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Abstract Spectral clustering consists in creating, from the spectral elements of a
Gaussian affinity matrix, a low-dimensional space in which data are grouped into
clusters. However, questions about the separability of clusters in the projection space
and the choice of the Gaussian parameter remain open. By drawing back to some
continuous formulation, we propose an interpretation of spectral clustering with
Partial Differential Equations tools which provides clustering properties and defines
bounds for the affinity parameter.

1 Introduction

Spectral clustering aims at selecting dominant eigenvectors of a parametrized
Gaussian affinity matrix in order to build an embedding space in which the
clustering is made. Many interpretations of this method were lead to explain why
the clustering is made in the embedding space with graph theory with random walks
(Meila and Shi 2001), matrix perturbation theory (Ng et al. 2002), Operators in Man-
ifolds (Belkin and Niyogi 2003), physical models as inhomogeneous ferromagnetic
Potts model (Blatt et al. 1996) or Diffusion Maps (Nadler et al. 2006). But all these
analysis are investigated asymptotically for a large number of points and do not
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explain why this method works for a finite data set. Moreover, another problem
still arise: the affinity parameter influences the clustering results (Ng et al. 2002;
Von Luxburg 2007). And the difficulty to define an adequate parameter seems to
be slightly connected to the lack of some clustering property explaining how the
grouping in this low-dimensional space correctly defines the partitioning in the
original data.

In this paper, we propose a fully theoretical interpretation of spectral clustering
whose first steps were introduced by Mouysset et al. (2010). From this, we define
a new clustering property in the embedding space at each step of the study and
new results showing the rule of the Gaussian affinity parameter. After recalling
the spectral clustering method and the rule of the affinity parameter in Sect. 2.1,
we propose a continuous version of the Spectral Clustering with Partial Differential
Equations (PDE). To do so, we consider a sampling of connected components
and, from this, we draw back to original shapes. This leads to formulate spectral
clustering as an eigenvalue problem where data points correspond to nodes of
some finite elements discretization and to consider the Gaussian affinity matrix
A as a representation of heat kernel and the affinity parameter � as the heat
parameter t . Hence, the first step is to introduce an eigenvalue problem based on
heat equation which is defined with a Dirichlet boundary problem. From this, in
Sect. 2.2, we deduce an “almost” eigenvalue problem which can be associated to
the Gaussian values. Thus identifying connected component appears to be linked to
these eigenfunctions. Then, by introducing the Finite Elements approximation and
mass lumping, we prove in Sect. 2.3 that this property is preserved with conditions
on t when looking at eigenvectors given by spectral clustering algorithm. Finally,
in Sect. 3, we study numerically the difference between eigenvectors from the
spectral clustering algorithm and their associated discretized eigenfunctions from
heat equation on a geometrical example, as a function of the affinity parameter t .

2 Interpretation

In the following, spectral clustering and its inherent problem are presented. Then
we propose a continuous version of this method.

2.1 Spectral Clustering: Rule of Gaussian Parameter

Let consider a data set P D fxi giD1::N 2 R
p. Assume that the number of

targeted clusters k is known. First, the spectral clustering consists in constructing the
parametrized affinity matrix based on the Gaussian affinity measure between points
of the data set P. After a normalization step, by stacking the k largest eigenvectors,
the spectral embedding in R

k is created. Each row of this matrix represents a data
point xi which is plotted in this embedding space and then grouped into clusters via
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Fig. 1 Geometrical example: (a) clustering result for � D 0:8, (b) percentage of clustering error
function of � , (c) spectral embedding space for � D 0:8

the K-means method. Finally, thanks to an equivalence relation, the final partition
of data set is directly defined from the clustering in the embedding space.

So this unsupervised method is mainly based on the Gaussian affinity measure,
its parameter � and its spectral elements. Moreover, it is known that the Gaussian
parameter conditions the separability between the clusters in the spectral embedding
space and should be well chosen (Von Luxburg 2007). The difficulty to fix this
choice seems to be tightly connected to the lack of results explaining how the
grouping in this low-dimensional space defines correctly the partitioning in the
original data for a finite data set. Figure 1 summaries these previous remarks
via a percentage of clustering which evaluated the percentage of mis-clustered
points applied on a geometrical example of two concentric rectangles (Fig. 1a). For
� D 0:8, value which provides clustering errors (Fig. 1b), the two clusters defined
with K-means are represented in the spectral embedding (Fig. 1c) by the respective
black and grey colors. A piece of circle in which no separation by hyperplane is
possible is described. Thus, in the original space, both rectangles are cut in two and
define a bad clustering as show in Fig. 1a.

2.2 Through an Interpretation with PDE Tools

As spectral elements used in spectral clustering do not give explicitly this topo-
logical criteria for a discrete data set, we are drawing back to some continuous
formulation wherein clusters will appear as disjoint subsets as shown in Fig. 2.
In that way, we first have to define a clustering compatibility which establishes the
link between continuous interpretation and the discrete case. So we consider an open
set ˝ subdivided by k disjoints connected components of ˝ .

Definition 1 (Clustering Compatibility). Let ˝ be a bounded open set in R
p

made by ˝i; i 2 1; ::; k disjoint connected components such that: ˝ D Sk
iD1 ˝i .

Let P be a set of points fxi gN
iD1 in the open set ˝ . Let note Pj , for j D

f1; ::; kg, the non empty set of points of P in the connected component ˝j

of ˝:Pj D ˝j \ P; 8j 2 f1; ::; kg. Let C D fC1; ::; Ck0g be a partition of P.
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Fig. 2 Principle of the interpretation with PDE tools

Suppose that k D k0 then C is a compatible clustering if 8j D f1; ::; k0g; 9i 2
f1; ::; kg; Cj D Pi .

To make a parallel version in the L2.˝/ space, data points which believe
in a subset of ˝ are equivalent to believe in the same connected component.
In the following, we will formulate spectral clustering as an eigenvalue problem
by assuming data points as nodes of some finite elements discretization and by
considering Gaussian affinity matrix as a representation of heat kernel. But as the
spectrum of heat operator in free space is essential, we will make a link with a
problem defined on bounded domain in which the spectrum is finite. Then, due to the
fact that we compare the discrete data defined by the elements of the affinity matrix
with some L2 functions which are the solutions of heat equation, we will introduce
an explicit discretization with the Finite Element theory and the mass lumping to
cancel all knowledge about the mesh. Then we will make a feedback of this analysis
for the application of spectral clustering by defining clustering properties following
the successive approximations. Finally, this study will lead to a functional rule of �

and a new formulation of a spectral clustering criterion.

2.2.1 Link Between Gaussian Affinity and Heat Kernel in R
p

Let recall the Gaussian affinity element Aij between two data points xi and xj is

defined by Aij D exp
�
� �

�xi � xj

�
�2

=2�2
�

. A direct link between the affinity Aij

and the heat kernel on R
�C � R

p , defined by KH .t; x/ D .4�t/� p
2 exp

��kxk2=4t
�

could be established as follows:

Aij D .2��2/
p
2 KH

�
�2=2; xi � xj

�
; 8i ¤ j; 8.i; j / 2 f1; ::; N g: (1)

Equation (1) permits defining the affinity measure as a limit operator: the Gaussian
affinity is interpreted as the heat kernel of a parabolic problem and its Gaussian
parameter � as a heat parameter t . Consider the following parabolic problem which
is called heat equation, for f 2 L2.Rp/:

.PRp /

(
@t u � �u D 0 for .t; x/ 2 R

C � R
p;

u.x; 0/ D f for x 2 R
p:
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Due to the fact that the spectrum of heat operator in free space, noted SH , is essential
and eigenfunctions are not localized in R

p without boundary conditions, we have to
restrict the domain definition and make a link with a problem on a bounded domain
˝ in which the eigenfunctions could be studied.

2.2.2 Clustering Property with Heat Equation

Let now introduce the initial value problem in L2.˝/, for f 2 L2.˝/:

.P˝/

8
ˆ̂
<

ˆ̂
:

@t u � �u D 0 in R
C � ˝;

u.t D 0/ D f; in ˝;

u D 0; on R
C � @˝:

Denote by KD the Green’s kernel of .P˝/. The solution operator in H 2.˝/ \
H 1

0 .˝/ associated to this problem is defined, for f 2 L2.˝/, by:

SD.t/f .x/ D
Z

˝

KD.t; x; y/f .y/dy; x 2 R
p:

Let consider f. fvn;i /n;i>0; i 2 f1; ::; kgg 2 H 1
0 .˝/ such that . fvn;i /n;i>0 are the

solutions of � fvn;i D �n;i fvn;i on ˝i for i 2 f1; ::; kg and n > 0 and extend
fvn;i D 0 on ˝n˝i . These functions are eigenfunctions of .P˝/ and the union of
these eigenfunctions is an Hilbert basis of H 1

0 .˝/. Moreover, as ˝ D Sk
iD1 ˝i , for

all i 2 f1; ::; kg and n > 0, the eigenfunctions, noted f. fvn;i /n;i>0; i 2 f1; ::; kgg,
satisfied: SD.t/ fvn;i D e��n;i t fvn;i . So the eigenfunctions of SD have a geometrical
property: its support is included in only one connected component. Thus a clustering
property in the spectral embedding space could be established.

Proposition 1 (Clustering Property). For all point x 2 ˝ and � > 0, let note
��

x a regularized Dirac function centred in x: ��
x 2 C 1.˝; Œ0; 1�/; �"

x.x/ D 1 and
supp.�"

x/ � B.x; "/. The eigenfunctions of SD , noted fvn;i , for i 2 f1; ::; kg and
n > 0 such that for all x 2 ˝ and all i 2 f1; ::; kg and for all t > 0, the following
result is satisfied:

�9"0 > 0; 8" 2�0; "0Œ; 9n > 0; .SD.t/�"
x j fvn;i /L2.˝/ ¤ 0

� ” x 2 ˝i (2)

where .f jg/L2.˝/ D R
˝

f .y/g.y/dy; 8.f; g/ 2 L2.˝/ is the usual scalar product
in L2.

Proof. By contrapositive, let i 2 f1; ::; kg and a point x 2 ˝j with any j ¤ i . Let
dx D d.x; @˝j / > 0 be the distance of x from the boundary of ˝j . According to
the hypothesis on ˝ , we have d0 D d.˝i ; ˝j / > 0. So for all " 2�0; inf.dx; d0/Œ,
B.x; "/ � ˝j . Then for all t > 0, supp.SD.t/�"

x/ � ˝j and so, for n > 0,



158 S. Mouysset et al.

.SD.t/�"
x j fvn;i /L2.˝/ D 0. So there does not any "0 > 0 which verifies the direct

implication of (2). Reversely, let x 2 ˝i and " 2�0; inf.dx; d0/Œ, B.x; "/ � ˝i .
So the support of �"

x is in ˝i . As the . fvn;i /n>0 is an Hilbert basis of L2.˝i/ and
that �"

x.x/ D 1 ¤ 0 then there exists n > 0 such that .�"
x j fvn;i / ¤ 0. In this case,

.SD.t/�"
x j fvn;i /L2.˝/ D e��n;i t .�"

x j fvn;i / ¤ 0.

By considering an open subset O which approximates from the interior the open
set ˝ such that Volume.˝nO/ � �, for � > 0, both heat operators of .PRp / and
.P˝/ could be compared in O. Let ı be the distance fromO to ˝ as shown in Fig. 2.
Due to the fact that the difference between the Green kernels KH and KD could
be estimated in O and is function of the heat parameter t , the geometrical property
could thus be preserved on the heat operator in free space restricted to O. Let vn;i

be the eigenfunction fvn;i which support is restricted to O, for all i 2 f1; ::; kg and
n > 0. From this, we obtain, for 0 < t < ı2:

SOH .t/vn;i D exp��ni t vn;i C 	.t; vn;i /; (3)

with k	.t; vn;i /kL2.O/ ! 0 when t ! 0; ı ! 0:

So we can prove that on O, the eigenfunctions for the solution operator for bounded
heat equation are quasi-eigenfunctions for SOH plus a residual (Mouysset et al.
2010). The clustering property adapted to the restricted heat operator SOH remains
introducing an hypothesis on the heat parameter t . Moreover, (2) is modified with
non-null values by introducing a gap between scalar product with eigenfunctions
such that for all x > 0 and all i 2 f1; ::; kg:

2

4
9"0 > 0; 9˛ > 0; 8" 2�0; "0Œ; 9n > 0; 8t > 0 small enough,
vn;i D arg maxfvm;j ;m2N;j 2Œj1;kj�g

ˇ
ˇ.SOH .t/��

x jvm;j /L2.O/

ˇ
ˇ

and
ˇ
ˇ.SOH .t/�"

x jvn;i /L2.O/

ˇ
ˇ > ˛

3

5 ” x 2 Oi :

(4)

These previous results prove that in infinite dimension, a clustering could be realized
in the spectral embedding space because the eigenfunctions have a geometrical
property. This study leads to the following question: do eigenvectors of the affinity
matrix behave like eigenfunctions of .P˝/?

2.3 Discretization with Finite Elements

From this, we will look for a similar behaviour onto eigenvectors of A by
introducing a finite dimension representation matching with the initial data set P
with help of the finite elements (Ciarlet 1978). So, we consider data points as finite
dimensional approximation and elements of the affinity matrix built from data points
as nodal values of SOH .
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2.3.1 Approximation in Finite Dimension

Let 
h be a triangulation on NO such that: h D max
K2
h

hK , hK being a characteristic

length of triangle K . Let consider a finite decomposition of the domain: NO D
[K2
h

K in which .K; PK; ˙K/ satisfies Lagrange finite element assumptions for
all K 2 
h. We define also the finite dimension approximation space: Vh D fw 2
C0. NO/I 8K 2 
h; wjK 2 PKg and denote ˘h the linear interpolation from C 0. NO/

in Vh with the usual scalar product .�j�/L2.Vh/ (Ciarlet 1978). According to this
notations, for t > 0, the ˘h-mapped operator SOH applied to each shape function
�j is, for h3pC2 < t2, for all 1 � j � N :

.4�t/
p
2 ˘h.SOH .t/�j /.x/ D

NX

kD1

..A C IN /M /kj �k.x/ C O

	
h3pC2

t2




; (5)

where M stands for the mass matrix defined by: Mij D .�i j�j /L2.Vh/. Equation (5)
means that the affinity matrix defined in (1) in spectral algorithm is interpreted as
the ˘h-projection of operator solution of .PRp / with M mass matrix from Finite
Element theory (Mouysset et al. 2010).
So we could formulate finite elements approximation of continuous clustering
result (3). From the eigenfunctions of SD restricted to O, their projection in Vh,

noted Wn;i , are defined by: Wn;i D ˘hvn;i 2 Vh; 8i 2 f1; ::; kg. So, for h
3pC2

2 < t <

ı2, the following result could be established:

.4�t/
�p
2 .A C IN /M Wn;i D e��n;i t Wn;i C � .t; h/ ; (6)

where k� .t; h/ kL2.Vh/ ! 0 and ı ! 0. Equation (6) shows that the geometrical
property is preserved in finite dimension on the eigenvectors of .A C IN /M .
Moreover, a lower bound for the heat parameter was defined. But all this previous
results include the mass matrix which is totally dependent of the finite elements.
In order to cancel this dependence, mass lumping process is investigated.

2.3.2 Mass Lumping

The mass lumping method consists in using a quadrature formula whose integration
points are the interpolation points of the finite element. So let Ik be the list of indices
of points which are element of K 2 
h. Let consider the quadrature scheme exact
for polynomials of degree � 1:

Z

K

�.x/dx �
X

k2Ik

jKj
3

�.xik / (7)
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where jKj is the area of the finite element K . So, with additional regularity condition
on the mesh which bounds jKj, the mass lumping permits considering the mass
matrix M as a homogeneous identity matrix. So (6) is modified so that, 9 ˛ > 0,
such that:

˛ .A C IN / Wn;i D e��n;i t Wn;i C � 0.t; h/; (8)

where k� 0.t; h/kL2.Vh/ ! 0 and ı ! 0. The approximation in finite dimension
of the clustering property (4) is reformulated as follows, for all xr 2 P, for all
i 2 f1; ::; kg:

2

6
6
4

9˛ > 0; 9n > 0; 8t > 0; t; h2=t and h.3pC1/=t2 small enough,

Wn;i D arg maxfWm;j ;m2N;j 2Œj1;kj�g

ˇ
ˇ
ˇ
�
.A C IN /:r jWm;j

�
L2.Vh/

ˇ
ˇ
ˇ

and
ˇ
ˇ
ˇ..A C IN /:r jWn;i /L2.Vh/

ˇ
ˇ
ˇ > ˛

3

7
7
5 ” xr 2 Oi ;

(9)

where ..A C IN //:r is the r th column of the matrix .A C IN /, for all r 2 f1; ::N g.
This leads to the same clustering for a set of data points either we consider
eigenfunctions in L2.˝/ or ˘h-interpolated eigenfunction in the approximation
space Vh. With an asymptotic condition on the heat parameter t (or Gaussian
parameter �), points which are elements of the same cluster have the maximum of
their projection coefficient along the same eigenvector. So the clustering in spectral
embedding space provides the clustering in data space.

3 Gaussian Parameter: A Geometrical Example

This previous theoretical interpretation proves that the Gaussian parameter should
be chosen within a specific interval in order to improve the separability between
clusters in the spectral embedding space. In order to experiment the parallel between
continuous version and the approximate one, we consider a geometrical example
with non convex shapes as shown in Fig. 3a. For each connected component (or each
cluster) i 2 f1; 2g, the discretized eigenfunction, noted W1;i , associated to the first
eigenvalue of each connected component and the eigenvectors, noted Yi , which
gives maximum projection coefficient with W1;i are respectively plotted in Fig. 3b,
c and e, f. The correlation ! between W1;i and Yi is represented as a function of the
heat parameter t in Fig. 3d: ! D j.W1;i jYi /j.kW1;i k2kYi k2/�1. The vertical black
dash dot lines indicate the lower and upper estimated bounds of the heat parameter.
In this interval, the correlation between the continuous version and the eigenvectors
of the Gaussian affinity matrix is maximum. So the clusters are well separated in the
spectral embedding space.
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Fig. 3 (a) Data set (N D 669), (b) and (c) discretized eigenfunctions of SD , (d) correlation
! between the continuous version and its discrete approximation function of t , (e) and (f)
eigenvectors from A which provides the maximum projection coefficient with the eigenfunctions
of SD

4 Conclusion

In this paper, spectral clustering was formulated as an eigenvalue problem. From
this interpretation, a clustering property on the eigenvectors and some conditions on
the Gaussian parameter have been defined. This leads to understand how spectral
clustering works and to show how clustering results could be affected with a bad
choice of the affinity parameter. But we do not take into account the normalization
step in the whole paper but its rule is crucial for ordering largest eigenvectors for
each connected components to the first eigenvectors and should be studied.
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