
Chapter 12

Gene-Environment Interaction: Methods

and Examples in Type 2 Diabetes and Obesity

Alisa K. Manning

Abstract Although both genetics and environmental factors play important roles

in the etiology of type 2 diabetes (T2D), the extent to which genetics influence the

environment (or vice versa) is still an open question. In this chapter, we first

motivate the study of gene-environment (G�E) interaction with T2D, present

statistical models of interaction, and then share illustrating examples of G�E

interaction in the literature: PPGARG with T2D, COBLL1/GRB14 with fasting

insulin levels and FTO with T2D, obesity, and physical activity.

12.1 Introduction

Debates on the causes of type 2 diabetes (T2D) often center on the question of

“nature vs nurture”—to what extent is the disease caused by genetics or exposure to

environmental risk factors? In this chapter, we explore the idea of incorporating

these external, non-genetic variables in genetic association studies of diabetes and

diabetes-related traits with the goals of identifying novel genetic associations which

might be modulated by environmental factors (or vice versa) and thus better

understand disease mechanisms. We will present the methodology and current

best practices of gene-environment interaction studies.

It is important to distinguish between biological and statistical interaction.

Biological interaction is a term used to describe dependent biological systems.

The simplest example relevant to diabetes physiology concerns the canonical

relationship between insulin secretion and insulin action, captured by the molecular

interaction between circulating insulin and its receptor.

The statistical study of gene-environment interaction is concerned with finding

genetic variants for which the association effect between an outcome and the
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variant is modified by an additional covariate, the environmental variable. In the

presence of statistical interaction, the association between the genetic variant and

the outcome is different for the various levels of the environmental variable

(see Fig. 12.1). Note that the relationship can be viewed in a reciprocal manner,

that is, the effect of the environmental variable on the outcome differs by genotype

(or degree of genetic exposure).

Questions related to gene-environment interaction include:

• Are there individuals with particular genetic profiles who are more likely to

develop T2D when exposed to sedentary lifestyles and/or poor nutrition? (See

Chaps. 27 and 28.)

Fig. 12.1 Interpreting gene-environment interaction: For each panel, two plots are presented. In

the top plot, the outcome (Y) value is displayed for the three genotypes under an additive genetic

model. The association in the exposed group (blue) is compared to the genetic association in the

unexposed subgroup (red). In the bottom plot, Y values are displayed for the two exposure groups

with the three lines showing the values in the three genotype groups (0/0, purple; 0/1, red; and 1/1,
blue). Three different interaction models are presented: (a) positive interaction occurs when the

genetic effect and the interaction effect are in the same direction. Here, there is a genetic

association in the absence of the exposure variable (when E¼ 0, βSNP¼ 0.1). In the exposed

group, the association is strengthened (when E¼ 1, βSNP¼ 0.3). (b) Masking can occur when the

genetic association is not present in one exposure group. Here, there is no genetic association in the

non-exposed group (when E¼ 0, βSNP¼ 0). In a test of only the genetic main effect (black line),
the association may still be detectable (βSNP¼ 0.09) but it is much stronger in the exposed group

(when E¼ 1, βSNP¼ 0.2). (c) The third example illustrates a situation where the genetic effect in

the exposed group (βSNP¼ 0.1) is in the opposite direction as the genetic effect in the unexposed

group (βSNP¼�0.1)
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• Can we personalize treatment knowing that certain medications work best in

individuals with particular genetic profiles? (See Chaps. 24 and 25.)

12.1.1 Type 2 Diabetes, Glycemic Traits, and Gene-
Environment Interactions

Type 2 diabetes is a disease of deteriorating beta-cell function and increasing

insulin resistance with lifestyle risk factors such as lack of physical activity and

obesity (McCarthy 2010). Candidate gene studies of genes in known diabetes

pathways or previously implicated in neonatal diabetes or maturity-onset diabetes

of the young (MODY) (Altshuler et al. 2000; Gloyn et al. 2004; Winckler

et al. 2007; Sandhu et al. 2007) and genome-wide association studies (GWAS) of

common genetic variants (Voight et al. 2010; Saxena et al. 2012; Morris et al. 2012)

point to two mechanistic pathways of T2D disease progression: (1) variants near

genes such as CDKAL1, CDKN2A, and CDKN2B reduce beta-cell mass and vari-

ants near genes such as MTNR1B, TCF7L2, and KCNJ11 influence beta-cell

dysfunction, both of which result in reduced insulin secretion to lower glucose

levels, and (2) insulin resistance, where cells and tissues become resistant to the

effects of insulin, with association in or near genes such as FTO (related to obesity),

IRS1, and PPARG (McCarthy 2010). Genetic variants associated with fasting

glucose levels (related to beta-cell dysfunction) and fasting insulin levels (related

to insulin resistance) have also been published (Prokopenko et al. 2008; Dupuis

et al. 2010; Manning et al. 2012; Scott et al. 2012) (see Chaps. 2 and 3).

Studies show that both dietary fats and free fatty acids impact insulin resistance,

possibly through mediating genetic factors such as PPARG variation (Roden

et al. 1996; Kubota et al. 1999; Haag and Dippenaar 2005). External environmental

variables (lifestyle factors such as diet or exercise) that impact T2D disease

progression, beta-cell deterioration, and/or insulin sensitivity have been proposed

as environmental exposures that may interact with genetics in the etiology of T2D.

Furthermore, obesity contributes to insulin resistance by creating an “obesogenic

environment,” making continuous body mass index (BMI) or categorical obesity

(as defined by BMI� 30 kg/m2) attractive candidate variables for interaction

studies.

The measurement of lifestyle variables (physical activity, diet, and smoking

status) can differ between studies, making meta-analysis and replication of genetic

associations more difficult. For example, physical activity is a measure of an

individual’s energy expenditure that can be summarized through questionnaires

or more direct means such as continuous heart rate monitoring. Crude categories

(sedentary, active, and/or very active) are often used in order to reach concordance

between the various measures of physical activity used across the study designs,

resulting in a loss of information in the subset of studies using sophisticated
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measurement tools. Other exposures such as smoking status and diet may be

inconsistently measured across studies.

The InterAct project was designed to investigate lifestyle interactions in the

development of T2D (The InterAct Consortium 2011) using a case-cohort sample

of 10,901 incident diabetes cases from eight EPIC countries and a control cohort of

15,352 participants including 736 cases of incident T2D. Findings include an

increased incidence of T2D with high total protein intake (HR¼ 1.13, 95 % con-

fidence interval [CI]: 1.08–1.19) and high animal protein intake (HR¼ 1.12 95 %

CI: 1.07–1.17), where effect modification was observed by sex (P< 0.001) and

BMI among women (P< 0.001).

12.2 Statistical Model, Study Designs, and Interpretation

Numerous reviews of the design, implementation, and interpretation of GWAS of

gene-environment interaction are available (Ottman 1996; Thomas 2010; Ober and

Vercelli 2011; Aschard et al. 2012; Gauderman et al. 2013). Here, we first present

the basic methodology of gene-environment interaction analyses and then describe

several popular extensions.

12.2.1 Type 2 Diabetes as the Outcome

Although other models might be appropriate for the scientific question at hand, and

complex diseases can be studied with a variety of models (Clayton 2012), the

association between T2D and genetic factors is often assessed using logistic

regression models in appropriate samples.

The term “main-effects model” refers to a test of the marginal association

between a genetic variant and the outcome (without interaction). Here, disease

status is dichotomous and coded as T2D¼ 1 for individuals with T2D and T2D¼ 0

otherwise. Along with the independent genetic variable G, coded for an appropriate
genetic model, additional covariates such as age and sex are usually included in the

main-effects model:

log odds of T2Dð Þ ¼ β0 þ β1SEXþ β2AGE þ β3G ð12:1Þ

Using the regression estimates, an estimate of the odds ratio for the association

between G and T2D can be obtained: ORG ¼ eβ̂3 .
Statistical interaction by an independent variable E is defined as a departure from

the multiplicative odds ratio model for the joint effect of G and E. Using the odds

ratio for the association between T2D and E, ORE, a relationship between ORG and

ORE can be defined: if there is no interaction, and the association between G and

T2D is the same for all levels of E, then the two variables are independent and
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ORG,E ¼ ORG � ORE. When ORG,E 6¼ ORG � ORE, or
ORG,E

ORGORE
6¼ 1; statistical

interaction is present.

One statistical test for interaction can be performed by including term for G, E,
and the product of the two variables in the regression model:

log odds of T2Dð Þ ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4Eþ β5G� E ð12:2Þ

In this model, the odds ratio estimate for the increased or decreased risk of T2D

must be derived using both β̂3 and β̂5 (see Fig. 12.1).

12.2.2 Quantitative Outcomes

With quantitative outcomes such as glucose or insulin levels, linear regression

models can be used to assess G�E interaction effects. There are several assump-

tions of linear regression that should be considered and are discussed in many

statistical texts.

As with T2D, covariates such as age and BMI are commonly included in the

genetic association tests of diabetes-related quantitative traits.

The main-effects regression model describes the relationship between Y and G:

Y ¼ β0 þ β1SEX þ β2AGE þ β3Gþ ε ð12:3Þ

A test for gene-environment interaction can be performed by adding an interaction

term to the main-effects regression model:

Y ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4Eþ β5G� Eþ ε ð12:4Þ

When fit to data, there is evidence for statistical interaction if the estimate of the

regression estimate β̂5 is significantly different from zero.

12.2.3 Dichotomous Environmental Variable

Alternatively, if the E is dichotomous, the sample can be split into two strata, one

with E¼ 1 and another with E¼ 0. The main-effects regression models, in which

only the association between G and the outcome is considered, are assessed within

strata of the environmental variable.
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For logistic regression:

logðodds of T2DÞ ¼ βE1

0 þ β1SEXþ β2AGEþ βE¼1
3 G

logðodds of T2DÞ ¼ βE2

0 þ β1SEXþ β2AGEþ βE¼0
3 G

ð12:5Þ

For linear regression:

Y ¼ βE1

0 þ β1SEXþ β2AGE þ βE¼1
3 Gþ ε

Y ¼ βE2

0 þ β1SEXþ β2AGE þ βE¼0
3 Gþ ε

ð12:6Þ

Here, statistical interaction is present if the estimate β̂
E¼1

3 differs significantly from

the estimate β̂
E¼0

3 (Aschard et al. 2010).

The interpretation of interaction for linear regression is in terms of the different

slopes of the relationship between G and Y for different values of E, when E is a

continuous measure, or different strata of E, when it is dichotomous (see Fig. 12.1).

12.3 Genome-Wide Interaction Tests

12.3.1 Screening for Interaction and “Case-Only” Tests

Often genome-wide main-effects analyses are performed prior to interaction studies

being undertaken. This approach runs the risk of type II error (the failure to reject a

false null hypothesis), as genetic variants with strong environmental interactions

may have weak overall main effects and greater heterogeneity in main-effects

testing, hindering their detection by main-effects screens. One proposed method

studying gene-environment interaction while reducing the number of interaction

tests performed was to choose a threshold P0 (e.g., 0.05 or 0.01) and only investi-

gate the interaction model (testing only the interaction term) on those genome-wide

variants with a main-effects P-value less than P0 (Kooperberg and LeBlanc 2008).

Another statistical test for interaction is the case-only test for gene-environment

interaction (Piegorsch et al. 1994), which tests for an association between the

environmental exposure (E) and the genetic variant (G) in a sample of “cases,”

people with T2D, for example. Under the assumption that the genetic variable is not

associated with the environmental variable, the estimated odds ratio, ORE, from this

model is mathematically identical to the interaction odds ratio ORG¼1,E¼1 from

formula (12.2). Although a large increase in statistical power is observed with the

case-only test (Yang et al. 1997), there is a strong assumption that G is independent

of E in the overall population. The case-only method and other methods that

leverage the G and E independence assumption can exhibit both an increase in

type I error (the false-positive rate) and a decrease in statistical power

(Wu et al. 2013; Gauderman et al. 2013). Several methods that use the case-only

test, but retain statistical power when the G-E independence assumption is violated,
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have been proposed. These include screening methods (Murcray et al. 2009, 2011)

and “cocktail” methods (Mukherjee et al. 2012; Hsu et al. 2012) that combine the

case–control test for interaction with case-only methods by using screening or

model averaging (Mukherjee et al. 2008; Li and Conti 2009) approaches. Another

method proposed for testing for interactions include a screening method that jointly

assess the significance of the environment-gene association (as in the case-only

test) and the disease-gene association in the screening step (Gauderman et al. 2013).

12.3.2 Joint Test of Main and Interaction Effects

The joint test of marginal G and interaction effects was introduced as a flexible test

for genome-wide discovery of genetic associations when the underlying interaction

model is suspected but unknown (Kraft et al. 2007). A statistical test is constructed

to test if either or both of the genetic terms in the interaction model are significantly

different from zero (H0 : β3 ¼ β5 ¼ 0). The statistic can be constructed using a

likelihood ratio test or Wald test; it follows a 2 degree-of-freedom chi-square

distribution and remains valid when the gene-environment independence assump-

tion is violated. Over a range of models, the joint test has comparable or better

power than the interaction or case-only test, making it an attractive approach for

genome-wide analysis, as only one statistical model needs to be applied to the

genetic data.

12.3.3 Meta-Analysis Methods

Meta-analysis has become the de facto standard for performing genetic discovery

analyses when the genetic effects are too small for detection with individual

cohorts. Most common genetic discoveries were possible only when consortia

were formed to conduct these meta-analysis (Prokopenko et al. 2008; Dupuis

et al. 2010; Voight et al. 2010). In order to detect genetic interactions, much larger

samples are required than that needed to detect comparable main effects (Aschard

et al. 2010). One recent efficient and powerful meta-analysis method for testing the

interaction effect across multiple studies has been proposed (Li et al. 2014). This

method uses summary statistics from the individual studies (as in other meta-

analysis methods) and a meta-regression approach to adaptively estimate the

gene-environment interaction effect.

The joint test has been extended to a meta-analysis framework (Aschard

et al. 2010; Manning et al. 2011). The joint meta-analysis, or JMA, is a meta-

analysis method that allows individual cohorts to submit regression statistics from

the interaction model: Y ¼ β0 þ β1SEXþ β2AGE þ β3Gþ β4Eþ β5G� Eþ ε.

The statistics that need to be submitted for meta-analysis are the estimates of β̂4
and β̂5, the robust standard error and robust covariance of these estimates. The
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method is implemented in a modified version of the METAL software (Willer

et al. 2010), available from the corresponding authors of the JMA paper (Manning

et al. 2011), which produces summarized regression estimates of β3 and β5 and a

2 degree-of-freedom chi-square test of significance.

If the environmental variable is dichotomous, a simplified version of the joint

test can be applied using a score test approach (Aschard et al. 2010). Regressions

are performed in the stratum-specific main-effects models and the regression

estimates of βE¼1
3 and βE¼0

3 are meta-analyzed using a standard inverse variance

approach (de Bakker et al. 2008; Zeggini and Ioannidis 2009). The joint test,

constructed with a sum of the fixed-effects tests for βE¼1
3 ¼ 0 and βE¼0

3 ¼ 0, follows

a chi-square distribution with 2 degrees-of-freedom.

12.3.4 Statistical Issues and Best Practices

Statistical tests for interaction can be dependent on the trait scale—the interactions

can be present in one scale (after a log-transformation, for example) and

undetectable if modeled on another scale. Issues of environmental exposure and

departures from the gene-environment independence assumption have been

recently discussed (Lindstr€om et al. 2009; Cornelis et al. 2012). Generally, the

joint test performs well in the presence of environmental misspecification, a

problem that can be somewhat controlled for through the use of robust standard

error estimates (Cornelis et al. 2012). Furthermore, the use of robust standard error

estimates corrects an issue of apparent QQ-plot inflation, from violations of

assumptions such as linearity and homoscedasticity between Y and E, observed
when comparing the P-values for a test of β5, to those from the expected P-value
distribution (Voorman et al. 2011).

Finally, a recent paper discusses the implication of confounding on the interac-

tion term in the interaction model (12.2) (Keller 2014). The G�E term will be

biased if either (a) a covariate (C) is associated with the SNP and the relationship

between E and Y differs according to C (βC�E 6¼ 0) or (b) C is associated with E and

the relationship between G and Y differs according to C (βC�G 6¼ 0). This implies

that if either of these relationships holds, then the interaction terms βC�E or

βC� SNP should be included in the model for each covariate considered. These

models should be considered on a case-by-case basis, depending on the outcome,

environmental variable, and whether or not the additional covariates could be

independently associated with the SNP or be candidates for G�E interaction.
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12.4 Illustrating Examples

12.4.1 PPARG

Of the candidate gene associations previously described, one of the early confirmed

genetic associations with T2D was the Pro12Ala polymorphism in the PPARG gene

(Altshuler et al. 2000; McCarthy 2010). Replication of this association was not

universal, with several studies confirming the association and other studies failing

to replicate it (see Ludovico et al. for a comprehensive citation list of the PPARG
studies and Gouda et al. for a comprehensive review). Among the first attempts to

explain this heterogeneity of effects, some groups found that along with increasing

the risk for diabetes, the Pro121 allele also decreased insulin sensitivity, possibly

lowered BMI, and was associated with increased adipose tissue formation (Roden

et al. 1996; Kubota et al. 1999; Haag and Dippenaar 2005; Cecil et al. 2006).

In an analysis of “time to onset of diabetes” in the Diabetes Prevention Program,

a significant gene-environment interaction was found between the Pro12Ala variant

and obesity traits (Florez et al. 2007). Self-reported ethnicity was considered as an

additional variable in a test for potential interaction but was not found to be

significant. The Pro121 carriers progressed more quickly to diabetes (HR, 1.24;

95 % CI, 0.99–1.57; P¼ 0.07), and in models with P121Q-adiposity interactions

with BMI (interaction P¼ 0.03) and waist circumference (interaction P¼ 0.002),

the incidence of diabetes increased for higher mean BMI levels, showing that the

protective effects of the alanine allele were attenuated at higher BMI levels.

A large meta-analysis (N¼ 42,910) was conducted based on 41 published stud-

ies and 2 unpublished studies to determine possible sources of the effect heteroge-

neity in the association of PPARG Pro121Ala with T2D (Ludovico et al. 2007). The

association was confirmed (Ala12 OR¼ 0.81, P¼ 0.005), and population-specific

differences in the reduced risk of T2D due to the Ala12 variant were also reported:

the odds ratio was 0.65 in the Asian subgroup, 0.82 in the North American

subgroup, and 0.85 in the European subgroup. Although the authors describe that

the difference in the Asian subgroup could be due to BMI (48 % of the heteroge-

neity was explained by the BMI in the control groups), different population-specific

genetic backgrounds were stated as a more likely cause for the heterogeneity

observed in the European and North American studies.

In a subsequent meta-analysis, of 60 studies with up to 32,849 type 2 diabetes

cases and 47,456 controls, the estimated odds ratio for the 121Ala allele was 0.86

(95 % CI: 0.91–0.90) and 0.85 (CI: 0.82–0.88) for random-effects and fixed-effects

meta-analyses, respectively (Gouda et al. 2010). The authors report a moderate

degree of inconsistency among the studies contributing to this meta-analysis

(I2¼ 37 %, 95 % CI 9–54; P¼ 0.003). Ethnicity accounted for some of the

heterogeneity (14 % of the between-study variance), but mean BMI levels among

the T2D cases in the studies varied widely: although not significant, a trend was

observed such that the protective effect of the variant was strongest (the odds ratio

was lowest) for studies with mean case BMI< 25 kg/m2, and the protective effect
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was attenuated (the odds ratio increased toward the null) as the mean BMI in cases

increased.

12.4.2 BMI Interactions with Fasting Insulin

Initial publications from the Meta-Analysis of Glucose and Insulin-related traits

Consortium (MAGIC) described 16 loci associated with fasting glucose levels

compared to two loci associated with fasting insulin levels (Prokopenko

et al. 2008; Dupuis et al. 2010), indicating differences in the genetic architectures

for beta-cell dysfunction and insulin resistance. The marginal models investigated

by MAGIC included minimal adjustments for age and sex. Subsequently, two

efforts were undertaken to investigate the role of obesity in the variation of

quantitative glycemic traits: (1) interaction models on a subset of MAGIC cohorts

for which obesity measures were available (Manning et al. 2012) and (2) meta-

analyses of main-effects models adjusting for obesity measures including larger

sample sizes with the inclusion of Metabochip genotype data (Scott et al. 2012) (see

Chap. 3).

For the first analysis, two terms were added to models for fasting glucose and

log-transformed fasting insulin: the adjustment for body mass index (BMI) and the

interaction between a genetic variant and BMI.

Fasting Glucose ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4BMIþ β5G� BMIþ ε

logðFasting InsulinÞ ¼ β0 þ β1SEXþ β2AGE þ β3Gþ β4BMIþ β5G� BMIþ ε

The joint meta-analysis was applied in a genome-wide analysis of 2.4 million single

nucleotide polymorphisms (SNPs) and six and seven additional loci were found to

be associated with fasting insulin and fasting glucose, respectively (Manning

et al. 2012), with one locus,PPP1R3B, showing association with both fasting insulin
and fasting glucose levels. Of these loci, one fasting insulin association (rs7607980

in the COBLL1/GRB14 locus, joint P¼ 4.3� 10�20) and three fasting glucose loci

displayed a greater degree of significance in the joint test compared to a model that

only included an adjustment for BMI. All loci were reported as significant in the

second analysis, demonstrating that either larger sample sizes or adjustment for BMI

was necessary for their discovery (Scott et al. 2012). Although a number of the loci

reported in Manning et al. showed differential evidence for significance and effect

sizes in the high BMI group compared to the low BMI group (as defined by a BMI

cutoff of 28 kg/m2), only rs7607980 showed evidence for an interaction effect when

a meta-analysis of the interaction term was performed (P¼ 0.0002). The additive

main effect of rs7607980 on log-transformed fasting insulin levels was 0.02 (with

standard error 0.0033), similar to the BMI-adjusted main effect of 0.028 (0.0033). In

the subset with high BMI, the effect was 0.041 (0.0064) with P¼ 3.0� 10�10, while

in the lower BMI stratum, the effect was weaker and less significant at 0.0175
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(0.0041) with P¼ 1.8� 10�5. The stratum-specific effect was consistent with the

jointly estimated effect from the interaction model (Fig. 12.2). These findings

support the sensible assumption that taking adiposity into account can augment

discovery of genetic variants that underlie insulin resistance.

12.4.3 FTO: Type 2 Diabetes, Body Mass Index,
and Interaction with Physical Activity

In 2007, the Wellcome Trust Case Control Consortium (WCCC) performed a

genome-wide association study for type 2 diabetes and described a strong increase

of risk for T2D associated with SNPs in the first intron of the FTO gene (rs9939609,

OR¼ 1.27; P¼ 5� 10�8 in 1,924 T2D cases and 2,938 controls) which was repli-

cated in an independent sample (OR¼ 1.15; P¼ 9� 10�6 in 3,757 T2D cases and

5,346 controls) (Frayling et al. 2007). A strong association with BMI was also

observed (P¼ 3� 10�35 in 30,081 individuals with BMI values). As a classic dem-

onstration of confounding, the T2D association was abolished in subsequent analyses

that adjusted for BMI as a covariate in the regression procedure (OR¼ 1.03;

P¼ 0.44). FTO is now recognized as a locus harboring strong associations with

obesity (Frayling et al. 2007; Scuteri et al. 2007)with associationswith T2Dappearing

because the typical T2D cases are more obese than typical nondiabetic controls.

An analysis was performed in the Danish Inter99 cohort exploring SNP by

physical activity interactions at the FTO locus (Andreasen et al. 2008). First the

association between the FTO SNP rs9939609 and BMI was established: the AA

genotype group had 1.1 kg/m2 higher BMI levels on average compared to the TT

Fig. 12.2 The genetic effect estimate of rs7607980 from the COBLL1/GRB14 locus accounting

for the interaction with BMI. The additive genetic effect of rs7607980 changes for different

BMI levels. (a) For the joint meta-analysis, where BMI is a continuous exposure variable,

the estimate (solid black line) and 95 % confidence interval (gray curves), the estimate is

β̂ SNP ¼ �0:06þ 0:003� BMI. (b) The studies were dichotomized into high- and low-BMI groups

and the estimate of the genetic effect was obtained within each subgroup. The additive genetic effect

is displayed with the circles, with the 95 % confidence interval of the estimate shown by the vertical

lines. In the subset with high BMI, β̂ SNP ¼ 0:04, and in the subset with the lower BMI, β̂ SNP ¼ 0:02
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genotype group, and those in the AT genotype had BMI levels 0.3 kg/m2 higher

than the TT genotype group (additive effect P¼ 1� 10�9 with N¼ 5,722). Physical

activity status was assessed by questionnaire and individuals were classified into

three groups: physically inactive (N¼ 1,914), lightly or moderately physically

active (N¼ 3,224), and very physically active (N¼ 416). A statistically significant

interaction was observed (P¼ 0.007). The genetic effect between rs9939609 and

BMI was weaker in the individuals with the highest physical activity: the average

BMI in the AA genotype group was 0.47 kg/m2 (not significant) higher compared to

the TT group. This association was stronger in the physically inactive group: here,

the average BMI in the AA genotype group was 1.95 kg/m2 higher than the TT

group, a much larger increase than 0.38 kg/m2 difference observed between the AT

group and the TT group.

A careful exploration of this interaction effect was reported in a meta-analysis of

218,166 adults (Kilpeläinen et al. 2011). The physical activity interaction was

replicated (P¼ 0.005), although the effect was not as strong as originally reported,

an example of a possible winner’s curse. In all individuals, the additive effect of the
BMI-increasing allele (A) of rs9939609 was 0.36 kg/m2 (P¼ 1.8� 10�75). In the

two physical activity strata applied across the study samples, the additive effect of

the BMI-increasing allele was 0.46 kg/m2 in the inactive group (P¼ 3.7� 10�23,

N¼ 54,611) and 0.32 kg/m2 in the active group (P¼ 4.5� 10�69, N¼ 163,555).

Interestingly, heterogeneity was observed (I2¼ 36 %), mainly from cohorts of

European origin. When the North American cohorts were analyzed on their own,

the interaction was much stronger (P¼ 1.6� 10�9): the additive effects were

0.82 kg/m2 (P¼ 2.7� 10�21, N¼ 9,438) and 0.34 kg/m2 (P¼ 6.1� 10�12,

N¼ 38,500) in the inactive and active groups, respectively, with no measurable

heterogeneity (I2¼ 0 %). The authors of this study carefully consider sources of

bias and confounding in this association, and although they note that this result has

importance for public health (being physically active can further alleviate a genetic

predisposition toward obesity beyond the obvious health benefits), they further note

that the changes in the genetic association due to physical activity could be

confounded by correlated lifestyle and environmental factors. The observed inter-

action does not imply causation—as in other studies of genetic effects, the appro-

priate epidemiological interpretations apply.

12.5 Summary

In this chapter, we have introduced the concept of statistical interaction by exposure

variables in the study of the genetic determinants of T2D and related traits. The

basic methodology of gene-environment interaction studies was presented along

with several extensions that have been recently proposed. Finally, three relevant

examples of gene-environment interaction in the literature were described.

Of the greatest importance for future studies of gene-lifestyle interaction are the

following. First, we suggest a careful consideration of the epidemiological design
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and hypotheses to be tested in the study—if the harmonization of exposure vari-

ables and outcomes increases noise and heterogeneity in your study data, then the

potential gain in power from larger sample sizes might be obliterated. Second,

appropriate statistical tests must be applied—if there is a reasonable expectation

that there is a genetic basis for the exposure variable, then methods that depend

upon gene-exposure independence may not be ideal.

Studies that account for differences in genetic effects due to environmental

exposures will continue to be important as genetic association studies query

low-frequency and rare genetic variants. Testing for interaction, accounting for

the variability in the outcome due to the exposure (by using it as a covariate) or

looking for genetic associations in distinct subgroups (revealing masking effects),

may reveal additional genetic susceptibility loci that could illuminate biological

pathways in the pathophysiology of type 2 diabetes.
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