
Support Vector Machines on Large Data Sets:
Simple Parallel Approaches

Oliver Meyer, Bernd Bischl, and Claus Weihs

Abstract Support Vector Machines (SVMs) are well-known for their excellent
performance in the field of statistical classification. Still, the high computational cost
due to the cubic runtime complexity is problematic for larger data sets. To mitigate
this, Graf et al. (Adv. Neural Inf. Process. Syst. 17:521–528, 2005) proposed the
Cascade SVM. It is a simple, stepwise procedure, in which the SVM is iteratively
trained on subsets of the original data set and support vectors of resulting models
are combined to create new training sets. The general idea is to bound the size
of all considered training sets and therefore obtain a significant speedup. Another
relevant advantage is that this approach can easily be parallelized because a number
of independent models have to be fitted during each stage of the cascade. Initial
experiments show that even moderate parallelization can reduce the computation
time considerably, with only minor loss in accuracy. We compare the Cascade SVM
to the standard SVM and a simple parallel bagging method w.r.t. both classification
accuracy and training time. We also introduce a new stepwise bagging approach
that exploits parallelization in a better way than the Cascade SVM and contains an
adaptive stopping-time to select the number of stages for improved accuracy.

1 Introduction

Support vector machines (e.g., Schoelkopf and Smola 2002) are a very popular
supervised learning algorithm for both classification and regression due to their
flexibility and high predictive power. One major obstacle in their application
to larger data sets is that their runtime scales approximately cubically with the

O. Meyer (�) � B. Bischl � C. Weihs
Chair of Computational Statistics, Department of Statistics, TU Dortmund, Germany
e-mail: meyer@statistik.uni-dortmund.de; bischl@statistik.uni-dortmund.de;
weihs@statistik.uni-dortmund.de

M. Spiliopoulou et al. (eds.), Data Analysis, Machine Learning and Knowledge
Discovery, Studies in Classification, Data Analysis, and Knowledge Organization,
DOI 10.1007/978-3-319-01595-8__10,
© Springer International Publishing Switzerland 2014

87

mailto:meyer@statistik.uni-dortmund.de
mailto:bischl@statistik.uni-dortmund.de
mailto:weihs@statistik.uni-dortmund.de


88 O. Meyer et al.

number of observations in the training set. Combined with the fact that not one
but multiple model fits have to be performed due to the necessity of hyperparameter
tuning, their runtime often becomes prohibitively large beyond 100.000 or 1 million
observations. Many different approaches have been suggested to speed up training
time, among these online SVMs (e.g., the LASVM by Border et al. 2005, sam-
pling techniques and parallelization schemes. In this article we will evaluate two
quite simple methods of the latter kind. All of our considered approaches break
up the original data set into smaller parts and fit individual SVM models on these.
Because of the already mentioned cubical time-scaling of the SVM algorithm w.r.t.
the number of data points a substantial speed up should be expected.

We state two further reasons for our general approach: (a) Computational power
through multiple cores and multiple machines is often cheaply available these days.
(b) We would like to keep as much as possible from the original SVM algorithm
(use it as a building block in our parallelization scheme) in order to gain from future
improvements in this area. It is also of general interest for us, how far we can get
with such relatively simple approaches.

In the following sections we will cover the basic SVM theory, describe the
considered parallelization approaches, state our experimental setup, report the
results and then summarize them with additional remarks for future research.

2 Support Vector Machines

In supervised machine learning, data for classification tasks can be represented as a
number of observations .x1; y1/; .x2; y2/; : : : ; .xn; yn/ 2 X � Y, where the set X
defines the space in which our feature vectors xi live in (here assumed to be R

p as
we will mainly discuss the Gaussian kernel later on) and Y D f�1; 1g is the set of
binary class labels. The support vector machine (SVM) relies on two basic concepts:

(a) Regularized risk minimization: We want to fit a large margin classifier f W
R

p ! R with a low empirical regularized risk:

. Of ; Ob/ D arg inf
f 2H ;b2R jjf jj2H C C

nX

iD1

L.yi ; f .xi / C b/ : (1)

Here, b is the so-called bias term of the classifier and L is a loss function.
For classification with the SVM, we usually select the hinge loss L.y; t/ D
max.0; 1�yt/. This is a convex, upper surrogate loss for the 0/1-loss L.y; t/ D
I Œyt < 0�, which is of primary interest, but algorithmically intractable.

While the second term above (called the empirical risk) measures the
closeness of the predictions f .xi / C b to the true class labels �1 and C1,
respectively, by means of L, the first term jjf jj2H is called a regularizer, relates
to the maximization of the margin and penalizes “non-smooth” functions f .



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 89

The balance between these two terms is controlled by the hyperparameter C .
For an unknown observation x the class label is predicted by sign. Of .x/ C Ob/.

(b) Kernelization: In order to be able to solve non-linear classification problems
we “kernelize” (1) by introducing a kernel function k W X � X ! R ; which
measures the “similarity” of two observations. Formally, k is a symmetric,
positive semi-definite Mercer kernel. And H is now defined as the associated
reproducing kernel Hilbert space for k, our generalized inner product in H is
hx; x0iH D k.x; x0/ and jjxjj2 D hx; xiH By using this so-called “kernel trick”
we implicitly map our data into a usually higher-dimensional space, enabling us
to tackle nonlinear problems with essentially linear techniques. The Gaussian
kernel

k.xi ; xj / D exp
��� jjxi � xj jj22

�
(2)

is arguably the most important and popular kernel function and we have
therefore focused on it in all subsequent experiments. But note that all following
parallelization techniques are basically independent of this choice.

The optimization problem (1) is usually solved in its dual formulation and leads
to the following quadratic programming problem:

max
˛

nX

iD1

˛i � 1

2

nX

i;j D1

yi yj hxi ; xj iH

s.t. 0 � ˛ � C and yT ˛ D 0 ;

(3)

where ˛ denotes the vector of Lagrange multipliers.
As we will usually obtain a sparse solution due to the non-differentiability of our

hinge loss L, some ˛i will be zero, and the observations xi with ˛i > 0 shall be
called support vectors (SVs). They are the samples solely responsible for the shape
of our decision border f .x/ D 0. This is implied by the fact that if we retrain an
SVM on only the support vectors, we will arrive at exactly the same model as with
the full data set.

The SVM performance is quite sensitive to hyperparameter settings, e.g., the
settings of the complexity parameter C and the kernel parameter � for the Gaussian
kernel. Therefore, it is strongly recommended to perform hyperparameter tuning
before the final model fit. Often a grid search approach is used, where performance
is estimated by cross-validation, but more sophisticated methods become popular as
well (see e.g., Koch et al. 2012).

Multi-class problems are usually solved by either using a multi-class-to-binary
scheme (e.g., one-vs-one) or by directly changing the quadratic programming
problem in (3) to incorporate several classes.



90 O. Meyer et al.

3 Cascade Support Vector Machine

The Cascade SVM is a stepwise procedure that combines the results of multiple
regular support vector machines to create one final model. The main idea is to
iteratively reduce a data set to its crucial data points before the last step. This is
done by locating potential support vectors and removing all other samples from the
data. The method described here is essentially taken from the original paper by Graf
et al. (2005):

1. Partition the data into k disjoint subsets of preferably equal size.
2. Independently train an SVM on each of the data subsets.
3. Combine the SVs of, e.g., pairs or triples of SVMs to create new subsets.
4. Repeat steps 2 and 3 for some time.
5. Train an SVM on all SVs that were finally obtained in step 4.

This algorithm (depicted in the right-hand side of Fig. 1) will be called Cascade
SVM or simply cascade. In the original paper, Graf et al. also considered the
possibility of multiple runs through the cascade for each data set. After finishing
a run through the cascade the subsets for the first step of the next run are created
by combining the remaining SVs of the final model with each subset from the first
step of the first run. For speed reasons we always only perform one run through the
cascade.

4 Bagging-Like Support Vector Machines

Another generic and well-known concept in machine learning is bagging. Its main
advantage is that derived methods are usually accurate and very easy to parallelize.
Chawla et al. (2003) introduced and analyzed a simple variant, which proved to
perform well on large data sets for decision trees and neural networks. Unlike
in traditional bagging algorithms, the original data set is randomly split into n

disjoint (and not overlapping) subsamples, which all contain 1
n

-th of the data. Then
a classification model is trained on each of these subsets. Classification of new data
is done by majority voting with ties being broken randomly. Hence, using SVMs
means that the training of this bagging-like method is equivalent to the first step
of the Cascade SVM. By comparing these two methods we can analyze if the
additional steps of the cascade (and the invested runtime) improves the accuracy
of the procedure.

Figure 1 shows the structures of a 4-2 Cascade SVM (C-4-2)—with 4 being the
number of subsets in the first step and 2 representing the number of models being
combined after every single step—and a bagged SVM using three bags.



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 91

Fig. 1 Schemes for bagged SVM (left) and cascade (right)

5 Stepwise Bagging

It can easily be seen that the possibility to parallelize the Cascade SVM decreases
in every step. This leads to the problem that an increasing number of cores will
stay idle during the later stages, and in the last stage only one core can be used.
We will also observe in the following experimental results that both algorithms—
cascade and bagging—will perform suboptimally in some cases either with regard
to runtime or accuracy. We therefore made the following changes to the described
cascade algorithm in order to maximally use the number of available cores and to
generally improve the algorithm by combining the advantages of both methods:

1. In the first stage, the data is partitioned in k subsets as usual.
2. At beginning of each subsequent stage in the cascade, all remaining vectors are

combined into one set and then randomly divided into k overlapping subsets.
The size of the subsets is fixed to the size of the subsets of the first stage, but
not larger than 2/3 of the current data, if the former cannot be done. Overlapping
occurs as vectors are drawn with replacement.

3. In the final stage, a bagged SVM is created instead of a single model.
4. As it is problematic to determine the number of stages of this approach we try

to infer the optimal stopping time: At the beginning of the training process we
hold out 5 % of the training data as an internal validation set. After each stage
we measure the error of the bagged model of k SVMs from the current stage on
this validation data. If the accuracy compared to the previous stage decreases, we
stop the process and return the bagged model of the previous stage.

5. We have noticed that in some cases of a preliminary version of this stepwise
bagging algorithm the performance degraded when the support vectors contained
many wrongly classified examples. This happens in situations with high Bayes
error/label noise, because all misclassified examples automatically become
support vectors and will therefore always be contained in the training set for
the next stage. As this seems somewhat counterintuitive, we have opted not to



92 O. Meyer et al.

select the support vectors in each stage, but instead only the SVs on and within
the margin. This has the additional advantage that the set of relevant observations
is reduced even further.

6 Experimental Setup

We evaluate the mentioned parallelization schemes on seven large data sets.1 Their
respective names and characteristics are listed in Table 1. Some of the data sets are
multi-class, but as we want to focus on the analysis of the basic SVM algorithm,
which at least in its usual from can only handle two-class problems, we have
transformed the multi-class problems into binary ones. The transformation is stated
in Table 1 as well. We have also eliminated every feature from every data set which
was either constant or for which more than n�1000 samples shared the same feature
value.

As we are mainly interested in analyzing the possible speedup of the training
algorithm we have taken a practical approach w.r.t. the hyperparameter tuning in
this article: For all data sets we have randomly sampled 10 % of all observations
for tuning and then performed a usual grid search for C 2 2�5; 2�3; : : : ; 215 and
� 2 2�15; 2�13; : : : ; 23, estimating the misclassification error by fivefold cross-
validation. The whole procedure was repeated five times, for every point .C; �/

the average misclassification rate was calculated, and the optimal configuration was
selected. In case of ties, a random one was sampled from the optimal candidates.
Table 1 displays the thereby obtained parameterizations and these have been used in
all subsequent experiments.

Table 1 Data sets, data characteristics, used hyperparameters, proportional size of smallest class
and multi-class binarization

Data set Size Features C � Smaller class Binarization

covertype 581,012 46 8 0.500 0.488 Class 2 vs. rest
cod 429,030 9 32 0.125 0.333
ijcnn1 191,681 22 32 3.13e�2 0.096
miniboone 130,064 50 32768 7.81e�3 0.281
acoustic 98,528 50 8 3.13e�2 0.500 Class 3 vs. rest
mnist 70,000 478 32 1.95e�3 0.492 Even vs. odd
connect 67,557 94 512 4.88e�4 0.342 Class 1 vs. rest

To compare the speedups of the different parallelization methods, we have
run the following algorithms: The basic SVM, the Cascade SVM with C-27-3

1Can be obtained either from the LIBSVM web page or the UCI repository.



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 93

(27-9-3-1 SVMs), C-27-27 (27-1 SVMs), C-9-3 (9-3-1 SVMs) and C-9-9 (9-1
SVMs), bagging with nine bags (B-9) and the stepwise bagging approach also
with nine subsets (SWB-9). For the basic SVM algorithm we have used the
implementation provided in the kernlab R package by Karatzoglou et al. (2004).
For all parallel methods we have used nine cores. For all algorithms we have
repeatedly (ten times) split the data into a 3/4 part for training (with the already
mentioned hyperparameters) and 1/4 for testing. In all cases we have measured the
misclassification rate on the test set and the time in seconds that the whole training
process lasted.

7 Results

The results of our experiments are displayed in Fig. 2 and can loosely be separated
into three groups. For the data sets acoustic, cod and miniboone, the bagged SVMs
lead to a better or at least equally good accuracy as the Cascade SVMs in only
a fraction of its training time. Since the bagged SVM is nothing else but the
first step of a cascade, this means that the subsequent steps of the cascade do
not increase or even decrease the quality of the prediction. This does not mean
that the Cascade SVM leads to bad results on all of these sets. In the case of
miniboone for example it performs nearly as good as the classic SVM in just about
4,000 s compared to 65,000. But bagging does the same in only 350 s. On these
data sets the stepwise bagging procedure usually leads to an accuracy that is equal
to those of the standard bagging SVM and needs at worst as much time as the
cascade.

The second group consists of connect, covertype and mnist. On these datasets
the Cascade SVM leads to results that are as accurate as those from the classic
SVM but only needs about half of the training time. The bagged SVM on the other
hand again performs several times faster but cannot achieve the same accuracy as
the other methods. So in these cases, at the cost of an at least ten times higher
training time, the further steps of the cascade actually do increase the accuracy.
The stepwise bagging SVM produces results that lie between the cascade and the
standard bagging SVMs in both accuracy and training time. The actual boost in
accuracy varies from data set to data set.

For the last dataset ijcnn1, all three methods perform very fast (cascade 15,
bagging 25, stepwise bagging 14 times faster) but none of them achieves an accuracy
that is as good as the classic SVM. Again the cascade outperforms bagging w.r.t
accuracy while SWB lies between the other two methods.



94 O. Meyer et al.

l

ll

ll

llll
ll

l

l

l

ll

ll

l

l

ll

l

l

l

l

l

l l
l

l

l
l

l

l

l

l

l

l

ll
ll

acousticBinary, mmce acousticBinary, time.train

cod, mmce cod, time.train

connectBinary, mmce connectBinary, time.train

covertypeBinary, mmce covertypeBinary, time.train

ijcnn1, mmce ijcnn1, time.train

miniboone, mmce miniboone, time.train

mnistBinary, mmce mnistBinary, time.train

0.22
0.24
0.26
0.28

2.0
2.5
3.0
3.5

0.05
0.10
0.15

2.0
2.5
3.0
3.5

0.125
0.130
0.135
0.140
0.145
0.150

2.0
2.5
3.0
3.5

0.07
0.08
0.09
0.10

3.0
3.5
4.0

0.008
0.010
0.012
0.014
0.016

1.5
2.0
2.5

0.065
0.070
0.075
0.080
0.085
0.090

2.5
3.0
3.5
4.0
4.5

0.010
0.015
0.020

2.0
2.5
3.0
3.5

S
V

M

B
−9

C
−9−9

C
−9−3

C
−27−27

C
−27−3

S
W

B
−9

S
V

M

B
−9

C
−9−9

C
−9−3

C
−27−27

C
−27−3

S
W

B
−9

SVM version

m
ea

n 
m

is
cl

as
si

fic
at

io
n 

er
ro

r

Fig. 2 Misclassification rates and training times (the latter on log10 scale) for normal and parallel
SVMs

8 Conclusion and Outlook

We have analyzed simple parallelization schemes for parallel SVMs, namely a
bagging-like approach, the Cascade SVM and a new combination of the two. On
the considered data sets we could often observe a drastic reduction in training
time through the parallelization with only minor losses in accuracy. Especially our
new combined approach showed promising results. But still none of the considered
algorithms shows optimal results across all considered data sets, and more work
has to be done in this regard. One of the major missing features of our method
is an efficient procedure for hyperparameter tuning that does not require many
evaluations on large subsets of the training data. We have already begun preliminary
experiments for this and will continue our research in this direction.



Support Vector Machines on Large Data Sets: Simple Parallel Approaches 95

References

Border, A., Ertekin, S., Weston, J., & Bottou, L. (2005). Fast kernel classifiers with online and
active learning. Journal of Machine Learning Research, 6, 1579–1619.

Chawla, N. V., Moore, T. E., Jr., Hall, L. O., Bowyer, K. W., Kegelmeyer, P., & Springer, C. (2003).
Distributed learning with bagging-like performance. Pattern Recognition Letter, 24, 455–471.

Graf, H. P., Cosatto, E., Bottou, L., Durdanovic, I., & Vapnik, V. (2005). Parallel support
vector machines: The cascade SVM. Advances in Neural Information Processing Systems, 17,
521–528.

Karatzoglou, A., Smola, A., Hornik, K., & Zeileis, A. (2004). kernlab - An S4 package for kernel
methods in R. Journal of Statistical Software, 11(9), 1–20.

Koch, P., Bischl, B., Flasch, O., Bartz-Beilstein, T., & Konen, W. (2012). On the tuning and
evolution of support vector kernels. Evolutionary Intelligence, 5, 153–170.

Schoelkopf, B., & Smola, A. J. (2002). Learning with kernels: Support vector machines,
regularization, optimization, and beyond. Cambridge: MIT.


	Support Vector Machines on Large Data Sets: Simple Parallel Approaches
	1 Introduction
	2 Support Vector Machines
	3 Cascade Support Vector Machine
	4 Bagging-Like Support Vector Machines
	5 Stepwise Bagging
	6 Experimental Setup
	7 Results
	8 Conclusion and Outlook
	References


