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Abstract The MAGIC-telescopes on the canary island of La Palma are two of
the largest Cherenkov telescopes in the world, operating in stereoscopic mode
since 2009 (Aleksić et al., Astropart. Phys. 35:435–448, 2012). A major step in
the analysis of MAGIC data is the classification of observations into a gamma-
ray signal and hadronic background. In this contribution we introduce the data
provided by the MAGIC telescopes, which has some distinctive features. These
features include high class imbalance, unknown and unequal misclassification costs
as well as the absence of reliably labeled training data. We introduce a method to
deal with some of these features. The method is based on a thresholding approach
(Sheng and Ling 2006) and aims at minimization of the mean square error of an
estimator, which is derived from the classification. The method is designed to fit
into the special requirements of the MAGIC data.

1 Introduction

Binary classification problems are quite common in scientific research. In very high
energy (VHE) gamma-ray astronomy for example, the interest is in separating the
gamma-ray signal from a hadronic background. The separation has to be done as
exactly as possible since the number of gamma-ray events detected is needed for
the calculation of energy spectra and light curves (Mazin 2007). There are some
distinctive features characterizing the data we have to deal with.
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One feature is that there is a huge class imbalance in the data. It is known that
hadron observations (negatives) are more than 100–1,000 times more common than
gamma events (positives) (Weekes 2003; or Hinton and Hofman 2009). The exact
ratio, however, is unknown. A second feature is that individual misclassification
costs of gamma and hadron observations are unknown and not important in our
context. We use classification as a preliminary step of an analysis, which aims at
estimation of some quantity. The mean square error of the resulting estimator thus
measures naturally also the expected loss resulting from our classification.

Throughout this paper we use random forests (Breiman 2001) as is usually done
in the MAGIC experiment (Albert et al. 2008). One effective method of making
these cost sensitive is the thresholding method (Sheng and Ling 2006). This method
is not applicable as we do not know individual misclassification costs, but in the
following we introduce a similar method based on the third feature of the data:
In VHE gamma-ray astronomy one is not primarily interested in the best possible
classification of any single event, but instead one wants to know the total number
of gamma observations (positives) as this is the starting point for astrophysical
interpretations. Statistically speaking this means estimation of the true number of
positives based on a training sample. As said above the mean square error of this
estimation measures naturally the expected loss of the classification, so we regard
the mean square error (MSE) as overall misclassification risk in the thresholding
method and choose the discrimination threshold which minimizes the MSE of
the estimated number of positives in a data set. Additionally, the unknown class
imbalance is taken into consideration by this method.

2 The MAGIC Experiment and Data

The MAGIC telescopes on the canary island of La Palma are two of the biggest
Cherenkov telescopes in the world. Their purpose is to detect highly energetic
gamma particles emitted by various astrophysical sources like Active Galactic
Nuclei (AGNs). Gamma particles are of special interest to astrophysicists, because
they are not scattered by magnetic fields, so that their point of origin can be recon-
structed. When a gamma particle reaches Earth, it interferes with the atmosphere,
inducing a so called air shower of secondary particles. The air shower then emits
Cherenkov light in a cone, which can be seen by Cherenkov telescopes like the
MAGIC telescopes. The somewhat elliptical shape of the shower is imaged in the
telescopes’ cameras. A major issue one has to solve in the MAGIC experiment
is that not only gammas induce particle showers, but also many other particles,
summarized as hadrons. Thus, gamma and hadron particles have to be separated
through classification. Figure 1 shows camera images of the MAGIC I telescope
of a gamma and hadron event. As can be seen, the gamma event has a more regular
shape than the hadron. Note though that these images are almost ideal cases. Usually
the difference between the two types of particles cannot be seen that easily. Figure 1
also shows the raw data we have for the analysis. It consists of one light intensity
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Fig. 1 Camera images of a gamma event (left) and a hadron event (right) in the MAGIC
experiment

for each pixel in the camera. Additionally, but not shown here, a time information is
given for each pixel.

One of the major goals of the MAGIC experiment is the Unfolding of Energy
Spectra. Energy Spectra are basically histograms of the energy of observed gamma
particles, that is an estimate of the unknown energy distribution of a source. From
this distribution, characteristics of the source can be inferred. That means, what
we are aiming for is to estimate the number of gamma observations in each of the
histogram’s energy bins as precisely as possible, to get a good estimation of the true
energy distribution.

In order to achieve this goal one has to deal with some challenges.

Very Unfortunate Signal-Background Ratio

According to Weekes (2003) hadron events are around 100–1,000 times more
common than gamma events. This leads to a very undesirable signal-to-background
ratio for our classification. This high class imbalance makes classification of
gammas and hadrons much more difficult than it could be with a more desirable
ratio. Additionally, the true ratio is different for each source one is taking data from.
So we cannot use any a priori knowledge about the ratio to make classification
easier.

No Reliably Labeled Training Data

Another challenge one is facing in the analysis of MAGIC data is that we do not
have access to training data to train the random forest. That means we cannot draw
a sample from the joint distribution of gammas and hadrons with known labels.
What we can do is to take real hadronic background data and mix it with simulated
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gamma events to get training data. The difference of this to drawing from the joint
distribution is that we cannot estimate the true gamma-hadron-ratio from the mix, as
the number of gamma and hadron events in the mix is chosen manually. To estimate
the number of gamma events in real data, it is however necessary to be able to
assess this ratio. So we have to find a way to accomplish this.

Misclassification Costs

The third challenge is that we know that a misclassification of observations causes
a worse estimation of the number of gamma events. That means, there are some
misclassification costs, so that it is desirable to have a cost-sensitive classifier. A
random forest, which we use in the MAGIC analysis chain, can be made cost
sensitive in various ways. One is the thresholding method by Sheng and Ling
(2006). The idea of this method is to minimize the misclassification costs over the
classification threshold in the random forest’s output, that is the fraction of votes
of the trees. However, to apply this method it is of course necessary to know the
misclassification costs. So to make the classifier cost sensitive, we must first assess
the misclassification costs.

3 Threshold Optimization

An example of how we try to achieve a good estimation of the energy spectrum is
the optimization of the threshold in the outcome of the random forest.

Problem Setup

The problem we are facing is a binary classification problem. We have a random
vector of input variables X D .X1; : : : ; Xm/T and a binary classification variable Y .
X and Y have the joint distribution P.X; Y /. We neither know this distribution, nor
can we make any justifiable assumptions about it. Additionally, in our application
it is not possible to draw a sample from this distribution. We are, however, able
to draw samples from P(X) as well as the conditional distributions P.XjY D 0/

and P.XjY D 1/. Thus, we have independent realizations .x1; 0/; : : : ; .xn0�

; 0/ and
.xn0�

C1; 1/; : : : ; .xn1�

Cn0�

; 1/ from the respective distributions with sizes n0� and n1�,
respectively, and n D n0� C n1�.

Many classifiers can be interpreted as a function f W Rm ! Œ0; 1�. In the MAGIC
experiment we use random forests, but any classifier which can be regarded as such
a function f can be used. For a final classification into 0 and 1 we need a threshold
c, so that

g.xI c/ D
(

0; if f .x/ � c

1; if f .x/ > c
:
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Table 1 True and classified numbers of positives and negatives in a training sample (left), in a
sample of actual data (middle) and in Off data (right)

Classified Classified Classified

1 0
P

1 0
P

1 0
P

True 1 n11 n10 n1�

True 1 N11 N10 N1�

True 1 0 0 0
0 n01 n00 n0�

0 N01 N00 N0�

0 N
off
01 N

off
00 N

off
0�P

n
�1 n

�0 n
P

N
�1 N

�0 N
P

N
off
�1 N

off
�0 N off

We consider f to be given and only vary c in this paper. There are several
reasons why we consider f to be given. Among other reasons, we want to adapt
the thresholding method by Sheng and Ling (2006) and we cannot change the
MAGIC analysis chain too drastically, as all changes need approval of the MAGIC
collaboration.

In addition to the training data, we have a sample of actual data to be classified,
x�

1 ; : : : ; x�
N , for which the binary label is unknown. This data consists of N events

with N1� and N0� defined analogously to n1� and n0�, but unknown.
As we have stated above, we only have simulated gamma events as training data

and therefore need additional information to assess the gamma-hadron-ratio in the
real data. This additional information is given by Off data, which only consists of
N

off
0� hadron events. N

off
0� can be assumed to have the same distribution as N0�, so

the two sample sizes should be close to each other. In fact, a realization of N
off
0� is

an unbiased estimate for N0�. From this Off data we are able to estimate the true
gamma-hadron-ratio.

For a given threshold c we denote the numbers of observations in the training
data after the classification as nij; i; j 2 f1; 0g, where the first index indicates the
true class and the second index the class as which the event was classified. We can
display these numbers in a 2�2 table. With Nij; i; j 2 f1; 0g and N0j ; j 2 f1; 0g
defined analogously we get similar 2�2 tables for the actual data and the Off data,
see Table 1.

It is obvious that we do not know the numbers in the first two rows of the table
for the actual data as we do not know the true numbers of positives and negatives
N1� and N0�.

As we can see above, N1� is considered to be a random variable and our goal is to
estimate, or perhaps better predict, the unknown realization of N1�. The same applies
to N0�. That is why we consider all the following distributions to be conditional on
these values.

We additionally define the True Positive Rate (TPR), which is also known as
Recall or (signal) Efficiency, and the False Positive Rate (FPR) as

TPR D n11

n1�
(1)

and

FPR D n01

n0�
; (2)
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respectively. As we will see in the following section, these two values are important
in the estimation of the number of gamma events.

Estimating the Number of Gamma-Events

To estimate the number of gamma events, we first have a look at the following
estimator:

QN1� D 1

p11

�
N�1 � N

off
01

�
: (3)

where p11 is the (unknown) probability of classifying a gamma correctly. This
estimator could be used if we knew p11. It takes the difference between N�1 and
N

off
01 as an estimate for N11 and multiplies this with 1

p11
to compensate for the

classification error in the signal events.
Since we want to estimate the number of positives as precisely as possible we

want to assess the quality of the estimator QN1�. A standard measure of the quality
of an estimator is the mean square error (MSE). As in applications we usually have
fixed samples in which we want to estimate N1�, we calculate the MSE conditionally
on N1�, N0� and N

off
0� . Under the assumption that Ni1, N

off
01 and ni1, i 2 f1; 0g are

independent and (conditionally) follow binomial distributions, the conditional MSE
of QN1� can easily be calculated. It is:

MSE
� QN1�jN1�; N0�; N

off
0�

�
D p2

01

p2
11

�
N0� � N

off
0�

�2

C N1�
�

1

p11

� 1

�
C p01 � p2

01

p2
11

�
N0� C N

off
0�

� (4)

where p01 is the probability of classifying a hadron as gamma and p11 is the
probability of classifying a gamma correctly. As we do not know these values we
have to estimate them. Consistent estimators for these values are TPR and FPR [(1)
and (2)]. Using TPR as an estimator for p11 in (3) we get

ON1� D n1�
n11

�
N�1 � N

off
01

�
D 1

TPR

�
N�1 � N

off
01

�
: (5)

By estimating p11 with TPR and p01 with FPR in (4) we get the estimate

bMSE
� ON1�jN1�; N0�; N

off
0�

�
D FPR2

TPR2

�
N0� � N

off
0�

�2

C N1�
�

1

TPR
� 1

�
C FPR � FPR2

TPR2

�
N0� C N

off
0�

�
:

(6)



Gamma-Hadron-Separation in the MAGIC Experiment 121

As TPR and FPR are consistent estimators of p11 and p01 and the sample sizes n1�
and n0� are usually high (> 105), using the estimates instead of the true probabilities
should only lead to a marginal difference.

Algorithm

Equations (5) and (6) can be used in an iterative manner to find a discrimination
threshold, although N1� in (6) is unknown. To find a threshold we alternately
estimate N1� and calculate the threshold:

1. Set an initial value c for the threshold.
2. With this threshold estimate N1� using equation (5).
3. Compute a new threshold through minimizing equation (6) over all thresholds

using the estimates ON1� for N1� and N � ON1� for N0�.
4. If a stopping criterion is fulfilled, compute a final estimate of N1� and stop.

Otherwise go back to step 2.

Because negative estimates ON1� can lead to a negative estimate of the MSE, we set
negative estimates to 0. As a stopping criterion, we require that the change in the cut
from one iteration to the next is below 10�6. First experiences with the algorithm
show that the convergence is quite fast. The stopping criterion is usually reached in
less than ten iterations.

In the following we refer to this algorithm as the MSEmin method. This method
takes both into consideration: The problem of class imbalance and the minimization
of the MSE, that is, the overall misclassification costs. In the next section we
investigate the performance of this algorithm on simulated data and compare it to
other possible approaches.

4 Application

It is now of interest, if the MSEmin method proposed above means an improvement
over the currently used and other methods. As stated above, we want to estimate
the number of gamma events depending on the energy range. We therefore use
the methods on each of several energy bins individually by splitting the data sets
according to the (estimated) energy of the observations and using the methods on
each of these subsamples individually.

The method currently in use in the MAGIC experiment is to choose the threshold
manually so that the TPR is “high, but not too high”. Often TPR is set to
values between 0.4 and 0.9 (e.g. Aleksić et al. 2010) and the threshold is chosen
accordingly. For our comparison we look at values of 0.1–0.9 for TPR. We call
these methods Recall01, . . . , Recall09.

An approach to avoid energy binning is to fit a binary regression model to the
random forest output, with energy as the covariate. The fitted curve can then be
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regarded as discrimination threshold. In this paper we use a logistic regression
model. We fit the model to the training data using a standard Maximum Likelihood
approach to estimate the model coefficients.

As the proposed MSEmin method is quite general and not bound to optimizing
a fixed threshold, we use it in an additional approach by combining it with logistic
regression. Instead of minimizing the MSE over possible fixed thresholds, we search
for optimal parameters of the logistic regression curve, so that the MSE becomes
minimal. The procedure is the same as for the MSEmin method proposed in the
algorithm above, only that we exchange the threshold c with the two parameters of
the logistic regression, say ˇ0 and ˇ1. For initialization we use the ordinary ML-
estimates of the two parameters.

We use all these methods on 500 test samples and check which method gives
the best estimate for the number of gamma events. We focus here on the hardest
classification task with a gamma-hadron-ratio of 1:1000. For the comparison we
use the following data:

Test data: To represent actual data we simulate 500 samples for each gamma-
hadron-ratio 1:100, 1:200, . . . , 1:1000. The number of hadron-events in each
sample is drawn from a Poisson distribution with mean 150,000. The number of
gamma events is chosen to match the respective ratio.

Training data: We use 652,785 simulated gamma observations and 58,310 hadron
observations to represent the training data from which TPR and FPR are
calculated. Note that the ratio of gammas and hadrons in this data has no
influence on the outcome, as only TPR and FPR are calculated from this data.

Off data: For each test sample we draw a sample of hadron observations to
represent the Off data. The number of hadrons in each sample is drawn from
a Poisson distribution with mean 150,000.

The result can be seen in Fig. 2. As we can see, all methods seem to give
unbiased estimates. However, all Recall methods have comparably high variances
when estimating the true number of gamma events, with the best one being Recall01.
Our proposed method MSEmin leads to a smaller variance and therefore performs
better than all of them. The results of the logistic regression approach is quite similar
to the MSEmin method, but has a bit smaller errors. The best performance is given
by the combination of the methods MSEmin and logistic regression.

5 Conclusions and Outlook

MAGIC data has some distinctive features, which make the analysis of the data
difficult. We have illustrated that major challenges can be overcome when we focus
on the overall aim of the analysis, which is the estimation of the number of signal
events.

We introduced a method to choose an optimal classification threshold in the
outcome of a classifier, which can be regarded as a function mapping to the interval
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Fig. 2 Boxplots of the estimates in the 500 samples with a gamma-hadron-ratio of 1:1000. The
thick line in the middle of each box represents the median of the estimates. Between the upper and
lower boundaries of each box lie 50 % of the estimates. The whiskers range to the minimum and
maximum of all the data. The true number is marked by the long horizontal line

[0,1]. In this paper we used random forests, but any classifier providing such a
function can be used. The introduced method minimizes the MSE of the estimation
of the number of signal events. In our experiments this method performs better
than the method currently used. The method is also adaptable to combine it with
other methods. The combination with a logistic regression approach gave even better
results than the two methods on their own.
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