
Chapter 19

From Association to Function: MTNR1B

Amélie Bonnefond and Valeriya Lyssenko

Abstract The discovery that variants in the melatonin receptor 2 (MTNR1B) gene
were associated with glucose levels, insulin secretion, and risk for type 2 diabetes

(T2D) in genome-wide association studies (GWAS) reinforced the previously

suggested link between glucose homeostasis and circadian rhythmicity. Diurnal

secretion of melatonin has reported to be altered in people with diabetes and rodent

models of T2D. The proposed underlying mechanisms by which altered melatonin

signaling could predispose to progression to T2D and gestational diabetes mellitus

(GDM) involve altered expression of MTNR1B in pancreatic beta cells, leading to

impaired insulin secretion, consequent increased fasting glucose concentrations,

and eventually overt T2D. Thus blocking the inhibition of insulin secretion may

have potential clinical implications, and these effects could be more pronounced in

individuals carrying risk genotypes. Finally, given that melatonin could emerge as

an attractive treatment for a variety of conditions including pregnancies associated

with GDM, preeclampsia, and intrauterine growth retardation, pharmacogenetic

studies are warranted to determine treatment response and side effects according to

genotype.
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19.1 MTNR1B as a Primary Genome-Wide Association

Signal for Fasting Plasma Glucose Levels

Type 2 diabetes (T2D) is a complex genetic metabolic disorder which has devel-

oped into a major health problem responsible for early morbidities (including

severe micro- and/or macro-vascular complications) and mortality, with a burden

increasing globally, particularly in developing countries (World Health Organiza-

tion 2013). T2D results from progressive dysfunction of insulin secretion from

pancreatic beta cells on the background of resistance to insulin action (American

Diabetes Association 2014a). Since 2007, exponential progress has been made in

identifying genetic determinants of T2D through the use of cutting-edge DNA

microarrays allowing for large-scale genome-wide association studies (GWAS)

and their meta-analyses. After analyzing T2D as a binary disorder in case–control

GWAS, a logical next step was to investigate new variants contributing to the

variation of metabolic quantitative traits linked to the pathophysiological processes

leading to T2D, as this may provide new insights into the etiological mechanisms of

this highly complex disorder. Among such quantitative traits, fasting plasma

glucose (FPG) levels were of major interest as hyperglycemia in the fasting state

remains one of the criteria used by the American Diabetes Association (ADA) to

define T2D (American Diabetes Association 2014b). Furthermore, elevated FPG

levels within the range specified by the ADA was known to be an independent risk

factor for T2D (Tirosh et al. 2005) and for cardiovascular and all-cause mortality

(Barr et al. 2007). Of note, approximately one-third of the variation of FPG was

shown to be genetic (Watanabe et al. 1999; Pilia et al. 2006).

In 2008, via GWAS, two independent groups identified a new genome-wide

association signal with FPG levels closed to G6PC2 and ABCB11 genes, in

nondiabetic European participants (Bouatia-Naji et al. 2008; Chen et al. 2008).

Of note, the single nucleotide polymorphism (SNP; rs560887) in G6PC2 which

significantly contributed to variation of FPG levels was not associated with T2D

risk (Bouatia-Naji et al. 2008) (see Chap. 17).

One year later, using larger sample sizes in GWAS meta-analyses which mark-

edly increased the statistical power, a new locus associated with FPG levels was

identified in MTNR1B (encoding melatonin receptor 2 [MT2]) in nondiabetic

European individuals (Bouatia-Naji et al. 2009; Prokopenko et al. 2009). The

association signal was subsequently refined by genotyping eight SNPs in strong

linkage disequilibrium (r2> 0.70) within the association block (Sparsø et al. 2009).

This study showed that rs10830963, located in the middle of the unique MTNR1B
intron, carried most of the effect on FPG variation (Sparsø et al. 2009). Of note,

rs10830963 was the strongest SNP associated with FPG levels in the first and most

recent publications by the Meta-Analyses of Glucose and Insulin-related traits

Consortium (MAGIC) in 36,610 and 133,010 nondiabetic individuals of

European descent, respectively (Fig. 19.1) (Prokopenko et al. 2009; Scott

et al. 2012). The MTNR1B locus was shown to be robustly associated with

FPG levels in nondiabetic individuals from other various ethnicities including
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African-Americans, Koreans, Japanese, Sri Lankans, Han Chinese, and Indian

Asians (R€onn et al. 2009; Chambers et al. 2009; Liu et al. 2010; Takeuchi

et al. 2010; Kan et al. 2010; Ramos et al. 2011; Kim et al. 2011; Rasmussen-

Torvik et al. 2012), suggesting a putatively causal role of the MTNR1B gene in the

association with FPG levels. Furthermore, studies in adolescents and children

suggested that variants in MTNR1B most likely influence FPG levels early from

childhood onward (Barker et al. 2011).

19.2 Effect of MTNR1B Genetic Variants on T2D Risk

In addition to the variation of FPG levels, the MTNR1B locus was found to be

significantly associated with T2D risk (Bouatia-Naji et al. 2009; Lyssenko

et al. 2009; Prokopenko et al. 2009), demonstrating that studies of continuous

glycemic phenotypes in nondiabetic individuals can successfully complement the

genetic analyses of T2D as a dichotomous trait. Dupuis et al. demonstrated a

genome-wide significant association between MTNR1B SNP rs10830963 and

T2D risk (Dupuis et al. 2010), which was confirmed by the Diabetes Genetics

Replication And Meta-analysis (DIAGRAM) consortium (Voight et al. 2010). The

association between MTNR1B locus and T2D risk was also reported in individuals

Fig. 19.1 Regional plots showing the association between SNPs and FPG levels at the MTNR1B
locus in the lastly published MAGIC study performed in 133,010 nondiabetic individuals of

European descent (Scott et al. 2012)
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from various ethnicities including Han Chinese, Japanese, and Indian Asians (R€onn
et al. 2009; Chambers et al. 2009; Kan et al. 2010; Ling et al. 2011; Ohshige

et al. 2011; Zhao et al. 2014), even though evidence of heterogeneity due to

ethnicity was found in two meta-analyses: the association seemed to be stronger

in Europeans, compared with East or South Asians (Xia et al. 2012; Wang

et al. 2013).

The causal link between theMTNR1B locus and T2D risk has been demonstrated

by a large-scale exon resequencing study ofMTNR1B in combination with system-

atic functional investigations of each identified non-synonymous variant

(Bonnefond et al. 2012). The sequencing of MTNR1B coding exons in 7632

Europeans, including 2186 individuals with T2D, identified 40 non-synonymous

variants of which 36 variants were very rare (with a minor allele frequency below

0.1 %) and significantly associated with T2D, while the four frequent or rare

non-synonymous variants (with a minor allele frequency above 1 %) did not

contribute to T2D risk (Bonnefond et al. 2012). After functional investigations

(including proper surface expression study, melatonin binding study, and ERK or

Gi pathway study of each mutant), Bonnefond et al. demonstrated that 13 partial- or

total-loss-of-function very rare variants in combination yield more than fivefold

increased risk for T2D, while the 23 neutral very rare variants did not exhibit any

effect on T2D (Bonnefond et al. 2012). This study established a firm functional link

between the MTNR1B gene and T2D risk, highlighting that the discovery of

functional coding mutations in a previously associated locus can help establish a

specific gene as the molecular cause of the association signal.

19.3 Effect of MTNR1B Variants on Early Phase Insulin

Secretion

The mechanisms by which variation at MTNR1B raises FPG and T2D risk were

explored by the Diabetes Genetics Initiative GWAS for insulin secretion (Lyssenko

et al. 2009). Lyssenko et al. demonstrated that the glucose-raising allele of the

MTNR1B rs10830963 was associated with impaired early insulin release to both

oral (insulinogenic and disposition index) and intravenous (first phase insulin

response) glucose loads (Lyssenko et al. 2009). In addition, the risk allele carriers

showed deterioration in insulin secretion over time as compared to non-risk allele

carriers (Lyssenko et al. 2009). The same study showed that in the risk allele

carriers, elevated FPG levels and reduced phase insulin response to glucose were

translated into 11 % increased risk for future T2D in two large prospective studies

of more than 18,000 individuals, of whom 2201 developed T2D during a mean

follow-up period of 23.5 years (Lyssenko et al. 2009). Very recently, a largest to

date GWAS meta-analyses for dynamic measurements of insulin secretion during

an oral glucose tolerance test (OGTT) in more than 10,000 nondiabetic individuals

confirmed MTNR1B rs10830963 as the strongest signal for first phase insulin
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secretion (Prokopenko et al. 2014). Importantly, in the Diabetes Prevention Pro-

gram, the association of MTNR1B rs10830963 with impaired early insulin release

persisted at 1 year despite adjustment for the baseline trait, suggesting a progressive

deterioration of the effect at this locus (Florez et al. 2012).

Notably, Lyssenko et al. demonstrated that MTNR1B mRNA was expressed in

human pancreatic islets and more specifically that nondiabetic individuals carrying

the risk allele and patients with T2D display increased expression of the receptor in

pancreatic islets (Lyssenko et al. 2009). These observations were further confirmed

by a large gene-expression analysis of human pancreatic islets (Taneera et al. 2012).

Exogenously administered melatonin has been shown to inhibit insulin secretion in

rodents (Bailey et al. 1974). In line with these observations, Lyssenko et al. showed

that melatonin inhibited insulin release in response to glucose in INS-1 rat beta cells

(Lyssenko et al. 2009).

Of note, MTNR1B rs10830963 significantly increased the risk of isolated

impaired fasting glucose but not the risk of isolated impaired glucose tolerance

(Sparsø et al. 2009), and the same SNP was shown to impact the rate of progression

from normal fasting glucose to impaired fasting glucose, but not the rate of

progression from impaired fasting glucose to T2D (Walford et al. 2012). In the

GLACIER study which is a population-based prospective cohort study from north-

ern Sweden, MTNR1B rs10830963 was reported to increase risk of developing

impaired fasting glucose during 10-year follow-up but to be protective of worsening

glucose tolerance (Renstr€om et al. 2011), which confirmed a strong effect of

MTNR1B locus on impaired fasting glucose, independently of impaired glucose

tolerance measured 2 h after a meal.

In addition to its effects on insulin secretion and isolated impaired fasting

glucose, variants in the MTNR1B gene were also reported to be associated with

hepatic insulin resistance (Sparsø et al. 2009; Vangipurapu et al. 2011). Notably,

the risk carriers of MTNR1B were a clear outlier when known hyperbolic relation-

ship between insulin secretion and the degree of insulin sensitivity was plotted,

showing a strong insulin-resistant phenotype for the given impairment in insulin

secretion (Jonsson et al. 2013). An association with insulin sensitivity could involve

effects of MTNR1B on energy expenditure. In this vein, it has been recently

demonstrated that MTNR1B variant could modify effects of dietary fat intake on

changes in energy expenditure during a 2-year period (Mirzaei et al. 2014). Addi-

tionally, this could involve insular-incretin axis asMTNR1B variants were shown to

be associated with incretin-stimulated insulin secretion (Simonis-Bik et al. 2010).
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19.4 Effect of MTNR1B Variants on the Risk

for Gestational Diabetes Mellitus

In addition to the risk of T2D, there is compelling robust evidence for an association

of the MTNR1B locus with gestational diabetes mellitus (GDM) in several ethnic

populations (Kwak et al. 2012; Vlassi et al. 2012; Huopio et al. 2013). A GWAS in

a Korean population consisting of 468 women with GDM and 1242 nondiabetic

women reported a variant near MTNR1B, SNP rs10830962, to be associated with

GDM at a genome-wide significance level (Kwak et al. 2012). In a smaller study

from Greece, SNP rs10830963 also conferred association with GDM (Vlassi

et al. 2012), while in one study of Chinese pregnant women, several variants in

the MTNR1B gene were associated with elevated glucose concentrations (Liao

et al. 2012). An independent Chinese study demonstrated reduced beta-cell function

as measured with HOMA-B index (Wang et al. 2011). Recently, a large Finnish

study showed that the risk genotypes of the MTNR1B rs10830963 were associated

with GDM risk, increased fasting plasma glucose, and reduced insulin secretion

(Huopio et al. 2013). Notably, melatonin crosses the human placenta easily and

rapidly (Okatani et al. 1998) and has been suggested to play an important role

during pregnancy through its antioxidant properties but also as a regulator of

normal growth and development of fetal organs (Reiter et al. 2014). The underlying

mechanisms were attributed to the melatonin effect on the epigenetic modifications

of genes implicated in placental development, fetal growth, and intrauterine pro-

gramming (Korkmaz et al. 2012). However, there have been no any studies thus far

on whether variants in the melatonin receptor(s) could contribute to these effects.

19.5 Melatonin Secretion and Physiological Functions

Melatonin (N-acetyl-5-methoxytryptamine), also known as the hormone of dark-

ness, is an indoleamine synthesized from the amino acid tryptophan via serotonin.

Tryptophan is converted by 5-tryptophan hydroxylase to 5-hydroxytryptophan,

which then in the pineal gland is converted through hydroxylation and decarbox-

ylation into serotonin. Serotonin is subsequently acetylated by arylalkylamine-N-

acetyltransferase (AANAT, also called serotonin N-acetyltransferase), the rate-

limiting step in melatonin biosynthesis, and, finally, through a methylation reaction

converted into melatonin by acetylserotonin O-methyltransferase (ASMT)

(Axelrod and Weissbach 1960). Melatonin is a key mediator of the entrainment

of biological rhythms in the body, a “zeitgeber” (German: “time giver”), in which

biological rhythmic secretion was initially linked to regulation of seasonal repro-

duction in photoperiodic species (Hoffman and Reiter 1965).

The hormone was traditionally thought to emanate from rhythmicity

pinealocytes located in the pineal gland. This endocrine organ is located in the

midline of the brain, just above the posterior commissure at the dorsal edge of the
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third ventricle, and receives a rich supply of adrenergic innervation from the

superior cervical ganglion. However, melatonin remains detectable after pinealec-

tomy in some species (Axelrod and Weissbach 1960), leading to the realization that

the hormone is produced in neuroendocrine cells of both central (pineal gland,

retina, Harderian glands) and peripheral origins, comprising enterochromaffin cells

dispersed in a number of organs, e.g., the gastrointestinal tract, pancreas, and many

more (Kvetnoy et al. 1997). Melatonin is also produced by numerous non-endocrine

cells, e.g., immune cells. Thus, while substantial local biosynthesis also occurs in

retina and in some other organs, e.g., the gastrointestinal tract, the diurnal rhythm of

the circulating melatonin in blood exclusively accounts for its secretion from the

pineal gland.

Light has a dual effect on the production of melatonin. First, it entrains the

circadian clock, making melatonin production occur during the night. The duration

of melatonin production varies with time over the year, because the onset and offset

of melatonin secretion are controlled by the clock and can move closer (summer) or

apart (winter) (Illnerová and Sumová 1997). In fact, in the absence of light, and in

blind people, the melatonin rhythm persists following a circadian rhythm and cycle

length governed by the suprachiasmatic nucleus (SCN) (Klerman et al. 2002). Light

at night can also have an acute suppressive effect on melatonin production. In

rodents, light at night decreases melatonin within minutes, while RNA levels

remain high for hours. Circulating levels of melatonin peak at 80–100 pg/ml in

the middle of the night and drop to 10–20 pg/ml during day time; the half-life of the

hormone in the circulation is less than 20 min.

The hormone exerts its effects both through activation of its receptors (melatonin

receptor 1 [MT1], MT2, and the orphan GPR50 receptor that can regulate the

function of MT1 and MT2 through receptor heterodimerization) (Boutin

et al. 2005; Jockers et al. 2008) but also via receptor-independent mechanisms

such as its capacity to act as an antioxidant (Hardeland 2005). These effects can

either be through the circulating levels of the hormone or in a more autocrine/

paracrine fashion near target tissues (Kvetnoy et al. 1997; Peschke 2008).

Melatonin is widely known to affect the CNS, where it alters hormone release

and phase shifts neuronal firing both in the 24 h rhythm and seasonal changes

(Dubocovich and Markowska 2005). The phase-advancing effects of melatonin are

taken advantage of treating insomnia or limiting jet lag when traveling across time

zones (Arendt et al. 1997; Zhdanova and Wurtman 1997; Arendt 2006). Recently,

the effects of melatonin in synergizing maternal and fetal circadian rhythms during

pregnancy, the development of normal placentation, and its potential beneficial

properties in the treatment of compromised pregnancies associated with GDM,

preeclampsia, and intrauterine growth retardation have been emphasized (Reiter

et al. 2014).

In the periphery, melatonin promotes vasoconstriction through MT1 and vaso-

dilation through MT2 (Masana et al. 2002). In the adrenal cortex, it lowers cortisol

secretion, an action shared with insulin (Weitzman et al. 1971; Peschke 2008).

Interestingly, human adipocytes, a major target tissue for insulin, express MT2 and

have been shown to reduce the expression of the insulin-dependent glucose
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transporter GLUT4 after melatonin stimulation (Brydon et al. 2001). In muscle

cells, melatonin stimulates glucose uptake by phosphorylation of the insulin recep-

tor substrate-1 (IRS-1) through suggested MT2 signaling (Ha et al. 2006). MT2 is

also expressed in hepatocytes, and melatonin injections elevated glucose release

from the liver in mice (Poon et al. 2001). Melatonin receptors are also widely

expressed in the gut and could thus have an effect on incretin hormones like glucose

insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) (Chen

et al. 2011).

19.6 Melatonin Receptors: A Putative Role in Pancreatic

Islets?

The genetic studies described above have strongly suggested a putatively direct role

of MTNR1B variants in the dysfunction of insulin secretion from pancreatic beta

cells, leading to T2D. The discovery that genetic variants in theMTNR1B gene were

associated with FPG levels, insulin secretion, and risk for T2D reinforced the

previously suggested link between glucose homeostasis and circadian rhythmicity.

It has been previously observed that plasma insulin levels exhibit a circadian

rhythm and that disturbance in the oscillation affects plasma glucose and hormone

levels (Scheer et al. 2009). Diurnal secretion of melatonin has reported to be altered

in patients and rodent models of T2D and that expression of the melatonin receptor

is increased (Peschke et al. 2006b). Importantly, it has recently been demonstrated

that lower nocturnal melatonin secretion was independently associated with a

higher risk of developing T2D in nondiabetic women (McMullan et al. 2013).

However, the specific role of the melatonin receptors in these observations remains

an open question. How did cell studies and animal models indicate a putative role of

melatonin receptors in pancreatic islets and T2D?

19.6.1 Melatonin Receptors Are G-Protein-Coupled
Receptors (GPCRs)

Melatonin receptors belong to the GPCR superfamily which represents the largest

family of cell membrane receptors in humans with approximately 800 GPCRs

(>1 % of the total protein-coding human genome) (Jassal et al. 2010). GPCRs

are characterized by seven alpha-helical transmembrane domains which are

connected by intra- and extracellular loops of various lengths. They sense extra-

cellular signals (including photons, metabolites, amino acids, lipids, odor mole-

cules, hormones, neurotransmitters, peptides) and activate various intracellular

signaling pathways, through the interaction with G proteins (including Gs proteins

which activate the adenylyl cyclase pathway, Gi/o proteins which inhibit this
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pathway, Gq/11 proteins which activate the phospholipase C pathway, and G12/13

proteins which are involved in the activation of small G proteins and cytoskeleton

rearrangements) and/or beta-arrestin (Kristiansen 2004; Venkatakrishnan

et al. 2013).

Melatonin receptors constitute a subfamily of rhodopsin-like (type A or 1)

GPCRs which include three members: MT1, MT2, and the orphan GPR50 receptor

(Jockers et al. 2008; Jassal et al. 2010). They share specific short amino acid

sequences and approximately 55 % overall sequence homology (Reppert

et al. 1994, 1995). Melatonin receptors have been neglected for a long time by

academic research due to the lack of specific pharmacological tools, apparently

mild phenotypes of knockout mice, and poorly defined functions. Notably, rodent

animal models are limited for the study of the link between melatonin and metab-

olism, as rodents are nocturnal animals (therefore the circadian rhythms of food

intake and metabolism are shifted by 12 h with respect to humans, despite the

nocturnal secretion of melatonin by humans and rodents). Furthermore, some

mouse strains used in laboratory are known to exhibit very low or even undetectable

circulating melatonin levels due to impaired melatonin production within the pineal

gland (Kennaway et al. 2002). Therefore, in the studies of melatonin and its

receptors, the extrapolation of results obtained from rodents to humans must be

done cautiously (Karamitri et al. 2013).

19.6.2 Distribution of MT1 and MT2 in Humans

Melatonin receptors are widely expressed throughout the human body. Notably,

bothMTNR1A andMTNR1B are expressed in the brain (in particular the SCNwhich

is the master circadian pacemaker, the hippocampus, and the thalamus) and in the

retina (Reppert et al. 1995; Jockers et al. 2008). Interestingly, insulin-target tissues

express MTNR1B: adipocytes, muscle cells, hepatocytes, and the gut. Furthermore,

both MTNR1A mRNA and MTNR1B mRNA have been detected in human islets

(Ramracheya et al. 2008). The same study showed that MTNR1A mRNA was

primarily detected in pancreatic alpha cells and the level of MTNR1B mRNA was

globally much lower than the level of MTNR1A mRNA in human islets

(Ramracheya et al. 2008). This last result was not confirmed by Lyssenko et al.,

who did not detect any differences in the levels of MT1 and MT2 in human islets

(Lyssenko et al. 2009). MT2 was predominantly observed in human pancreatic beta

cells, while MT1 was mostly detected in a population of peripherally located beta

cells (Lyssenko et al. 2009).
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19.6.3 Melatonin Receptor Signaling in Pancreatic Beta
Cells

Most of the existing literature (based on rodent models) has shown that melatonin

inhibits insulin secretion from pancreatic beta cells (Peschke 2008). However, in

human pancreatic islets, a study demonstrated that melatonin stimulates insulin

secretion, without affecting cAMP levels (Ramracheya et al. 2008).

Melatonin receptors can actually modulate insulin secretion from pancreatic

beta cells via different signaling pathways which can lead to opposite effects

(Fig. 19.2). First, activated melatonin receptors coupled with Gαi proteins inhibit
cAMP production (via adenylyl cyclase [AC]) and activation of cAMP-dependent

protein kinase A (PKA) and therefore decrease insulin granules exocytosis

(Fig. 19.2) (Kemp et al. 2002; Peschke et al. 2002, 2006a). Furthermore, activated

MT2 receptor coupled with Gαi proteins can decrease cGMP levels (via guanylate

cyclase), leading to reduced insulin secretion (Fig. 19.2) (Stumpf et al. 2008, 2009).

In addition, activated melatonin receptors coupled with Gαq/11 enhance phospholi-
pase C (PLC), increasing the release of Ca2+ from intracellular stores (endoplasmic

reticulum) by the stimulation of inositol 1,4,5-triphosphate (IP3) receptor, which

induces insulin granules exocytosis (Fig. 19.2) (Bach et al. 2005). All these results

were obtained from rodent models which can have some limitations. More inves-

tigations based on human pancreatic islets would be of major interest for the field.

Of note, melatonin receptors (in particular MT1) may also play a role in pancreatic

alpha cells, which could regulate glucose homeostasis via the glucagon. However,

the mechanisms are not clear as there are some discrepancies between studies, and

investigations based on human islets are also lacking (Karamitri et al. 2013).

Fig. 19.2 Signal transduction of melatonin in pancreatic beta cells. AC, adenylyl cyclase; ATP,
adenosine triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine

monophosphate;DAG, diacylglycerol; IP3, inositol 1,4,5-triphosphate; PIP2, phosphatidylinositol
4,5-bisphosphate; PKA, protein kinase A; PLC, phospholipase C
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19.7 Dysfunction of Circadian Rhythm and Metabolic

Disorders

Organisms, ranging from bacteria to mammals, possess accurate internal biological

rhythms that time various daily events from photosynthesis in plants to sleep/

wakefulness in humans (Takahashi et al. 2008). In mammals, many physiological

processes are actually regulated by these inherent clocks, including glucose homeo-

stasis, body temperature, feeding behavior, and hormone release (Takahashi

et al. 2008). The circadian system (defined as its approximately 24 h cycles in the

absence of environmental clues) represents the hierarchy of these multiple biolog-

ical clocks, which is controlled by the SCN known as the “master clock” or “master

circadian pacemaker,” located in the anterior hypothalamus (Mohawk et al. 2012).

The SCN is synchronized by the daily light–dark cycle in mammals, and in turn, it

regulates output pathways controlling various biological functions and overt

rhythms (e.g., hormone release, feeding, body temperature) which can synchronize

peripheral biological clocks including circadian rhythms in pancreatic islets

(Takahashi et al. 2008). Of note, these peripheral clocks can feed back and interfere

with the master clock SCN (Mohawk et al. 2012).

At the molecular level, circadian clocks are mostly controlled by an

autoregulatory transcriptional feedback loop (the “core circadian clock”) involving

the activator transcription factors CLOCK and BMAL1 and their target genes

period (PER1, PER2, PER3) and cryptochrome (CRY1, CRY2) whose gene prod-

ucts form proteins that complex, translocate into the nucleus, and repress CLOCK

and BMAL1-mediated transcription until the degradation of the Per/Cry repressor

complex (Takahashi et al. 2008; Mohawk et al. 2012). This loop takes roughly 24 h

and operates in most cells of the body to control either ubiquitous or tissue-specific

physiological functions. Of note, there are additional (less essential) loops involv-

ing other clock genes or proteins (e.g., Rev-erbα, Rorα) which influence the core

circadian clock. All these feedback loops interact with electrical and metabolic

oscillations which modulate physiological function (Evans and Davidson 2013).

Compelling evidence has linked a disturbed circadian rhythm to metabolic

syndrome, including T2D and obesity (Bass and Takahashi 2010; Shi et al. 2013).

First, in the early 2000s, an outstanding study showed that a significant part of the

transcriptome follows circadian rhythms in the mouse and that most of the signaling

pathways regulated by these circadian clocks are involved in fundamental metab-

olism (Panda et al. 2002). Furthermore, several mutant animal models for clock

genes (Clock, Bmal1, Rev-erbα, Rev-erbβ) have been shown to present with

metabolic disorders including obesity, diabetic phenotypes (insulin resistance,

hyperglycemia, impaired pancreatic function), hypertension, hyperlipidemia,

and/or hepatic steatosis (Turek et al. 2005; Takahashi et al. 2008; Lamia and

Evans 2010; Marcheva et al. 2010; Cho et al. 2012). Importantly, two studies

demonstrated that pancreatic islets (probably pancreatic beta cells) possess

self-sustained circadian oscillations (Marcheva et al. 2010; Sadacca et al. 2011).

This intrinsic pancreatic circadian clock is required for normal insulin secretion
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and glucose homeostasis (Sadacca et al. 2011) and, when disrupted, leads to

hypoinsulinemia and diabetes (Marcheva et al. 2010). In humans, a considerable

number of epidemiological studies have reported that shift work is associated with

increased risk for metabolic syndrome (including T2D and obesity) and cardiovas-

cular disease, relative to day work (Kivimäki et al. 2011; Pan et al. 2011; Vyas

et al. 2012; Buxton et al. 2012; Monk and Buysse 2013). Three main factors were

known to explain these negative effects: circadian misalignment, sleep deprivation,

and exposure to light at night (Evans and Davidson 2013). However, lastly, Eve

Van Cauter’s group has reported that circadian misalignment may increase risk of

T2D and obesity-related phenotypes, independently of sleep deprivation (Leproult

et al. 2014). Finally, some genetic studies reported nominal or genome-wide

significant associations between common SNPs near clock genes (CRY2, PER3,
ARNTL [BMAL1], CLOCK, NR1D1 [REV-ERBΑ]) and risk of T2D/obesity or

variation of related metabolic traits (including FPG, lipid levels) (Woon

et al. 2007; Dupuis et al. 2010; Garaulet et al. 2010, 2013; Below et al. 2011;

Kelly et al. 2012; Goumidi et al. 2013). Interestingly, a functional study showed

that expression of PER2, PER3, and CRY2 genes was significantly decreased in

pancreatic islets of patients with T2D, and this low expression was positively

correlated with increased levels of HbA1c and decreased insulin secretion

(Stamenkovic et al. 2012).

Therefore, it is highly probable that dysfunction of central and/or peripheral

circadian clocks leads to T2D and other cardiometabolic studies. However, the

specific involvement of the melatonin and its receptors into this dysfunction

remains an open question.

19.8 Clinical and Pharmacological Implications

Taken together, as most observations available support an inhibitory effect of

melatonin on insulin secretion, selective blocking of the melatonin ligand-receptor

system in islets would be an attractive potential pharmacological target for the

treatment of T2D. An individual carrying a risk variant may thus be more sensitive

to the inhibitory melatonin effect than an individual without the risk allele, with a

normal level ofMTNR1B expression in islets. Such a restraining effect of melatonin

fits with the impairment of early phase insulin secretion that was observed in risk

carriers (Lyssenko et al. 2009). Thus, assessment of plasma levels of melatonin

during different stages of glucose intolerance (NGT, IFG, and T2D) but also during

pregnancy in GDM women in risk and non-risk genotype carriers of the MTNR1B
gene deserves future studies to support or reject this notion. Furthermore, it remains

to be elucidated whether ascribed protective properties of melatonin during preg-

nancy could be altered in the individuals carrying the risk allele in the MTNR1B
gene. Finally, whether the ascribed effects of melatonin on epigenetic intrauterine

programming contribute to the early defects in abnormal glucose metabolism and

risk for T2D later in life warrants further investigation.
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19.9 Conclusions

The proposed mechanisms by which altering melatonin signaling could predispose

to progression to T2D and putatively GDM involve altering expression ofMTNR1B
in pancreatic beta cells leading to impaired insulin secretion. As a result, this leads

to increased fasting glucose concentrations and eventually overt T2D. Thus, it

would be of great clinical value to evaluate the combined risk for T2D but also

for GDM of a model comprising MTNR1B common and rare functional variants in

the gene, together with melatonin metabolites reflective of the activity of key

enzymes in the melatonin pathway: in an intriguing finding that supports this

notion, Illig et al. have shown that the tryptophan to phenylalanine ratio is affected

by genetic variants in the MTNR1B gene (Illig et al. 2010). Whether this observa-

tion is reproducible and clinically translatable awaits the integration of independent

genomic, metabolomic, and prospective data sets.

References

American Diabetes Association (2014a) Standards of medical care in diabetes--2014. Diabetes

Care 37(Suppl 1):S14–S80. doi:10.2337/dc14-S014

American Diabetes Association (2014b) Diagnosis and classification of diabetes mellitus. Diabe-

tes Care 37(Suppl 1):S81–S90. doi:10.2337/dc14-S081

Arendt J (2006) Does melatonin improve sleep? Efficacy of melatonin. BMJ 332:550. doi:10.

1136/bmj.332.7540.550

Arendt J, Skene DJ, Middleton B et al (1997) Efficacy of melatonin treatment in jet lag, shift work,

and blindness. J Biol Rhythms 12:604–617

Axelrod J, Weissbach H (1960) Enzymatic O-methylation of N-acetylserotonin to melatonin.

Science 131:1312
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