Implementing Inductive Concept Learning
For Cooperative Query Answering

Maheen Bakhtyar, Nam Dang, Katsumi Inoue, and Lena Wiese

Abstract Generalization operators have long been studied in the area of Concep-
tual Inductive Learning (Michalski, A theory and methodolgy of inductive learning.
In: Machine learning: An artificial intelligence approach (pp. 111-161). TIOGA
Publishing, 1983; De Raedt, About knowledge and inference in logical and rela-
tional learning. In: Advances in machine learning II (pp. 143—-153). Springer, Berlin,
2010). We present an implementation of these learning operators in a prototype
system for cooperative query answering. The implementation can however also be
used as a usual concept learning mechanism for concepts described in first-order
predicate logic. We sketch an extension of the generalization process by a ranking
mechanism on answers for the case that some answers are not related to what user
asked.

M. Bakhtyar (2<)
Asian Institute of Technology Bangkok, Bangkok, Thailand
e-mail: Maheen.Bakhtyar @ait.asia

L. Wiese
University of Gottingen, Gottingen, Germany
e-mail: lena.wiese @udo.edu

K. Inoue
National Institute of Informatics, Tokyo, Japan
e-mail: inoue @nii.ac.jp

N. Dang
Tokyo Institute of Technology, Tokyo, Japan
e-mail: namd @de.cs.titech.ac.jp

M. Spiliopoulou et al. (eds.), Data Analysis, Machine Learning and Knowledge 127
Discovery, Studies in Classification, Data Analysis, and Knowledge Organization,

DOI 10.1007/978-3-319-01595-8__14,

© Springer International Publishing Switzerland 2014

mailto:Maheen.Bakhtyar@ait.asia
mailto:lena.wiese@udo.edu
mailto:inoue@nii.ac.jp
mailto:namd@de.cs.titech.ac.jp

128 M. Bakhtyar et al.
1 Introduction

Conceptual inductive learning is concerned with deriving a logical description of
concepts (in a sense, a classification) for a given set of observations or examples;
in induction, the resulting description is also called a hypothesis. Background
knowledge can support the concept learning procedure. In his seminal paper on
inductive learning, Michalski (1983) introduced and surveyed several learning
operators that can be applied to a set of examples to obtain (that is, induce) a
description of concepts; each concept subsumes (and hence describes) a subset of
the examples. He further differentiates inductive learning into concept acquisition
(where a set of examples must be classified into a predefined set of concepts) and
descriptive generalization (where a set of observations must be classified into a
newly generated and hence previously unknown set of concepts). In a similar vein,
de Raedt (2010) emphasizes the importance of logic representations for learning
processes as follows:
To decide whether a hypothesis would classify an example as positive, we need a notion of
coverage.[. ..] In terms of logic, the example e is a logical consequence of the rule /2, which
we shall write as & |= e. This notion of coverage forms the basis for the theory of inductive
reasoning]. ..]
Especially important in this context is the notion of generality. One pattern is more general
than another one if all examples that are covered by the latter pattern are also covered by the
former pattern.[. ..] The generality relation is useful for inductive learning, because it can be
used (1) to prune the search space, and (2) to guide the search towards the more promising
parts of the space.[...] Using logical description languages for learning provides us not
only with a very expressive and understandable representation, but also with an excellent
theoretical foundation for the field. This becomes clear when looking at the generality
relation. It turns out that the generality relation coincides with logical entailment.[.. .]

In this paper we present the implementations of three logical generalization
operators: Dropping Condition (DC), Anti-Instantiation (AI) and Goal Replacement
(GR). The novelty of our approach lies in the fact that these operators are combined
iteratively. In other words, several successive steps of generalization are applied
and operators can be mixed. Our work is based on the soundness results of an
optimized iteration that can be found in Inoue and Wiese (2011); the main result
there is that it is sufficient to apply these three operators in a certain order: starting
with GR applications, followed by DC applications and ending with Al applications
(see Fig. 1). This order is employed in our system when applying the three operators
iteratively in a tree-like structure.

To the best of our knowledge, the iteration of these three operators is also novel
when learning concepts from a set of examples. In this paper we present general-
ization as an application for a cooperative query answer system CoopQA: it applies
generalization operators to failing queries which unsatisfactorily result in empty
answers; by applying generalization operators we obtain a set of logically more
general queries which might have more answers (called informative answers) than
the original query. The implementation can however also be used in a traditional
concept learning setting—that is, learning concepts by iterative generalization: as

Implementing Inductive Concept Learning For Cooperative Query Answering 129

Go: Q(X)

Gi: DC Al GR
SN | T T~
Go: DC Al Al DC Al GR
/\ | | /\ | /1N

Gz: DC Al Al AT DC Al Al DC AI GR
Fig. 1 Tree-shaped combination of DC, Al and GR

such we see the failing query as an initial description of a concept (which however
does not cover all positive examples contained in a knowledge base); we then use our
tree-shaped generalization until all positive examples can be derived as informative
answers to the more general query (and hence we have obtained a more general
description of the initial concept).

More formally, we concentrate on generalization of conjunctive queries that
consist of a conjunction (written as A) of literals /;; a literal consists of a logical
atom (a relation name with its parameters) and an optional negation symbol (—)
in front. We write Q(X) = I} A ... A l, for a user’s query where X is a free
variable occurring in the /;; if there is more than one free variable, we separate
variables by commas. The free variables denote which values the user is looking for.
Consider for example a hospital setting where a doctor asks for illnesses of patients.
The query Q(X) = ill(X,flu) A ill(X, cough) asks for all the names X of patients
that suffer from both flu and cough. A query Q(X) is sent to a knowledge base X
(a set of logical formulas) and then evaluated in X' by a function ans that returns
a set of answers (a set of formulas that are logically implied by X); as we focus
on the generalization of queries, we assume the ans function and an appropriate
notion of logical truth given. Note that (in contrast to the usual connotation of
the term) we also allow negative literals to appear in conjunctive queries; we just
require Definition 1 below to be fulfilled while leaving a specific choice of the =
operator open. Similarly, we do not put any particular syntactic restriction on X.
However, one of the generalization operators scans X' for “single-headed range-
restricted rules” (SHRRR) which consists of a body part left of an implication
arrow (—) and a head part right of the implication arrow. The body of a SHRRR
consists of a disjunction of literals whereas the head consists only of one single
literal: I;, A...Al;, — I’; range-restriction requires that all variables that appear in
the head literal also appear in one of the body literals; again, we also allow negative
literals in the body and in the head. As a simple example for a SHRRR consider
ill(X, flu) — treat(X, medi) which describes that every patient suffering from flu is
treated with a certain medicine.

CoopQA applies the following three operators to a conjunctive query (which—
among others—can be found in the paper of Michalski 1983):

Dropping Condition (DC) removes one conjunct from a query; applying DC to
the example Q (X) results in ill(X, flu) and ill(X, cough).

130 M. Bakhtyar et al.

Anti-Instantiation (AI) replaces a constant (or a variable occurring at least
twice) in Q(X) with a new variable Y; ill(Y, flu) A ill(X, cough), ill(X,Y) A
ill(X, cough) and ill(X, flu) A ill(X,Y) are results for the example Q(X).

Goal Replacement (GR) takes a SHRRR from X, finds a substitution 6 that
maps the rule’s body to some conjuncts in the query and replaces these conjuncts
by the head (with 8 applied); applying the example SHRRR to Q(X) results in
treat(X, medi) A ill(X, cough).

These three operators all fulfill the following property of deductive generalization
(which has already been used by Gaasterland et al. 1992) where ¢ is the input query
and v is any possible output query:

Definition 1 (Deductive generalization wrt. knowledge base). Let X be a knowl-
edge base, ¢ (X) be a formula with a tuple X of free variables, and ¥ (X,Y) be a
formula with an additional tuple Y of free variables disjoint from X. The formula
¥ (X,Y) is a deductive generalization of ¢(X), if it holds in X' that the less general
¢ implies the more general y where for the free variables X (the ones that occur in
¢ and possibly in) the universal closure and for free variables Y (the ones that
occur in ¥ only) the existential closure is taken:

Tk VX3Y ((X) - ¢(X.Y)

In the following sections, we briefly present the implementation of the CoopQA
system (Sect. 2) and show a preliminary evaluation of the performance overhead of
iterating generalization operators (Sect. 3).

2 Implementation Details

The focus of CoopQA lies on the efficient application of the underlying gen-
eralization operators. As CoopQA applies the generalization operators on the
original query in a combined iterative fashion, the resulting queries may contain
equivalent queries, which only differ in occurrences of variables or order of literals.
CoopQA thus implements an equivalence checking mechanism to eliminate such
duplicate queries. The most important step of query equivalence checking is finding
substitutions between two queries. CoopQA tries to rearrange the literals in the two
queries such that the substitutions can be obtained by mapping the variables in the
two queries according to their positions. Instead of finding the substitution over
the whole of the two queries, we segment the queries into segments of pairwise
equivalent literals and find the correct ordering for each pair of corresponding
segments. We now briefly sketch how each operator is implemented:

Dropping Condition (DC): For a query of length n (i.e., n literals in the query),
n generalized queries are generated by dropping one literal. As this involves
replicating the n — 1 remaining literals, run-time complexity of DC is O(n?).

Implementing Inductive Concept Learning For Cooperative Query Answering 131

Anti-Instantiation (Al): If a query of length n contains M occurrences of con-
stants and variables, at most M generalized queries (each of length n) are
generated. Assume that the query was divided into r segments, then the literal
affected by anti-instantiation has to be removed from its segment and the anti-
instantiated literal with the new variable has to be placed into a (possibly
different) segment; finding this segment by binary search requires logr time
(which is less than n). Thus, run-time complexity of Al is O(M n).

Goal Replacement (GR): GR, as described in Sect. 1 (and in more detail in Inoue

and Wiese (2011)), requires finding parts of the query that are subsumed by the
body of a given SHRRR. The definition of subsumption is that a logical formula
R(X) subsumes Q(Y) if there is a substitution 6 such that R(X)8 = Q(Y).
Our implementation uses a generator that takes the query and the rule’s body as
input, and produces matchings of the body against the rule. We apply relaxed
segmentation upon the two lists of literals (of the query and of the rule’s body),
which requires equivalent literals to only have the same predicate. For example,
q(X,Y) and ¢g(a, Z) are considered equivalent literals in this case. We then
perform matching upon corresponding equivalent segments of the query against
the segments of the rule’s body to obtain a list of literals that are subsumed by
the rule’s body. Note that the segments in the query and the rule’s body need not
have the same size, as long as all the segments in the rule’s body are found in
the query. The matching literals are then replaced in the query by the rule’s head,
which already has the substitution applied.
The worst case scenario of GR is when both the query and the rule contain only
one segment of (relaxed) equivalent literals. Given a query of size n, a rule with
the body of size k (n > k), the number of possible matchings of k out of n literals
from the query against the rule is (Z) For each combination of k literals, we have
to perform permutation to find the correct ordering to determine the substitution
against the rule body. Thus, in the worst case, the cost of finding the substitution
for each combination is k!. Hence, complexity of finding all matchings of the
query against the rule’s body is O(k!(Z)). In general, for a rule with a body of s
segments, each of length k;, and a query with s corresponding segments, each of
length 7;, complexity is O (37—, (ki!(;')))-

3 Performance Evaluation

We present some benchmarking and performance evaluation results of our imple-
mentation of the generalization operators. We focus on the cost of the tree-shaped
generalization process.

Our benchmark suite generates a random knowledge base and query which
consists large set of a combinations of illnesses and treatments from our medical
example. We chose this synthetic data set because goal replacement has to capture
the semantic dependencies in the data expressed by rules; so far we could not find
any real-world benchmark with appropriate rules for goal replacement.

132 M. Bakhtyar et al.

Effect of Query Length Effect of Rule's Body Length
Query Length vs. Execution time Rule's Body vs. Execution Time

18 35

16 30

14)

12 = Al ° = Al
w10 - DC % 20 <+ DC
° % GR ° % GR
£ 8 - Total £ 1 = Total
F 6 F 1

4

2 5

0o B—m 0o —F—FFF3

0 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8
Query Length (# of literals in the query) Rule's Body Length (# of literals in the body)

Fig. 2 Effects of query length and rule body length

Knowledge Base Size vs. Execution Time
60
50
40 X

D = Al

;‘ 30 X - DC

£ 20 X X GR

(] Op o % g5 —8 B @ -+ Total
10 x X

%
e o

0 20000 40000 60000 80000 100000 120000 140000 160000 180000
Knowledge Base Size (# of rules)

Fig. 3 Effects of number of rules

We analyze the effects on execution time by varying various parameters such
as query length, number of SHRRRs in the knowledge base and the length of rule
bodies. The runtime graphs show the time spent on each of the three operators alone
as well as their summed total execution time. The tests were run on a PC under Linux
2.6 with a 64 bit Ubuntu 10.04 using Java 1.6 with OpenJDK Runtime Environment
6. The PC had 8 GB of main memory and a 3.0 GHz Quad Core processor.

We first analyze how query length affects execution time of generalization.
Figure 2 shows the total time taken by each operator when running CoopQA
for a certain query length (that is, number of literals). We observe an increase
in the execution time of Al operator after query length 5 as potentially more A/
operations are possible; in case of DC and GR operation, effect of query length on
the execution time is negligible. Analyzing the effect of number of rules contained
in the knowledge base shows that the total execution time increases with the number
of rules as shown in Fig. 3. Closely investigating each operator reveals that there is
no significant change in execution time in case of Al. In case of DC it is again
negligible; however, we observe a linear increase in execution time in case of GR
and that is because of increased matching and replacement. Lastly, there is no effect
on DC and GR execution time when rule bodies are longer (see Fig.2). Yet, time

Implementing Inductive Concept Learning For Cooperative Query Answering 133

decreases for Al. This is due to the replaced part of the query: a long rule body
makes the query shorter by replacing a longer part of the query with one literal;
hence less Al operations are possible.

Profiling our code using VisualVM' shows that Al operation takes up 48.4 % of
the total execution time; the main cost lies in performing equivalence checking to
detect duplicated queries when a new one is generated (taking up to 33.6 % of total
execution time). GR’s main bottleneck is to replace matched literals to generate
queries, not the matching against rules itself.

4 Discussion and Conclusion

The CoopQA system uses three generalization operators that were widely used for
inductive learning of concepts; it applies them in a cooperative query answering
system in order to discover information for a user which might be related to his
query intention. In contrast to other approaches using DC, Al and GR, tree-shaped
generalization profits from an efficient combination of the three operators. The
presented implementation shows favorable performance of the generalization opera-
tors. Future and ongoing work in the CoopQA system is covering the important issue
of answer relevance which we discuss briefly: some answers might be generalized
“too much” and are “too far away” from the user’s query intention; a relevance
ranking for answers can provide the user with the most useful answers while
disregarding the irrelevant ones. In particular, a threshold value for answer ranks can
be specified to return only the most relevant answers to the user and an aggregation
of ranks reflecting the iteration of operators must be defined. Dropping Conditions
and Goal Replacement are purely syntactic operators that do not introduce new
variables. A relevance ranking for them can be achieved by assigning the answers
to generalized queries a penalty for the dropped or replaced conditions. In contrast,
anti-instantiation leads to the introduction of a new variable. Recall from Sect. 1 the
example query Q(X) = ill(X,flu) A ill(X, cough) that asks for patients suffering
from flu and cough at the same time. Applying Al on the constant cough leads to the
generalized query ill(X, flu) Aill(X, Y) where the condition of cough is relaxed and
any other disease would be matched to the new variable Y. These diseases might be
very dissimilar to cough and hence totally irrelevant from the point of view of the
original query Q(X). A more intelligent version of the Al operator can hence rank
the answer to the generalized query regarding their similarity to the original query.
Here we have to differentiate between the case that a constant was anti-instantiated,
and the case that a variable was anti-instantiated. More precisely, within a single
application of the AI operator, we can assign each new (more general) answer ans;
the rank value rank;, where the rank is calculated as follows:

Thttp://visualvm java.net/

http://visualvm.java.net/

134 M. Bakhtyar et al.

» if Y is the anti-instantiation of a constant ¢ (like cough in our example), we obtain
the similarity between the value of Y in answer ans; (written as val; (Y')) and the
original constant ¢; that is, rank; = sim(val;(Y), c).

« if Y is the anti-instantiation of a variable (like in the generalized query ill(Y, flu) A
ill(X, cough) where different patients X and Y are allowed), we obtain the
similarity between the value of Y in ans; and the value of the variable (say,
X) which is anti-instantiated by Y in the same answer; that is, rank; =
sim(val; (Y),val; (X)).

Let us assume we have predefined similarities sim(bronchitis, cough) = 0.9 and
sim(brokenLeg, cough) = 0.1 for our example. An answer containing a patient with
both flu and bronchitis would then be ranked high with 0.9; whereas an answer
containing a patient with both flu and broken leg would be ranked low with 0.1. Such
similarities can be based on a taxonomy of words (or an ontology); in our example
we would need a medical taxonomy relating several diseases in a hierarchical
manner. Several notions of distance in a taxonomy of words can be used (e.g., Shin
et al. 2007) to define a similarity between each two words in the taxonomy (e.g., Wu
and Palmer 1994). When the Al operator is applied repeatedly, similarities should
be computed for each replaced constant or variable; these single similarities can
then be combined into a rank for example by taking their weighted sum. To make
the system more adaptive to user behavior, the taxonomy used for the similarities
can be revised at runtime (with an approach as described in Nikitina et al. 2012).

References

De Raedt, L. (2010). About knowledge and inference in logical and relational learning. In Advances
in Machine Learning II (pp. 143-153). Berlin: Springer.

Gaasterland, T., Godfrey, P., & Minker, J. (1992). Relaxation as a platform for cooperative
answering. Journal of Intelligent Information Systems, 1(3/4), 293-321.

Inoue, K., & Wiese, L. (2011). Generalizing conjunctive queries for informative answers. In 9th
International Conference on Flexible Query Answering Systems. Lecture notes in artificial
intelligence (Vol. 7022, pp. 1-12). New York: Springer.

Michalski, R. S. (1983). A theory and methodolgy of inductive learning. In Machine learning: An
artificial intelligence approach (pp. 111-161). TIOGA Publishing.

Muslea, 1. (2004). Machine learning for online query relaxation. In Zenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining (pp. 246-255). New York:
ACM.

Nikitina, N., Rudolph, S., & Glimm, B. (2012). Interactive ontology revision. Journal of Web
Semantics, 12, 118-130.

Shin, M. K., Huh, S.-Y., & Lee, W. (2007). Providing ranked cooperative query answers using the
metricized knowledge abstraction hierarchy. Expert Systems with Applications, 32(2), 469-484.

Wu, Z., & Palmer, M. (1994). Verb semantics and Lexical selection. In 32nd Annual Meeting of
the Association for Computational Linguistics (pp. 133-138). Los Altos: Morgan Kaufmann
Publishers.

	Implementing Inductive Concept Learning For Cooperative Query Answering
	1 Introduction
	2 Implementation Details
	3 Performance Evaluation
	4 Discussion and Conclusion
	References

