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Causal Inference in Medicine via Mendelian

Randomization

Timothy M. Frayling and Benjamin F. Voight

Abstract The central aim of preventative care is to manage or avoid entirely life-

threatening and costly disease endpoints. Success in this broad goal requires

researchers and clinicians to correctly distinguish between biomarkers that cause
disease from those that are simply correlated with outcome. The randomized

controlled trial is a scientifically valid approach to assess causal relationships, but

is time-consuming and expensive, and success is not a guaranteed endpoint.

Recently, a statistical approach has been translated from the econometrics litera-

ture, a strategy which utilizes genetic information identified from human subjects as

“instruments” to generate an assessment of causality between biomarker and

disease. This methodology, dubbed Mendelian Randomization, is directly analo-

gous to that of the controlled trial, circumventing the issues of confounding and

reverse causation that precludes conventional epidemiological studies from making

causal assessments. Owing to the growing dissection of genetically heritable traits

in the literature, Mendelian Randomization has emerged as a high-value tool for

efficient translation of genetics research to the bedside. In the following chapter, we

present the framework of Mendelian Randomization and motivation for causal

assessment, the analogy of Mendelian Randomization to the randomized controlled

trial, discuss general considerations for study design and assumptions of the

approach, and exemplify case studies from the literature of applications of MR to

type 2 diabetes and other clinical endpoints.
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24.1 Overview and Scope

The central aim of preventative care is to manage at an early stage—or avoid

entirely—life-threatening and costly disease endpoints, like type 2 diabetes (T2D),

coronary heart disease (CHD), or stroke. Precise and early diagnosis of pre-disease

states with subsequent monitoring is a critical first step in this process, achieved

through predictive strategies to identify high-risk patient populations. Once high-

risk groups have been identified, a second step applies an intervention to a modi-

fiable exposure (e.g., diet, exercise, lifestyle, etc.) or by other means (e.g., phar-

macologic) at early stages, to ameliorate or avoid significant morbidity in later

stages.

For success to be achieved, knowledge of the biological, physiological, and

molecular factors that cause disease is required, as well as possession of a suitable,
therapeutically beneficial intervention for the established cause. Thus, two key

questions must be addressed: First, which exposures are causal for—as distinct

from those merely correlated with—a disease state? Second, does an intervention

for that exposure modify disease risk in a beneficial way? Addressing these two

questions are active areas of research, and in human subjects this is achieved

through randomized controlled trials, an expensive and time-consuming experi-

ment to undertake.

Recently, an approach analogous to the study design of the controlled trial but

that utilizes genetic information from human subjects to make causal inference has

received much deserved attention (Katan 1986; Smith and Ebrahim 2003; Sheehan

et al. 2008). Termed Mendelian Randomization (MR), the approach is intrinsically

translational, owing to the increasing abundance of genetic information in large

numbers of individuals; the increasing study of genetically heritable, but modifi-

able, biomarkers prognostic for disease endpoints; and the relative efficiency of the

approach to evaluate causality, compared to a controlled trial. As such, we posit that

MR studies will be an important tactic deployed in an overall strategy to compre-

hensively understand the biology of human disease, one that maximizes the pace in

which new beneficial interventions successfully reach the bedside.

In this chapter, we present the framework of MR first with a discussion of the

limits of epidemiology and motivation for causal assessment, the model underlying

causal inference, and an analogy of MR to the randomized controlled trial (24.2).

Then, we discuss general considerations for study design and assumptions of the

approach (24.3). Finally, we exemplify case studies from the literature of applica-

tions of MR to T2D and other clinical endpoints (24.4). Awareness and under-

standing of the MR design, approach, assumptions, and methodology will be a

useful keystone for translational scientists keen on pursuing interventional studies

in humans in the near future.
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24.2 Causal Inference: Rationale, Models, and Mendelian

Randomization

To achieve the promise of preventive care, one must begin with knowledge of

exposures that are predictive for the disease endpoint in question. These factors are
generally obtained from epidemiological studies, whose primary purpose is to

measure the correlation between an exposure and hazard to disease over time.

These observations are typically made from longitudinal studies of population

cohorts such as the Framingham Heart Study (Splansky et al. 2007) and numerous

studies beyond this are ongoing. Classic prognostic biomarkers obtained from such

studies include (not limited to) blood pressure and cholesterol levels and risk to

coronary heart disease (Kannel et al. 1964), C-reactive protein for CHD (Danesh

et al. 1998), as well as many others. For research primarily interested in predicting

the hazard of disease, any biomarkers, variables, and environmental exposures are

relevant.

24.2.1 Correlation Does Not Imply Causation: Limits
of Epidemiology

The underlying hypothesis tested in prospective cohort studies is that an identified

marker is correlated, or associated, with hazard to a disease endpoint. An inappro-

priate conclusion from a significant correlation—particularly those with prior

biological significance—is that the exposure also causes disease. Unfortunately,

the causation assumption is a common one. Most (if not all) epidemiological

monitoring studies do not provide a hypothesis test of causality, because most

studies lack a formal intervention required for causality to be tested.

But why does one require an intervention to provide determination of causality?

First off, determination of the direction of the associated variables—which is the

cause and which is the effect—may be challenging (Fig. 24.1). In a prospective

cohort study where a risk factor is measured years before disease onset, one might

argue that reverse causation from the disease or disease treatment might be con-

trolled. However, for many diseases, and particularly metabolic diseases, the

disease process may have started many years before the disease is diagnosed,

even as early as age 10 in the case of raised lipid levels (Whincup et al. 2002). In

another example, increasing serum levels of an inflammatory biomarker may

appear to precede a coronary event and, thus, correctly predict such events. But

instead, unfavorable conditions in arterial walls (e.g., coronary plaques or calcifi-

cation) could instead produce such an inflammatory marker, as damage to the

coronary artery progresses over time. Specific inflammatory markers may not

actually be the underlying cause of such events, even though such markers are

substantially prognostic. A classic example of such confusion with an inflammatory

marker is the much-studied association between raised high-sensitivity C-reactive
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protein (hsCRP) and CHD. MR using genetic variants that alter circulating hsCRP

provided robust evidence, in several large studies, that hsCRP is not causal for CHD

(Casas et al. 2006, CCGC et al. 2011).

Second, epidemiological studies may not fully capture—or control for—all

exposures related to the endpoint of interest (Fig. 24.1). This is problematic only

if such exposures are also associated with the marker of study. In this situation, our

inference is confounded by that unmeasured factor. For metabolic diseases like type

2 diabetes, many variables are often correlated with the disease, e.g., body mass

index (BMI). Changes in BMI result in many perturbations in serum biomarkers

and anthropometric traits; but correcting for BMI may not fully account for all of

these additional effects. For example, correcting for BMI does not fully correct for

adiposity and, in particular, visceral adiposity including fatty liver that is associated

with and likely the cause of many adverse metabolic features. Without precise

control of the direction of the prognostic marker, as well as addressing potential

unmeasured factors that may confound, we are limited in our abilities to correctly

interpret the manner in which an exposure impacts an important clinical outcome.

While epidemiology yields a large, baseline collection of biomarkers or expo-

sures that are worth testing, correlational observation does not constitute etiologic
evidence. In some cases, intervention based on epidemiologic evidence alone was

successful. That said, we should temper these examples with the larger number of

cases where causality was strongly refuted after controlled trial (Tatsioni

et al. 2007).

24.2.2 Approach to Causal Inference: The Randomized
Clinical Trial

In order to directly test for causality, any approach needs to address the issues of

reverse causality and confounding as far as possible within feasible design param-

eters. Once established, the general framework in which these factors are

Exposure Disease

Confounding 
Factor

Reverse 
Causation

Fig. 24.1 The challenges in performing causal inference. Imagine one wants to determine if a

specific exposure is causally related to a disease state (black arrow). Epidemiologic studies often

cannot address the issue of reverse causation, where the disease leads to a change in the exposure,
or confounding, where a second factor which is correlated to the exposure is related to the disease
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controlled—and causality evaluated—is the randomized controlled trial (RCT). For

the purpose of exposition, imagine a pharmacologic therapeutic which lowers a

particular biomarker, in which previous epidemiological study has correlated

reproducibly with hazard to a disease endpoint (Fig. 24.2a). Here, we are interested

in testing the hypothesis that lowering the biomarker through drug intervention

reduces hazard to the disease endpoint of study. Patients are collected and random-

ized for the intervention who are disease-free at baseline, with biomarker and

outcomes over time measured and compared between groups—this is the general

design for trials used to determine clinical benefit (Gray et al. 2006). This design

controls for reverse causality, as the intervention occurs before measurement of the

outcome. This design also controls for confounding, with the assumption that the

groups (intervention and placebo) are indistinguishable from one another for

measured (as well as potentially unmeasured) factors.

The barriers to activate this line of experimental inquiry are daunting. First, the

approach relies upon possession a suitable, proven intervention for the biomarker of

interest, and such an intervention might not actually be readily available. For drug

intervention trials, a great deal of time and expense are required for any drug to

enter this stage of testing (i.e., Phase I and II trials). However, even with an

intervention in hand, this trial takes years to deploy and a great deal of cost to

complete, in order to obtain a final result. The low-throughput and increasingly

Subjects

Randomization

Intervention Control

Biomarker 
Lower

Biomarker 
Higher

Event
Rate Lower

Event
Rate Higher

Mendelian 
Randomization

Randomized 
Control Trial

A) B)

Genotype aa Genotype AA

Biomarker 
Lower

Biomarker 
Higher

Event
Rate Lower

Event
Rate Higher

Random allocation 
of Alleles at meiosis

Population

Fig. 24.2 Mendelian randomization is “nature’s clinical trial.” (a) A summarized depiction of a

placebo-based clinical trial to evaluate efficacy of a therapeutic agent. A population is divided at

random into two groups that are disease-free at the start of the study, which are indistinguishable

from each other, except that one group is administered a drug which reduces a biomarker and the

other is given a placebo. The prediction is that dosage of drug lowers the biomarker, which in turn

lowers hazard to the endpoint if the biomarker is causally related to the endpoint. (b) A summa-

rized version of the Mendelian Randomization design. A genetic variant is selected with a strong

impact on the biomarker of interest. As a result of meiosis, a sampled population is “naturally”

divided into two groups: carriers and noncarriers of the gene. These two groups are equivalent to

having experienced reduced or elevated levels of the biomarker—analogous to having received a

“weak drug” since birth. Association between variant and endpoint rejects the null hypothesis that

the biomarker is not causally related to the disease endpoint
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abundant prognostic biomarkers that await formal causal evaluation now represent

a significant barrier to progress in translational science.

24.2.3 The Case for Mendelian Randomization

MR studies will not replace RCTs, but rather serve as a complement to them.

Beyond the technical feasibility of the MR study design in addressing reverse

causality and nongenetic confounding (Fig. 24.3), application of the MR design

offers other advantages. Perhaps the main advantage is cost and pace of discovery:

multiple phases of RCT take years and millions of dollars to complete, and success

is not guaranteed at the end of the trial (Arrowsmith and Miller 2013). Approaches

that can help prioritize trials most likely to succeed would be of tremendous benefit

in terms of cost saving and development of safe and effective therapeutics. Fur-

thermore, high-throughput technologies developed in the last 10 years have

increased the rate of assay and characterization of human phenotypes and molecular

markers in genetic and epidemiologic studies. Such growth makes RCT on all such

discoveries infeasible; thus, screening tools like MR can help to separate prognostic

from high-priority biomarkers with etiologic support from human subjects, where

the latter are moved into RCT.

MR studies are also uniquely powerful beyond the designs of the RCT. First, MR

has the advantage that it usually tests the effects of lifelong exposure to a subtle

change in a potential risk factor. In contrast, RCTs test the effects of much more

acute, short-term, and stronger interventions. Second, MR also provides a strategy

for scientific advance, whereby in a standard RCT, it might be unethical to provide

such an intervention, for example, evaluating the causal relationship between

LDL-C CHD

Gene B

PCSK9

Gene C

Confounding 
Factor

Fig. 24.3 The Mendelian randomization design in graphical terms. Here, we depict that a gene

(in this case, PCSK9) influences the exposure (LDL-C). As a result, a polymorphism that strongly

influences LDL-C which segregates randomly in the population can be used to test the hypothesis

that LDL-C causally impacts risk to CHD (black arrow). Other variants which may associate with

confounding factors, which impact the endpoint beyond LDL-C, violate the assumptions of MR

and are not considered for analysis (gray arrows). Individually weak variants may be used in a

combined score, if assumptions for each variant are met
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developmental stunting and infection to strains of Plasmodium known to cause life-

threatening malaria (one is ethically obligated to treat the infection!).

Owing to the efficiency of design, availability of data, and utility as a screening

tool, MR is a powerful experimental approach, one which can help to clarify cases

where an RCT has not been successful or to motivate new RCTs where evidence is

altogether unclear.

24.2.4 The Analogy of MR to Randomized Clinical Trial

Despite their differences, the RCT is a useful analogy for the Mendelian Random-

ization design (Fig. 24.2b). Intuitively, MR is “nature’s randomized trial”

(Thanassoulis and O’Donnell 2009) whereby individuals in the population have

been randomly assigned into carrier and noncarrier genotype groups, at meiosis.

Ideally, these two groups are indistinguishable from one another, except for geno-

type at the given locus of interest. The genetic variant that is used to stratify groups

is carefully selected, such that carriage of a specific allele modifies the level of the

trait exposure one wants to test a causal role for to the endpoint. For example,

carriage of loss-of-function alleles at the proprotein convertase subtilisin/kexin type

9 (PCSK9) gene results in lower LDL cholesterol (LDL-C) compared to noncar-

riers, and these two genotype groups are otherwise indistinguishable from one

another. Thus, a loss-of-function genotype would facilitate a formal test of the

hypothesis that LDL-C is causality related to CHD or stroke (Fig. 24.3) and would

make the prediction that carriage of PCSK9 loss-of-function would protect against

hazard to these endpoints, via LDL-C lowering (Cohen et al. 2006). Intuitively, one

can conceptualize allele carriage (dosage) as analogous to the intervention in a

typical RCT, as a weak drug perturbation administered over a lifetime. And because

genotypes are almost always going to be independent of nongenetic confounding

and are unmodified by disease processes, reverse causality is controlled for

appropriately.

24.3 Considerations and Approaches for Mendelian

Randomization

Given the increasing abundance of genetic information available today and the

power of the approach, it is perhaps unsurprising that the number of MR publica-

tions has skyrocketed, with over 550 citations after 2006, compared to <30 before

hand. MR studies can be initiated in many ways, varying in their approach to study

design and selection of genetic variants, which may come with additional required

assumptions. We turn our attention next to these details.
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24.3.1 Study Design Considerations for Mendelian
Randomization

A primary study design for MR can be initiated in a large prospective cohort, where

each variable of interest is measured directly in all participants. These measures

include the monitored endpoint, the intermediate trait or biomarker, genetic vari-

ables which influence the tested intermediate trait, and any additional confounding

variables (Fig. 24.3). This design has the advantage of the availability of individ-

ualized genotypes and phenotypes and, thus, allows the most direct control over the

analysis and interpretation. The main limitation of this design is low statistical

power owing to small sample sizes. The probability of obtaining a meaningfully

interpretable result is proportional to the number of participants surveyed, partic-

ularly the number who have suffered an endpoint. Prospective cohort studies

monitor thousands of individuals, of which only hundreds of whom progress to a

disease condition. One important question to determine is if observed correlation

between trait and endpoint—estimated from epidemiologic studies—is the same as

a causal estimate through a genetic instrument. While it is plausible to combine

evidence across multiple studies through meta-analysis, the numbers of disease

endpoints may still not be sufficient to generate a conclusive result for even this

straightforward comparison.

To overcome this limitation, a class of MR statistical approaches have been

developed that take advantage of “summary-level” association data. Summary-

level data are distinct from individual-level genotype or phenotype data, in that

the estimates of effects between SNP and traits that are used for the MR study are

pooled across a large number of individuals (often hundreds of thousands), though

no individual relationships are identifiable from such data. Summary level data are

available for a large number of traits and disease endpoints, with traits that may

potentially confound. This "two-stage" approach generates a substantial boost in

statistical power to estimate causal relationships, but at the costs of some control

over the testing procedure. Importantly, the statistical test for causality is valid for

this data type (Burgess and Thompson 2013), though the standard assumptions still

must be met.

24.3.2 Development of Genetic Instruments for Mendelian
Randomization

The most easily interpretable MR analyses begin with a single genetic instrument,

one with a profound impact on the intermediate trait of interest. Often, these are

coding mutations that result in partial or complete loss of function, i.e., see

examples described below in PCSK9 or LIPG for LDL and HDL cholesterol,

respectively (Cohen et al. 2006; Voight et al. 2012). While it is advantageous to

select instruments where the mechanism between genotype and phenotype has been

506 T.M. Frayling and B.F. Voight



established, this is not strictly required for MR to provide a meaningful result.

Individual genetic instruments that stratify populations into two groups (carriers

vs. noncarriers) allow for a straightforward evaluation of effects, particularly

confounding associations, and fit readily into the controlled trial analogy.

Unfortunately, individual genetic instruments that have a strong impact on the

intermediate trait are the exception, rather than the rule. Often, genetic variants with

a strong trait effect tend to be rare in the population. Catalogs of low-frequency

human genetic variation, also tending toward rare, have only been made available

recently (1000 Genomes Project Consortium et al. 2012), and much work remains

to relate this spectrum of variation to human phenotypes. That said, even if rare

variants and their association to disease were known, owing to their frequency, the

statistical power to make causal inference would still be challenging; one might still

need to combine evidence across multiple variants into a single statistical test to

make appropriate inference.

It should also be noted that an individual, specific genetic instrument tests only a

single mechanism and trait/disease pathway. In some cases, this might be precisely

what one requires. In other cases, a stronger argument can be made through

examination of multiple gene targets and mechanisms of action (Voight

et al. 2012). Consequently, to address both of these concerns, statistical approaches

that aggregate multiple genetic instruments into a single assessment of causality

have been developed (Johnson 2012; Burgess and Thompson 2013), resulting in a

valid assessment if certain assumptions are satisfied. While this approach is typi-

cally based on summary-level data, it can also be applied in the individual-level

data types, via a genetic risk score, a variable that linearly combines allele dosage

with effect over a collection of genetic variants (Voight et al. 2012; Johnson 2012).

24.3.3 Assumptions Underlying Mendelian Randomization

For all MR study designs, there are three primary assumptions that must be held in

order for the test to be valid (Smith and Ebrahim 2003; Hernán and Robins 2006;

Sheehan et al. 2008):

1. Confounding. The genetic instrument is not related to another, causal variable

which has a measurable effect on the endpoint (confounder). A confounding

variable could be another trait or other factor that associated with the trait, SNP,

and/or endpoint measurements. This is often referred to as pleiotropy in the

genetics literature—meaning a genetic variant influences two or more indepen-

dent traits.

2. Potency. The genetic instrument selected must have a strong and reliable impact

on the intermediate trait tested.

3. Exclusivity. The effect on the endpoint must occur through the intermediate trait

of interest, with no additional impact outside the two variables measured. Put
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another way, the genetic instrument selected should not have a direct effect on
the endpoint above and beyond the effect through the intermediate trait.

In typical designs, genetic instruments are selected to have a strong reproducible

effect on the trait of interest. Confounding is typically addressed by measuring

additional associations with variables that may potentially confound. For example,

if using a genetic instrument to test the causal relationship between raised tri-

glycerides and coronary artery disease, we would want to know that the genetic

variant is not also associated with raised blood pressure or increased BMI. In

addition, instruments must also not be subject to genetic confounding, from unac-

counted for differences in allele frequency due to population ancestry. Those

instruments that have no obvious or reproducible association with confounders

are subsequently advanced into further MR analysis (Fig. 24.3).

Variants identified by genetic studies of common variation are individually

weak, which may raise a concern if the potency assumption is upheld. To address

this concern, multiple genetic instruments are often combined together to perform a

specific test. If multiple instruments are utilized, there are additional required

assumptions (Johnson 2012):

1. Uncorrelated. Each variant included in the genetic score should be mutually

uncorrelated, i.e., should not be in strong linkage disequilibrium with one

another (inherited on the same ancestral chromosomal segment).

2. Equanimity. Individual variants included should not contribute excessively rel-

ative to other included SNPs.

3. Additivity. For some tests, the dosage of alleles at each variant should influence

the intermediate trait in an additive manner.

While this approach can address the potency assumption, using multiple variants

still requires care to construct valid tests. The use of multiple variants increases the

likelihood of pleiotropy confounding the results—that the accumulated genetic

instrument will be related to additional traits. Furthermore, situations could arise

where individual variants analyzed separately are more powerful or useful than

collecting multiple instruments and evaluating collectively. Overall, the challenges

and benefits of using multiple instruments have not been fully described, though

research along these lines continues actively.

24.4 Highlighted Applications of Mendelian

Randomization

With a broad overview of the approach and its underlying assumptions, we now

turn to specific examples of MR studies from the literature, describing the question,

approach, inferences made, and residual challenges. While here, our focus is on

cardiovascular and T2D phenotypes, we point curious readers to additional
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examples of MR studies outside of these traits which exemplify the approach (Chen

et al. 2008; Pfister et al. 2011).

24.4.1 Serum Plasma Cholesterol Levels and Heart Disease

Epidemiological studies have demonstrated reproducible association with serum

levels of cholesterol and risk of CHD (Kannel et al. 1964). Specifically, elevation of

LDL-C is associated with increased risk to CHD, while elevation of serum high-

density lipoprotein cholesterol (HDL-C) is associated with protection against

atherosclerosis. With the accumulated body of knowledge of genetic factors related

to LDL-C and HDL-C (Teslovich et al. 2010), the stage was set to apply the

framework of MR to both of these traits. For LDL-C, in one MR study of nine

polymorphisms strongly associated with LDL-C levels (Ference et al. 2012), they

reported a causal 54.5 % estimated risk reduction to CHD for each mmol/l lower

LDL-C, consistent with another MR study (Voight et al. 2012). Collectively, these

results are consistent with randomized controlled trials for LDL-C lowering ther-

apies, which have been successful at reducing cardiovascular events (Baigent

et al. 2005).

In contrast, evidence for a causal role for HDL-C is quite uncertain. Controlled

trials for drug interventions (e.g., torcetrapib, dalcetrapib, niacin, and others) that

raise plasma HDL-C over a range of mechanisms have not met with success in

lowering rates of myocardial infarction (MI). To address the hypothesis that

HDL-C is causally related to MI, one study applied a two-pronged MR approach

(Voight et al. 2012). First, the authors took advantage of a low-frequency coding

mutation in endothelial lipase, LIPG N396S, strongly associated with higher

HDL-C (0.14 mmol/L), but not associated with other MI-related confounding

factors. Association analysis in prospective cohorts, combined with data from

case/control studies of MI, found no association (P¼ 0.85). Second, the authors

collected a set of 14 genetic variants associated exclusively with HDL-C and

performed a combined variant MR analysis. In contrast to LDL-C, the HDL-C

instrument was not causally associated with risk to MI (P¼ 0.63). A conservative

conclusion from this data is that some genetic mechanisms that elevate plasma

HDL-C do not seem to confer protection against MI. These observations challenge

the simple hypothesis that HDL-C elevation—by any means—will systematically

lower risk to MI.

24.4.2 The Controversy of hsCRP

Subclinical inflammation is associated with many metabolic diseases and higher

levels of adverse metabolic traits including raised cholesterol, fatty liver markers,

and insulin resistance (Brunner et al. 2008). Furthermore, animal studies provide

evidence that some inflammatory markers may causally influence obesity
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(Bachmaier et al. 1999). Studies in humans have identified a number of genetic

variants associated with several markers for inflammation, including interleukin

6 signaling, C-reactive protein, soluble intercellular adhesion molecule-1, and

P-selectin (Raman et al. 2013). One recent MR study has provided evidence that

the interleukin 6 signaling pathway is causally linked to heart disease (IL6R MR

Consortium et al. 2012). These observations strongly motivate translation work in

humans, that is, do markers of inflammation, particularly hsCRP levels, cause
metabolic disease or adverse metabolic conditions?

Mendelian Randomization studies have now provided a very strong case that

increased levels of subclinical (non-acute phase) C-reactive protein do not causally

increase the risk of heart disease (Casas et al. 2006, CCGC et al. 2011). Known to

be a marker of heart disease and other traits, considerable research efforts have been

made to understand its role as both a biomarker and causal factor. Fortunately, the

presence of common genetic variants that alter circulating CRP levels, in the gene

that encodes the C-reactive protein, provided an exquisite, early example of the

power of the MR approach (Timpson et al. 2005). Additional MR studies have

examined the role of hsCRP in a range of metabolic diseases. These variants are not

associated with any metabolic traits, and the instrumental variable analyses using

them provide no evidence of a causal relationship between higher hsCRP and

metabolic disease and traits (Brunner et al. 2008).

24.4.3 Serum Urate, Heart Disease, and Type 2 Diabetes

An end product of purine metabolism is uric acid, which circulates in blood serum

as the anion urate. Patients with gout have shown elevated levels of serum urate,

and consistent with a causal role in gout, randomized clinical trials with urate

lowering therapies have demonstrated these drugs as effective therapeutics (Tayar

et al. 2012). Epidemiologic studies have also correlated serum urate levels with a

number of cardiometabolic traits, including blood pressure, lipids, as well as

endpoint disease (Hozawa et al. 2006; Holme et al. 2009; Kim et al. 2010). A

number of genetic variants that result in population level variation in serum urate

levels have been identified (K€ottgen et al. 2013). Predictably, these variants are also
risk factors for gout. With such genetic factors in hand, several studies have looked

for association at markers related to serum urate levels with heart disease (Stark

et al. 2009; Yang et al. 2010). Altogether, these studies indicate no causal relation-

ship. A particularly strong variant (rs12398742) at the SLC2A9 locus is associated

with a profound change in serum urate levels (0.37 mg/dl). However, this variant is

not associated with T2D (odds ratio (OR)¼ 0.99, P¼ 0.52). This contrasts to the

effect expected from epidemiology (expected OR¼ 1.06, given a 0.37 mg/dl

change in serum urate), which have demonstrated a positive correlation between

urate levels and T2D (Kodama et al. 2009). These data strongly de-emphasize the

need for a randomized clinical trial for urate versus CHD and T2D endpoints. But

additional work to evaluate other endpoints—including kidney disease, stroke, or
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heart failure, with MR analyses that utilize multiple genetic variants for urate

levels—is certainly possible and source of active investigation.

24.4.4 Adiponectin and Insulin Resistance

MR studies have recently provided much needed insight into the relationship

between insulin resistance and adiponectin. Adiponectin is a large, multimeric,

circulating protein produced and secreted exclusively from adipose tissue (Stefan

and Stumvoll 2002). Adiponectin is strongly and inversely correlated with insulin

resistance (Stefan and Stumvoll 2002). Studies in mice, including the adipose

tissue-specific knockout of the adiponectin receptors, has led many to suggest

adiponectin is an important mediator of insulin resistance (Okada-Iwabu

et al. 2013). In human subjects, however, the evidence is less clear cut. For

example, individuals with severe mutations that cause a primary disorder of insulin

resistance have reduced adiponectin levels, providing evidence that altered

adiponectin levels are a consequence, not cause of insulin resistance (Semple

et al. 2008). Several studies have identified common genetic variants within the

gene that encodes adiponectin (ADIPOQ) as associated with circulating levels. A

combination of four variants at this locus explain approximately 4 % of the

population variance in adiponectin levels, more than sufficient to meet the potency
assumption required for MR studies (Yaghootkar et al. 2013). Furthermore, because

these variants are situated in and around the gene that encodes the protein of

interest, the chances that they have pleiotropic effects on other phenotypes—

which are not a consequence of altered adiponectin levels—are greatly reduced

compared to variants elsewhere in the genome. Consequently, these genetic vari-

ants provide a great tool to evaluate the causal consequences of altered adiponectin

levels on important clinical endpoints and are excellent proof of principle examples

of MR. A recent MR study (Yaghootkar et al. 2013) of more than 29,000 individ-

uals with both adiponectin and fasting insulin measurements found no causal

evidence between lower adiponectin and higher insulin resistance (P¼ 0.60), or

with T2D (P¼ 0.77). While studies of proportionally fewer samples have sugges-

tive evidence to the contrary (Gao et al. 2013), the overall current weight of

evidence appears to be that in humans, altered adiponectin levels are more likely

to be a consequence rather than cause of insulin resistance in the general

population.
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24.4.5 Circulating Sex Hormone-Binding Globulin and Type
2 Diabetes

Common genetic variants in the gene that encodes an important carrier protein—

sex hormone-binding globulin (SHBG)—provide another example of an excellent

instrument for measuring the causal effects of the SHBG protein. SHBG binds to

and transports testosterone and, to a lesser extent, estrogen, around the circulation

to its target tissues (Petra 1991). Produced by the liver, it is inversely correlated

with insulin resistance (Ding et al. 2006), and as with adiponectin, higher levels are

associated with a healthy metabolic profile and with lower risk of T2D. In contrast

to adiponectin, most people had assumed that lower SHBG levels were merely a

consequence of insulin resistance and T2D, not a cause. However, two independent

studies have recently shown that common variants in the SHBG gene are associated

with T2D (Ding et al. 2009; Perry et al. 2010). MR effect estimates (OR per SHBG

raising allele: 0.94, 95 % confidence interval (CI): 0.91–0.97) are consistent to the

extent expected given the association between the gene variants and circulating

SHBG and the phenotypic association between SHBG and T2D as observed from

epidemiologic studies (expected OR 0.92, 95 % CI: 0.88–0.96) (Perry et al. 2010).

While further studies are needed to establish the mechanism behind this association,

MR studies have changed conventional thinking about the role of SHBG in

diabetes.

24.4.6 FTO: A Good Instrument for Evaluating Adiposity
to Related Traits and Endpoints?

In 2007, several groups described the first reproducible association between a

common genetic variant and normal variation in BMI. An allele in an intron of

the “fatso” gene, FTO, was associated with a 0.5 kg/m2 increase in BMI. Carriers of

two copies of the BMI-increasing allele (approximately 16 % of Europeans) were

1 kg/m2 larger than individuals who carried zero copies of this allele. This finding

potentially offered a superb opportunity for Mendelian Randomization studies.

Epidemiologic data has shown that variation in BMI is correlated with multiple

metabolic traits and disease endpoints, including susceptibility to T2D, CHD, some

cancers, hypertension, raised circulating inflammatory markers, lower adiponectin,

and SHBG. The difficulty in dissecting cause and effect in obesity is further

illustrated by the fact that more than half of all human genes are differentially

expressed in the adipose tissue of larger individuals compared to smaller individ-

uals, presumably, mostly as a consequence rather than cause of obesity (Emilsson

et al. 2008). Furthermore, many of these measures are correlated with each other

independently of BMI. Multiple, phenotypic correlations between many (and

potentially confounding) traits make understanding the causal factors that link

obesity to increased risk of disease difficult, at best. A genetic variant that
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effectively randomizes people to higher or lower BMI could be extremely useful for

disentangling some of these relationships.

To this end, several studies have performed MR experiments using FTO as an

instrument for altered BMI (Fall et al. 2013; Holmes et al. 2014). These studies

have suggested that higher BMI is causally related to susceptibility to T2D, heart

failure, and several circulating biomarkers of public health importance including

lower vitamin D levels (Vimaleswaran et al. 2013). However, some scientists have

raised concerns that we must be cautious when using FTO as an instrument for

BMI. First of all BMI is used as a surrogate of adiposity, but more importantly, little

is known about how FTO alters BMI—we are still uncertain as to whether or not the

genetic variant targets FTO itself or a nearby gene, and even if FTO is the target, we

do not know exactly how it alters BMI. These are legitimate concerns, but several

lines of evidence suggest that the variant in FTO can help improve our knowledge

of causal relationships between adiposity and other traits. First, DEXA scans in

children show that it is specifically associated with an alteration in fat mass, not

increased skeletal or muscle mass (Frayling et al. 2007). Second, most studies show

that the associations between the FTO variant and related traits are entirely consis-

tent with that expected given the association between the FTO variant and BMI and

the association between BMI and the “outcome” related trait. For example, FTO
variants are associated with raised triglycerides and insulin levels (a marker of

insulin resistance) to a greater extent than blood pressure and cholesterol levels—in

keeping with the stronger phenotypic associations between BMI and triglycerides

and insulin compared to BMI and blood pressure and cholesterol (Freathy

et al. 2008).

24.4.7 Triglycerides and Fasting Insulin, Glucose, or Type
2 Diabetes

Elevated circulating triglyceride levels are strongly correlated with a poor meta-

bolic state, including insulin resistance, higher levels of fasting glucose, and overt

type 2 diabetes. Observational data suggest that elevated circulating triglycerides

could be causal for this state, for example, through accumulation in adipose or liver

resulting in lipotoxicity or impairment of hepatic insulin signaling resulting in

insulin resistance (Trauner et al. 2010). Because genome-wide studies had accu-

mulated associations with plasma triglycerides along with lipid levels, a Mendelian

Randomization study was once again possible. De Silva et al. (2011) identified ten

genetic variants strongly associated with triglyceride levels (P< 2 � 10�72) and,

when aggregated in a score, resulted in a 0.59 SD change in triglyceride levels

(upper vs. lower quintile). But in contrast to observational epidemiology (the

Go-DARTS study), where a 1-SD increase in log10-triglyceride level was associ-

ated with elevated fasting glucose levels, HOMA-B, fasting insulin, HOMA-IR,

and type 2 diabetes, the genetic risk score was not associated with any of these
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outcomes in diabetic or in control populations. Furthermore, the score was also not

associated with frank type 2 diabetes (De Silva et al. 2011). While additional

clarifying work is required, particularly to consider confounding in the context of

this analysis, this raises significant questions about the expected efficacy of triglyc-

eride control in prediabetic populations as a strategy to control or prevent type

2 diabetes onset.

24.5 Closing Summary

The simple idea underlying Mendelian Randomization is that a genetic variant,

strongly related to a biomarker of interest, by the transitive property facilitates an

appropriate framework to test the hypothesis that the given biomarker is causal for
the endpoint of interest. Instrumental variable analysis—a procedure utilized in

great detail in the field of econometrics—provides the precise framework by which

this test can be formally implemented. Today, the wide abundance of human

genetics data across a great range of phenotypes provides a unique opportunity to

test a range of hypotheses that, until today, could not have been evaluated rigor-

ously by the clinical research community, owing to the prohibitive and time-

consuming costs of randomized controlled trials. For example, a potential applica-

tion of great relevance to the T2D and CHD field, as yet untested, is whether

hyperglycemia is pathogenic for T2D, given the controversy of conflicting RCTs in

T1D and T2D.

Excitingly, genetic information across human subjects—hundreds of thousands

of individuals—is accruing at a rapid pace. This growth is following in step with

separate advances in sequencing technologies, which is enabling the characteriza-

tion of less-common genetic variation and association studies with human disease.

This next-generation of data sets will facilitate the application of a great deal of

useful and important MR studies to understand—and develop targeted therapies

for—disease endpoints. While the initial model and framework for MR is a solid

advance for the field, a great deal of methodological work still remains to improve

the approach to widen applicability, to take advantage of these upcoming data sets.

That said, MR studies have been, and will continue to be, an essential tool in the

arsenal of translational studies in human disease.
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