive. ASME Paper 2000-FED-11233,
ASME). Consistently with the mean-flow equations, the turbulence model equations
have been discretized to a high-order spatial accuracy on hybrid type elements
by using hierarchical and orthonormal polynomial basis functions, local to each
element and defined in the physical space. Such discretization preserves its accuracy
also for highly-stretched elements with curved boundaries as those used within
turbulent boundaries layers. For steady-state computations, the time integration of
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the fully coupled system of governing equations is performed implicitly by means of
the linearized backward Euler method where the Jacobian is derived analytically and
a pseudo-transient continuation strategy is employed (Bassi et al. (2010) Very high-
order accurate discontinuous Galerkin computation of transonic turbulent flows on
aeronautical configurations. In: Norbert Kroll, Heribert Bieler, Herman Deconinck,
Vincent Couaillier, Harmen van der Ven, and Kaare Sørensen (eds) ADIGMA – A
European initiative on the development of adaptive higher-order variational methods
for aerospace applications. Volume 113 of Notes on numerical fluid mechanics and
multidisciplinary design. Springer, Berlin/Heidelberg, pp 25–38). The capabilities
of the present version of the code will be demonstrated by computing an external
aerodynamic problem proposed within the EU-funded project IDIHOM (Project
IDIHOM (2012) Industrialisation of high-order methods a top-down approach).

1 Introduction

Computational fluid dynamics is nowadays a key tool for a wide range of indus-
trial design processes. The Reynolds-Averaged Navier-Stokes (RANS) simulation
technology plays an important role in spreading the use of numerical simulations
within industry since it can provide accurate solutions in a reasonable computational
time and with moderate hardware requirements when compared to more involved
simulation techniques for turbulent flows (e.g. DES, LES, DNS). However, most of
the RANS simulations currently performed in industry relays on standard turbulence
models that assume a linear relation between the Reynolds stress and the mean
flow strain-rate tensor, which is the Boussinesq hypothesis. It is well known that
such hypothesis suffers from several limitations as for example the capability to
capture the secondary flows that develop at wall junctions [21, 22]. To improve the
prediction capabilities of turbulence models several authors replaced the Boussinesq
linear constitutive law with a non-linear relation that could embed the modeling
level proper of the Reynolds stress models, see e.g. [17, 18, 24, 25]. In this context
Wallin and Johansson [30] proposed a non-linear explicit algebraic constitutive law
involving the mean flow strain-rate and rate-of-rotation tensors. The good properties
of the model, in terms of compatibility with the Navier–Stokes equations, have
been demonstrated in the a priori analysis reported in [23], comparing the model
results with those obtained from DNS. An interesting feature of the Wallin and
Johansson model is that it can easily fit in the already existing turbulence models
implementations.

Improved modelling of turbulence effects coupled with an high-order accurate
numerical discretization can provide a reasonably cheap compromise between stan-
dard RANS plus two equations turbulence models simulations and more resolved
but computational intensive simulations of turbulent flows.

This paper outlines the main features of an implicit fully coupled implementation
of the Wallin and Johansson EARSM in a high-order DG solver for the RANS and
k-! equations.
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2 Governing Equations

The governing equations can be written as
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@t
C @

@xj
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(5)

where the pressure, the total stress tensor, the heat flux vector, the production terms
Pk and P! and the limited value of turbulent kinetic energy k are defined as

p D .� � 1/� .e0 � ukuk=2/ ; O�ij D 2�Sij C �ij; (6)
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�
�

Pr
C �t

Prt

�
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; (7)
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@ui
@xj

; P! D ˛ �ij

k

@ui
@xj

; (8)

k D max .0; k/ : (9)

Here � is the ratio of gas specific heats, Pr and Prt are the molecular and turbulent
Prandtl numbers and Sij and ˝ij are the mean strain-rate and the rate-of-rotation
tensors. The closure coefficients ˛, ˛�, ˇ, ˇ�, � , ��, �d are those of the high-
or low-Reynolds number k-! model of Wilcox [32]. Notice that Eq. (5) of the
k-! turbulence model is not in standard form since the variable Q! D log! is
used, see [8]. In the framework of the EARSM of Wallin and Johansson [30], the
constitutive relation for the turbulent stress tensor can be written as

�ij

�k
D �uiuj

k
D �˛�aij � 2

3
ıij D ˛�



2C��Sij � a.ex/

ij

�
� 2
3
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where, for implementation convenience, the anisotropy tensor aij has been split in a
linear part and a non-linear extra anisotropy contribution. The time scale � and the
variable coefficient C� are given by

� D 1

ˇ�e Q! ; C� D �1
2
.ˇ1 C II˝ˇ6/ : (11)

We remark that, the time scale � does not include the near-wall lower bound,
based on the Kolmogorov time scale, usually employed in k- implementations of
EARSM since this limitation is actually provided by the finite value of ! set at wall.
The eddy viscosity �t and the extra-anisotropy tensor a.ex/

ij are given by

�t D ˛�C���k; (12)

a
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;

where the coefficients ˇi2f1;3;4;6;9g are functions of the invariants IIS , II˝ and IV

IIS D trfS 2g; II˝ D trf˝2g; IV D trfS˝2g: (14)

In this paper, starting from the linear part of the Reynolds stress tensor formulation
of Eq. (10), we will evaluate the influence of the non-linear terms of EARSM
by computing some turbulent test cases. In the following sections, the notation
EARSMx will indicate the EARSM model including anisotropy terms up to the x-th
degree. In the 2d case, only linear and quadratic terms of anisotropy are non-zero.
At present, the implementation of the EARSM in the 3d code MIGALE has been
completed up to the cubic terms of extra-anisotropy.

3 The DG Discrete Setting

Let Th D fT g denotes a mesh of the domain ˝ 2 R
d ; d 2 f2; 3g consisting of

non-overlapping arbitrarily shaped elements T such that

˝h D
[

T2Th

T : (15)
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Following the idea to define discrete polynomial spaces in physical coordinates,
see e.g. [7, 9–11, 15, 16], we consider DG approximations based on the space

P
k
d .Th/

defD ˚
vh 2 L2.˝/ j vhjT 2 P

k
d .T /; 8T 2 Th

�
; (16)

where k is a non-negative integer and P
k
d .T / denotes the restriction to T of the

polynomial functions of d variables and total degree � k. To build a satisfactory
basis for the space (16) we rely on the procedure presented in [28], see also [5, 14],
allowing to obtain orthonormal and hierarchical basis functions by means of the
modified Gram-Schmidt (MGS) algorithm. The starting set of basis functions for the
MGS algorithm are the monomials defined over each elementary space Pkd .T /, T 2
Th, in an element frame relocated in the barycenter and aligned with the principal
axis of inertia of T . For the sake of presenting the DG discretization, we introduce

the set Fh of the mesh faces, partitioned into Fh
defD F i

h[F b
h , where F b

h collects the
faces located on the boundary of ˝h and for any F 2 F i

h there exist two elements
TC; T � 2 Th such that F 2 @TC \ @T �. Moreover, for all F 2 F b
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the unit outward normal to ˝h, whereas, for all F 2 F i

h, n�
F and nC

F are the unit
normals pointing exterior to T � and TC respectively.

Since a function vh 2 P
k
d .Th/ is double valued over an internal face F 2 F i

h we
introduce the jump ŒŒ��� and average f�g trace operators, that is

ŒŒvh��
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2
; (17)

when applied to a vector function, the average and jump operators act
componentwise. Finally, the DG discretization of second-order viscous terms
employs the lifting operators rF and R. For all F 2 Fh, the local lifting operator

rF W
�
L2.F /

d ! ŒPkd .Th/�
d , is defined so that, for all v 2 �L2 .F /d

Z

˝

rF .v/ � �h dx D �
Z

F

f�hg � v dF 8�h 2 ŒPkd .Th/�
d ; (18)

and the definition of the global lifting operator R follows

R .v/
defD

X

F2Fh

rF .v/ : (19)

3.1 DG Space Discretization

RANS and turbulence model equations can be written in compact form as

@u
@t
C r � Fc.u/ C r � Fv.u,ru/ C s.u,ru/ D 0; (20)
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where u and s are the vectors of the m variables and source terms, and Fc;Fv 2
R
m ˝ R

d are defined as the arrays of the inviscid and viscous flux vectors. A weak
formulation of the RANS equations is obtained multiplying each scalar law in
Eq. (20) by an arbitrary smooth test function vj 2 v, 1 � j � m, and integrating by
parts, that is

Z

˝

vj
@uj
@t

dx�
Z

˝

rvj � Fj .u;ru/ dx C
Z

@˝

vjFj .u;ru/ � n d�

C
Z

˝

vj sj .u;ru/ dx D 0; (21)

where Fj is the sum of the inviscid and viscous flux vectors of the j -th equation.
To discretize Eq. (21) we replace the solution u and the test function v with a

finite element approximation uh and a discrete test function vh respectively, where

uh and vh belong to the space Vh
defD ŒPkd .Th/�

m. The discontinuous approximation
of the numerical solution requires to introduce a specific treatment of the inviscid
and viscous interface fluxes. In order to ensure conservation and correctly account
for wave propagation the former is based on the Godunov flux computed with an
exact Riemann solver. For the latter we employ the BR2 scheme, proposed in [10]
and theoretically analyzed in [2, 12].

Accounting for these aspects, the DG formulation of the compressible RANS and
k-! equations consists in seeking uh 2 Vh such that
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8vh 2 Vh;

where boundary conditions are weakly imposed [10].

3.2 Time Integration

The DG space discretization of Eq. (22) results in the following system of
(nonlinear) ODEs in time

M
dU
dt
C R .U/ D 0; (23)
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Fig. 1 BTC0: 832 50-node hexahedral elements, M
1

D 0:5, Re D 107, ¸ D 5ı. (a) Residual
history, P0!4. (b) Pressure contours, P4 (EARSM3)

where U is the global vector of unknown degrees of freedom, M is a global
block diagonal matrix and R .U/ is the vector of residuals. Thanks to the use
of orthonormal basis functions, the matrix M reduces to the identity matrix.
In the case of steady-state computations the semi-discrete problem in Eq. (22)
is discretized in time by means of the classical backward Euler scheme coupled
with the pseudo-transient continuation strategy proposed in [4]. The Jacobian is
derived analytically and takes full account of the dependence of the residuals on
the unknown vector and on its derivatives, including the implicit treatment of the
boundary conditions. To solve the resulting linear system at each time step the
matrix-explicit or the matrix-free GMRES algorithm can be used. For this purpose
linear algebra and parallelization are handled through PETSc library [3]. In both
cases system preconditioning is required to make the convergence of the GMRES
solver acceptable in problems of practical interest. The block Jacobi method with
one block per process, each of which is solved with ILU(0), or the Additive
Schwarz Method (ASM) are usually employed. For simple steady test cases implicit
time integration combined with the aforementioned CFL evolution rule provides
quadratic Newton convergence to machine accuracy as displayed in Fig. 1.

4 Results

The following section deals with the high-order numerical simulation of turbulent
flows of common external aerodynamic configurations. To evaluate the influence of
the different EARSM terms on the solution we compare the standard k-! model [8]
with the EARSM in its linear and non-linear formulations. All the computations
have been run in parallel, initializing the P0 solution from uniform flow at freestream
conditions and the higher-order solutions from the lower-order ones.
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Fig. 2 Wieghardt flat plate: Skin friction coefficient along the plate, Cf. (a) k-!. (b) EARSM1.
(c) EARSM2

Fig. 3 Wieghardt flat plate: Non-dimensional tangential velocity profile, uC. (a) k-!.
(b) EARSM1. (c) EARSM2

4.1 Turbulent Flat Plate

The flat plate flow here considered is that reported by Wieghardt [31, 33]. This test
case was primarily intended to validate the implementation of the model in the
very high-order code MIGALE rather than to assess the modelling capabilities of
EARSM. The flow has been computed up to P

6 polynomial approximation with a
farfield Mach number M1 D 0:2 and Reynolds number Re1 D 11:1�106 based
on the plate length. The mesh of 8,800 quadrilateral elements has been taken from
the NPARC Alliance Validation Archive [26] and corresponds to yC D 10 for the
first grid point off the wall. The near-wall behaviour of the DG solutions is here
presented in terms of skin-friction coefficient along the plate and velocity and non-
dimensional ! profiles at x=L D 0:923. The results of k-! model and linear and
complete EARSM formulations, are compared to experimental data and in case the
of uC and !C to the law-of-the-wall profiles, Figs. 2–4. All the models result in an
overall very good agreement with reference data. Comparing EARSM and standard
k-! model results, we observe that, rising the degree of polynomial approximation,
EARSM provides more rapidly converging skin-friction coefficient distributions,
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Fig. 4 Wieghardt flat plate: Non-dimensional specific dissipation-rate profile, !C. (a) k-!.
(b) EARSM1. (c) EARSM2

with a sort of transition visible even on the lowest order solution, see Fig. 2. No
appreciable difference in the near-wall profiles of linear and non-linear EARSM
results can be observed.

4.2 VFE2 Medium-Radius Delta Wing

The NASA 65ı sweep delta wing has been proposed and investigated experimen-
tally within the second international Vortex Flow Experiment (VFE-2) [29]. The
farfield conditions of this test case are M1 D 0:4, ˛ D 13:3ı and Remac D
3 � 106. The solution has been computed with the standard k-! model and with
EARSM1!3 up to P

3 on a grid consisting of 13;816 20-node hexahedral elements.
The high-order grid has been generated by means of an in-house agglomeration
software starting from a linear finite volume grid [13]. In Fig. 5 the pressure
coefficient distribution on the wing surface is compared with the experimental
measurements [19,20,29]. The solution obtained employing the standard k-! model
shows a delayed onset of the vortex developing along the wing with respect to the
experimental data. Using the EARSM model, in its linear and non-linear versions,
the vortex moves towards the wing apex showing also a sharper definition of
turbulence intensity, as depicted in Fig. 6. Figure 7 compares the computed and
experimental pressure coefficient distributions at two wing sections normal the root
chord cr. Overall, EARSM results appear to improve standard k-! predictions.
In particular, the EARSM1 results are surprisingly good while EARSM2-3 appear
slightly disappointing. This behaviour needs further investigation, but, as a first
comment, we observe that the discrepancy with respect to experimental data is
mainly due to an incorrect prediction of the primary vortex origin. This issue will
require a closer numerical investigation of the flow behaviour around the nose of the
wing.
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Fig. 5 VFE2: Pressure coefficient distribution, Cp. Left side: P
3 results – Right side: Pressure

sensitive paint, experimental data in [19, 20, 29]

Fig. 6 VFE2: Turbulence intensity contours, P3 solutions
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Fig. 7 VFE2: Pressure coefficient distribution at sections x=cr D 0:6 and x=cr D 0:8,
experimental data in [19, 20, 29]

5 Conclusion

Fully implicit solution of RANS equations coupled with k-! and EARSM model for
external aerodynamics flow configurations has been reported in this work. The near-
wall behavior provided by EARSM has been assessed by comparing to experimental
data of a well documented flow over a flat plate. Very high-order solutions
(up to seventh order) have been compared with the standard k-! model showing
that EARSM is able to provide more rapidly converging skin-friction coefficient
distributions. First results for three-dimensional turbulent flows with EARSM1!3
have been presented for the VFE2 delta wing. The comparison of the computed
high-order solutions with the experimental data demonstrates the effectiveness of
EARSM in sharply modeling the vortices developing along the wing. Ongoing work
deals with the implementation of the quartic terms of EARSM and the assessment
of steady-state convergence properties of the solver on increasingly finer grids and
using higher degree polynomial approximations. Moreover, a deep assessment of
the predicting capabilities of EARSM compared to a standard linear eddy viscosity
model will be performed on literature test cases. These topics will be addressed in a
forthcoming paper.
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Investigation of Near-Wall Grid Spacing Effect
in High-Order Discontinuous Galerkin RANS
Computations of Turbomachinery Flows

F. Bassi, L. Botti, A. Colombo, A. Ghidoni, and S. Rebay

Abstract In the last decade, Discontinuous Galerkin (DG) methods have been
the subject of extensive research effort because of their excellent performance in
the high-order accurate discretization of advection-diffusion problems on general
unstructured grids, and are nowadays finding use in several different applications.
In this paper, the potential offered by a high-order accurate DG space discretization
method with implicit time integration for the solution of the Reynolds-averaged
Navier-Stokes equations coupled with the k-! turbulence model is investigated
in the numerical simulation of the turbulent flow through the well known T106A
turbine cascade. The numerical results demonstrate that, by exploiting high order
accurate DG schemes, it is possible to compute accurate simulations of this flow on
grids with few elements.

1 Introduction

In the last two decades, CFD has been widely accepted as one of the main
methods for evaluating the performance of new turbomachinery designs. Industrial
CFD applications range from classical single- and multi-blade row simulations in
steady and unsteady mode, to cavity flows, heat transfer and combustion chamber
simulations. The accurate prediction of these flows requires a complete set of
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physical models and a high degree of numerical resolution due to the small scale
of some of the flow features involved.

However, the numerical technology used in standard industrial codes is still
mainly based on formally second-order accurate finite volume or finite element
schemes, which can be often inadequate for these applications. This observation
motivates the recent interest in higher-order accurate methods, which can cope with
the complex flows encountered in turbomachinery analysis and design.

The discontinuous Galerkin (DG) method is one of the most promising tech-
niques in this respect because of its robustness, accuracy and flexibility (see e.g. [1]).

At the moment standard industrial codes, because of their greater computational
efficiency, can not be compared with DG methods, which show, however, a
substantial room for improvement. For this reason the research effort has been
recently devoted to devise more efficient computational strategies, both for the
construction of DG space discretization operators and for the integration in time
of the space discretized DG equations (see e.g. [2, 3, 5]).

The objective of this work is to investigate the effectiveness and limitations of a
very high-order accurate DG space discretization in the numerical simulation of the
compressible turbulent flow through the T106A turbine cascade. In particular, the
aim is to show the feasibility of accurate simulations of such complex flows on grids
with few elements (coarse meshes) by resorting to a sufficiently high-order accurate
DG space discretization. The effect of near wall spacing grid on computation will
be investigated by analyzing the behavior of the following quantities: the pressure
coefficient and the skin friction on the blade, the velocity and the turbulence kinetic
energy profiles in the boundary layer.

2 DG Space Discretization

RANS and turbulence model equations can be written in compact form as

@u
@t
C r � Fc.u/ C r � Fv.u,ru/ C s.u,ru/ D 0; (1)

where u and s are the vectors of the m conservative variables and source terms, and
Fc;Fv 2 R

m˝R
d are defined as the arrays of the inviscid and viscous flux vectors.

A weak formulation of the RANS equations is obtained multiplying each scalar
conservation law in Eq. (1) by an arbitrary smooth test function vj 2 v, 1 � j � m,
and integrating by parts, that is

Z

˝

vj
@uj
@t

dx�
Z

˝

rvj � Fj .u;ru/ dx

C
Z

@˝

vjFj .u;ru/ � n d� C
Z

˝

vj sj .u;ru/ dx D 0; (2)
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where Fj is the sum of the inviscid and viscous flux vectors, ˝ the computational
domain, @˝ the boundary of ˝ , n the unit normal vector to the boundary in the
outward direction.

Let ˝h be an approximation of the domain ˝ , and Th D fKg a mesh of ˝h,
i.e. a collection of N “finite elements” K , and let Vh denote the space of piecewise
polynomial functions on the elementK , i.e.

Vh D fvh 2 L2.˝h/
dC2 W vhjK 2 P

k;8K 2 Thg;

wherePk(K) denotes the space of polynomials of degree at most k on the elementK .
The functions in Vh are in general discontinuous at element interfaces and the
polynomial order k may in general be different from element to element. The
solution u and the test function v are replaced with a finite element approximation
uh and a discrete test function vh respectively, belonging to the space Vh.

The discontinuous approximation of the numerical solution necessitates a spe-
cific treatment of the inviscid and viscous interface fluxes. In order to ensure
conservation and correctly account for wave propagation the former is based on
the Godunov flux computed with an exact Riemann solver, while for the latter the
BR2 scheme is employed, proposed in [6] and theoretically analyzed in [7, 8].

Accounting for these aspects, the DG formulation of the compressible RANS and
k-! equations consists in seeking uh 2 Vh such that

X

K2Th

Z

K

vh;j
@uh;j
@t

dx�
X

K2Th

Z

K

rhvh;j � Fj .uh;rhuh C R .ŒŒuh��// dx

C
X

F2Fh

Z

F

��
vh;j

 � OFj



uḣ ; .rhuh C �F rF .ŒŒuh��//
˙� d�

C
X

K2Th

Z

K

vh;j sj .uh;rhuh C R .ŒŒuh��// dx D 0 (3)

8vh 2 Vh;

where K are the elements of the mesh, F the faces of the mesh, ŒŒ �� the jump
operator, R and rF the global and local lifting operators, and �F is a penalty
parameter prescribed accordingly to [8].

The adopted turbulence model is the k-! model proposed by Wilcox [9], which
is here implemented in a non standard form since the variable Q! D log! instead of
! itself is used.

The variable Q! in the source term and in the eddy viscosity equation is replaced
by Q!r , meaning that it must fulfill suitably defined “realizability” conditions, which
set a lower bound on it. This limitation substantially improves the stability and
robustness of the turbulent flow computations because there is numerical evidence
that too small, though positive, values of ! D e Q! can lead to sudden breakdown
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of the computations. The wall boundary condition for ! is prescribed following the
approach proposed in [10].

The discrete problem corresponding to Eq. (3) can be written as

M
dU
dt
C R.U/ D 0; (4)

where U is the global vector of unknown degrees of freedom, M is the global block
diagonal mass matrix, and R the residuals vector. The linear system is solved using
the restarted GMRES algorithm preconditioned with the block Jacobi method (one
block per process) or with additive Schwarz (two levels of overlapping) as available
in the PETSc library [11].

3 Results

The purpose of this section is to demonstrate the performance of DG methods in
the turbulent flow computation through a well known turbomachinery cascade. The
investigation focuses on the effectiveness and limitations of the k � ! turbulence
model (high-Reynolds version) in the prediction of the flow field, showing the
feasibility of accurate simulations on very coarse grids by resorting to a sufficiently
high-order accurate DG space discretization. In particular the effect of near wall
spacing grid on the computations will be investigated by analyzing the behavior of
the velocity and the turbulence kinetic energy inside the boundary layer, and of the
skin friction, Cf , and the pressure coefficient, Cp, on the blade.

The test case chosen for the simulations is the T106A turbine cascade, which
is a low-pressure turbine cascade designed by MTU Aero Engines. It has been
extensively investigated in experimental and computational studies [4, 12, 13].

The computations are performed for a downstream isentropic Mach number
M2;is D 0:59, a Reynolds number based on the downstream isentropic conditions
and on the blade chord Re2;is D 1:1 � 106, an inlet turbulence intensity T u1 D
4:0%, and an inlet angles ˛1 D 37:7ı.

The geometry has been represented with quadratic elements and three different
family of grids, characterized by a different height of the elements adjacent to
the wall, have been used, as summarized in Table 1. All the solutions have been
computed through a sequence of P0!6 approximations for the coarse grids, P0!4

for the medium grids, and P
0!3 for the fine grid, starting from an uniform flow

field at inlet conditions. The fine mesh has been used just to compute the reference
solution, when experimental data are not available.

Figure 1 shows the coarse meshes for different values of the yC 2 f2; 20; 40; 60g,
while in Fig. 2 the Mach number and turbulence intensity contours computed on the
coarse mesh (yC D 2) for a P

6 solution approximation are depicted.
Figures 3 and 4 show a comparison of pressure coefficient distribution along

the blade between experimental data and computed solution on coarse (P6 solution
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Table 1 Main features of the meshes adopted for the simulations

Mesh yC Elements

2 1,271 quadrilateral elements
20 965 quadrilateral elements

Coarse 40 863 quadrilateral elements
60 812 quadrilateral elements

100 761 quadrilateral elements
2 4,626 quadrilateral elements

Medium 20 3,326 quadrilateral elements
40 2,826 quadrilateral elements

Fine 2 9,882 quadrilateral elements

y+ = 60

y+ = 2

y+ = 40

y+ = 20

Fig. 1 Coarse meshes consisting of 1,271 (top-left), 965 (top-right), 863 (bottom-left) and 812
(bottom-right) quadrilateral elements

approximation) and on medium (P4 solution approximation) meshes. It can be seen
that even for larger yC values, the chosen solution polynomial approximation allows
to capture reasonably well the Cp distribution on the coarse and medium meshes.
Only on the coarse meshes for yC D 60 and yC D 100 the curves are oscillating,
probably denoting a rough resolution of the flow field.
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M
0.66
0.58
0.5
0.42
0.34
0.26
0.18
0.1
0.02

Tu
0.125
0.11
0.095
0.08
0.065
0.05
0.035
0.02
0.005

Fig. 2 Mach number and turbulence intensity contours computed on the coarse mesh, yC D 2,
P
6 polynomial approximation
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Fig. 3 Cp distribution along the blade on the coarse meshes, P6 solution approximation
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Fig. 4 Cp distribution along the blade on the medium meshes, P4 solution approximation
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Fig. 5 Velocity profile in a boundary layer traverse (x=c D 0:9) on the coarse (left) and medium
(right) meshes for a P

6 and P
4 solution approximation, respectively
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Fig. 6 Turbulence kinetic energy profile in a boundary layer traverse (x=c D 0:9) on the coarse
meshes, P6 solution approximation

In Fig. 5 the velocity profile in a boundary layer traverse (x=c D 0:9, where c is
the axial chord) on the suction side is shown, on the coarse meshes for a P6 solution
approximation and on the medium meshes for a P

4 solution approximation. It can
be observed that only for the coarse mesh with yC D 100 the velocity profile differs
significantly from the reference solution computed on the fine mesh, while for lower
yC the curves are comparable.

Figures 6 and 7 show instead the turbulence kinetic energy profile in a boundary
layer traverse (x=c D 0:9) on the coarse and medium meshes, for a P

6 and
P
4 solution approximation, respectively. The solution computed with yC D 2 is

superimposed with the reference solution, while increasing the yC the predicted
peak of the turbulence kinetic energy profile becomes higher and some oscillations
appear in the first cell, which are more evident increasing the yC.
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Fig. 7 Turbulence kinetic energy profile in a boundary layer traverse (x=c D 0:9) on the medium
meshes, P4 solution approximation
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Fig. 8 Skin friction distribution along the blade on the coarse (left) and medium (right) meshes
for a P

6 and P
4 solution approximation, respectively

Finally in Fig. 8 the skin friction distribution along the blade on the coarse and
medium meshes for a P6 and P

4 solution approximation, respectively, is represented.
It can be noticed that the pressure side distribution is in good agreement with the
reference solution for every yC on both meshes. On the suction side an oscillating
behavior of the Cf can be observed for yC values different from 2, which is more
evident for the coarse meshes.

4 Conclusions

An application of a DG method for the simulation of the subsonic turbulent flow
through T106A low pressure turbine cascade has been presented. In particular the
effect of the near wall grid spacing on the computation of the compressible turbulent
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flow by means of the k-! turbulence model (high-Reynolds version) has been
investigated.

The effect of high-order approximations on the solution accuracy has been
thoroughly assessed by comparing a series of numerical results of increasing order
of accuracy and obtained on different meshes characterized by different yC, with
the available experimental data and reference solutions obtained on a fine mesh.

The results show that, on the very coarse grids considered, the flow field can be
accurately predicted by resorting to seventh and fifth order accurate approximations,
while on these grids standard second order accuracy would clearly be unsuited to
accurately simulate this flow.

However, in a future work further analysis is planned to investigate the accuracy
of the method by comparison with more significant quantities for turbomachinery
design, such as the efficiency and loss coefficients, to show if the oscillations present
in the skin friction curves can affect negatively the prediction of these parameters.

Acknowledgements This work has been supported by the European Union, under the IDIHOM
project on the development of innovative solution algorithms for aerodynamic simulations.
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A Fourth-Order Compact Finite Volume Scheme
for the Convection-Diffusion Equation

Christine Baur and Michael Schäfer

Abstract A fourth-order compact scheme for the convection-diffusion equation is
presented. To adopt this approach to non-Cartesian grids a coordinate transformation
is applied. The convection-diffusion equation is solved with a three-dimensional
finite volume solver using boundary fitted, block-structured grids. The grid arrange-
ment is collocated. The verification of the fourth-order method is done for analytical
test cases. To show the influence of the boundary conditions some calculations with
various conditions are performed. Furthermore, the grid dependance of solutions is
studied. It is shown that the proposed approach constitutes an efficient high-order
solution method for the convection-diffusion equation.

1 Introduction

Due to the requirement of highly accurate schemes for approximating PDE models
for complex physical phenomena the compact method was introduced some decades
ago in conjunction with classical finite difference methods [1, 7, 12]. In contrary
to spectral methods the compact scheme is not limited to simple geometries and
has a better fine-scale resolution than conventional finite difference approximations.
Further, the higher accuracy is achieved without enlarging the computational
discretization stencil size in comparison to explicit schemes.

In recent years the compact scheme became popular in the field of numerical
simulation of turbulent flows and aeroacoustics [2, 8, 11, 14] because of the
requirement of high accuracy.
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In the context of the finite volume method some approaches were developed with
application in the field of fluid dynamics (see e.g. [5, 15]). Kobayashi [9] proposed
an approach by calculating the surface integrals directly by the cell averaged values.
Thus, the surface and volume integrals are approximated by a simple midpoint rule.
This is in contrast to explicit high-order finite volume schemes, where the fluxes
are calculated at points and higher-order approximations of the surface and volume
integrals have to be applied [13].

Some authors already dealt with the application of a compact scheme to non-
Cartesian grids in the context of the finite volume scheme. While some authors
[4,10] calculate the fluxes directly in the physical space, others present a coordinate
transformation [6, 16, 17].

In this paper the compact scheme proposed by Kobayashi [9] is studied on Carte-
sian grids and the formulation is extended to non-Cartesian grids. The set of linear
equations resulting from the finite volume discretization of the convection-diffusion
equation is solved with an ILU method. The discretization of the convective and
diffusive fluxes leads to an additional tridiagonal system that is solved with the
Thomas algorithm. To avoid oscillations in the solution the deferred correction
approach is employed and the higher-order terms are treated explicitly.

2 Governing Equation

The steady three-dimensional convection-diffusion equation reads

@

@x

�

%u˚ � 
˚ @˚
@x

�

C @

@y

�

%v˚ � 
˚ @˚
@y

�

C @

@z

�

%w˚ � 
˚ @˚
@z

�

D S˚
(1)

where ˚ is the unknown, 
˚ the constant diffusion coefficient, % is the density,
S˚ is a source term. It is assumed that the velocity field .u; v;w/ describes an
incompressible flow. Dirichlet boundary conditions are prescribed on the whole
boundary.

Applying the finite volume method, (1) becomes

X

c

Z

Sc

�

%u˚ncx � 
˚ @˚
@x
ncx C %v˚ncy � 
˚ @˚

@y
ncy

C%w˚ncz � 
˚ @˚
@z
ncz

�

dSc D
Z

V
S˚dV (2)

where Sc are the surfaces of a control volume with [Sc D V and ncx; nxy; ncz the
corresponding normal vectors in Cartesian coordinates.

For non-Cartesian grids, with the transformation .x; y; z/ ! .�; �; �/, the
formulation is more complicated:
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U D uˇ11 C vˇ21 C wˇ31 (4)

V D uˇ12 C vˇ22 C wˇ32 (5)

W D uˇ13 C vˇ23 C wˇ33 (6)

Bik D ˇi1ˇk1 C ˇi2ˇk2 C ˇi3ˇk3 (7)

where ˇji represents the matrix entries of the adjugate of the transformation matrix
and J is the determinant of the Jacobian matrix. For a detailed description of the
formulation and notation see, e.g., [3].

3 The Fourth-Order Compact Scheme

3.1 Calculation of Fluxes on Cartesian Grid

The basic idea of the compact finite volume scheme [9] is the calculation of
cell averaged and face averaged fluxes instead of point values. The cell averaged
values are

˚iC 1
2 ;jC 1

2 ;kC 1
2
D 1

�x�y�z

Z xiC1
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Z zkC1

zk

˚.x; y; z/dxdydz (8)

and the face averaged fluxes are

˚i;jC 1
2 ;kC 1

2
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�y�z
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˚.xi ; y; z/dydz: (9)

On Cartesian grids the approximation of convective fluxes is
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(10)

where
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a1 D .�xiC1/2

.�xi C�xiC1/2 ; a2 D .�xi /
2

.�xi C�xiC1/2 ;

b1 D 2.�xi/
2 .�xi C 2�xiC1/

.�xi C�xiC1/3 ; b2 D 2.�xiC1/2 .2�xi C�xiC1/
.�xi C�xiC1/3

and�xi the grid spacing. The coefficients are constant on uniform grids. In the other
spatial directions the approximation is carried out analogously. The approximation
of the diffusive fluxes is given by

a3

 
@˚

@x

!

i�1;jC 1
2 ;kC 1

2

C
 
@˚

@x

!

i;jC 1
2 ;kC 1

2

C a4
 
@˚

@x

!

iC1;jC 1
2 ;kC 1

2

D b3˚iC 1
2 ;jC 1

2 ;kC 1
2
C b4˚i� 1

2 ;jC 1
2 ;kC 1

2
(11)

where

a3 D �xiC1
�xi C�xiC1 �
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..�xi /2 C 3�xi�xiC1 C .�xiC1/2/.�xi C�xiC1/ :

Again, on uniform grids the coefficients are constant and the formulation in the other
spatial directions is analogous. Stencils of first, second and third order are used
for the approximation at boundaries for diffusive fluxes. As Dirichlet conditions
are prescribed at the boundary of the domain, no special boundary treatment is
necessary for the approximation of convective fluxes.

The formulation for the second order approximation is exemplified for one
boundary and is
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with the grid spacing �x2. The third order boundary approximation satisfies the
condition
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The coefficients of Eq. (13) are

a5 D � 3�x3

�x2 � 2�x3 � 1
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�x2 C�x3 �
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� 1
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�

�x2.�x2 C�x3/2.�x2 � 2�x3/

b7 D � 6.�x2/
2

.�x2 C�x3/2.�x2 � 2�x3/ ;

where�x2 and�x3 are the grid spacings. For the block boundary condition explicit
formulations of second and fourth order are chosen. As the coefficients become very
difficult only formulations on Cartesian grids are shown. The approximation of the
convective fluxes at a block boundary is
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For the diffusive fluxes the formulation is given by
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3.2 Calculation of Fluxes on Non-Cartesian Grids

The cell and face averaged fluxes are now interpreted as averaged fluxes of the
transformed grid (see Eq. (3)). Because products and sums are averaged, the integral
cannot be calculated directly and an additional approximation procedure is applied
for nonlinear terms [15, 16]. The discretization of the Jacobian determinant and
the cofactor matrix also plays an important role. Only a consistent interpolation
yields the desired accuracy. We confine the formulation to the main terms to give
an impression of the procedure. The approximation of the cofactor matrix and the
Jacobi determinant are not shown here. A detailed description of the calculation of
the cell and face averaged physical coordinates can be found in [6, 16, 17].
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Analog to Eq. (10) the formulation of the convective fluxes is
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For diffusive fluxes across a face the formulation is
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Additionally arise cross-diffusive terms, which have to be discretized in a different
way
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where the integrand can be evaluated in the same way as in Eq. (16).

3.3 Solution Procedure

Treating the calculation of the fluxes implicitly would significantly raise the
complexity of solving the linear set of equations resulting from the finite volume
discretization. Thus, the deferred correction approach is employed. While all higher-
order terms are computed explicitly and added to the source term, the central
difference scheme (CDS) part is treated implicitly:

X
aP˚P �

X

c

ac˚c D S˚ �
"

Fcompact C
X

aP˚P �
X

c

ac˚c

#old

; (19)

where P denotes the control volume the governing equation is approximated, c its
direct neighbor control volumes and the coefficients aP and ac depend the used
approximation. This keeps the memory requirement and computational effort small.
More aspects of the deferred correction method are discussed in [3].

Terms discretized by the compact scheme lead to additional tridiagonal sets
of equations, which are solved with the Thomas algorithm. The entire system of
equations is solved with an ILU method (e.g. [20]).
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4 Verification

4.1 Grid Dependance Study on Uniform Grid

In recent years the method of manufactured solutions gained more popularity for
code verification [18, 19, 21]. It enables the generating of analytical solutions for
many relevant equations like incompressible Navier-Stokes equations by adapting
the source term. Our test cases are manufactured by this method.

First, we study the dependance of the approximation order of the boundary
condition on the global accuracy. We solve the convection-diffusion equation
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� @
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� @

2˚

@z2
D S˚ (20)

with the analytical solution ˚ D sin .�x/ sin .�y/ sin .�z/, x; y; z 2 Œ0; 1�3.
In Fig. 1 it is shown that the fourth order can only be achieved by the compact

scheme in combination with a third-order boundary approximation (illustrated
by squares) for diffusive fluxes on a uniform mesh. Any lower order treatment
decreases the entire order. In [9] it is discussed that the global accuracy is affected
by a third-order boundary approximation, but this could not be observed in our
numerical tests. Using lower order boundary approximations (illustrated by stars
and diamonds in the graphic) lowers the overall order to three. In comparison to the
second-order scheme the compact scheme not only shows the expected higher order,
but also smaller errors. The used mean error is the square root of the mean square
error. To reach the same accuracy as the CDS solution on the finest grid the compact
scheme requires more than a quarter less grid points in each direction.

Figure 2 shows the computational cost of the compact scheme in comparison to
the second-order scheme. Although the compact scheme requires to solve additional
systems of equations, which increases the computing time, the accuracy is much
higher and the extra computational time negligible.
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Another effect influencing the overall order is the block boundary condition.
Figure 3 shows the influence of two different block boundary conditions for eight
blocks solving the three-dimensional convection-diffusion equation. The analytical
solution is ˚ D sin .�x/ sin .�y/ sin .�z/, x; y; z 2 Œ0; 1�3. The results are shown
on four different grid levels, where h is the finest grid with 80 control volumes per
direction. The domain is split into eight blocks of equal size. To achieve the fourth
order diffusive fluxes are discretized by a fourth-order block boundary condition.
The values of directly neighboring control volumes are not sufficient for such an
approximation. Usually values of direct neighbors are stored in ghost cells and for
the fourth-order accuracy one has to introduce a second ghost cell layer.
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Table 1 Dependance of order on grid stretching for compact scheme in comparison to CDS

Stretching factor

S D 0:99 S D 0:9

CDS CP CDS CP

Grid level h Mean error Order Mean error Order Mean error Order Mean error Order

4 1:41 � 10�2 4:02 � 10�4 4:17 � 10�2 7:69 � 10�3

3 8:56 � 10�3 1:73 1:17 � 10�4 4:29 2:73 � 10�2 1:47 2:92 � 10�3 3:37

2 4:24 � 10�3 1:73 1:93 � 10�5 4:44 1:48 � 10�2 1:51 6:09 � 10�4 3:87

1 1:32 � 10�3 1:68 7:81 � 10�7 4:63 5:01 � 10�3 1:56 3:83 � 10�5 3:99

4.2 Grid Dependance Study on Stretched Grids

With the help of the three-dimensional convection-diffusion equation the influence
of the grid stretching is studied. The stretching factor 0 < S < 1 shows the con-
centration of grid points and is defined by the ratio of the length of two sequenced
control volumes. The chosen analytical solution is ˚ D sin .�x/ sin .�y/ sin .�z/.
The number of grid points is constant with 20 per direction. That means, that
the length of the geometry varies [21]. Table 1 lists the error norms for different
stretching factors. On coarser grids the effect on error and order is the highest and
the numerical order differs from the formal order. However, in comparison to the
second-order scheme shown the compact scheme gives better results. The finer the
grid, the closer is the calculated order to the formal order.

5 Conclusion

We have presented an efficient compact finite-volume scheme for the convection-
diffusion equation. The fourth order could be achieved with a third-order boundary
approximation for diffusive fluxes. Lower order boundary approximations reduce
the entire order. The reduction of the order caused by third-order boundary
approximations as stated in [9] could not be observed in our numerical simulations.
Also crucial to maintain the desired order is the choice of the block boundary
condition.

Despite of the need to solve additional sets of equations, the proposed compact
scheme has much better accuracy at lower computational costs in comparison to
second-order schemes.

For calculations on non-Cartesian grids a coordinate transformation approach
was realized and applied to stretched grids. After these promising results the
compact scheme should be applied to test cases with complex geometries.

In this paper only the steady convection-diffusion equation was studied. For
extension to the unsteady equation a fourth-order time discretization scheme is
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necessary to obtain a fourth order of the whole discretization scheme. In literature
an often used scheme is a fourth-order Runge-Kutta method [9, 15].

Due to the block-structured grids and the block by block approach, the solution
procedure can be parallelized in a straightforward way.
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On the Effect of Flux Functions in Discontinuous
Galerkin Simulations of Underresolved
Turbulence

Andrea D. Beck, Gregor J. Gassner, and Claus-Dieter Munz

Abstract In this work, the influence of the numerical flux functions in the
context of an underresolved Discontinuous Galerkin discretization of turbulent
compressible flows is investigated. We find that the impact of the choice of the
numerical flux function strongly depends on the polynomial degree N , with a
larger influence for lower order approximations. Overall, Discontinuous Galerkin
discretizations are too dissipative compared to the reference DNS solution, with
a lower error for the Roe flux function compared to the local Lax-Friedrichs flux
function. This motivates further investigations into Discontinuous Galerkin-based
implicit Large Eddy Simulation, an idea supported by results obtained with a low
order approximation combined with a modified Roe flux function.

1 Introduction

Due to their geometric flexibility, excellent parallel scalability and high accuracy,
high order Discontinuous Galerkin (DG) methods are attractive candidates for
accurate and efficient resolution of complex multiscale phenomena like fluid
transition and turbulence. For well-resolved, smooth problems, their low numerical
error leads to a more faithful representation of the flow than for low order schemes.
These favorable approximation properties also transfer to underresolved scenarios,
where the concept of “order of convergence” loses its meaningfulness as �h is
large. Instead, the dissipation and dispersion properties over a large range of scales
determine the overall quality of the approximation, and thus the numerical cost for
a given error. As shown in [5], high order DG schemes can indeed recover more
quality per degree of freedom for underresolved turbulence than low order variants.
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Supporting this statement, Fig. 1 highlights the dissipation error of the DG
formulation for a high and low order variant. As obvious, the high order scheme has
the advantageous property of introducing very little dissipation over a large range of
well-resolved scales, and provides a very high numerical damping for the marginally
resolved structures which can cause stability issues. These characteristics make the
DG method a natural choice for simulations in underresolved scenarios, where the
numerical dissipation is acting as a sink for the excess energy build-up in the higher
modes, a method commonly referred to as Large Eddy Simulation with implicit
(subgrid-) modelling (iLES) [11].
The upcoming interest in DG methods as a basis for iLES computations gives rise to
the question of how the choice of the flux functions influences the solution quality
in underresolved transitional and turbulent flows. While the influence of the flux
functions for smooth problems as well as shock-dominated problems in the DG
context has been investigated before (see e.g. [7–9, 12]), to the authors’ knowledge
this aspect has not been examined for turbulent situations.

The goal of this work to document the influence of the choice of the flux function
of the DG discretization for underresolved turbulence.

This paper is organized as follows: Sect. 2 describes our analysis framework,
with a special focus on the “analytical” DG formulation which has only the flux
functions as a parameter to provide a sound evaluation ground for our investigations.
In Sect. 3, we will highlight the influence of the choice of both the convective
and viscous flux function on transitional flows, followed by a brief glance at
optimization possibilities of the Riemann solver diffusion and an outlook in Sect. 4.
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2 Analysis Framework

2.1 Physical Model

Since we are interested in the simulation of general fluid turbulence, we choose
the three-dimensional compressible Navier-Stokes equations in conservative form
as our physical model:

Ut C rx � F.U;rU / D 0; (1)

where U is the vector of conserved quantities and F D FC .U / � FV .U;rU / their
flux vector with convective and viscous contributions given by

U D
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with l D 1; 2; 3 denoting the columns of the flux vectors. We use the established
nomination of the physical quantities: �, v D .v1; v2; v3/T , p, and e, denoting the
density, the velocity vector, the pressure, and the specific total energy, respectively.
The viscous stress tensor is given by

� WD �
�

rvC .rv/T � 2
3
.r � v/I

�

; (3)

and the heat flux expressed as a function of temperature T by q WD .q1; q2; q3/
T

with

q D �krT; (4)

with the conductivity k D cp�

Pr . The viscosity coefficient �, the Prandtl number Pr
and the adiabatic exponent 	 D cp

cv
with the specific heats cp; cv depend on the fluid

properties and are supposed to be constant in this work. The system is closed by the
equation of state of a perfect gas:

p D �RT D .	 � 1/�.e � 1
2

v � v/; e D 1

2
v � vC cvT; (5)

with the specific gas constant R D cp � cv.
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2.2 Discontinuous Galerkin Formulation

To derive a Discontinuous Galerkin formulation for systems of conservation
equations such as (1), we first rewrite the hyperbolic-parabolic formulation as the
following mixed first-order system

Ut C rx � F.U;W / D Ut C rx �
�
FC .U /� FV .U;W /

� D 0;
W D r xU:

(6)

where we have introduced the gradients of the conservative variables W D rU as
new unknowns. The first step of the actual DG discretization is then to subdivide the
computational domain into grid cells Q and to choose a local polynomial ansatz of
degree N

U.x; t/
ˇ
ˇ
Q
� Uh.x; t/ D

N .N /X

jD1
OUj .t/ �j .x/; (7)

where N .N / D .N C 1/3 is the number of coefficients for a given degree N ,
f OUj .t/gNjD1 are the time dependent nodal polynomial coefficients and f�j .x/gNjD1 a
corresponding Lagrangean basis in the grid cell Q. For the interpolation points, we
choose a tensor product of one-dimensional Gauss-Legendre points.

Inserting the trial function (7) into the Eq. (6), multiplying by a test function
'.x/ 2 PN .Q/ and integrating over the grid cell Q yields the variational
formulation of the system (6)

Z

Q

..Uh/t C r x � F.Uh;W // '.x/ dx D 0;

Z
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W '.x/ dx D
Z

Q

rxUh '.x/ dx:

(8)

An integration by parts for the spatial derivatives is used to separate the boundary
and the volume contribution and to couple the formulation across the elements
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where n denotes the outward pointing normal vector and  the dyadic product.
The separation of the boundary contribution allows us to introduce the numerical
approximation of the flux traces b.:/ at the grid cell interface @Q, which connects

the local discontinuous approximations. For the convective flux traces

3

�

FC � n
�

,

we use Riemann-solver based flux functions further described in Sect. 2.3, while we
rewrite the two viscous fluxes as

2.n  U / D n  .˛UC C .1 � ˛/U�/ (10)

3

�

FV � n
�

D n �


˛ FV� C .1 � ˛/FvC

/
�

(11)

where the superscripts ˙ denote the left and right neighbor at the common
interface, respectively, and the scalar ˛ 2 Œ0; 1� allows us to switch between different
formulations for viscous fluxes. Details regarding the choice of ˛ and the resulting
formulations can be found below in Sect. 2.3.

It is important to note at this point that apart from the degree of the polynomial
ansatz in (7) which gives a lower bound on the truncation error, the only approx-

imation introduced in (9) is the choice of flux representations cFC and cFV, so in
that sense, (9) is the unique “analytical” weak form DG formulation for a given
N when all inner products are evaluated exactly. In case of weakly compressible
Navier-Stokes problems as investigated below, we found that .2N C 2/3 integration
points are sufficient.

2.3 Flux Functions

For the Discontinuous Galerkin method presented in Sect. 2.2, the only remaining
free parameters are the numerical flux functions. Therefore, their choice determines
the consistency, accuracy and stability of the method. The task of the flux function
is to couple two interfaces with non-unique solutions (and thus non-unique normal
fluxes) by determining a suitable unique flux. One method of achieving this is the
concept of defining this flux as an (approximate) solution to an initial value problem
with constant states (a Riemann problem), an idea developed in the Finite Volume
method community [10]. While an exact solution to the Riemann problem exists,
this so-called Godunov flux function [6] is often too costly to evaluate. Instead,
approximations of various degree of physical consistency exist, leading to a large
class of flux functions for the convective and diffusive fluxes.
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2.3.1 Euler Fluxes

For the DG method, the choice of the flux function for the Euler equations has been
investigated by Qui and Qui et al. [8,9] for smooth and shock-dominated problems.
They found that for smooth, well-resolved problems, the flux functions differ only
marginally in terms of accuracy and thus the most computationally effective flux is
a good candidate. For problems with discontinuities, the flux functions with higher
physical approximation quality (more waves are considered) clearly outperform
more dissipative variants. Kesserwani et al [7] also examined these aspects for the
dam-break problem of the Shallow Water Equations with similar findings, while
Wheatley et al. [12] performed similar numerical experiments with DG for the
Magneto-Hydrodynamic (MHD) equations.

The focus of our investigation here differs from the aforementioned works in that
we evaluate the flux functions for the situation of underresolved turbulence of the
Navier-Stokes equations. For a finite Reynolds number, the underlying physics of
this problem are smooth, but the introduction of a coarse numerical discretization
introduces an “artifical roughness”. In addition, the dam-break problems or shock
dynamics investigated before are mostly governed by a few, very localized and
strong non-viscous phenomena, while a turbulent field is characterized by a non-
local range of fluctuations and viscous dissipation.

In our investigations, we focus on two representatives for the convective
fluxes, namely the Local Lax-Friedrichs flux (LLF) and Roe’s Approximate
Riemann-solver. Our choice was governed by the difference in dissipation
introduced by the flux and their widespread use among the DG community.

Lax-Friedrichs Flux Function

The Lax-Friedrichs (LF) flux and its local variant (LLF) are the simplest flux
functions, disregarding all but the fastest wave and thus introducing the highest
amount of numerical viscosity, see e.g. [10]. Due to its simplicity, robustness
and computational efficiency, the LLF is widely used by the DG community. The
convective numerical flux in (9) is approximated as

1FC � n D �1
2
ˇ �max

�
UC � U�C 1

2

�
FCn .U

C/C FCn .U
�/
�
; (12)

where FCn is the outward pointing normal flux component at an interface, ˇ is a real
number which allows control over the amount of numerical viscosity (with ˇ D 1

being the classical LF definition), the superscripts ˙ denote the values from the
neighbor and local element and �max corresponds to the maximum eigenvalue of the
Euler flux matrix as

�max WD max
UC;U�

.jvj C c/; (13)
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Here, c denotes the speed of sound waves computed as c WD p	RT. For the local
LF variant considered in this work, the value of �max is computed from the local
flow field.

Roe’s Approximate Riemann Solver

Another favorite flux function in the DG community (see e.g. [11]) is the Approx-
imate Riemann solver due to Roe, see e.g. [10], where the exact flux Jacobian
A D dF

dU is replaced by a linearization QA about an average Roe state. The
underlying system becomes linear with constant coefficients, i.e. instead of the exact
Riemann problem, an approximation is generated, which is then solved exactly. The
numerical flux is approximated as

1FC � n D �1
2
ˇ

mX

iD1
Q̨i j Q�i jK.i/ C 1

2

�
FCn .U

C/C FCn .U
�/
�
; (14)

where the Q denotes the evaluation at the Roe state,m stands for number of eigenval-
ues �i .UC; U�/ of QA, Q̨i .UC; U�/ denote the wave strengths and K.i/.UC; U�/
are the corresponding right eigenvectors. There are two different approaches to
finding the intermediate state and from there the wave strengths and eigenvectors
which are detailed in [10], in our approach, we use the classical Roe formulation.
Note that we have again introduced the parameter ˇ as in (12), which allows control
over the amount of numerical viscosity.

2.3.2 Viscous Fluxes

For the viscous fluxes, a large choice of formulations exists which like the convec-
tive fluxes lead to different stability and accuracy properties. An overview of the
available options for the Laplace equation is e.g. given in [1]. Our implementation
options shown in Sect. 2.2 (Eqs. (10) and (11)) allow a switch by selecting an ˛:

• ˛ D 1
2

leads to the first variant of Bassi and Rebay (BR1) [2] by using the
arithmetic mean for both fluxes. This flux is stable for parabolic problems, while
it is known that it becomes unstable for purely elliptic cases.

• ˛ D 0 or ˛ D 1 lead to the local DG variant (LDG) by Cockburn and Shu [4].

3 Influence of the Numerical Fluxes

In this section, we report the influence of the choice of the flux function on the
results of the numerical simulation of underresolved turbulence. As emphasized
in Sect. 2, the only remaining parameter in our DG formulation apart from the
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Fig. 2 Plot of the kinetic energy dissipation rate for the Re D 1; 600 Taylor-Green vortex:
comparison of convective numerical flux function influence for different polynomial degrees N
with same total no. of DOF (643). Square symbol denotes the reference DNS solution [3], dashed
line denotes the LLF flux result, the solid line denotes the Roe flux result

initial decision on the order of approximation are the numerical flux functions.
We have performed underresolved computations with fixed total number of degrees
of freedom (643 for all cases) of the well-established Taylor-Green vortex testcase,
for a detailed description see [5].

For the weakly compressible Taylor-Green vortex flow, the dissipation rate of
the kinetic energy is a suitable benchmark quantity for the evaluation of simulation
fidelity. In Fig. 2, we show the comparison of this quantity for the two different
convective fluxes described in Sect. 2.3 with decreasing polynomial approximation
order but same total number of degrees of freedom. This means that for the cases
N D 15, N D 7, N D 3 and N D 1 we use 43, 83, 163 and 323 grid cells,
respectively. Thus, the nominal resolution (points per wavelength) is identical in all
cases and is given by our choice of 643 DOF. We can clearly see that the polynomial
degree has a strong influence. Although all computations are underresolved, the
impact of the Riemann fluxes on the resulting kinetic energy dissipation is very low
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Fig. 3 Plot of the kinetic energy dissipation rate for the Re D 3;000 Taylor-Green vortex:
comparison of LDG flux and BR1 flux (see Sect. 2.3.2) with DNS, 43 elements, polynomial degree
N D 15. right: detailed view

for the case N D 15. This is in accordance with the dissipative behavior of the
high order method, compare Fig. 1, where the onset of the dissipation is delayed
to a higher wavenumber compared to the lower order variant. This implies that for
the low order discretization, a larger fraction of the resolved scales is affected by
the numerical dissipation. Consequently, we observe that the impact of the Riemann
flux choice is very strong for the case N D 1. Comparing all results from Fig. 2,
we see a clear progression from high order to low order in flux function impact.
As the number of cell interfaces increases for a given overall resolution and the
approximative strength of the local polynomial ansatz decreases, the influence of
the flux function becomes more pronounced. Furthermore, it can be observed that
for the N D 7 and N D 1 cases, the Roe flux is closer to the DNS result than the
LLF formulation, while the situation is not so clear for the N D 3 case and thus
warrants further investigations.

In contrast to the convective fluxes, the impact of the viscous flux function
seems negligible in this advection-dominated case. For the low order variants, the
numerical dissipation is totally governed by the dissipation mechanism of the Euler
fluxes. Only for the case of very high polynomial degree, N D 15, where the
influence of the Euler flux is low, we observe a measurable impact of the viscous
flux choice. But as the results in Fig. 3 clearly show, the influence on the overall
dissipation behavior even in this case is negligible .

4 Conclusion and Outlook

As shown in Sect. 3, the influence of the convective flux function on the solu-
tion quality can be substantial, especially for low order approximations. For the
N D 1 computations in Fig. 2, the introduced numerical dissipation masks the flow
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Fig. 4 Plot of the kinetic
energy dissipation rate for the
Re D 800 Taylor-Green
vortex: comparison of
classical Roe flux and
modified Roe flux with DNS

dissipation and emulates a much lower Reynolds number, as evident by the shift of
the dissipation rate maximum to about 5 s (see [3]). We have also observed that the
Roe flux reproduces a better result than the LLF flux for low order approximations,
and that the choice of the viscous flux function is not relevant in this advection-
driven case.

Combining these aspects, we now investigate whether we can modify the Roe
flux by tuning its dissipation parameter ˇ in Eq. (14) and thereby improve the
solution quality. Figure 4 shows the results for the Re D 800 simulation with
the classical (ˇ D 1:0) Roe flux and a modification (ˇ D 0:025) with lowered
dissipation. The overall agreement with the DNS results improves significantly for
the modified version, and the physical structure of the dissipation rate reappears in
the solution.

In conclusion, we have investigated the effects of the choice of the flux functions
in Discontinuous Galerkin computations of transitional turbulence. We found a
significant influence of the convective flux for underresolved low order simulations,
and showed that a simple modification of the flux function dissipation significantly
improves the solution quality. In future work, this observation is used as a basis for
Discontinuous Galerkin based implicit Large Eddy Simulation of turbulent flows.
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Generation of High-Order Polynomial Patches
from Scattered Data

Karsten Bock and Jörg Stiller

Abstract Spectral element methods demand for curved grids when used with
complex computational domains. This paper presents a method for the construction
of high order polynomial surface patches. These patches are constructed from and
approximate scattered surface data e.g. in form of scanning data triangulations.
Accuracy and quality of the generated Bézier patches improve significantly by
curving these fine grids before using them as “exact” surface representations.
Iterative energy optimisation of the bounding curves during the construction process
also shows positive effect on accuracy and quality of the patches. The combination
of this methods results in patches of high polynomial order that feature a high quality
surface approximation and almost smooth transitions between elements.

1 Introduction

Spectral element methods (SEM) are supposed to combine the superior accuracy of
spectral methods and the geometrical versatility of finite element methods (FEM).
Because of their high accuracy and convergence rates SEM allow for and demand
much coarser grids then FEM or finite volume methods. To avoid that geometrical
errors dominate the method, the geometrical approximation of the computational
domain has to be done by curved elements because of the coarse grids used
[1]. Often curved grids are derived from linear grids whereat invalid elements
may occur. Different approaches to guarantee the validity of elements have been
studied. The correction of invalid elements by face and edge swapping methods
is possible [1]. Curvature based refinement of surface grids in combination with
more robust prismatic elements for boundary regions can minimize the occurrence
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Entire model Detail of fine grid Detail of coarse grid

Fig. 1 The geometry of the rabbit aortic arch built from scanning data and kindly provided by
S. Sherwin, Imperial College London. The tiny black frame marks the section used for detail views

of invalid elements [7]. Another approach curves the initial straight sided mesh with
a nonlinear elastic analogy [6].

This paper focuses on the construction of curved surface representations with
high order polynomial patches. For many applications, including the field of
biomedical flows, the definition of the computational domain is given exclusively by
scanning data e.g. from computer tomography (CT), magnetic resonance imaging
(MRI) or laser scanning. Therefore these patches need to be constructable from
scattered data. As a starting point triangulations can be calculated from scanning
data and then be used for the construction of coarse curved surface representations.
Curvature based coarsening of these fine grids results in coarse linear grids featuring
smaller elements in regions of high curvature. As an example Fig. 1 shows the
fine grid computed from CT scanning data of a rabbit aortic arch cast [9] and a
comparison of fine (385,023 triangles) and coarse (5,364 triangles) linear grids in
detail views.

One method currently used to curve coarse linear grids are spherigon patches
[11]. Though originally developed as a smoothing technique, they are used for
interpolation here. Spherigon construction is carried out pointwise by blending
of interpolants computed from data given in the vertices. These interpolants for
a certain point are built as circular arcs that are orthogonal to the approximated
normal of that point and the particular vertex normal. Depending on the blending
function, G0 and G1 versions are available. Recently, this approach has been
used for SEM flow simulations e.g. of vascular flows [3, 9]. In this paper we
describe the construction of high order polynomial surface representations, namely
Bézier curves and patches, from discrete surface definitions in from of scanning
data triangulations. The effects of interpolating the fine triangulation and energy
optimisation of curves during this process are investigated.
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2 Surface Representation with Polynomial Patches

Triangular and quadrangular surface patches as well as the curves bordering them
are expressed in Bernstein-Bézier form [2]. Using the Bernstein polynomials Bn

i .t/

of degree n the curve c .t/ is written as

c .t/ D
nX

iD0
bi Bn

i .t/ (1)

where t 2 Œ0; 1� is the parametric coordinate along the curve. Quadrangular Bézier
surface patches are built in a tensor product form with two parametric coordinates
�; � 2 Œ0; 1�:

s .�/ D
nX

iD0

nX

jD0
bij Bn

i .�/ B
n
j .�/ : (2)

Barycentric coordinates � and the Bernstein polynomials Bn
ijk.�/ of degree n are

used to express the triangular surface patch in Eq. (3) in Bernstein-Bézier form with
the triple index ijk following the constraint i C j C k D n.

s .�/ D
X

i;j;k

bijk Bn
ijk.�/ (3)

bi , bij and bijk are the control points defining the form of the curves and surface
patches. A more detailed description of Bernstein polynomials, Bézier curves and
surface patches is given in [2].

2.1 Handling of Scattered Surface Data

In order to fit polynomial patches to a given surface a projection method to
the “exact” surface is provided. The normal projection P.p/ of a point to an
analytically defined surface can easily be achieved. This Section describes a normal
projection method to surfaces defined by discrete data. A fine triangulation serves as
the “exact” surface because it is the most accurate representation of the real surface
available. Vertex normals of this fine grid are approximated with a method using
area and angle weighting [5]. Optionally, Taubin smoothing [8] can be applied, if
the input grid is too noisy.

The method used to normal project a given point p onto the fine surface grid
is sketched in Fig. 2. Vertex coordinates and interpolated vertex normals of this fine
grid are known. To project the point p, each triangle p1p2p3 in the fine grid has to be
checked, to see whether it contains a viable projection of this point. For this purpose
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Fig. 2 Sketch of the method
to project a point p onto a
surface represented by
scattered data (the triangle
p1p2p3 is part of the fine
surface grid)

an auxiliary triangle Qp1 Qp2 Qp3 is constructed in the plane parallel to the triangle p1p2p3
and containing the point p. The vertices Qpi are the projections of the vertices pi in
the according normal directions ni . If the point p is positioned inside this triangle
Qp1 Qp2 Qp3, then its normal projection lies within the triangle p1p2p3 and its position
is computed by mapping the barycentric coordinates from one triangle to the other.
The projection direction of the point is equal to its Phong normal n [11] in the fine
triangle p1p2p3, which is an interpolation of the triangles vertex normals. As the
triangle Qp1 Qp2 Qp3 is generally curved, this projection method involves a linearisation
error. Hence a subdivision scheme, in which the curved triangle is replaced by a
finer linear triangulation, was introduced to minimize this error.

For every point to project there can be multiple viable normal projections on the
fine surface grid. The projection, which requires the minimal projection distance, is
then chosen as the projected point Qps .

The fine grid is a linear approximation of the real surface and hence lacks high
accuracy and smoothness. To improve the quality and accuracy of this surface
representation, different interpolations computable from vertex data can be used
[10, 11]. The results presented in this paper were obtained by applying spherigons
with a quadratic blending function to curve fine grids. The position of the final
projection ps on the interpolated curved surface triangle can be calculated from Qps
and the flat triangles p1p2p3 vertex data.

Especially for large grids it is very costly to check each triangle in the grid
as described before. To minimize the computational costs, the space around the
surface model is subdivided into voxel cells and the information which triangle
intersects with which voxel is stored. If a point p is projected the voxel this point
is positioned in can easily be computed. The search for possible projections starts
with the triangles intersecting this voxel cell. Should no projection be found, the
neighbouring voxel cells are checked until a projection is found or a stop criterion
is met. As an example Fig. 3 shows the bounding box around a screw surface,



Generation of High-Order Polynomial Patches from Scattered Data 161

Fig. 3 Bounding box around
the screw surface defining the
space to be covered by the
voxel grid. Only the voxels
actually containing surface
elements are displayed

which is covered by these voxel cells. Note that only voxels actually containing
triangles of the fine grid are plotted.

2.2 Construction of Polynomial Patches

The construction of polynomial surface patches starts with establishing the bound-
ary curves. Given a set of parameter values ti , the sampling points xi are constructed
by projecting the linear interpolation between edge vertices p0 and p1 to the surface.
We write this as

xi DP Œ.1 � ti / p0 C tip1� ; (4)

where P.p/ represents the normal projection of a point p onto the surface. The
control points b0 and bn of the curve are set to match the edge vertices p0 and p1.
The remaining, inner control points bi are computed by minimisation of the distance
functional

Ed D
mX

iD1
jc .ti / � xi j2 ! min ; (5)

which is evaluated using m sampling points.
Given the curves, the boundary coefficients of the patches are defined. The

inner control points follow from a minimisation of a quadratic distance functional
similar to Eq. (5). The required sampling points are first defined in parameter space,
then their position is approximated using BBG or Coons patches [2] interpolating
the boundary curves. Finally they are projected to the exact or fine surface
representation.
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2.3 Iterative Optimization of Bézier Curves

Energy minimisation of splines and curves is a known method used to improve the
quality of curves on surfaces [4]. Minimizing the energy functional in Eq. (6) leads
to geodesic curves, which are the shortest curves connecting the vertices on the
surface. The strain energy of a curve is defined by Eq. (7). Both of these energy
functionals are readily computed from Bézier curve control points.

E1 D
1Z

0

Pc2 .t/ dt (6)

E2 D
1Z

0

Rc2 .t/ dt (7)

The minimisation of these energy functionals for a Bézier curve on a surface is done
by iterative minimization of the functional J in Eq. (8) while the curve is confined
to the surface. The starting curve c0.t/ is constructed as described in Sect. 2.2. The
energy functionals E 0

1 and E 0
2 and the distance functional E 0

d of this starting curve
are evaluated by Eqs. (6), (7) and (5) and will be used for normalisation within the
functional

J D wx
Ed

E 0
d

C we

�

.1 � ˛/ E1

E 0
1

C ˛ E2

E 0
2

�

! min : (8)

wx , we and ˛ name weighting factors within the functional. A higher value of weight
we in comparison to wx allows for higher deviations from the surface but also for
faster decreasing values of the energy functionals during one iteration step.

At the beginning of the actual iteration process sampling points are distributed
on the starting curve with a set of parameter coordinates ti . After projecting these
points to the surface, the sampling points xi D P Œc.ti /� can be used to calculate
the distance functional Ed during the minimisation of the normalized functional J .
The minimisation results in a curve that approximates the surface and has reduced
in the energies E1 and E2. New sampling points are then created on this curve and
again projected to the surface. After a minimisation of the sampled distance error
functional Ed follows an energy reduced curve lying on the surface. These steps
are repeated until a maximum number of iterations is reached or a stop criterion
is reached. The reduction rates of J , Ed , E1 and E2 during the iteration steps are
monitored and used as a stop criterion, which terminates the iteration when a certain
threshold ımin is reached.

Figure 4 illustrates this process for a long curve on the screw surface. The full
line representing the curve after the iteration is clearly minimized in energies in
comparison with the dashed starting curve and lies on the screw surface.
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Fig. 4 Example of the curve iteration process. The dashed line represents the starting curve, the
dash-dotted line shows the result after 10 iterations and the full line the result of 50 iterations
(Polynomial degree n D 10; iteration weights and parameters: wx D we D 0:5, ˛ D 0:8, ımin D
0:01)

3 Numerical Results

We performed studies comparing different triangular surface patches of exact
and discrete surface definitions. A screw surface shown e.g. in Fig. 4 serves as
the example for exact surface definitions. The triangulated scanning data of the
rabbit aortic arch illustrated in Fig. 1 was used as example for discrete surface
representations.

The error of triangular Bézier patches of different polynomial orders and of
spherigon patches to an exactly defined screw surface are plotted in Fig. 5a in
maximum error norm. The grid size h and the error "1 are normalized with the
minimum curvature radius rc of the screw surface. The projection during the Bézier
patch construction was performed onto the exact surface. The Coarse grid vertex
coordinates and normals necessary to compute spherigon patches and were also
calculated by projection on the exact definition of the screw surface.

Bézier triangles with increasing polynomial order n achieve decreasing errors
compared to spherigons. Therefore it is possible to maintain a high accuracy in
surface representation even when using coarse surface grids. Spherigons in the
form used here are G1 continuous over the edges of adjacent patches but not
directly expressed as polynomials. In Fig. 5b the normal vector deviation at the
common edge of neighbouring patches is shown in maximum error norm. The plot
indicates, that other than spherigons Bézier patches are not able to produce a smooth
surface representation. However, the normal deviations decrease rapidly with higher
polynomial orders n of the Bézier patches.

The rabbit aortic arch pictured in Fig. 1 is used as an example for the construction
of polynomial surface patches from scattered scanning data. A comparison of the
results of different surface patch construction methods is given in Fig. 6 where a high
curvature region of this grid is selected because such a region is particularly hard to
represent by coarse grids. The top left figure shows spherigon patches producing
a smooth but bumpy surface because of the enforcement of smooth transitions
between surface patches. These spherigons were constructed from coarse grid vertex
coordinates and normals that were improved by projection to a curved fine grid
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Fig. 5 (a) Error to exact screw surface in maximum error norm (normalisation with minimal
curvature radius rc 
 0:117 is used). (b) Maximum difference between normal vectors of adjacent
edges

surface representation, which was interpolated with G0 spherigons. All Bézier
triangles pictured in Fig. 1 are of polynomial order n D 10. At such high polynomial
order the coarse curved surface patches represent the fine grid surface model very
well. However, this results in a very bumpy surface imitating the linear fine grid
when using a projection to this grid when constructing Bézier triangles, as the
top right figure shows. This surface representation is not of the desired quality.
The bottom surface plots display Bézier triangles constructed with projection to
a fine grid interpolated by G0 spherigons. In the bottom left picture the Bézier
triangles can not retain smooth patch transitions but overall render a much less
bumpy surface. They were built by the method described in Sect. 2.2 with projection
to the interpolated fine grid. The patches shown in the bottom right plot are Bézier
triangles using iterative energy minimised Bézier curves as a basis. These patches
provide much smoother transitions and maintain a good overall visual quality of the
surface. It becomes clear, that the quality of curved edge representations has a great
impact on the quality of the resulting Bézier patches.

These observations are backed by the error data listed in Table 1, where only
Bézier patches with projection to an interpolated fine grid are listed. We omitted
patches calculated with projection to a linear fine grid because they were not able
to produce high quality surface representations for high polynomial orders. The
positional errors in maximum norm "1 and L2 norm "2 are calculated from surface
normal distances to the most exact surface representation of the rabbit aortic arch
available, the G0 spherigon interpolated fine grid. The data point out a significant
reduction of positional errors of the surface patches as well as edges when using
iterative optimised Bézier curves as a basis of Bézier triangle construction. The
"2 error of the Bézier triangles is magnitudes lower than that of the spherigons.
The maximum error "1 reaches slightly higher values but is of the same order
of magnitude. While Bézier patches built from not iterated Bézier curves exhibit
high normal deviations in maximum and L2 norm d1 and d2, patches formed
from iterative optimised curves feature lower deviations and thus smoother patch
transitions at critical areas as shown in Fig. 6.
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Fig. 6 Comparison of different curved surface patches modelling a high curvature region of the
rabbit aortic arch surface. Top left: Spherigon patches. Top right: Bézier patches with projection to
linear fine grid. Bottom left: Bézier patches approximating an interpolated triangulation. Bottom
right: Bézier patches constructed from iterative optimised Bézier curves with projection to
interpolated fine grid (Bézier patches of degree n D 10; iteration parameters used: wx D we D
0:5, ˛ D 0:8, ımin D 0:03)

Table 1 Error data of edges and surface patches to spherigon interpolated fine grid as the most
exact surface representation available

Edges Patches
"

1

"2 d
1

d2 "
1

"2

Spherigons – – – – 2.26e�02 1.21e�01
Original curves 7.13e�02 1.28e�02 1.11 1.42 7.13e�02 1.64e�03
Optimised curves 2.71e�02 7.68e�03 3.26e�01 9.05e�01 2.71e�02 1.62e�03
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Surface patch mapping s.�/ and s.�/ quality can be assessed by the distortion
measure

I S D J Smin

J Smax

: (9)

J Smin and J Smax are the minimum and maximum surface Jacobians

J S D
ˇ
ˇ
ˇ
ˇ
@s
@�
� @s
@�

ˇ
ˇ
ˇ
ˇ (10)

in one element [1], where for triangles the parameters are calculated by � D 1 � �1
and � D 1 � �2. The quality of element mappings for the rabbit aortic arch surface
built from Bézier triangles of order n D 10 with projection to the interpolated fine
grid and iterative curve optimisation is fairly good and ranges from IS � 0:5 to
1 apart from very high curvature regions at the bifurcations where the distortion
measure reaches its minimum value of I S � 0:23

4 Conclusion

In this paper we described a method to generate high order polynomial patches
from scattered data. These patches are built in Bernstein-Bézier form on basis of
the data given in fine surface triangulations, which can be calculated from scanning
data. A approximate normal projection method of points to this triangulated surface
representation was developed. The quality of polynomial patches could be improved
by performing the projection to a curved surface grid interpolated from the triangu-
lated fine linear grid vertex data. Since the curves are crucial to the construction
of patches with the methods presented here, iterative energy optimisation of the
curves representing the element edges leads to error reduction and increasing quality
of surface patches as well as the bordering curves. A similar approach for the
construction of patches could be tested in the future to further improve element
quality, accuracy and smoothness of the curved grid. The polynomial patches
showed high accuracy in modelling the geometry and offer some advantages over
spherigons, which are one method currently in use to generate curved surfaces for
SEM methods. Especially in regions of high curvature the Bézier patches were
able to provide a much higher surface quality. Although they do not guarantee
smooth transitions between surface patches that spherigons feature, they generate
an visually smooth surface with rapidly decreasing normal deviations dn at element
borders especially when using patches of high order.
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Towards a High Order Fourier-SEM Solver
of Fluid Models in Tokamaks

A. Bonnement, S. Minjeaud, and R. Pasquetti

Abstract We investigate a fluid modeling approach to describe the plasma behavior
in tokamaks. For the numerical approximation, we use a high order method based
on Fourier expansions in the toroidal direction and the spectral element method
(SEM) in the poloidal plane. We first focus on anisotropic diffusion, because in
tokamaks diffusion strongly dominates along the magnetic field lines, and provide
some comparisons with finite element results. Then we give preliminary results for
a plasma two fluid (ions and electrons) numerical model.

1 Introduction

The production of energy by fusion of light nuclei like Deuterium and Tritium may
be achieved by Magnetic Confinement Fusion. This is done in annular apparatus
called tokamaks, where the reacting material is under the form of plasma (ionized
gas at very high temperature). A strong magnetic field is used to confine the plasma,
in order to overcome the pressure gradient and curvature effects. The ITER device
is presently under construction in Cadarache (France) [17].

Simulating the plasma behavior is extremely difficult, e.g. due to the various
space and time scales which should be considered. In the core of the plasma kinetic
(or gyrokinetic) approaches, based on the resolution of a six-dimensional (or five-
dimensional) Boltzmann-like equation, are usually preferred. In the edge region of
the plasma, where the geometry is more complex and the temperature less high,
fluid approaches may be relevant (this notion is certainly not shared by all tokamak
physicists). Especially, they can be of interest beyond or close to the separatrix,
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which separates the core region, where the magnetic surfaces are closed, and the
scrape off layer (SOL region), where the magnetic surfaces are open, see e.g. [16].

On the basis of a two fluid modeling, our goal is to develop a three-dimensional
Fourier-SEM code to describe the turbulence transport phenomena in the SOL
region. The fluid model is based on the usual conservation equations of mass,
momentum and energy expressed for both ions and electrons and on the assumption
of quasi-neutrality of the plasma. The so-called divertor configuration, which will
be used for ITER, is considered. In a given poloidal plane, it is characterized by the
presence of an X-point in the magnetic lines. Such a configuration is out of reach
of codes that make use of Fourier expansions in the poloidal angle, coupled to finite
differences or finite elements in the radial one, see e.g. [1].

2 Governing Equations

The governing equations express the conservation of density, momentum and energy
of each species s D fi; eg, with i for ion and e for electron. Moreover, we assume
that the fluctuations of the magnetic field B are negligible and consequently that the
electric field derives from an electric potential U (from Faraday’s law). With:

- ns , ms, es for the volume fraction, mass and electric charge, respectively,
- us , ps , ˘s , "s , 's for velocity, pressure, deviatoric part of the pressure tensor,

internal energy and associated flux density, respectively,
- Rs for the friction forces due to ion-electron collisions and Qs for the energy

exchange due to collisions, one obtains:

@tns Cr � .nsus/ D 0;
@t .nsmsus/Cr � .msnsusus C psI C˘s/ D nses.�rU C us ^B/CRs;

@t "s Cr � ."sus C 's/ D �psr � us �˘s W rus CQs : (1)

These equations are completed with the perfect gas law for each species:

ps D nsTs ; "s D ps=.� � 1/; (2)

where the temperature Ts has here the dimension of an energy and � D 5=3. The
system is closed using the Braginskii closure [4] which provides the expressions:

- ˘s 
 ˘s.us/,
- Rs 
 Rs.Te; ne; j /, where j DPs nsesus is the current density,
- 's 
 's.Ts; ps; j /,
- Qs 
 Qs.Te; Ti ; j /.
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An additional reasonable assumption is the electroneutrality of the plasma, which
means:

X

s

nses D 0 !
�

ne D Zni ;
r �Ps nsesus 
 r � j D 0;

(3)

where Z D �ei=ee . We thus observe that the current j is divergence free.
When taking into account this additional constraint, we obtain a system of 10

non-linear and coupled Partial Differential Equations (PDE) for the variables n.D
ne/, U , us and "s. Such a problem appears extremely difficult because being:

- Steep, as a result of (i) me � mi and (ii) B strong;
- Multiscale in space: The Larmor radius, associated to the spiral motion of the

ions and electrons around the magnetic lines, is much smaller than the size of the
ITER device;

- Multiscale in time: The cyclotron period is much smaller than the turbulence
time scale which itself is much smaller than the discharge time (duration of an
experiment);

- Strongly anisotropic: Diffusion is indeed very dominant along the magnetic field
lines. This difficulty is addressed in the next Section.

It should be noted that the considered PDE system does not make use of the
so-called drift velocity assumption. We refer to [14] and to the works carried out in
the frame of the ESPOIR ANR project for this kind of approaches, see e.g. [9, 15].
One can also note that simpler fluid modelings, often based on the MHD equations,
have been and are still investigated, see e.g. [1, 5, 13].

3 Anisotropic Diffusion

The Braginskii closure yields expressions of anisotropic form, e.g. for the energy
flux density (subscripts i or e are omitted in this section):

' D ��krkT � �?r?T C �^.b ^ rT /; (4)

where b D B=jBj , rkT D .b � rT /b and r?T D rT � rkT . Such expressions
are strongly anisotropic. Indeed one has:

�?
�k
� 1

.!c�/2
;

�^
�k
� 1

!c�
;

where, see e.g. [11], !c D jBje=m is the cyclotron frequency and � /
m1=2.kT/3=2=.ne4/ is the collision time (with k, Boltzmann constant). The resulting
values of the product !c� for the plasma core and plasma edge regions are given in
Table 1.
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Table 1 Typical values of
the temperature, density and
!c� product for the ions and
electrons in the core and edge
regions of the plasma

Plasma core Plasma edge

Temperature (K) 1:16 108 5:8 105

Density (m�3) 1020 1019

!c� for electrons 3:39 107 1:2 105

!c� for ions 1:12 106 3:96 103

Because we plan to use an unstructured mesh, a priori not aligned to the magnetic
field lines, our implementation of Eq. (4) is based on a tensorial form of the diffusion
coefficient:

' D �k.b � rT /bC �?.rT � .b � rT /b/C �^.b ^ rT /
D .�k � �?/.b � rT /bC �?rT C �^.b ^ rT /
D KrT (5)

whereK D .�k��?/bb C�? IC�^B , with an easily identifiable antisymmetric
matrix B , such that �^.b ^ rT / D �^BrT .

The validity of our Fourier – SEM approach has first been checked on the
anisotropic diffusion problem @tT D KrT . In time we use a standard fourth
Runge-Kutta (RK4) scheme and in space Fourier expansions in the toroidal direction
together with spectral elements in the poloidal plane. Using the Galerkin Fourier
method allows us to substitute a set of two-dimensional problems to the initial 3D
one. These 2D problems are then solved by using the SEM, see e.g. [7, 12].

We consider a test problem of the CEMM (Center for Extended MHD Modeling,
Princeton), see e.g. [8], in a toroidal geometry of square poloidal cross-section. In
the cylindrical coordinate system (R; �; z), the initial condition T0 D T .t D 0/ is
a “pulse” of Gaussian shape located at (R D R1; � D 0; z D 0/ and of standard
deviation ı:

T0 D exp.�..R � R1/2 C .R1�/2 C z2/=ı2/: (6)

The magnetic field B is defined in the toroidal coordinate system (r; �; �) :

B D 1

R
.e� � 1

R0q0

r

1C .r=a/2 e� /; (7)

with: R0; q0: radius of the torus, safety factor (tilting parameter of the magnetic
lines); a: radius of the torus section; e�; e� : unit vectors versus � and � directions.
Then, the magnetic lines make spirals on closed tubular surfaces r D const .

We first present a test case assuming �k D 1 and �? D �^ D 0, that is
K D BB=B2. Such an input is of course not physical but here our goal is only to
check the capability of the algorithm in the most extreme case. Figure 1 (top) shows
isotherms at the initial and final time of the computations, whereas Fig. 1 (bottom)
shows the �-averaged solutions at two intermediate times. The computation has
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Fig. 1 Top: Isotherms at the initial and final time, t D 0 and t D 148:44. Bottom: �-averaged
solutions at t D 11:72 and t D 31:25

been done with 64 toroidal Fourier modes, a polynomial approximation degree
N D 4 in each element and 9,409 grid-points in the poloidal plane, so that the total
number of grid-points is 1,204,352. The mesh is simply aligned along the horizontal
(r) and vertical (z) directions. The time-step was taken equal to 7:8125 10�4. As can
be observed, despite the fact that the mesh is not aligned on the magnetic field lines,
the anisotropic diffusion phenomenon is well described.

We now investigate the influence of the �^.b ^ rT / term. In fact one has:

r � �^.b ^ rT / D .r�^ ^ bC �^.r ^ b// � rT; (8)

which means that this “diffusion term” behaves like a transport term with velocity
u^ D r�^ ^ bC �^r ^ b:

Simulation results are provided in Fig. 2. The b vector being essentially parallel
to e� , because r ^ e� D ez=R one observes a transport phenomenon in the vertical
direction which sense depends on the sign of �^.

More quantitative tests have been carried out in two-dimension, with circular
magnetic lines and diffusivity such that �k D 1 and �? D �^ D 0. Using as initial
condition a temperature distribution only depending on the radius, one expects that
the solution does not evolve in time. Two kinds of radius dependencies have been
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Fig. 2 CEMM test, �
k

D 1, �
?

D 0 and �
^

D 1 (the two visualizations at left) or �
^

D �1 (at
right). �-averaged solutions at two different times

Fig. 3 The characteristic function of a ring is used as initial condition. Top: SEM (N D 4) and
P1-FEM solutions at t D 2. Bottom: Details of the FEM-mesh, which inner part is aligned on the
circular magnetic lines, and profile of the FEM solution

tested, smooth (Gaussian) or steep (characteristic function). Nice results have been
obtained in both cases, except of course of the expected Gibbs phenomenon in
the stiff case, see Fig. 3 (top-left). Comparisons have been made with the standard
P1-FEM approach, based on the FluidBox / Plato software [18], for which it turned
out to be necessary to use a mesh aligned on circles to obtain satisfactory results in
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the steep case. Figure 3 (bottom-left) shows a zoom of such a mesh, which allows
to compute the steep problem without any oscillations of the solution, see Fig. 3
(right). Details are provided in [3].

4 Towards the Full Two-Fluid Braginskii Model

Combining the conservation equations introduced in Sect. 2, one obtains the
momentum – current q - j system, see e.g. [6], which is equivalent to the ion –
electron momentum qi � qe system that directly results from the Eqs. (1) to (3).
With � DPs nsms, q DPs qs and when taking into account that

P
s Rs D 0 one

obtains:

@t �Cr � q D 0
@tq Cr �

X

s

.qsus C psI C˘s/ D j ^B

@tj Cr �
X

s

ws.qsus C psI C˘s/ D �c��rU C .cqq C cj j / ^B C
X

s

wsRs

r � j D 0
@t "s Cr � ."sus C 's/ D �psr � us �˘s W rus CQs (9)

where c�, cq , cj and ws D es=ms are given coefficients. This system must be
completed by the state laws, for the ions and electrons, and by the Braginskii closure.
The present formulation clearly points out that one has to solve for a compressible
dynamics, to get � and q, and an incompressible one, to get U and j . Thus, the
potential U appears as the Lagrange multiplier which allows the current density j

to be solenoidal.
Looking at the set of PDEs (9), when taking into account that me � mi and

if assuming (i) that Ti D Te D T , so that with n D P
s ns , p D nT , and

(ii) that the viscous stresses are negligible, it turns out to be relevant to check the
capability of the Fourier-SEM approach on the Euler system. The Euler system may
however yield discontinuous solutions and so a stabilization technique is required.
To this end, we have implemented the entropy viscosity technique, that relies on the
idea of introducing a non-linear viscous term, which amplitude is controlled by a
viscosity coefficient proportional to the absolute value of the entropy residual and
bounded from above by a O.h/ viscosity (h is the grid-size) [10]. An example of
result is presented in Fig. 4 (top) for an axisymmetric Euler computation in a domain
showing the limiter (rather than the divertor) configuration. This is e.g. the case of
the Tore-Supra device in Cadarache. One observes that the wave front is rather well
described and, as required by the Bohm boundary condition, that the Mach number
equals one at the plates. When taking into account the viscous terms and then
using the usual closure of Newtonian fluids, one obtains the Navier-Stokes system.
Figure 4 (bottom) shows the influence of viscosity on the previous simulation
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Fig. 4 Euler (top) and Navier-Stokes (bottom) results, density (at left) and Mach number (at right).
SEM (N D 4)-EV approximation. RK4 scheme. Initial condition: Fluid at rest, constant density
and pressure. Boundary conditions: Inflow imposed at the inner boundary; Free-slip at the outer
one. The “Bohm boundary condition” M � 1 is imposed at the plates

result. Considering such a simplified single fluid approach with Euler, Navier-Stokes
and also Braginskii-like closure was investigated in [3], using in space a finite
element / finite volume approximation.

To solve the full q - j system or equivalently the qi � qe one, we use in time
a third order RK3 IMEX scheme [2], in such a way that the flux terms are treated
explicitly whereas the .:/ ^ B terms are treated implicitly. Note however that no
additional cost is required because such terms do not involve space derivatives.
Finally, we use a projection method to computeU such thatr �j D 0. This requires
to solve the elliptic equation:

r � .�rıU / D r � j ? ; @nıU j
 D 0 (10)

with j ? the provisional current obtained by solving the IMEX scheme, discarding
the divergence free constraint, and ıU a potential increment.

Axisymmetric computations have been done using the geometry of the JET
tokamak in Culham [16], considering only the edge region. At the initial time we
use the data provided by the resolution of a Grad-Shrafranov equilibrium, using
the code JOREK [5], i.e. the ion density, the total pressure p D pi C pe and the
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Fig. 5 Ion velocity (at left) and current density (at right). The vectors display the poloidal
component and the color the toroidal one. SEM (N D 2) – RK3 IMEX scheme. The “Bohm
boundary condition” M � 1 is imposed at the plates

magnetic potential. From that one can derive the magnetic field and the ion and
electron internal energies. The initial current density is assumed toroidal, so that
j �rp D 0 and r �j D 0, and computed in such a way the j ^B term compensates
at best the pressure gradient. The initial ion velocity is set equal to 0 inside the
separatrix. In the SOL, it is taken co-linear to the magnetic field and at the plates
such that ui D ˙c b, where c is the sound velocity. Free-slip conditions are used
everywhere except at the plates where we use the Bohm boundary conditionM 	 1,
with M for the ion Mach number. The mesh is the one provided by the JOREK
code. It is aligned on the magnetic surfaces and is essentially structured, except
at the X point where eight quadrangular elements use it as a vertex. This is well
supported by the SEM approximation, which is designed to support non-structured
meshes. Steep gradients however occur, especially because at the initial time the ion
and electron velocities are not continuous at the separatrix and moreover show four
different values about the X-point. The computations have been done with N D 2.
Increasing this value of the polynomial approximation turns out to be difficult with
the appearance of negative values of the pressure at the plates. This seems strongly
due to the JOREK mesh, that includes, especially at the plates, elements of very high
aspect ratio. Figure 5 shows snapshots of the ion velocity field and of the current
density for an Euler closure of the governing equations.
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Whitney Forms, from Manifolds to Fields

Alain Bossavit and Francesca Rapetti

Abstract Theses notes present the duality of Whitney forms as a tool to describe
manifolds by chains and fields by cochains. Relying on this duality, we can construct
compatible discretization methods for PDEs, that are methods which respect the
nature of the fields involved in the equations (the degrees of freedom have a physical
meaning) as well as the geometric and topological structure of the continuous
model. We briefly recall how it is possible to define high-order Whitney forms just
refining the chains that describe the manifolds.

1 Introduction

Variational methods have an ancient and well known history. The solution to some
field problem often happens to be the one, among a family of a priori “eligible”
fields, that minimizes some energy-related quantity, or at least makes this quantity
stationary with respect to small variations. By restricting the search of this optimum
to a well-chosen finite subfamily of eligible fields, one obtains the desired finite
system of equations, the solution of which provides a near-optimum. This powerful
heuristics, or Rayleigh-Ritz method, applicable to most areas of physics, leads
in a quite natural way to finite element (FE) methods. The finite dimensional
subspace of the infinite dimensional one is constructed from a triangulation of the
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given domain and polynomial spaces on each simplex, pieced together by a certain
assembling process. With Maxwell equations, FEs should be able to represent a
field from a finite number of degrees of freedom (dofs) but the nature of dofs,
fluxes, circulations, etc., associate them to geometric mesh elements other than
nodes. Since the beginning of the 1980s, the magnetomotive force (mmf) or edge
circulations along branches seemed indeed preferable to describe the magnetic field,
H in an eddy-current computation (see first numerics in [2]). The problem was to
be able to interpolate from edge mmfs: Knowing the circulation of H along edges
of a tetrahedral finite element mesh, by which interpolating formula to express the
magnetic field inside each tetrahedron? The paper [9] was decisive in proposing
such a formula:H.x/ D a � x C b, where x is the position, and a; b, two ordinary
vectors, tetrahedron-dependent. However, the analytic form of these shape functions
was a puzzle (why precisely a � x C b ?) and remained so for several years. A key
piece was provided in [8] where a connection was made with a less well-known
concept from differential geometry, namely Whitney forms. This was the beginning
of a long work of reformulation [3] and the basis for several further developments.
In Sect. 2 we detail the three aspects: fields as differential forms, Whitney forms
on a tetrahedron and their recursive formula, a � x C b and ˛x C b as proxies
(i.e., representing vectors) for Whitney 1- and 2-forms. Section 3 is dedicated to
high-order forms. This contribution is part of a collection on differential forms and
their applications. To avoid repetitions, we introduce the notation which is strictly
necessary to the understanding of this work. For further details, we refer to [1, 3],
and references therein.

2 From Proxies to p-Forms and Whitney Finite Element
Bases

In physics, a field is a function, defined over the entire space or over a portion of it,
which associates to each point x a value related to the physical quantity under exam.
The concept of field is very useful to describe the perturbations of the spacetime
properties due to the presence of a source. However, the human eye cannot see the
electromagnetic field itself but only its effects on suitable objects.

2.1 Fields as Differential Forms

The presence of an electric fieldE in a given domain˝ is detected through its force
acting on an electric charge q positioned in˝ . Indeed, let E.x/ be the electric field,
that we assume well defined, at a point x 2 ˝ . The vectorE.x/ represents the force
exerted by the field over a unit electric charge q placed at x. In first approximation,
this force is known via the virtual workE.x/�v involved in moving q from x to xCv,
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where v stands for the virtual displacement. Here, we assume that q is small enough
not to perturbE and that v is small enough to haveE.x/ � E.xC v/. The mapping
v ! E � v being linear and continuous on the space V of three-dimensional real
vectors, it is an element e of V �, the dual of V . The elements of V � are called
covectors and the duality pairing between a vector v and a covector e is denoted
hvI ei. With this new notation, we have v�E D hvI ei, which indicates that the electric
field is totally described by the application x ! e.x/, that is a field of covectors.
It is named differential 1-form of polynomial degree 1 [5]. While comparing the two
sides of the identity v � E D hvI ei, we may remark the two possible mathematical
descriptions of the electric field. The one on the left, which uses the vector E in
combination with the metric structure defined on the space by the dot product “�”,
and the one on the right which uses the 1-form e, a mathematical object which is
metric-independent. We say that the vector E is the proxy for the entity e.

To understand the importance of the 1-form e in the description of the electric
field, let us consider the electromotive force along an oriented curve c. The curve c,
which starts in x0 and ends in xn, is replaced by ptnc (the transposition will be
soon clarified), an oriented polygonal line with vertices xj 2 c, j D 0; : : : ; n, and
sides fxi�1; xi g, i D 1; : : : ; n. Calling vi the vector from xi�1, to xi , we computePn

iD1hvi I e.xi�1/i. By increasing n to infinity, if ptnc is well defined, we have

lim
n!1hp

t
ncI ei D lim

n!1

nX

iD1
hvi I e.xi�1/i D hcI ei WD

Z

c

e:

This limit number is the electromotive force along c and it is what a voltmeter would
measure if it were connected to the extremities x0 and xn of c. Since c can be any
smooth oriented curve between x0 and xn, the 1-form e contains all the information
which is physically important about the electric field. The curve c is the probe, the
1-form is the electric field and hcI ei is the measurement of the electromotive force.

The value hcI ei is classically computed by evaluating the circulation of the proxy
field E , namely, the line integral

R
c
�.x/ � E.x/dx, where �.x/ is the unit tangent

vector at a point x 2 c, oriented in the forward direction (from x0 to xn) along
c and dx the elementary measure of lengths. Comparing the two expressions for
the electromotive force, hvI ei D R

c
�.x/ � E.x/dx, one remarks that the metric of

the space induced by the dot product “�” is not essential on the left side, thus it
does not participate to the physical description of the electric field. Whereas with
proxies on the right, if the metric changes for another one associated to a new scalar
product �, then we should modify the proxy for the electric field, say E�, define a
new unit tangent vector �� to the curve c and a new elementary measure d �x of
lengths, in order to preserve the equality

R
c
�.x/ � E.x/dx D R

c
��.x/ � E�.x/d �x

between the two expressions. Indeed, the electromotive force of E along c has a
unique value which is hcI ei. Thus, fields are not vectors, and the 1-form e should
be used to represent the electric field as a physical entity.

Similar considerations apply to the magnetic induction. The presence of a
magnetic field B in a given domain ˝ is detected through the current flowing in
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a closed loop in motion across ˝ or through the displacement of the wheel of a
magnetic compass set in˝ . One fully knows it when, for any oriented surface S , the
induction flux hS I bi embraced by S is known. Faraday’s law then connects the rate
of variation of this flux with the electromotive force h@S I ei along the boundary @S :

dthS I bi C h@S I ei D 0:

Note that here S must not change in time, so that one has dt hS I bi D hS I @tbi.
Orienting the surface means providing it with a gyratory sense. Moreover, the
orientations of S and of its boundary @S should match, that is, the forward direction
along @S should agree with the gyratory sense assigned to S . To understand hS I bi,
where b is a 2-form, one should imagine S replaced by a collection of small
patches Si , each with a vertex at xi 2 S and compute ptnS D

Pn
iD1˙hSi I b.xi�1/i,

where the ˙ sign depends on whether the patch Si has or not the same orientation
of S . As soon as we increase n to infinity, if ptnS is well defined, we have

lim
n!1hp

t
nS I bi D lim

n!1

nX

iD1
hSi I b.xi /i D hS I bi WD

Z

S

b:

The behavior of B as proxy of the mapping b from surfaces to reals (fluxes) is
more complex than that of E . Not only has B to change if the metric changes
in order to keep the flux hS I bi invariant, but with unchanged metric the sign of
B depends on orientation conventions. But the metric has not disappeared from
Maxwell equations when replacing proxies by forms, it is hidden in the constitutive
relations among fields. These relations written in terms of forms make sense if
the physical parameters are interpreted as (Hodge) operators (see additional details
in [3, 7]).

2.2 Whitney Forms in a Finite Element Context

We now focus on Whitney 1-forms which allow us to describe e in a finite element
context. Given the domain ˝ , we consider a mesh m over ˝ by d -simplices and
label n; a; f; t the nodes, edges, etc., each with its own orientation and belonging to
the set N , A , F , T , respectively. We denote by wn, wa, etc., the corresponding
Whitney forms of degree 1 associated to n; a, . . . that we introduce in a moment.
In a finite element framework, the 1-form e is approximated by

P
a2A eawa which

we shall denote by pme, where pm is the interpolation operator of a field onto the
Whitney forms. The mapping e !P

a2A eawa is the composition of the de Rham
map e ! e D .ea/a2A and of the Whitney map e ! P

a2A eawa. Suppose
that we replace c 2 ˝ by a p-chain ptmc D

P
a2A hcIwaia, where ptm is the

operator mapping a p-manifold c in its “finite” representation (weighted sum of
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Fig. 1 Let ea be the electromotive force of e along a and hcI wai D R
c wa the weight of the edge

a in the representation of c. If c � ptmc D P
a2A hcI waia then

R
c e � P

a2A hcI wai Ra e by
linearity, from which we get

R
c e � P

a2A hcI waiea D hcIPa2A eawai and thus e � pme DP
a2A eawa

p-simplices in m) and let us interpret the scalars ea as the elementary values
R
a
e

(circulations, here). Then a natural approximation of
R
c
e is obtained by substituting

ptmc for c. Hence an approximate knowledge of the field e, i.e., of all its measurable
attributes, from the array e D fea W a 2 A g. The problem is then: “how best
to represent c by a chain ?”. Solving it yields, by duality, a definition of Whitney
forms [13]: wa, for instance, is, like the field e itself, a covector, a map from lines c
to real numbers hcIwai. Note that, with this convention,

hptmcI ei D h
P

a2A

R
c

waaI ei DPa2A

R
c

wahaI ei
DPa2A hcIwaeai D hcI

P
a2A waeai D hcIpmei:

This formula states that the evaluation of the exact electric field e along the
approximated curve ptmc is equal to the evaluation of the approximated electric
field pme along the exact curve c. We may remark how the same wa appears in
both expressions ptmc and pme, thus the strong connection between geometry and
physical variables associated with that geometry. For the moment, we just say that
wa is the Whitney form of polynomial degree 1 associated to a.

In Fig. 1, we represent the curve c by a 1-chain, a weighted average of mesh
edges. Variations in the thickness of edges suggest differences in the weights hcIwai
which are assigned in the 1-chain ptmc to the different mesh edges a. To edges as a,
whose domain of influence (gray area) does not intersect c, we assign weight zero.
A weight can be positive or negative depending on the orientation of the mesh edge
with respect to that of c. How these weights should be assigned is the central point
in the construction of Whitney’s forms. Note how this justifies the “ ptm ” notation.
Whitney’s forms, on the one hand, reconstruct a cochain from a vector of dofs (this
is pm) and, on the other hand, represent a p-manifold by a p-chain (this is ptm).
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2.3 Recursive Formula for Whitney Forms on a Simplicial
Mesh

In the following, we use the same symbol n to denote a node as well as its
position vector with respect to a given system of coordinates. To each node n of
the mesh m in N̋ , we attribute a function whose value at point x is 0, if none
of the tetrahedra with a vertex in n contains x, otherwise, it is the barycentric
coordinate at x with respect to n, denoted by �n.x/, in the affine basis provided
by the vertices of the tetrahedron to which x belongs. Note that by construction,
�n.x/ 	 0 and

P
n2N �n.x/ D 1 for all x 2 ˝ . The �ns themselves are often

called “hat functions”. Any point x of the meshed domain can be represented by
ptm.x/ D

P
n2N �n.x/n D P

n2N hxI�nin, where �n is the only piecewise affine
(by restriction to each tetrahedron) function that takes value 1 at node n and 0
at all other nodes. Note that x 
 ptmx, for any point x 2 N̋ . The definition of
pmu DPn2N unwn for any scalar field u defined on˝ is obtained by transposition:

hptmxI ui D h
P

n2N �n.x/nI ui DPn2N �n.x/hnI ui
DPn2N wn.x/un D hxIPn2N wnuni D hxIpmui:

Again Whitney forms have a double feature: the 0-forms wn.
 �n/ allow to
represent a generic point as a linear combination of the mesh nodes, as well as
reconstruct a scalar field from its nodal values at the mesh nodes. This way of
reasoning is repeated for any p-form, 0 < p � d , where d is the dimension of
the ambient space ˝ , to prove the explicit (recursive) formula for Whitney p-forms
of polynomial degree 1 firstly stated in [4] (see [10] for a related algorithm to
compute the weights). To this purpose, we need to introduce the incidence matrices
of a simplicial complex talking about the inner orientation of p-simplices, which is
intrinsic and does not depend on the simplex being embedded in a larger space. But,
giving a crossing direction for a surface is outer orientation. Outer orienting a line
is the same as giving a way to turn around it. Outer orientation is involved in the
definition of twisted forms (as the electric current density j , see [3] for a complete
presentation).

We attribute an orientation to nodes, just assigningC1 to each n 2 N . Note that
@n D 0 for each n. An edge a (resp. a face f , a volume v) is by definition an ordered
couple (resp. triplet, quadruplet) of vertices, not merely a collection. We will make
the convention that the edge a D fm; ng is oriented from m to n. All edges of the
mesh are oriented, and the opposite edge fn;mg is not supposed to belong to A
if a does. We may define the so-called incidence numbers Gmn

m D �1, Gmn
n D 1,

and Gmn
k D 0 for nodes k other than m and n. These numbers form a rectangular

matrix G with N and A as column set and row set, which describes how edges
connect to nodes. The expression @a DP

k2N Gk
ak expresses the boundary of the

edge a as a formal linear combination of nodes (such a thing is called 1-chain).
Here @a D n �m. Faces also are oriented and we shall adopt a similar convention
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to give the list of nodes: a face f D fl; m; ng has the three vertices l , m, n and an
inner orientation inducing the orientation l ! m ! n ! l on its boundary @S .
We regard even permutations of nodes, fm; n; lg and fn; l;mg, as being the same
face, and odd permutations as defining the oppositely oriented face, which is not
supposed to belong to F if f does. In terms of incidence numbers, Rf

a is C1 if
a runs along the boundary of f , �1 otherwise, and 0 if a is not one of the edges
of f . Hence a matrix R, indexed over A and F , which describes how edges bound
faces. The expression @f DP

k2A Ra
f a expresses the boundary of the face f as a

formal linear combination of edges (such a thing is called 2-chain). For the given f ,
we have @f D lmC mn � ln if edges lm;mn; ln 2 A . A matrix D, indexed over F
and V , is similarly defined to describe how faces bound volumes: Dv

f D ˙1 if face
f bounds tetrahedron v, the sign depending on whether the orientations of f and of
the boundary of v match or not. In the adopted convention, if v D fk; l;m; ng, the
vectors kl, km, and kn, in this order, define a positive frame. Note that fl; m; n; kg
has the opposite orientation, so it does not belong to V if v does.

Proposition 1. For any integer 0 < p � d , where d is the ambient dimension in
˝ , the Whitney p-form ws associated to the p-simplex s of a mesh m in N̋ satisfies

ws.x/ D
X

�2f.p�1/�simplicesg
@s��s�� .x/dw� ; x 2 ˝ (1)

where @s� is the incidence matrix entry linking � to s, d is the exterior derivative
operator from .p � 1/-forms to p-forms (which is related to the boundary operator
@ from p-chains to .p � 1/-chains by the Stokes theorem: hS I dwi D h@S Iwi, for
all p-chains S and .p � 1/-forms w) and w� is the .p � 1/-form associated to � .

Proof. The proof relies on a reasoning by recurrence on the dimension p of
manifolds, 0 � p � d . More precisely, we know how a .p � 1/-manifold can
be represented by a .p � 1/-chain, and we wish to use this information to represent
a p-manifold by a p-chain. We take d D 3 for the proof. For a compact formula,
we denote the node l by f �a (with �f �a D �l ) and k by v�f (with �v�f D �k).

Let xy be the oriented segment going from point x to point y entirely
contained in the simplicial mesh of N̋ . We know that for one point y we
have ptm.y/ D

P
n2N hyIwnin, and we expand ptm.xy/ by linearity: ptm.xy/ DP

n2N hyIwniptm.xn/. Figure 2 suggests the only possible way to find out ptm.xn/:
take the “average” of all mesh edges with one extremity in n and weights given by
the barycentric weights of x with respect to the other extremity of these edges. Here
@s� D Ga

n and we may write ptm.xn/ DPa2A Ga
n�a�n.x/a. Then

ptm.xy/ D
X

a2A

hxyIwaia D
X

n2N ; a2A

Ga
n�a�n.x/hyIwnia:
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Fig. 2 Let d D 3. This figure explains how a p-manifold can be represented by a p-chain. The
0-chain ptmx is

P
iDm;n;k;l �i .x/i . The 1-chain ptm.xn/ associated with the oriented segment xn is

�m.x/mn��k.x/nk��l .x/nl. The minus sign in front of �l.x/ (resp. �k.x/) is due to the fact that
nl (resp. nk) starts in n, and ends in l (resp. k). Edges as ml or lk which do not have n as vertex make
no contribution to the 1-chain for xn. The 2-chain ptm.xmn/ associated with the oriented face xmn
is �l.x/mnl C�k.x/mnk. Faces as mkl or nkl, which do not have mn as edge, make no contribution
to ptm.xmn/. The 3-chain ptm.xmnl/ associated with the oriented volume xmnl is �k.x/mnlk

Hence hxyIwai D P
n2N Ga

n�a�n.x/hyIwni: Subtracting hxxIwai D 0 from
hxyIwai, with hxxIwai D P

n2N Ga
n�a�n.x/hxIwni, and being d the dual of @,

we get

hxyIwai DPn2N Ge
n�a�n.x/hy � xIwni

DPn2N Ga
n�a�n.x/h@.xy/Iwni

DPn2N Ga
n�a�n.x/hxyI dwni D hxyIPn2N Ga

n�a�n.x/dwni:

Let xyz be the oriented face entirely contained in the cluster of tetrahedra in N̋ .
We know that ptm.yz/ D P

a2A hyzIwaia, and we figure out ptm.xyz/ by linearity:
ptm.xyz/ D P

a2A hyzIwaiptm.xa/, with xa the face of vertices x and those of the
edge a. Figure 2 suggests the only reasonable way to find out ptm.xa/: take the
“average” of all mesh faces with one edge on a and weights given by the barycentric
weights of x with respect to the other vertices of these faces that are not ending
points of a. Here @s� D Rf

a and ptm.xa/ DPf 2F Rf
a �f �a.x/f . Then

ptm.xyz/ D
X

a2A ;f 2F

Rf
a �f�a.x/hyzIwaif D

X

f 2F

hxyzIwf if:

Hence hxyzIwf i D P
a2A Rf

a �f�a.x/hyzIwai. Adding hxzxIwf i D 0 and
hxxyIwf i D 0 to hxyzIwf i , we have

hxyzIwf i DPa2A Rf
a �f �a.x/hyzC zxC xyIwai

DPa2A Rf
a �f �a.x/h@.xyz/Iwai

DPa2A Rf
a �f �a.x/hxyzI dwai D hxyzIPa2A Rf

a �f �a.x/dwai:

Finally, let xyzr be the oriented volume entirely contained in the cluster of
tetrahedra in N̋ . We know that ptm.yzr/ D P

f 2F hyzrIwf if , and we express
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ptm.xyzr/ by linearity: ptm.xyzr/ DP
f 2F hyzrIwf iptm.xf /, with xf the volume of

vertices x and those of the face f . For p D 3, we have @s� D Dv
f and as suggested

in Fig. 2, ptm.xf / D
P

v2V Dv
f �v�f .x/v. Thus

ptm.xyzr/ D
X

v2V

hxyzrIwviv D
X

f 2F ;v2V

Dv
f �v�f .x/hyzrIwf iv:

Hence hxyzrIwvi D P
f 2F Dv

f �v�f .x/hyzrIwf i. Adding hxxzyIwvi D 0,

hxxyrIwvi D 0 and hxxrzIwf i D 0 to hxyzrIwvi we obtain

hxyzrIwvi DPf 2F Dv
f �v�f .x/hyzrC xzyC xyrC xrzIwf i

DPf 2F Dv
f �v�f .x/h@.xyzr/Iwf i

DPf 2F Dv
f �v�f .x/hxyzrI dwf i D hxyzrIPf 2F Dv

f �v�f .x/dwf i: ˘

2.4 Proxies for Whitney Forms in the Finite Element Context

The connection of Whitney forms with the lowest order Nédélec elements (see [9],
Definitions 2 and 4 with d D 3 and k D 1) is revisited in the following lemma.

Proposition 2. Let t D fm; n; k; lg be a tetrahedron. The proxy wmn associated to
the 1-form wmn reads as a � x C b, where a; b 2 Rd . The proxy wklm associated to
the 2-form wklm reads as ˛x C b where ˛ 2 R and b 2 Rd .

Proof. The expression of the 1-form associated to mn as stated in Proposition 1 is
wmn D wmdwn � wndwm. It is sufficient to replace the exterior derivative d by the
gradient operator r to have the proxy of wmn, namely wmn D wmrwn � wnrwm.
Let jt j denote the volume of t and kl the vector starting in k and ending in l . We can
write that wmn D .kl� kx/=.6jt j/ since kl� kx � nm D 6jt j for a point x lying on the
edge mn and wmn � tmn D 1, tmn is the unit tangent vector to the edge mn. Let o be
the origin in the Cartesian coordinates, we obtain

wmn D Œkl � .oxC ok/�=.6jt j/ D kl=.6jt j/ � x C ok=.6jt j/ D a � x C b:

The expression of the 2-form associated to klm as stated in Proposition 1 is

wklm D wmd.wkdwl � wldwk/C wkd.wldwm � wmdwl /C wld.wmdwk � wkdwm/:

To obtain the expression of wklm, we need to involve additional properties, that are:
(i) d ı d D 0 (related to the fact that @ ı @ D 0); (ii) d.	w/ D d	 ^ wC 	dw, where
	 is a scalar field, w is a form and ^ the exterior product between forms (see [5] for
more details); (iii) 1u ^ 1v D 2.u � v/, where 1u denotes a 1-form, 2u a 2-form and
� is the cross product between vectors.
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Using (i) and (ii), we have, for instance, that d.wldwm/ D wlddwmCdwl^dwm D
dwl ^dwm. We thus obtain wf D 2.wndwl ^dwmCwldwm^dwnCwmdwn^dwl /:
Using (iii), we have the proxy associated to wf that reads wf D 2.wnrwl �rwmC
wlrwm�dwnCwmrwn�rwl /. Let h be the height of node n above the plane of f D
fk; l;mg. Then jt j D h jfk; l;mgj=3 D jfk; l;mgj=.3jrwnj/. Thus, we may write
rwm �rwn D Œ.kn� kl/�rwn�=.6jt j/ and wf D 2.wlklCwmkmCwnkn/=.6jt j/.
If we choose k as the origin in the Cartesian coordinates from x D P

i wi .x/i we
have kx DPi wi .x/ki . Thus wf .x/ D kx=.3jt j/ D ŒoxC ok�=.3jt j/ D ˛x C b. ˘

3 High-Order Whitney Forms

Three key heuristic points underlie the construction of high-order Whitney p-forms:
(1) High order forms should satisfy a certain “partition of unity” property (which
stems for consistency); (2) They should pair up with integration domains of dimen-
sion p (which we shall build from “small” p-simplices, appropriate homothetic
images of the mesh p-simplices); (3) The spaces they span should constitute an
exact sequence. On each tetrahedron, higher order p-forms are here obtained as
product of Whitney p-forms of degree 1 by suitable homogeneous monomials in
the barycentric coordinate functions of the simplex (we invite the interested reader
to find more details in [12]). The construction we propose can be summarized in the
following two steps.

Let v be a tetrahedron of the mesh m in N̋ and I .dC1; k/ the set of multi-indices
k with non-negative integer d C 1 components ki and weight k D P

i ki . To each
multi-integer k 2 I .d C 1; k/ corresponds a map, denoted by Qk, from v into itself.
Let Qki denote the affine function that maps Œ0; 1� onto Œki=.kC1/; .1Cki/=.kC1/�.
If �i .x/, 0 � i � d , are the barycentric coordinates of point x 2 v with respect to
the vertex ni of v, its image Qk.x/ has barycentric coordinates Qki .�i .x// D .�i .x/C
ki /=.k C 1/. We call small p-simplices of v, 0 � p � d , the images Qk.S/ for all
(big) p-simplices S 2 v and all k 2 I .d C 1; k/, and denote them by s D fk; Sg.

Whitney p-forms of higher degree in each volume v are more “numerous”
therefore they should be associated to a finer geometric structure in v. Indeed,
they are associated to the geometric collection in v defined by the Qk map for all
possible multi-indices k 2 I .d C1; k/ as follows. Let �k denote the homogeneous
polynomial˘iD0;:::;d �kii of degree k. Whitney p-forms of polynomial degree k C 1
in a volume v are the ws D �kwS , where s is a pair fk; Sg, made of a multi-index k 2
I .dC1; k/ and a (big)p-simplexS 2 v, and wS the Whitneyp-form of polynomial
degree 1 associated to S (see Proposition 1). The space of Whitney p-forms of
polynomial degree N D k C 1 in v is W p

kC1.v/ D spanfws W s D fk; Sg; k 2
I .d C 1; k/; S 2 S p.v/g. This construction is completely in the spirit of what
has been presented in the previous section: Whitney forms are best viewed as a
device to represent manifolds by simplicial chains. The representation gets better
and better as the simplices get smaller and smaller (we talk about h-refinement with
the big simplices,N -refinement with the small ones) and, by duality, we improve the
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Fig. 3 Algebraic h-convergence (log-plot, left) and spectral N -convergence (semi log-plot, right)
error rates for Whitney 1-forms [11] when applied to the model problem ŒI Cr 	 .r	/�u D f in
˝ D Œ1=2; 3=2�	Œ1=4; 3=4�, with homogeneous Dirichlet boundary conditions on @˝ and internal
source consistent with u D .2� sin.�x/ cos.2�y/;�� cos.�x/ sin.2�y//t as exact solution; h is
the maximal diameter of the volumes in m and N is the polynomial degree of the forms

approximation of the differential form associated to the manifold, as shown in Fig. 3.
Note that the forms �kwS are not all linearly independent and in [6] we explain how
it is possible to work with redundant bases without making a pre-selection on the
basis functions which would break the symmetry of the construction (see [9] for the
dimension of the spaces).
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Exponential Convergence of the hp Version
of Isogeometric Analysis in 1D

Annalisa Buffa, Giancarlo Sangalli, and Christoph Schwab

Abstract We establish exponential convergence of the hp-version of isogeometric
analysis for second order elliptic problems in one spacial dimension. Specifically,
we construct, for functions which are piecewise analytic with a finite number
of algebraic singularities at a-priori known locations in the closure of the open
domain˝ of interest, a sequence .˘`

� /`�0 of interpolation operators which achieve
exponential convergence. We focus on localized splines of reduced regularity so
that the interpolation operators .˘`

� /`�0 are Hermite type projectors onto spaces
of piecewise polynomials of degree p � ` whose differentiability increases
linearly with p. As a consequence, the degree of conformity grows with N , so that
asymptotically, the interpoland functions belong to Ck.˝/ for any fixed, finite k.
Extensions to two- and to three-dimensional problems by tensorization are possible.

1 Introduction

Isogeometric Analysis (IGA) is an innovative technique for the discretization of
partial differential equations which has been proposed by T.J.R. Hughes et al.
in 2005 in [6]. IGA is gaining a growing interest in different communities:
mechanical engineering, numerical analysis and geometric modeling. In its simplest
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formulation, IGA consists in solving a PDE with a Galerkin technique projecting
onto the space of splines. In this paper, we consider IGA in conjunction with
the hp- paradigm, i.e., simultaneous h and p refinements. We prove exponential
convergence of IGA for a model elliptic PDE with piecewise analytic solutions.

Exponential convergence of piecewise polynomial approximations with a fixed
degree of conformity for analytic functions with a point singularity was shown first
for free-knot, variable degree spline approximation in [4,8] and the references there.
Inspired by these results, the hp-version of the finite element method (FEM) for the
numerical solution of elliptic problems was proposed in the mid 1980s by I. Babuška
and B.Q. Guo (see [1] and the references there). Exponential convergence rates
exp.�bpN/ with respect to the number of degrees of freedomN for the hp version
of the standard,C0-conforming FEM in one dimension were shown by Babuška and
Gui in [5] for the model singular solution u.x/ D x˛ � x 2 H1

0 .˝/ in ˝ D .0; 1/.
This result required �-geometric meshes with any subdivision ratio � 2 .0; 1/ (in
particular, for � D 1=2 geometric element sequences˝i are obtained by successive
element bisection towards x D 0) while the constant b in the convergence estimate
exp.�bpN/ depends on the singularity exponent ˛ as well as on � . In one space
dimension, the results were further refined and optimal values of � as well as
estimates on the actual value of b are known. Among all � 2 .0; 1/, the optimal
value was shown in [5, 8] to be �opt D .

p
2 � 1/2 � 0:17, see, in particular,

[5, Theorem 3.2], provided that the geometric mesh refinement is combined with
nonuniform polynomial degrees pi 	 1 in ˝i which are s-linear, i.e., pi � si ,
with the optimal slope s being sopt D 2.˛ � 1=2/. In this case, the finite element
error converges as exp.�bpN/ where b D 1:76 : : :�p.˛ � 1=2/. For the bisected
geometric mesh where � D 1=2 and for linear polynomial degree distributions with
slope sopt D 0:39 : : : � .˛ � 1=2/, one has b D 1:5632 : : : �p.˛ � 1=2/, whereas
for � D 1=2 and uniform polynomial degree, b D 1:1054 : : :�p.˛ � 1=2/; see [5,
Table 1]. It was left open in [4,5,8] if the convergence rate exp.�bpN/ is optimal.

In the present paper, we investigate the rate of convergence of the hp version of
isogeometric analysis when local splines are used. Indeed, we consider the space
of splines, defined on an open knot vector on Œ0; 1�, of degree p and of conformity
bp�1

2
c which is proportional to the polynomial degree p.

In this case, the Hermite-type interpolant and the related analytic convergence
estimates proposed in [2] are available and are used here to establish exponential
convergence of the hp-version of isogeometric FEM for solutions which are
piecewise analytic. Indeed, we prove that for piecewise analytic functions in one
space dimension. We prove that for all functions in a countably normed space
equipped with a family of weighted Sobolev norms which contain in particular
the singular functions u.x/ D x˛ � x 2 H1

0 .˝/, the interpolation error on
reduced spline spaces defined on families fGM

� gM�1 of geometric knot meshes is
exponentially decreasing at the rate exp.�bpN/. We should note that in terms of
the number of degrees of freedom, the approximations we consider are linear, i.e.
non-adaptive.
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Our numerical examples show that exponential convergence rate exp.�bpN/,
with respect to the number of degrees of freedomN , is attained. We also show that
the constant b is considerably larger than in the case of standard hp-finite elements
(with constantp), which enforce merely interelement continuity, but not smoothness
across interelement boundaries.

2 Model Problem

In the bounded interval˝ D .0; 1/, we consider the model Dirichlet problem

� .a.x/u0/0 C c.x/u D f in ˝ ; u.0/ D 0; u.1/ D 0 : (1)

We shall consider the Finite Element discretization of (1) based on the (standard)
variational formulation. To this end, we introduce the space V D H1

0 .˝/. Then the
variational formulation of (1) reads: find

u 2 V W a.u; v/ D .f; v/ 8v 2 V ; (2)

where the bilinear form a.�; �/ is given by

a.w; v/ D
Z 1

0

.a.x/w0v0 C c.x/wv/dx

and where .�; �/ denotes the L2.˝/ innerproduct. Assuming that a; c 2 Ł1.˝/ and
positivity of a.x/, i.e.,

ess inffa.x/ W x 2 ˝g 	 a > 0 ; ess inffc.x/ W x 2 ˝g 	 0 ; (3)

there hold continuity and coercivity, i.e. exists C.a/ > 0 such that, for every v;w 2
V holds

a.v; v/ 	 C.a/kvk2
H1.˝/

; ja.v;w/j � maxfkakL1.˝/; kckL1.˝/gkvkH1.˝/kwkH1.˝/ ;

(4)

and by the Lax-Milgram Lemma, for every f 2 .H1.˝//� exists a unique solution
of (2).

Let fV`g1̀D0 denote a sequence of subspaces V` � V of finite dimensions N` D
dimV`. Below, we shall be interested in particular in the case when the subspaces
are nested, i.e. when

V0 � V1 � : : : � V` � : : : � V
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and that V` are dense, i.e.

8u 2 V W lim
`!1 inf

v`2V`
ku � v`kH1.˝/ D 0 : (5)

By (4), for every ` 	 0, there exists a unique Finite Element solution of the
Galerkin approximation of (2) find

u` 2 V` W a.u`; v/ D .f; v/ 8v 2 V` (6)

which is quasioptimal, i.e. there holds

ku � u`kH1.˝/ � C inf
v`2V`
ku � v`kH1.˝/ : (7)

We next quantify, for particular classes of data f in (1), the regularity of solutions.
Subsequently, we shall exhibit choices of FE spaces V` for which high (exponential)
rates of convergence can be achieved.

3 Regularity

We shall be in particular interested in piecewise analytic solutions u of (1) which
exhibit singularities at x D 0 (multiple, but finitely many, singularities in ˝

could be also considered and everything that follows will apply to this case with
straightforward modifications).

To quantify the analytic regularity, for x 2 ˝ D .0; 1/, we consider the weight
function˚ˇ.x/ D xˇ , ˇ 2 R. For integer ` 	 0 and for k D `; `C 1; : : :, we define
the weighted seminorms

juj
H
k;`
ˇ .˝/

D k˚ˇCk�`DkukL2.˝/ (8)

and the weighted norms kuk
H
k;`
ˇ .˝/

by

kuk2
H
k;`
ˇ .˝/

D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

kuk2
H`�1.˝/

C
mX

kD`
juj2

H
k;`
ˇ .˝/

if ` > 0 ;

mX

kD`
juj2

H
k;`
ˇ .˝/

if ` D 0 :
(9)

We shall be interested in classes of functions u which are analytic in .0; 1� with a
point singularity at x D 0 as follows.

Definition 1. We say that u 2 B`
ˇ.˝/ if u 2 Tm�` H

m;`
ˇ .˝/ and if there exist

constants Cu > 0, du 	 1 such that
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juj
H
k;`
ˇ .˝/

� Cud
k�`
u .k � `/Š k D `; `C 1; : : : : (10)

Functions u in the set B`
ˇ.˝/ are analytic in .0; 1� with possibly an algebraic

singularity at x D 0. It follows directly from the definition that for 0 < ˇ < 1

and for ` 	 1 it holds that B`
ˇ.˝/ � H`�1.˝/.

The spaces B`
ˇ.˝/ (and closely related spaces C2ˇ.˝/) were introduced in [1],

in plane polygonal domains with curved boundaries.
For the model problem (1), piecewise analyticity of the right hand side f

implies corresponding smoothness of the solution u. We have the following precise
regularity result.

Theorem 1. If the coefficient functions a and c in (1) are analytic in ˝ and if (3)
holds, then for every f 2 B0

ˇ.˝/ for some 0 < ˇ < 1, the unique weak solution

u 2 H1
0 .˝/ of (1) belongs to B2

ˇ.˝/.

Proof. The proof of the B2
ˇ.˝/ regularity follows from the integral representation

of the exact solution u of (1), and from the assumed analyticity of the coefficient
functions a.x/ and c.x/ in ˝.

4 hp-IsoGeo FEM

By the quasioptimality (7), the error in the FE approximations of the solution u is
bounded by the best approximation of u in the H1.˝/ norm.

We shall be interested in establishing exponential convergence rates for approx-
imations of functions u 2 B`

ˇ.˝/ from spaces of piecewise polynomials in ˝ ,
expressed in terms of the number of degrees of freedom, i.e. of their dimension
N . As indicated in the introduction, particular attention will be paid to smoothest
hp-approximations, i.e. to Finite Element spaces with substantial extra regularity
beyond the (minimal) C0-interelement regularity which is necessary for conformity
V` � V .

We start by introducing notation for meshes, polynomial degrees and interele-
ment conformity. We denote by f˝j W j D 1; : : : ;M g a partition of ˝ into open,
nonempty intervals such that ˝ D SM

jD1 ˝j . We denote ˝j D .xj�1; xj /, with
the endpoints given by 0 D x0 < x1 < x2 < : : : < xM D 1. We denote by
hj D j˝j j D xj � xj�1. On ˝j , we consider spaces of polynomial functions of
degree at most pj 	 1, denoted by Ppj .˝j /. We collect the polynomial degrees pi
in a degree vector p D fpj gMjD1. At the node xj D ˝j\˝jC1, j D 1; 2; : : : ;M�1,
we enforce interelement compatibility of orders 0 � kj � pj ^ pj�1 by the
condition

ŒŒu.m/��.xj / D 0 m D 0; 1; 2; : : : ; kj � 1 : (11)
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We combine also the interelement compatibilities into the conformity vector k D
fkj gM�1

jD1 and all elements ˝j into the mesh T D f˝j gMjD1. Then, we denote

S
p
k .˝IT / WD ˚v 2 L2.˝/ W vj˝j 2 Ppj .˝j / ; ŒŒv

.m/��.xj / D 0
for j D 1; 2; : : : ;M � 1; m D 0; 1; : : : ; kj � 1

�
:

(12)

The number of degrees of freedom in the space Sp
k .˝IT / is easily seen to be

N D dim.Sp
k .˝IT // D

MX

jD1
.pj C 1/�

M�1X

jD1
kj :

If pj D p 	 1 and if kj D k 	 0 for all j , we also write Spk .˝IT / in place of
S

p
k .˝IT /. Then

N D dim.Spk .˝IT // D M.p C 1/� .M � 1/k : (13)

In the context of approximation of functions u 2 B`
ˇ.˝/, we shall use so-called

geometric meshes T . We say that a mesh T is a geometric mesh on˝ withM > 1

layers if xj D �M�j for j D 1; 2; : : : ;M for a geometric grading factor � 2 .0; 1/.
We denote such meshes by T D GM

� and note that h1 D x1 D �M�1 and that for
j 	 2 it holds that hj D xj � xj�1 D �xj�1 where � D .1 � �/=� D ��1 � 1 is
independent of j . We observe that hj D �xj�1 for j D 2; 3; : : : ;M .

5 Basic Local Interpolation Operators

We obtain convergence rate estimates by constructing global hp interpolation
operators with high conformity k. As usual in FE analysis, these operators will
be built from local, i.e. elemental interpolation operators which are constructed and
analyzed on the reference element� D .�1; 1/, and then transported to the physical
elements ˝j 2 GM

� by an affine mapping. We will give two constructions: the first
one is based on a spectral-like elemental approximation proposed in [BBRS10],
whereas the second will be based on a classical, nodal interpolation operator.

For u 2 B`
ˇ.˝/, we construct a family of spectral hp-interpolants based on

a construction which was introduced in [BBRS10]. These interpolants are based
on L2 projections on spaces of discontinuous polynomials of a certain derivative
of the function to be interpolated, and by subsequent enforcement of interelement
conformity of order ki . This interpolant is a generalization of the one proposed in
[7, Chap. 3] for the analysis of C0-conforming hp-FEM. We require the following
result which is Corollary 2 in [BBRS10].
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Proposition 1. Let � D .�1; 1/, p; k; s 	 0 integers, with polynomial degree
p 	 maxf0; 2k�1g, and with 	 WD p�kC1. Then there exists a quasi-interpolation
operator O�pk such that, for any function Ou W � 7! R such that Ou.k/ 2 Hs.�/, for
every 0 � s � 	 holds the interpolation error bound

�
�
�Ou.j /� � O�pk Ou

�.j /
�
�
�
2

L2.�/
� .	 � s/Š
.	C s/Š

.	 � .k� j //Š

.	C .k � j //Š
�
�Ou.k/��2

Hs.�/
; j D 0; 1; : : : ; k :

(14)

Moreover, the interpolating polynomial O�pk Ou satisfies

� O�pk Ou
�.j /

.˙1/ D Ou.j /.˙1/ ; j D 0; 1; : : : ; k � 1 (15)

(with (15) understood to be void in the case k D 0).

We specialize this general result to maximal smoothness. To avoid fractional bounds
for indices, we substitute in (14)

p D 2q � 1 ; q 	 1 :

Then 1 � k and 2k � 1 � 2q � 1. Therefore, we may choose in (14) k D q 	 1.
This implies that 	 D q and that 0 � s � p. This implies, upon scaling (14) to a
generic interval J D .a; b/ � ˝ D .0; 1/ of length h D b � a > 0 that there holds,
for every 0 � s � q, 0 � j � q, q 	 1, the interpolation error bound

�
�
�
�u.j / �



�2q�1
q u

�.j /
�
�
�
�

2

L2.J /

�
�
h

2

�2.qCs�j /
.q � s/Š
.q C s/Š

i Š

.2q � j /Š
�
�u.qCs/��2

L2.J /
:

(16)

By (15), the interpolant O�2q�1
q ensures interelement continuity of, roughly

speaking, the first k � 1 D q � 1 D O.p=2/ many derivatives of the piecewise
polynomial, interpolating function. As increasing conformity of the interpolating
function reduces the dimensionN of the subspaces Sp

k .˝;T /, it is readily verified
from (13), that conformity of orderO.p=2/ will imply

dim.S2q�1
q .˝;GM

� // D O..M C 1/p=2/

as M;p ! 1. If, in particular, M D O.p/ (as will be the case in hp-FEM), we
find dim.S2q�1

q .˝;GM
� // D O.p2/. From (13) it is thus evident that an asymptotic

complexity reduction of hp-FEM is only possible for ki 	 pi � Nk, i.e. for subspaces
S
p

k .˝;G
M
� / whose conformity orders ki equal, up to an absolute gap Nk, with

pi . If this gap is proportional to (any power of) pi , dim.Spk .˝;G
M
� // will scale

polynomially in p forM D O.p/ elements in the mesh GM
� .
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6 Exponential Convergence

We now “assemble” scaled versions of the elementwise quasi-interpolation pro-
jectors �pk into corresponding global interpolators ˘p

k and prove exponential
convergence of these projectors for functions u 2 B2

ˇ.˝/, from within the hp-FE

space Spq .˝IG p
� / where p D 2q � 1 	 1 under the provision that the geometric

grading factor 0 < � < 1 is sufficiently large, depending on the constant du in (10),
following the analysis in [7, Chap. 3]. From these results, exponential convergence
of the hp-FEM will follow via (7).

We start by considering a generic element J D .a; b/ 2 G p
� not abutting at the

singular support x D 0 of u. If u 2 B2
ˇ.˝/, we have for any such J and any integer

s 	 0 that

juj2
H
sC1;`
ˇ .˝/

	 ku.sC1/˚ˇCsC1�`k2L2.J / 	 a2.ˇCsC1�`/ku.sC1/k2
L2.J /

:

This implies that there holds with ` D 2

ku.sC1/k2
L2.J /

� a�2.ˇCsC1�`/juj2
H
sC1;`
ˇ .˝/

: (17)

We replace now s with q C s � 1, j D 0; 1 and ` D 2 > j to obtain

ku.qCs/k2
L2.J /

� a�2.ˇCqCs�`/juj2
H
qCs;`
ˇ .˝/

:

Using this bound for J D ˝i 2 G
p
� , 2 � i � p, we get from (16) the bound

�
�
�u.j / � .�2q�1

q u/.j /
�
�
�
2

L2.˝i /
�
�
hi

2

�2.qCs�j /
.q � s/Š

.q C s/Š.2q � j /Šku
.qCs/k2

L2.˝i /
;

for j D 0; 1. Using here (17), we find with (10) the bound

�
�
�u.j / � .�2q�1

q u/.j /
�
�
�
2

L2.˝i /

�
�
hi

2

�2.qCs�j /
.q � s/Š

.q C s/Š.2q � j /Šx
�2.ˇCqCs�`/
i�1 juj2

H
qCs;`

ˇ .˝/

� C .q � s/Š..q C s � `/Š/
2

.q C s/Š.2q � j /Š x
�2.ˇCj�`/
i�1

�
�du

2

�2.qCs�j /
:

(18)

Since for i D 2; 3; : : : ;M it holds xi D �M�i , we can write for j D 0; 1 and for
` D 2
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�
�
�u.j / � .�2q�1

q u/.j /
�
�
�
2

L2.˝i /

� C .q�s/Š..qCs�`/Š/2
.qCs/Š.2q�j /Š �

2.M�iC1/.`�ˇ�j /


�du
2

�2.qCs�j /

�C .q � s/Š..q C s � `/Š/2
.q C s/Š.2q � j /Š

„ ƒ‚ …
�

�2M.1�ˇ/
�
�du

2

�2.qCs�j /
�2.1�i /.1�ˇ/ :

Remark 1. Note that so far, in all error bounds the differentiation order s is an
integer. In what follows, we shall use also norms of fractional order s for which the
corresponding error bounds can be obtained by classical interpolation arguments.

We now analyze the factorial expression .

Lemma 1. There is a constant C > 0 such that for every q 	 1 and for the choice
s D ˛q for some 0 < ˛ < 1 there holds the estimate

j  j � CG.˛/q ; where G.˛/ WD 1

4
.1C ˛/1C˛.1 � ˛/1�˛ : (19)

Here, the factorial expressions in  are continued to noninteger arguments obtained
by choosing s D ˛q using the Gamma function.

Proof. Throughout the proof, C > 0 and . denotes a constant and a bound,
respectively, which are independent of s, p and of n. We start by recalling the
Stirling inequalities

8n 2 N W nŠen

e
p
n
� nn � nŠenp

2�n

which imply nŠ 	 nne�np2�n 	 cnnC1=2e�n ; and nŠ � nne�ne
p
n �

cnnC1=2e�n : We then estimate ./ in the case j D 1 as follows:

j./j � C2q .q � s/
q�sC1=2e�.q�s/ �.q C s � 2/.qCs�2/C1=2e�q�sC22

.q C s/qCsC1=2e�q�s.2q/2qC1=2e�2q

� Cq .q � s/
q�s.q C s/2.qCs/�s

.q C s/qCs.2q/2qC1=2

� Cq1=2.q C s/�3 .q � s/
q�s.q C s/qCs

.2q/2q
:

In this bound, we now choose s D ˛q for some 0 < ˛ < 1 to be selected.
Then

q1=2.q C s/�3 D q1=2q�s.1C ˛/�3 � C.˛/ <1 :
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Therefore

j./j � C .q � s/
q�s.q C s/qCs

.2q/2q
D C .q

2 � s2/q.q C s/s.q � s/�s
.2q/2q

D C q
2q.1 � ˛2/qq˛q.1C ˛/˛qq�˛q.1 � ˛/�˛q

.2q/2q

D 2�2q.1 � ˛2/q
�
1C ˛
1 � ˛

�˛q

D
�
1� ˛2
4

�
1C ˛
1� ˛

�˛�q
D
�
1

4
.1C ˛/1C˛.1 � ˛/1�˛

�q
D ŒG.˛/�q :

We observe that the functionG.�/ defined in (19) satisfies for ˛ 2 Œ0; 1�

1=4 � G.˛/ � 1 ; G.0/ D 1

4
; and lim

˛!1�

G.˛/ D 1 :

Inserting the bound obtained in Lemma 1 into (18), we find

�
�
�.u �Q2q�1

q u/.j /
�
�
�
2

L2.x1;1/

D
MX

iD2

�
�
�u.j / � .�2q�1

q u/.j /
�
�
�
2

L2.˝i /

� C.˛; du/G.˛/q

�
�du

2

�2q.1C˛/ �
�du

2

��2j MX

iD2
�2.MC1�i /.1�ˇ/

� C.˛; �; du/

"

G.˛/

�
�du

2

�2.1C˛/#q
:

For 0 < � < 1, we have

�du D
�
1

�
� 1

�

du < 2

if

1 > � > .1C 2=du/
�1 > 0 : (20)

Choosing ˛ > 0 sufficiently small, we find for such � with (20) that

"

G.˛/

�
�.�/du

2

�2.1C˛/#
� F.�; du/ < 1 :

We have proved
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Theorem 2. Assume that u 2 B2
ˇ.˝/ for some 0 < ˇ � 1, ˝ D .0; 1/, and that

(10) holds with some Cu; du > 0. Then, for any 0 < � < 1 satisfies (20), there exist
b; C > 0 such that there holds for all p 	 1

inf
v2Sp

q .˝;G
p
� /
ku � vkH1.˝/ � C exp.�b.�; ˇ/p/ (21)

Here, p D .q C 1; p; : : : ; p/ with p D 2q � 1 and q 2 N. By (13), in terms of the
numberN of degrees of freedom, we have the estimate

inf
v2Sp

q .˝;G
p
� /
ku � vkH1.˝/ � C 0 exp.�b0.�; ˇ/

p
N/ (22)

with possibly different constants b0; C 0 > 0.

Proof. The assertion follows from the previous bounds on the elementwise interpo-
lation error in .x1; 1/, for either of the global interpolation operators, i.e. for ˘p

k
and a Hardy-Type estimate (e.g. (3.3.68) in [7]) in ˝1 D .0; x1/ D .0; �p/.

7 Numerical Results

In this section we present numerical results in one space dimension with the aim of
demonstrating the validity of the convergence theorems presented in the previous
section, and also to add some insight on the numerical behavior of the hp-
isogeometric method.

Instead of dealing directly with the interpolation operator, we show numerical
errors of the Galerkin projection uh of u onto spline spaces, obtained solving the
simple Poisson problem

� u00 D f in ˝ D .0; 1/ ; u.0/ D 0; u.1/ D 0; (23)

with right hand side f is selected in order to have exact solution u D x0:6 � x.
We first set � D 1=2 and plot in Fig. 1 the corresponding L2-error for the three

cases uh 2 S2q�1
1 .˝;G

2q�1
� /, uh 2 S2q�1

q .˝;G
2q�1
� /, uh 2 S2q�1

2q�1 .˝;G
2q�1
� /, that

is, for C0, Cq�1 (the maximum regularity allowed by our interpolant) and C2q�2
continuity respectively. We clearly see exponential convergence ku � uhkL2 D
C exp.�bpN/ in all cases, with higher b for higher regularity.

Furthermore, we want to investigate numerically the sharpness of condition (20).
It is very easy to see that for our choice u.x/ D x�0:6 � x, the corresponding du is
equal to 1 and thus, (20) prescribes � > 1=3. We present in Fig. 2 the error plot for
uh 2 S2q�1

q .˝;G
2q�1
� / and � D 0:1. The plot shows exponential convergence, if we

exclude the last computed value, where uh is strongly affected by round-off error.
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Fig. 1 L2-error of the
Galerkin projection versus
degrees-of-freedom number
N : comparison between
splines and standard finite
element approximation; as a
reference, the line
exp.�p

N/ is shown
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Fig. 2 L2-error of the
Galerkin projection versus
degrees-of-freedom number
N for degree 2q � 1 and
Cq�1 continuity; � D 0:1.
Round-off error pollutes the
last computed entry

Indeed, for this last plot entry we have q D 6, that is degree 13, minimum mesh-size
0:112 D 10�12, and the condition number of the linear system gets > 1017.

In conclusion, there is numerical evidence that the mesh condition (20) is
not necessary to approximate a singular solution in the space S2q�1

2q�1 .˝;G
2q�1
� /.

However, we also stress that the B-spline basis is not suitable for a strong geometric
grading and high degree, since it induces a severe ill-conditioning of the linear
system of equations.

We observe that each of the proposed hp-FEM discretizations converge with
exponential rate exp.�bpN/. The constant b > 0 in the exponential rate depends
on � and on the conformity in the hp-space. In particular, the hp-IGA will afford
substantially larger values of b in the exponential convergence bound, leading to
several orders of magnitude error reduction at a given budget of N degrees of
freedom over standard, C0-conforming hp-FEM. The increased efficiency is at the
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expense of a rather large condition number of the (small) linear systems of equations
which, presumably, is due to the use of spline-bases in the current implementation
of hp-IGA. These work savings by enhanced conformity afforded by the hp-version
of isogeometric analysis are expected to be even more pronounced in two and three
spatial dimensions, and the unfavourable conditioning of the stiffness matrices is
expected to be alleviated by the use of an orthonomal basis.
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High-Order Locally Implicit Time Integration
Strategies in a Discontinuous Galerkin Method
for Maxwell’s Equations

S. Descombes, S. Lanteri, and L. Moya

Abstract The starting point for the present study is a second-order locally implicit
time integration method for a nondissipative discontinuous Galerkin (DG) dis-
cretisation of Maxwell’s equations. The system is split into the explicit and the
implicit parts based on the geometry of the mesh: locally refined regions are treated
implicitly while the rest of the domain is treated explicitly. When combined with an
explicit time integration method one of the main drawbacks of the DG time-domain
(DGTD) method is the restriction on the time step when high-order elements are
used. If the region of refinement is small relative to the computational domain, the
implicit-explicit (IMEX) method allows to overcome this efficiency issue without
needing to solve a linear system at each time step for the entire size of the problem.

The topic of this study is to propose higher order time integration techniques
based on a second-order locally implicit method to fully exploit the attractive
features of the IMEX approach combined with a DG discretisation which allows
to easily increase the spatial convergence order.
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1 Introduction

We consider the time-domain Maxwell equations

@tD D curl .H/� Jf ; @tB D �curl .E/ ; (1)

div .D/ D �f ; div .B/ D 0; (2)

where E and D are the electric field and the electric flux density, H and B the
magnetic field and the magnetic flux density, Jf the free current density and �f

the free charge density. For many application we can assume that the underlying
medium is isotropic, linear and time-invariant. We then have the relations

D D "E and B D �H; (3)

where " and � are the dielectric permittivity and magnetic permeability of the
medium, respectively. With the constitutive relation (3), Eqs. (2) are just the
consistency conditions for (1). Indeed if we take the divergence of (1), make
use (2) and (3), the resulting equation represents the charge conservation law,
i.e. @t�f C div

�
Jf
� D 0. Thus, as long as initial conditions satisfy (2) and the

electromagnetic field evolves according to (1), the solution at any time will also
satisfy (2). Consequently we can only consider the Eqs. (1) in which the constitutive
relations (3) are included i.e.

(
"@tE D curl .H/� Jf ;

�@tH D �curl .E/ :
(4)

The free current density Jf includes the conduction current density and the source
current density denoted by Jc and Js , respectively. The relation between an electric
field and the conduction current density which is generated at any point of the
conducting material is given by Ohm’s law Jc D �E, where � is the conductivity
of the medium. The source current density Js may is associated to external sources
or generators and is often called driven or impressed current. In this study we will
consider non-conductive materials (� D 0) such that the time-domain Maxwell
equations write as form

(
"@tE D curl .H/� Js;

�@tH D �curl .E/ ;
(5)

The starting point of the present study is the nondissipative DG formulation
presented in [5]. By applying this nodal DG approach based on a discontinuous
piecewise polynomial space for the approximation of the electromagnetic field
within an element of the mesh, we obtain the global semi-discrete Maxwell system
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(
M"@tE D SH � j s;
M�@tH D �STE;

(6)

where the matrices M, M� are the DG mass matrices which contain the values
of the dielectric permittivity and magnetic permeability coefficients. The matrix
S emanates from the discretization of the curl operator and j s represents the
discretized source current density. Similarly to [1, 7, 10] we introduce the Cholesky
factorization of the mass matrices

M D LMLTM and M� D LM�LTM�; (7)

where LM and LM� are triangular matrices. Then by introducing the change of
variables QE D LTME and QH D LTM�H in (6), we write

(
@t QE D QS QH � Qj s;
@t QH D � QST QE;

(8)

where

QS D L�1
M S

�
L�1
M�

�T
; and Qj s D L�1

M j
s: (9)

For convenience of presentation in the following we will omit “�” in (8) and (9).

2 The Second-Order Locally Implicit Method from [10]

A popular time integration method for the semi-discrete Maxwell system (8) is the
second order Leap-Frog scheme that we write in the three-stage form, emanating
from Verlet’s method

˚LF2
�t W

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

HnC1=2 �Hn

�t
D �1

2
STEn;

EnC1 � En

�t
D SHnC1=2 � 1

2
.j s .tnC1/C j s .tn// ;

HnC1 �HnC1=2

�t
D �1

2
STEnC1;

(10)

where �t D tnC1 � tn denotes the time step and upper indices refer to time levels.
This method has consistency order two, is explicit in S , conditionally stable with a
critical step size determined by Botchev et al. [1]

�t � 2 � � �SST
�� 1

2 ; (11)
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where � denotes the spectral radius, this inequality being strict for zero conduction
(D D 0). Hence DG applied with its attractive feature of local grid refinement may
lead to an unduly time step size restriction. An alternative to (10) is the second order,
unconditionally stable Crank-Nicolson method that we write in the three-stage form

˚CN2
�t W

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

HnC1=2 �Hn

�t
D �1

2
STEn;

EnC1 � En

�t
D 1

2
S
�
HnC1 CHn

� � 1
2
.j s .tnC1/C j s .tn// ;

HnC1 �HnC1=2

�t
D �1

2
STEnC1;

(12)
which only differs from (10) in the middle stage in the time level for H . For
consistency and stability of this implicit method we refer to [12]. The expense for
the implicit computation is too large to consider (12) as an attractive alternative
to (10), especially in 3D (see e.g. [12]). If the region of refinement is small relative
to the computational domain, the unduly time step restriction of (10) and the
overhead of (12) can be overcome by blending the two methods yielding locally
implicit approaches where only variables associated to the smallest grid elements are
implicitly treated. The IMEX time integration method from [10] is a blend of (10)
and (12) applied to the semi-discrete Maxwell system (8)

˚ IMEX2
�t W

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

HnC1=2 �Hn

�t
D �1

2
STEn;

EnC1 �En

�t
D S0HnC1=2 C 1

2
S1
�
HnC1 CHn

� � 1
2
.j s .tnC1/C j s .tn// ;

HnC1 �HnC1=2

�t
D �1

2
STEnC1;

where S D S0 C S1 is a matrix splitting. This method is symmetric and implicit in
S1, explicit in S0. For S0 D 0 we recover (12) and for S1 D 0 the method (10). The
matrix splitting adopted in [10] is defined as S1 D SSH , where SH is a diagonal
matrix of dimension the length of H with

.SH /jj D
�
0; componentHj of H to be treated explicitly,
1; componentHj of H to be treated implicitly.

The locally implicit time integration method can be written as

˚ IMEX2
�t W

8
ˆ̂
<̂

ˆ̂
:̂

HnC1=2 D Hn � �t
2
STEn;

MEnC1 D bnC1;

HnC1 D HnC1=2 � �t
2
STEnC1;

(13)
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where M D I C �t2

4
S1S

T and

bnC1 D EnC�t S0HnC1=2 C �t

2
S1
�
HnC1=2 CHn

�� �t
2
.j s .tnC1/C j s .tn// :

Noticing that S1ST D SSHST D SSHSHST D S1S
T
1 , then the matrix splitting

S1S
T is symmetric which facilitates the resolution of the linear system of the second

stage of the IMEX method (13). The matrix M is then given by

M D I C �t2

4
S1S

T
1 : (14)

For S1 D S we recover the matrix of the linear system of the fully implicit
method (12), [12]. With the adopted splitting the matrix M will be significantly
more sparse than without splitting, enabling us to solve the linear system at lower
costs. Similarly to the explicit and implicit methods (10) and (12) for n 	 1 the third
stage derivative computation can be copied to the first stage at the next time step.
The IMEX method (13) is conditionally stable with a critical step size determined
by (see [3])

�t < 2 � � �S0ST0
�� 1

2 : (15)

This condition is similar to the stability condition of the explicit scheme (11) with
S0 instead of S , allowing to let the definition of �t be restricted to the subset of the
coarse grid elements. Thus in the presence of a local refinement, the purpose of the
IMEX method is achieved since the most severe stability constraints on explicit
time integration methods can be overcome. Finally it is proven in [10] that the
component splitting is not detrimental to the second-order ODE convergence of
the method (13), under stable simultaneous space-time grid refinement towards the
exact underlying PDE solution. This property is an attractive feature of the locally
implicit method (13). Indeed for IMEX approaches, the component splitting can
introduce order reduction which makes use of a high-order DG spatial discretization
less appealing due to the errors introduced by the lower temporal order, see e.g. [7].

3 High-Order Time-Integration Methods

3.1 Symmetric Composition of Symmetric Methods

High-order composition methods have been extensively studied for geometric com-
position, see e.g. [6, 9]. It is possible to construct arbitrary high-order composition
methods. We are interested in a composition which at most of order 4, following the
construction presented in [11]. Let ˚CO4

�t defined by



210 S. Descombes et al.

˚CO4
�t D ˚ IMEX2

˛s�t
ı � � � ı ˚ IMEX2

˛1�t
; (16)

where ˛1 C � � � C ˛s D 1 and ˛31 C � � � C ˛3s D 0. Denote .E˛0;H˛0/ D .En;Hn/

and .E˛s ;H˛s / D .EnC1;HnC1/, the composition scheme can be written as

for
k D 1 W s

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

Hˇk �H˛k�1

˛k�t
D �1

2
STE˛k�1 ;

E˛k �E˛k�1

˛k�t
D S0H

ˇk C 1

2
S1 .H

˛k CH˛k�1 / � 1
2
.j s .t˛k /C j s .t˛k�1 // ;

H˛k �Hˇk

˛k�t
D �1

2
STE˛k ;

with time levels t˛0 D tn, tˇk D t˛k�1
C ˛k�t=2, t˛k D t˛k�1

C ˛k�t , spanning the
interval Œtn; tnC1�, for k D 1; � � � ; s. The composition method reads

for k D 1 W s

8
ˆ̂
<̂

ˆ̂
:̂

Hˇk D H˛k�1 � ˛k�t
2

STE˛k�1 ;

MkE
˛k D bk;

H˛k D Hˇk � ˛k�t
2

STE˛k ;

(17)

where Mk D I � .˛k�t/
2

4
S1S

T and

bk D E˛k�1 C ˛k�t S0Hˇk C ˛k�t

2
S1
�
Hˇk CH˛k�1

� � ˛k�t
2

.j s .t˛k /C j s .t˛k�1 // :

Two fourth-order compositions of interest are those obtained for s D 3 and s D 5

with coefficient sets [6, 9]

˛1 D ˛3 D 1

2� 21=3 ; ˛2 D � 21=3

2 � 21=3 and

˛1 D ˛2 D ˛4 D ˛5 D 1

4 � 41=3 ; ˛3 D � 41=3

4 � 41=3 ;

For s D 3 and 5 the composition methods are three and five times more expensive
than the base method (13).

3.2 Richardson Extrapolation

In this study we also examine the extension of the second-order locally implicit
method to fourth-order through the Richardson extrapolation technique for symmet-
ric methods, see e.g. [6]. Denote ˚REX4

�t the Richardson extrapolation of the IMEX
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Fig. 1 Schematic diagrams of active Richardson extrapolation (final time T D N�t )

method (13), we read

˚REX4
�t D 4

3
˚ IMEX2
�t=2 ı ˚ IMEX2

�t=2 �
1

3
˚ IMEX2
�t : (18)

Richardson extrapolation can be implemented in two different ways: active or
passive Richardson extrapolation. We denote the approximate electromagnetic field
at time tn by .En

�t ;H
n
�t / when we apply the IMEX method (13) with time step �t ,

by .En
�t=2;H

n
�t=2/ when we apply the composition of the IMEX method (13) with

time step �t=2; and by .En;Hn/ when we apply the Richardson extrapolation.
The two implementations of the Richardson extrapolation are depicted in Figs. 1–2.
We observe that in the active form the value of .En;Hn/ is used to calculate
.EnC1

�t ;H
nC1
�t / and .EnC1

�t=2;H
nC1
�t=2/ while in the passive form the value of the

approximation .En;Hn/ is never used in the further computations. The passive
Richardson extrapolation has the same stability properties as the second-order
method while the active Richardson extrapolation leads to a new time integration
method which might not share the good stability properties of the base method, it
may cause instability of the computational process. For example the computation of
the fully implicit method (12) together with the active Richardson extrapolation will
in general be unstable, see e.g. [4]. This also happens for the IMEX method (13)
which is a blend of the methods (10)–(12). Thus, to extend the IMEX method
to fourth-order we will only consider the passive Richardson extrapolation which
requires only three times more computation.

4 Numerical Results for a Two-Dimensional Test Problem

The 2D Transverse Magnetic model (TM) for components QH Qx, QH Qy and QEQz is given
as

8
<̂

:̂

� .Qx/ @Qt QH Qx �Qx; Qt� D �@ Qy QEQz �Qx; Qt� ;
� .Qx/ @Qt QH Qy �Qx; Qt� D @Qx QEQz �Qx; Qt� ;
 .Qx/ @Qt QEQz �Qx; Qt� D @Qx QH Qy �Qx; Qt� � @ Qy QH Qx �Qx; Qt� � QJ s �Qx; Qt� :

(19)
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Fig. 2 Schematic diagrams passive Richardson extrapolation (final time T D N�t )

The magnetic permeability �.Qx/, and the electric permittivity ".Qx/, reflect the
material coefficients. In the following, we model a metallic air-filled cavity, then
˝ D Œ0; 1�2, � D �0 and " D "0 are constant vacuum values. Then we introduce
the normalized space, time variables and physical fields through the relations

x D Qx; t D c0 Qt ; E D QE; H D Z0 QH and J s D Z0 QJ s; (20)

where c0 D 1=
p
"0�0 is the speed of light in vacuum (c0 ' 3 � 108m�s�1) and

Z0 D
p
�0="0 is the free space intrinsic impedance. The normalized time variables

are now expressed in meter (m) and the electric and magnetic fields in volt per meter
(V�m�1). Substituting the normalized space, time variables and fields (20) into (19)
we write

8
<

:

@tH
x .x; t/ D �@yEz .x; t/ ;

@tH
y .x; t/ D @xEz .x; t/ ;

@tE
z .x; t/ D @xHy .x; t/ � @yHx .x; t/ � J s .x; t/ :

(21)

The Eqs. (21) are space discretized using a DG method formulated on triangular
meshes. In the preliminary implementation of this DG method, the approxima-
tion of the electromagnetic field components within a triangle �i relies on a
nodal Pk interpolation method. The a priori convergence analysis for the error in
C0.Œ0; T �; L2.˝// and the adopted DG method, formulated on simplicial meshes
and based on a centered numerical flux for the approximation of the boundary
integral term at the interface between neighboring elements, shows that the con-
vergence rate is O.hk/ for a k-th interpolation order [5]. The convergence result
is slightly weaker than available results for upwind fluxes [2, 8], nevertheless this
setting allows to obtain the conservation of a discrete form of the electromagnetic
energy. A triangle �i is characterized by its height hi . Denote˝h the computational
domain and ˝exp

h the set of triangles that belong to the explicit region. The critical
time step �tc used in the numerical tests is given by
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Fig. 3 Example of a mesh used in numerical tests (# elements: 848, implicit treatment: red region)

�tc D CFL �minfhi ; �i 2 ˝exp
h g: (22)

The values of the CFL number, corresponds to the numerical stability, i.e. the limit
beyond which we observe a growth of the discrete energy.

We consider the propagation of an eigenmode in a unitary perfectly electrically
conducting cavity. In this problem there is no source term i.e. J s D 0 in (21) and
the exact solution is given by

8
<

:

Hx .x; t/ D � .k�=!/ sin .l�x/ cos .k�y/ sin .!t/ ;
Hy .x; t/ D .l�=!/ cos .l�x/ sin .k�y/ sin .!t/ ;
Ez .x; t/ D sin .l�x/ sin .k�y/ cos .!t/ ;

(23)

where the resonance frequencies, !, are given as ! D �
p
k2 C l2. For numerical

tests we put k D l D 1 and we initialize the electromagnetic field with the exact
analytical solution at time t D 0. We impose a metallic boundary condition such
that the tangential component of the electric field vanishes on the boundaries, i.e.
n � Ez D 0 on @˝ , where n denotes the unit outward normal to @˝ . The total
simulation time is set to T D 5. We investigate the space-time convergence order
of the composition method (16) for s D 3 and 5, and the passive Richardson
extrapolation (18) based on the second-order IMEX method (13). We consider a
sequence of 6 successively refined triangular meshes, see Fig. 3 and Table 1 for an
example and the characteristics of the different meshes. The critical time step is
determined by the smallest height in the region treated explicitly; for the structured
meshes and the implicit regions used in numerical tests it is equal to hmax , since all
refined triangles belong to the implicit region. To estimate the order of convergence
we measure the maximal L2-norm of the error and we plot this error as a function
of the square root of the number of degrees of freedom (DOF), in logarithmic scale.
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Table 1 Data of the six successively refined triangular meshes (the
total number of DOF is indicated for a DGTD-P4 method)

# elements # DOF hmin hmax

208 3,120 0.00736 0.16667
464 6,960 0.00442 0.10000
848 12,720 0.00316 0.07143
2,368 35,520 0.00184 0.04167
4,688 70,320 0.00130 0.02941
7,808 117,120 0.00100 0.02273
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Fig. 4 Convergence and maximum error (L2-norm) in function of final CPU time for the locally
implicit DGTD-P4 methods (left – right, respectively)

We use the DGTD-P4 method so that the spatial error is not detrimental to the
temporal convergence orders. Figure 4 shows orders of convergence about 4:5 for
composition methods and about 5:5 for the Richardson extrapolation. We also plot
the error as a function of the CPU time. For a given error or a given CPU time we
observe the high efficiency of the fourth-order time integration methods compared
to the second-order method. Finally for this problem Richardson extrapolation is the
most accurate method.

These promising results should not prevent us to be cautious; we can not
conclude that the fourth-order will be preserved whichever the problem considered.
Indeed, the source term and the presence of a damping term which models
conduction may be the cause of a reduction order, see for e.g. [1,11]. Consequently
in a near future, a theoretical convergence analysis will be conducted. Nevertheless,
even if a reduction order was observed, the accuracy of the high-order locally
implicit DG methods proposed in this study will certainly be very interesting.
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High-Order ADI Schemes
for Convection-Diffusion Equations
with Mixed Derivative Terms

B. Düring, M. Fournié, and A. Rigal

Abstract We present new high-order Alternating Direction Implicit (ADI) schemes
for the numerical solution of initial-boundary value problems for convection-
diffusion equations with cross derivative terms. Our approach is based on the
unconditionally stable ADI scheme proposed by Hundsdorfer (Appl Numer Math
42:213–233, 2002). Different numerical discretizations which lead to schemes
which are fourth-order accurate in space and second-order accurate in time are
discussed.

1 Introduction

We consider the multi-dimensional convection-diffusion equation

ut D div.Dru/C c � ru (1)

on a rectangular domain ˝ � R
2, supplemented with initial and boundary

conditions. In (1),

c D
�
c1
c2

�

; D D
�
d11 d12
d21 d22

�

;

B. Düring
Department of Mathematics, University of Sussex, Pevensey 2, Brighton, BN1 9QH, UK
e-mail: b.during@sussex.ac.uk

M. Fournié (�) � A. Rigal
Institut de Mathématiques de Toulouse, Equipe ‘Mathématiques pour l’Industrie et la Physique’,
CNRS, Unité Mixte 5219, Universités de Toulouse, 118, route de Narbonne,
31062 Toulouse Cedex, France
e-mail: michel.fournie@math.univ-toulouse.fr; alain.rigal@math.univ-toulouse.fr

M. Azaïez et al. (eds.), Spectral and High Order Methods for Partial Differential
Equations - ICOSAHOM 2012, Lecture Notes in Computational Science and
Engineering 95, DOI 10.1007/978-3-319-01601-6__17,
© Springer International Publishing Switzerland 2014

217

mailto:b.during@sussex.ac.uk
mailto:michel.fournie@math.univ-toulouse.fr
mailto:alain.rigal@math.univ-toulouse.fr


218 B. Düring et al.

are a given nonzero convection vector and a given, fully populated (non-diagonal),
and positive definite diffusion matrix, respectively. Thus, both mixed derivative and
convection terms are present in (1).

After rearranging, problem (1) may be formulated as

@u.x; y; t/

@t
D .d12 C d21/ @

2u

@x@y
„ ƒ‚ …

DWF0.u/

C .c1 @u

@x
C d11 @

2u

@x2
/

„ ƒ‚ …
DWF1.u/

C .c2 @u

@y
C d22 @

2u

@y2
/

„ ƒ‚ …
DWF2.u/

: (2)

This type of convection-diffusion equations with mixed derivatives arise fre-
quently in many applications, e.g. in financial mathematics for option pricing in
stochastic volatility models or in numerical mathematics when coordinate transfor-
mations are applied. Such transformations are particularly useful to allow working
on simple (rectangular) domains or on uniform grids (to have better accuracy). Thus,
this approach allows to consider complex domains or to define non-uniform meshes
to take into account the stiffness behavior of the solution in some part of the domain.

In the mathematical literature, there exist a number of numerical approaches to
approximate solutions to (1), e.g. finite difference schemes, spectral methods, finite
volume and finite element methods. Here, we consider (1) on a rectangular domain
˝ � R

2. In this situation a finite difference approach seems most straight-forward.
The Alternating Direction Implicit (ADI) method introduced by Peaceman and

Rachford [1], Douglas [4,5], Fairweather and Mitchell [7] is a very powerful method
that is especially useful for solving parabolic equations on rectangular domains.
Beam and Warming [2], however, have shown that no simple ADI scheme involving
only discrete solutions at time levels n and n C 1 can be second-order accurate
in time in the presence of mixed derivatives (F0 ¤ 0 in (2)). To overcome this
limitation and construct an unconditionally stable ADI scheme of second order in
time, a number of results have been given by Hundsdorfer [11,12] and more recently
by in ’t Hout and Welfert [10]. These schemes are second-order accurate in time and
space.

High-Order Compact (HOC) schemes (see, e.g. [8, 14]) employ a nine-point
computational stencil using the eight neighbouring points of the reference grid point
only and show good numerical properties. Several papers consider the application
of HOC schemes (fourth order accurate in space) for two-dimensional convection-
diffusion problems with mixed derivatives [3,6] but without ADI splitting. Moreover,
the HOC approach introduces a high algebraic complexity in the derivation of the
scheme.

We are interested in obtaining efficient, high-order ADI schemes, i.e. schemes
which have a consistency order equal to two in time and to four in space, which are
unconditionally stable and robust (no oscillations). We combine the second-order
ADI splitting scheme presented in [10, 12] with different high-order schemes to
approximate F0; F1; F2 in (2). We note that some results on coupling HOC with
ADI have been presented in [13], however, without mixed derivative terms present
in the equation.
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Up to the knowledge of the authors there are currently no results for ADI-HOC
in the presence of mixed derivative terms. In this preparatory work we validate the
coupling of ADI and HOC by numerical experiments.

2 Splitting in Time

In time, we consider the following splitting scheme presented in [10, 12]. We
consider (2), and we look for a (semi-discrete) approximation Un � u.tn/ with
tn D n�t for a time step �t . The scheme used corresponds to

8
ˆ̂
ˆ̂
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
ˆ̂
ˆ̂
:̂

Y 0 D Un�1 C�tF.U
n�1/;

Y 1 D Y 0 C ��t.F1.Y
1/ � F1.U n�1//;

Y 2 D Y 1 C ��t.F2.Y
2/ � F2.U n�1//;

QY 0 D Y 0 C ��t .F.Y
2/� F.U n�1//;

QY 1 D QY 0 C ��t.F1. QY 1/ � F1.Y 2//;
QY 2 D QY 1 C ��t.F2. QY 2/ � F2.Y 2//;
U n D QY 2;

(3)

with constant parameters � and �; and F D F0 C F1 C F2: To ensure second-order
consistency in time we choose � D 1=2. The parameter � is arbitrary and typically
fixed to � D 1=2. The choice of � is discussed in [12]. Larger � gives stronger
damping of implicit terms and lower values return better accuracy (some numerical
results for � D 1=2Cp3=6 are given in Sect. 4).

We note that F0 is treated explicitly, whereas F1; F2 (unidirectional contributions
in F ) are treated implicitly. In the following section, we discuss different high-order
(fourth order) strategies for the discretization in space.

3 High-Order Approximation in Space

For the discretization in space, we replace the rectangular domain ˝ D ŒL1; R1� �
ŒL2; R2� � R

2 with R1 > L1, R2 > L2 by a uniform grid Z D fxi 2 ŒL1; R1� W
xi D L1 C .i � 1/�x, i D 1; : : : ; N g � fyj 2 ŒL2; R2� W yj D L2 C .j � 1/�y ,
j D 1; : : : ;M g consisting of N �M grid points, with space steps �x D .R1 �
L1/=.N�1/ and�y D .R2�L2/=.M�1/. Let ui;j denote the approximate solution
in .xi ; yj / at some fixed time (we omit the superscript n to simplify the notation).

We present different fourth-order schemes to approximate F0; F1; F2 in (3). The
first one uses five nodes in each direction and the second one is compact. Both
schemes are considered with boundary conditions of either periodic or Dirichlet
type.
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3.1 Fourth-Order Scheme Using Five Nodes

We denote by ıx0, ıxC and ıx�, the standard central, forward and backward finite
difference operators, respectively. The second-order central difference operator is
denoted by ı2x ,

ı2xui;j D ıxCıx�ui;j D uiC1;j � 2ui;j C ui�1;j
�2
x

:

The difference operators in the y-direction, ıy0, ıyC, ıy� and ı2y , are defined
analogously. Then it is possible to define fourth-order approximations based on,

.ux/i;j �
�

1 � �
2
x

6
ı2x

�

ıx0ui;j D �uiC2;j C 8uiC1;j � 8ui�1;j C ui�2;j
12�x

;

.uy/i;j �
�

1 � �
2
y

6
ı2y

�

ıy0ui;j D �ui;jC2 C 8ui;jC1 � 8ui;j�1 C ui;j�2
12�y

;

.uxx/i;j �
�

1 � �
2
x

12
ı2x

�

ı2xui;j D �uiC2;j C 16uiC1;j � 30ui;j C 16ui�1;j � ui�2;j
12�2

x

;

.uyy/i;j �
�

1 � �
2
y

12
ı2y

�

ı2yui;j D �ui;jC2C 16ui;jC1� 30ui;j C 16ui;j�1� ui;j�2
12�2

y

;

.uxy/i;j �
�

1 � �
2
x

6
ı2x

�

ıx0

�

1 � �
2
y

6
ı2y

�

ıy0ui;j

D 1

144�x�y

�
64.uiC1;jC1 � ui�1;jC1 C ui�1;j�1 � uiC1;j�1/

C8.�uiC2;jC1 � uiC1;jC2 C ui�1;jC1 C ui�2;jC1
�ui�2;j�1 � ui�1;j�2 C uiC1;j�2 C uiC2;j�1/

C.uiC2;jC2 � ui�2;jC2 C ui�2;j�2 � uiC2;j�2/

:

(4)

For each differential operators appearing in F0, F1 and F2, we use these five-points
fourth-order difference formulae.

Combining this spatial discretization with the time splitting (3), we obtain a high-
order, five-points ADI scheme denoted HO5. Its order of consistency is two in time
and four in space.

3.2 Fourth-Order Compact Scheme

We start by deriving a fourth-order HOC scheme for

F1.u/ D d11 @
2u

@x2
C c1 @u

@x
D g; (5)
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with some arbitrary right hand side g: We employ central difference operators to
approximate the derivatives in (5) using

@u

@x
.xi ; yj / D ıx0ui;j � �

2
x

6

@3u

@x3
.xi ; yj /C O.�4

x/; (6)

@2u

@x2
.xi ; yj / D ı2xui;j � �

2
x

12

@4u

@x4
.xi ; yj /C O.�4

x/: (7)

By differentiating (5), we can compute the following auxiliary relations for the
derivatives appearing in (6), (7) (in the following, for the sake of brevity we omit
the argument .xi ; yj / of the continuous functions)

@3u

@x3
D 1

d11

@g

@x
� c1

d11

@2u

@x2
; (8)

@4u

@x4
D 1

d11

@2g

@x2
� c1

d11

@3u

@x3
D 1

d11

@2g

@x2
� c1

d11

�
1

d11

@g

@x
� c1

d11

@2u

@x2

�

: (9)

Hence, using (8) and (9) in (6) and (7), respectively, Eq. (5) can be approximated by

d11ı
2
xui;jCc1ıx0ui;j D gi;jC�

2
x

12

�
c1

d11

@g

@x
C @2g

@x2
� c21
d11

@2u

@x2

�

CO.�4
x/: (10)

We note that all derivatives on the right hand side of (10) can be approximated
on a compact stencil using second-order central difference operators. This yields a
high-order compact scheme of fourth order for (5) which is given by

d11ı
2
xui;jCc1ıx0ui;jC�

2
x

12

c21
d11

ı2xui;j D gi;jC�
2
x

12

�
c1

d11
ıx0gi;j C ı2xgi;j

�

: (11)

In a similar fashion we can discretize the operator F2.u/ D g by a high-order
compact scheme of fourth order given by

d22ı
2
yui;j C c2ıy0ui;j C

�2
y

12

c22
d22

ı2yui;j D gi;j C
�2
y

12

�
c2

d22
ıy0gi;j C ı2ygi;j

�

:

(12)

Defining vectors U D .u1;1; : : : ; uN;M / and G D .g1;1; : : : ; gN;M /, we can state
these schemes (11) and (12) in matrix form AxU D BxG (for F1.u/ D g) and
AyU D ByG (for F2.u/ D g), respectively. We apply these HOC schemes to
find the unidirectional contributions Y 1, QY 1, and Y 2, QY 2 in (3), respectively. For
example, to compute

Y 1 D Y 0 C �t

2
.F1.Y

1/ � F1.U n�1//
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in the second step of (3) (which is equivalent to F1.Y 1�Un�1/ D � 2
�t
.Y 0 � Y 1/),

we use Ax.Y 1 � Un�1/ D Bx.� 2
�t
.Y 0 � Y 1// that can be rewrite into

�

Bx � �t

2
Ax

�

Y 1 D BxY 0 � �t

2
AxU

n�1:

Note that the matrix .Bx � .�t=2/Ax/ appears twice in (3), in steps 2 and 5.
Similarly, .By � .�t=2/Ay/ appears in steps 3 and 6 of (3). Hence, using
LU-factorisation, only two matrix inversions are necessary in each time step of (3).
Moreover, for the case of constant coefficients, these matrices can be LU-factorized
before iterating in time to obtain an even more efficient algorithm.

To compute Y 0 and QY 0 in steps 1 and 4 of (3) which require evaluation of F0
(mixed term) we use an explicit approximation using the five-points fourth-order
formulae (4).

Combining this spatial discretization with the time splitting (3), we obtain a high-
order compact ADI scheme denoted HOC. Its order of consistency is two in time
and four in space.

4 Numerical Experiments

We present numerical experiments on a square domain ˝ D Œ0; 1� � Œ0; 1� for two
types of boundary conditions, periodic and Dirichlet type. The initial condition is
given at time T0 D 0 and the solution is computed at the final time Tf D 0:1 with
different meshes �x D �y D h and different time steps �t . In our numerical tests
we focus on the errors with respect to time and to space.

In the first part, we consider the periodic boundary value problem considered
in [10]. We implement the scheme detailed in [10] based on second-order finite
difference approximations (referred to as CDS below) and compare its behaviour
to our new schemes HO5 (Sect. 3.1) and HOC (Sect. 3.2). In the second part, we
consider Dirichlet boundary conditions and restrict our study to the more interesting
HOC scheme. In that part, we extend the splitting scheme to a convection-diffusion
equation with source term.

4.1 Periodic Boundary Conditions

The problem given in [10] is formulated on the domain ˝ D Œ0; 1� � Œ0; 1�. The
solution u satisfies (1) where

c D �
�
2

3

�

; D D 0:025
�
1 2

2 4

�

;
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Table 1 Numerical convergence rates in time for � D 1
2

l2-error convergence rate l
1

-error convergence rate

Scheme h D 0:1 h D 0:025 h D 0:00625 h D 0:1 h D 0:025 h D 0:00625

CDS 2.2002 2.1975 2.1969 2.1973 2.1958 2.1956
HO5 2.1999 2.1973 2.1969 2.1992 2.1953 2.1955
HOC 2.2002 2.1973 2.1969 2.2007 2.1953 2.1955

Table 2 Numerical convergence rates in space of l2-error for fixed � as �x; �t ! 0 and � D 1
2

Scheme � D 0:4 � D 0:2 � D 0:1 � D 0:05

CDS 1.7828 1.7909 1.7821 1.7845
HO5 2.2291 2.5188 2.8153 3.0672
HOC 2.2685 2.5191 2.8152 3.0671

with periodic boundary conditions and initial condition u.x; y; T0/ D
e�4.sin2.�x/Ccos2.�y//. We employ the splitting (3) with � D 1=2 and � D 1=2.

We first present a numerical study to compute the order of convergence in time
of the schemes CDS, HO5 and HOC. Asymptotically, we expect the error " to
converge as

" D C�m
t

at some rate m with C representing a constant. This implies

log."/ D log.C /Cm log.�t /:

Hence, the double-logarithmic plot " against �t should be asymptotic to a straight
line with slopem that corresponds to the order of convergence in time of the scheme.
We denote by "2 and "1 the errors in the l2-norm and l1-norm, respectively. We
refer to Table 1 for the order of convergence in time computed for different fixed
mesh widths h 2 f0:1; 0:0:025; 0:00625g and time steps �t 2 ŒTf =30; Tf =90�. The
solution computed for�t D Tf =100 is considered as reference solution to compute
the errors. The global errors for the splitting behave like C.�t/

2. We also observe
that the constant C only depends weakly on the spatial mesh widths h.

In the following, we study the spatial convergence. The double-logarithmic plots
"2 and "1 against h give the rates of convergence. Contrary to the time convergence,
the order now depends on the parabolic mesh ratio � D �t=�

2
x, so the numerical

tests are performed for a set of different constant values of �. For simulations, � is
fixed at constant values � 2 f0:4; 0:2; 0:1; 0:005g while �x D �y D h! 0 (�t is
then given by �t D �h2). The results for the l2-error are given in Table 2 and for
the l1-error in Table 3. The solution computed for h D 0:00625 is used as reference
solution to compute the errors.

Remark. The choice of the parameter � is discussed in [12]. However, for the
convergence rates, � seems to have little influence. For example, for the scheme
HO5 with � D 1=2Cp3=6 we obtain very similar results as shown in Table 4.
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Table 3 Numerical convergence rates in space of l
1

-error for fixed � as�x; �t ! 0 and � D 1
2

Scheme � D 0:4 � D 0:2 � D 0:1 � D 0:05

CDS 1.7170 1.7125 1.7040 1.7038
HO5 2.2931 2.6166 2.9182 3.1584
HOC 2.3175 2.6176 2.9184 3.1584

Table 4 Numerical convergence rates in space for HO5 for fixed � as �x; �t ! 0 and � D
1
2

C
p

3

6

� D 0:4 � D 0:2 � D 0:1 � D 0:05

l2 rate 2.2310 2.5186 2.8152 3.0671
l
1

rate 2.2938 2.6164 2.9181 3.1584

4.2 Dirichlet Boundary Conditions

In this section we only consider the HOC scheme which presents more interesting
properties than the other schemes. Indeed, compared to CDS, its accuracy is larger
and compared to HO5, no specific treatment at the boundaries is required for the uni-
directional terms F1, F2, the compact scheme is optimal in this respect. A particular
treatment is necessary when ghost points appear in the explicit approximation
of the mixed term F0. To preserve the global performance, the accuracy of the
approximation near the boundary conditions has to be sufficiently high. We have
used a sixth-order approximation in one direction (although lower order may also
be used [9]). For example, for u0;j on the boundary, at a ghost point u�1;j we impose

u�1;j D 5u0;j � 10u1;j C 10u2;j � 5u3;j C u4;j :

For the numerical tests, we consider the problem

ut D div.Dru/C c � ruC S

on the domain˝ D Œ0; 1� � Œ0; 1� where

c D �
�
2

3

�

; D D 0:025
�
1 2

2 4

�

;

and the source term S is determined in such a way that the solution is equal to
u.x; y; t/ D � 1

tC1 sin.�x/ sin.�y/: The Dirichlet boundary condition and initial
condition are deduced from the solution. To incorporate the source term S in the
splitting (3), F needs to be replaced by F C S . More specifically, F.U n�1/ is
replaced by F.U n�1/CS.tn�1/ and F.Y 2/ by F.Y 2/CS.tn/. We perform the same
numerical experiments as in the previous section. The final time is fixed to Tf D 0:1
and the errors are computed with respect to a reference solution computed on a fine
grid in space (�x D �y D 0:00625). Different meshes in space are considered
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Fig. 1 Numerical convergence rate in space for HOC (� D 1
2
) and � D 0:4

Table 5 Numerical convergence rates of l2-error and l
1

-error for HOC (� D 1
2
) for different

constant values of � (dirichlet boundary conditions)

� D 0:4 � D 0:2 � D 0:1 � D 0:05

l2 rate 4.0971 4.1875 4.2129 4.2196
l
1

rate 4.1530 4.2372 4.2717 4.2806

for �x D �y D h and h 2 f0:1; 0:05; 0:025; 0:0125g. For � D 0:4 the double-
logarithmic plots "2 and "1 against h are given in Fig. 1.

The results of several numerical tests are reported in Table 5 for fixed parabolic
mesh ratio � D �t=�

2
x while �x; �t ! 0. In all situations, the new HOC

scheme shows a good performance with fourth-order convergence rates in space,
independent of the parabolic mesh ratio �.

5 Conclusion

We have presented new high-order Alternating Direction Implicit (ADI) schemes
for the numerical solution of initial-boundary value problems for convection-
diffusion equations with mixed derivative terms. Using the unconditionally stable
ADI scheme from [12] we have proposed different spatial discretizations which
lead to schemes which are fourth-order accurate in space and second-order accurate
in time.

We have performed a numerical convergence analysis with periodic and Dirichlet
boundary conditions where high-order convergence is observed. In some cases,
the order depends on the parabolic mesh ratio. More detailed discussions of these
schemes including this dependence and a stability analysis will be presented in a
forthcoming paper.
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A Numerical Study of Averaging Error
Indicators in p-FEM

Philipp Dörsek and J. Markus Melenk

Abstract We consider the averaging error indicator in the context of the p-FEM.
We explain how a proof of reliability and efficiency might look, and why the error
indicator will behave differently than for low order methods. Using two model
problems, one with nonsmooth, the other one with smooth solution, we identify
appropriate spaces for the averaged fluxes in order to obtain reasonable reliability
and efficiency bounds on the averaging error indicator for p-FEM. In particular,
averaging over two neighbouring elements using global polynomials of the same
polynomial degree as the finite element solution leads to reliability and efficiency
up to a factor of orderO.p/.

1 Introduction

The averaging error indicator, also called gradient recovery, superconvergent patch
recovery, or Zienkiewicz-Zhu error indicator, going back originally to [17], is a
widely used method for gauging errors in finite element methods and steering
adaptive mesh refinements. Its main advantage is that it is very simple to compute,
requiring only a local averaging of the numerical fluxes. A mathematical analysis
in the low order context was performed in [1–3, 6, 11, 14–16]. In [7], the proof
of reliability was reduced to the existence of approximation operators with certain
additional orthogonality properties, and such approximation operators were then
constructed for arbitrary, but fixed polynomial degree. It is also stated in [7, p. 991]
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that the numerical behaviour observed in an hp-adaptive strategy “suggests that
those constants depend only moderately on p”, where the constants referred to are
the reliability and efficiency constants of the averaging error indicator.

It is therefore our aim in this paper to analyse whether the proof for reliability
and efficiency in [7] can be carried over to the p-FEM. A counting argument on the
degrees of freedom shows quickly that the usual good efficiency estimate (efficiency
with constant 1 up to a term of higher order) cannot be expected in the high order
setting at least for algebraic rates of convergence, as this would require too many
degrees of freedom in the approximation space for the averaged fluxes. Hence, we
perform numerical computations for two model problems, one with nonsmooth,
the other with smooth solution. Our results suggest that increasing the polynomial
degree by one, as is commonly done in the low order context, leads to reasonable
results if the averaging is performed over four quadrilateral elements. However, in
this case, we observe the p-gap, similarly as in the residual error indicator due to
[8, 12], which can be removed using equilibration techniques, see [9].

2 The Averaging Error Indicator

Let ˝ � R
d , d D 2; 3, be a bounded polygonal domain, and f 2 H�1.˝/, where

H�1.˝/ D .H1
0.˝//

� are the usual Sobolev spaces. We denote the L2 norm by

kuk0 WD
�R
˝

u2dx
�1=2

and the H1 seminorm by juj1 WD
�R
˝
jruj2dx�1=2, where j�j is

the Euclidean norm. Consider for simplicity the Poisson problem with homogeneous
Dirichlet boundary conditions,

��u D f in ˝; u D 0 on @˝I (1)

the analysis of more general boundary conditions is also possible. Defining V WD
H1
0.˝/, its weak formulation reads: find u 2 V such that

a.u; v/ D `.v/ for all v 2 V ; (2)

with

a.w; v/ WD
Z

˝

rw � rvdx and `.v/ WD
Z

˝

f vdx: (3)

We approximate u from the conforming hp-finite element space VN � V ,
i.e., with a triangulation TN of ˝ into quadrilaterals and a vector .pN;T /T2TN of
polynomial degrees, we consider

VN WD fv 2 V W vjT 2 Q
pN;T g ; (4)
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where Q
k is the usual space of tensor product polynomials of degree k in every

component. Then, uN 2 VN is defined through

a.uN ; vN / D `.vN / for all vN 2 VN : (5)

Let ˙N � H.r�;˝/ WD ˚
� 2 .L2.˝//2W r � � 2 L2.˝/

�
, then the global error

indicator is defined by

�N WD inf
�N2˙N

k�N � ruN k0: (6)

Let �N 2 ˙N denote the uniquely determined argument where the above infimum
is attained. If˙N is finite-dimensional, it is clear that this quantity can be calculated
by solving a system of linear equations.

Proposition 1 (Reliability). Let IN WV ! VN be a linear operator with

jIN vj1 � CN jvj1 for all v 2 V : (7)

Assume that ru 2 H.r�;˝/. Then, the error indicator � defined in (6) satisfies

ju � uN j1 � .1C CN /�N C sup
v2V nf0g

R
˝
.f Cr � �N /.v � IN v/dx

jvj1 : (8)

Proof. As �N 2 ˙N � H.r�;˝/, the Galerkin orthogonality yields

ju � uN j1 D sup
v2V nf0g

a.u � uN ; v/

jvj1 D sup
v2V nf0g

a.u � uN ; v � IN v/

jvj1 (9)

D sup
v2V nf0g

R
˝
.f Cr � �N /.v � IN v/dx

jvj1

C
R
˝
.�N � ruN / � r.v � IN v/dx

jvj1

� sup
v2V nf0g

R
˝.f Cr � �N /.v � IN v/dx

jvj1 C .1C CN /k�N � ruNk0:

This proves the claimed estimate. ut
Remark 1. The above result suggests to look for a linear operator IN WV ! VN
such that, ideally, its norm in V is bounded independently of N and, additionally,
it has the orthogonality property

Z

˝

wN .v � IN v/dx D 0 for all v 2 V and wN 2 WN ; (10)
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where WN is a sufficiently large discrete space satisfying r � ˙N � WN . In this
case, we observe

Z

˝

r � �N .v � IN v/dx D 0 for all v 2 V (11)

and hence

ju� uN j1 � C�N C C�N inf
fN2WN

kf � fN k0; (12)

i.e., reliability with a generic constant. Here, �N is defined by

�N WD sup
v2V nf0g

kv � IN vk0
jvj1 (13)

and usually behaves like �N � hNp
�1
N on quasi-uniform meshes and polynomial

degree distributions, i.e., the last term in (12) is of higher order compared to ju�uN j1
if WN is large enough.

Remark 2. If the polynomial degree is fixed and the mesh is refined, an operator
IN as required above is constructed in [7]. Their construction, however, does not
generalise directly to the p-version.

In order to obtain an operator IN for the p-version, a first step would be to let
IN be the L2-projection operator onto Q

pN , global polynomials of degree pN , if we
assume that WN D Q

pN consists of global polynomials, as well. This assumption
makes sense in a pure p-version context on a reasonably coarse mesh. If we ignore
the issue of boundary conditions, e.g., by considering a pure Neumann problem,
[10, Theorem 2.4] yields that on a quasi-uniform mesh with uniform polynomial
degree,

kIN vk1 � C.pN C 1/1=2kvk1 for all v 2 H1.˝/I (14)

see also [13, Theorem 1.3] for a corresponding result for triangular and tetrahedral
meshes. In this case, we obtain

Z

˝

wN .v � IN v/dx D 0 for all v 2 V and wN 2 WN : (15)

Choosing˙N WD Q
.pNC1/	pN �QpN	.pNC1/, we observe r �˙N � WN , and hence

Proposition 1 yields

ju � uN j1 � C.pN C 1/1=2�N C Cp�1
N inf

fN2WN
kf � fN k0: (16)
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Proposition 2 (Efficiency). The error indicator � defined in (6) satisfies

�N � ju � uN j1 C inf
�N2˙N

k�N � ruk0: (17)

Proof. We see that

k�N � ruN k0 � inf
�N2˙N

k�N � ruN k0 � ju � uN j1 C inf
�N2˙N

k�N � ruk0; (18)

from which the claim follows. ut
Remark 3. In order to ensure efficiency of the error indicator, the gradient L2

projection error

�N WD inf
�N2˙N

k�N � ruk0 (19)

needs to be small. In the h-version context, [7] shows that �N is indeed of higher
order if local averaging over edge patches is done using polynomials of degree pN .
It is unclear whether this is possible when averaging globally, see [7, Remark 4.3].

For the p-version, we cannot hope that �N is of higher order: if uN is approxi-
mated using polynomials of degree p, then, in order that �N is of higher order, we
need that ˙N consists of polynomials of degree p1C˛ for some ˛ > 0. But this
is not possible if we simultaneously want to ensure existence of an operator IN as
outlined in Remark 1, as in this case dim˙N grows faster than dimVN , which is
incompatible with IN WV ! VN being orthogonal to WN � r � ˙N . However, the
following argument lets us hope for efficiency, at least if the convergence is only
algebraic and we are prepared to accept a p-gap. Let us restrict ourselves for ease
of exposition to ˝ being a square and the right-hand side being smooth; general
polygonal domains can be treated in a similar fashion. Then, [4, Theorem 2.7 and
2.10] yield the sharp convergence bounds

c.1C pN /�4 � ju � uN j1 � C.1C pN /�4: (20)

Similarly, as the gradient of a singularity function is again a singularity function, we
obtain, assuming Q

pN � ˙N , from [4, Theorem 2.7] that

inf
�N2˙N

k�N � ruk0 � C.1C pN /�3: (21)

Together with (17), this implies

�N � C.1C pN /ju � uN j1: (22)
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Fig. 1 Errors and error indicators, two elements. (a) Algebraic rate, two elements. (b) Exponential
rate, two elements
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Fig. 2 Gradient L2 projection error �N relative to Galerkin error, two elements. (a) Algebraic rate.
(b) Exponential rate

3 Numerical Examples

For our numerical computations, we consider the square domain ˝ D .0; �/2 and
solve the homogeneous Dirichlet problem

��u D f in ˝; u D 0 on @˝; (23)

with the two right-hand sides f D 1 and f .x; y/ D 2 sin.x/ sin.y/. In the first
case, the solution is known in terms of a Fourier series, and it is in H3�".˝/ for
all " > 0. As the singularities are in the corners of the domain and can therefore
be described using the corresponding singularity functions, the rate of convergence
is known to be p�4, see [5, Sect. 4.2], and this is confirmed in Figs. 1 and 4. In the
second case, the solution u.x; y/ D sin.x/ sin.y/ is analytic, hence the convergence
is exponential, and this is also confirmed in Figs. 1 and 4.

We consider two triangulations, one with two quadrilateral elements, T2 D
f.0; �=2/� .0; �/; .�=2; �/ � .0; �/g, and the second with four elements,
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Fig. 3 Effectivity indices �N , two elements. (a) Algebraic rate. (b) Exponential rate
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Fig. 4 Errors and error indicators, four elements. (a) Algebraic rate, four elements. (b) Exponen-
tial rate, four elements

T4 D f.0; �=2/� .0; �=2/; .�=2; �/� .0; �=2/; .0; �=2/� .�=2; �/; .�=2; �/ �
.�=2; �/g. The finite element space is

V
.`/
N WD fv 2 V W vjT 2 Q

pN for T 2 T`g ; ` D 2; 4; (24)

and the approximation space for the averaged fluxes is chosen to be global
polynomials. More precisely, we set ˙N WD Q

qNC1;qN � Q
qN ;qNC1 with Q

q1;q2 the
space of tensor product polynomials of degree q1 in the first and q2 in the second
component, i.e., we average the numerical flux over two or four elements using
Raviart-Thomas elements.

Given pN , we consider for qN the values pN � 1, pN , pN C 1 and 2pN . This
choice of values can be explained as follows: for qN D pN � 1, it is reasonable to
expect that we can prove reliability by following the strategy laid out in Remark 1.
Additionally, the computation of the error indicator is cheapest with this choice.
A direct generalisation of the h-version error indicator from [7] leads to qN D pN .
The choices qN D pN C 1 and qN D 2pN , finally, should yield better efficiency.
Finally, more general choices such as qN D p

ˇ
N are not suitable as explained in
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Fig. 6 Effectivity indices �N , four elements. (a) Algebraic rate. (b) Exponential rate

Remark 3. We therefore believe that our experiments cover the relevant choices for
the approximation space ˙N .

A good choice for qN should ensure that the effectivity indices do not decay too
quickly in p, and that the gradient L2 projection error in (17) is at least not more
important than the error. Hence, we plot the gradient L2 projection error �N of ru
from˙N defined in (19) relative to the Galerkin error ku � uN k1,

�N

ju � uN j1 I (25)

and the effectivity indices �N defined by

�N WD �N

ju � uN j1 : (26)

obtained in our numerical experiments.
Our numerical results show that the gradient L2 projection error �N is of higher

order relative to the Galerkin error only for exponentially decaying error, and even
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then only for qN D 2pN . For two elements, the choices qN D pN and qN D pNC1
at least lead to �N being not larger than the Galerkin error. When averaging over four
elements, even that is only achieved using qN D 2pN .

Let us now turn to the effectivity indices �N . For two elements, the most
reasonable choice is given by qN D pN ; it leads to a reliable and efficient error
indicator in the nonsmooth model problem with effectivity indices varying between
0:2 and 0:4, and only to a moderate loss of reliability (of the order O.p/) in the
smooth model problem. Setting qN D pN C 1 is adequate in the nonsmooth model
problem, but the loss of reliability in the smooth model problem is pronounced.
For four elements, both choices qN D pN and qN D pN C 1 are reliable in both
model problems, but lead to a loss of efficiency (of the orderO.p1:35/ andO.p0:85/,
respectively). The choice qN D 2pN , finally, leads to a slight loss in reliability in
the nonsmooth model problem (of the order O.p0:35/), and is reliable and efficient
in the smooth problem.

4 Conclusions

In contrast to low order finite elements, the use of the averaging error indicator
in p-FEM leads to certain difficulties. The standard methods of proof cannot be
used to obtain reliability and efficiency in the same sense as for the low order case.
As explained in Remark 3, the gradient L2 projection error present in the efficiency
estimate cannot be made to be of higher order relative to the Galerkin error.

Averaging the numerical fluxes over two neighbouring quadrilaterals using
Raviart-Thomas elements of degree q, reasonable results (reliability up to a factor
of the orderO.p/ and efficiency, i.e., a p-gap) in two model problems are obtained
if q is set equal to the local approximation order. This choice is practically the most
relevant, as this corresponds to what is known to work in h-FEM and can therefore
be expected to be used in hp-FEM. When averaging over four elements, we observe
the p-gap when setting q D p or q D p C 1. In this case, however, the gradient L2

projection error in the efficiency estimate even dominates the Galerkin error, which
might be of concern theoretically. Finally, averaging over four elements and setting
q D 2p leads to an efficient estimator that is reliable up to O.p0:35/.
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Coupling of an Exact Transparent Boundary
Condition with a DG Method for the Solution
of the Time-Harmonic Maxwell Equations

M. El Bouajaji, N. Gmati, S. Lanteri, and J. Salhi

1 Introduction

The numerical simulation of electromagnetic wave propagation in open domains
involving scattering objects or/and inhomogeneous regions naturally raises the
question of the appropriate treatment of the artificial truncation of the infinite
propagation domain. The main issue is to find a suitable way to efficiently model the
far-field propagation region, by limiting the extent of the volume discretization. Two
main approaches can be considered. The first class leads to approximate methods
in the sense that an inherent error remains present even without any discretization
error. In this class of methods, one finds the absorbing boundary conditions [2],
the method of perfectly matched layers initiated by Bérenger [4] and adapted and
used later in many works, and the method of unbounded elements [1]. In the
second class, the only error comes from the discretization, leading to exact methods
which are generally based on a coupling of a volume discretization method (e.g.
a finite element method) with a boundary element method (BEM) [5] or with an
integral representation [3–10]. The approach that we consider here belongs to the
latter class, however it differs from existing solutions in two aspects: first, a high
order discontinuous Galerkin (DG) method is used for the volume discretization
[7]; second, the finite element/integral representation coupling strategy is adopted
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([3–11]) and adapted to the DG discretization framework. The resulting numerical
methodology is illustrated here by considering 2D test problems for time-harmonic
electromagnetic wave propagation in homogeneous and inhomogeneous media.

2 Presentation of the Problem

Let˝i be a bounded domain in Rd (d D 2; 3) with a regular boundary 
 represent-
ing a scattering objet. Let ˝e be the unbounded complementary domain of ˝i . We
consider here the scattering problem of a time-harmonic electromagnetic wave by
the obstacle˝i . We are interested in solving the time-harmonic Maxwell’equations

i!"E� curl H D 0; i!�HC curl E D 0; (1)

where E and H denote the electric and magnetic field, " is the electric permittivity
and � the magnetic permeability. The positive real parameter ! is the pulsation of
the harmonic wave. In the case where the obstacle is impenetrable, we impose on

 WD 
m a perfect electric conductor (PEC) condition n � E D 0, where n denotes
the unit outward normal, and we consider a radiation condition at infinity

lim
r!1 r

�
.E � Einc/�Z0.H �Hinc/ � n

� D 0; (2)

where .Einc;Hinc/ is an incident electromagnetic field and Z0 the impedance of
the vacuum. This boundary value problem has a unique solution which belongs
to the space (see [13], [12]) Xloc.˝e; 
m/ WD fv 2 Hloc.˝e; 
m/ W n � v 2
ŒL2.
m/�

3 and .n � v/ � n D 0g. This problem can be solved by using an integral
representation of E and H. The solution, denoted .ERI ;HRI /, is given by the
Stratton-Chu formulae [6]

ERI.x/ D Einc C curlx

Z




J.y/G.x; y/dy� 1

i!�
curlxcurlx

Z




M.y/G.x; y/dy;

HRI.x/ D Hinc C curlx

Z




M.y/G.x; y/dyC 1

i!"
curlxcurlx

Z




J.y/G.x; y/dy;

(3)

where J.y/ D n.y/ � E.y/, M.y/ D n.y/ � H.y/, y 2 
m, x 2 ˝e and G is the
Green function (with k D !p"�)

G.x; y/ D exp .ikjx � yj/
4�jx � yj (3D case) ; G.x; y/ D i

4
H
.1/
0 .kjx � yj/ (2D case);

whereH.1/
0 is the Hankel function of the first kind and of order 0. We use (3) to build

an exact transparent condition (TC) coupled to a DG method for the discretization
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of˝i . Then, it is necessary to truncate the exterior domain by an artificial boundary

a, and (1) are solved in a bounded domain ˝ . On 
a, we impose an impedance
condition Bn.E;H/ DBn.g1; g2/with Bn.E;H/ D n� E

Z
�n�.H�n/. This condi-

tion is equivalent to imposing Dirichlet conditions on the incoming characteristics if
we consider the hyperbolic nature of the underlying time-dependent system. Setting
.g1; g2/ D .Einc;Hinc/, we obtain the well-known Silver-Müller absorbing condition
(SMC). It is an approximation of (2) at finite distance that produces a truncation
error. To reduce this error, the artificial boundary 
a must be placed sufficiently far
from the scatterer. Then we get a larger computational domain ˝ thus increasing
the computing cost. In order to reduce the size of ˝ , we introduce an exact TC at
finite distance by taking .g1; g2/ D .ERI ;HRI/, and we solve the boundary value
problem

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

i!G0WCGx@xWCGy@yWCGz@zW D 0 in ˝;

.M
a �Gn/.W�Winc/ D 0 on 
a (if we use a SMC condition);

.M
a �Gn/.W�WRI / D 0 on 
a (if we use a TC condition);

.M
m �Gn/W D 0 on 
m;

(4)

where WRI.x/ DWinc.x/C
Z


m

MRI.x; y/W.y/dy, W D .E;H/T , and

G0 D
�
" I3 03
03 � I3

�

; Gl D
 
03 Nel

N T
el

03

!

; Nv D
0

@
0 vz �vy
�vz 0 vx
vy �vx 0

1

A ;

with l 2 fx; y; zg where .ex; ey; ez/ is the canonical basis of R3; I3 and 03 are the
identity and null matrices, both of dimension 3�3. The real part ofG0 is symmetric
positive definite and its imaginary part, which appears in the case of conductive
materials, is symmetric negative. In the following we denote by Gn the sum
Gxnx CGyny CGznz and by GC

n and G�
n its positive and negative parts. We recall

that if T�T �1 is the eigen-decomposition of Gn, then Gṅ D T�˙T �1 where
�C (respectively��) only gathers the positive (respectively negative) eigenvalues.
We also define jGnjD GC

n �G�
n . We have that M
a is given byM
a D jGnj.

3 Discretization by a Discontinuous Galerkin Method

Let˝h be a discretization of˝ into simplicial elementsK and define Pp.K/ as the
space of vectors with polynomial components of order at most p overK . Let Vh D˚
U 2 ŒL2.˝/�3 = 8K 2 ˝h; UjK 2 Pp.K/

�
. The DG discretization of system (4)

leads to the formulation of the following discrete problem for Wh in Vh � Vh
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Z

˝h

.i!G0Wh/
T VdvC

X

K2˝h

Z

K

0

@
X

l2fx;y;zg
Gl@l .Wh/

1

A

T

Vdv

C
X

F2
 m[
 a

Z

F

�
1

2
.MF;K � IFKGnF /Wh

�T
Vds

�˛
X

F2
 a

Z

F

�
1

2
.MF;K � IFKGnF /

Z


m

MRI .x; y/Wh.y/dy
�T

Vds

�
X

F2
 0

Z

F

.GnF ŒŒWh��/
T fVgdsC

X

F2
 0

Z

F

.SF ŒŒWh��/
T ŒŒV��ds

D
X

F2
 a

Z

F

�
1

2
.MF;K � IFKGnF /W

inc
�T

Vds; 8V 2 Vh � Vh; x 2 F;

(5)

where ˛ D 0 if we use a SMC condition, ˛ D 1 if we use a TC condition;

 0, 
 a and 
 m respectively denote the sets of interior faces, boundary faces on

a and boundary faces on 
m. The unit normal on the oriented face F is nF
and IFK stands for the incidence matrix between oriented faces whose entries
are equal to 0 if F … K , 1 if F 2 K and their orientations match, and �1 if
F 2 K and their orientations do not match. For F D @K \ @ QK, we also define
ŒŒV�� D IFKVjK C IF QKVj QK and fVg D 1

2
.VjK C Vj QK/. Finally, the matrix

SF , which is Hermitian positive definite, permits the penalization of the jump of
a field, and the matrix MF;K , insures the asymptotic consistency with the boundary
conditions of the continuous problem. Problem (5) is often interpreted in terms of
local problems in each element K of ˝h coupled by the introduction of an element
boundary term called numerical flux (see also [8]). We usually consider two options
for the definitions for SF andMF;K

– Centered numerical flux (see [9] for the time-domain equivalent)

SF D 0 and MF;K D jGnF j if F 2 
 a: (6)

– Upwind numerical flux (see [8, 14])

SF D 1

2

�
NnF N

T
nF 03

03 N T
nF NnF

�

and MF;K D jGnF j if F 2 
 a: (7)

The above formulation of the DG scheme actually applies to a homogeneous
medium. In the heterogeneous case the DG scheme can be written formally as in (5)

by using ZK D
q

�K

"K
D 1

Y K
; ZF D ZKCZ QK

2
and Y F D Y KCY QK

2
, and modifying

SF as
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Fig. 1 Sparsity pattern of the matrix with TC (right) and SMC (left) conditions

SF D 1

2

0

B
@

1

ZF
NnF N

T
nF 03

03
1

Y F
NT

nF NnF

1

C
A ; (8)

and by using for the average a weighted average f�gF for each face F

fVgF D 1

2

0

B
B
@

0

B
B
@

Z
QK

ZF
03

03
Y

QK

Y F

1

C
C
AVjK C

0

B
@

ZK

ZF
03

03
Y K

Y F

1

C
AVj QK

1

C
C
A : (9)

Within each mesh element K the electromagnetic field .E;H/T is approximated as

.Eh/jK D
npKX

iD1
EKi '

K
i and .Hh/jK D

npKX

iD1
HK
i '

K
i , and MRI .x; y/ is evaluated as

MRI .x; y/ D
npKX

lD1

npFX

iDm
MRI .xl ; ym/'Kl .x/'

F
m.y/, where x 2 K , y 2 F , xl and ym

are respectively the degrees of freedom (d.o.f) on K and F , EKi and HK
i are the

vectors of local d.o.f corresponding to the basis expansion f'Ki giD1;��� ;npK of Pp.K/.
In the present study, we adopt the classical Lagrange nodal basis functions defined
on a simplex. The resulting method is denoted as DGTH-Pp. The discretization
(5) leads to a large sparse complex linear system of equations .A C ˛C /Wh D
b: The matrix A is sparse and it comes from the volume discretization while C
contains a dense block which is due to the discretization of the non-local transparent
condition. Figure 1 shows typical sparsity pattern of these matrices. The matrix
.A C C / is ill-conditioned. The system can be preconditioned by A �1 and the
system .I CA �1C /X D A �1b is solved by a Krylov method.
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4 Numerical Results

We present numerical results for a preliminary implementation in the 2D case and
for that purpose we consider the transverse magnetic (TM) Maxwell equations

i!�Hx C @Ez

@y
D 0; i!�Hy � @Ez

@x
D 0; i!"Ez � @Hy

@x
C @Hx

@y
D 0: (10)

We have WRI .x/ D Winc.x/ C
Z


m

MRI .x; y/W.y/dy with W D .Hx; Hy; Ez/

and

MRID

0

B
B
B
B
B
B
B
@

n2.y/
@

@y2
�n1.y/ @

@y2

1

i!�
Œn2.y/

@2

@2y1
� n1.y/ @2

@y2@y1
C n2.y/k2�

�n2.y/ @
@y1

n1.y/
@

@y1

�1
i!�

Œn1.y/
@2

@2y2
� n2.y/ @2

@y1@y2
C n1.y/k2�

1

i!�
n2.y/k2 � 1

i!�
n1.y/k2 n2.y/

@

@y2
C n1.y/ @

@y1

1

C
C
C
C
C
C
C
A

G:

where x D .x1; x2/ 2 
a, y D .y1; y2/ 2 
m, n.y/ D .n1.y/; n2.y// denotes the
unit outward normal to 
m at y and G is the Green function.

4.1 Scattering of a Plane Wave by a PEC Cylinder

We consider the test problem of the scattering of a plane wave by a perfectly
conducting (PEC) cylinder of radius r0 D 0:5 m, see Fig. 5 (left figure). The
boundary 
a is a circle of radius r2; we set Winc D .H inc

x ;H inc
y ; E inc

z / D
. 1
Z0
; �1
Z0
; 1/e�ikx , with k D 10�=3. We assess here the influence of the position of


a while moving the latter closer to the obstacle 
m by varying r2. We summarize
in Table 1 the L2 errors as a function of r2 for the DGTH-P1 and DGTH-P2
methods with SMC and TC conditions. We observe that the error deteriorates with
the SMC while the TC allows to move 
a closer to 
m without altering the accuracy.
A comparison of the contour lines of the real part ofEz in the case where r2 D 0:8m
and using the DGTH-P2 method is shown on Fig. 2. We clearly see on this figure
the influence of the exact TC.

4.2 Scattering of a Plane Wave by a PEC Square

The second test problem is similar to the previous one but this time the scatterer
is non-smooth (PEC square). The boundary 
a is a circle of radius r . We assess
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Table 1 Scattering of a plane wave by a PEC cylinder: performances results of the DGTH-P1 and
DGTH-P2 methods as a function of r2

r2 2.0 1.4 1.2 1.0 0.8

DGTH-P1 method, frequency F = 500 MHz
With TC 1:3	 10�1 1:0 	 10�1 9:9	 10�2 8:6	 10�2 6:9	 10�2

With SMC 1:5	 10�1 1:3 	 10�1 1:4	 10�1 1:2	 10�1 1:4	 10�1

DGTH-P2 method, frequency F = 500 MHz
With TC 8:7	 10�3 7:3 	 10�3 6:6	 10�3 5:8	 10�3 5:0	 10�3

With SMC 5:6	 10�3 7:4 	 10�2 8:8	 10�2 1:0	 10�1 1:2	 10�1

Fig. 2 Scattering of a plane wave by a PEC square cylinder: contour lines of the real part of Ez

with DGTH-P2 method for SMC condition (left) and TC condition (right)

here the influence of the position of 
a on the convergence of the BiCGStab Krylov
method for solving the coupled system. We summarize in Table 2 some performance
results (the number of iterations needed for convergence, i.e to reach a relative
residual of 10�8, and the CPU time) as a function of r for the DGTH-P1 and DGTH-
P2 methods. We observe that the number of iteration increases when r decreases,
but the CPU time decreases too. This result shows that for a given error level, the
coupling with the TC is a more efficient strategy than when a SMC is adopted.
A comparison of the contour lines of the real part ofEz in the case where r D 0:8m
and using the DGTH-P2 method is shown on Fig. 2. We again clearly see on this
figure the influence of the TC (Fig. 3).

4.3 Scattering of a Plane Wave by a Penetrable Cylinder

The test problem that we consider now is the scattering of a plane wave by a
dielectric cylinder of radius r0 D 0:5m. The boundary
a is a circle of radius r2. The
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Table 2 Scattering of a plane wave by a PEC square: performance
results of the DGTH-P1 and DGTH-P2 methods as a function of r2

r 2.0 1.4 1.2 1.0 0.8

DGTH-P1 method, frequency F = 500 MHz
Iteration 6 7 10 14 20
CPU time (s) 35.2 12.6 10.3 9.8 11.9
DGTH-P2 method, frequency F = 500 MHz
Iteration 5 6 7 9 15
CPU time (s) 22.1 10.3 7.7 8.8 10.2

Fig. 3 Scattering of a plane wave by a dielectric cylinder: contour lines of the real part of Ez with
the DGTH-P2 method for SMC condition (left) and TC condition (right)

Table 3 Scattering of a plane wave by a dielectric cylinder: performances results of the DGTH-P1
and DGTH-P2 methods as a function of r2

r2 2.0 1.4 1.2 1.0 0.8

DGTH-P1 method, frequency F = 500 MHz
With TC 5:2 	 10�1 1:6	 10�1 1:1	 10�1 9:1 	 10�2 7:2	 10�2

With SMC 5:3 	 10�1 2:1	 10�1 1:4	 10�1 2:2 	 10�1 2:5	 10�1

DGTH-P2 method, frequency F = 500 MHz
With TC 4:2	 10�2 1:6	 10�2 1:3	 10�2 1:2 	 10�2 1:0	 10�2

With SMC 9:1 	 10�2 1:6	 10�1 1:5	 10�1 2:0 	 10�1 2:8	 10�1

relative permittivity of the inner cylinder is "2 D 2:25 while the vacuum ("1 D 1)
is assumed for the rest of the domain. We summarize in Table 3 the L2 errors
as a function of r2 for the DGTH-P1 and DGTH-P2 methods with SMC and TC
conditions. A comparison of the contour lines of the real part ofEz in the case where
r2 D 0:8m and with DGTH-P2 method is shown on Fig. 4. As for the previous test
problem, the benefit of using the TC condition is clearly demonstrated.
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Fig. 4 Scattering of a plane wave by a dielectric cylinder: contour lines of the real part of Ez with
the DGTH-P2 method for SMC condition (left) and TC condition (right)

Table 4 Scattering of a plane wave by a coated PEC cylinder: perfor-
mances results of the DGTH-P2 method using the centered and upwind
fluxes

Mesh Method Error L2.E; H/
(# elements)

Centered flux
870 DGTH-P2 + TC 9:0 	 10�2

- DGTH-P2 + SMC 8:4 	 10�1

3540 DGTH-P2 + TC 1:1 	 10�2

- DGTH-P2 + SMC 3:2 	 10�1

14280 DGTH-P2 + TC 1:6 	 10�3

- DGTH-P2 + SMC 3:1 	 10�1

Upwind flux
870 DGTH-P2 + TC 8:2 	 10�2

- DGTH-P2 + SMC 4:1 	 10�1

3540 DGTH-P2 + TC 1:1 	 10�2

- DGTH-P2 + SMC 3:2 	 10�1

14280 DGTH-P2 + TC 1:5 	 10�3

- DGTH-P2 + SMC 3:1 	 10�1

4.4 Scattering of a Plane Wave by a Coated PEC Cylinder

We finally consider the problem of the scattering of a plane wave by a conducting
cylinder (of radius r0 D 0:5m) coated by a dielectric layer (of radius r1 D 0:8m)
characterized by " D 2:25, and k D 2� (see Fig. 5, right figure). We summarize
in Table 4 the L2 errors as a function of mesh refinement for the DGTH-P2 method
using the centered and upwind fluxes. We observe a deterioration of the convergence
when using the SMC condition. Convergence order are given in Table 5.
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Fig. 5 Scattering of a plane wave by a PEC cylinder (left) or a coated PEC cylinder (right)

Table 5 Scattering of a plane wave by a coated PEC cylinder: numer-
ical convergence of the DGTH-P1 , DGTH-P2 and DGTH-P3 methods
using the centered and upwind fluxes and the TC condition

Numerical flux type DGTH-P1 DGTH-P2 DGTH-P3
Centered flux 1.2 2.8 3.7
Upwind flux 2 2.9 4.1

5 Conclusion

We have studied the coupling of a DG method for the discretization of the time-
harmonic Maxwell equations with an exact transparent condition for the numerical
modeling of electromagnetic wave propagation problems in open domains. Prelimi-
nary numerical results in the 2D case have shown that the accuracy of the proposed
solution strategy is better than that obtained for transparent boundary conditions
of sommerfeld type. The additional cost due to the dense block introduced by the
non-local exact TC is largely compensated by the ability to choose the truncation
boundary fairly close to the boundary of the obstacle.
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A New Proof for Existence of H-Matrix
Approximants to the Inverse of FEM Matrices:
The Dirichlet Problem for the Laplacian

Markus Faustmann, Jens M. Melenk, and Dirk Praetorius

Abstract We study the question of approximability of the inverse of the FEM
stiffness matrix for the Laplace problem with Dirichlet boundary conditions by
blockwise low rank matrices such as those given by the H-matrix format introduced
in Hackbusch (Introd H-Matrices Comput 62(2):89–108, 1999). We show that
exponential convergence in the local block rank r can be achieved. Unlike prior
works Bebendorf and Hackbusch (Numer Math 95(1):1–28, 2003) and Börm
(Numer Math 115(2):165–193, 2010) our analysis avoids any a priori coupling
r D O.j log˛ hj/ of r and the mesh width h. Moreover, the techniques developed
can be used to analyze other boundary conditions as well.

1 Introduction

The format of H-matrices was introduced in [8] as blockwise low-rank matrices
that permit storage, application, and even a full (approximate) arithmetic with log-
linear complexity. This data-sparse format is well suited to represent exactly sparse
matrices arising from discretizations of differential operators and to represent at
high accuracy matrices stemming from discretizations of many integral operators,
for example, those appearing in boundary integral equation methods.

The inverse of the finite element (FEM) stiffness matrix corresponding to
the Dirichlet problem for elliptic operators with bounded coefficients can be
approximated in the format of H-matrices with an error that decays exponentially
in the block rank employed. This was first observed numerically in [7]. Using
properties of the continuous Green’s function, [2] proves this exponential decay in
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the block rank up to the discretization error. The work [3] improves on the result [2]
in several ways, in particular, by proving a corresponding approximation result in
the framework of H2-matrices. Whereas the analysis of [2,3] is based on the solution
operator on the continuous level (e.g., by studying the Green’s function), the present
approach works on the discrete level. The exponential approximability in the block
rank shown here is therefore not limited by the discretization error. Moreover,
in [2, 3] the block rank r and the mesh width h are coupled by r � jlog˛ hj, which
is not needed in our case, since we prove an error estimate that is explicit in both
r and h. We mention that the approach taken here generalizes quite naturally to other
boundary conditions such as Neumann boundary conditions, which were not studied
in [2, 3] and have not been treated yet. The reader is referred to the forthcoming
work [5], where the case of higher order Galerkin discretizations is discussed as
well.

2 Main Results

Let ˝ � R
d , d 2 f2; 3g, be a bounded polygonal (for d D 2) or polyhedral (for

d D 3) Lipschitz domain with boundary 
 WD @˝ . We consider the bilinear form
a W H1

0 .˝/ �H1
0 .˝/! R associated with the Poisson problem, which is given by

a.u; v/ WD hru;rvi ; (1)

where h�; �i denotes the L2.˝/-scalar product. For its discretization, we assume that
˝ is triangulated by a quasiuniform mesh Th D fT1; : : : ; TNT g of mesh width h WD
maxTj2Th diam.Tj /. The elements Tj 2 Th are triangles (d D 2) or tetrahedra
(d D 3), and we assume that Th is regular in the sense of Ciarlet. The nodes are
denoted by xi 2 Nh, for i D 1; : : : ; NN . Moreover, the mesh Th is assumed to
be � -shape regular in the sense of diam.Tj / � � jTj j1=d for all Tj 2 Th. In the
following, the notation . abbreviates � up to a constant C > 0 which depends
only on ˝ , the dimension d , and � -shape regularity of Th. Moreover, we use ' to
abbreviate that both estimates . and & hold.

For the sake of definiteness, we consider the lowest order Galerkin discretization
of the bilinear form a.�; �/ by piecewise affine functions in S1;10 .Th/ WD S1;1.Th/ \
H1
0 .˝/ with S1;1.Th/ D fu 2 C.˝/ W ujTj 2 P1; 8Tj 2 Thg, taking as the

basis of S1;10 .Th/ the classical hat-functions associated with the interior nodes of the
triangulation. This basis is denoted by Bh WD f j W j D 1; : : : ; N g.

The Galerkin discretization of (1) results in a symmetric, positive definite matrix
A 2 R

N	N with

Ajk D
˝r j ;r k

˛
;  j ;  k 2 Bh:
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Our goal is to derive an H-matrix approximation BH of the inverse matrix
B D A�1. An H-matrix BH is a blockwise low rank matrix based on the concept
of “admissibility”, which we now introduce:

Definition 1 (bounding boxes and �-admissibility). A cluster � is a subset of the
index set I D f1; : : : ; N g. For a cluster � � I, we say that BR� � R

d is a bounding
box if:

(i) BR� is a d -hypercube with side length R� ,
(ii)  i � BR� for all i 2 � .

Let � > 0. A pair of clusters .�; �/ with �; � � I is �-admissible, if there exist
boxes BR� , BR� satisfying (i)–(ii) such that

maxfdiamBR� ; diamBR� g � � dist.BR� ; BR� /: (2)

Remark 1. By symmetry of a.�; �/, we can replace in (2) the “max” with “min” and
the assertions of the present note still hold true. We refer to [5] for details.

Definition 2 (blockwise rank-r-matrices). Let P be a partition of I � I and
� > 0. A matrix BH 2 R

N	N is said to be a blockwise rank-r matrix, if for every
�-admissible cluster pair .�; �/ 2 P , the block BHj�	� is a rank-r-matrix, i.e., it
has the form BHj�	� D X��YT

�� with X�� 2 R
j� j	r and Y�� 2 R

j� j	r . Here and
below, j� j denotes the cardinality of a finite set � .

The following theorems are the main results of this paper. Theorem 1 shows that
admissible blocks can be approximated by rank-r-matrices:

Theorem 1. Fix � > 0, q 2 .0; 1/. Let the cluster pair .�; �/ be �-admissible.
Then, for k 2 N there are matrices X�� 2 R

j� j	r , Y�� 2 R
j� j	r of rank r �

Cdim.2C �/dq�dkdC1 with

�
�A�1j�	� � X��YT

��

�
�
2
� Capx.1C �/h�d qk: (3)

Here, Capx; Cdim > 0 depend only on˝ , d , and the � -shape regularity of Th.

The approximations for the individual blocks can be combined to gauge the
approximability of A�1 by blockwise rank-r matrices. Particularly satisfactory
estimates are obtained if the blockwise rank-r-matrices have additional structure.
To that end, we introduce the following definitions.

Definition 3 (cluster tree). A cluster tree with leaf size nleaf 2 N is a binary tree
TI with root I such that for each cluster � 2 TI the following dichotomy holds:
either � is a leaf of the tree and j� j � nleaf, or there exist so called sons � 0, � 00 2 TI ,
which are disjoint subsets of � with � D � 0[� 00. The level function level W TI ! N0

is inductively defined by level.I/ D 0 and level.� 0/ WD level.�/ C 1 for � 0 a son
of � . The depth of a cluster tree is depth.TI/ WD max�2TI level.�/.
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Definition 4 (far field, near field, and sparsity constant). A partition P of I � I
is said to be based on the cluster tree TI , if P � TI � TI . For such a partition P
and fixed � > 0, we define the far field and the near field as

Pfar WD f.�; �/ 2 P W .�; �/ is �-admissibleg; Pnear WD PnPfar:

The sparsity constant Csp of such a partition is defined by

Csp WDmax

�

max
�2TI
jf� 2 TI W � � � 2 Pfargj ; max

�2TI
jf� 2 TI W � � � 2 Pfargj

	

:

The following Theorem 2 shows that the matrix A�1 can be approximated by
blockwise rank-r-matrices at an exponential rate in the block rank r :

Theorem 2. Fix � > 0. Let a partition P of I � I be based on a cluster tree TI .
Then, there is a blockwise rank-r matrix BH such that

�
�A�1 � BH

�
�
2
� CapxCsp.1C �/N depth.TI/e

�br1=.dC1/

: (4)

The constant Capx > 0 depends only on ˝ , d , and the � -shape regularity of Th,
while b > 0 additionally depends on �.

Remark 2. Typical clustering strategies such as the “geometric clustering”
described in [9] and applied to quasiuniform meshes with O.N / elements lead
to fairly balanced cluster trees TI of depth O.logN/ and feature a sparsity constant
Csp that is bounded uniformly in N . We refer to [9] for the fact that the memory
requirement to store BH is O

�
.r C nleaf/N logN

�
.

Remark 3. With the estimate 1

kA�1k2 . N�1, we get a bound for the relative error

�
�A�1 � BH

�
�
2

kA�1k2
. CapxCsp.1C �/depth.TI/e

�br1=.dC1/

: (5)

3 Approximation of Galerkin Solution on Admissible Blocks

In terms of functions and function spaces, the question of approximating A�1j�	�
by a low-rank factorization X��YT

�� can be phrased as one of how well one
can approximate, from low-dimensional spaces, the restriction to BR� of the
solution �h for data f that are supported by BR� . In order to study this question, let
suppf � BR� and consider the question of finding �h 2 S1;10 .Th/ such that

a.�h;  h/ D hr�h;r hi D hf; hi 8 h 2 S1;10 .Th/: (6)
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By coercivity of a.�; �/, the solution �h is well-defined. In the following, we extend
the Galerkin solution by zero outside of ˝ and denote this extension by �h as
well. Due to the boundary conditions, this extension belongs to H1.BR� /. For
�-admissible cluster pairs .�; �/, the restriction of the solution �h to BR� can be
approximated from a low-dimensional space. The heart of the matter is stated in the
following:

Proposition 1. Fix � > 0. Let the cluster pair .�; �/ be �-admissible. Fix q 2 .0; 1/.
Then, for each k 2 N there exists a sequence Vk of spaces with dimVk �
Cdim.2C �/dq�dkdC1 such that for arbitrary f with suppf � BR� \ ˝ , the
solution �h of (6) satisfies

min
v2Vk
k�h � vkL2.BR� / � Cbox.1C �/qkkf kL2.BR� \˝/: (7)

The constant Cdim > 0 depends only on ˝; d , and the � -shape regularity of Th,
while Cbox > 0 depends only on ˝ .

The proof of Proposition 1 will be given at the end of this section. The basic
steps are as follows: First, one observes that suppf � BR� \ ˝ as well as the
admissibility condition dist.BR� ; BR� / 	 ��1 maxfdiam.BR� /; diam.BR� /g > 0

imply the orthogonality condition

hr�h;r hi D hf; hiL2.BR� \˝/ D 0 8 h 2 S1;10 .Th/; supp h�BR� (8)

i.e. �h is discrete harmonic onBR� . Second, this observation will allow us to prove a
Caccioppoli-type estimate (Lemma 1) in which stronger norms of �h are estimated
by weaker norms of �h on slightly enlarged regions. Third, we proceed as in
[2, 3] by iterating an approximation result (Lemma 2) derived from the Scott-Zhang
interpolation of the Galerkin solution �h. This iteration argument accounts for the
exponential convergence (Lemma 3).

3.1 The Space Hh.D/ of Discrete Harmonic Functions

Let D � R
d be an open set. A function u 2 H1.D/ is called discrete harmonic on

D \˝ , if
Z

D\˝
ru � r'h dx D 0 8'h 2 S1;10 .Th/; supp'h � D \˝: (9)

For open sets D, we introduce a space of functions that are piecewise affine and
discrete harmonic on D \˝:

Hh.D/ WD fu 2 H1.D/W 9Qu 2 S1;10 .Th/ s.t. ujD\˝ D QujD\˝;

supp u � ˝; u is discrete harmonic on D \˝g:
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Clearly, the finite dimensional space Hh.D/ is a closed subspace ofH1.D/, and we
have �h 2 Hh.BR� / for the solution �h of (6) with suppf � BR� and bounding
boxes BR� ; BR� which satisfy the �-admissibility criterion (2).

A main tool in our proofs is the Scott-Zhang projection Jh W H1.˝/! S1;1.Th/;
introduced in [10], which preserves homogeneous Dirichlet boundary conditions,
i.e., it mapsH1

0 .˝/ to S1;10 .Th/. By !T WD S fT 0 2 Th W T \ T 0 ¤ ;g, we denote
the element patch of T , which contains T and all elements T 0 2 Th that have
a common node with T . Then, Jh has some local approximation property for
Th-piecewise H`-functions u 2 H`

pw.˝/

ku � Jhuk2Hm.T / � Ch2.`�m/
X

T 0�!T
juj2H`.T 0/ ; 0 � m � 1; m � ` � 2I (10)

here, C > 0 depends only on the � -shape regularity of Th and the dimension d .
For a box BR with diameter R, we introduce the norm

jjjujjj2h;R WD
�
h

R

�2
kruk2L2.BR/ C

1

R2
kuk2L2.BR/ ;

which is, for fixed h, equivalent to the H1-norm. The following lemma states a
Caccioppoli-type estimate for functions in Hh.B.1Cı/R//, where B.1Cı/R is a box of
side length .1Cı/R with the same barycenter as the boxBR obtained by a stretching
of BR by the factor .1C ı/.
Lemma 1. Let ı > 0 and h

R
� ı

4
. Let u 2 Hh.B.1Cı/R/ for a box B.1Cı/R. Then,

there exists a constant C > 0 which depends only on ˝ , d , and the � -shape
regularity of Th, such that

krukL2.BR/ � C
1C ı
ı
jjjujjjh;.1Cı/R : (11)

Proof. Let � be a smooth cut-off function with supp � � B.1Cı=2/R, � 
 1 on
BR, and kr�kL1.B.1Cı/R/

. 1
ıR

,
�
�D2�

�
�
L1.B.1Cı/R/

. 1
ı2R2

. Recall that h is the

maximal element width and 4h � ıR. Therefore, T � B.1Cı/R for all T 2 Th with
T \ supp � ¤ ;. With the abbreviate notation B WD B.1Cı/R, we have

kruk2L2.BR/ � k�ruk2L2.B/ D
Z

B

ru � r.�2u/� 2�ur� � ru dx:

By locality of the Scott-Zhang projection Jh W H1.˝/ ! S1;1.Th/, we observe
suppJh.�2u/ � B . The orthogonality relation (9) implies

ˇ
ˇ
ˇ
ˇ

Z

B

ru � r.�2u/dx
ˇ
ˇ
ˇ
ˇ D

ˇ
ˇ
ˇ
ˇ

Z

B

ru � r.�2u � Jh.�2u//dx
ˇ
ˇ
ˇ
ˇ

� krukL2.B/
�
�r.�2u � Jh.�2u//

�
�
L2.B/

:
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For the last term, we use the approximation property (10) and obtain

�
�r.�2u � Jh.�2u//

�
�2
L2.B/

. h2
X

T2Th
TB

�
�D2.�2u/

�
�2
L2.T /

. h2
�
�D2.�2u/

�
�2
L2.B/

. h2

 �
�D2�

�
�
L1.B/

k�ukL2.B/ C kr�kL1.B/ k�rukL2.B/

C kD�k2L1.B/kukL2.B/
�2

.
�

h

ı2R2
kukL2.B/ C

h

ıR
k�rukL2.B/

�2
:

Finally, we combine these estimates and use the Young inequality to see

k�ruk2L2.B/ . h

ıR
krukL2.B/

�
1

ıR
kukL2.B/ C k�rukL2.B/

�

C 1

ıR
kukL2.B/ k�rukL2.B/

� C h2

ı2R2
kruk2L2.B/ C C

1

ı2R2
kuk2L2.B/ C

1

2
k�ruk2L2.B/ :

Moving the term 1
2
k�ruk2L2.B/ to the left-hand side, we conclude the proof. ut

3.2 Low-Dimensional Approximation in Hh.D/

Let ˘h;R W .H1.BR/; jjj�jjjh;R/ ! .Hh.BR/; jjj�jjjh;R/ be the orthogonal projection,
which is well-defined since Hh.BR/ � H1.BR/ is a closed subspace.

Lemma 2. Let ı > 0 and u 2 Hh.B.1C2ı/R/. Assume h
R
� ı

4
. Let KH be an

(infinite) � -shape regular triangulation of Rd of mesh widthH and assume H
R
� ı

4
.

Let JH W H1.Rd / ! S1;1.KH / be the Scott-Zhang projection. Then, there exists a
constant Capp > 0 which depends only on ˝ , d , and � , such that

(i)
�
u �˘h;RJH u

�jBR 2 Hh.BR/ and ˘h;R.ujBR/ D ujBR
(ii) jjju �˘h;RJH ujjjh;R � Capp

1C2ı
ı

�
h
R
C H

R

� jjjujjjh;.1C2ı/R
(iii) dimW � Capp



.1C2ı/R

H

�d
, where W WD ˘h;RJHHh.B.1C2ı/R/.

Proof. The statement (2) follows from the fact that dimJH.Hh.B.1C2ı/R// '
..1C 2ı/R=H/d . For u 2 Hh.B.1C2ı/R/, we have u 2 Hh.BR/ as well and hence
˘h;R .ujBR/ D ujBR , which gives (2). It remains to prove (2): The assumption
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H
R
� ı

4
implies

SfK 2 KH W !K \ BR ¤ ;g � B.1Cı/R. The locality and
the approximation properties (10) of JH yield

1

H
ku � JHukL2.BR/ C kr.u � JHu/kL2.BR/ . krukL2.B.1Cı/R/

:

We apply Lemma 1 with QR D .1 C ı/R and Qı D ı
1Cı . Note that .1 C Qı/ QR D

.1C 2ı/R, and h
QR �

Qı
4

follows from 4h � ıR D Qı QR. Hence, we obtain

jjju �˘h;RJHujjj2h;R D jjj˘h;R .u � JHu/jjj2h;R � jjju � JHujjj2h;R

D
�
h

R

�2
kr.u � JHu/k2L2.BR/ C

1

R2
ku � JH uk2L2.BR/

. h2

R2
kruk2L2.B.1Cı/R/

C H2

R2
kruk2L2.B.1Cı/R/

�
�

Capp
1C 2ı
ı

�
h

R
C H

R

��2
jjjujjj2h;.1C2ı/R :

ut
By iterating this approximation result on suitable concentric boxes, we can

construct a low-dimensional subspace of the space Hh and the best approximation
from this space converges exponentially in the dimension, which is stated in the
following lemma.

Lemma 3. Let Capp be the constant of Lemma 2. Let q 2 .0; 1/, 	, R > 0, k 2 N.
Assume

h

R
� 	q

8kmaxf1; Cappg : (12)

Then, there exists a subspace Vk of Hh.BR/ with dimension

dimVk � Cdim

�
1C 	�1

q

�d
kdC1;

such that for every u 2 Hh.B.1C	/R/

min
v2Vk
jjju � vjjjh;R � qk jjjujjjh;.1C	/R : (13)

The constant Cdim > 0 depends only on ˝; d , and � -shape regularity of Th.
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Proof. We iterate the approximation result of Lemma 2 on boxes B.1Cıj /R, with

ıj WD 	
k�j
k

for j D 0; : : : ; k. We note that 	 D ı0 > ı1 > � � � > ık D 0.

We chooseH D 	qR

8kmaxfCapp;1g , where Capp is the constant in Lemma 2.

If h 	 H , then we select Vk D Hh.BR/. Due to the choice of H we have

dimVk .
�
R
h

�d . k
�
R
H

�d ' Cdim



1C	�1

q

�d
kdC1.

If h < H , we apply Lemma 2 with QRD.1Cıj /R and Qıj D 1
2k.1Cıj / <

1
2
. Note that

ıj�1 D ıjC 1
k

gives .1Cıj�1/R D .1C2 Qıj / QR. The assumption H
QR � 1

4k.1Cıj / D
Qıj
4

is fulfilled due to our choice ofH . For j D 1, Lemma 2 provides an approximation

w1 in a subspace W1 of Hh.B.1Cı1/R/ with dimW1 � C


.1C	/R
H

�d
such that

jjju � w1jjjh;.1Cı1/R � 2C
H

.1C ı1/R
1C 2 Qı1
Qı1

jjjujjjh;.1Cı0/R

D 4C
kH

R
.1C 2 Qı1/ jjjujjjh;.1C	/R � q jjjujjjh;.1C	/R :

Since u�w1 2 Hh.B.1Cı1/R/, we can use Lemma 2 again and get an approximation

w2 of u � w1 in a subspace W2 of Hh.B.1Cı2/R/ with dimW2 � C


.1C	/R
H

�d
.

Arguing as for j D 1, we get

jjju � w1 � w2jjjh;.1Cı2/R � q jjju � w1jjjh;.1Cı1/R � q2 jjjujjjh;.1C	/R :

Continuing this process k � 2 times leads to an approximation v WDPk
jD1 wi in the

space Vk WDPk
jD1 Wj of dimension dimVk � Cdim



1C	�1

q

�d
kdC1. ut

Now we are able to prove the main result of this section.

Proof (of Proposition 1). Choose 	 D 1
1C� , then the admissibility condition implies

dist.B.1C	/R� ; BR� / > 0, and we have �hjB.1Cı/R�
2 Hh.B.1Cı/R� /.

The Poincaré inequality implies

k�hk2H1.˝/ . kr�hk2L2.˝/ D hf; �hi . kf kL2.BR� \˝/ k�hkH1.˝/ :

Furthermore, with h
R�
< 1, we get

jjj�hjjjh;.1C	/R� .
�

1C 1

R�

�

k�hkH1.˝/ .
�

1C 1

R�

�

kf kL2.BR� \˝/ ;

and we have a bound on the right-hand side of (13). If the condition (12) is not
satisfied, we choose Vk D S

1;1
0 .Th/jBR� . If the condition (12) is satisfied, we get

with the space Vk from Lemma 3 and the admissibility condition that
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min
v2Vk
k�h � vkL2.BR� / � R� min

v2Vk
jjj�h � vjjjh;R� . .R� C 1/qk kf kL2.BR� \˝/

. .�C 1/diam.˝/qk kf kL2.BR� \˝/ :

ut

4 Proof of the Main Results

We use the approximation of �h from the low dimensional spaces, given in
Proposition 1, to construct a blockwise low-rank approximation and consequently
an H-matrix approximation of the inverse FEM-matrix. The remaining steps of the
proof of Theorem 1 follow the lines of [3]. Therefore, we only sketch the proof.

Proof (of Theorem 1). If Cdim.2C �/dq�dkdC1 	 min.j� j ; j� j/, we use the exact
matrix block X�� D A�1j�	� and Y�� D I 2 R

j� j	j� j. If Cdim.2C �/d q�dkdC1 <
min.j� j ; j� j/, let �i W L2.˝/ ! R be continuous linear functionals satisfying
�i . j / D ıij . We define the mappings

�� W L2.˝/! R
j� j; v 7! .�i .v//i2� and J� W Rj� j ! S

1;1
0 .Th/; x 7!

X

j2�
xj j :

Let Vk be the finite dimensional space from Proposition 1. We define X�� as an
orthogonal basis of the space V WD f��v W v 2 Vkg and Y�� WD A�1jT�	�X�� .
Then, the rank of X�� ;Y�� is bounded by dimVk � Cdim.2 C �/dq�d kdC1.
The error estimate follows from combining Proposition 1 with the stability estimate
hd=2 kxk2 . kJ�xkL2.˝/ . hd=2 kxk2, see [3, Theorem 2] for details. ut

Now, the estimates on each block can be put together to prove our main result.

Proof (of Theorem 2). Theorem 1 provides matrices X�� 2 R
j� j	r , Y�� 2 R

j� j	r ,
and we define the H-matrix BH by

BH D
�

X��YT
�� if .�; �/ 2 Pfar;

A�1j�	� otherwise:

On each admissible block .�; �/ 2 Pfar, we use the blockwise estimate of
Theorem 1. On the other blocks, the error is zero by definition. Now, an estimate for
the global spectral norm by the local spectral norms from e.g. [7, 9] leads to

�
�A�1� BH

�
�
2
� Csp


 1X

`D0
max

˚��.A�1�BH/j�	�
�
�
2
W .�; �/ 2 P; level.�/D`�

�

� CspCapx.1C �/h�d qkdepth.TI /:
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Defining b D � ln.q/

C
1=.dC1/
dim

qd=.dC1/ > 0, we obtain qk D e�br1=.dC1/
and hence

�
�A�1 � BH

�
�
2

. CapxCsp.1C �/N depth.TI/e
�br1=.dC1/

:

ut
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Multidomain Extension of a Pseudospectral
Algorithm for the Direct Simulation
of Wall-Confined Rotating Flows

G. Fontaine, S. Poncet, and E. Serre

Abstract In this work, we improve an existing pseudospectral algorithm, in order
to extend its properties to a multidomain patching of a rotating cavity. Viscous
rotating flows have been widely studied over the last decades, either on industrial
or academic approaches. Nevertheless, the range of Reynolds numbers reached
in industrial devices implies very high resolutions of the spatial problem, which
are clearly unreachable using a monodomain approach. Hence, we worked on the
multidomain extension of the existing divergence-free Navier-Stokes solver with a
Schur approach. The particularity of such an approach is that it does not require
any subdomain superposition: the value of a variable on the boundary between two
adjacent subdomains is treated as a boundary condition of a local Helmholtz solver.
This value is computed on a direct way via a so-called continuity influence matrix
and the derivative jump of an homogeneous solution computed independently
on each subdomain. Such a method is known to have both good scalability and
accuracy. It has been validated on two well documented three-dimensional rotating
flows.

1 Numerical Modelling

Let’s introduce the numerical fundamentals of the present method. A pseudospectral
method is used to solve the Navier-Stokes PDE system in an annular cavity, where
incompressibility is assured through a projection method.
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1.1 Pseudospectral Methods

Let ˝ be the inner points of an annular cavity and 
 the domain boundary.
The spatial approximation is of Chebyshev type in the axial z and radial r
directions, of Fourier-Galerkin type in the azimuthal � direction. Let� be a variable
(u; v;w; p; '), which can be written for any point .r; �; z/ 2 ˝ [ 
 as:

�NrN�Nz .r; �; z/ D
N�=2X

kD�N�=2

Nr�1X

nD0

Nz�1X

mD0
O�nkmTn .r/ Tm .z/ e

ik� (1)

where Tn and Tm are the Chebyshev polynomials of degrees n and m respectively.
Nr , Nz and N� are the approximation degrees in the radial, axial and azimuthal
directions, respectively. O�nkm is given by:

O�nkm D 1

K

1

ckc
0

m

K�1X

qD0

NX

iD0

MX

jD0

1

ci c
0

j

�
�
ri ; �q; zj

�
cos

�
in�

N

�

cos

�
im�

M

�

e�ik�q

(2)

c0 D c0
0 D cN D c

0

M D 2 and ck D c
0

m D 1 and for n D 1; : : : ; N � 1
and m D 1; : : : ;M � 1. This approximation is done using a Gauss-Lobatto point
distribution in the radial and axial directions with Fourier-Galerkin points in the
azimuthal direction. Thus derivatives can be estimated in the spectral space with a
good precision, allowing the use of efficient FFT algorithms. These methods are
called pseudospectral because of the non-linear diffusive terms, which must be
computed in the physical space.

1.2 Geometry

The velocities are made dimensionless according to the Reynolds number Re D
!R21=�, where ! is the angular velocity, R1 the outer radius of the domain,
� the kinematic viscosity. Hence the dimensionless geometry is defined by two
parameters: the aspect ratio of the cavity L D R1�R0

2h
and the curvature parameter

Rm D R1CR0
R1�R0 , where R1 and R0 are the outer and inner radii of the cavity,

respectively, and 2h its height [3].

1.3 Projection Method

Let’s consider the Navier-Stokes equations in primitive variables:
�
@V
@t
C .V:r/V

�

D �1
�
rp C ��VC F in � (3)

r:V D 0 in � (4)
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where V is the velocity vector with (u; v;w) its components in the cylindrical basis,
p the pressure, � the density and F a force term.

1.3.1 Time Discretization

A semi-implicit second order scheme has been chosen for the time discretization
with an implicit retarded Euler scheme of second order for the diffusive terms and
an explicit Adams-Bashforth evaluation for the non-linar convective terms.

1.3.2 Projection Scheme

For incompressible viscous flows, an equation is missing to describe the pressure
evolution. We deal with this particularity by using an improved projection
method [2] based on the Goda’s projection method. It requires three steps:

• First step: the computation of a preliminary pressure NpnC1 through this Poisson
equation:

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

r2 NpnC1 D r:Œ�2V:rVn C V:rVn�1 C FnC1� in �

@ NpnC1

@n
D n:Œ

�3WnC1 C 4Vn �Vn�1

2ıt
� 2V:rVn C V:rVn�1C

�.2�Vn ��Vn�1/C FnC1� on 


(5)

where W represents the boundary conditions.
• Second step: prediction step. Using the gradient of NpnC1, a preliminary velocity

field V� is computed through three Helmholtz solvers:

8
ˆ̂
<

ˆ̂
:

3V� � 4Vn C Vn�1

2ıt
C 2V:rVn � V:rVn�1 D �r NpnC1 C ��V� C FnC1 in �

V� DWnC1 on �

(6)

This velocity field does not a priori satisfy the incompressibility constraint in˝ .
The principle of the projection method is namely to project this field on a
divergence-free field.

• Third step: pseudo-pressure calculation and correction. An intermediate variable
called pseudo-pressure ' is computed through a Poisson solver:

' D 2ıt

3
.pnC1 � NpnC1/
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As r:VnC1 D 0, the Poisson problem to solve for ' is:
8
ˆ̂
<

ˆ̂
:

r2' D r:V�

@'

@n
D 0

(7)

Corrected pressure and velocity fields may be then evaluated at time step nC 1:
8
ˆ̂
<

ˆ̂
:

pnC1 D pnC1 C 3

2ıt
'

VnC1 D V� � r'
(8)

1.4 Resolution Algorithm: Complete Matricial Diagonalisation
Technique

For both Poisson and Helmholtz solvers, complete matricial diagonalisation tech-
nique is used. For the Poisson solver, this technique exhibits a null-eigenvalue
problem, which is treated by a “source term reset” technique ([7]), for indexes in
the operators corresponding to the null-eigenvalue index. According to the variable
spatial evaluation, each Helmholtz/Poisson solving operation in the physical tridi-
mensional domain is equivalent to N� bidimensional Helmholtz/Poisson solving
operations in the .r; z/ plane, each k 2 ŒŒ1IN��� being the azimuthal mode in the
flow spectrum [3]. For each mode k and for each variable � D .u; v;w; p; '/, the
following bidimensional system has then to be solved:

�
� O� � �k O� D Sk in Œ�1; 1� � Œ�1; 1�

A� D b on 

(9)

O� being the Fourier transform of � in the azimuthal direction. The azimuthal
properties of the differentiation matrixes are treated in � so as to allow the �
operator to be independent of the azimuthal mode. The azimuthal dependance of
what will follow is only linked to �’s one. Hence we will limit the multidomain
approach to bidimensional problems, because the extension to tridimensional flows
is quite immediate, thanks to spectral properties in the Fourier-Galerkin direction.

2 Multidomain Approach: Influence Matrix Technique

This technique is a direct Schur multidomain technique used by Raspo [1] for rotat-
ing flows using the vorticity-stream function formulation. It requires the patching of
the cavity into subdomains without subdomain covering. The values of each variable
on the frontier between two subdomains are treated as boundary conditions in the
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Fig. 1 Example of a multidomain decomposition in the radial direction with three subdomains

Helmholtz local solvers, the particularity of the influence matrix technique being
the determination of this condition through a direct matrix computation.

2.1 Multidomain Geometry

We will limit the discussion to a radial multidomain decomposition (Fig. 1), because
the curvature terms vary only along this direction. The generalization of this
technique to an axial decomposition is quite immediate. We introduce the local
aspect ratio of the subdomain m denoted L.m/ and its local curvature parameter
Rm.m/ for m 2 ŒŒ1IM�� (M the number of subdomains), which satisfy:

MX

mD1
L.m/ D L (10)

Rm.m/ � 1 D Rm.mC1/ C 1 (11)

Local derivation matrixes are deduced from these, in order to have a good
approximation for the curvature terms from one subdomain to another and to adapt
the local mapping to the one which would be used in a monodomain approach.

2.2 Multidomain Decomposition of the Solutions

Let� be either .u; v;w; p; '/,˝.m/ and˝.n/ two adjacent subdomains, � the border
between these two subdomains and � the value of � on �. For both subdomains, the
local problems to be solved may be written as:

�
�.m/� .m/ � �.m/� .m/ D S.m/ in ˝.m/

A.m/� .m/ D b.m/ on 
 .m/
(12)
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�
�.n/� .n/ � �.n/� .n/ D S.n/ in ˝.n/

A.n/� .n/ D b.n/ on 
 .n/ (13)

The resulting problem is that the boundary conditions to be imposed on the parts of

 .m/ and 
 .n/ corresponding to � are unknown. To find �, we choose to ensure
both C 0 and C 1 continuities through �. � is written as the combination of an
homogeneous solution Q� and a boundary solution � : � D Q� C � .
On ˝.m/:

8
<̂

:̂

�.m/ Q�.m/ � �.m/ Q�.m/ D S.m/ in ˝.m/

A.m/ Q�.m/ D b.m/ on 
 .m/

Q�.m/ D 0 on �.m/
(14)

8
<̂

:̂

�.m/� .m/ � �.m/� .m/ D 0 in ˝.m/

A.m/� .m/ D 0 on 
 .m/

� .m/ D �.m/ on �.m/
(15)

On ˝.n/:
8
<̂

:̂

�.mC1/ Q�.n/ � �.n/ Q�.n/ D S.n/ in ˝.n/

A.m/ Q�.n/ D b.n/ on 
 .m/

Q�.n/ D 0 on �

(16)

8
<̂

:̂

�.n/� .n/ � �.n/� .n/ D 0 in ˝.m/

A.n/� .n/ D 0 on 
 .n/

� .n/ D � on �

(17)

If � is assumed to be known, one can verify easily that (Eq. 12)D(Eq. 14)C(Eq. 15)
and (Eq. 13)D(Eq. 16)C(Eq. 17).

2.3 The Influence Matrix Technique

Let’s consider the boundary solution � . It can be written as the linear combination
of Green’s elementary solutions G

.m/

k� , defined for each subdomain˝.m/ by:

8
ˆ̂
<

ˆ̂
:

�.m/G
.m/

k� � �.m/G .m/

k� D 0in ˝.m/

A.m/G
.m/

k� D 0on 
 .m/

G
.m/

k� .�l 2 �.m// D ıkl 8l 2 ŒŒ1IN���
(18)
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Assuming that � is the only boundary (i.e. there are only two subdomains˝.m/ and
˝.n/), the boundary solution should be written as:

8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�.m/ D Q�.m/ C
N�X

kD1
�kG

.m/

kE in ˝.m/

�.n/ D Q�.n/ C
N�X

kD1
�kG

.n/

kS in ˝.n/

(19)

Q�.m/[ Q�.n/ is obviously continuous through �, but not @
Q�.m/
@r
[ @ Q�.n/

@r
. As the boundary

solution is continuous too, �.m/[�.n/ should be continuous for any value of �. The
influence matrix technique aims to find � in order to make it C 0 and C 1 through �.
We denote @r D @

@r
. This C 1-continuity problem on � writes:

A@r�
.1/.�/ � A@r�

.2/.�/ D
N�X

lD1
�l Œ@rG

.2/

lS .�/ � @rG .1/

lE .�/� (20)

This can be written in a matrix form:

D DM� (21)

where Dk is the derivative (time-dependent) jump vector and M the continuity
influence matrix of the problem. Note that it depends only on the time-independent
Green solutions, so it just has to be computed in pre-processing. This matrix is
diagonal-dominant. If there are more than two frontiers in the domain, the influence
matrix is built by blocks. The block dimension is then Nfront , the number of
frontiers. Each diagonal block is a Green derivative jump vector along each frontier.
Some non-diagonal blocks appear, resulting locally of the influence of two frontiers
on one another through a single subdomain, as shown on Fig. (2).
If M is inversible, we can find � as:

� DM �1D (22)

This is achieved using LAPACK subroutines. This vector is then used as a boundary
condition on � in the local Helmholtz solvers to get a C 0 and C 1 � .m/ [ �.n/

solution.

2.4 Singularity of the Poisson-Problem

The Neuman-Poisson problem has an infinity of solutions defined up to an additive
constant. As Dirichlet boundary conditions are implemented on the frontiers, this
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Fig. 2 Block definition of the influence matrix for an 1-D multidomain decomposition

problem no longer exists locally. Nevertheless, it is transposed to the influence
matrix of the Poisson-problem of the k D 0 Fourier mode, which has a null-
eigenvalue. It is treated by a diagonalisation technique of this modal matrix. The
derivative jump is expressed in the diagonalisation basis and its i0-th component is
set to zero, if i0 is the null eigenvalue index, as proposed by Abide and Viazzo [7].

3 Spatial Accuracy

Let’s consider a domain ˝ subdivided in M subdomains with Nr grid points in
each subdomain. The total number of points may vary either with M or Nr . For
.r; z; �/ 2 Œ�1; 1� � Œ�1; 1� � Œ0; 2��, let’s consider the divergence free analytical
steady solution introduced by Raspo et al. [2]:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

uana.r; z; �/ D 1

2�
sin.�r/2sin.2�z/cos.�/

vana.r; z; �/ D � 1

2�
sin.�r/2sin.2�z/sin.�/

wana.r; z; �/ D 1

2�L
sin.�z/2sin.2�r/cos.�/

pana.r; z; �/ D Œcos.�z/C cos.�r/�cos.�/

(23)
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Fig. 3 Spatial accuracy
evolution with the total
number of points
.NrNzN�M/ when Nr varies:
spectral convergence

Fig. 4 Spatial accuracy
evolution with the total
number of points
.NrNzN�M/ when M varies:
no spectral convergence

Figures 3 and 4 show the decrease of the quadratic truncature error L2 when
one increases Nr and M respectively. In the first case, the spectral convergence
is obtained. As we impose only a C 1 continuity through the frontier, the spatial
accuracy increases indeed faster with Nr than with M , because in its last case,
it multiplies the number of interfaces and so the number of C d discontinuities
(d 	 2).

4 Physical Results

We consider two multidomain rotating flow configurations: a high aspect ratio
Taylor-Couette system and an interdisk rotor-stator flow.



270 G. Fontaine et al.

Fig. 5 Iso-value v D 0:5

for a Wavy Vortex Flow at
 D 1:36

Fig. 6 Iso-value w D 0:005

for a 3D rotor-stator flow at
Re D 25;000: 17 spiral arm
structures

4.1 Axial Decomposition: Taylor-Couette Flow

The numerical parameters are fixed toM D 7, .Nr;N� ;Nz/ D .35; 24; 85/ (in each
subdomain) with a time step set to ıt D 10�3. We consider a Taylor-Couette
cavity with rotating terminal disks characterized by L D 0:025 and Rm D 12:33.
We introduce the parameter  D Ta=Tac , where Tac is the critical Taylor number at
which “Taylor rolls” appear. For  D 1:36, the flow becomes tridimensional (Wavy
Vortex Flow, Fig. 6) with a dominant Fourier mode k D 3, which is in perfect
agreement with the previous DNS results of Serre et al. [6].

4.2 Radial Decomposition: Interdisk Rotor-Stator Flow

We consider the rotor-stator interdisk cavity considered by Poncet et al. [5] for
which L D 6:26 and Rm D 1:8. The domain is decomposed into four subdomains
with .Nr ;N� ;Nz/ D .45; 48; 45/ in each subdomain and a time step equal to
ıt D 10�4. The transition to tridimensional flow appears at Re D 25; 000 with
the appearance of 17 spiral arms, whose characteristics fully agree with the ones
obtained by [5].



Multidomain Extension of a Pseudospectral Algorithm for the Direct. . . 271

References

1. Raspo, I.: A direct spectral domain decomposition method for the computation of rotating flows
in a T-shape geometry. Comput. Fluids 32, 431–456 (2003)

2. Raspo, I., Hugues, S., Randriamampianina, A., Bontoux, P.: A spectral projection method for
the simulation of complex three-dimensional rotating flows. Comput. Fluids 31, 745–767 (2002)

3. Serre, E.: Instabilité de couche-limite dans les écoulements confinés en rotation. Simulation
numérique directe par une méthode spectrale de comportements complexes. Phd thesis, Univ.
Aix-Marseille II (2000)

4. Peyret, R.: Spectral methods for incompressible viscous flow. Springer, New-York (2002)
5. Poncet, S., Serre, E., Le Gal, P.: Revisiting the two first instabilities of the flow in an annular

rotor-stator cavity. Phys. Fluids 21, 064106 (2009)
6. Serre, E., Sprague, M., Lueptow, M.: Stability of Taylor-Couette flow with radial throughflow.

Phys. Fluids 20, 034106 (2008)
7. Abide, S., Viazzo S.: A 2D compact fourth-order projection decomposition method. J. Comp.

Phys. 206, 252–276 (2005)



A Comparison of High-Order Time Integrators
for Highly Supercritical Thermal Convection
in Rotating Spherical Shells

F. Garcia, M. Net, and J. Sánchez

Abstract The efficiency of implicit and semi-implicit time integration codes based
on backward differentiation and extrapolation formulas for the solution of the
three-dimensional Boussinesq thermal convection equations in rotating spherical
shells was studied in Garcia et al. (J Comput Phys 229:7997–8010, 2010) at
weakly supercritical Rayleigh numbers R, moderate (10�3) and low (10�4) Ekman
numbers, E , and Prandtl number � D 1. The results presented here extend the
previous study and focus on the effect of � and R by analyzing the efficiency of
the methods for obtaining solutions at E D 10�4, � D 0:1 and low and high
supercritical R. In the first case (quasiperiodic solutions) the decrease of one order
of magnitude does not change the results significantly. In the second case (spatio-
temporal chaotic solutions) the differences in the behavior of the semi-implicit codes
due to the different treatment of the Coriolis term disappear because the integration
is dominated by the nonlinear terms. As in Garcia et al. (J Comput Phys 229:7997–
8010, 2010), high order methods, either with or without time step and order control,
increase the efficiency of the time integrators and allow to obtain more accurate
solutions.

1 Introduction

Thermal convection in rotating spherical geometries dominates the dynamics of
several astrophysical and geophysical phenomena such as the generation of the
magnetic field exhibited by celestial bodies or the cloud patterns and the differential
rotation seen at the surface of the major planets.
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There are several experimental and numerical difficulties in the study of thermal
convection in spherical geometry. In the first case, the radial gravity can be
reproduced by means of either an electrostatic radial field or by the centrifugal
force. In the second case non-stationary tridimensional waves arise at the onset
of convection due to the boundary curvature, and thus finding a solution requires
very high resolutions. Frequently, as in [12], and [13], a two-dimensional annular
geometry is used to approximate the real problem.

Due to the increase of the computing power, many numerical papers, [4,8,17,18]
among others, most of them based on pseudo-spectral methods and second order
time integration, have been published. The most exhaustive tridimensional studies
consist of numerical evolutions of periodic, quasi-periodic, and even turbulent flows,
mainly with stress-free boundary conditions to avoid the formation of Ekman layers.
These boundary conditions are inappropriate for comparison with laboratory studies
and to model systems like the Earth’s outer core, where thin Ekman boundary-layers
exist near the rigid boundaries.

For a deeper understanding of the origin of the laminar flows and their depen-
dence on parameters, pseudoarclength continuation methods [15,16], and the linear
stability analysis of the time dependent solutions [7, 11] have been successfully
applied thanks to the use of high-order time integration methods which provide
accurate enough solutions. On the other hand, high-order time integration can be
also useful for evolving turbulent flows efficiently.

The performance of several high order implicit-explicit (IMEX) schemes, includ-
ing those based on backward differentiation formulae (BDF), were exhaustively
studied in [2] for the linear advection-diffusion one-dimensional problem. A sta-
bility analysis of the multistep methods up to fourth order were also performed. In
that study the diffusive term is taken implicitly and the advection term explicitly.
For the IMEX-BDF schemes, they showed that larger time-steps are allowed for the
second order scheme when diffusion dominates the dynamics. In contrast, the third
and fourth-order schemes can take larger time-steps when the explicit advection
term becomes relevant. In addition, and in contrast to the widely used second order
Crank-Nicolson and Adams-Bashforth scheme (CNAB2), the authors of [2] argued
that IMEX-BDF methods are useful for reducing the aliasing effects when using
pseudo-spectral methods [3], due to the strong damping of the high frequency
modes, which appear when computing the nonlinear terms. Other similar class
of IMEX methods with better stability regions are those based on Runge-Kutta
(RK) schemes [1]. However, when compared with the multistep BDF, RK-based
methods would require one additional nonlinear evaluation for each stage. This is
not affordable in problems for which the evaluation of the nonlinear part is the most
demanding task.

The efficiency of different time integration methods to solve the thermal convec-
tion equations in rotating spherical shells was studied in [6]. The same IMEX-BDF
time integration pseudo-spectral codes, with the nonlinear terms of the equations
taken explicitly in order to avoid solving nonlinear equations at each time step,
are used in this study. The Coriolis term is treated either semi-implicitly or fully
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implicitly, giving rise to the different algorithms analyzed. The use of iterative
methods facilitates the implementation of a suitable order and time stepsize control.

Two periodic solutions, of differentE (the rest of parameters are the same) were
integrated in [6] to highlight the influence of the Ekman number. Extending the
previous study, a periodic and a quasiperiodic solution, computed with different �
are integrated to address the Prandtl number influence. In addition, by only varying
the Rayleigh number, the efficiency of the time integration methods is studied when
considering a spatio-temporal chaotic solution.

The rest of the article is organized as follows. In Sect. 2, the formulation of the
problem and the spatial discretization of the equations are introduced. In Sect. 3, the
time discretization schemes are described briefly. In Sect. 4 the differences between
the constant stepsize methods are shown, and the study of the implicit and semi-
implicit variable stepsize and variable order methods is reported. Finally, the paper
closes in Sect. 5 with a brief summary of the main conclusions.

2 Mathematical Model and Spatial Discretization

The thermal convection of a spherical fluid shell differentially heated, rotating about
an axis of symmetry with constant angular velocity � D ˝k, and subject to radial
gravity g D ��r, where � is a constant, and r the position vector, is considered. The
mass, momentum and energy equations are written by using the same formulation
and non-dimensional units as in [11]. The units are the gap width, d D ro�ri , for the
distance, �2=�˛d4 for the temperature, and d2=� for the time, � being the kinematic
viscosity, ˛ the thermal expansion coefficient, and ri and ro the inner and outer radii,
respectively. The velocity field v is expressed in terms of toroidal, � , and poloidal,
˚ , scalar potentials v D r�.�r/Cr�r�.˚r/, and� D T�Tc is the temperature
perturbation from the conduction state v D 0; Tc.r/ D T0CR�=�.1��/2r , with
r D jjrjj2.

With the functions X D .�;˚;�/ expanded in spherical harmonic series up to
degree L, the equations written for their complex coefficients are

@t�
m
l D Dl�

m
l C 1

l.lC1/
�
2E�1 �im�m

l � ŒQ˚�ml
� � Œr � r � .w � v/�ml


; (1)

@tDl˚
m
l D D2

l ˚
m
l ��m

l C 1
l.lC1/

�
2E�1 �imDl˚

m
l C ŒQ��ml

�

CŒr � r � r � .w � v/�ml

; (2)

@t�
m
l D ��1Dl�

m
l C ��1l.l C 1/R�.1� �/�2r�3˚m

l � Œ.v � r/��ml ; (3)

with boundary conditions

�m
l D ˚m

l D @r˚m
l D �m

l D 0; (4)
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corresponding to non-slip perfect thermally conducting boundaries, and where
wDr � v is the vorticity field.

The spherical harmonic coefficients of the operatorQ D Qu CQl are

ŒQuf �ml D � l.l C 2/cmlC1DC
lC2f

m
lC1; ŒQlf �ml D � .l � 1/.l C 1/cml DC

1�l f
m
l�1; (5)

with DC
l D @r C

l

r
; cml D

�
l2 �m2

4l2 � 1
�1=2

; and Dl D @2rr C
2

r
@r � l.l C 1/

r2
:

The governing parameters are the Rayleigh number R, the Prandtl number � , the
Ekman numberE , and the radius ratio �. They are defined by

R D �˛�Td4

	�
; E D �

˝d2
; � D �

	
; � D ri

ro
;

where 	 is the thermal diffusivity, and �T the difference of temperature between
the inner and outer boundaries.

The coefficients of the nonlinear terms of Eqs. (1)–(3) are obtained following [8].
In the radial direction, a collocation method on a Gauss-Lobatto mesh of Nr C 1
points is employed (Nr � 1 being the number of inner points). A large system of
N D .3L2 C 6LC 1/.Nr � 1/ ordinary differential equations must be advanced in
time.

3 Time Integration Methods

The time integration methods used in this paper were described in detail in [6] so
only the main ideas are exposed in the following. In order to simplify the notation,
Eqs. (1)–(3) are written in the form

L0 Pu D L uCN .u/;

where u D .�m
l .ri /; ˚

m
l .ri /; �

m
l .ri //, and L0 and L are linear operators including

the boundary conditions. The former is invertible, and the latter, for any of the
schemes used, includes the diffusive, the buoyancy, and part of the Coriolis terms to
be specified below. The operator N , which will be treated explicitly in the IMEX-
BDF formulae, will always contain the nonlinear terms, and the rest of the Coriolis
terms.

The IMEX-BDF formulae mentioned before are related to the BDF [5]. They
obtain unC1 � u.tnC1/ on a given time level tnC1, n D 0; 1; 2; : : : ; from the
previous approximations un�j , j D 0; 1; : : : ; k � 1, using the following k-steps
formula
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�

I � �tn

�0.n/
L �1
0 L

�

unC1 D �tn

�0.n/
L �1
0 pn;k�1.tnC1/ �

Pq0n;k.tnC1/
Pln;k.tnC1/

; (6)

where q0n;k.t/ D qn;k.t/ � unC1ln;k.t/, being qn;k the interpolating polynomial of
degree at most k, such that qn;k.tn�j / D un�j , for j D �1; 0; : : : ; k � 1, and ln;k
the polynomial of degree at most k taking the value 1 at tnC1, and 0 at tn�j , for j D
0; 1; : : : ; k � 1. Moreover pn;k�1 is the interpolating polynomial of degree at most
k�1, such that pn;k�1.tn�j / D N .un�j /, for j D 0; 1; : : : ; k�1, I is the identity
operator, and �0.n/ D Pln;k.tnC1/�tn, being �tn D tnC1 � tn, n D 0; 1; 2; : : : ; the
time step.

If the time step is constant, the IMEX-BDF formulae (6) reduces to

�

I � �t
�0

L �1
0 L

�

unC1 D
k�1X

iD0

˛i

�0
un�i C

k�1X

iD0

ˇi�t

�0
L �1
0 N .un�i /; (7)

where the coefficients ˛i , ˇj and �0 do not depend on n, and are listed, for instance,
in [15]. In this case the matrix of the system to be solved does not change with n. On
the other hand, changing the stepsize allows the use of formulas of different orders
(step numbers) k, while maintaining accuracy. Then the integration can be started
with k D 1 (and small�t0), when the lack of previously computed values precludes
the use of higher order formulas, and then increase the order (and the step length)
as the integration advances and previous approximations un�j are available. For the
fixed-step-size codes, the starting values uj , j D 1; : : : ; k � 1 are obtained by time
integration from tj�1 to tj with a VSVO (variable step-size variable order) code
with sufficiently small tolerances "a and "r , which are, respectively, the tolerances
below which the absolute and relative values of the local (time discretization) errors
are required. The local error control of the IMEX VSVO methods is performed as
usual, i.e. following [9]. If a time step is selected giving a point outside the stability
region, the accumulation of local errors will enforce the method to select smaller
time steps to ensure the stability. Details on the strategy carried out to control the
stepsize and the order of the VSVO codes, such as the estimations of the local error
of the k-order formula, are outlined in [6].

Once the nonlinear terms are evaluated, Eqs. (1)–(3) decouple for each azimuthal
wave number m, thus, at every time step, L C 1 linear systems of the form
HmUm D V m; m D 0; : : : ; L, have to be solved. The vectors Um and V m

contain, respectively, the unknowns and the right hand side of the linear system
derived from the IMEX-BDF formulae (6) or (7), with azimuthal wave number m.
The dimension of the matricesHm is 6.L�mC1/.Nr�1/ and its structure depends
on which terms of Eqs. (1)–(3) are treated implicitly (see the Appendix A of [6] for
further details).

The inclusion of the diagonal parts of the Coriolis term containing im�m
l and

im˚m
l in L , and of Q in N , gives block-diagonal matrices Hm, with blocks

of dimension 6.Nr � 1/. The solution of these linear systems is performed by a
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direct LU method. From now on, the time discretization with this treatment of the
operators will be called the Q-explicit method.

By adding Qu or Qd (see Eq. 5) to L , the matrices Hm become upper or
lower block-triangular matrices, respectively. They can be solved, with the same
memory requirements and number of operations than the Q-explicit method, by
using backward or forward block substitution. In order to implement this possibility
in a symmetric way, the two options are used alternately, that is, one step is
performed with Qu implicit and Qd explicit, and vice-versa in the following step.
From now on, this time discretization will be called the Q-splitting method.

By setting Q totally implicit the operator N only includes the nonlinear terms,
and then the matrices Hm become block-tridiagonal. From now on this method
will be called the Q-implicit method. A direct block method for solving these
linear systems involves about three times the memory storage required for solving
the block-diagonal systems, and at least three times the computational cost of
performing the LU decomposition. As the solution of the linear systems is not the
most demanding task to advance one time step, we decided to solve it iteratively
without storing the matrices to cope with higher resolutions, and to implement
a variable size and order version, which requires updating the LU factorizations.
Iterative methods based on Krylov techniques, can be used efficiently, if they are
preconditioned with the block diagonal matrix. We have chosen the GMRES method
because it is suitable for nonsymmetric linear systems and it has good convergence
properties [14]. The initial approximation for solving the linear system is obtained
by extrapolation from the previous steps. The increase in the cost of solving the
linear systems may be offset by the increase of the time stepsize.

The integration with a constant time step can be unnecessarily expensive because
the step must be short enough to cope with possible fast transients. To avoid this
situation, a refined procedure is to use a VSVO method [9]. In the derivation of the
VSVO IMEX-BDF formula, the matrices of the linear systems depend on the current
time step. They can be solved efficiently, if a Krylov method with a preconditioning
matrix depending on a fixed time step �t� is used. When the convergence of the
iterative linear solver degrades doing more than 10 iterations, the preconditioning
matrix can be updated with the current time step instead of restarting. In the case
of the VSVO methods the tolerance for the GMRES residual is asked to be two
orders of magnitude lower than that required for the time integration. The rate
of convergence depends on the order k and the time step. For example, when
integrating with low order k D 2 it converges in about 6–10 iterations, while with
k D 5 only 2 iterations are required. All the semi-implicit methods described before
have been implemented with constant time-step size, and with variable time-step
size and order using our own codes (except the Q-splitting VSVO method). From
now on, the VSVO implementations of the Q-explicit and Q-implicit methods will
be called Q-explicit VSVO andQ-implicit VSVO, respectively.

The last option considered is a fully implicit treatment of the nonlinear terms
with a VSVO formulation of the BDF. This leads to the solution of a nonlinear
system of equations at each step. This solution is obtained by means of a Newton-
Krylov method using GMRES to solve the Newton correction equations with zero
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initial seed, see [10] for further details. From now on this method will be called fully
implicit method. We will use the DLSODPK code of the ODEPACK package [10].
The linear systems to be solved in this case depend not only on the current time
step, but also on the current solution. As before, they can be preconditioned by
the block-diagonal matrices computed with a fixed time step �t�. If during the
integration the current time step is different from �t� by one order of magnitude
the preconditioner is recomputed with the current time step. As in the semi-implicit
VSVO methods, the tolerance imposed on the residuals depends on the tolerance
imposed on the time integration. The cost of the nonlinear evaluations performed
to approximate the Jacobian matrix products degrade the performance of the fully
implicit methods.

4 Results

To study the effect of the Prandtl number � and the Rayleigh number R on the
efficiency of the time integration schemes presented in the previous section, we
integrate three different cases with � D 0:35 and E D 10�4. The first one (case
S1) was studied in [6] (there called C2) and corresponds to a periodic traveling
wave of wave number m D 7, computed at � D 1 and R D 800; 000. In the
second case (S2) we integrate a quasiperiodic three frequency wave with m D 6

computed at smaller Prandtl number � D 0:1 and R D 264; 000. On both cases
R is slightly supercritical and the solutions are quasi-geostrophic and symmetric
with respect to the equator. Finally, a highly supercritical spatio-temporal chaotic
solution, computed with � D 0:1 and R D 2; 000; 000, is considered for the third
case (S3). The numerical resolutions employed for the S1, S2 and S3 cases are,Nr D
48 and L D 63 (N D 577; 442 equations), Nr D 32 and L D 54 (N D 281; 263

equations), and Nr D 50 and L D 84 (N D 1; 083; 650 equations), respectively.
To make our comparisons the initial transient has been discarded, and all the

test runs are started with the same initial condition obtained after the solution has
smoothed. To obtain it, the Q-implicit VSVO method with very low tolerances was
used. Then the system (1–4) is evolved from the new initial condition to a final time
tf . In the S1 and S2 cases tf D 0:1, while in the S3 case tf D 0:01.

To check the efficiency of the different schemes the relation between the relative
error, and the run time is studied. The former is defined as

".u/ D jju� ur jj2
jjur jj2 ; (8)

where u is the solution we want to check, and ur is an accurate reference solution
obtained with the Q-implicit VSVO method. More precisely, ur is obtained with
tolerances "a D "r equal to 10�13 in the S1 and S2 cases, and to 10�11 in the S3
case. The decrease of the relative error (8) is achieved by decreasing the stepsize
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Fig. 1 (a) The relative error, ".u/, plotted versus the time step �t for constant time step
integration, orders k from 2 to 5, and the S1 case. (c), (e) Same as (a), for the S2 and S3 cases,
respectively. (b) The relative error, ".u/, plotted versus the run time for the Q-splitting and VSVO
methods, and the S1 case. (d), (f) Same as (c), for the S2 and S3 cases, respectively. The symbols
mean: Q-explicit (C, solid line), Q-splitting (	, dotted line), Q-explicit VSVO (C, solid line),
Q-implicit VSVO (�, dashed line), and DLSODPK (ı, dash-dotted line)

in the case of fixed stepsize methods, or by decreasing the tolerances for the local
errors in the case of the VSVO methods.

For the constant time stepsize methods of orders 2–5 (except the Q-implicit
method for the sake of simplicity) the relative error ".u/ is plotted against the
time step in Fig. 1a,c,e. The efficiency curves are shown in Fig. 1b,d,f. In the latter,
".u/ is plotted against the run time in seconds for the results of the VSVO codes
together with the constant stepsize Q-splitting method for comparison purposes.
Plots (a) and (b), (c) and (d), and (e) and (f), are for the S1, S2, and S3 cases,
respectively.
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As mentioned previously, the study of the S1 case (Fig. 1a–b) was performed
in [6] so only a few words are commented here. For a given constant time stepsize,
the Q-explicit and the Q-splitting methods of all the orders have almost the same
computational cost, and therefore the higher order methods should be preferred.
In addition, the Q-splitting method has shown itself to be more stable, allowing for
larger time steps (see Fig. 1a), and hence, better efficiency. For the latter method,
Fig. 1b shows that at approximately ".u/ < 10�9, the order k D 5 is the most
efficient but if ".u/ > 10�9 the most efficient order is 4. The fully implicit method
using DLSODPK is always more expensive than the Q-implicit VSVO methods
because each iteration of the linear solver, and of the Newton’s method requires
an expensive evaluation of the non-linear terms. In all the results shown, it takes
between 1 and 3 N iterations, and for each of them 1 or 2 GMRES iterations. TheQ-
explicit VSVO method is also less expensive than DLSODPK, except for the higher
".u/, for which the cost of the former increases due to a decrease of the solver
performance. The abrupt decrease of efficiency of the Q-implicit VSVO method
close to ".u/ D 10�3 was related in [6] with the shape of the stability regions of
the BDF for constant stepsizes. A similar result was found in [2] in the framework
of the one dimensional linear advection-diffusion problem. When the implicit term
dominates (as occurs with the Q-implicit method at weak supercritical conditions)
second order IMEX-BDF schemes allow larger time-steps than those of third or
fourth order. The decrease of efficiency prevents the Q-implicit VSVO method
from being as efficient as the Q-splitting method in the region of intermediate
errors. However, for the latter, some previous experiments have to be performed
to determine the optimal time step.

The behavior of the methods for integrating the S2 case (Fig. 1c–d) is similar to
that of the S1 case, despite they are less accurate. Although their Prandtl numbers
differ in one order of magnitude, the results seem reasonable because in both cases
the solutions are smooth functions of time and, in all the methods, the terms of
Eqs. (1–3) containing the Prandtl number are treated implicitly. However, for a given
order, the error ".u/ of the fixed step methods is almost two order of magnitude
greater in the S2 case. The same occurs for the VSVO methods. This differences
could be due to S2 being slightly more complicated, in the sense that it has two
additional frequencies. Nevertheless, accurate solutions with ".u/ down to 10�11
can be obtained in a reasonable time.

As expected, the accuracy for integrating the spatio-temporal chaotic solution of
the S3 case drastically decreases with respect to the other cases. This decrease is
also due to the larger number of time steps needed by the methods to obtain the
solution at the desired tf . This is shown in Fig. 1e–f where ".u/ down to 10�5, and
10�9, can be obtained with the fixed step, or the VSVO methods, respectively. Apart
from the accuracy, the behavior of the methods is clearly different to that exhibited
in the previous cases, at weakly supercritical regimes, where the Ekman number
controls the dynamics. At highly supercritical R, the Ekman number plays minor
role and the way the Coriolis term is treated becomes less important. According to
this, the results obtained with the fixed time step Q-explicit, and the Q-splitting
methods are nearly the same (Fig. 1e), and the same occurs for the results of the
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VSVOQ-explicit andQ-implicit methods. Since the solution is strongly nonlinear,
the efficiency of the fully implicit VSVO method becomes comparable to the semi-
implicit VSVO methods, and better than the low order fixed step methods (Fig. 1f).
As commented in [6] this is because the fully implicit method allows significantly
larger time steps (nearly three times in this case), but which are computationally
expensive. It is worth mentioning that in the S3 case the VSVO methods obtain
solutions up to four orders of magnitude more accurate than the fixed time methods,
while in the previous cases with the VSVO methods the improvement is of two
orders of magnitude. Despite these differences with respect to S1 and S2, in all
cases the largest attainable values of the fixed �t correspond to methods with order
higher than two, obtaining therefore more accurate solutions in less time. Again,
this behavior can be related with that observed in [2] for the one dimensional
linear advection-diffusion problem. In the regime where the explicit term starts to
dominate (and this occurs in the Q-explicit and Q-splitting methods for the cases
S1, S2 and in the Q-implicit method for the case S3), larger �t were obtained for
the IMEX-BDF schemes of orders 3 and 4 rather than for order 2.

5 Conclusions

In the time integration study [6] of the thermal convection in fast rotating fluid
spherical shells, the possibility of handling implicitly the Coriolis term, and even
the nonlinear term, thanks to the low memory requirements of the iterative Krylov
methods used to solve the linear systems, was shown. That study focused on the
influence of the Ekman number on the efficiency of the methods proposed. The
present study extends the previous one by analyzing the influence of the Prandtl and
the Rayleigh numbers.

The results presented here, computed at low E D 10�4, show that the behavior
of the methods for integrating a weakly supercritical oscillatory type of solution
(periodic S1 or quasiperiodic S2) is very similar, despite their Prandtl number differ
in one order of magnitude. At this regime, the Ekman number plays a major role, and
a more implicit treatment of the Coriolis term becomes appropriate. In contrast, at
strongly supercritical regime (S3), an implicit treatment of the Coriolis term does not
improve the integration, reflecting that the Ekman number plays a minor role. The
solutions are obtained with less accuracy, reflecting their spatio-temporal chaotic
character.

In all cases (S1, S2, and S3) shown here (and also in the cases of [6]), the
implementation of high order methods does not reduce the efficiency of the time
integrators, and allows to obtain more accurate solutions. In addition, for the Q-
splitting or Q-explicit fixed-step methods the largest time-steps are obtained with
order higher than two, as occurs with the IMEX-BDF schemes applied in [2] to the
one dimensional linear advection-diffusion problem when the dominant term of the
equation is handled explicitly.
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In practice the most efficient method depends strongly onR (also onE), but more
weakly on � , at least in the oscillatory regime. It depends also on the errors accepted
for a solution, and on the type of solution. For instance, if one is just interested
in obtaining solutions by direct numerical simulations (DNS), the best choice is
to implement a fourth order Q-splitting method, and performing some previous
experiments to determine the optimal time step. However, if the time integration is
part of a continuation process, and/or one is interested in calculating the stability
of the solutions, low errors must be requested to the time integration. Then the
Q-implicit VSVO method will probably be the most efficient option. Moreover,
since the lower run times correspond to the Q-implicit VSVO method with high
tolerances, it might also be useful to pass long uninteresting transients, where having
a control of the time stepsize might be important.

The results presented in this paper suggest that IMEX methods could also be
efficiently used in other type of nonlinear problems with other spatial discretizations
if the stiff part can be included in the implicit term of the scheme, and the cost
of solving the corresponding linear systems, whatever their structure, becomes
comparable to the evaluation of the explicit part.
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High Order Methods with Exact Conservation
Properties

René Hiemstra and Marc Gerritsma

Abstract Conservation laws, in for example, electromagnetism, solid and fluid
mechanics, allow an exact discrete representation in terms of line, surface and
volume integrals. In this paper, we develop high order interpolants, from any basis
that constitutes a partition of unity, which satisfy these integral relations exactly,
at cell level. The resulting gradient, curl and divergence conforming spaces have
the property that the conservation laws become completely independent of the basis
functions. Hence, they are exactly satisfied at the coarsest level of discretization and
on arbitrarily curved meshes. As an illustration we apply our approach to B-splines
and compute a 2D Stokes flow inside a lid driven cavity, which displays, amongst
others, a point-wise divergence-free velocity field.

1 Introduction

Conventional numerical methods, in particular finite difference and nodal finite
element methods, expand their unknowns in terms of nodal interpolations only,
and run into trouble when it comes to conservation. This can lead to instabilities,
and perhaps more dangerously, to internal inconsistencies, such as the violation of
fundamental conservation principles. Where instabilities lead to outright failure of
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a b c

Fig. 1 Conservation, by definition, is a relation between a global ‘measurable’ quantity associated
with a geometric object and another global ‘measurable’ quantity associated with its boundary. In
R
3 we distinguish between: (a) The fundamental theorem of calculus; (b) the Stokes circulation

theorem; and (c) and the Gauss divergence theorem. Once we recognize that not all physical
variables are associated with nodes, but to curves, surfaces and volumes as well, we can exactly
satisfy the balance laws, that relate these different quantities, in the discrete setting [8]

a numerical method, inconsistencies often lead to nonphysical solutions that can go
unnoticed by the human eye [12].

To capture the behavior of physical phenomena well, a discretization method
should not only approximate the spaces of the infinite dimensional system, but
should also follow the structure induced by the relations between them; in particular
the structure induced by the fundamental conservation or balance laws, which in
vector calculus are known as the fundamental theorem of calculus, the Stokes
circulation theorem and the Gauss divergence theorem, depicted in Fig. 1.

We follow the recent advances in Discrete Exterior Calculus [4], Finite Element
Exterior Calculus [1], Compatible [3, 5, 6] and Mimetic Methods [2, 7–11, 13, 14,
16]. These methods do not focus on one particular physical problem, but identify
and discretize the underlying structure that constitutes a wide variety of physical
field theories. They are said to be ‘compatible’ with the geometric structure of the
underlying physics; i.e. they ‘mimic’ important properties of the physical system
under consideration. This leads, amongst others, to naturally stable and consistent
numerical schemes that have discrete conservation properties by construction and
are applicable to a wide variety of physical theories. Furthermore, they offer insight
into the properties of existing numerical schemes.

In this paper we develop arbitrary order interpolants – starting from any basis that
constitutes a partition of unity – which satisfy the fundamental integral theorems
exactly. The gradient, curl and divergence conforming spaces have the property
that the conservation laws become completely independent of the basis functions.
This means they are exactly satisfied at the coarsest level of discretization and on
arbitrarily curved meshes. It is remarkable that inf-sup stability is automatically
guaranteed when this physical structure is encoded in the discretization [5, 9, 10].
To illustrate our approach, we develop compatible spaces using B-splines, and use
these to solve a Stokes flow inside a lid driven cavity.
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a b c

Fig. 2 Discrete differentiation. (a) Discrete gradient. (b) Discrete curl. (c) Discrete divergence

2 Discrete Conservation

Conservation, by definition, states a balance between a quantity associated with a
geometric object and another quantity associated with its boundary. For instance,
mass inside a control volume is only conserved if the in- and out going mass fluxes
associated with its boundary surfaces cancel each other out. This is exactly the
Gauss divergence theorem depicted in Fig. 1c. Important to note is, that the relation
is discrete to begin with, since it is represented in terms of integral quantities.
Furthermore, metric concepts such as size or shape of the control volume do not
affect the discrete relation; hence the balance is purely topological. Perhaps this is
more easily visualized in case of the fundamental theorem of calculus. Since the
integral of the gradient of a temperature field along the curve in Fig. 1a, is equal to
the difference between the discrete temperatures at the boundary points, the relation
is independent of the specific path chosen to connect points a and b. Analogously,
the rotation inside a surface is equal to the circulation around the bounding curve,
according to the Stokes circulation theorem. Again this relation is purely topological
since only the connectivity between the surface and the curve matters, not the size
and shape of the surface. Figure 2 illustrates how the intrinsic discrete nature of the
fundamental integral theorems can be used to our advantage in a numerical method.
By associating discrete physical quantities to nodes, as well as edges, faces and
volumes, we can obtain discrete matrix representations of the gradient, curl and
divergence operators, which are completely free of approximation.

Remark 1. The global quantities associated with the discrete geometric elements
in Fig. 2 are discrete real numbers. We actually do not require them to be of the
integral kind. Hence, the discrete balance depicted in Fig. 2 is more general then the
one depicted in Fig. 1.

By partitioning the computational domain into many of these sub-domains, i.e. in
sub-volumes, faces, edges and nodes, as depicted in Fig. 3, we can obtain a matrix
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a b

Fig. 3 The curved domain ˚.˝0/ D ˝ (a) has the same topology as the reference domain ˝0.
Partitioning of ˝0 into points, edges, faces and volumes (b)

representation of the gradient, curl and divergence for the whole computational
domain. These sparse matrices contain solely the values zero, positive and negative
one, denoting the connectivity between adjacent geometric elements, see [8]. Since
these relations depend solely on mesh connectivity, they are the same on a square
Cartesian mesh as on a highly curved domain, and remain unaltered under mesh
deformation.

3 High Order Continuous Representations

In the previous section we have seen that we can represent the balance equations,
represented by the fundamental integral theorems of vector calculus, without any
approximation. Furthermore, we obtained a discrete matrix representation for the
gradient, curl and divergence operators. Since the structure of these relations is
inherently discrete and does not depend on metric considerations such as length,
angle, area and volume, we do not expect that basis functions play any role here.
Continuous representations are however required to be able to include metric
and material dependent relations, i.e. the constitutive equations of a physical
theory.

In this section we develop arbitrary order polynomial spaces which follow
the discrete structure explained in the previous section. These spaces should thus
conform to the rules of discrete differentiation, as delineated in Fig. 2.
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Consider a one-dimensional partitioning in terms of a set of nodes fPi gniD0,
connected by edges Li D ŒPi�1; Pi �, i D 1 to n, where Pi > Pi�1. Let Th,
for example a uni-variate temperature distribution, be expanded as,

Th D
nX

iD0
˛i Ni .x/ with

nX

iD0
Ni.x/ D 1; (1)

where the degrees of freedom ˛i and the basis functionsNi.x/ are associated
with the nodes Pi , for i D 0 to n.

To take the gradient of Th, as depicted in Fig. 2a, we seek a representation
which looks like,

dTh
dx
D

nX

iD1
ˇi Mi .x/ where ˇi D ˛i � ˛i�1: (2)

Here the degrees of freedom ˇi and basis functions Mi.x/ can be associated
with edges Li , for i D 1 to n.

But what do these edge functions [7] actually look like? By working
backwards from the desired representation we easily find the representation
of the edge functions in terms of derivatives of the set fNi.x/gniD0:

dTh
dx
D

nX

iD0
˛i

dNi

dx
D

nX

iD1
.˛i � ˛i�1/ Mi.x/

D
nX

iD1
˛i Mi.x/ �

n�1X

iD0
˛i MiC1.x/

D ˛n Mn.x/C
n�1X

iD1
˛i .Mi.x/ �MiC1.x// � ˛0 M1.x/

Comparing the left and the right hand side we can conclude that the edge
functions are defined according to,

M1.x/ D �dN0

dx
; MiC1.x/ D Mi.x/ � dNi

dx
; Mn.x/ D dNn

dx
: (3)

Remark 2. Note that (3) is equivalent to Mi.x/ D �Pi�1
jD0

dNj
dx D

Pn
jDi

dNj
dx .

Therefore,
Pi�1

jD0
dNj
dx C

Pn
jDi

dNj
dx D d

dx

Pn
jD0 Nj .x/ D 0, which is satisfied by any

basis in (1) with a partition of unity. Hence, (3) is valid for nodal interpolants such as
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ba

Fig. 4 Lagrange polynomials of degree 4 and derived edge functions [7] of degree 3 on the interval
Œ0; 4�. While Lagrange polynomials satisfy Ni.Pj / D ıij , the edge basis functions posses a unit
integral property,

R

Lj

Mi .x/dx D ıij. (a) Lagrange nodal functions. (b) Lagrange edge functions

Lagrange polynomials, as well as any other basis with a partition of unity that does
not have the interpolation property, examples of which are Bernstein polynomials
and B-splines.

Remark 3. ˇi � .˛i � ˛i�1/ D 0, from (2), represents a conservation law and is
completely independent of the basis functions. This means these are exactly satisfied
independent of the shape or coarseness of the mesh.

Remark 4. In the special case of a nodal interpolant, Ni.Pj / D ıij, e.g. Lagrange
polynomials, then ˛i in (1) represents the value (e.g. temperature) in node Pi .
Furthermore, it can be shown, see Fig. 4, that

Z Pj

Pj�1

Mi .x/dx D ıij: (4)

The coefficient ˇi , associated with the edge function Mi.x/ in (2), represents the
line integral over the edge Li .

Remark 5. In the general case when the basis is not a nodal interpolant,Ni.Pj / ¤
ıij (e.g. Bernstein polynomials or B-splines), then ˛i is merely a discrete value
associated with node Pi , and does not directly have a physical interpretation.
Similarly, the coefficient ˇi cannot be attributed any physical meaning either. As
depicted in Fig. 5, a property similar to (4) exists however,

Z

span
Mi.x/dx D 1: (5)

These type of edge functions fMi.x/gniD1 were first derived by Gerritsma [7], from
Lagrange polynomials fNi.x/gniD0, see Fig. 4. Buffa et. al in [3], on the other hand,
made clever use of the fact that B-splines are naturally induced by such a discrete
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ba

Fig. 5 Cubic B-splines and derived quadratic edge functions on the interval Œ0; 4�. The edge
functions derived from B-splines are actually scaled B-splines of 1ı less and have the unit integral
property:

R

supp
Mi.x/dx D 1. (a) B-spline node functions. (b) B-spline edge functions

structure; with B-splines fNi.x/gniD0 of order p, the edge functions fMi.x/gniD1
turn out to be scaled B-splines of order p � 1, see Fig. 5. Edge functions based on
Lagrange polynomials have been successfully employed in [10,11,13,14,16], while
those based on B-splines, in [3, 5, 6].

The main contribution of this paper is the generalization of the property in
(2) to any basis which constitutes a partition of unity. Hence, a common
framework for high order compatible discretizations can be built, independent
of the particular basis chosen.

Multivariate spaces can readily be constructed using tensor products of the uni-
variate node fNi.x/gniD0, and edge functions fMi.x/gniD1. In˝ 0 � R

2 we can define
the following finite dimensional spaces,

V .P /

h .˝ 0/ WD span
˚
Ni.x

1/Nj .x
2/
�n;m
iD0;jD0 (6)

V
.L/

h .˝ 0/ WD span
˚
Ni.x

1/Mj .x
2/
�n;m
iD0;jD1 � span

˚
Mi.x

1/Nj .x
2/
�n;m
iD1;jD0

(7)

V
.S/

h .˝ 0/ WD span
˚
Mi.x

1/Mj .x
2/
�n;m
iD1;jD1 : (8)

Here the basis functions in V
.P /

h .˝ 0/ � H1.˝ 0/ are associated with mesh

nodes; those in V
.L/

h .˝ 0/ � H.�/.˝ 0/ with mesh edges and basis functions in

V
.S/

h .˝ 0/ � L2.˝ 0/ with mesh faces. The generalization to R
3 is straightforward.

In this case we also have tensor product basis functions associated with sub-volumes
in the mesh.
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Remark 6. The gradient, curl and divergence can be applied by differencing the
degrees of freedom, as in Fig. 2, and subsequently taking the appropriate linear
combination with node, edge, face or volume functions [6, 7].

4 Application to Stokes Flow in a Lid Driven Cavity

We take B-splines as an initial basis to derive node, edge and face functions,
and apply the resulting spaces in (6)–(8) to the vorticity-velocity-pressure (VVP)
Galerkin formulation of Stokes flow [6, 10, 11] in a lid driven cavity. Since no ana-
lytical solution to this problem exist, we compare with the benchmark results of [15].

Consider domain ˝ D Œ0; 1�2 filled with an in-compressible fluid of viscosity
� D 1. On the top of the domain we apply a tangential velocity u.x; 1/ D 1, while
on the other sides of the domain the tangential velocity is set to zero. The result
is a clockwise rotating flow with small counter-rotating eddies in the two lower
corners. Because of the discontinuity of the velocity in the two upper corners, both
the vorticity and pressure are infinite at these places, which makes the lid driven
cavity flow a challenging test case. Under the stated assumptions, the Stokes flow in
˝ can be described by the following equations,

��u C grad? p D f and � u D 0; (9)

where u is the velocity field, p the pressure, and f the right hand side forcing. Using
the operator splitting ��u D rot curl?u � grad? � u, the in-compressibility
constraint, � u D 0, and introducing the vorticity !, we obtain the first order
system,

! D curl?u; rot ! C grad?p D f � u D 0 (10)

Remark 7. curl? and grad? are defined as the L2 adjoint operators of rot and �,
respectively. While the former requires approximation, the latter allows an exact
discrete representation in terms of a sparse difference matrix, see Fig. 2.

Multiplying the equations in (10) by test functions ˛, ˇ and � and using integration
by parts to replace the curl? and grad? by their L2 adjoint operators rot and� [6,10,
11], we obtain the mixed problem: find

˚
! 2 H1.˝/;u 2 H.�/.˝/; p 2 L2.˝/�

for all
˚
˛ 2 H1.˝/;ˇ 2 H0.�/.˝/; � 2 L2.˝/

�
, such that

� .˛; !/˝ C .rot˛;u/˝ D
Z

@˝

˛ u � n d
 (11)

.ˇ ; rot !/˝ C .�ˇ; p/˝ D .ˇ ; f/˝ (12)

.�;� u/˝ D 0 (13)

By substituting the infinite dimensional spaces by their finite dimensional counter

parts,
n
˛h; !h 2 V .P /

h .˝ 0/;ˇh;uh 2 V .L/

h .˝ 0/; �h; ph 2 V .S/

h .˝ 0/
o
, we obtain the

following system of algebraic equations,
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Fig. 6 Lid driven cavity flow using a 60 	 60 uniform bi-cubic B-spline mesh. Note that the
divergence of the velocity field is at machine precision. (a) stream function. (b) vorticity. (c)
pressure. (d) divergence of velocity

0

B
@

�M.P / DT
.rot/M.L/ ˛

M.L/D.rot/ ˛ DT
.div/M.S/

˛ M.S/D.div/ ˛

1

C
A

0

@
!.P /

u.L/
p.S/

1

A D
0

@
B.L/.u/
M.L/.f/
˛

1

A (14)

Remark 8. The degrees of freedom of the vorticity !.P / are associated with mesh
nodes P ; the velocity degrees of freedom u.L/ with mesh edges L; and the degrees
of freedom of the pressure p.S/ with mesh faces S .

Remark 9. D.rot/ and D.�/ are sparse matrix representations of the rot and �, see
Fig. 2, which are exact and completely metric free.

Remark 10. M.P /, M.L/ and M.S/ are mass matrices resulting from an inner product

on V .P /

h , V .L/

h and V .S/

h , and are computed using Gauss numerical integration.

Remark 11. The problem is closed by imposing the normal velocity at the boundary
strongly, while the tangential velocity is weakly enforced (boundary term B.L/.u/).
Finally, given the small size of (14) we use a direct solver.

Figure 6 shows results for the stream function, vorticity, pressure and the
divergence of the velocity, on a bi-cubic uniform B-spline mesh of maximum
regularity and 60 � 60 degrees of freedom. Observe that the divergence of the
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a b

c d

e f

Fig. 7 Comparison of numerical approximation (blue) with benchmark results of [15] (red).
Horizontal (a,b,c) and vertical (d,e,f) velocity profile at center-lines of cavity for a 9 	 9 uniform
B-spline mesh of order 1, 3 and 5. (a) 9x9, p D 1. (b) 9x9, p D 1. (c) 9x9, p D 3. (d) 9x9,
p D 3. (e) 9x9, p D 5. (f) 9x9, p D 5

velocity is point-wise zero in the whole domain. Furthermore no special treatment
has been given to the corner singularities.

In Fig. 7 the horizontal component of the velocity has been plotted along the
vertical center-line .0:5; y/ and the vertical component along the horizontal center-
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line .x; 0:5/. The results confirm very well with the benchmark results of [15] even
though the mesh is very coarse (9�9 uniform B-spline grid of polynomial order 1, 3
and 5). Note that the integral values seem to match very well, already for the lowest
order approximation. This is a direct consequence of the conservation properties
that we have build into the basis. In fact, it does not depend on the specific type
of basis functions used, but rather on the relations between the different function
spaces. Similar results have been obtained in [11], where the spaces in (6,7,8) are
derived from Lagrange polynomials.
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Spectral Element Discretization for the Vorticity,
the Velocity and the Pressure Formulation
of the Axisymmetric Navier-Stokes Problem

Chahira Jerbi and Nahla Abdellatif

Abstract We deal with the Navier-Stokes equations set in a three-dimensional
axisymmetric bounded domain with non standard boundary conditions which
involve the normal component of the velocity and tangential component of
the vorticity. The axisymmetric property of the domain allows to reduce the
three-dimensional problem into a two-dimensional one. We write a variational
formulation with three independent unknowns: the vorticity, the velocity and the
pressure. For the discretization, we use the spectral element methods, which are
well-adapted here. We show the well-posedness of the obtained formulations and
we establish error estimates for the three unknowns which proves the convergence
of the method.

1 Introduction

We consider, in this paper, the Navier-Stokes problem set in a three-dimensional
axisymmetric bounded domain and provided with non standard boundary
conditions, which are given on the normal component of the velocity and tangential
component of the vorticity. This problem reads:
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8
ˆ̂
<

ˆ̂
:

���QuC .Qu:r/QuCr QP D Qf in Q̋ ;
divQu D 0 in Q̋ ;
Qu: Qn D 0 on @ Q̋ ;

curlQu ^ Qn D 0 on @ Q̋ :
(1)

where Q̋ is a bounded connected three-dimensional axisymmetric domain, the
generic point in Q̋ is given by cylindrical components .r; �; z/ 2 RC����; ���R.
� is the viscosity of the fluid, Qu D .ur ; u� ; uz/ the velocity, QP the pressure and
Qf is the data, which represent the density of body forces. When the data is

axisymmetric, problem (1) is equivalent to two decoupled systems [9]. In the first
one, the unknowns are the components ur and uz of the velocity and pressure P ,
we will focus on. The second is a Laplace problem where the unknown is the
velocity component u� .

At first, this problem was studied in [1] but in an unspecified bounded domain,
then it was taken again by Azaiez et al. [10] in a bounded domain included in R

2 or
R
3 in formulation .u; p/, though the formulation that we consider here deals with

three unknowns: vorticity, velocity and pressure. The first numerical analysis relying
on this formulation has been realized in [13] and [8] for finite element methods and
it has been extended to the case of spectral methods in [3] and [10], using analogues
of Nédélec’s finite elements [6].

The discretization method which we use here is the spectral element methods,
which are well adapted in domain decomposition. The main tool for the analysis
of the nonlinear discrete problem is the theorem of Brezzi, Rappaz and Raviart [5].
We first prove the existence of a discrete solution. Then, by combining the results
in [5, 11] and [7], we establish error estimates between the continuous solution and
the discrete one, for the three unknowns.

The paper is organized as follows. In the next section, we introduce the varia-
tional formulation corresponding to the Navier-Stokes problem and we derive the
existence of a solution. In Sect. 3, we study the discrete problem and we prove the
well-posedness of this problem. We derive error estimates between the continuous
solution and the discrete one in Sect. 4.

2 The Vorticity, Velocity and Pressure Formulation

The domain Q̋ is obtained by rotating a two-dimensional domain˝ around the axis
fr D 0g. We note by 
0 the intersection of the boundary @˝ with the axis r D 0,

 D @˝n
0 and by n the normal to 
 in the plane .r; z/. We introduce the vorticity
! as a new unknown: ! D curlu. The bidimensional problem resulting from (1)
reads:
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8
ˆ̂
ˆ̂
<̂

ˆ̂
ˆ̂
:̂

�curlr! C ! � uCrP D f in ˝;

divru D 0 in ˝;

! D curlu in ˝;

u � n D 0 on 
;
! D 0 on 
:

(2)

The operators divr, curl and curlr are given by: for u D .ur ; uz/,
divru D @rurCr�1urC@zuz and curlu D @ruz�@zur . And for any scalar function ',
we define curlr' D

�
@z';�r�1@r .r'/

�
. We refer to [11], for details.

In order to write the variational formulation of problem (2), we define the
following weighted Sobolev spaces: For all s in Z andm in N:

L2s .˝/ D
�

v W ˝ ! R measurable =

Z

˝

jv.r; z/j2rsdrdz <1
	

Hm
1 .˝/ D

˚
v 2 L21.˝/ = @lr@

m�l
z v 2 L21.˝/ 80 � l � m

�
;

H1.curl;˝/ D ˚v 2 L21.˝/2 = curlv 2 L21.˝/
�
;

H1.divr ;˝/ D
˚
v 2 L21.˝/2 = divrv 2 L21.˝/

�
;

H1̆ .divr;˝/ D fv 2 H1.divr;˝/= v � n D 0 on 
 g ;
H1.curlr ;˝/ D

˚
' 2 L21.˝/ = curlr' 2 L21.˝/2

�
;

V 1
1 .˝/ D H1

1 .˝/\L2�1.˝/ and V 1
1˘.˝/ D

˚
v 2 V 1

1 .˝/ = v D 0 on 

�
:

The spaces V 1
1 .˝/, H1.divr ;˝/ andH1.curlr ;˝/ are respectively provided with:

kvkV 11 .˝/ D .k@rvk
2

L21.˝/
C k@zvk2L21.˝/ C kvk

2

L2
�1.˝/

/
1
2 ;

kvkH1.divr ;˝/ D


kvk2

L21.˝/
C kdivrvk2L21.˝/

� 1
2
;

k'kH1.curlr ;˝/ D


k'k2

L21.˝/
C kcurlr'k2L21.˝/2

� 1
2
:

We note that the two norms k:kH1.curlr ;˝/ and k:kV 11 .˝/ are equivalent on V 1
1 .˝/.

The variational problem reads:
Find .!; u; p/ 2 V 1

1˘.˝/ �H1̆ .divr;˝/ � L21;0.˝/ such that:

8
<

:

a.!; uI v/CK.!; uI v/C b.v; p/ D hf; vi ; 8v 2 H1̆ .divr;˝/;

b.u; q/ D 0; 8q 2 L21;0.˝/;
c.!; u; '/ D 0; 8' 2 V 1

1˘.˝/:
(3)
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where h:; :i is the duality pairing betweenH1̆ .divr;˝/ and its dual space. The forms
a.:; :I :/, b.:; :/ and c.:; :I :/ are defined by:

a.!; u; �/ D �
Z

˝

.�:curlr!/.r; z/rdrdz; b.v; q/ D �
Z

˝

.divrv/q.r; z/rdrdz;

c.!; u; '/ D
Z

˝

!.r; z/'.r; z/rdrdz �
Z

˝

.u:curlr'/.r; z/rdrdz:

andK is the trilinear form given by: K.!; uI v/ D
Z

˝

.! � u/ :v.r; z/rdrdz:

Using density results, we first prove that problems (2) and (3) are equivalent. To
prove the existence and the uniqueness of the solution of problem (3), we define the
two following kernels V and W :

V D ˚v 2 H1̆ .divr;˝/; 8q 2 L21;0.˝/ = b.v; q/ D 0� ;
W D ˚.#; v/ 2 V 1

1˘.˝/ � V = 8' 2 V 1
1˘.˝/; c.#; vI'/ D 0� ;

and the reduced problem: Find .!; u/ in W such that:

8v 2 V; a.!; uI v/CK.!; uI v/ D hf; vi : (4)

By using standard arguments and properties on the linear forms, proven in [3]
and [11], we can prove the existence and uniqueness of a solution for problem (4).
So for any function f in H1̆ .divr;˝/

0 such that

c˘��2 kf kH˘

1 .divr;˝/0
< 1; (5)

Problem (3) admits a unique solution .!; uIp/ in V 1
1˘.˝/�H1̆ .divr;˝/�L21;0.˝/,

such that

k!kV 11 .˝/ C kukH1.divr;˝/
C ��1 kpkL21.˝/
� c��1 kf kH˘

1 .divr;˝/0



1C ��2 kf kH˘

1 .divr;˝/0

�
: (6)

3 Discrete Navier-Stokes Problem

From now on, we assume that˝ is the rectangle �0; 1Œ���1; 1Œ and admits a partition
without overlap into a finite number of subdomains:

˝ D
K[

kD1
˝k and ˝k \˝k0 D ; ; 1 � k < k0 � K; such that:
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1. Each ˝k , 1 � k � K is a rectangle.
2. The intersection between two subdomains˝k and ˝k0 , 1 � k < k0 � K , if not

empty, is either a vertex or a whole edge of both˝k and˝k0 .

The discrete spaces DN , CN and MN which approximate, respectively,
H1̆ .divr;˝/, V 1

1˘.˝/ and L21;0.˝/ are defined from local discrete ones, for an
integer N 	 2 and 1 � k � K , by:
DN D

˚
vN 2 H1̆ .divr;˝/I vN j˝k 2 PN;N�1.˝k/ � PN�1;N .˝k/; 1 � k � K

�
,

CN D
˚
'N 2 V 1

1˘.˝/I 'N j˝k 2 PN .˝k/; 1 � k � K
�

and
MN D

˚
qN 2 L21;0.˝/I qN j˝k 2 PN�1.˝k/; 1 � k � K

�
:

where Pn;m .˝k/ is the space of restrictions to ˝k of polynomials with degree � n
with respect to r and � m with respect to z, for any nonnegative integers n and m.
To calculate the integrals involved in the discrete forms, we define .�i ; �i /,
0 � i � N the nodes and weights of the Gauss-Lobatto quadrature formula on
Œ�1; 1� for the measure d� and .�j ; !j /, 1 � j � N C 1 their analogues for the
measure .1 C �/d�, see [9] for a more explicit definition, we need two different
quadrature formulas. The quadrature formula on Œ�1; 1� is given by:

8� 2 P2N�1.Œ�1; 1�/;
Z 1

�1
�.�/d� D

NX

iD0
�.�i /�i ; (7)

and by setting r D 1
2
.1C�/, we define the quadrature formula with the measure rdr:

8� 2 P2N�1.Œ0; 1�/;
Z 1

0

�.r/rdr D 1

4

NC1X

jD1
�.rj /!j : (8)

We denote by .˝k/1�k�K0 the rectangles such that @˝k \ 
0 ¤ ¿ and by
.˝k/K0C1�k�K those such that @˝k \ 
0 D ¿. Denoting by Fk the affine mapping
that sends �0; 1Œ�� � 1; 1Œ onto ˝k, 1 � k � K0 and sends � � 1; 1Œ2 onto ˝k ,
K0 C 1 � k � K . We define the discrete scalar product: For all functions u and v
such that uk D uj˝k and vk D vj˝k are continuous on˝k , 1 � k � K , by:

..u; v//N D
K0X

kD1

mes.˝k/

4

NX

iD0

NC1X

jD1
u ı Fk.rj ; �i /:v ı Fk.rj ; �i /�i!j :

C
KX

kDK0C1

mes.˝k/

4

NX

iD0

NX

jD0
u ı Fk.�j ; �i /:v ı Fk.�j ; �i /�i�j :

We denote by I kN , 1 � k � K , the Lagrange interpolation operators associated with
the nodes Fk.rj ; �i /1�j�NC1;0�i�N for 1 � k � K0 and with Fk.�j ; �i /0�j;i�N
for K0 C 1 � k � K , with values in PN .˝k/, 1 � k � K . For each
function � continuous on N̋ , IN� denotes the function such that IN�j˝k D I kN�,
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1 � k � K . Using the Galerkin method with numerical integration, we build from
the continuous problem (3) the following discrete problem:

Find .!N ; uN IpN / in CN �DN �MN such that

8
ˆ̂
<

ˆ̂
:

aN .!N ; uN ; vN /CKN.!N ; uN ; vN /;
CbN .vN ; pN / D ..f; vN //N ; 8vN 2 DN ;

bN .uN ; qN / D 0; 8qN 2 MN ;

cN .!N ; uN ; 'N / D 0; 8'N 2 CN :

(9)

where the bilinear forms aN .:; :I :/, bN .:; :/ and cN .:; :I :/ are defined by:
aN .!N ; uN I vN / D �..curlr!N ; vN //N , bN .vN ; qN / D �..divrvN ; qN //N ,
cN .!N ; uN ; 'N / D ..!N ; 'N //N � ..uN ; curlr'N //N , while the trilinear form
KN.:; :I :/ is given by: KN.!N ; uN I vN / D ..!N � uN ; vN //N . In order to prove
the well-posedness of the discrete problem, we need to introduce the kernels:

VN D fvN 2 DN=8qN 2MN ; bN .vN; qN / D 0g ;
WN D f.!N ; uN / 2 CN � VN=8�N 2 CN ; cN .!N ; uN ; �N / D 0g :

We observe that, for any solution .!N ; uN ; pN / of problem (9), the pair .!N ; uN / is
a solution of the reduced problem: Find .!N ; uN / 2 WN such that:

8vN 2 VN ; aN .!N ; uN I vN /CKN.!N ; uN I vN / D ..f; vN //N : (10)

We recall from [4] and [7] that the bilinear form aN .:; :I :/ satisfies, on the discrete
spaces, a positivity property and an inf� sup condition with constants independent
of N . We also refer to [4], for a discrete inf� sup condition on the form bN .:; :/.
Using the fixed point theorem of Brower, we can prove the wellposedness of
problem (10) and then derive the:

Theorem 1. For any data f continuous on ˝, the discrete problem (9) admits a
solution .!N ; uN IpN / in CN � DN �MN . Moreover,.!N ; uN / satisfies:

k!N kL21.˝/ C kuNkL21.˝/2 � c�
�1 kINf kL21.˝/2 : (11)

4 Error Estimates

We now intend to prove an error estimate between the solutions of problems (3)
and (9). Since the error analysis of the discrete problem relies on the theory of
Brezzi, Rappaz and Raviart [5], we express both problems (4) and (10) in a different
form and we set X D V 1

1˘.˝/ � .V \H1.curl;˝//. We denote by S the linear
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operator of Stokes which for any f in the dual space ofH1̆ .divr;˝/, associates the
solution .!; u/ of the following reduced problem:
Find .!; u/ 2 W such that 8v 2 V; a.!; uI v/ D hf; vi.
We introduce the mappingG defined fromX into the dual space ofH1̆ .divr;˝/ by:
8.!; u/ 2 X; 8v 2 H1̆ .divr;˝/; hG.!; u/; vi D K.!; uI v/� hf; vi.
Then, problem (4) can be equivalently written as: Find .!; u/ 2 X such that

.!; u/C SG.!; u/ D 0: (12)

Similarly, we define the discrete space XN D CN � .VN \H1.curl;˝//. We thus
define the discrete Stokes operator SN : for any f in the dual space of H1̆ .divr;˝/,
SNf denotes the solution .!N ; uN / of problem: Find .!N ; uN / 2 WN such that

8vN 2 VN ; aN .!N ; uN I vN / D hf; vN i : (13)

The well-posedness of problem (13) is proven in [4], for a slightly different right-
hand side. Finally, we consider the mappingGN defined from XN in the dual space
of DN by 8.!N ; uN / 2 XN ; 8vN 2 DN

hGN .!N ; uN /; vN i D KN.!N ; uN I vN / � ..f; vN //N : (14)

Problem (10) can equivalently be written as: Find .!N ; uN / 2 XN such that

.!N ; uN /C SNGN .!N ; uN / D 0: (15)

Using analogous arguments to those in [4], we easily derive that the operator
SN satisfies a stability property, with a constant independent of N and that, the
following error estimate holds for all f in HsC1

1 .˝/ �Hs
1 .˝/

2, s > 1,

k.S � SN/f kX � cN�s kSf k
H
sC1
1 .˝/	Hs

1 .˝/
2 : (16)

We are led to make the following assumptions. Here, D is the differential operator.

Assumption 1. The triplet .!; u; p/ is a solution of the problem (3) such that the
operator IdC SDG.!; u/ is an isomorphism of X .

This assumption can equivalently be written as: For any data g inH1̆ .divr;˝/
0, the

linearized problem
Find .#;w; r/ in V 1

1˘.˝/ �
�
H1̆ .divr;˝/\H1.curl;˝/

� � L21;0.˝/ such that:

8
ˆ̂
<

ˆ̂
:

a.#;w; v/CK.!;w; v/C K.#; uI v/
Cb.v; r/ D hg; vi ; 8v 2 H1̆ .divr;˝/\H1.curl;˝/;
b.w; q/ D 0; 8q 2 L21;0.˝/;

c.#;w; '/ D 0; 8' 2 V 1
1˘.˝/:

(17)
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has a unique solution with norm bounded by a constant times kgkH˘

1 .divr;˝/
. It yields

the local uniqueness of the solution .!; u; p/ but is much less restrictive than the
global uniqueness condition. We need to prove a few technical results in order to
derive the error estimate. For this, we make the:

Assumption 2. The solution .!; u; p/ of problem (3) satisfying Assumption 1,
belongs to HsC1

1 .˝/ �Hs
1 .˝/

2 �Hs
1 .˝/, s > 1.

Then, we prove:

Lemma 1. For any .!N ; uN I vN / in CN �DN � DN ;

jK.!N ; uN I vN /j � c1N k!N kV 11 .˝/ kuN kL21.˝/2 kvN kL21.˝/2 ; (18)

jKN.!N ; uN I vN /j � c2N k!N kV 11 .˝/ kuN kL21.˝/2 kvN kL21.˝/2 : (19)

the constants c1 and c2 are independent of N .

Proof. According to the Cauchy-Schwarz inequality we have:

jK.!N ; uN I vN /j D
ˇ
ˇ
ˇ
ˇ

Z

˝

.!N � uN /:vN rdrdz

ˇ
ˇ
ˇ
ˇ � k!N kL41.˝/ kuN kL41.˝/2 kvN kL21.˝/2 :

Using the inclusion of V 1
1 .˝/ in L41.˝/ and inequality:

8zN 2 PN .˝/; kzN kL41.˝/ � cN kzN kL21.˝/ ; (20)

see [2], we have the first previous result. For the second one, we have with obvious
notation,

KN.!N ; uN I vN / D ..!N uNr ; vN z//N � ..!N uN z; vNr//N

D ..IN .!N uNr/; vN z//N � ..IN .!N uN z/; vNr//N :

By combining the Cauchy-Schwarz inequalities with inequality .3:7/ in [7],
we obtain

jKN.!N ; uN I vN /j � kIN .!N uN /kL21.˝/2 kvN kL21.˝/2 :

Then, we use the following result which can be derived from its one-dimensional
analogue [7],

8'M 2 PM.˝k/;
�
�I kN 'M

�
�
L21.˝k/

� c.1C M

m.N/
/2 k'MkL21.˝k/ ;
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with m.N/ D E..1 C ı/N / and ı a real number between 0 and 1. We conclude,
by using the inequalities (20) and k!N uN kL21.˝/2 � k!N kL41.˝/ kuNkL41.˝/2 , together

with the continuous inclusion of V 1
1 .˝/ in L41.˝/, that

k!N uN kL21.˝/2 � cN k!N kV 11 .˝/ kuN kL21.˝/2 :

Remark 1. Similar arguments lead to estimate (18), if at most two of the three
functions !N , uN and vN are replaced by their analogues ! in V 1

1˘.˝/, u and v
in D.˝/.

Remark 2. Under Assumption 2 and taking QN D E.2ıN�1/, we can find . Q!N ; QuN /
in C QN � V QN such that:

k.! � Q!N ; u � QuN /kX � c QN�s k.!; u/k
H
sC1
1 .˝/	Hs

1 .˝/
2 ; s > 1: (21)

Note that estimate (21) makes sense only when QN 	 2.

Lemma 2. If Assumptions 1 and 2 hold, there exists an integerN0 such that, for all
N 	 N0, the operator IdC SNDGN. Q!N ; QuN / is an isomorphism of XN . Moreover,
the norm of its inverse operator is bounded independently of N .

Proof. We can write that:

IdC SNDGN . Q!N ; QuN / D IdC SDG.!; u/� .S � SN /DG.!; u/

� SN .DG.!; u/�DG. Q!N ; QuN //� SN .DG. Q!N ; QuN /� DGN . Q!N ; QuN //: (22)

It follows from the definition of G and GN that, for all .�N ; !N / in XN and vN
in VN :
hDG. Q!N ; QuN /:.�N ;wN /; vN i D K. Q!N ;wN I vN /CK.�N ; QuN I vN /; and
hDGN . Q!N ; QuN /:.�N ;wN /; vN i D KN. Q!N ;wN I vN /CKN.�N ; QuN I vN /:
Thanks to the choice of . Q!N ; QuN /, the term SN .DG. Q!N ; QuN / � DGN . Q!N ; QuN //
vanishes. Then, using the stability of SN , we can derive that:

kSN .DG.!; u/�DG. Q!N :Qu//:.�N ;wN /kX
� c sup

vN2VN
K.! � Q!N ;wN ; vN /CK.�N ; u � QuN ; vN /

kvN kL21.˝/2
:

By Lemma 1, we have:

kSN .DG.!; u/�DG. Q!N :QuN //:.�N ;wN /kX
� cN



k! � Q!N kV 11 .˝/ kwN kL21.˝/2 C k�N kV 11 .˝/ ku � QuNkL21.˝/2

�
: (23)
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Estimate (21) leads to

lim
N!C1 kSN .DG.!; u/�DG. Q!N :QuN //kL.XN / D 0: (24)

Finally, it follows from Assumption 2 that, when .�;w/ runs through the unit ball
ofX , DG.!; u/.�;w/ belongs to a compact subset of L21.˝/

2. So, the next property
is derived from the stability of SN and from inequality (16) by standard arguments:

lim
N!C1 k.S � SN /DG.!; u/kL.XN / D 0: (25)

Thanks to Assumption 1, for � D
�
�
�.IdC SDG.!; u//�1

�
�
�
L.X/

, and by choosing N

large enough so that the quantities in (24) and (25) are smaller than 1
4�

, we obtain

the desired property with
�
�
�.IdC SNDGN . Q!N ; QuN //�1

�
�
�
L.XN /

< 2�:

Lemma 3. The following Lipschitz property holds: 8.!�
N ; u

�
N / 2 XN ,

�
�SN

�
DGN . Q!N ; QuN /� DGN .!

�
N ; u

�
N /
���
L.XN /

� cN
�
�� Q!N � !�

N ; QuN � u�
N

���
X
:

(26)

Proof. We just note that

˝�
DGN . Q!N ; QuN /�DGN .!

�
N ; u

�
N /
�
: .�N ;wN / ; vN

˛

D KN. Q!N � !�
N ;wN I vN /CKN.�N ; QuN � u�

N I vN /:

Lemma 1 leads to the desired property.

Lemma 4. Assume that the data f 2 H�
1 .˝/

2, � > 3
2
. Under Assumption 2,

k. Q!N ; QuN /C SNGN . Q!N ; QuN /kX
� c.!; u/



N�s k.!; u/k

H
sC1
1 .˝/	Hs

1 .˝/
2 CN�� kf kH�

1 .˝/
2

�
;

for a constant c.!; u/ only depending on the solution .!; u/.

Proof. From (12), we derive

k. Q!N ; QuN /C SNGN . Q!N ; QuN /kX � k.! � Q!N ; u � QuN /kX C k.S � SN /G .!; u/kX
C kSN .G .!; u/ �G . Q!N ; QuN //kX C kSN .G . Q!N ; QuN / �GN . Q!N ; QuN //kX

The bound for the first term in the right-hand side obviously follows from (21).
From estimate (16) with Assumption 2, we also derive

k.S � SN /G .!; u/kX � cN�s k.!; u/k
H
sC1
1 .˝/	Hs

1 .˝/
2 :
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On the other hand,

K.!; uI vN / �K. Q!N ; QuN I vN / D K.! � Q!N ; uI vN /CK.!; u � QuN I vN /
�K.! � Q!N ; u � QuN I vN /:

So, we have from the stability property on SN

kSN .G .!; u/�G . Q!N ; QuN //kX � c sup
vN2VN

hK.!; uI vN / �K. Q!N ; QuN I vN /; vN i
kvN kL21.˝/2

;

From (21), Remarks 1 and 2, we have

kSN .G .!; u/�G . Q!N ; QuN //kX � c.!; u/N�s k.!; u/k
H
sC1
1 .˝/	Hs

1 .˝/
2 :

We note that 8vN 2 DN , the quantities K. Q!N ; QuN I vN / and KN. Q!N ; QuN I vN /
coincide. Then, if ˘N�1 denotes the orthogonal projection operator from L21.˝/

onto the space of functions such that their restrictions to all˝k , 1 � k � K , belong
to PN�1.˝k/, and by adding and subtracting the quantity˘N�1f in
kSN .G . Q!N ; QuN / �GN . Q!N ; QuN //kX , we can prove that

kSN .G . Q!N ; QuN / �GN . Q!N ; QuN //kX � c


kf �˘N�1f kL21.˝/2 C kf

�INf kL21.˝/2
�
:

Finally, the standard approximation properties of the operators ˘N�1 and IN ,
lead to

kSN .G . Q!N ; QuN / �GN . Q!N ; QuN //kX � cN�� kf kH�.˝/2 :

The desired bound is then derived by combining the previous estimates.

We are now in a position to prove the error estimate.

Theorem 2. We assume that the data f is in H�
1 .˝/

2; � > 3
2
, and that the

solution .!; u; p/, of problem (3) satisfies Assumptions 1 and 2.
Then, there exists an integerN˘ and a constant c˘ such that for anyN 	 N˘, the

problem (9) has a unique solution .!N ; uN ; pN / satisfying the following estimate:

k! � !N kV 11 .˝/ C ku � uN kH1.divr;˝/
C kp � pN kL21.˝/

� c.!; u/
h
N1�s



k!k

H
sC1
1 .˝/

C kukHs
1 .˝/

2 C kpkHs
1 .˝/

�
CN�� kf kH�

1 .˝/
2

i
:

(27)

Proof. Combining Lemmas 2–4 with the Brezzi-Rappaz-Raviart theorem [5], yields
that, for N sufficiently large, problem (10) has a unique solution .!N ; uN /.
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Moreover, thanks to the discrete inf-sup condition of bN .:; :/, there exists a unique
pN in MN such that

8vN 2 DN ; bN .vN ; pN / D ..f; vN //N � aN .!N ; uN I vN / �KN.!N ; uN I vN /:

Hence, the existence and local uniqueness result follows. Moreover,

8qN in MN ; bN .vN ;pN � qN / D b.vN ; p � qN / � hf; vN i C ..f; vN //N
C a.! � !N ; u � uN I vN /C .a � aN /.!N ; uN I vN /
CK.!; uI vN /�KN.!N ; uN I vN /:

(28)

so that the estimate for kp � pN kL21.˝/ follows from the discrete inf-sup condition
of bN .:; :/, a triangle inequality and the same arguments as in the proof of Lemma 4.

To conclude, the vorticity-velocity and pressure formulation allows to decouple
the calculus of the velocity and the pressure, to handle easily non standard boundary
conditions and leads to a more accurate approximation of the pressure. The
axisymmetric property of domain allows to move from a three-dimensional problem
to a two-dimensional one, which reduces the cost of the resolution. In addition, the
tensorization properties of the polynomial spaces, which characterize the spectral
methods, enable to inverse the obtained system matrix with a raisonable cost.
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Higher-Order Compatible Discretization
on Hexahedrals

Jasper Kreeft and Marc Gerritsma

Abstract We derive a compatible discretization method that relies heavily on
the underlying geometric structure, and obeys the topological sequences and
commuting properties that are constructed. As a sample problem we consider the
vorticity-velocity-pressure formulation of the Stokes problem. We motivate the
choice for a mixed variational formulation based on both geometric as well as
physical arguments. Numerical tests confirm the theoretical results that we obtain
a pointwise divergence-free solution for the Stokes problem and that the method
obtains optimal convergence rates.

1 Introduction

As sample problem we consider the Stokes flow problem in its vorticity-velocity-
pressure formulation,

! � curl u D 0 in ˝; (1a)

curl !C gradp D f in ˝; (1b)

div u D 0 in ˝: (1c)

In this article we consider prescribed velocity boundary conditions, u D 0 on @˝ ,
but the method holds for all admissible types of boundary conditions, see [8].
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Inner Orientation

Outer Orientation

∂ ∂ ∂

∂ ∂ ∂

Fig. 1 The four geometric objects possible in R
3, point, line, surface and volume, with outer-

(above) and inner- (below) orientation. The boundary operator, @, maps k-dimensional objects to
.k � 1/-dimensional objects

Despite the simple appearance of Stokes flow model, there exists a large number
of numerical methods to simulate Stokes flow. They all reduce to two classes, that is,
either circumventing the LBB stability condition, like stabilized methods, e.g. [7],
or satisfying this condition, as in compatible or mixed methods, e.g. [4]. The last
requires the construction of dedicated discrete vector spaces. Best known are the curl
conforming Nédélec and divergence conforming Raviart-Thomas spaces. Here, we
consider a subclass of compatible methods, i.e. mimetic methods. Mimetic methods
do not solely search for appropriate vector spaces, but aim to mimic structures
and symmetries of the continuous problem, see [2, 3, 10, 11]. As a consequence
of this mimicking, mimetic methods automatically preserve most of the physical
and mathematical structures of the continuous formulation, among others the LBB
condition and, most important, a pointwise divergence-free solution [8, 9].

At the heart of the mimetic method there are the well-known integral theorems
of Newton-Leibniz, Stokes and Gauss, which couple the operators grad, curl and
div, to the action of the boundary operator on a manifold. Therefore, obeying
geometry and orientation will result in satisfying exactly the mentioned theorems,
and consequently performing the vector operators exactly in a finite dimensional
setting. In 3D we distinguish between four types of sub-manifolds, that is, points,
lines, surfaces and volumes, and two types of orientation, namely, outer- and inner-
orientation. Examples of sub-manifolds are shown in Fig. 1 together with the action
of the boundary operator.

By creating a quadrilateral or hexahedral mesh, we divide the physical domain
in a large number of these geometric objects, and to each geometric object we
associate a discrete unknown. This implies that these discrete unknowns are integral
quantities. Since the three earlier mentioned theorems are integral equations, it
follows for example that taking a divergence in a volume is equivalent to taking
the sum of the integral quantities associated to the surrounding surface elements,
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i.e. the fluxes. So using integral quantities as degrees of freedom to perform a grad,
curl or div, is equivalent to taking the sum of the degrees of freedom located at its
boundary.

These relations are of purely topological nature. They form a topological
sequence or complex. This sequence is fundamental. It has a direct connection with
the complexes that are related to the physical domain, the computational domain,
the physical problem and the discretization.

Although the original work [9, 10], was presented in terms of differential
geometry and algebraic topology, here we will use vector calculus because it is
the more common mathematical language. Nevertheless, we will put emphasis on
the distinction between topology and metric, on complexes and on commuting
diagrams, which drives the former two languages.

We make use of spectral element interpolation functions as basis functions. In
the past nodal spectral elements were mostly used in combination with Galerkin
projection (GSEM). The GSEM satisfies the LBB condition by lowering the
polynomial degree of the pressure by two with respect to the velocity. This results
in a method that is only weakly divergence-free, meaning that the divergence of the
velocity field only convergence to zero with mesh refinement. The present study
uses mimetic spectral element interpolation or basis functions [10]. The mixed
mimetic spectral element method (MMSEM) satisfies the LBB condition and gives
a pointwise divergence-free solution for all mesh sizes.

2 Can We Really Discretize Exactly?

Since the Stokes flow model (1) should hold on a certain physical domain, we will
include geometry by means of integration. In that case we can relate every physical
quantity to a geometric object. Starting with the incompressibility constraint (1c)
we have due to Gauss’ divergence theorem,

Z

V

div u dV D
Z

@V

u � n dS D 0;

and using Stokes’ circulation theorem the relation (1a) can be written as

Z

S

! � n dS D
Z

S

curl u � n dS D
Z

@S

u � t dl:

From the first relation it follows that div u is associated to volumes. The association
to a geometric object for velocity u is less clear. In fact it can be associated to
two different types of geometric objects. A representation of velocity compatible
with the incompressibility constraint is given in terms of the velocity flux, u � n,
through a surface that bounds the volume, while in the circulation relation velocity,
u � t, is represented along a line that bounds the surface. We will call the velocity
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Inner Orientation

Outer Orientation

grad

∂

curl

∂

div

∂

curl * grad*div *

Fig. 2 Geometric interpretation of the action of the boundary operators, vector differential
operators and their formal Hilbert adjoint operators

vector through a surface outer-oriented and the velocity along a line segment inner-
oriented. A similar distinction can be made for vorticity, see [9].

The last equation to be considered is (1b). This equation shows that classical
Newton-Leibniz, Stokes circulation and Gauss divergence theorems tell only half
the story. From the perspective of the classical Newton-Leibniz theorem, the
gradient acting on the pressure relates line values to their corresponding end point,
while the Stokes circulation theorem shows that the curl acting on the vorticity
vector relates surface values to the line segment enclosing it. So how does this fit into
one equation? In fact, from a geometric perspective, there exists two gradients, two
curls and two divergence operators. One of each is related to the mentioned integral
theorems as explained above. The others are their formal adjoint operators. Let
grad, curl and div be the original differential operators associated to the mentioned
integral theorems, then the formal Hilbert adjoint operators grad�, curl� and div�
are defined as,
�
a;�grad� b

�
˝

WD �
div a; b

�
˝
;
�
a; curl� b

�
˝

WD �
curl a; b

�
˝
;
�
a;�div� b

�
˝

WD �
grad a; b

�
˝
:

From a geometric interpretation, the adjoint operators detours via the opposite type
of orientation. Where div relates a vector quantity associated to surfaces to a scalar
quantity associated to a volume enclosed by these surfaces. Its adjoint operator,
grad�, relates a scalar quantity associated with a volume to a vector quantity
associated with its surrounding surfaces. This is illustrated in Fig. 2. Following
Fig. 2, the adjoint operator grad� consists of three consecutive steps: First, switch
from an outer oriented scalar associated to volumes to an inner oriented scalar
associated to points, then take the derivative and finally switch from an inner
oriented vector associated to lines to an outer oriented vector associated to surfaces.
In a similar way we can describe the derivatives curl� and div�.
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Since the horizontal relations are purely topological and the vertical relations
purely metric, the operators grad, curl and div are purely topological operators,
while grad�, curl� and div� are metric. This makes them much harder to discretize.

Now (1b) could then either be associated to an inner-oriented line segment by
rewriting it as

curl� !C gradp D f;

or be associated to an outer-oriented surface by rewriting it as

curl !C grad�p D f:

Without geometric considerations we could never make a distinction between grad,
curl and div and their associated Hilbert adjoints div�, curl� and grad�.

Since our focus is on obtaining a pointwise divergence-free discretization, we
decide to use the expression where the equations are associated to outer-oriented
geometric objects,

! � curl� u D 0 in ˝; (2a)

curl !C grad� p D f in ˝; (2b)

div u D 0 in ˝; (2c)

where the first equation is associated to outer-oriented line segments, the second to
outer-oriented surfaces and the third to outer-oriented volumes.

3 Complexes

Figure 2 reveals already a number of sequence or complex structures. Starting from
geometry, we consider points, P , lines, L, surfaces, S , and volumes, V . They
possess a sequence in combination with the boundary operator, @. The boundary
of a volume is a surface, the boundary of a surface is a line and the boundary of a
line are its two end points. This results in the following complex,

0
@ � P @ � L @ � S @ � V: (3)

An important property of the complex is that if we apply the boundary operator
twice, we always find an empty set, e.g. if S D @V , then @S D ;. As follows
directly from the previously mentioned integral theorems, it follows, as a conse-
quence of @@ D ;, that curl grad D 0 and div curl D 0. The derivatives themselves
also form a complex. In a Hilbert setting this becomes,

H1.˝/
grad�! H.˝; curl/

curl�! H.˝; div/
div�! L2.˝/; (4)
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and using the Hilbert adjoint relations we also obtain the adjoint complex with
properties curl�grad� D 0 and div�curl� D 0,

L20.˝/
�div�

 � H0.˝; div�/ curl� � H0.˝; curl�/
�grad�

 � H1
0 .˝/ (5)

In the Hilbert setting, the variables of the Stokes problem are in the following spaces,
! 2 H.˝; curl/\H0.˝; div�/, u 2 H.˝; div/\H0.˝; curl�/ and p 2 L2.˝/\
H0.˝; grad�/. It is hard, if even possible at all, to find discrete vector spaces that are
subsets of these function spaces and simultaneously satisfy the complex properties.
Instead, the Stokes problem can be cast into an equivalent variational or mixed
formulation where we make use of the Hilbert adjoint properties. This simplifies
the function spaces of the flow variables. The mixed formulation reads;

Find .!;u; p/ 2 fH.˝; curl/ � H.˝; div/ � L2.˝/g with f 2 H.˝; div/
given, for all .� ; v; q/ 2 fH.˝; curl/ �H.˝; div/ � L2.˝/g, such that,

�
� ;!

�
˝
� �curl � ;u

�
˝
D 0; (6a)

�
v; curl !

�
˝
� �div v; p

�
˝
D �v; f�

˝
; (6b)

�
q; div u

�
˝
D 0: (6c)

With the formulation and corresponding function spaces, we are able to construct
compatible discrete vector spaces. Note that we now completely avoid the metric
dependent derivatives grad� and curl�, and their corresponding complex.

4 Discretization of Stokes Problem

Degrees of freedom. In many numerical methods, especially in finite difference
and finite element methods, the discrete coefficients are point values. In the proposed
mimetic structure, the discrete unknowns represent integral values on k-dimensional
submanifolds, ranging from points to volumes, so 0 � k � 3. These k-dimensional
submanifolds are oriented, constitute the computational domain and span the
physical domain. The concept of orientation shown in Figs. 1 and 2 gave rise to the
boundary operator, @, which can be represented by connectivities consisting only of
�1, 0 and 1, see also [9].

The space of degrees of freedom are given by P , L , S and V . These spaces
form a duality pairing with the geometric spaces P , L, S and V . The degrees of
freedom are integral values, i.e.
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ω

Fig. 3 The action of twice the coboundary operator ı on a vorticity d.o.f. has a zero net result on
its surrounding volumes, because they all have both a positive and a negative contribution from its
neighboring velocity faces

Z

l

w � t dl 2 L ;

Z

S

u � n dS 2 S ;

Z

V

p dV 2 V : (7)

By the definition of the degrees of freedom spaces and the previously mentioned
integral theorems, we can define the formal adjoint of the boundary operator, i.e.
the coboundary operator, ı. The coboundary operator is the discrete representation
of the topological derivatives grad, curl and div. Since @@ D ;, it follows from a
discrete Newton-Leibniz, Stokes and Gauss theorem that applying the coboundary
operator twice is always zero, ıı D ; (see [2, 9]). The coboundary operator also
has matrix representations, G, C and D, that are the transpose of the connectivity
matrices. We obtain the following topological sequence,

P
G�! L

C�! S
D�! V ; (8)

where CG D 0 and DC D 0. These matrices will explicitly appear in the final
matrix system. An illustration of DC D 0 is given in Fig. 3. More details on the
structure of geometry, orientation and degrees of freedom can be found in Gerritsma
et al. [6].

Mimetic Operators. Let W D H.˝; curl/, V D H.˝; div/ and Q D L2.˝/.
The discretization of the flow variables involves a projection operator, �h, from
the complete vector spaces W , V and Q, to the discrete vector spaces Wh, Vh and
Qh. Here the flow variables are expressed in terms of d.o.f. defined on k-cells, and
corresponding interpolation functions (also called basis-functions). The projection
operator actually consists of two steps, a reduction operator, R, that integrates the
flow variables on k-cells, and a reconstruction operator, I , that interpolates the
d.o.f. using the appropriate basis-functions. These mimetic operators were defined
in [2, 10]. A composition of the two operators gives the projection operator �h D
I ıR.1

1For completeness, in a Hilbert setting the projection needs an additional smoothing argument.
This step is ignored here to increase readibility. See [8] for more details.
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Reduction operator R is simply defined by integration. It possesses the following
commutation relations,

Rgrad D GR; Rcurl D CR; Rdiv D DR: (9)

The treatment of the reconstruction operator leaves some freedom, as long as it
satisfies the following properties: be the right inverse of the reduction, RI D Id ,
be the approximate left inverse of the reduction, I R D Id CO.hp/, and it should
possess the following commutation relations,

grad I D I G; curl I D I C; div I D I D: (10)

When both the reduction and reconstruction operators commute with continu-
ous and discrete differentiation, than also the projection operator�h possesses
a commutation relation with differentiation. In case of the divergence oper-
ator, which is relevant to obtain a pointwise divergence-free solution, the
commutation relation is given by,

div�h D div I R D I DR D I Rdiv D �hdiv : (11)

The commutation relations in case of divergence are illustrated below,

V
div�����! Q

?
?
yR

?
?
yR

S
D�����! V :

C
S

D�����! V
?
?
yI

?
?
yI

Vh
div�����! Qh:

D
V

div�����! Q
?
?
y�h

?
?
y�h

Vh
div�����! Qh:

Since property (11) also holds for the grad and curl, we obtain the following
complex for discrete vector spaces,

˚h
grad�! Wh

curl�! Vh
div�! Qh: (12)

In practice we use I DR from (11) in computations. Relation (11) implies
among others that it satisfies the discrete LBB condition,

ˇh WD inf
qh2Qh

sup
vh2Vh

�
qh; div vh

�
˝

kqhkQkvhkV > ˇ > 0; (13)
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where ˇ is the inf-sup constant of the continuous problem (1). Whereas the
LBB condition is a measurement for numerical stability, the commutation relation
indicates physical correctness of the numerical method. This last is a much stronger
statement, which includes also the former.

The conditions on the reconstruction operator have led to the construction of
mimetic spectral element basis-functions [5, 10]. Since we use a tensor-based
construction of point, line, surface and volume corresponding basis-functions, we
only need nodal and edge interpolation functions. The nodal interpolation functions
are the well-known Lagrange polynomials. The edge polynomials were derived
from the Lagrange polynomials, based on the given conditions. For a set of Lagrange
polynomials, li .x/, i D 0; : : : ; N , the edge polynomials, ei .x/, i D 1; : : : ; N , are
given by,

ei .x/ D �
i�1X

kD0

dlk.x/

dx
: (14)

The Lagrange and edge polynomials possess the condition RI D Id , i.e.,

li .xj / D ıi;j ;
Z xj

xj�1

ei .x/ dx D ıi;j ; (15)

where ıi;j is the Kronecker delta. The interpolation function for a vari-
able associated to a surface, for example, is given by, si;j;k.x; y; z/ D˚
li .x/ej .y/ek.z/; ei .x/lj .y/ek.z/; ei .x/ej .y/lk.z/

�
.

Example 1 (Divergence operator in 2D). One of the most interesting prop-
erties of the mimetic method presented in this paper, is that within our weak
formulation, the divergence-free constraint is satisfied pointwise. Let uh 2 Vh
be the velocity flux defined as

uh D
 PN

iD0
PN

jD1 ui;j li .x/ej .y/PN
iD1

PN
jD0 vi;j ei .x/lj .y/

!

: (16)

Then the change of mass, mh 2 Qh, is equal to the divergence of uh,

mh D div uh D
NX

iD1

NX

jD1
.ui;j � ui�1;j C vi;j � vi;j�1/ei .x/ej .y/:

D
NX

iD1

NX

jD1
mi;j ei .x/ej .y/; (17)

(continued)
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Example 1 (continued)

where mi;j D ui;j � ui�1;j C vi;j � vi;j�1 can be compactly written as m D
Du. Note that if the mass production is zero, as in our model problem (1c),
the incompressibility constraint can already be satisfied at the discrete level.
Interpolation using ei .x/ej .y/ then results in a solution of velocity uh that is
pointwise divergence-free.

5 A Priori Error Estimates

By standard interpolation theory it follows that we obtain the following h-
convergence rates for the interpolation errors of the flow variables,

k!��h!kH.curl/ D O.hN /; ku��hukH.div/ D O.hN /; kp��hpkL2 D O.hN /;
(18)

and that kdiv u � div�hukL2 D 0 due to the commuting property.
In cases with empty harmonic vector spaces, we have that the discrete vector

spaces are conforming, i.e., Wh � W , Vh � V and Qh � Q. Moreover, due to the
commuting property, it follows that these spaces are compatible, i.e., curlWh � Vh
and divVh D Qh. Finally they possess a Helmholtz-Hodge decomposition, � D
grad� C curl�v and v D curl � C grad�q. In terms of vector spaces, this is, Wh D
ZWh˚Z?

Wh
and Vh D ZVh˚Z?

Vh
, whereZ refers to the kernel or nullspace andZ?

to its orthogonal complement. Having all these properties, a priori error estimates
are derived in [8] that show optimal convergence rates for all admissible boundary
conditions, including the no-slip boundary condition, which is non-trivial in mixed
finite element methods. The a priori error estimates are given by

k! �!hkW � C inf
� h2Wh

k! � � hkW ; (19)

ku � uhkV � C inf
vh2Vh

ku � vhkV C C inf
� h2Wh

k! � � hkW ; (20)

kp � phkQ � C inf
qh2Qh

kp � qhkQ C C inf
vh2Vh

ku � vhkV C C inf
� h2Wh

k! � � hkW ;
(21)

where the constants C will differ in each case and are independent of h. It shows
that the rate of convergence of the approximation errors are the same as those of the
interpolation errors.



Higher-Order Compatible Discretization on Hexahedrals 321

X
Y

Z

X
Y

Z

div u
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Fig. 4 Left: slices of magnitude of the velocity field of a three dimensional lid-driven cavity Stokes
problem obtained on a 2 	 2 	 2 element mesh with N D 8. Right: slices of the divergence of
velocity. Is confirms a divergence-free velocity field

6 Numerical Results

For many years, the lid-driven cavity flow was considered one of the classical
benchmark cases for the assessment of numerical methods and the verification of
incompressible (Navier)-Stokes codes. The 3D lid-driven cavity test case deals with
a flow in a unit box with five solid boundaries and moving lid as the top boundary,
moving with constant velocity equal to minus one in x-direction. Especially the two
line singularities make the lid-driven cavity problem a challenging test case.

The left plot in Fig. 4 shows slices of the magnitude of the velocity field in a
three dimensional lid-driven cavity Stokes problem, obtained on a 2�2�2 element
mesh, where each element contains a Gauss-Lobatto mesh of N D 8. The slices
are taken at 10, 50 and 90 % of the y-axis. The right plot in Fig. 4 shows slices of
divergence of the velocity field. Figure 4 confirms that the mixed mimetic spectral
element method leads to an accurate result with a divergence-free solution.

The second testcase shows the optimal convergence behavior for a 2D Stokes
problem with no-slip boundary conditions. The testcase originates from a recent
paper by Arnold et al. [1], where sub-optimal convergence is shown and proven
for no-slip boundary conditions when using Raviart-Thomas elements. Since
Raviart-Thomas elements are the most popular H.div; �/ conforming elements,
we compare our method to these results.
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Fig. 5 Comparison of the h-convergence between Raviart-Thomas and Mimetic spectral element
projections for the 2D Stokes problem with no-slip boundary conditions

Figure 5 shows the results of the Stokes problem on a unit square with velocity
and pressure fields given by u D ��2x2.x�1/2y.2y�1/.y�1/; 2y2.y�1/2x.2x�
1/.x�1/T , p D .x� 1

2
/5C.y� 1

2
/5. While for velocity both methods show optimal

convergence, for pressure a difference of 1
2

is noticed in the rate of convergence and
for vorticity a difference in rate of convergence of 3

2
is revealed.
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Mimetic Spectral Element Advection

Artur Palha, Pedro Pinto Rebelo, and Marc Gerritsma

Abstract We present a discretization of the linear advection of differential forms
on bounded domains. The framework established in [4] is extended to incorporate
the Lie derivative, L, by means of Cartan’s homotopy formula. The method is based
on a physics-compatible discretization with spectral accuracy. It will be shown that
the derived scheme has spectral convergence with local mass conservation. Artificial
dispersion depends on the order of time integration.

1 Introduction

Consider the classical advection problem for a scalar function in conservation form,

@�

@t
Cr � .v�/ D 0; (1)

where v is a prescribed uniformly Lipschitz continuous vector field and � the
advected scalar function. The method presented in this work is based on the approx-
imation of the differential operators with the focus on the spatial discretization
and a time-stepping scheme that distinguishes between quantities evaluated at time
instants and quantities evaluated over time intervals.

The mimetic framework, presented in [4], showed that using the differential
geometric approach for the representation of physical laws clarifies the underlying
structures. One clearly identifies to what kind of geometrical object a certain phys-
ical quantity is associated and this determines how its discretization must be done
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(e.g.: evaluation at points, integration over lines, surfaces or volumes). Additionally,
a well defined, metric free, representation of differential operators is obtained,
together with their metric dependent Hilbert adjoints. For these reasons, the authors
followed this approach for the advection equation. It is known, see [1, p. 317],
that (1) is a particular case of the generalized advection equation which can be
written in terms of differential geometry as,

@˛.k/

@t
C Lv ˛

.k/ D 0: (2)

The advection operator, Lv, is the Lie derivative for the prescribed velocity field v
and the advected quantity is given by the k-differential form ˛.k/. Depending on
the index k the quantity ˛.k/ can represent scalar, vector and higher dimensional
quantities.

2 Differential Geometry

In this section a brief introduction to differential geometry is given. For a more
detailed introduction the reader is directed to [1]. Given an n-dimensional smooth
orientable manifold ˝ it is possible to define in each point a tangent vector space
E of dimension n. The space of smooth vector fields on a manifold is the space, 
 ,
of smooth assignments of elements of E to each point of the manifold. We denote
by �k , k an integer 0 � k � n, the space of differentiable k-forms, i.e. all smooth
k-linear, antisymmetric maps!.k/ W E�� � ��E ! R, at every point of the manifold.
We recall the wedge product ^ W �k ��l ! �kCl for k C l � n with the property
that ˛.k/^ˇ.l/ D .�1/klˇ.l/^˛.k/. The inner product .�; �/ onE induces at each point
of the manifold an inner product .�; �/ on �1. In turn, this can be extended to a local
inner product on�k [8, p. 149]. The local inner product gives rise to a unique metric
operator, Hodge-?, ? W �k ! �n�k, defined by ˛.k/ ^ ?ˇ.k/ D �

˛.k/; ˇ.k/
�
!.n/,

where !.n/ D ?1 is the standard volume form. By integration, one can define an
inner product on ˝ as .�; �/L2 WD

R
˝
.�; �/ !.n/. The exterior derivative d W �k !

�kC1 satisfies the following rule, d
�
˛.k/ ^ ˇ.l/� D d˛.k/^ˇ.l/C .�1/k˛.k/^ dˇ.l/

and by definition d˛.n/ D 0. The flat operator, [, is a mapping [ W 
 7! �1.
The Lie derivative along a tangent vector field, v, is denoted by Lv and represents

the advection operator in differential geometry. It is a mapping Lv W �k 7! �k .
From Cartan’s homotopy formula the Lie derivative can be written as

Lv ˛
.k/./ WD d$v˛.k/ C $vd˛.k/ ;

where the interior product of a tangent vector field, v, with a k-form, ˛.k/, is a
mapping $v˛.k/ W �k ! �k�1 given by:

$v˛
.k/.X2; � � � ;Xk/ WD ˛.k/ .v;X2; � � � ;Xk/ ; 8Xi 2 
 and $v˛

.0/ D 0; 8v 2 
 :
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The interior product is the adjoint of the wedge product, made explicit by:

�
$v ˛

.k/; ˇ.k�1/�
L2�k�1 D

�
˛.k/; v[ ^ ˇ.k�1/�

L2�k
; 8ˇ.k�1/ 2 �k�1 (3)

where v [ D �.1/ 2 �1 and ˛.k/h 2 �k .

The relevance of this adjoint relation between the interior product and the wedge
product lies in the fact that it shows how a physical quantity represented by an
interior product with a vector field can be represented by its dual differential 1-form.

For a volume form �.n/ the Lie derivative is simply Lv �
.n/ D d$v�.n/ and for a

0-form, Lv ˛
.0/ D $vd˛.0/.

3 Mimetic Discretization

In this section a brief introduction to the discretization of physical quantities and
to the discretization of the exterior derivative is presented. For a more detailed
presentation the reader is directed to [2, 4, 6].

Consider a three dimensional domain ˝ and an associated grid consisting of
a collection of points, �.0/;i , line segments connecting the points, �.1/;i , surfaces
bounded by these line segments, �.2/;i , and volumes bounded by these surfaces, �.3/;i .

Let �k be the space of smooth differentiable k-forms. Additionally, let
the finite dimensional space of differentiable forms be defined as �k

h D
span.f.k/i g/; i D 1; � � � ; dim.�k

h/, where .k/i 2 �k are basis k-forms. Under
these conditions it is possible, see [4, 6], to define a projection operator �h
which projects elements of�k onto elements of�k

h which satisfies:

�hd D d�h : (4)

It is possible to write:

�h˛
.k/ D ˛.k/h D

X

i

˛i 
.k/
i ;

where

˛i D
Z

�.k/;i

˛.k/ and
Z

�.k/;i


.k/
j D ıij; k D 0; 1; � � � ; n :



328 A. Palha et al.

A set of basis functions yielding a projection operator �h that satisfies (4) can be
constructed using piecewise polynomial expansions on the quadrilateral elements
using tensor products. Thus, it suffices to derive the basis forms in one dimension
on a reference interval and generalize them in n dimensions.

In one dimension take a 0-form, ˛.0/ 2 �0
�
Qref

�
, whereQref WD Œ�1; 1�. Define

on Qref a cell complex D of order p consisting of .p C 1/ nodes �.0/;i D �i with
i D 0; � � � ; p, where �1 � �0 < � � � < �i < � � � �p � 1 are the Gauss-Lobatto
quadrature nodes, and p edges, �.1/;i D Œ�i�1; �i � with i D 1; � � � ; p. The projection
operator �h reads:

�h˛
.0/ .�/ D

pX

iD0
˛i 

.0/
i .�/ ; (5)

where 
.0/
i .�/ D li .�/ are the pth order Lagrange polynomials and ˛i D

˛0.�i /. Similarly in one dimension for the projection of 1-forms Gerritsma [3]
and Robidoux [7] derived 1-form polynomials called edge polynomials, .1/i 2
�1
h

�
Qref

�
,


.1/
i .�/ D ei .�/ d�; with ei .�/ D �

i�1X

kD0

dlk
d�

: (6)

Note that in this way we have:

Z �j

�j�1


.1/
i D

Z �j

�j�1

ei .�/ d� D ıij : (7)

Moreover, the exterior derivative of the basis 0-forms is given by:

d.0/i D
dli
d�

d� D �
i�1X

kD0

dlk
d�

d� �
 

�
iX

kD0

dlk
d�

d�

!

D .1/i � .1/iC1; i D 1; � � � ; p � 1 :

(8)

In this way, the exterior derivative of a discrete 0-form can be written as:

d˛.0/h D d
pX

iD0
˛i 

.0/
i D

pX

iD0;jD1
E.1;0/ij ˛j 

.1/
i ; (9)

where, E.1;0/ij is the incidence matrix containing only the values, 0, 1 and �1,
see [2, 4, 6] for more details. This idea can be extended to higher dimensions,
giving rise to k-incidence matrices, E.kC1;k/

ij , which represent the discrete exterior
derivative on discrete k-forms, see [2, 6].
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4 Mimetic Spectral Advection: An Application
to 1D Advection

In this section we want to illustrate how to discretize the advection equation. Take
the Lie advection of a 1-form,

@�.1/

@t
C d$v�.1/ D 0,

8
<̂

:̂

@�.1/

@t
D �d&.0/

$v �
.1/ D &.0/

: (10)

Here �.1/ is the advected quantity, say mass density, and &.0/ represents the
instantaneous fluxes of the advected quantity under the vector field v, which are
discretized in space as,

&
.0/

h D
pX

iD0
&i .t/

.0/
i and �

.1/

h D
pX

iD1
�i .t/

.1/
i : (11)

For the sake of clarity in the method presentation we first introduce the time
treatment, then the interior product discretization and finally their combination for
a numerical solution of the advection problem.

4.1 Time Integration

The time integrator used for solving the time evolution part of the advection equation
is the canonical mimetic one, an arbitrary order symplectic operator derived in [5],
which is connected to canonical Gauss collocation integrators. Take an ordinary
differential equation of the unknown function y.t/:

dy

dt
D h.y; t/; t 2 I � R : (12)

Discretizing y.t/ as yh DPp

kD0 yklk.t/, one gets:

dyh
dt
D

pX

kD0
yk

dlk.t/

dt
D

pX

kD1
.yk � yk�1/ ek.t/ ;

where the superscript k denotes the time level.
The approximated solution, yh.t/, is a polynomial of order p determined by

means of .pC 1/ degrees of freedom such as its values at the Gauss-Lobatto nodes,
red dots in Fig. 1. On the other hand, dyh

dt is a polynomial of order .p�1/ defined by
only p degrees of freedom. One can set these degrees of freedom to be the values
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y0

y1 y2

y3

y0
y1

y2

Fig. 1 Geometric
interpretation of the solution
of (12) as given by (13):
.t; y.0/.t //. In red the
Gauss-Lobatto nodes where
the trajectory is discretized.
In blue, the Gauss nodes
where its derivative is
discretized. The flow field,
represented by arrows, is
tangent to the curve at the
Gauss nodes. That is, the
derivative of the approximate
trajectory is exactly equal to
the flow field at the Gauss
nodes

of the derivative in one point inside each of the p intervals Œtk ; tkC1�. A choice that
results in a symplectic integrator of order 2p is to select these points as the Gauss
nodes of order .p � 1/, the blue nodes of Fig. 1. Notice that along the trajectory
these nodes will not show the usual Gauss-Lobatto and Gauss distribution patterns,
since in general the velocity field is not constant. In this way the discrete integrator
becomes:

pX

kD1
.yk � yk�1/ ek.Qtq/ D h

 
pX

kD0
yklk.Qtq/; Qtq

!

; q D 1; 2; � � � ; p ; (13)

with Qt j the p nodes of a Gauss quadrature formula. The fact that the instants in
time, tk , where the yki are defined alternate with the instants in time, Qt j , where the
hi are evaluated (see Fig. 1), corresponds to a staggering in time. This staggering
also appears in leap-frog methods and in the implicit midpoint rule, for instance.

The first equation in (10) using the discretization (11) and (9) can be written as:

P
i d�i .t/

.1/
i

dt
D �

X

il

E.1;0/il &l.t/
.1/
i ) d�i.t/

dt
D �

X

l

E.1;0/il &l.t/ : (14)

This equation has a similar form as (12), but now as a system of equations, therefore
one can apply the mimetic integrator, yielding:

X

k

.�kC1
i � �ki / ek.Qtq/ D �

X

l

E.1;0/il &
q

l : (15)
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Recall that �ki is the discrete degree of freedom of the advected quantity at the tk

instants of time associated to Gauss-Lobatto nodes and &ql is the discrete degree of
freedom of the fluxes of the advected quantity at the Qtq instants of time associated
to the Gauss nodes, just as stated for the systems of ordinary differential equations.

4.2 Interior Product

The discretization of the interior product is done using (3), in the following way:

Definition 1 (Discrete interior product). In one dimension, the discrete
interior product $v;h W �1

h ! �0
h is such that:



$v;h ˛

.1/

h ; 
.0/
i

�

L2
D


˛
.1/

h ; v
[ ^ .0/i

�

L2
; 8.0/i 2 �0

h (16)

where v [ D �.1/ 2 �1 and ˛.1/h 2 �1
h.

In this way one satisfies the duality pairing between the interior product and the
wedge product in the discrete setting.

Partitioning the domain ˝ in a spectral element cell complex one can apply the
discretization of the interior product in each spectral element, obtaining:

X

i

�i .t/



.1/
i ; �

.1/ ^ .0/j
�

L2
D
X

i

&i .t/



.0/
i ; 

.0/
j

�

L2
; 8.0/j 2 �0

h : (17)

4.3 Putting Things Together: Advection

The complete discrete systems becomes:

8
ˆ̂
<

ˆ̂
:

P
k.�

kC1
i � �ki /Qek.Qt q/ D �P

l E.1;0/il &
q

l

P
i;k �

k
i 
.0/

k .Qt q/



.1/
i ; ?�

.0/ ^ 
.1/
j

�

L2�1.˝m/
D P

i &
q
i




.0/
i ; 

.0/
j

�

L2�0.˝m/
; 8.0/j 2 �0.˝m/

(18)
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Fig. 2 Error in time of the numerical solution of (10) with v D ex and 4 	 4 elements of order
p D 3, p D 6, p D 10 and p D 12 (from left to right and top to bottom) and �t D 0:1 s, for the
sine wave �.2/.x; y/ D sin.�x/ sin.�y/dxdy. As shown, the error in the solution increases with
time due to the inaccuracy of time integration. When time integration is accurate enough the error
in the initial state is preserved. Here pt denotes the polynomial degree in time

5 Numerical Results

This approach was applied to the two dimensional solution of an advected
sine wave and a sine bell in a constant velocity field v D ex : �.2/.x; y/ D
sin.�x/ sin.�y/dxdy (sine wave) and �.2/.x; y/ D sin.2�x/ sin.2�y/dxdy if
.x; y/ 2 Œ0; 0:5�� Œ0; 0:5� and �.2/.x; y/ D 0 in .x; y/ 2 R

2nŒ0; 0:5�� Œ0; 0:5� (sine
bell), on a domain with periodic boundary conditions.

In Fig. 2 the error in time of the numerical solution of (10) for a mesh of 4 � 4
elements with a �t D 0:1 s and various polynomial orders in space, p, and time,
pt , is presented. The initial error, due to the discretization, is conserved, as long as
the time integration is sufficiently accurate.

In Fig. 3, the h- and p-convergence plots are shown for different values of the
order of the time integration scheme, pt , and�t D 0:1 s. It is possible to see that the



Mimetic Spectral Element Advection 333

Fig. 3 Left: h convergence in space for the advection of a sine wave with �t D 0:1 s. Right:
p convergence in space for the advection of a sine wave, 4	 4 elements and �t D 0:1 s

Fig. 4 Error in velocity as a function of the frequency of the advected sine wave: numerical
dispersion. p D 10, �t D 0:1 s and n D 4	 4 elements

method presents algebraic h-convergence rates of order .p C 1/ as long as the time
integration error does not dominate the spatial one. The method shows a spectral
p-convergence as soon as the time integration is accurate enough.

In Fig. 4 the error on the velocity is presented as a function of the advected sine
wave frequency. This figure shows that the numerical method introduces an artificial
dispersion if the time scheme is not accurate enough.

Another fundamental aspect is the conservation of the advected quantity. Figure 5
shows the mass error in time, that is:

R
˝
�
.2/
t �

R
˝
�
.2/
t0 . The error goes from the zero

machine in the first 103 time steps while thereafter it steadily increases. Notice that
even after 2 � 104 time steps the error is still below 10�12.

In Fig. 6 one can see the advection of a sine wave of frequency ! D � in a
Rudman vortex for 100 time steps after which the direction of the flow is reversed
and the calculation is continued for another 100 time steps, with 4 � 4 curved
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Fig. 5 Sum of the local errors of the advected 2-form for a sine bell in a velocity field v D ex ,
with 50	 50 elements of order p D 0 (blue) and 4	 4 elements of order p D 9 (red), �t D 0:01

and pt D 2

Fig. 6 From left to right and from top to bottom: advection of a sine wave of frequency ! D �

on a Rudman vortex with 4 	 4 curved elements of order p D 9, �t D 0:1 s and time integration
of order pt D 2, on a distorted mesh. At time t D 10, the flow field is reversed. At times
t D 8:0 s and t D 12:0 s the mesh is visible in the solution. See http://www.youtube.com/watch?
v=QmoJyqtk9YA for animation

elements of order p D 9, �t D 0:1 s and time integration of order pt D 2, on a
distorted mesh. The mimetic advection enables one to recover the initial solution,
thus demonstrating that the integration method is reversible.
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Large Eddy Simulation of a Muffler with the
High-Order Spectral Difference Method

Matteo Parsani, Michael Bilka, and Chris Lacor

Abstract The combination of the high-order accurate spectral difference dis-
cretization on unstructured grids with subgrid-scale modelling is investigated for
large eddy simulation of a muffler at Re D 4:64 � 104 and M D 0:05. The subgrid-
scale stress tensor is modelled by the wall-adapting local eddy-viscosity model with
a cut-off length which is a decreasing function of the order of accuracy of the
scheme. Numerical results indicate that even when a fourth-order accurate scheme
is used, the coupling with a subgrid-scale model improves the quality of the results.

1 Introduction

Throughout the past two decades, the development of high-order accurate spatial
discretization has been one of the major fields of research in computational
fluid dynamics (CFD), computational aeroacoustics (CAA), computational
electromagnetism (CEM) and in general computational physics characterized
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by linear and nonlinear wave propagation phenomena. High-order accurate
discretizations have the potential to improve the computational efficiency required
to achieve a desired error level. In fact, compared with low order schemes, high
order methods offer better wave propagation properties and increased accuracy
for a comparable number of degrees of freedom (DOFs). Therefore, it may be
advantageous to use such schemes for problems that require very low numerical
dissipation and small error levels [1]. Moreover, since computational science is
increasingly used as an industrial design and analysis tool, high accuracy must
be achieved on unstructured grids which are required for efficient meshing. These
needs have been the driving force for the development of a variety of higher order
schemes for unstructured meshes such as the Discontinuous Galerkin (DG) method
[2, 3], the Spectral Volume (SV) method [4], the Spectral Difference (SD) method
[5, 6], the Energy Stable Flux Reconstruction [7] and many others.

In this study we focus on a SD solver for unstructured hexahedral grids (tensorial
cells). The SD method has been proposed as an alternative high order collocation-
based method using local interpolation of the strong form of the equations.
Therefore, the SD scheme has an important advantage over classical DG and SV
methods, that no integrals have to be evaluated to compute the residuals, thus
avoiding the need for costly high-order accurate quadrature formulas.

Although the formulation of high-order accurate spatial discretization is now
fairly mature, their application for the simulation of general turbulent flows implies
that particular attention has still to be paid to subgrid-scale (SGS) models. So
far, the combination of the SD method with SGS models for LES has not been
widely investigated. In 2010, Parsani et al. [8] reported the first implementation
in study of a two-dimensional (2D) third-order accurate SD solver coupled with
the Wall-Adapting Local Eddy-viscosity (WALE) model [14] and a cut-off length
which is a decreasing function of the order of accuracy. A successful extension
of that approach to a three-dimensional (3D) second-order accurate SD solver has
been reported in [12]. Very recently, Lodato and Jameson [13] have presented an
alternative technique to model the unresolved scales in the flow field: A structural
SGS approach with the WALE Similarity Mixed model (WSM), where constrained
explicit filtering represents a key element to approximate subgrid-scale interactions.
The performance of such an algorithm has been also satisfactory.

In this study, we couple for the first time the approach proposed in [8] with a
3D fourth-order accurate SD solver, for the simulation of the turbulent flow in an
industrial-type muffler at Re D 4:64 � 104. The goal is to investigate if the coupling
of a high-order SD scheme with a sub-grid closure model improves the quality of
the results when the grid resolution is relatively low. The latter requirement is often
desirable when a high-order accurate spatial discretization is used.

2 Physical Model and Numerical Algorithm

In this study the system of the Navier-Stokes equations for a compressible flow
are discretized in space using the SD method and the subgrid-scale stress tensor is
modelled by the WALE approach.
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2.1 Filtered Navier-Stokes Equations

The three physical conservation laws for a general Newtonian fluid, i.e., the
continuity, the momentum and energy equations, are introduced using the following
notation: � for the mass density, u 2 R

dim for the velocity vector in a physical space
with dim dimensions, P for the static pressure and E for the specific total energy

which is related to the pressure and the velocity vector field by E D 1
��1

P
�
C juj2

2
,

where � is the constant ratio of specific heats and it is 1:4 for air in standard
conditions.

The system, written in divergence form and equipped with suitable initial-
boundary conditions, is

@w
@t
C r � .fC .w/ � fD .w;rw// D @w

@t
C r � f D 0; (1)

where w D �
�; � Qu; � QE�T is the vector of the filtered conservative variables and

fC D fC .w/ and fD D fD .w;rw/ represent the convective and the diffusive fluxes,
respectively. Here the symbols .�/ and .Q�/ represent the spatially filtered field and the
Favre filtered field defined as Qu D �u=�.

In a general 3D (dim D 3) Cartesian space, x D Œx1; x2; x3�
T , the components

of the flux vector f .w;rw/ D Œf1; f2; f3�T are given by

f1 D

0

B
B
B
B
B
@

�Qu1
�Qu21 C P � Q�11 C �

sgs
11

�Qu1Qu2 � Q�21 C �
sgs
21

�Qu1Qu3 � Q�31 C �
sgs
31

Qu1 �� QE C P
�� Qu1 �Q�11 � �

sgs
11

�� Qu2 �Q�21 � �
sgs
21

�� Qu3 �Q�31 � �
sgs
31

�� cP
�

P r
@ QT
@x1

C q
sgs
1

1

C
C
C
C
C
A
;

f2 D

0

B
B
B
B
B
@

�Qu2
�Qu1Qu2 � Q�12 C �

sgs
12

�Qu22 C P � Q�22 C �
sgs
22

�Qu2Qu3 � Q�32 C �
sgs
32

Qu2 �� QE C P
�� Qu1 �Q�12 � �

sgs
12

�� Qu2 �Q�22 � �
sgs
22

�� Qu3 �Q�32 � �
sgs
32

�� cP
�

P r
@ QT
@x2

C q
sgs
2

1

C
C
C
C
C
A
;

f3 D

0

B
B
B
B
B
@

�Qu3
�Qu1Qu3 � Q�13 C �

sgs
13

�Qu2Qu3 � Q�23 C �
sgs
23

�Qu23 C P � Q�33 C �
sgs
33

Qu3 �� QE C P
�� Qu1 �Q�13 � �

sgs
13

�� Qu2 �Q�23 � �
sgs
23

�� Qu3 �Q�33 � �
sgs
33

�� cP
�

P r
@ QT
@x3

C q
sgs
3

1

C
C
C
C
C
A
;

where cP , �, P r and T represent respectively the specific heat capacity at constant
pressure, the dynamic viscosity, the Prandtl number and the temperature of the
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fluid. Moreover, �ij represents the ij�component of the resolved viscous stress
tensor [15].

Both momentum and energy equations differ from the classical fluid dynamic
equations only for two terms which take into account the contributions from the
unresolved scales. These contributions, represented by the specific subgrid-scale
stress tensor �sgsij and by the subgrid heat flux vector defined qsgsi , appear when the
spatial filter is applied to the convective terms [15]. The interactions of �sgsij and qsgsi

with the resolved scales have to be modeled through a subgrid-scale closure model
because they cannot be determined using only the resolved flow field w.

2.1.1 The Wall-Adapted Local Eddy-Viscosity Closure Model

The smallest scales present in the flow field and their interaction with the resolved
scales have to be modeled through the subgrid-scale term �

sgs
ij . The most common

approach to model such a tensor is based on the eddy-viscosity concept in which
one assumes that the residual stress is proportional to a measure of the filtered local
strain rate [15], which is defined as follows:

�
sgs
ij � �sgskk ıij D �2 � �t

�
QSij � ıij

3
QSkk
�

: (2)

In the WALE model, it is assumed that the eddy-viscosity �t is proportional to
the square of the length scale of the cut-off length (or width of the grid filter) and
the filtered local rate of strain. Although the model was originally developed for
incompressible flows, it can also be used for variable density flows by giving the
formulation as follows

�t D .C�/2
ˇ
ˇ QSˇˇ : (3)

Here
ˇ
ˇ QS ˇˇ is defined as

ˇ
ˇ QS ˇˇ D

h QSdij QSdij
i3=2

� QSij QSij
5=2 C

h QSdij QSdij
i5=4 ; (4)

where QSdij is the traceless symmetric part of the square of the resolved velocity

gradient tensor Qgij D @Qui
@xj

. Note that in Eq. (3) �, i.e., the cut-off length, is an
unknown function. Often the cut-off length is taken proportional to the smallest
resolvable length scale of the discretization. In the present work, the definition of
the grid filter function is given in Sect. 2.2, where the SD method is discussed.



Large Eddy Simulation of a Muffler with the High-Order Spectral Difference Method 341

2.2 Spectral Difference Method

Consider a problem governed by a general system of conservation laws given by
Eq. (1) and valid on a domain ˝ � R

dim with boundary @˝ and completed with
consistent initial and boundary conditions. The domain is divided into N non-
overlapping cells, with cell index i .

In order to achieve an efficient implementation of the SD method, all hexahedral
cells in the physical domain are mapped into cubic elements using local coordinates
� D Œ�1; �2; �3�

T . Such a transformation is characterized by the Jacobian matrix
J i with determinant det.J i /. Therefore, system (1) can be written in the mapped
coordinate system as

@w �
i

@t
D �@f �

1;i

@�1
� @f �

2;i

@�2
� @f �

3;i

@�3
D �r � � f �

i ; (5)

where w �
i 
 det.J i /w and r � are the conserved variables and the generalized

divergence differential operator in the mapped coordinate system, respectively.
For a .p C 1/-th-order accurate dim-dimensional scheme, Ns solution colloca-

tion points with index j are introduced at positions �sj in each cell i , with Ns given

byNs D .p C 1/dim. Given the values at these points, a polynomial approximation
of degree p of the solution in cell i can be constructed. This polynomial is called
the solution polynomial and is usually composed of a set of Lagrangian basis
polynomialLsj .�/ of degree p:

Wi .�/ D
Ns
X

jD1
Wi;j L

s
j .�/ : (6)

Therefore, the unknowns of the SD method are the interpolation coefficients Wi;j D
Wi



�sj

�
which are the approximated values of the conserved variables wi at the

solution points.
The divergence of the mapped fluxes r � � f � at the solution points is computed

by introducing a set of Nf flux collocation points with index l and at positions �
f

l ,
supporting a polynomial of degree p C 1. The evolution of the mapped flux vector
f � in cell i is then approximated by a flux polynomial F �

i , which is obtained by
reconstructing the solution variables at the flux points and evaluating the fluxes F �

i;l

at these points. The flux is also represented by a Lagrange polynomial:

F �
i .�/ D

Nf
X

lD1
F �

i;l L
f

l .�/ ; (7)
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where the coefficients of the flux interpolation are defined as

F �

i;l D
8
<

:

F �
i



�
f

l

�
; �

f

l 2 ˝i;

F �
num



�
f

l

�
; �

f

l 2 @˝i :
(8)

Here F �
num is the numerical flux vector at the cell interface. In fact, the solution at

a face is in general not continuous and requires the solution of a Riemann problem
to maintain conservation at a cell level (i.e., the flux component normal to a face
F �

num�n� must be continuous between two neighboring cells). Approximate Riemann
solvers are typically used (e.g. Rusanov Riemann solver). The tangential component
of F �

num is usually taken from the interior cell.
Taking the divergence of the flux polynomial r � �F �

i in the solution points results
in the following modified form of (5), describing the evolution of the conservative
variables at the solution points:

dWi;j

dt
D � r � Fi jj D �

1

Ji;j
r � � F �

i

ˇ
ˇ
ˇ
j
D Ri;j ; (9)

where Fi is the flux polynomial vector in the physical space whereas Ri;j is the SD
residual associated with Wi;j . This is a system of ODEs, in time, for the unknowns
Wi;j . In this work, the optimized explicit eighteen-stages fourth-order Runge-Kutta
schemes presented in [16] is used to solve such a system at each time step.

2.2.1 Solution and Flux Points Distributions

In 2007, Huynh [9] showed that for quadrilateral and hexahedral cells, tensor
product flux point distributions based on a one-dimensional flux point distribution
consisting of the end points and the Legendre-Gauss quadrature points lead to stable
schemes for arbitrary order of accuracy. In 2008, Van den Abeele et al. [10] showed
an interesting property of the SD method, namely that it is independent of the
positions of its solution points in most general circumstances. This property implies
an important improvement in efficiency, since the solution points can be placed at
flux point positions and thus a significant number of solution reconstructions can be
avoided. Recently, this property has been proved by Jameson [11].

2.2.2 Cut-Off Length �

In Sect. 2.1.1 we have seen that in the WALE model the cut-off length � is used
to compute the turbulent eddy-viscosity �t , i.e., Eq. (3). Following the approach
presented in [8], for each cell with index i and each flux points with index l and
positions �

f

l , we use the following definition of filter width
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Fig. 1 Configuration of the 3D muffler test case

�i;l D
�
1

N s
det



J i j�fl

��1=dim
D
�
det.Ji;l /

N s

�1=dim
: (10)

Notice that the cell filter width is not constant in one cell, but it varies because the
Jacobian matrix is a function of the positions of the flux points. Moreover, for a
given mesh, the number of solution points depends on the order of the SD scheme,
so that the grid filter width decreases by increasing the polynomial order of the
approximation.

3 Numerical Results

The main purpose of this section is to evaluate the accuracy and the reliability of
the fourth-order SD-LES solver for simulating a 3D turbulent flow in an industrial-
type muffler. The results are compared with the particle image velocimetry (PIV)
measurement performed at the Department of Environmental and Applied Fluid
Dynamics of the von Karman Institute for Fluid Dynamics [17]. In Fig. 1, the
geometry of the muffler and its characteristic dimensions are illustrated, where the
flow is from left to right.

At the inlet, mass density and velocity profiles are imposed. The inlet velocity
profile in the x3 direction is given by

u3 D umax

�
1

2
� 1
2

tanh

�

2:2

�
r

d=2
� d=2

r

��	

:

At the outlet only the pressure is prescribed. In accordance to the experiments, the
inlet Mach number and the Reynolds number, based on maximum velocity at the
inlet umax and the diameter of the inlet/outlet d (d D 4 cm), are set respectively to
Minlet D 0:05 and Re D 4:64 � 104.

The flow is computed using fourth-order (p D 3) SD scheme on a grid with
36; 612 hexahedral elements which was generated with the open source software
Gmsh [18]. Second-order boundary elements are used to approximate the curved



344 M. Parsani et al.

a b

c d

Fig. 2 Time-averaged velocity profile in the axial direction hQu3i=umax at four cross sections
in the expansion chamber, obtained with fourth-order (p D 3) SD-LES method. Comparison
with experimental measurements (PIV) [17]. (a) 1d downstream. (b) 4d downstream. (c) 6d
downstream. (d) 7d downstream

geometry. The total number of DOFs is approximately 2:3 � 106 (i.e., 36; 612 � .pC
1/3). The maximum CFL number used for the computations started from 0:1 and
increased up to 0:65. After the flow field was fully developed, time averaging is
performed for a period corresponding to about 25 flow-through times.

The computation is validated on the center plane of the expansion coinciding
with the center planes of the inlet and outlet pipes using the PIV results from
[17]. All of the measurements are taken on the symmetrical center plane of the
muffler. The reference cross section corresponds to the entrance of the expansion
chamber. It should be noted that the circular nature of the geometry acts as a lens
causing a change in magnification in the radial direction (x2) which prevents from
capturing images close to the wall. It is found that outside 1 cm from the wall
the magnification effect is negligible and as the mean stream-wise direction is in
the direction of constant magnification and has only little effect on the particle
correlations no corrections are deemed necessary.

In Fig. 2, the non-dimensional mean velocity profile in the axial direction
hQu3i=umax is shown for four different cross sections in the expansion chamber, where
the PIV measurements were done. In this figure, the PIV data are also plotted for
comparison. Figure 3 shows the non-dimensional Reynolds stress hu0

2u
0
3i=u2max at
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a b

c d

Fig. 3 Reynolds stress hu0

2u
0

3i=u2max in the axial direction at four cross sections in the expansion
chamber, obtained with fourth-order (p D 3) SD-LES method. Comparison with experimental
measurements (PIV) [17]. (a) 1d downstream. (b) 4d downstream. (c) 6d downstream. (d) 7d
downstream

the same cross sections. Although the high-order implicit LES is already able to
capture well the features of the flow field, the use of the WALE model improves the
results. In particular, when the SGS model is active, the local extrema of the time-
averaged velocity profiles and the second-order statistical moment (which get fairly
oscillatory by moving far away from the inlet pipe) are better captured.

4 Conclusions

The fourth-order SD method in combination with the WALE model and the variable
filter width performs well. The numerical results confirm that the model is correctly
accounting for the unresolved shear stress computed from the resolved field, for the
present internal flow. However, it should be noted that the solver without subgrid-
scale modelling also works rather well, for the grid resolution used in this study.

Work is currently under way to test the two approaches for other realistic
turbulent flows, varying the order of accuracy and the grid resolution. We believe
that the flexibility of the high-order SD scheme on unstructured grids together
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with probably the development of robust sub-grid closure models and efficient grid
generators for high-order accurate schemes will allow to perform LES of industrial-
type flows in the near future.
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Stability Tools for the Spectral-Element Code
Nek5000: Application to Jet-in-Crossflow

A. Peplinski, P. Schlatter, P.F. Fischer, and D.S. Henningson

Abstract We demonstrate the use of advanced linear stability tools developed
for the spectral-element code Nek5000 to investigate the dynamics of nonlinear
flows in moderately complex geometries. The aim of stability calculations is
to identify the driving mechanism as well as the region most sensitive to the
instability: the wavemaker. We concentrate on global linear stability analysis, which
considers the linearised Navier–Stokes equations and searches for growing small
disturbances, i.e. so-called linear global modes. In the structural sensitivity analysis
these modes are associated to the eigenmodes of the direct and adjoint linearised
Navier–Stokes operators, and the wavemaker is defined as the overlap of the
strongest direct and adjoint eigenmodes. The large eigenvalue problems are solved
using matrix-free methods adopting the time-stepping Arnoldi approach. We present
here our implementation in Nek5000with the ARPACK library on a number of test
cases.

1 Introduction

The flow of fluids can be either laminar, characterised by smooth patterns, or
turbulent, appearing chaotic and unpredictable. Understanding the physics of
laminar-turbulent flow transition has been originally motivated by aerodynamic
applications, but has become more widespread since. Initially, hydrodynamic
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stability was studied by means of the classical linear stability theory investigating
the behaviour of small disturbances in space and time around some basic flow
state. The exponential growth of linear perturbations is studied at each streamwise
position and the distinction between local convective and absolute stability is
made [12]. This local treatment is legitimate for parallel and weakly non-parallel
flows, but many of the flow configurations developing strong instabilities and
eventually exhibiting transition to turbulence are strongly non-parallel and may
belong to the open flow category, where fluid particles continuously enter and
leave the considered domain. Such unstable open flows require global analysis
where the evolution of perturbations is considered in the whole physical domain
[6]. The global behaviour of the flow depends on the competition between local
instability and basic advection. The extensive work on global stability in the past
years has been reviewed e.g. in [17].

However, such linear modal analysis often fails in predicting the transitional
Reynolds number determined experimentally, and the more accurate transition
scenario based on receptivity has to be considered. In this case the non-normality of
the linearised Navier-Stokes (LNS) operator has to be taken into account [6,18] and
the global modes of the adjoint operator have to be calculated. This kind of analysis
has been performed for the 2D cases e.g. the flow past a circular cylinder [9]. The
limitations of structural sensitivity analysis are discussed by Chomaz [6], where it
was pointed out that this method is better suited for strongly non-parallel flows than
for almost parallel flows, as the very high degree of the operator non-normality can
lead to wrong predictions of the dynamics.

Although global analysis allows to avoid the limitation of local theory, it is
computationally much more expensive, as linear global modes have been associated
to the eigenmodes of the LNS operator [10] involving large eigenvalue problems.
For sizes of order dim.A/ � 107 special matrix-free methods using time-steppers
are required [2, 3]. Recent advances in numerical methods, in particular tools for
solving very large eigenvalue problems [15], make it possible to use linear stability
theory for global analysis of 2D and 3D flows with nearly arbitrary complexity,
based on only minimal modifications of existing numerical simulation codes [4].
A number of authors have determined the spectrum of the LNS operator for different
2D flows, however, the first calculations for the fully 3D base flow were done by
Bagheri et al. [3, 16] for a jet in crossflow (JCF). This work has been later extended
in [13] by calculating 3D adjoint global eigenmodes.

The objective of the present paper is to demonstrate the use of global linear
stability tools developed for the spectral-element codeNek5000 [7,8] to investigate
the dynamics of flows in moderately complex geometry. As the final case we
consider the so-called jet in crossflow which refers to a jet of fluid exiting through
a nozzle and interacts with the surrounding cross-flow fluid. It is a canonical
flow with complex, fully 3D dynamics which allows for a test of the simulation
capabilities and the methods for studying the flow stability. The previous results for
this flow [3, 13, 16] were obtained for simplified setups, in which the inflow jet was
represented by a Dirichlet boundary condition due to the limitations of the applied
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pseudo-spectral simulation method. We avoid this limitation using the more flexible
spectral-element method (SEM), which provides spectral accuracy while allowing
for complex geometries.

2 Direct and Adjoint Global Modes

Structural sensitivity analysis determines the instability mechanism that initiates the
transition to an unsteady flow. It combines global linear stability with receptivity
looking into the eigenmodes of the LNS (direct) operator A and its adjoint A(,
where the adjoint operator is defined by the property hu(;Aui D hA(u(;ui, with
u(;u and h�; �i being vector functions and inner product, respectively. The linear
stability analysis of the direct problem let us determine several characteristics: the
parameters (e.g. Reynolds number) at which the flow first becomes unstable, and
the frequencies !r , growth rate !i and spatial structure of the linear perturbations.
On the other hand, the adjoint system provides information on the optimal way
to excite the instability, as the perturbation in receptive region amplify more due
to forcing. In combination the two types of modes can be used to locate the most
sensitive region in the flow known as wavemaker, which is defined as the overlap �
of the direct Ou and adjoint Ou( strongest global modes [6, 9, 11] (see Figs. 2 and 6),

�.x0/ D jOu
(
.x0/j � j Ou.x0/j
h Ou(; Oui : (1)

The wavemaker is the region in the flow where a variation in the flow structure
provides the largest drift of the eigenvalues and therefore pinpoints the most likely
region in the flow for the inception of the global instability.

We consider the incompressible Navier–Stokes equations linearised about a base
flow Ub in non-dimensional form with u, p and Re being velocity and pressure
perturbation and the Reynolds number, respectively,

@u
@t
C u � rUb C Ub � ru � 1

Re
r2uCrp D f ; (2)

r � u D 0 in ˝ ; (3)

u D 0 on @˝v ; (4)

pn � 1

Re
ru � n D 0 on @˝o : (5)

Two last equations are the boundary conditions (BC) on the surface of the
computational domain ˝ . Subscripts v and o stand for regions where either
velocity (Dirichlet) or outflow BC are specified, and n denotes the outward normal.
The forcing f usually vanishes inside ˝ , but may be used as sponge layers at
inflow/outflow boundary. The corresponding set of adjoint equations reads
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Fig. 1 (a) Vortical structures (�2 isolevels) of the base flow for JCF setup including the pipe.
(b) Mesh structure at the connection of the circular pipe with the rectangular box. The element
boundary and the position of the GLL points are shown

@u(

@t
C .rUb/

T u( � Ub � ru( C 1

Re
r2u( Crp( D f ; (6)

r � u( D 0 in ˝ ; (7)

u( D 0 on @˝v ; (8)

p(nC 1

Re
ru( � n D .Ub � n/u( on @˝o ; (9)

where u( and p( are adjoint perturbations. Notice the change of sign in the equations
and the fact that outflow BC are inhomogeneous.

The solution to the direct and adjoint problem is computed using a Legendre
polynomial based SEM implemented in Nek5000 [8]. In this method the governing
equations are cast into weak form and discretised in space by the Galerkin
approximation, following the PN � PN�2 approach. The velocity space is spanned
by N th-order Lagrange polynomial interpolants, based on tensor-product arrays
of Gauss–Lobatto–Legendre (GLL) quadrature points in a local element. The
individual elements take the shape of hexahedra which can then be transformed
using general coordinate mapping as shown in Fig. 1b.
Nek5000 does not support the general inhomogeneous BC as given above.

Therefore, to keep direct and adjoint problems consistent we set homogeneous
Dirichlet BC on all @˝ . To avoid reflections we use a sponge forcing f D �.x/
.Ub � v/ at the inflow/outflow boundaries, where v stands for u or u( and �.x/ is a
smooth step function [5]. The dependency of the operator spectra on the applied BC
for the flow past circular cylinder case is discussed in Sect. 4.

To obtain the base flow one has to find the steady state solution of the non-linear
Navier–Stokes equations, which in many of the considered cases is unstable, in
particular for strongly convectively unstable flows (e.g. JCF). We compute the base
flow using selective frequency damping (SFD) [1], which damps the oscillations
of the unsteady part of the solution using a temporal low-pass filter by setting
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Fig. 2 Two-dimensional flow past a circular cylinder at Re D 50. The upper part shows the
velocity magnitude of the base flow, and the lower part presents the overlap function � for the
strongest direct and adjoint modes. This plot can be compared with Figs. 8 and 17 in Ref. [9]

f D ��.u � w/, where u is the flow solution and w its temporally low-pass-filtered
counterpart obtained by a differential exponential filter wt D .u � w/=�. The
amplitude of the forcing  D k.u�w/k in˝ is a good indicator of convergence; 2D
test cases reached levels  � 10�13, whereas the computationally more expensive
3D runs were stopped at 10�10 or 10�7 depending on the resolution, which is lower
than the tolerance used for eigenvalue calculation (10�6). An example of such a
SFD base flows for JCF and cylinder flow are presented in Figs. 1a and 2.

The eigenvalue problem is then constructed rewriting the LNS equations in
operator form ut D Au and assuming u.x; t/ D Ou.x/ exp.�i!t/, where Ou.x/ is
the global mode and ! its complex eigenvalue. For general 3D flows the size of the
matrix A prohibits its explicit construction, so only the action of A on the vector
u can be calculated. Solving the eigenvalue problem can then be achieved using
the so-called time-stepper method, i.e. an iterative technique based on orthogonal
projection of A onto a lower-dimensional subspace, in which the Arnoldi algorithm
is applied and the Krylov subspace is constructed using snapshots taken from the
evolution of the flow field u separated by a constant time interval �t . To avoid
frequency aliasing �t must be small enough such that at least two sampling points
in one period of the highest frequency mode are included (see e.g. Ref. [2]).
In presented studies we do not consider dependency of calculated spectra on the size
of Krylov space and�t . The other important parameter is the actual time step ıt of
the simulation, which is related to the CFL condition. In our simulations we have
tested Courant numbers in the range 0:05–0:2 and found significant dependency of
the operator A spectra if the cases were marginally resolved in space. On the other
hand, the fully resolved 2D simulations show little dependence of the spectra on the
Courant number.

In our implementation we use the implicitly restarted Arnoldi method (IRAM)
from the ARPACK library [15]. We solve for the generalised eigenvalue problem
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A Ou D �i!B Ou, where B is the mass matrix. It allows us to simplify the treatment of
the duplicated values of the velocity field at the element faces, and to get the exact
value of the inner product applied in the orthogonalisation step.

3 Poiseuille Flow

To validate our implementation we performed a number of tests corresponding to
different flow configurations. The first one is plane Poiseuille flow, in which a fluid
is moving laterally between two plates whose length and width is much greater
than the distance separating them. This 2D parallel flow can be treated exactly by
local analysis. We performed our calculations for Re D 2;000 (based on centreline
velocity and channel half height) on a rectangular grid of streamwise length 2�
with periodic BC, built of 6� 6 spectral elements with polynomial orderN ranging
from 11 to 17. We compared our result with local analysis (O. Tammisola, private
communication) and found very good match for the first 100 eigenvalues calculated
for N D 17 (Fig. 3). Although only three modes with the highest frequency
!r > !max � 21 are visibly displaced, we can see slow decrease of accuracy with
growing !r . This becomes more pronounced with decreasing N as the maximum
frequency of the well resolved waves (!max � 16 for N D 11) is getting lower
and thus a small number of spurious modes appears. Similar conclusions can be
drawn comparing direct and adjoint modes, however the threshold frequency for
fast relative error growth appears to be lower (!max � 12 for N D 17). There is
also a number of modes clustered around !r D 0, with relative error of order 10�6
which all correspond to highly damped modes.

4 Flow Past Circular Cylinder

The next case is the plane wake behind a circular cylinder, which is a canonical
2D, non-parallel flow extensively studied in the literature. Its structural sensitivity
was investigated in Ref. [9] and we compare our results against this work adopting
the grid from [14], where the cylinder of unit diameter was placed at (0,0) in the
grid extending from �15 to 35 and from �15 to 15 in streamwise and cross-flow
directions, respectively. We performed a number of runs for Re D 40, 45 and 50
(based on diameter and incoming velocity) calculating the most unstable global
modes and their overlap function �. Very good agreement with [9] is obtained.
An example of a base flow and a wavemaker for Re D 50 is presented in Fig. 2
which can readily be compared with Figs. 8 and 17 in Ref. [9]. The left plot in
Fig. 4 (negative !r ) presents the comparison of the calculated spectra of the direct
operator for Re D 50 with the results of CPL code, which is a modified version
of the code employed in [9] (I. Lashgari, private communication). There is good
agreement for the least damped, low frequency modes, but we observe a relative
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Fig. 4 Spectra of the direct operator for the flow past circular cylinder at Re D 50. Left: Case
with outflow BC in the non-symmetric box (1) compared with results of the CPL code (2) and
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inflow/outflow regions. (4) symmetric box with Dirichlet BC and sponge

shift of the modes growths with increasing !r and decreasing !i . These weaker
modes are very sensitive to the exact simulations details such as grid size and
boundary conditions. Furthermore, we present results of the runs with outflow BC
(Eq. 5) for non-symmetric (x 2 Œ�15; 35�; crosses) and symmetric (x 2 Œ�35; 35�;
triangles) mesh; the two meshes differ in the extent of the upstream (inflow) part
which is important for the adjoint simulations. There is clearly sensitivity of the
spectra to these details as the position of the branches is moved. The dependency
of the spectra on the applied BC and grid size is illustrated in Fig. 4. We found the
Dirichlet BC combined with the sponge forcing u and u( at inflow/outflow to be
the least sensitive to the grid and we thus use these settings in the remainder of
our study. The relative error of the growth rate pertaining to the direct and adjoint
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modes for this setup is lower than 10�6 (not shown). The resolution studies for this
case showed strong dependency of the spectra on the polynomial order N with the
frequency of the poorly resolved modes shifted towards !r D 0.

5 Jet in Crossflow

The most complex flow case considered in this study is the jet in crossflow (JCF),
which is a non-parallel and fully 3D flow referring to a jet of fluid exiting a pipe and
interacting with the boundary layer perpendicular to the pipe orifice (see Fig. 1).
For the detailed description of the case we refer to Refs. [3, 13]. We consider
two different setups of this flow: one corresponding the simplified setup of Ilak
et al. [13], in which the inflow jet was represented by a Dirichlet boundary condition,
and the more realistic one with the pipe included in the domain as shown in Fig. 1.
For the simplified setup, we made two major changes compared to Ref. [13]: (i)
no fringe region as the SEM code does not require periodic BC in the streamwise
direction, and (ii) the length of the box is longer (150 versus 75 units in [13]).
We increased the box length because we found the result to be very sensitive to any
kind of disturbances; especially the proper treatment of outflow BC proved to be
crucial, so in an effort to reduce its influence we increased the downstream part of
the grid together with a sponge region. This extreme sensitivity of the simplified
JCF can be related to both strong non-normality of LNS operator, but also to the
“unphysical” u D 0 Dirichlet BC at the pipe orifice, which is very close to the
dynamically important region. For the same reason we were not able to reproduce
the results of [13]. In our runs we set the jet to free-stream velocity ratio R to 1.5,
and the Reynolds number at the jet position Re D 178:2 (based on free-stream
velocity and cross-flow displacement thickness). The jet diameter and pipe length
are equal 3 and 20 units, respectively.

Most of our runs we performed studying the simplified setup and we found it
very sensitive to the grid resolution. On the left plot in Fig. 5 the results of the
higher resolution (polynomial order N D 9, crosses) are compared with the lower
resolution (N D 6, circles) and the spectra of the adjoint operator (N D 9,
triangles). The increased resolution causes the initially unstable flow (positive
growth rate of the strongest mode) to stabilise, as the whole spectra shifts down.
Comparison of the direct and adjoint spectra also shows that the even N D 9

resolution is only marginal, as the lowest value of the growth rate error .!i / is
on the order of 10�4.

Similar conclusions can be drawn comparing the direct (crosses) and adjoint
(circles) spectra of the high resolution (N D 9) run including the pipe (right plot
in Fig. 5). One can see a clustering of the poorly resolved adjoint modes around
!r D 0, which is similar to what we already observed in the cylinder case (Sect. 4).
However, the least stable modes agree well between direct and adjoint simulation
indicating that the main dynamics is captured well. Figure 6 presents a 2D cut
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Fig. 5 The spectra of the direct and adjoint operator for JCF for velocity ratio R D 1:5. Left
plot corresponds to the simplified setup discarding the pipe and presents the direct operator spectra
for high (1) and low (2) resolution runs together with the adjoint operator spectra of the high
resolution run (3). The right plot shows the spectra of the direct (1) and adjoint (2) operator for the
setup including pipe in the consideration

Fig. 6 Two-dimensional cut through the symmetry plane of the grid for the JCF setup including
the pipe for R D 1. The colours shows the value of the strongest overlap �. Isolevels of the direct
(dashed line) and adjoint (continuous line) strongest modes at 1, 10 and 30 % are also shown

through the symmetry plane of the grid showing isosurfaces of the direct (dashed)
and adjoint (continuous line) strongest modes as well as their overlap � (colour).
The isocontours are placed at 1, 10 and 30 % of the maximum value of the modes
showing their spatial extent and illustrating considerable separation of their maxima,
which is related to the strong non-normality of the operator. As the plot covers the
region close to the pipe orifice, only the adjoint mode maximum is visible. The
overlap function � features a total of three maxima of which one is clearly related
to the adjoint mode, located close to the steady horseshoe vortex upstream the jet.
The other two maxima appear in the shear layer downstream of the jet forming the
wavemaker.

The analysis of 3D flows is computationally very expensive, and the computation
of the single JCF spectrum with N D 9 takes about 2–3 weeks on 1,024 cores.
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6 Conclusions

In this work we investigated the use of linear stability tools implemented in the
SEM code Nek5000 for studying the stability and sensitivity of 3D flows with
moderately complex geometry. We validated our implementation on a number of
2D parallel and non-parallel flow cases against the local stability analysis as well
as literature data. Resolution studies show that the calculated spectra are very
sensitive to the grid resolution and proper treatment of boundary conditions. In our
simulations we adopted Dirichlet boundary conditions together with sponge layers
to keep direct and adjoint problems consistent, however another possible solution
would be to adopt correct direct and adjoint outflow boundary according to Eqs. 5
and 9. The grid spacing defines the shortest wave length that can be properly
resolved, which corresponds to setting the maximum possible frequency of the
calculated modes. Higher modes then appear as spurious modes in the spectrum.
In the case of the flow past cylinder and a jet in crossflow (including the inflow
pipe) the frequency of the spurious modes was shifted towards zero giving clusters
of spurious low frequency modes with low growth rates. Comparing direct and
adjoint spectra is shown to help in identifying spurious modes, but even then
careful resolution studies are necessary. The dependency of the spectra on the grid
resolution usually does not play a crucial role for 2D simulations, but it becomes
an important issue when moving to 3D, in particular in regions of active dynamics
and complex geometry. In this case adaptive mesh refinement algorithms might be
instrumental for future studies.
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Abstract We present a high-order discontinuous Galerkin method for the
simulation of P-SV seismic wave propagation in heterogeneous media and two
dimensions of space. The first-order velocity-stress system is obtained by assuming
that the medium is linear, isotropic and viscoelastic, thus considering intrinsic
attenuation. The associated stress-strain relation in the time domain being a
convolution, which is numerically intractable, we consider the rheology of a
generalized Maxwell body replacing the convolution by differential equations.
This results in a velocity-stress system which contains additional equations for
the anelastic functions including the strain history of the material. Our numerical
method, suitable for complex triangular unstructured meshes, is based on a centered
numerical flux and a leap-frog time-discretization. The extension to high order
in space is realized by Lagrange polynomial functions, defined locally on each
element. The inversion of a global mass matrix is avoided since an explicit scheme
in time is used. The method is validated through numerical simulations including
comparisons with a finite difference scheme.
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1 Formulation of the Viscoelastic System

Computational seismology has become a very important discipline for estimates of
ground motion thanks to accurate numerical solvers and a better understanding of
physical phenomena. In realistic media such as sedimentary basins where incident
waves are trapped, site effects due to local geological and geotechnical conditions
can be observed, as first described by Singh et al. [13] for the 19 September 1985
Michoacan earthquake in Mexico city; these effects result in a strong increase in
amplification and duration of the ground motion at some particular locations. For
such estimates, the basic assumption of linear elasticity is no more valid because it
results in a severe overestimation of amplitude and duration of the ground motion
since attenuation is not taken into account.

We study here the P-SV wave propagation by solving the two-dimensional
velocity-stress formulation of the elastodynamic equations. In order to include
realistic attenuation, we suppose that the medium is linear, isotropic and viscoelas-
tic, combining the behavior of both elastic solids and viscous fluids. Then, the
associated stress-strain relation, given by the causality principle, establishes that
the stress, at a given time t , is a function of the entire strain history until t ; in the
time domain, this relation is the convolution of a relaxation function and the strain
rate, which is numerically intractable. Therefore, since we study this problem in the
time domain, we follow the method, presented by Day and Minster [2], replacing
the convolution by additional differential equation and the improvement proposed
by Emmerich and Korn [5] which consider the rheology of a generalized Maxwell
body (GMB) with L relaxation frequencies !l , chosen logarithmically equidistant
in the frequency band of interest and allows the fitting of any Q-law.

Following Kristek and Moczo [9], the anelastic functions depending on the strain
 are defined by

�l .t/ D !l
Z t

�1
e�!l .t��/ .�/ d�; l D 1; : : : ; L (1)

and allow to turn the convolution into L differential equations

@

@t
�l .t/C !l �l .t/ D !l .t/; l D 1; : : : ; L (2)

which complete the anelastic wave system. Thus, the velocity-stress system we
consider is
8
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where � is the density, � and � are the Lamé parameters related to the P- and S-
wave velocities which write vp D

p
.�C 2�/=� and vs D

p
�=� for an unrelaxed

purely elastic medium; v is the velocity vector and � is the stress tensor. The L
tensors �l are the derivatives of the memory variables � defined in (2) and )M;l are
their associated anelastic coefficients, withM equal to � or�. These coefficients are
determined by solving an overdetermined system of equations using desired values
of the quality factorsQM at frequencies Q!k [9]:

LX

lD1

!l Q!k C !2l Q�1
M . Q!k/

!2l C Q!2k
)M;l D Q�1

M . Q!k/; k D 1; : : : ; 2L� 1: (4)

Since observations show that in the Earth, the internal friction is nearly constant over
the seismic frequency range, we solve (4) assumingQ is frequency-independent.

If we define a single vector W D .v;W�;�/
T , where W�;� is the (3C 3L)-vector

of stress and anelastic unknowns, the system (3) can be written in the following
compact form

@W
@t
C

X

˛2fx;zg
B˛.�; �; �/ @˛W D E W : (5)

The detail of the matrices B˛ and E can be found in [8].

2 Discretization

Many different numerical methods have been developed within the last few decades
to solve these equations. Among all of them, we consider here a non-dissipative
high-order discontinuous Galerkin method (DG) applicable to unstructured tri-
angular meshes. Initially introduced by Reed and Hill [11] for the solution of
neutron transport problems, the DG method became quite recently very popular
to solve hyperbolic systems. For seismic wave propagation problems, especially
in viscoelastic media, Käser et al. [8] have proposed a DG finite element method
based on an upwind scheme and the ADER approach. In the following, we present
the spatial and time discretization of the system (5), which is an extension of the
method proposed in [3] for elastic media.

We consider a polygonal domain ˝ divided into NT triangles. For a given
element Ti , we denote by Sik D Ti \ Tk its internal faces – indexed by V .i/ –
and by Sbik D Ti \ @˝ the faces which are common to the boundary of ˝ , indexed
by E .i/. We first multiply the system (5) by a scalar test function �Til and integrate
on Ti

Z

Ti

2

4@W
@t
C

X

˛2fx;zg
B˛.�; �; �/ @˛W� E W

3

5 �Til dV D 0 : (6)
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Assuming that the parameters �, � and � are constant on Ti and using Green’s
formula for the second term of Eq. (6), we get

Z

Ti

@W
@t
�
Ti
l
dV �

X

˛2fx;zg
BTi˛

Z

Ti

W @˛�
Ti
l
dV C BTin

Z

@Ti

W �
Ti
l
ds D ETi

Z

Ti

W �
Ti
l
dV;

(7)

where n is the outward normal vector to Ti andBn.�; �; �/ D
X

˛2fx;zg
B˛.�; �; �/ n˛ .

In (7), BTi
n (respectivelyETi ) is the restriction of Bn (respectivelyE) to Ti .

We now write the approximation of W using Lagrange interpolation polynomials
of degreem on Ti

WjTi .x; t/ D
diX

jD1
WTi

j .t/ �
Ti
j .x/ ; (8)

where di is the number of degrees of freedom on Ti and �Tij (j D 1; : : : ; di ) are the
basis functions. For the first term of (7), we obtain

8 l D 1; : : : ; di ;
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where MTi D
�Z
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is the mass matrix on Ti , and for the

second term, we get
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The second integral of (7) is approximated by

8 l D 1; : : : ; di ;
X

˛2fx;zg
BTi
˛

Z

Ti

W @˛�
Ti
l dV D

X

˛2fx;zg
BTi
˛

diX

jD1
G
Ti
˛;lj WTi

j ; (11)

where GTi
˛ D

�Z

Ti

�
Ti
j @˛�

Ti
l dV

�

1�j;l�di
.

In order to calculate the boundary integral in (7), we split @Ti into internal and
boundary parts

8 l D 1; : : : ; di ; BTi
n

X

k2V .i/

Z

Sik

W �
Ti
l ds C BTi

n

X

k2E .i/

Z

S
bi
k

W �
Ti
l ds: (12)
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For the internal faces Sik, we introduce a centered flux

WjSik D
1

2

�
WTi CWTk

�
: (13)

Hence, the corresponding integral writes: 8 l D 1; : : : ; di

BTi
n

X

k2V .i/

Z

Sik

W �
Ti
l ds D 1

2
BTi

n

X

k2V .i/

diX

jD1

�

R
Ti
jSik
�

lj
WTi

j C


R
Tk
jSik
�

lj
WTk

j

�

;

(14)

where RTijSik D
�Z

Sik

�
Ti
j �

Ti
l ds

�

1�j;l�di
and R

Tk
jSik D

�Z

Sik

�
Tk
j �

Ti
l ds

�

1�j;l�di
:

In the following numerical simulations, we will consider two types of boundary
conditions. Firstly, the free surface condition � � n D 0 which we introduce weakly
in the integral and, secondly, periodicity conditions for the lateral boundaries of the
domain.

For the time discretization, we use a second-order leap-frog scheme, so that v on
one hand and W�;� on the other hand are computed at staggered times. We denote
by F Ti and G Ti the discrete operators taking into account the integrals on Ti and
@Ti . Then, we obtain the system of discrete equations for each element Ti

MTi
vnC1 � vn

*t
D F Ti

�

W
nC 1

2

�;�

�

; (15)

MTi
W

nC 3
2

�;� �W
nC 1

2

�;�

*t
D G Ti

�

vnC1;WnC 1
2

�;�

�

; (16)

where*t D tnC1 � tn is the time step and vn D v.tn/.

3 Numerical Results

3.1 Propagation of a Plane Wave in a Layered Medium

First, in order to accurately validate the proposed DG method, we consider the
propagation of a vertical plane wave in a layered medium containing seven different
sedimentary deposits over a bedrock, as depicted in Fig. 1. The material properties of
the different layers, given in Table 1, exhibit high constrasts between the media. The
P-wave velocity vp and the S-wave velocity vs are given at a reference frequency fr
since the media are dispersive. The source excitation is a vertically incident plane
SV wave, introduced in the bedrock (as a source term for the horizontal velocity
equation) and which propagates vertically across the various layers up to the surface.
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Fig. 1 Description of the layered medium (left picture); the material properties of the media are
given in Table 1. Time (upper) and frequency (lower) dependence of the vertical incident SV plane
wave

Table 1 Material properties for the different layers of the heterogeneous
column

vp.fr / [m/s] vs.fr / [m/s] � [kg/m3] Qp Qs

1 1,500 130 2,050 75 15

2 1,500 200 2,150 75 20

3 1,650 300 2,075 83 30

4 2,050 450 2,100 103 40

5 2,450 600 2,155 123 60

6 2,550 700 2,200 140 70

7 3,500 1;250 2,500 200 100

Bedrock 4,500 2;600 2,600 50;000 50;000

Its frequency content is in the band [0,10 Hz] (as shown in Fig. 1). We apply a free
surface condition on the top of the numerical domain and periodic conditions at
lateral boundaries, as this problem is 1D (Fig. 1).

We compare the results of our DG solver to those of two different reference
methods: first, a finite difference (FD) method, detailed in Gélis et al. [6], based
on the rotated staggered grid of Saenger [12] and the technique developed by
Liu and Archuleta [10] to take into account anelastic losses (viscoelastic model)
and, secondly, the Haskell-Thomson method (HT) [7]. For a precise comparison
of the solutions, we plot, in Fig. 2, the spectral ratio of the horizontal velocity
at the surface (or transfer function), i.e. the ratios in the frequency domain
between the solution computed at the surface of the heterogeneous column and the
corresponding solution for a homogeneous elastic medium (rocky medium only).
The DG solutions have been computed using a second-order Lagrange interpolation
and, in the viscoelastic case, eight mechanisms (L D 8) have been used. The time
step *t is constrained by a CFL condition depending on the highest velocity.



A High-Order Discontinuous Galerkin Method for Viscoelastic Wave Propagation 367

2 4 6 8 10 12
0

2

4

6

8

10

12

14

16

18

frequency (Hz)

am
pl

ifi
ca

tio
n

DG elastic
FD elastic

HT elastic
DG viscoelastic

FD viscoelastic
HT viscoelastic

Fig. 2 Spectral ratios of the
horizontal velocity vx for the
heterogeneous column test
case. Comparison between
discontinuous Galerkin (DG),
finite difference (FD) and
Haskell-Thomson (HT)
methods for elastic and
viscoelastic cases

When observing the results in Fig. 2, we first remark a perfect accordance of the
DG solution with the reference solutions, in both elastic and viscoelastic cases. Note
the complex profiles of the spectral ratio and the high values of the amplification
(between 6 and 15) at the fundamental frequency and higher modes, resulting from
the successive constructive downgoing and upgoing waves trapped in the column.
Lastly, the comparison between the elastic and viscoelastic cases highlights the
effect of the attenuation which results in lower values of the amplification, especially
at high frequencies.

3.2 Propagation in a Realistic Basin

We now consider a more realistic problem and study the propagation of a vertical
SV plane wave in a 2D basin extracted from the 3D model of the Nice area (south
of France) [1]. The location of the 2D profile and its description are given in Figs. 3
and 4 respectively. As it is seen on the figure describing the basin, the 1,000 m
wide model of the basin is extended laterally by two homogeneous flat parts; this
model is complex and highly heterogeneous as proven by the media properties of
Table 2. As previously, the solutions of the DG method are compared to the results
of the FD solver. The numerical domain is 2,100 m wide and up to 75 m deep.
An unstructured triangular mesh respecting the interfaces between the different
media, has been generated with Simail [4]; the mesh size is approximatively 1 m in
the basin and 4 m in the bedrock and the mesh contains 10,707 triangles. The number
of mechanisms is hereL D 3. The FD calculations are done with a uniform cartesian
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Fig. 3 Topography of the area of Nice and localization of the 2D profile (black line)

Fig. 4 Model of the 2D basin used for the simulations and location of the receivers R1, R2 and
R3; color map corresponds to the value of velocity vs

grid (*x D *y D 0:125m, which corresponds to 60 points by wavelength, as
required by the stencil of Saenger in the presence of free surface condition) and
vacuum conditions are applied at the topography [14]. The solution is recorded
at receivers located every 5 m at the surface and three of them are selected (see
R1, R2 and R3 on Fig. 4) outside, inside and at the edge of the basin. The source
excitation is the same as for the previous test case. We plot on Fig. 5 the evolution
of the horizontal velocity vx as a function of time calculated at the receivers R1, R2
and R3 with both DG and FD methods. Note that, also for this complex case, the
results of the two numerical methods are in perfect accordance which proves that, for
this frequency range, computations can be done using three mechanisms only. The
trapped waves inside the basin are clearly visible on the solutions at receiver R2 for
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Table 2 Material properties
of the different media of the
basin. QP D vp=10 and
QS D vs=10

vp.fr / [m/s] vs.fr / [m/s] � [kg/m3]

1 440 180 1;900

2 710 290 1;900

3 489 200 1;700

4 808 330 2;100

5 612 250 1;800

6 734 300 2;100

7 538 220 1;800

8 710 290 2;000

9 734 300 2;000

Bedrock 2;449 1;000 2;100
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FD

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
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0.1

time (s)

DG
FD

Fig. 5 Horizontal velocity vx as a function of time at the three surface receivers: R1 (top) located
outside the basin, R2 (medium), in the basin and R3 (bottom), at the edge. Comparison between
discontinuous Galerkin (DG) and finite difference (FD) methods

which the velocity amplitude is higher and the signal duration significantly longer.
This is a typical feature of site effects. Finally, we present in Fig. 6 the transfer
function at the surface i.e. the spectral ratio of the horizontal velocity as a function
of the frequency, for all the receivers on the topography. On this picture, we note
the high amplification essentially in the basin at a frequency approximatively equal
to 2 Hz which is in accordance with the real measurements at station NLIB [1] (see
Fig. 3). Moreover, amplification for higher frequencies can be observed at the right
boundary of the basin (for coordinates about 1,500), for receivers located above the
thinnest sediment layers in the basin and at the highest altitude.
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In conclusion of this study, we have proposed a high-order discontinuous
Galerkin method for the wave propagation in viscoelastic media. It has been vali-
dated through simulations in heterogeneous realistic configurations. A mathematical
analysis of the method is in progress and the extension to 3D is underway.
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Mixed Mimetic Spectral Element Method
Applied to Darcy’s Problem

Pedro Pinto Rebelo, Artur Palha, and Marc Gerritsma

Abstract We present a discretization for Darcy’s problem using the recently
developed Mimetic Spectral Element Method (Kreeft et al. (2011) Mimetic frame-
work on curvilinear quadrilaterals of arbitrary order. Submitted to FoCM, Arxiv
preprint arXiv:1111.4304). The gist lies in the exact discrete representation of
integral relations. In this paper, an anisotropic flow through a porous medium
is considered and a discretization of a full permeability tensor is presented. The
performance of the method is evaluated on standard test problems, converging at
the same rate as the best possible approximation.

1 Darcy Flow

Anisotropic heterogeneous diffusion problems are ubiquitous across different scien-
tific fields, such as, hydrogeology, oil reservoir simulation, plasma physics, biology,
etc [10]. Darcy’s equation describes a steady pressure-driven flow through a porous
medium where fluxes and pressure are linearly related,

div
K

�
grad p D � �D1�!

8
ˆ̂
<

ˆ̂
:

u� grad p D 0 in ˝ .1a/
div q D � in ˝ .1b/
q D Ku in ˝ .1c/
q D q0 in @˝ .1d/
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Fig. 1 Consider a line where
we can have two types of
orientation: Outer – around
the line; Inner – along the line

where u is the fluid velocity, p the pressure, q the mass flux and � the prescribed
source term. Without loss of generality let the viscosity, � D 1, and consider a
permeability symmetric, positive definite tensor denoted by K.

In a three-dimensional setting are: four types of submanifolds (points, lines,
surfaces and volumes); and two orientations (outer and inner, as an example see
Fig. 1). Tessellation divides the physical domain in a set of these geometric objects
to which we associate discrete variables, i.e. integral quantities. Thus, associated
with every physical variable is a correspondent geometric object, this symbiotic
relation between physics and geometry is the core of mimetic methods. Many
scholars are aware of this relationship [3, 5, 7, 23].

Starting from the mass balance equation, .1b/,

Z

V

div q dV D
Z

@V

q � n dS D
Z

V

� dV; (2)

it is clear that the divergence in a volume is equal to the sum of the surface integral
quantities, i.e. oriented fluxes. Thus, we will associate mass fluxes, q, with quantities
that go through surfaces. This equation therefore tells us that the right hand side term
� is associated to outer-oriented volumes.

Similarly, using Newton-Leibniz relation for Eq. .1a/,

Z

C

grad p dC D
Z

@C

p D p .B/ � p .A/ D
Z

C

u dC; (3)

the fluid velocity, u, is represented along lines and p is represented by the values in
points. From (3) we deduces that u and p are inner-oriented variables.

The constitutive/material relation relation .1c/ is given by,

q D Ku; (4)

which defines how quantities associated to inner-oriented lines relate to quantities
associated to outer-oriented surfaces. Whereas Eqs. (2) and (3) can be exactly
satisfied on a finite grid the constitutive equation (4) needs to be approximated.

The importance of respecting the geometric nature in physics is discussed in [9].
Figure 2 summarizes the geometric character of the Darcy’s problem.

We will denote the space of variables associated to outer-oriented k-dimensional
objects by �k .M/ and the space of variables associated to inner-oriented
k-dimensional objects by Q�k .M/ as indicated in Fig. 2.
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Inner Orientation

Outer Orientation

Fig. 2 Darcy’s flow problem geometric characterization. Fluxes, q, are associated with outer
oriented surfaces; �, is associated with outer oriented volumes; velocity, u, is associated with inner
oriented lines; pressure, p, is associated with inner oriented points

In this paper we will make use of the spectral element method described in [9,19],
application of these ideas to Stokes’ flow see [16–18]; Poisson equation for volume
forms [22]; advection equation [21]; derivation of a momentum conservation
scheme [24]. Extension to compatible isogeometric methods see [11, 12]. For
applications of these ideas in a finite difference setting see Brezzi et al. [4]. In the
context of finite element methods Arnold et al. [1] proposed a Finite Element
Exterior Calculus. In a more geometric spirit Desbrun et al. [6] and Hirani [13]
developed the discrete exterior calculus (DEC). An application of the latter to Darcy
flow can be found in [14].

2 Discretization of Equations

In this section we will describe the discretization by defining the weak formulation.
The approached followed here is similar to [2, 15].

For vectors associated with outer-oriented surfaces, �2 .M/, we define the
weighted inner product

.a;b/M;K D
Z

M
aK�1b dV: (5)

Furthermore, we define bilinear maps ..�; �//M W �1 .M/� Q�n�1 .M/! R

..u; Qv//M WD
Z

M
u � Qv dV: (6)

and ..�; �//M;K W �k .M/ � Q�n�k .M/! R given by

(continued)
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(continued)

..u; Qv//M;K WD
Z

M
u �K�1 Qv dV: (7)

For q 2 �2 .M/ and p 2 Q�0 .M/ and homogeneous boundary values we
have

..divq; p//M D � ..q; gradp//M

D � ��q;K�1 ŒK gradp�
��

M

D ��q; grad�
K
p
��

M;K
:

(8)

It is possible to define a new gradient operator,

grad�
K
D �K grad: (9)

2.1 Mixed Formulation

Starting from (1) and making use of the bilinear maps defined above we have for all
vectors � 2 �n�1 .M/ associated to outer-oriented surfaces

..�;u � gradp//M D 0
”

..�;Ku�Kgradp//M;K D 0
(9)”

..�;Ku//M;K C
�
�; grad�

K
p
�
M;K
D 0

.1c/ and (8)”
.�;q/M;K C ..div �; p//M D 0

(10)

The constitutive equation is included in the last step by converting the bilinear form
to a weighted inner product on �2 .M/ as defined in (5). For .1b/ we take the
bilinear map for the divergence of a vector q associated with outer-oriented surfaces
and an arbitrary scalar function defined in inner-oriented points, � 2 Q�0 .M/,

..divq; �//M D ..�; �//M : (11)
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The mixed formulation becomes: Find .q; p/ 2 ˚�2 .M/ � Q�0 .M/
�
, given

� 2 �3 .M/, for all .�; �/ 2 ˚�2 .M/ � Q�0 .M/
�

such that,

.�;q/M;K C ..div �; p//M D 0 (12)

..divq; �//M D ..�; �//M : (13)

2.2 Basis Functions

For the high order representation we use Lagrange, li .�/, and edge functions, ei .�/.
Lagrange polynomials interpolate nodal values. The edge functions, derived by
Gerritsma [8] are constructed such that when integrating over a line segment it gives
one for the corresponding element and zero for any other line segment,

li
�
�j
� D ıi;j

Z �j

�j�1

ei .�/ D ıi;j : (14)

The relation between the Lagrange and the edge functions is given by,

ei .�/ D i .�/ d�; with i .�/ D �
i�1X

kD0

d lk

d�
: (15)

Note that this definition implies

dli

d�
D ei .�/ � eiC1.�/ : (16)

Extension to the multidimensional is obtained by means of tensor products. For
more details see [19].

2.3 Mimetic Discretization in 2D

2.3.1 Expansion of Unknowns in R
2

Let q 2 �1 .M/ be expanded as,

qh D

2

6
6
6
4

NP

iD0

NP

jD1
qxi;j li .�/ ej .�/

NP

iD1

NP

jD0
q
y
i;j ei .�/ lj .�/

3

7
7
7
5
; (17)
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and the pressure, ph 2 Q�0 .M/ as,

ph D
NX

iD1

NX

jD1
pi;j i .�/ j .�/ : (18)

2.3.2 Discrete Divergence in R
2

The divergence of qh is then given by

div qh D
NX

iD1

NX

jD1



qxi;j � qxi�1;j C qyi;j � qyi;j�1

�
ei .�/ ej .�/ ; (19)

where we repeatedly used (16). The scalar � 2 �2 .M/ associated with outer-
oriented volumes is expanded as

�h D
NX

iD1

NX

jD1
�i;j ei .�/ ej .�/ : (20)

Equating (19) and (20) yields

NX

iD1

NX

jD1
�i;j

�����ei .�/ ej .�/ D
NX

iD1

NX

jD1



qxi;j � qxi�1;j C qyi;j � qyi;j�1

������ei .�/ ej .�/

(21)

Œ�� D E.2;1/ Œq� : (22)

We see that the basis functions cancel from this relation. The matrix E.2;1/ relates
the fluxes qxi;j and qyi;j to the volume integral �i;j , as depicted in Fig. 3. This fully

discrete equation is a restatement of the integral relation (2). The matrix E.2;1/ only
contains the values �1, 0 and 1 and is fully determined by the grid, see [19]. This is
an incidence matrix showing the topological nature of the discrete divergence.

If we insert the expansions of our unknowns in (12) and (13) we obtain in R
n

the saddle point problem given by,

"
M

.n�1/
K

�
E.n;n�1/�T M .n/

M .n/E.n;n�1/ 0

#�
q
p

�

D
�

0

M .n/�

�

; (23)

(continued)
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Fig. 3 Discrete representation of the action of the divergence in R
3 and R

2

(continued)

where M.k/ is the symmetric mass matrix obtain from the bilinear pairing
between variables associated with outer-orientation and inner-orientation, (6),
M

.n�1/
K

is the mass matrix obtained from the weighted inner product (5) and
E.n;n�1/ the incidence matrix which relates fluxes over surfaces to volumes.
The resulting system (23) is symmetric.

The pressure which is represented on an inner-oriented grid (which is not
explicitly constructed in this single grid approach) is pre-multiplied by M.n/ to
represent it on the outer-oriented grid.

3 Numerical Results

The method derived in this paper respects the geometric nature of the problem.
However, it is crucial to verify the numerical benefits of this approach. This section
presents hp-convergence studies for anisotropic permeability.

3.1 Manufactured Solution: Anisotropic Permeability

The first test case assesses the convergence for h- and p-refinement of the mixed
mimetic spectral element method applied to the Darcy model. This is a benchmark
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Fig. 4 Plots of the h- and p-convergence for anisotropic permeability given in (24)

problem presented in [15]. The problem is defined on a unit square, ˝ D Œ�1; 1�2,
with Cartesian coordinates with permeability given by,

K D
�
2 1

1 2

�

(24)

and the right hand side, � 2 L2 .M/ given by,

�.2/ D 2 �1C x2 C xy C y2� exy dxdy: (25)

This results in an exact solution for pressure p 2 Q�0 .M/ given by,

p.0/ D exy (26)

Figure 4 shows the h- and p-convergence for the pressure in straight mesh. For
the h-convergence the expected rate of convergence is of .p C 1/, where p is the
polynomial degree. The solid line for the interpolation error in the p-convergence
plot is the L2-error from interpolating the exact solution, the solution converges
exponentially. Both the numerical solution and the interpolated exact solution
converge exponentially.

3.2 Layered Medium

A classical benchmark for Darcy flow codes is the piecewise constant permeability
in a square [20]. Such a medium is called layered medium.
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K D
�
˛ 0

0 ˛

�

˛ D

8
ˆ̂
<

ˆ̂
:

0:3 if y � 1
3

0:7 if 1
3
< y � 2

3

0:5 if y > 2
3

(27)

The fluid comes into the domain from the left to the right. Since the pressure depends
linearly on x, horizontal constant velocity is expected in each layer, Fig. 5.
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Novel Outflow Boundary Conditions for Spectral
Direct Numerical Simulation of Rotating Flows

Stéphanie Rodriguez, Bertrand Viaud, and Eric Serre

Abstract In this paper we introduce new outlet boundary conditions to simulate
3D rotating flows within an interdisk cavity. The boundary conditions have been
implemented in a multidomain pseudo-spectral algorithm and a quantitative method
has been developped to qualify them. Numerical results show a reduction of
about 50% of the refracted wave amplitude compared to the convective boundary
conditions that are commonly used.

1 Introduction

The study of the flow between two rotating disks presents multiple interests whether
it be for technological devices such as turbomachinery, or for the study of geofluids
for instance as discussed by Hide [1]. It is also of academical interest as it provides
an example of a three-dimensional boundary layer. Indeed, the existence of a known
laminar solution, makes it a good candidate for stability analysis. The open cavity
introduces in addition to the rotation rate, a second control parameter: the mass flow
rate. It has thus been used by Viaud et al. [2, 3] to study transition to turbulence
scenarii. The small numerical dissipation and dispersion to accurately investigate
the dynamics of infinitesimal perturbations and the statistics in turbulent regimes,
respectively, require the use of high-order methods like the spectral ones. Due to the
extreme sensitivity of the transition process to the numerical noise, and the use of a
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spectral method that propagates any given perturbation, these investigations depend
on the quality of the outflow boundary conditions that must not induce refractions
in the computational domain.

2 Geometrical and Mathematical Modelling

The configuration is that of a rotating cavity formed by two parallel disks with a
radial throughflow at the hub (Fig. 1).

The annular cavity formed by two parallel disks is defined by its inlet and outlet
radii (respectively R�

2 and R�
1 ) and the distance 2h� between the disks. Two global

geometry parameters are thus defined: a curvature parameter Rm and an aspect
ratio L

Rm D R�
1 CR�

2

R�
1 � R�

2

; L D R�
1 �R�

2

2h� (1)

For a rotating disk and in the limit of high rotation rates, the Navier-Stokes
equations admit an asymptotic solution, the so-called Ekman boundary layer
where inertial nonlinear terms are dominated by Coriolis forces. The flow has a
characteristic length ı D p

˝=�, called Ekman scale. Two global parameters are
thus defined, a Reynolds number for the rotation Re˝ , and a radial mass flow, Cw

Re˝ D ˝R�2
1

�
; Cw D Q�

�R�
1

(2)

The azimuthal velocity in the core is called geostrophic velocity, and we introduce
two local parameters: a local Reynolds number Reı , and a Rossby number Ro

Reı D
V �
g ı

�

�
; Ro D V �

g

˝r� (3)

where � is the kinematic viscosity and ˝ the rotation velocity, V �
g is the

geostrophic velocity and r� the radius. The flow is governed by the three-
dimensional Navier Stokes equations considered in the primitive variables
formulation in the cylindrical coordinates .r; �; z/:

8
ˆ̂
<

ˆ̂
:

@tV
� C V �:rV � D �rp� C ��V � C F � in ˝

V � D W � on 


r:V � D 0 in ˝

(4)
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Fig. 1 Configuration of the cavity showing the baseflow composed by two Ekman layers at the
disks separated by a geostrophic non viscous core. R�

2 and R�

1 respectively designate the radius of
the inlet at the hub and the outlet at the rim of the 2h�high cavity

where V is the velocity of components (u; v;w) respectively in the radial,
azimuthal and axial directions, p is the pressure, F represents body forces and� is
the Laplacian operator written in the cylindrical coordinates.

3 Numerical Modelling

3.1 Discretisation

The discretisation of the Navier Stokes equations is based on the projection
algorithm presented in of Raspo et al. [4]. The three-dimensional time-dependent
incompressible Navier-Stokes equations are discretised through a semi-implicit
2nd-order time scheme that is a combination of an Adams Basforth treatment of the
non linear terms, and a 2nd-order backward differentiation formula for the linear
terms:

8
ˆ̂
<

ˆ̂
:

3V nC1
�4V nCV n�1

2ıt
C 2.V:rV /n � .V:rV /n�1 D �rpnC1 C ��V nC1 C F nC1 in ˝

V nC1 D W nC1 on 


r:V nC1 D 0 in N̋
(5)

Due to the cylindrical configuration, the solution presents a 2�-periodicity in the
azimuthal direction. The space discretisation in this direction is based on the Fourier
Galerkin method. The discretisation in the non periodic directions is made through
a Chebyshev-collocation method.

The velocity-pressure coupling is solved through a prediction-correction
algorithm [4]. It involves the successive resolution of bidimensional Helmoltz
problems for each Fourier mode at each time step.
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Fig. 2 Multidomain decomposition

3.2 One Dimensional Multidomain Decomposition

The multidomain decomposition in the radial direction is based on the influence
matrix technique. The cylindrical configuration imposes the definition of local
geometry parameters that are compatible with the global ones defined previously
(Fig. 2).

As in the monodomain configuration, each subdomain i presents the following
geometry parameters:

Rmi D R1i CR2i
R1i � R2i

; Li D R1i �R2i
2h

(6)

So as to simplify the notations, let us consider a decomposition with two domains
and let˚i be one of the variables in subdomain i . The spatio-temporal discretisation
of the Navier Stokes equations leads to the following Helmoltz problems in each
subdomain and for each Fourier mode:

8
<

:

�˚i � �˚i D Si in ˝i

Ai˚i D bi on 
i \ 

˚i D ˚ on 
i \˝ D �

(7)

with Ai D I for the velocity components and Ai D @n for the pressure, and � a
function of r , the Fourier mode k and the time step ıt .
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The value of ˚ on the interface � is unknown and is computed through the
influence matrix technique. The linearity of the Helmoltz problems allows us to
search the solution as the sum of two functions Q̊i and N̊i solutions of the following
problems:

– A homogeneous problem:

8
<

:

� Q̊ i � � Q̊i D Si in ˝i

Ai Q̊i D bi on 
i \ 

Q̊
i D 0 on �

– A stationary problem:

8
<

:

� N̊i � � N̊i D 0 in ˝i

Ai N̊i D 0 on 
i \ 

N̊
i D ˚ on �

Due to the Dirichlet boundary conditions at the border, the homogeneous solution
is continuous but presents a derivative jump H. There is only one vector � that
nullifies H. This derivative jump is corrected by the influence matrix M which is
computed from the derivatives of the stationary problem solutions. By inverting the
influence matrix M, the value of ˚ that has to be imposed at each collocation point
on the border is obtained through matricial product: � D MH�1.

4 Outflow Boundary Conditions

In the case of open flows, non-reflective boundary conditions are particularly
important, all the more where spectral accuracy is involved seeing as it propagates
any perturbation. Halpern and Schatzman [5] established that completely transpar-
ent boundary conditions are not applicable locally. Approaching conditions have
thus been investigated and Orlanski [6] introduced convective boundary conditions,
satisfied by waves propagating perpendicularly to the boundary, but that caused
instabilities when ingoing and outgoing waves are combined. Ruith et al. [7]
proposed an improvement to these convective boundary conditions that are now
commonly used:

@tuC C@xu D 0 (8)

where C designates the advection velocity that is a constant fixed arbitrarily so
as to ensure the flow rate conservation for example. Equation (8) is solved locally
at the outflow at each time-step to obtain the unsteady Dirichlet conditions for the
velocity field.

Fournier et al. [8] proposed an alternative to these convective conditions in
the case of a two-dimensional incompressible laminar wall-bounded flow. They
proposed to substitute the Navier Stokes equations at the outlet by the boundary
layer equations. Indeed, ideally we would want to solve the Navier Stokes equations
at the outlet, but these equations are elliptic in space. On the opposite, the boundary
layer equations, which only retains one direction in the second order derivatives
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of the laplacian, are parabolic and can thus be solved at the outlet. Moreover the
boundary-layer solution supports the same instability waves as the full NS solution,
ensuring a low refraction. In the case of a Blasius boundary layer, the boundary
conditions introduced by Fournier et al. are written:

@u

@t
C ux

@u

@x
C uy

@u

@y
� � @

2u

@y2
D 0 (9)

In our configuration, outflow boundary conditions are obtained from the axisym-
metric linearised Navier Stokes equations and with a boundary layer type hypothesis
then of geostrophic equilibrium:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@tu� � 2˝.v� � V �
g /� �

�
1

r� @ru
� C @zzu� � u�

r�2
�

D 0

@tv� � 2˝u� � �
�
1

r� @rv
� C @zzv� � v�

r�2
�

D 0

@tw� � �
�
1

r� @rw
� C @zzw�

�

D 0

(10)

These equations are made dimensionless by using h�;˝�1;˝R�
1 , as length, time

and velocity scales, which gives:
8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@tu� 2.v� Vg/� 4

Reh

�
1

r
@ruC @zzu � u

r2

�

D 0

@t v � 2u � 4

Reh

�
1

r
@rvC @zzv � v

r2

�

D 0

@tw� 4

Reh

�
1

r
@rwC @zzw

�

D 0

(11)

where Reh D 4

�
h

ı

�2
designates the Reynolds number cothe quality of the

dierent types of boundary conditions i.e. the refracted wave induced at the cavity
outlet is measured (Fig. 3).

When the radial mass flow is increased, nonlinear inertial forces cannot
be neglected. Indeed, while for Cw D 500; there are 3–4 orders of magnitude
separating diffusive and convective effects, there are only 2 orders of magnitude
when Cw D 2;000. The local boundary layer equations used have to be modified in
some way to retain these terms, giving:
8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

@tuCR1
�

u@ruC w@zu � v2

r

�

� 2.v � Vg/� 4

Reh

�
1

r
@ruC @zzu � u

r2

�

D 0

@tvCR1



u@rvC w@zv � uv

r

�
� 2u � 4

Reh

�
1

r
@rvC @zzv � v

r2

�

D 0

@twCR1 .u@rwC w@zw/ � 4

Reh

�
1

r
@rwC @zzw

�

D 0
(12)
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Fig. 3 Order of magnitude of the different terms of the momentum equation (in the radial
direction) for the laminar solution in a cavity between R�

2 D 30h� and R�

1 D 50h�with
Re˝ D 487;500 and Cw D 500: (a) The bold line represents the diffusive terms, the solid line is
the Coriolis force and the dashed line the convective terms. Computation is made at r� D 40h�

which corresponds to Ro D 0; 114 (b) Contribution of the different terms part of the convective
terms. v2=r is dominant

The discretisation of these equations is made through a 1st order Euler scheme
for stability concerns. Derivatives in the axial direction are obtained through a
spectral differentiation matrix in the spectral space, while in the radial direction
finite differences are used since [7] has shown that a local approximation gave better
results.

5 Evaluation of the Quality of the Boundary Conditions

5.1 Method

At the outlet, the unstationary field is the sum of two distinct waves : an incident
wave that corresponds to the passing of a perturbation, and a refracted wave of
smaller amplitude and quickly deadened, induced by the boundary conditions. Let
us suppose that over a small enough distance, both the wavelength � and the
amplitude A of the wave packet crossing the outlet can be considered constant. The
idea is to reconstruct a wave that fits the wave packet as it approaches the boundary,
using the general form Acos.r=�C �/. The wavelength is obtained through a Fast
Fourier Transformation of the crossing wave. The phase is then obtained through
a correlation function and finally the amplitude A of the wave is fitted using the
least-square method. It is assumed that the wave constructed is the incident one, by
difference between the total wave and incident wave we thus obtain the reflected
wave induced by the different boundary conditions. Figure 4a shows a wave packet
crossing the outlet. Incident and reflected waves are reconstructed on an interval of
length � on Fig. 4b.
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Fig. 4 (a) Wave packet crossing the border, visualised through the axial velocity profiles for �
and z fixed arbitrarily. (b) Crossing wave (in bold) separated in an incident wave (solid line) and
reflected wave (dashed line). Computation made with convective boundary conditions

5.2 Comparison of the Boundary Conditions

This quantitative method has been used to evaluate the performances of the
convective and boundary layer conditions with and without the non-linear terms.
Calculations have been made starting from the same initial solution presenting
a developed perturbation in the middle of the cavity, corresponding to a type
II convective instability, obtained as the impulsional response of the flow to a
perturbation localised in time and space. With the initial stationary flow control
parameters being Re˝ D 487;500 and Cw D 500, the flow sustains only type
II convective instability. The computation has then been pursued with each type
of boundary conditions until the wave packet reached and crossed the outlet. In
particular, the influence of the non-linear terms in system (11) has been investigated,
even for moderate values of the imposed mass flow rate. Figure 3b shows that the
terms in v2=r represent the main contribution to the convective terms. Furthermore,
it has appeared that the crossed terms including derivatives such as u@ru presented
numerical stability problems. It has thus been decided to keep only the terms v2=r
and uv=r in the convective terms.

The reflected waves induced by the three sets of boundary conditions have been
represented in Fig. 6. The amplitude QA of the reflected wave induced by the new
boundary conditions is smaller than the amplitude fAc induced by the convective
boundary conditions, with QA=fAC D 0:78. When the convective terms are taken into
account, the amplitude of the reflected waved is again lowered with QA=fAC D 0:47.
The wavelength of the reflected wave has been found to be about half the wavelength
of the incident wave in both cases, with less than 1% margin (Fig. 5).

Regarding the convective boundary conditions, the influence of the choice of the
advection velocity has been investigated. Several values of the advection velocity
have been used ranging from 0.05 to 10V˚ where V� designates the phase velocity
of the wave packet. The ratio between the amplitude of the incident wave and
the amplitude of the reflected wave has been plotted in Fig. 6. The amplitude of
the reflected wave is sensitively constant and about 5:7% of the amplitude of
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velocity on the amplitude
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Fig. 6 Comparison of the
reflected waves induced by:
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linearised boundary layer
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boundary layer equations
with convective terms
in dashes

the incident wave, which shows that the choice of the advection velocity has no
impact on the quality of the boundary conditions, as qualititavely observed by
Ruith et al. [7].

In the case of a higher mass flow rate, where inertial forces cannot be neglected
the linearised boundary layer equations deteriorate the solution in the long term,
compared to the convective boundary conditions. Introducing the terms in v2=r
ensure the same behaviour as the convective boundary conditions. The quantitative
measure to the reflected wave, in this case, requires the use of a very thin mesh so
as to avoid aliasing due to the heavily intense instabilities that develop within the
cavity. These heavy simulations are still ongoing.

6 Conclusion

Novel outflow boundary conditions have been developped on a spectral code
dedicated to the study of rotating flows, providing an alternative solution to the
convective boundary conditions commonly used. They have been obtained by
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solving locally a set of parabolic equations that derive from those governing the
flow in the domain so as to support the same instabilities. A quantitative method
has then been developed to evaluate the transparency of the boundary conditions.
This method has been used to compare in the same situations the reflected wave
induced by the convective boundary conditions, and the new boundary conditions,
showing an improvement in their transparency. The new conditions introducing no
other velocity, they have no impact on the CFL stability as opposed to the convective
boundary conditions. It has been shown that the new boundary conditions have a
better transparency (78 or 47% depending on whether the convective terms are kept
or not), for an identical computation cost.
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A Geometric Approach Towards Momentum
Conservation

Deepesh Toshniwal, R.H.M. Huijsmans, and M.I. Gerritsma

Abstract In this work, a geometric discretization of the Navier-Stokes equations
is sought by treating momentum as a covector-valued volume-form. The novelty
of this approach is that we treat conservation of momentum as a tensor equation
and describe a higher order approximation to this tensor equation. The resulting
scheme satisfies mass and momentum conservation laws exactly, and resembles a
staggered-mesh finite-volume method. Numerical test-cases to which the discretiza-
tion scheme is applied are the Kovasznay flow, and lid-driven cavity flow.

1 Navier-Stokes Equations

Mimetic discretizations aim to represent physics in a discrete sense, in contrast to
differential formulations, which are concerned with the limit h ! 0. For the case
in which h ¤ 0 geometrical considerations play an important role in the correct
discrete formulation, [1,2,4,7,10]. Application of these ideas to continuum models
are described in [5, Appendix A] and [8, 13]. The novel aspect in this paper is that
continuum ideas are applied to incompressible, viscous flows using spectral basis
functions.
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We start with the incompressible Navier-Stokes equations (� D 1), written in the
integral formulation, as given in many textbooks and we try to make precise what
these statements mean. It is important to give an accurate meaning to all variables,
because when we want to represent these physical quantities on finite grids, we
want to preserve the main structure of the equations. Conservation of mass (� D 1)
is usually given by

Z

@˝

v � n dS D 0 ; (1)

and conservation of momentum,

Z

˝

@v
@t
dV C

Z

@˝

v˝ v � n dS D
Z

@˝

� � n dS (2)

and Newtonian stress relation

� D �pIC �


rvC .rv/T

�
: (3)

Here v; p; � and � denote velocity, pressure, total stress tensor and dynamic
viscosity, respectively; I and n are the identity matrix and the outward unit normal
to the boundary, respectively. The above are balance equations for volumetric
quantities that depend on their fluxes through surfaces and are more physical than
their differential counterparts.

1.1 Momentum and Velocity

The first term in (2) indicates that velocity (and its time derivative) can be integrated
over a volume. But velocity is generally not associated to volumes, but is defined
as the tangent vector at a given point along the trajectory of a particle. Velocity
is therefore a vector-valued 0-form. This statement means that to every point in
space-time (a zero-dimensional object) we associate a vector. Let V be the linear
vector-space of all possible vectors at a given point in space, then we can define
the space V � of all linear functionals on V . Elements of V � are called covectors.
The spaces V and V � are isomorphic, but there is no canonical isomorphism which
relates an element v 2 V to an element ˛ 2 V �. Once a metric is defined, one can
associate with every vector at a point a corresponding covector. This map is called
the flat operator: [ W V ! V �. The covector associated with a vector v is then
denoted by v[.

The linear vector space V associated to a point p is called the tangent space at p,
denoted by Tp˝ . The corresponding dual space is called the cotangent space at p
denoted by T �

p ˝ . The collection of all tangent spaces in the domain˝ is called the
tangent bundle, T˝ and the collection of cotangent spaces is called the cotangent
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bundle, T �˝ . Let ˛ 2 T �˝ and v 2 T˝ , then h˛; vi associates to each point p in
˝ the value ˛jp .vjp/.

With every k-form we can associate a .n � k/-form with a different type of
orientation, see [2]. The collection of all k-forms on ˝ is denoted by �k.˝/.
The metric dependent operator which establishes this connection is the Hodge-?
operator. For continuum models we need to combine the [ and Hodge-? into the
operator ?[, (see also [13] for such operations)

?[ W T˝ ˝�k.˝/! T �˝ ˝�n�k.˝/ :

If we apply this operator to velocity v 2 T˝ ˝�0.˝/ we obtain

m WD ?[.v/ 2 T �˝ ˝�n˝ :

Similarly, we can define ?] W T �˝ ˝ �k.˝/ ! T˝ ˝ �n�k.˝/. The physical
quantitym is called momentum density or the momentum per unit volume. This is a
covector-valued volume form. So instead of integrating ‘velocity’ over the domain
we are tempted to write

Z

˝

m D
Z

˝

?[.v/ :

This integral is not defined, because it assumes that we can integrate over the tangent
spaces in ˝ . The basis in each tangent space, however, may differ from point to

point. In order to define the momentum integral we introduce the operator
�^

�^ W �T �˝ ˝�k.˝/
�˝ �T˝ ˝�l.˝/

�! �kCl .˝/ ;

given by ˛ 2 T �˝ ˝�k.˝/ and w 2 T˝ ˝�l.˝/

˛
�^ w D h˛;widx.k/ ^ dx.l/ :

This operation yields a .kC l/-form which can be integrated over .kC l/-dimensi-
onal submanifolds.

If we apply momentum densitym to any vector field w (not necessarily a velocity

field) using this operator we get m
�^ w 2 �n.˝/ and this can be integrated over

a volume. So the proper way to interpret the time rate of change of momentum
should be

Z

˝

@

@t
?[ .v/

�^ w ; 8w 2 T˝ ˝�0.˝/ : (4)

In many textbooks on fluid dynamics the distinction between momentum density
(usually called ‘momentum’) and velocity is ignored; one is just a scalar multiple of
the other, m D �v, but the use of the vector w in (4) is generally incorporated. The
textbooks then say: ‘We consider this equation for each component separately . . . ’.
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This is a strange sentence, because components have no physical relevance, only
vectors, i.e. components plus associated basis vectors are physically relevant. But
what is meant by this statement is that for the vector field w in (4) a uniform
vector field in the xi -direction is taken. The generality ‘all vector fields’ is in these
textbooks compensated by the fact that momentum conservation should hold for ‘all
volumes’.

1.2 Convection

Now that we understand how momentum density should be integrated over a
volume, we can also define convection of momentum density. After pairing with an
arbitrary vector field, w, we obtain a volume form and we apply the Lie derivative to
this volume form, see [11]. The Lie derivative for a volume form, ˇ.n/, is given by

Lvˇ
.n/ D divˇ.n/ ;

and then the generalized Stokes theorem converts this exact form to a boundary
integral

Z

˝

Lvm
�^ w D

Z

@˝

iv.m
�^ w/ : (5)

Compare this expression with the convective term in (2) and note that it does not
require an inner product nor the definition of an outward unit normal. The inner
product is avoided since we work with differential forms and duality pairing is
metric-free and the orientation of the elements in the mesh, [7], avoids the use of
explicitly defined normals.

1.3 Stress Tensor and Surface Force Density

The last term in (2) denotes the action of the viscous forces on the flow represented
by the stress tensor � . The stress tensor is an infinitesimal quantity in the limit for
h ! 0. On a finite mesh we can identify volumes over which we integrate the
momentum density and the boundary of these volumes where surface forces act.
In continuum mechanics forces are ‘smeared out’, so we introduce the surface force
density given by t 2 T �˝ ˝ �n�1.˝/. This is a covector-valued .n � 1/-form.
Forces are generally associated with covectors, [2, 12], and in the current setting
need to be covectors in order to equate them to the time rate of change of momentum
which was also covector-valued. It is furthermore a .n� 1/-form since it acts on the
boundary of n-dimensional volumes, see also [5, Appendix A] and [8, 13]. Again,
covector-valued forms cannot be integrated, so the proper way is to pair it with an
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arbitrary vector field w before integration over surfaces is possible. The momentum
equation then becomes

d

dt

Z

˝

?[.v/
�^ wC

Z

@˝

iv.?
[.v/

�^ w/ D
Z

@˝

t
�^ w ; 8w 2 T˝ ˝�0.˝/ :

(6)

1.4 Newtonian Stress Relation

The pressure scalar is an outer-oriented volume form, p.n/. Pressure force density is
represented as a covector-valued .n � 1/-form

p D .?p/ dxi ˝ dx1 ^ : : :bdxi : : : ^ dxn ;

where the notation O� indicates that this term is omitted and dxi ˝ dx1^ : : :bdxi : : :^
dxn is the identity tensor, see also example [5, §9.3a]. This description agrees

with [9] for Stokes flow. Note that p
�^ w D iwp

.n/.
The velocity gradient is represented as the covariant differential of the velocity

vector field, rv which is a vector-valued 1-form, see [5, §9.3b]. In this paper we
restrict ourselves to Euclidean space for which the connection 1-forms vanish.
Applying ?[�.rv/ transforms the vector-valued 1-form into a covector-valued
.n � 1/-form, where the diffusion coefficient is contained in the Hodge-? operator.
In this paper we assume � to be constant.

1.5 Conservation of Mass

Let !.n/ be the standard volume form, then the divergence of a vector field is defined
as .div v/!.n/ D Lv!

.n/ D div!.n/. Integration over a volume and applying Stokes
theorem gives

Z

˝

div!
.n/ D

Z

@˝

iv!
.n/ :

This is the proper translation of (1) as found in textbooks on incompressible flow.
The velocity flux field, iv!.n/, is isomorphic to the velocity vector field. The velocity
flux field will be used in the discrete representation of velocity in the Navier-Stokes
equations. The relation between the velocity fluxes iv!.n/ and ?[.v/ is given by

?[ .v/
�^ w D w[ ^ iv!

.n/ ; 8w 2 T˝ ˝�0.˝/ : (7)

The volume forms and .n � 1/-forms appearing in all integrals are all outer-
oriented.
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Fig. 1 The velocities are
discretized as outer-oriented
mass-fluxes, and live on
surfaces (S) of the
Gauss-Lobatto grid shown
above, while pressure is
discretized on volumes (˝).
Momenta are discretized on
staggered volumes ( Q̋ ) and
their fluxes on the surfaces
( QS ) surrounding these
staggered volumes

2 Discrete Representation

In the full differential geometric setting as described above, the integration only
makes sense when paired with all vector fields w. Here we choose the uniform
vector field in the x- and y-direction only and impose that conservation should hold
for all volumes in our spectral elements. These volumes are generated by the Gauss-
Lobatto grid in the spectral element and will be denoted by ˝ij . So in this section
w is either @x or @y .

Figure 1 displays one spectral element and its Gauss-Lobatto grid (solid lines)
in 2D. The dotted gray lines represent the dual grid, see [7, 10].

Momentum is reduced onto a volume consisting of a primal .n � 1/-chain and
a dual 1-chain. In 2D these volumes consist of tensor products of primal and dual
edge as shown in Fig. 1 by volumes enclosed by solid (primal) and dashed (dual)
lines. The location of the unknowns coincides with those in staggered finite volume
methods. The difference is that in this formulation the unknowns represent integral
values, whereas in finite volume methods the unknowns either represent average
or nodal values. Let us denote the primal surfaces by Si , then discrete velocity is
given by

Nvi D
Z

Si

iv!
.n/ :

This yields a metric-free description of conservation as mass as shown in [6,9]. The
reduction of the pressure field is on outer-oriented volumes, see also [9].
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Integrals of momentum flux, F .n�1/, pressure force, iwp.n/, and velocity gradi-
ents are represented on the boundary of the momentum volumes indicated in Fig. 1.

Once we have the discrete variables for mass flux, momentum and pressure, we
use the spectral element functions described in [6,10], to interpolate these values in
such a way that the integral values are preserved.

Using (7) we can write the relation between momentum and velocity flux as

Z

Q̋ ij

m
�^ w �

Z

Q̋ ij

w[ ^ iv!
.n/ D 0 �! Nmw � Pm

w Nu D 0 ; (8)

where Q̋ ij are the volume where momentum is reduced, see Fig. 1, and Pm
w is the

matrix which maps discrete velocity (which is discretized as mass-fluxes) to discrete
momentum (on the staggered-grid). The discrete representation of momentum-flux,
pressure force iwp

.n/ and traction forces, ?[�.rwv/ (which can be equivalently

written as ?[�.r ?] ?[v/
�^ w D ?[�.r ?] m/

�^ w, which, in Cartesian coordinates

and with constant w becomes d?�.m
�^ w/), are given by

• Convective-flux, see [11], F .1/
w D iv.m

�^ w/:

�
F .1/

w ; ˇ.1/
�
˝
�


m

�^ w; v[ ^ ˇ.1/
�

˝
;D 0 ;

�! QM11
NFw � QCv Nmw D 0 :

(9)

• Pressure-force, H .1/
w D iwp

.2/:

H .1/
w � p.2/.w/ D 0 �! NHw � Pp

w Np D QBP : (10)

• Diffusive-fluxes, T .1/
w D d?�.m

�^ w/:

�
T .1/

w ; ˇ.1/
�
˝
�


m

�^ w; dˇ.1/
�

˝
D �

Z

@˝

ˇ.1/ ^ ?.m �^ w/ ;

�! QM11
NTw � QDT

21
QM22 Nm D QBT :

(11)

The discrete continuity equation is given by

D21 Nu D 0 : (12)

In the above, ˇ.1/ is an arbitrary 1-form; QM11 and QM22 are mass-matrices for
1- and 2-forms on the staggered mesh;Cv is the convection matrix and depends on v
(which can be retrieved from reconstruction of Nv using the edge basis, [7]);Pp

w is the
matrix which converts the scalar Np to pressure-force 1-forms; QBP and QBT are the
boundary integrals for pressure and stress, respectively, obtained from integration
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Fig. 2 Convergence plots for Kovasznay flow with mesh size, h, and order, p. Optimal rates are
shown ( ) for the h-refinement cases. nElemX and nElemY refer to the number of elements
in X and Y directions, and p refers to the order of elements used. (a) Pressure, h-refinement. (b)
Pressure, p-refinement. (c) Velocity, h-refinement. (d) Velocity, p-refinement

by parts; and D21 and QD21 are incidence matrices which discretely represent the
exterior-derivative with entries containing only f�1; 0; 1g. The algebraic system
thus obtained is solved for Nv and Np for w D f@x; @yg.

3 Results

3.1 Kovasznay Flow

Kovasznay flow is an analytical solution to Navier-Stokes’ equations. The solution
is u D 1 � e�xcos.2�y/, v D �

2�
e�xsin.2�y/ and p D 1

2
.1 � e2�x/, where � D

1
2�
�
q

1
4�2
C 4�2. The kinematic-viscosity chosen for this flow was � D �

�
D 1

40

and the computational domain considered was ˝ D Œ�0:5 1� � Œ�0:5 � 0:5�. The
h; p-adaptivity plots for this problem are given in Fig. 2 for pressures (Fig. 2a, b)
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a b

c d

Fig. 3 (Top) Streamfunction and pressure contours with a single spectral element of order 16.
(Bottom) Centerline velocities are plotted ( ) and compared with the solutions of [3] ( ), and
the solutions are found to be reasonably close. Mesh size is 4	4 and made up of elements of order
6. (a) Stream-function contours. (b) Pressure contours. (c) X-velocity at x D 0.5. (d) Y-velocity at
y D 0.5

and velocities (Fig. 2c, d). It can be seen that the solutions converge exponentially
and optimally. Some oscillatory behaviour is observed in convergence for a mesh
with a single element, and this is attributed to the fact that our basis may not be
capturing certain modes (even/odd).

3.2 Lid-Driven Cavity Flow

The second numerical test-case chosen was the classic lid-driven cavity flow on a
unit square domain with the top-lid velocity, uL D �1 and a Reynolds number
of 1000. The solutions for the pressure and streamfunction contours calculated for
a single spectral element of order p D 16 are shown in the top-half of Fig. 3.
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Centerline-velocity solutions with a lower order of p D 6 but with multiple
elements (4 � 4 mesh) and comparisons with the results of [3] are also shown in
the bottom-half of Fig. 3. Good agreement is seen between the benchmark results
and our results.
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A Spectral Method for Optimal Control
Problems Governed by the Time Fractional
Diffusion Equation with Control Constraints

Xingyang Ye and Chuanju Xu

Abstract In this paper, we study the fractional optimal control problem and its
spectral approximation. The problem under investigation consists in finding the
optimal solution governed by the time fractional diffusion equation with constraints
on the control variable. We construct a suitable weak formulation, study its well-
posedness, and design a Galerkin spectral method for its numerical solution. The
main contribution of the paper includes: (1) a priori error estimates for the space-
time spectral approximation is derived; (2) a projection gradient algorithm is
designed to efficiently solve the discrete minimization problem; (3) some numerical
experiments are carried out to confirm the efficiency of the proposed method. The
obtained numerical results show that the convergence is exponential for smooth
exact solutions.

1 Introduction

Let � D .�1; 1/; I D .0; T /; T > 0. We consider the following linear-quadratic
optimal control problem for the control variable q under constraints:

min
q

n1

2

Z T

0

Z

�

.u.x; t/ � Nu.x; t//2dxdt C �

2

Z T

0

Z

�

q2.x; t/dxdt
o
; (1)
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where � and Nu are given, u is governed by:

0@
˛
t u.x; t/ � @2xu.x; t/ D f .x; t/C q.x; t/; 8.x; t/ 2 � � I;

u.x; 0/ D u0.x/; 8x 2 �;
u.�1; t/ D u.1; t/ D 0; 8t 2 I;

(2)

with 0@
˛
t (0 < ˛ < 1) denoting the left Caputo fractional derivative and q satisfying

Z T

0

Z

�

q.x; t/dxdt 	 0: (3)

The optimal control problem (1)–(3) has been subject of many research in
scientific and engineering computing. Although most research on control problems
have been focused on partial differential equations of integer order, we are seeing a
growing interest for research on using fractional partial differential equations, which
are novel extensions of the traditional models. It has been found that the fractional
order model can provide a more realistic description for some kind of complex
systems in the fields covering control theory [16], viscoelastic materials [11, 13],
anomalous diffusion [3, 5, 10], advection and dispersion of solutes in porous or
fractured media [2], and etc. [6, 14, 19].

An approach for the numerical solution of the fractional optimal control problem
(FOCP) was first proposed in [1], where the fractional variational principle and
the Lagrange multiplier technique were used. Following this idea, Frederico and
Torres [8, 9] formulated a Noether-type theorem in the general context and studied
fractional conservation laws. In [17], a scheme using eigenfunctions expansion
was derived for FOCP in a 2-dimensional distributed system. Also, by means of
eigenfunction expansion approach, ROzdemir [18] investigated the control problem
of a distributed system in cylindrical coordinates.

More recently, Mophou [15] applied the classical control theory to a fractional
diffusion equation, involving a Riemann-Liouville fractional time derivative. The
existence and uniqueness of the solution were established. Dorville et al. [7]
extended the results of [15] to a boundary fractional optimal control with finite
observation expressed in terms of the Riemann-Liouville integral of order ˛:
However, none of the above work has studied the error estimates of the approaches.

In this paper we consider the optimal control problem associated to the time
fractional diffusion equation (2) with Caputo fractional derivative. Differing from
the approach based on the GrRunwald-Letnikov or eigenfunctions expansion, we con-
struct a spectral approximation in both space and time directions based on the weak
formulation introduced in [12]. We will see that the spectral method shows great
advantages over low-order methods in approximating the optimal control problem
with control integral constraints. Moreover, as compared to the unconstrained
method considered in our previous work [20], the presence of the control constraints
here leads to many additional difficulties, one of which is that the constrained
problem requires some additional variational inequalities. The purpose of this work
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is to derive a priori error estimates for the space-time spectral approximation to the
underlying problem, and propose an efficient algorithm to solve the discrete control
problem.

The outline of the paper is as follows: In the next section we formulate the
optimal control problem under consideration and derive the optimality conditions.
Section 3 is devoted to the spectral discretization of the optimal problem. In Sect. 4,
a priori error estimates for the control, state, and adjoint variables are provided.
Finally we carry out, in Sect. 5, some numerical tests to verify the theoretical results.

2 Formulation of the Problem and Optimization

Let c be a generic positive constant. We use the expression A . B to mean that
A � cB , and use the expression A Š B to mean that A . B . A.

Let ˝ D � � I . For a domain O , which may be �; I or ˝ , we use
L2.O/;Hs.O/, and Hs

0 .O/ to denote the usual Sobolev spaces, equipped with the
norms k�k0;O and k�ks;O respectively. For the Sobolev space X with norm k�kX ,
we define the space Hs.I IX/ WD fvj kv.�; t/kX 2 Hs.I /g, endowed with the
normkvkHs.I IX/ WD kkv.�; t/kXks;I . Particularly, when X stands for H�.�/ or
H
�
0 .�/, the norm of the space Hs.I IX/ will be denoted by k�k�;s;˝ . Hereafter,

in cases where no confusion would arise, the domain symbols I;�;˝ may be
dropped from the notations.

We also introduce the state space Bs.˝/ DHs.I; L2.�// \ L2.I;H1
0 .�//;

8s > 0; equipped with the norm kvkBs.˝/ D .kvk2Hs.I;L2.�// C kvk2L2.I;H1
0 .�//

/1=2.
Now we consider the following weak formulation of the state equation (2): given

q; f 2 L2.˝/, find u 2 B ˛
2 .˝/, such that

A .u; v/ D .f C q; v/˝ C
�

u0.x/t�˛


 .1 � ˛/ ; v
�

˝

; 8v 2 B ˛
2 .˝/; (4)

where the bilinear form A .�; �/ is defined by

A .u; v/ WD


R
0 @

˛
2
t u; Rt @

˛
2

T v
�

˝
C .@xu; @xv/˝:

Here, R
0 @

˛
2
t and R

t @
˛
2

T respectively denote the left and right Riemann-Liouville
fractional derivative of order ˛

2
.

It has been proved [12] that the following continuity and coercivity hold

A .u; v/ . kuk
B
˛
2 .˝/
kvk

B
˛
2 .˝/

; A .v; v/ & kvk2
B
˛
2 .˝/

; 8u; v 2 B ˛
2 .˝/;

and the problem (4) is well-posed.
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To formulate the problem we introduce the admissible set K associated to (3) as
K WD ˚q 2 L2.˝/ W R

˝
q.x; t/dxdt 	 0�, and define the cost functional:

J .q; u/ WD 1

2
ku � Nuk20;˝ C

�

2
kqk20;˝ ; .q; u/ 2 K � B

˛
2 .˝/: (5)

Then the optimal control problem reads: find .q�; u.q�// 2 K � B ˛
2 .˝/, such that

J .q�; u.q�// D min
.q;u/2K	B ˛

2 .˝/

J .q; u/ subject to (4): (6)

The well-posedness of the state problem ensures the existence of a control-to-
state mapping q 7! u D u.q/ defined through (4). By means of this mapping we
introduce the reduced cost functional J.q/ WD J .q; u.q//; q 2 L2.˝/: Then the
optimal control problem (6) is equivalent to: find q� 2 K , such that

J.q�/ D min
q2K J.q/: (7)

The first order necessary optimality condition for (7) reads

J 0.q�/.ıq � q�/ 	 0; 8ıq 2 K; (8)

where J 0.q�/.�/ is the gradient of J.q/, defined through the GOateaux derivative. The
convexity of the quadratic functional implies that (8) is also sufficient for optimality.

Lemma 1. It holds

J 0.q/.ıq/ D .�q C z.q/; ıq/˝; 8ıq 2 L2.˝/; (9)

where z.q/ D z is the solution of the following adjoint state equation

t @
˛
T z.x; t/ � @2xz.x; t/ D u.x; t/ � Nu.x; t/; 8.x; t/ 2 ˝;

z.x; T / D 0; 8x 2 �;
z.�1; t/ D z.1; t/ D 0; 8t 2 I;

(10)

with t @
˛
T being the right Caputo fractional derivative of order ˛.

Proof. The proof goes along the same lines as Theorem 3.1 in [20]. ut
The weak form of (10) reads: find z 2 B ˛

2 .˝/, such that

A .'; z/ D .u � Nu; '/˝; 8' 2 B ˛
2 .˝/: (11)

It can also be proved that (11) admits a unique solution for any given u 2 B ˛
2 .˝/.

In what follows we will need the mapping q ! u.q/ ! z.q/, where for any
given q, u.q/ is defined by (4), and once u.q/ is known z.q/ is defined by (11).
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Theorem 1. Let .q�; u.q�// be the solution of the optimal control problem (6) and
z.q�/ be the corresponding adjoint state. Then we have

�q� D maxf0; z.q�/g � z.q�/

where z.q�/ D R
˝

z.q�/=
R
˝
1.

Proof. The proof is similar to Theorem 3.1 in [4]. ut

3 Space-Time Spectral Discretization

We define the polynomial space P0
M .�/ WD PM .�/ \ H1

0 .�/; SL WD P0
M .�/ ˝

PN .I /, where PM denotes the space of all polynomials of degree less than or equal
to M , L stands for the parameter pair .M;N /.

Then we consider the spectral approximation to (4): find uL.q/ 2 SL such that

A .uL.q/; vL/ D .f C q; vL/˝ C
�

u0.x/t�˛


 .1 � ˛/ ; vL
�

˝

; 8vL 2 SL: (12)

The following estimate, derived in [12], will be used in the analysis later on.

Lemma 2. For any q 2 L2.˝/, let u.q/ be the solution of (4), uL.q/ be the solution
of (12). Suppose u 2 H ˛

2 .I IH�.�// \H�.I IH1
0 .�//, 0 < ˛ < 1; � > 1;� 	 1,

then we have

ku.q/� uL.q/kB ˛
2 .˝/

. N
˛
2 �� kuk0;� CN�� kuk1;� CN ˛

2 ��M�� kuk�;�
CM�� kuk�; ˛2 CM1�� kuk�;0 :

(13)

Similar to the continuous case, we introduce the semidiscrete reduced cost
functional JL W L2.˝/! R W

JL.q/ WDJ .q; uL.q//; q 2 L2.˝/; (14)

where uL.q/ is given by (12). Then we consider the following auxiliary optimal
problem: find q� 2 K , such that

JL.q
�/ D min

q2K JL.q/: (15)

The solution q� of above problem fulfills the first order optimality condition

J 0
L.q

�/.ıq � q�/ 	 0; 8ıq 2 K; (16)
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where

J 0
L.q/.�/ D .�q C zL.q/; �/˝; 8q; � 2 K; (17)

with zL.q/ 2 SL being the solution of the semidiscrete adjoint problem:

A .'L; zL.q// D .uL.q/ � Nu; 'L/˝; 8'L 2 SL: (18)

Now we consider the approximation of the control space to obtain the fully
discrete optimal control problem. To this end, we introduce the finite dimensional
subspace for the control variable: KL D K \ .PM .�/ ˝ PN .I //. Then the full
discrete optimal control problem reads: find q�

L 2 KL, such that

JL.q
�
L/ D min

qL2KL
JL.qL/; (19)

where JL.�/ is defined in (14). The unique solution of (19), q�
L, satisfies:

J 0
L.q

�
L/.ıq � q�

L/ 	 0; 8ıq 2 KL: (20)

Remark 1. Although the polynomial degree used to approximate the control
variable may be different from those for the discretization of the state variable,
we choose to use the same degree pair .M;N / for simplification of the notation.

4 A Priori Error Estimates

In order to carry out an error analysis for the spectral approximation (19), we first
recall two results to be used in what follows.

Lemma 3 ([20]). For all p; q 2 L2.˝/, we have

J 0
L.p/.p � q/� J 0

L.q/.p � q/ 	 � kp � qk20;˝ : (21)

Lemma 4 ([20]). Let q 2 L2.˝/ be a given control. Suppose z.q/ 2 B ˛
2 .˝/ is the

continuous adjoint state determined by (11) and zL.q/ is the solution of (18). Then

kz.q/� zL.q/kB ˛
2 .˝/

. ku.q/� uL.q/k0;˝ C inf8'L2SL
kz.q/ � 'LkB ˛

2 .˝/
: (22)

We are now in a position to derive one of the main results of this paper.

Lemma 5. Let q� 2 K be the solution of the continuous optimization problem (7),
q�
L 2 KL be the solution of its discrete counterpart (19). Suppose q� 2
L2.I IH�.�//\H�.I IL2.�//, � > 1;� 	 1, then it holds

kq� � q�
Lk0;˝ � N�� kq�k0;� CM�� kq�k�;0 C kz.q�/ � zL.q

�/k0;˝ : (23)
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Proof. It follows from (21), (8) and (20) that for any pL 2 KL,

� kq� � q�
Lk20;˝

� J 0
L.q

�/.q� � q�
L/ � J 0

L.q
�
L/.q

� � q�
L/

D J 0
L.q

�/.q� � q�
L/ � J 0.q�/.q� � q�

L/C J 0.q�/.q� � q�
L/ � J 0

L.q
�
L/.q

� � q�
L/

� J 0
L.q

�/.q� � q�
L/ � J 0.q�/.q� � q�

L/� J 0
L.q

�
L/.q

� � pL/
D .zL.q�/� z.q�/; q� � q�

L/˝ C .zL.q�
L/C �q�

L; pL � q�/˝

� c.ı/ kzL.q�/� z.q�/k20;˝ C ı kq� � q�
Lk20;˝ C .zL.q�

L/C �q�
L; pL � q�/˝;

(24)

where ı is an arbitrary small positive number, c.ı/ is a constant dependent on ı.
Furthermore, for the last term in the above estimate, we have

.zL.q
�
L/C �q�

L; pL � q�/˝
D .z.q�/C �q�; pL � q�/˝ C .�q�

L � �q�; pL � q�/˝
C.zL.q�

L/ � zL.q
�/; pL � q�/˝ C .zL.q�/� z.q�/; pL � q�/˝

� .z.q�/C �q�; pL � q�/˝ C �ı kq� � q�
Lk20;˝ C .�C 2/C.ı/ kpL � q�k20;˝

Cı kzL.q�
L/� zL.q

�/k20;˝ C ı kzL.q�/� z.q�/k20;˝ : (25)

Notice that zL.q�
L/ � zL.q�/ solves

A .'L; zL.q
�
L/� zL.q

�// D .uL.q�
L/� uL.q

�/; 'L/˝; 8'L 2 SL; (26)

and uL.q�
L/� uL.q�/ satisfies

A .uL.q
�
L/ � uL.q

�/; vL/ D .q�
L � q�; vL/˝; 8vL 2 SL: (27)

Thus taking 'L D zL.q�
L/� zL.q�/ in (26) and vL D uL.q�

L/� uL.q�/ in (27) gives

kzL.q�
L/� zL.q

�/k
B
˛
2 .˝/
� c1 kuL.q�

L/� uL.q
�/k

B
˛
2 .˝/
� c1 kq� � q�

Lk0;˝ :

(28)

Then plugging (25) and (28) into (24) yields

�
�
�q� � q�

L

�
�2
0;˝� .z.q�/C �q�; pL � q�/˝ C c2ı

�
�q� � q�

L

�
�2
0;˝ C .�C 2/c.ı/

�
�pL � q�

�
�2
0;˝

C .ı C c.ı//
�
�zL.q

�/� z.q�/
�
�2
0;˝ ;
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where c2 D 1C �C c1. Now by taking ı D �
2c2

, we obtain, 8pL 2 KL,

�
�q� � q�

L

�
�2
0;˝

. .z.q�/C �q�; pL � q�/˝ C
�
�pL � q�

�
�2
0;˝
C ��zL.q

�/ � z.q�/
�
�2
0;˝
:

(29)

Let ˘N and ˘M be the standard L2-orthogonal projectors defined in I and �,
respectively. Then, it holds

.q� �˘N˘Mq
�; rL/˝ D 0; 8rL 2 PM.�/˝ PN .I /;

and in particular

.q� �˘N˘Mq
�; 1/˝ D 0;

that is
Z

˝

˘N˘Mq
�dxdt D

Z

˝

q�dxdt 	 0:

This means ˘N˘Mq
� 2 KL. Thus by taking pL D ˘N˘Mq

� in (29), we get

�
�q� � q�

L

�
�2
0;˝

. .z.q�/C �q�; ˘N˘Mq
� � q�/˝ CN�2�

�
�q�

�
�2
�;0 CM�2�

�
�q�

�
�2
0;� C �

�zL.q
�/� z.q�/

�
�2
0;˝ :

(30)

Next, it follows from Theorem 1 that

z.q�/C �q� D maxf0; z.q�/g D const;

and hence

.z.q�/C �q�; ˘N˘Mq
� � q�/˝ D 0: (31)

Finally, (23) results from (30) and (31). ut
Using the above Lemmas and following the same lines as the proof of

Theorem 4.1 in [20], we obtain the main result concerning the approximation
errors.

Theorem 2. Suppose q� and q�
L are respectively the solutions of the continuous

optimization problem (7) and its discrete counterpart (19), u.q�/ and uL.q�
L/

are the state solutions of (4) and (12) associated to q� and q�
L respectively,

and z.q�/ and zL.q�
L/ are the associated solutions of (11) and (18) respectively.
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If q� 2 L2.I IH�.�// \ H�.I IL2.�// and u.q�/; z.q�/ 2 H
˛
2 .I IH�.�// \

H�.I IH1
0 .�//, 0 < ˛ < 1; � > 1 and � 	 1, then the following estimate holds:

kq� � q�
Lk0;˝ C ku.q�/ � uL.q

�
L/kB ˛

2 .˝/
C kz.q�/� zL.q

�
L/kB ˛

2 .˝/

. N�� kq�k0;� CM�� kq�k�;0 CN
˛
2 �� .ku.q�/k0;� C kz.q�/k0;� /

CN�� .ku.q�/k1;� C kz.q�/k1;� /CN
˛
2��M��.ku.q�/k�;� C kz.q�/k�;� /

CM��.kz.q�/k�; ˛2 C ku.q
�/k�; ˛2 /CM

1��.ku.q�/k�;0 C kz.q�/k�;0/:

5 Optimization Algorithm and Numerical Results

We carry out in this section a series of numerical experiments and present some
results to validate the obtained error estimates. We first propose below a projection
gradient optimization algorithm to solve the optimization problems.

Projection gradient optimization algorithm Choose an initial control q.0/L , and
set k D 0.

(a) Solve problems

A



uL
�
q
.k/
L

�
; vL

�
D


f C q.k/L ; vL

�

˝
C
�

u0.x/t�˛


 .1 � ˛/ ; vL
�

˝

; 8vL 2 SL;
(32)

A


'L; zL

�
q
.k/
L

�� D



uL
�
q
.k/
L

� � Nu; 'L
�

˝
; 8'L 2 SL:

(33)

Let d .k/L D zL.q
.k/
L /C �q.k/L ;

(b) Solve problems

A .Qu.k/L ; vL/ D.d .k/L ; vL/˝; 8vL 2 SL; (34)

A .'L; Qz.k/L / D.Qu.k/L ; 'L/˝; 8'L 2 SL; (35)

and set Qd .k/L D Qz.k/L C �d.k/L , �k D .d
.k/
L ;d

.k/
L /˝

. Qd.k/L ;d
.k/
L /˝

;

(c) Update: q
.kC 1

2 /

L D q.k/L � �kd .k/L , q.kC1/
L D �min

�

0; q
.kC 1

2 /

L

	

C q.kC 1
2 /

L ;

(d) If
�
�
�d .k/L

�
�
� �tolerance, then take q�

L D q
.kC1/
L and solve problems (12) and (18)

to get uL.q�
L/ and zL.q�

L/;

Else, set k D k C 1, repeat (a)–(d).
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Fig. 2 Impact of � on the convergence rate of the gradient of the cost functional

Numerical results Let T D 1 and consider problem (6) with the exact solutions:

u.q�/ D sin�x cos�t; z.q�/ D sin�x sin�.1�t/; �q� D maxf0; z.q�/g�z.q�/:

In the first test, we investigate the impact of the initial guess on the
convergence of the projection gradient optimization algorithm. We start by
considering q.0/ D 15q�. In Fig. 1a, we present the convergence history of the
gradient of the objective function as a function of the iteration number with
M D 20;N D 20; ˛ D 0:5; � D 1. We see that the iterative method converges
within eight iterations. We then take q.0/ to be constant c with c D 0 or 10, and
repeat the same computation as the previous test. The result is given in Fig. 1b.
These results seem to tell that the initial guess has no significant effects on the
convergence of the projection gradient iterative algorithm.

We then study the effect of the regularization parameter � on the convergence
rate of the optimization algorithm. In Fig. 2 we plot the convergence history versus
the iteration number with M D N D 18; ˛ D 0:5, and q.0/ D 0 for several values
of � ranging from 0 to 1. It is observed that the algorithm has better convergence
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property for � D 1. The convergence slows down as � decreases. In particular, the
algorithm fails to converge with � D 0.

In what follows we fix q.0/ D 0 and � D 1 to investigate the error behavior of
the numerical solution. In Fig. 3 we plot the errors as functions of the polynomial
degrees M with ˛ D 0:4;N D 20. As expected, the errors show an exponential
decay. The errors versus N with M D 20 are shown in Fig. 4. The error curves
indicate that the convergence in time is also exponential.

6 Concluding Remarks

We have presented an efficient optimization algorithm for the fractional control
problem based on the spectral approximation. A priori error estimates for the
numerical solution are derived. Some numerical experiments have been carried
out to confirm the theoretical results. However there are many important issues
needed to be addressed. For example, we can consider more complicated control
problems and constraint sets. Besides, although our analysis and algorithm are
designed for the optimization of the distributed control problem, we hope that they
are generalizable to a greater variety of situations such as minimization problems
associated to boundary conditions, diffusion coefficient, and so on.
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Two-Phase Flow Solved by High Order
Discontinuous Galerkin Method

J.S.B. van Zwieten, D.R. van der Heul, R.H.A. IJzermans, R.A.W.M. Henkes,
and C. Vuik

Abstract In this article we present a discretisation of a one-dimensional,
hyperbolic model for two-phase pipe flow based on a Discontinuous Galerkin Finite
Element Method with a viscous regularisation to suppress the Gibbs phenomenon.

1 Introduction

The goal of this project is to develop an accurate and efficient numerical scheme for
solving a one-dimensional model for two-phase flow. Such a model is relevant to
various applications in the oil and gas industry, such as the design and analysis of
flow lines and wellbores. Due to the length of such pipeline systems (>100 km) and
the very large aspect ratio of the domain it is only feasible to use a one-dimensional
model.

Several one-dimensional hyperbolic models for multiphase flow are described in
literature varying in complexity. Such models are typically derived by averaging of
the three-dimensional conservation laws over the cross sectional area of the pipe.
A common feature of those models is a nonconservative term, which is responsible
for the transfer of momentum between phases. This term is a direct result of the
averaging. Although this term seems to be nonphysical, the sum of all momentum
equations does satisfy conservation, as expected. Because of this, special care has
to be taken in discretising these models. For the present work we select one of these
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models, but the proposed discretisation method is applicable to many of the models
without significant adjustments.

Hyperbolic two-phase models are commonly discretised using a Finite Volume
Method (FVM). The crucial and most difficult part is the design of a numerical flux,
such that the dissipation of the scheme is as little as possible and computationally
efficient at the same time. A numerical flux is often tailor made for a certain model
and not applicable to variants or extensions of that model.

In this article we propose the Discontinuous Galerkin Finite Element Method
(DG-FEM) as an alternative for a FVM. The DG-FEM shares the local conservation
property of a FVM but is easily extended to very high order. The amount of dissi-
pation added to the discrete system by the numerical flux reduces with increasing
order of the basis functions [3]. For this reason we apply in this article one of the
most simple numerical fluxes, Rusanov (Local Lax-Friedrichs) [1], which would be
unacceptable for a FVM, together with eight Legendre basis functions per element.
The only information needed for Rusanov stabilisation is (an approximation to) the
largest eigenvalue of the system, hence the dependence on a particular model is
practically eliminated.

Unfortunately, a higher order method introduces another problem. Without
additional measures the discrete solutions suffer from the Gibbs phenomenon, which
may lead to an unstable method and nonphysical solutions such as negative mass
density and can reduce the accuracy in a large area around a discontinuity.

Several techniques for eliminating the Gibbs phenomenon have been proposed.
A popular method is to reduce the order of the polynomial basis locally, in the
neighbourhood of discontinuities, which will increase the amount of dissipation as
the element jumps will in general be larger. The reduction of the order can optionally
be combined with mesh refinement in order to prevent a severe loss of accuracy.

In this article we apply, instead, a technique described in [6]. We add an
artificial viscous term to the original model and discretise the whole using the
local Discontinuous Galerkin method. The amount of viscosity added to the system
is based on a shock sensor: in smooth regions no viscosity is added, in the
neighbourhood of a discontinuity the amount of viscosity varies with the size
of the oscillations. The shock sensor and algorithm for obtaining the amount of
viscosity can be tuned with several parameters, which appear to have optimal values
depending on the problem under consideration.

We believe that by following this route we will be able to discretise without
significant changes a more sophisticated, three-phase model, without the need
of computing numerically the eigenvalues and -vectors or constructing a less
dissipative numerical flux.

This article is organised as follows. In Sect. 2 we state the model used as
basis for our discretisation. In Sect. 3 we repeat the theory on the DLM measure
needed to discretise nonconservative hyperbolic systems and discuss the chosen
integration path. We state a weak formulation based on the work of [7]. In Sect. 4 we
discuss the stabilisation applied to element edges. In Sect. 5 we apply the viscous
regularisation by adding a viscous term to the two-phase flow model and rederive a
weak formulation for this altered system. We discuss the shock sensor used for our
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simulations. In Sect. 6 we apply the discretisation to two test problems commonly
used in the literature on two-phase models: a Large Relative Velocity shock tube
and the water faucet test problem.

2 Model

We use the two-phase flow model as described in [5]. The model originates from the
three-dimensional conservation of mass and momentum. Averaging over the pipe
cross section for each phase separately yields the following four equations, two for
each phase,

@

@t
˛k�k C @

@x
˛k�kuk D 0; (1)

@

@t
˛k�kuk C @

@x

�
˛k�ku2k C ˛k .p � pint/

�C ˛k @pint

@x
D ˛k�kg: (2)

Here, subscript k 2 fL;Gg denotes a phase (L : liquid, G : gas), ˛k is the volume
fraction of phase k, �k the density, uk the velocity, p the pressure and g the gravity
force. In this model the pressurep is assumed to be constant per cross section, which
leads to a conditionally hyperbolic system. The interface pressure correction term
pint is added to ensure hyperbolicity,

p � pint D 1:2 ˛G˛L�G�L

�G˛L C �L˛G .uG � uL/
2 : (3)

The model is closed by a relation for the volume conservation

˛L C ˛G D 1 (4)

and by defining the equations of state for each phase,

�k D �k0 C p � pk0
a2k

: (5)

We may write the set of differential equations concisely as

@qi

@t
.x; t/C

X

j2I

fij.q.x; t//
@qj

@x
.x; t/C si .q.x; t// D 0; 8i 2 I ; (6)

where q WD Œ˛1�1; ˛2�2; ˛1�1u1; ˛2�2u2�T is the vector of conserved quantities and
s.q/ WD Œ0; 0; ˛1�1g; ˛2�2g�

T is the source term and I WD f0; 1; 2; 3g is an index
set. We define the nonconservative flux fij as

fij WD @FcIi
@qj
C fnIij 8i; j 2 I (7)
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where Fc WD Œ˛1�1u1; ˛2�2u2; ˛1�1u21 C ˛1 .p � pint/ ; ˛2�2u22 C ˛2 .p � pint/�
T is

the conservative part of the flux and

fn D

2

6
6
6
4

0 0 0 0

0 0 0 0

˛1
@pint
@.˛1�1/

˛1
@pint
@.˛2�2/

0 0

˛2
@pint
@.˛1�1/

˛2
@pint
@.˛2�2/

0 0

3

7
7
7
5

(8)

the nonconservative part of the flux.
Note that every quantity can be written in terms of the conserved quantities q

together with the closure relations (4) and (5), e.g. the pressure p can be determined
by solving a quadratic equation involving ˛1�1 D q1 and ˛2�2 D q2 originating
from (4) and (5).

3 Weak Formulation

We follow the approach of [7] to obtain a weak formulation for the nonconservative
hyperbolic PDE. The weak formulation uses a path integral, based on the following
definition and theorem, to approximate the nonconservative product in the PDE at
points where the weak solution jumps.

Definition 1 (Integration paths, [4]). A Lipschitz continuous path � W Œ0; 1��Rn�
R
n ! R

n is called an integration path if it satisfies the following properties:

�i.0I q; v/ D qi and �i .1I q; v/ D vi 8i 2 I ;8q; v 2 R
n; (9)

�i .� I q; q/ D qi 8i 2 I ;8q 2 R
n; (10)

ˇ
ˇ
ˇ
ˇ
@�i

@�
.� I q; v/

ˇ
ˇ
ˇ
ˇ � K jqi � vi j 8i 2 I ;8q; v 2 R

n; � a.e. 2 Œ0; 1�: (11)

Theorem 1 (DLM measure, [4]). Let q W .a; b/ ! R
n be a function of bounded

variation and f W Rn ! R
n be a continuous function. Then there exists a unique

real-valued bounded Borel measure � on .a; b/ characterised by the two following
properties:

1. If q is continuous on a Borel set B � .a; b/, then

�i.BIf; q/ D
Z

B

X

j2I

fij.q/
@qi

@x
d�.x/; 8i 2 I ; (12)

where � is the Borel measure.
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2. If q is discontinuous at a point x 2 .a; b/, then

�i .fxgIf; q/ D
Z 1

0

X

j2I

fij.�.� I q.x�/; q.xC//
@�j

@�
.� I q.x�/; q.xC// d�.�/;

8i 2 I ; (13)

where q.x�/ WD limy%x q.y/ and q.xC/ D limy&x q.y/.

We obtain a weak formulation by multiplying the PDE (6) with a test function v
and integrating the result using two different measures, a Lebesgue measure for the
time derivative and source term and a DLM measure for the terms involving spatial
derivatives, yielding
Z

˝

v.x/

�
@qi

@t
.x; t/C si .q.x; t//

�

d�.x/C
Z

˝

v.x/ d�i .xIf; q/ D 0; 8i 2 I :

(14)

The DG-FEM formulation follows from defining a set E of open, connected,
nonoverlapping elements such that [E is dense in ˝ , a broken polynomial space
Q and assuming q; v 2 Q. Let D denote the set of element edges, including any
boundaries. Substituting the continuous (12) and discontinuous (13) definitions of
the DLM measure yields the semi-discrete DG-FEM formulation

X

E2E
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E
v.x/

0

@@qi
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.x; t/C si .q.x; t//C

X

j2I

fij.q.x; t//
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v.x/
Z 1

0

X

j2I

fij.�.� I q.x�; t/; q.xC; t/// @�j
@�

.� I q.x�; t/; q.xC; t/// d�.�/ D 0;

8i 2 I : (15)

Since the DLM measure is nonzero on element edges, the trial function v needs to
have a (single) value at these points. We define this value by comparing the scheme
with conventional DG-FEM schemes for conservative hyperbolic PDE’s. Let ŒŒq�� WD
x 7! q.xC/ � q.x�/ denote the jump of q at x and ffqgg WD x 7! 1

2
.q.xC/ C

q.x�// the average. Assuming the nonconservative part of f to be zero, fn D 0, the
DG-FEM formulation (15) becomes

X
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.x; t/C si .q.x; t//C @

@x
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d�.x/

C
X

x2D

v.x/ ŒŒFc;i .q.�; t//�� .x/ D 0; 8i 2 I : (16)
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By asserting v D ffvgg and applying integration by parts to the flux term in the
element integral we obtain an unstable, conservative DG-FEM scheme with central
fluxes:

X

E2E

Z

E

v.x/

�
@qi

@t
.x; t/C si .q.x; t// � @v

@x
.x/Fc;i .q.x; t//

�

d�.x/

�
X

x2D

ŒŒv�� .x/ ffFc;i .q.�; t//gg .x/ D 0; 8i 2 I : (17)

4 Stabilisation of Edge Flux

Due to the central approximation of the flux at element edges the semi-discrete
ODE (15) is unstable. There are various methods to stabilise the ODE, mostly origi-
nating from Finite Volume Methods, varying in the amount of added dissipation.
In terms of computational effort the cheapest methods add the largest amount
of dissipation, which often severely reduces the accuracy of low-order Finite
Volume Methods. A high-order DG-FEM discretisation suffers far less from the
dissipation [3]. For this reason we choose one of the cheapest stabilisation methods:
Rusanov.

In [1] Rusanov stabilisation is derived for a nonconservative FVM. The equiva-
lent of this stabilisation for a DG-FEM scheme is given by the following term, to be
added to the right hand side of the semi-discrete ODE (15):

stabi WD �1
2

X

x2D

C.q.x�; t/; q.xC; t// ŒŒv�� .x/ ŒŒqi .�; t/�� .x/; 8i 2 I : (18)

The function C determines locally, i.e. at each interface, the amount of added
viscosity and should be larger than the absolute eigenvalues of the flux function
f at the interface.

5 Stabilisation of Element Flux

Strong oscillations may occur in a large area (spreading across multiple elements)
around a discontinuity, possibly leading to an unstable situation, for instance when
a solution becomes nonphysical. We apply a technique described in [6] to suppress
these oscillations.

We add a viscous term to the original PDE (6) as follows:

@ui
@t
C
X

j

fij.u/
@uj
@x
C si .u/ D @

@x

�


@ui
@x

�

; 8i 2 I ; (19)
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where  is a parameter controlled by a shock sensor. As noted in [3] discretisation of
this PDE with the DG-FEM as described above by regarding  @ui

@x
as a flux function

may lead to an inconsistent scheme. The local DG [2] method is introduced to
circumvent this. The PDE (19) is written as a (larger) system of first order derivatives
by introducing the intermediate variable wi ,

@ui
@t
C
X

j

fij.u/
@uj
@x
C si .u/ D @wi

@x
; 8i 2 I ; (20)

where wi is defined as

wi � @ui
@x
D 0; 8i 2 I : (21)

There are other choices possible for this splitting, e.g. the viscosity could be
incorporated in wi , however, we observed that system (20), (21) produces the most
stable and sharp results.

We discretise the viscous system (20), (21) in a similar way as described above.
The PDE’s are multiplied by a test function v 2 Q and integrated over the domain
using the DLM measure for all spatial derivatives, including the split viscous terms,
and the Lebesgue measure for the remaining terms:

Z

˝

v.x/

�
@qi

@t
.x; t/C si .q.x; t/; x; t/

�

d�.x/C
Z

˝

v.x/ d�i .xIf; q/

D
Z
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v.x/ d�i .xI ı; w/C stabi ; 8i 2 I ; (22)

Z

˝

v.x/wi .x; t/ d�.x/ �
Z

˝

v.x/ d�i .xI ı; u/ D 0; 8i 2 I : (23)

Note that for conservative fluxes, in this case @wi
@x

and @ui
@x

, the DLM measure on
discontinuous points is equivalent to a central flux. No additional stabilisation is
required since the derivatives combined represent a second order derivative.

The amount of viscosity  is determined by a shock sensor. We use the shock
sensor as described in [6] with a minor modification. The shock sensor is applied
to the sum of the internal energy for each phase, projected on Q, denoted by z. The
highest mode of z at element E is measured against z � zE1, the quantity with zero
average value:

SE D
R
E
Oz2EP 

2
EP.x/ d�.x/R

E
.z� zE1/2.x/ d�.x/

: (24)
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We use the same algorithm for obtaining a viscosity as described in [6] using the
above shock sensor SE .

6 Numerical Results

We apply the proposed discretisation to two test problems commonly used to verify
discrete two-phase pipe flow models. We do this mainly to show that the solutions
converge to the correct entropy solutions. It is not expected that for the chosen test
problems, which develop shocks, the high order accuracy of the discretisation comes
to light.

6.1 Shock Tube

The large relative velocity shock tube test problem is a Riemann problem with the
following initial data: the liquid volume fraction jumps from 0:71 to 0:7 and the gas
velocity from 65 to 50 ms�1, the pressure is constant at 2:65 � 105 Pa and the liquid
velocity is 1 ms�1. There is no gravity force. (See for example [5] and the references
therein.) This Riemann problem generates four shocks, two of them moving at
relatively high velocities, the other two with low velocities.

Figure 1 shows the solution of the system at t D 0:1 s, discretised with the
DG-FEM method as described in this paper with 6 and 24 elements, both having
8 basis functions per element. For comparison results obtained using the first order
Roe FVM as described in [5] is shown using 192 elements, the same amount of
DOFs as for DG with 24 elements.

All three solutions attain the same shock speeds and intermediate levels in the
eyeball-norm. Both DG-schemes show no signs of the Gibbs phenomenon on the
global scale. Zooming in on the edges does reveal a slight oscillation. The size of
the oscillations is related to the amount of viscosity added to the system and can be
further reduced at the cost of less sharp shocks.

6.2 Water Faucet

The water faucet test problem consists of a vertical pipe, 12 m long, filled with a
mixture of water (0.8 volume fraction) and air. Water flows initially with 10 ms�1
downwards, the air is at rest. At the top of the pipe the conditions are the same as
the initial conditions. The bottom the pipe is at a constant pressure of 105 Pa. Under
influence of gravity (10 ms�2) the liquid will accelerate and the liquid fraction will
decrease by conservation of mass. (See for example [5] and the references therein.)
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Fig. 1 Results for the shock tube test problem at t D 0:6 s with 24 and 6 elements, all using 8
Legendre basis functions. Top-left: volume fraction water, top-right: pressure, bottom-left: velocity
water, bottom-right: velocity air

The exact solution for this problem with incompressible liquid and gas phase
is a single shock moving downwards, leaving a steady, contracted water column
behind (see [5] and the references therein). Since the pressure variation is small,
this solution is considered to be a very good approximation to the system with
compressible phases.

Figure 2 shows the solution of the system at t D 0:6 s, discretised with the
DG-FEM method as described in this paper with 6 and 24 elements, both having
8 basis functions per element. For comparison results obtained using the first order
Roe FVM as described in [5] is shown using 192 elements, the same amount of
DOFs as for DG with 24 elements. Also the approximate solution is shown, which
is based on the exact solution of the incompressible problem for the volume fraction
and liquid velocity and a numerical solution of the Roe scheme with 1,200 DOFs
for the pressure and gas velocity.

The results are similar to the shock tube test problem. The Gibbs phenomenon
is completely suppressed for both DG solutions, even on a small scale there are no
wiggles present. The DG solutions converge to the approximate solution.
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Fig. 2 Results for the water faucet test problem at t D 0:6 s with 24 and 6 elements, all using 8
Legendre basis functions. Top-left: volume fraction water, top-right: pressure, bottom-left: velocity
water, bottom-right: velocity air

7 Conclusions

We have presented a discretisation of a one-dimensional, nonconservative,
hyperbolic, two-phase pipe flow model using a high-order Discontinuous Galerkin
Finite Element Method which avoids the costly, numerical evaluation of the
eigenstructure of the system. The Gibbs phenomenon is suppressed by using a
viscous regularisation in the neighbourhood of discontinuities, which are identified
by a shock sensor. We have shown that the numerical solutions converge to the
correct entropy solutions.
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