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Preface

When Victor Neel termed type 2 diabetes (T2D) “the geneticist’s nightmare,” (Neel

1962) it was already evident that T2D harbored a familial component; yet its

polygenic genetic architecture, the inherent limitations in the techniques available

at the time, and the strong (and growing!) influence of environmental determinants

made genetic discovery an arduous task. In the 50 years since then, the public health

impact of T2D has only skyrocketed, fueled by the changes in modern lifestyle

increasingly adopted by developing societies and the expansion of caloric

superabundance.

As a result, T2D and its complications represent one of the most serious

challenges to public health in the twenty-first century. We live in the midst of a

worldwide pandemic that threatens to undermine the significant gains we have

made against cardiovascular disease over the last few decades. Despite its status as

one of the oldest known endocrinopathies, the availability of a molecular therapy

since 1920, and the existence of over a dozen drug classes approved for the

management of the disease, we are largely unable to cure it and are losing the

population battle in both the developed and developing worlds.

The population and healthcare costs are enormous and only expected to rise.

Stoked by the snowballing obesity epidemic, diabetes affects over 29 million

Americans, with more than 80 million at high risk. People with Asian, African,

and American indigenous ancestry experience a higher risk, with the worldwide

prevalence of diabetes expected to hit 500 million by 2030. In the USA alone,

diabetes and its complications account for $245 billion annually. With its concom-

itant life-threatening complications of cardiovascular disease, renal failure, visual

loss, and peripheral vascular disease, T2D can undermine the global economy, with

a disproportionate burden on underprivileged groups and low- and middle-income

countries.

At the crux of our lack of clinical effectiveness lies our incomplete understand-

ing of its pathogenesis, evolution, and metabolic consequences. Definite causal

triggers, the interplay between various risk factors, and specific mechanisms that

underlie long-term complications remain largely unknown. Thus, T2D has become

the quintessential complex disease, with substantial genetic and environmental
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components, significant variation in prevalence across ethnic groups, pathophysi-

ological heterogeneity, multiple treatment modalities, and poorly defined interac-

tions with related metabolic phenotypes.

In the midst of many significant advances, key questions remain unanswered:

Why do people develop T2D? Why do incidence rates differ across populations

drawn from around the world? What causes beta cells to fail? How does obesity

influence T2D risk? Can medications be designed that cure, rather than treat,

diabetes? If more than one medication is needed, what is the best sequence or

combination for specific subgroups?

These pressing questions also represent tantalizing opportunities. Our growing

understanding of pathophysiology, the invention and deployment of global tech-

nologies that query specific areas of the biological space, and our improved ability

to focus on the human as the targeted model system have placed the field of diabetes

investigation on the verge of momentous discovery. However, among all valid

experimental approaches employed in humans, only two can consistently bypass

correlative associations and firmly establish causal inference. Beyond expensive

and focused clinical trials, the genetic method is unique in ensuring that the

exposure of interest (genotype) precedes phenotype, that it is conferred on individ-

uals on a randomized basis at the time of conception, and that it is not in turn

affected by the disease process or its treatment. Thus, it can serve as a powerful

approach to dissect the nosology of T2D, illuminate its pathogenesis, and identify

therapeutic targets through mechanistic insight.

In this volume, we have endeavored to take a contemporary snapshot of a rapidly

moving field. In the time passed since Neel’s initial cautionary statement, the

scientific community has developed methods to measure global genomic variation

with great precision, together with the statistical concepts and related analytical

techniques that allow us to draw rigorous conclusions. Investigators have coalesced

to advance knowledge in a collaborative fashion where needed, introducing appeal-

ing notions on the sociology of team science.

All of these ideas are illustrated in this book. The amount of novel information

collected here, most of which was simply undreamed of just a decade ago, is

staggering. At the same time, and reflecting the dizzying pace of discovery, nascent

findings that have emerged most recently may not be fully captured in these

chapters, making this reading all the more exciting. Finally, the organization of

this work was intended to mirror the collaborative atmosphere that pervades our

field, in that every chapter is authored by two or more investigators who hail from

different research groups and yet complement each other in style, insight, and

perspective.

The initial section, containing seven chapters, centers on fundamental genetic

discovery. The initial overview provides a helpful historical viewpoint that will

help the nongenetic reader take stock of the chronological evolution of the research

enterprise in this area. From the proven effectiveness of genome-wide association

studies (GWAS), subsequent contributions touch on the challenges that follow

initial associations, the extension of this method to less accessible phenotypes,
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and the arrival of next-generation sequencing as the harbinger of discovery focused

on rare genetic variation.

The second section expands beyond genetics and illustrates how other data

sources can inform initial genetic findings. Leveraging population diversity, corre-

lating genetic associations with physiological measurements, learning from genetic

variants that have strong phenotypic effects, and incorporating other key influences

such as the modulation of gene expression, environmental factors, and our micro-

bial commensals all help place genetic findings in focus and can lead to additional

insight.

The third section makes a fundamental point: genetic association, however

robust, is only the beginning of a laborious process. Convincing association signals

notwithstanding, in most cases the specific DNA sequences that cause the molec-

ular phenotype have not been identified. Indeed, the polymorphisms identified thus

far merely signal genomic regions—at times hundreds of kilobases away from

known genes—where an association has been found, but do not necessarily repre-

sent the causal variants: further fine-mapping and functional studies must be carried

out before the true contribution of these loci to T2D can be accurately assessed.

Thus, while we can rapidly and systematically uncover new associations, genetic

studies do not circumvent the process of refining the associated loci to find the

precise “causal” DNA sequences (causal in the sense of having a direct impact on

RNA and/or protein quality or quantity that contributes to the diabetic phenotype).

Indeed, variants may exert their molecular effects at remote sites even when they

are relatively close to other uninvolved genes. Thus, loci identified by GWAS

require in-depth sequencing and functional studies of the cellular and molecular

effects of genes in that region. Six successful vignettes are described in this section,

illustrating the progress we have made in just a few years.

The final section, comprising seven chapters, attempts to bring our current state

of knowledge closer to the clinic, acknowledging both its potential and its limita-

tions. It includes chapters on prediction, interaction of genetic variants with drugs

or nutrients, and approaches to prevention or to the inference of causality for

clinical relevant questions where randomized clinical trials have not produced

conclusive answers or cannot be carried out. The epilogue, authored by a trio of

long-standing collaborators who have set the pace for our field and whom many of

us consider inspiring mentors, paints a realistic but hopeful vision of the future.

This book would not have been possible without the prescience of Andrea

Pillmann at Springer in making the initial suggestion that we undertake this

initiative, and without Jutta Lindenborn’s patience in managing the editorial

process. Over the years I have been fortunate to count on the professionalism and

support of a superb publisher such as Springer in a variety of editorial projects, and

this was no exception. I am most thankful to so many of my colleagues and friends

who took time out of their busy professional lives to share their thoughts through

eminently readable and informative chapters. Naturally not everyone who should or

could have contributed was able to do so, but we have benefited from their wisdom

as well, as this book largely reflects the collective body of knowledge garnered by

the community over the past decade. Our remembrance goes to those luminaries
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and pioneers who are no longer with us, such as Alan Permutt, Steve Elbein, and

Linda Kao. And finally our mind rests in the smart, competent, and energized

trainees we have the pleasure of working with, as they represent the bright future

for our field: theirs will be the next edition in this fascinating journey of discovery,

as we materialize our heartfelt commitment to ameliorate world suffering by

improving human health.

Boston, MA Jose C. Florez

Reference

Neel JV (1962) Diabetes mellitus: a “thrifty” genotype rendered detrimental by “progress”? Am J

Hum Genet 14:353–362
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Genetic Discovery



Chapter 1

Historical Overview of Gene Discovery

Methodologies in Type 2 Diabetes

Amélie Bonnefond, Alan R. Shuldiner, and Philippe Froguel

Abstract This initial chapter presents a historical snapshot of the various approaches

utilized to discover genes implicated in the pathogenesis of type 2 diabetes.

1.1 Introduction

In 1976, James V. Neel described type 2 diabetes as “a geneticist’s nightmare”

(Neel 1976). Forty years later, this statement holds true despite a plethora of

different approaches and methodologies that have been used to discover genetic

etiologies of monogenic and polygenic forms of type 2 diabetes (T2D) (Fig. 1.1);

still, almost 30 % of patients presenting with putative monogenic diabetes do not

have mutations in known causative genes (Vaxillaire et al. 2012), and all T2D-

associated genetic variants identified to date explain less than 15 % of T2D

heritability (Morris et al. 2012).
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1.2 Family-Based Linkage Analysis

In 1992, the first successful methodology to identify genes involved in diabetes was

targeted or genome-wide linkage analysis (using microsatellites or other highly

polymorphic genetic markers) in pedigrees (both consanguineous and non-consan-

guineous) with maturity-onset diabetes of the young (MODY) and in patients with

neonatal diabetes mellitus. In combination with Sanger sequencing of candidate

genes under the peak(s) of linkage, and more recently wider sequencing

approaches, this strategy has enabled the identification of many genes involved in

these monogenic forms of diabetes (Fig. 1.1): GCK (Froguel et al. 1992; Froguel et

al. 1993), HNF4A (Bell et al. 1991; Yamagata et al. 1996a), HNF1A (Vaxillaire et

al. 1995; Yamagata et al. 1996b), CEL (Raeder et al. 2006), BLK (Borowiec et al.

2009), TRMT10A (Igoillo-Esteve et al. 2013), WFS1 (Inoue et al. 1998;

Bonnycastle et al. 2013), PCBD1 (Simaite et al. 2014), INS (Støy et al. 2007),

SLC19A2 (Labay et al. 1999), EIF2AK3 (Delépine et al. 2000), FOXP3 (Bennett et

al. 2001), PTF1A (Sellick et al. 2004), GLIS3 (Senée et al. 2006), and IER3IP1
(Poulton et al. 2011). In polygenic forms of T2D, linkage analyses were far less

successful, despite huge efforts of the research community. Only two T2D linkage

signals were subsequently found to harbor variants in genes reproducibly associated

with T2D (Fig. 1.1): HNF4A (Silander et al. 2004) and TCF7L2 (Grant et al. 2006).
However, for reasons that are unclear, it is probable that the T2D-associated

common variants in these genes do not explain the original linkage signal.

In patients from consanguineous families, homozygosity mapping (namely, the

identification of regions of the genome that are homozygous in affected individuals)

through DNA arrays in combination with sequencing of candidate genes within

Historical Overview of Methodology in Type 2 Diabetes
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homozygous loci has enabled the identification of several genes involved in neo-

natal diabetes associated with severe extrapancreatic clinical features (Fig. 1.1):

RFX6 (Smith et al. 2010),MNX1 (Bonnefond et al. 2013; Flanagan et al. 2014) and
NKX2-2 (Flanagan et al. 2014).

1990

2000

Pedigrees
(Maturity-Onset Diabetes

of the Young)

Isolated patients from
non-consanguineous

families
(Neonatal Diabetes with or 

without extrapancreatic
clinical features)

Isolated patients from
consanguineous families

(Neonatal Diabetes with
severe extrapancreatic

clinical features)Targeted linkage analyses / 
Sanger sequencing of 
candidate genes under the  
peak of linkage

GCK1,2

Genome -wide linkage 
analyses / Sanger 
sequencing of candidate 
genes under the peak

HNF4A3,4, HNF1A5,6

Candidate gene studies 
PDX17, HNF1B8, 

NEUROD19

Candidate gene studies 
KLF1110

Genome-wide linkage 
analyses / Sanger 
sequencing of candidate 
genes under the peak

CEL11, BLK12

Candidate gene studies 
PAX413, INS14, 

ABCC815

WES
KCNJ1116

Genome-wide linkage 
analyses / WES or WGS

TRMT10A17, WFS118, 
PCBD119

2010

Uniparental isodisomy
analyses

chr6q24 anomalies20

Candidate gene studies 
KCNJ1121, ABCC8

Genome-wide linkage 
analyses / Sanger 
sequencing of candidate 
genes under the peak

INS23

WES
GATA624

Candidate gene studies 
GATA425

Monogenic forms

Candidate gene studies 
PDX126, SLC2A227

Linkage analyses  / Sanger 
sequencing of candidate 
genes under the peak

WFS128, SLC19A229

Candidate gene studies 
GCK30

Linkage analyses and/or 
homozygosity mapping / 
Sanger sequencing of  
candidate genes 

EIF2AK331, FOXP332, 
PTF1A33, GLIS334

Homozygosity mapping / 
WES

RFX635

Candidate gene studies 
NEUROD136,

NEUROG337

Linkage analyses  / Sanger 
sequencing

IER3IP138,
Homozygosity mapping / 
WES

MNX139,40, NKX2-240

22
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Polygenic forms

1990

2000

2010

Genes with T2D-
associated rare or low-

frequency variants

Genes harboring T2D-associated common variants
(originally identified or confirmed by GWAS)

Candidate gene studies
(Sanger sequencing)

MTNR1B53

WGS and imputation
PAM54, PDX154, CCND254

Candidate gene studies (NGS)
SLC30A855, PPARG56

WES
HNF1A57

Candidate gene studies
IRS141, GCK42

Candidate gene studies
KCNJ1143, PPARG44

Linkage analyses
HNF4A45, TCF7L246

Candidate gene studies
HNF1B47, WFS148

GWAS and meta-
analysis of GWAS for 
T2D / based on high-
throughput arrays or 
Metabochips / in 
Europeans or other
ethnicities

> 75 genes
(please see
chapter “GWAS of 
type 2 diabetes”)

GWAS and meta-analysis of 
GWAS for T2D-related
quantitative traits

MTNR1B49,50, 
ADCY551, DGKB51, 
PROX151, GCKR51

WES
COBLL152, MACF152

Fig. 1.1 (continued)
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Fig. 1.1 Historical overview of methodology in type 2 diabetes (including monogenic and

polygenic forms)
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1.3 Candidate Gene Approaches

Candidate gene studies in which genes thought to be involved in glucose homeo-

stasis are queried for sequence variation have been met with some success.

Sequencing in families segregating atypical forms of early-onset nonimmune

diabetes or syndromic conditions that include glucose intolerance has resulted in

the identification of novel highly penetrant genes causing monogenic diabetes.

By contrast, candidate genes for typical T2D involve querying variation in large

numbers of unrelated T2D cases and nondiabetic controls to identify sequence

variants enriched in the cases. These variants are typically common in the popu-

lation and exert a small effect on T2D susceptibility. In a few examples, the same

gene may harbor variants that have a large effect on function causing monogenic

diabetes as well as more common variants that have a smaller effect on function and

involved in polygenic T2D. Examples of successful identification of monogenic

and polygenic diabetes genes using candidate gene approaches include:

MODY:

1. Key role in pancreatic beta cells: PDX1 (Stoffers et al. 1997a), NEUROD1
(Malecki et al. 1999), KLF11 (Neve et al. 2005), and PAX4 (Plengvidhya et al.

2007)

2. Genes belonging to a family that includes other genes previously shown to cause

MODY, with a putative role in pancreatic beta cells: HNF1B (Horikawa et al.

1997)

3. Genes previously found to cause neonatal diabetes mellitus: INS (Meur et al.

2010) and ABCC8 (Bowman et al. 2012)

Neonatal Diabetes Mellitus (Including Syndromic Forms):

1. Key role in pancreatic beta cells: SLC2A2 (Santer et al. 1997), KCNJ11
(Gloyn et al. 2004), ABCC8 (Babenko et al. 2006), and NEUROG3 (Rubio-

Cabezas et al. 2011)

2. Genes previously found to cause MODY: PDX1 (Stoffers et al. 1997b), GCK
(Njølstad et al. 2001), and NEUROD1 (Rubio-Cabezas et al. 2010)

3. Genes belonging to a family that includes other genes previously shown to cause

MODY, with a putative role in pancreatic beta cells: GATA4 (Shaw-Smith et al.

2014)

Polygenic Forms of T2D:

1. Key role in pancreatic beta cells or insulin sensitivity: IRS1 (Almind et al. 1993),

KCNJ11 (Hani et al. 1998), PPARG (Deeb et al. 1998), andWFS1 (Sandhu et al.
2007)

2. Genes previously found to cause a monogenic form of diabetes: GCK
(Stone et al. 1996), and HNF1B (Winckler et al. 2007)
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1.4 Genome-Wide Association Studies (GWAS)

Since 2007, GWAS and meta-analyses of GWAS in Europeans and other ethnicities

have been very successful in identifying common single nucleotide polymorphisms

(SNPs) significantly associated with T2D (please see Chap. 2). These GWAS have

been based on high-throughput DNA microarrays assessing hundreds of thousands

to few millions of SNPs across the genome in thousands of T2D cases and

nondiabetic controls. GWAS of quantitative traits associated with T2D such as

fasting plasma glucose, fasting serum insulin, and 2-h plasma glucose levels during

an oral glucose tolerance test have also been quite successful in identifying new

T2D-associated loci (Fig. 1.1). More recently, imputation of SNPs known from the

1000 Genomes project but not actually genotyped on the GWAS has boosted the

number of analyzed SNPs (>6 million SNPs), enabling the identification of addi-

tional T2D-associated loci.

1.5 Next-Generation Sequencing (NGS) Approaches

Most recently, whole exome sequencing (WES) and whole genome sequencing

(WGS) have become the most promising methodologies in finding new genes

causing monogenic diabetes as well as novel loci associated with T2D risk. WES

successfully identified two genes involved in monogenic diabetes (Fig. 1.1):

KCNJ11 in MODY (Bonnefond et al. 2012) (which was known to be mutated in

patients with neonatal diabetes) andGATA6 in neonatal diabetes (Lango Allen et al.
2012). Furthermore, WES performed in 2000 Europeans identified novel T2D-

associated common variants in two genes: COBLL1 and MACF1 (Albrechtsen et

al. 2013). Moreover, WES performed in 3756 Mexicans identified a low-frequency

missense variant inHNF1Awhich strongly contributed to T2D risk (SIGMA Type 2

Diabetes Consortium et al. 2014). Finally, WGS of 2630 Icelanders and imputation

(either direct imputation based on DNA array genotyping or in silico imputation

based on genealogy information) into 11,000 cases and 267,000 controls of Icelan-

dic origin identified T2D-associated low-frequency variants in three genes: PAM,

PDX1, and CCND2 (Steinthorsdottir et al. 2014).

1.6 Summary and Future Prospects

With increasing knowledge of genetic variation across the human genome, coupled

with technological advances to query such variation, dramatic advances have been

made in understanding the genetic basis of rare monogenic forms of diabetes as

well as more common polygenic T2D. With these insights into the genetic archi-

tecture of diabetes, we now understand why family-based linkage analysis

1 Historical Overview of Gene Discovery Methodologies in Type 2 Diabetes 9
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approaches were successful in identifying genes causing monogenic forms of

diabetes, while large case-control GWAS approaches were more successful in

identifying genes and loci for T2D susceptibility. While small-effect variants

identified by GWAS do not contribute substantially to individual risk and are not

useful clinically to predict who will develop diabetes, identification of these genes

has provided new insights into underlying disease mechanisms. NGS applied to

both family-based and population-based approaches promises to unveil even

greater granularity of the genetic architecture of diabetes, underlying biological

mechanisms, and novel approaches for treatment and prevention.
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Chapter 2

Genome-Wide Association Studies of Type 2

Diabetes

Rob Sladek and Inga Prokopenko

Abstract Genome-wide association (GWA) studies represent the single most

effective technique for identifying genetic risk loci causing complex diseases.

Since the publication of the first GWA studies for type 2 diabetes (T2D) in 2007,

nearly 90 statistically robust risk loci have been identified. The T2D risk loci

identified by GWA studies contained several genes that are targets of current

diabetic therapies; however, the majority of genes in these loci had not previously

been implicated in the pathophysiology of T2D. Mechanistic insights about the

physiological role of T2D loci in the disease predisposition have been gained from

investigation of their contribution into glycemic trait variability in nondiabetic

individuals. Current efforts to identify the causative genetic mutations in these

loci and the molecular mechanisms through which they exert their effects have the

potential to make far-reaching contributions to our understanding of molecular

basis of T2D and the development of novel strategies for patient care.

2.1 Introduction

Type 2 diabetes (T2D) is a common, chronic disorder whose prevalence is increas-

ing rapidly across the globe. Like other complex diseases, T2D represents a

challenge for genetic studies aiming to uncover the underlying pathophysiological

mechanisms. It is predicted that T2D will affect 592 million individuals by 2035

(Federation 2013) in developed and low- and middle-income countries. While the

recent increase in T2D prevalence has been attributed to a sedentary “westernized”
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lifestyle and changes in diet, a significant proportion of heritable factors also

contribute to individual susceptibility (Hu 2011).

The strong family clustering and heritability of T2D and related glycemic traits

have motivated a large number of studies to identify genetic factors that cause this

disease (Permutt et al. 2005; Stumvoll et al. 2005); despite much effort, by late 2006

only three genetic loci had been reproducibly shown to increase T2D risk [reviewed

in Majithia and Florez (2009), McCarthy (2008), Stolerman and Florez (2009)].

The earliest attempts to discover T2D-associated genes used either position- or

function-based strategies. In a position-based search, genes are identified within

families by studying the co-inheritance of the disease with a set of polymorphic

markers whose genomic positions are known. Such “linkage studies” usually

identify a genomic region (~10 Mbp) that confers genetic risk; the disease-

causative mutations are identified by sequencing transcribed and functional ele-

ments of all genes in the target region. In function-based approaches, risk associ-

ation is tested for common genetic variants in candidate genes involved in T2D

pathophysiology. In these studies, variants identified in a small number of patients

and control subjects are genotyped in larger case-control samples. Both these

approaches are characterized by a number of limitations. Linkage analysis is

underpowered to detect low penetrance variants, expected to contribute to T2D

susceptibility, given its high population prevalence. Candidate gene studies usually

were conducted in samples of insufficient size and their findings had low reproduc-

ibility as well as difficulty to select good biological candidates.

Positional strategies have identified putative T2D loci in several large chromo-

some regions (McCarthy 2003) and in a number of specific genes (Horikawa

et al. 2000; Meyre et al. 2005; Silander et al. 2004; Hara et al. 2002); however,

none of these associations have been convincingly replicated. The candidate-gene

approach generated a large number of positive reports, two of which have been

confirmed in independent studies (Table 2.2) (Gloyn and McCarthy 2001). The

Pro12Ala variant in the peroxisome proliferator-activated receptor gamma

(PPARG) gene (Deeb et al. 1998; Altshuler et al. 2000; Lohmueller et al. 2003)

and the Glu23Lys variant in the potassium inwardly rectifying channel,

subfamily J, member 11 (KCNJ11) gene were shown to contribute to T2D risk in

multiple studies (Gloyn et al. 2003; Laukkanen et al. 2004). Each of these two

common variants contributes only modestly (increasing T2D risk by 15–20 % for

each susceptibility allele) to the risk of developing common form of diabetes, while

rare variants in both these genes cause monogenic diseases such as familial partial

lipodystrophy and neonatal diabetes. Interestingly, these variants occur within

pharmacological targets for the thiazolidinedione (PPARG) and sulfonylurea com-

pounds (KCNJ11) used to treat T2D.
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2.2 Common Variants: The First Steps Toward Large-

Scale Association Mapping

Given the inefficient progress of early T2D gene discovery, the application of

genome-wide association (GWA) studies to identify risk loci for T2D and glycemic

traits represented a major advance in complex trait genetics. GWA studies are

observational epidemiological studies in which genetic risk exposure is measured

using hundreds of thousands of genotyping assays. The critical difference between

GWAs and other observational epidemiological studies lies in the large number of

genetic tests performed to assess exposure in each individual patient. On the one

hand, the success of GWA studies relies on the development of technologies

capable of screening a large number of polymorphisms (predominantly represented

by single-nucleotide polymorphisms, SNPs), as the prior probability that any

individual polymorphism will be associated with disease is small. On the other

hand, the polymorphisms studied using commercial microarray platforms are not

genetically independent and display complex linkage structures that may extend

over tens or hundreds of thousands of base pairs. As a result, the success of a GWA

study relies on achieving an adequate marker density to model local linkage

structures across the genome.

The potential benefits of using GWA studies to discover complex disease risk

loci were first demonstrated in a seminal paper by Risch and Merikangas that

showed that the analysis of one million variants in the sample of unrelated individ-

uals had greater statistical power than a linkage analysis with a few hundred

markers (Risch and Merikangas 1996). In this context, Reich and Lander suggested

a theoretical population-genetics model for a relatively simple distribution of

susceptibility variants at a disease locus and rephrased the common disease com-

mon variant hypothesis (CDCV) to propose that high-frequency variants with low

penetrance at disease loci contribute to the largest proportion of disease risk in a

population (Reich and Lander 2001). Their theoretical demonstration of the CDCV

hypothesis did not provide any expectation about the number of disease loci or their

effect sizes in establishing complex disease risk.

The majority of GWA studies performed to identify T2D risk loci have used a

case-control study design (Table 2.1), with retrospective longitudinal studies being

primarily reserved for validation of previously identified loci. Alternate study

designs to detect T2D risk associations are far less common and have included

populations with early-onset diabetes (taken as a proxy for more severe illness),

longitudinal studies in at-risk populations, and studies in isolated populations.

Affected individuals in the genetic discovery cohorts are typically selected care-

fully using diagnostic criteria established by the American Diabetes Association or

World Health Organization that are based solely on blood glucose levels. In

contrast, selection of control subjects has been more problematic, with most

discovery cohorts including patients based on a single normal blood glucose

measurement and absent medical history of glucose intolerance. Many discovery

cohorts have excluded patients with monogenic diabetes based on a suggestive

2 Genome-Wide Association Studies of Type 2 Diabetes 15
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family history or specific genetic tests and patients with autoimmune diabetes based

on specific serum markers. In many studies, the case and control samples differ

significantly in age, in order to avoid selecting individuals who will develop

diabetes later in life as control subjects. Comparable environmental exposures are

used as basis for selection of both, T2D cases and controls; and in addition to

matching affected and control individuals for general ethnic background, ethnic

outliers are excluded from analyses. Diabetic individuals usually are of comparable

body mass index (BMI) in respect to controls in large genetic studies.

The first successful “hypothesis-free” demonstration of T2D association came

from the discovery of an intronic SNP in the transcription factor 7-like-2 (TCF7L2)
gene, which confers the largest effect on T2D risk reported to date among common

variants (Fig. 2.1; Tables 2.1 and 2.2) (Weedon 2007; Grant et al. 2006). These

association studies were motivated by the group’s earlier demonstration of micro-

satellite associations in a linkage region on chromosome 10 (Reynisdottir

et al. 2003) rather than by functional criteria. In fact, TCF7L2 encodes a transcrip-

tion factor within the Wnt signaling pathway whose involvement in T2D patho-

genesis remained elusive for many years following the initial genetic studies.

Despite this, detailed physiological studies have now demonstrated the importance

of the TCF7L2 locus in β-cell function and insulin secretion in human cohorts

(da Silva Xavier et al. 2009, 2012; Dupuis et al. 2010; Dimas et al. 2014) and as a

critical regulator of β-cell mass and function (Takamoto et al. 2014) and hepatic

carbohydrate metabolism (Boj et al. 2012) in mouse models (see Chap. 15 for

details).

2.3 Loci Established Through T2D GWA Studies

The capacity to undertake efficient, large-scale association analyses using

hypothesis-free approach through genome-wide studies opened a new wave of

discoveries in T2D genetics. Four GWA studies published in 2007 (Diabetes

Genetics Initiative of Broad Institute of H et al. 2007; Scott et al. 2007b; Sladek

et al. 2007; Zeggini et al. 2007) (Table 2.1) confirmed the strongest association at

TCF7L2, two previously established signals at PPARG and KCNJ11 and identified

six novel loci, at HHEX/IDE, CDKAL1, IGF2BP2, CDKN2A/2B, SLC30A8, and
FTO (Frayling et al. 2007; Freathy et al. 2008; Fall et al. 2013). Although it is

conventionally used to name the loci by the most credible regional candidate (e.g.,

SLC30A8) rather than the tag SNP showing the strongest association (e.g.,

rs13266634), these assignments are used as a matter of convenience and do not

imply that a mechanistic link has been proven. The association signals found in

GWA studies require further investigation through extensive fine mapping and

functional characterization to establish causal variants and determine their impact

on T2D pathogenesis at a molecular level (Prokopenko et al. 2008).

The first round of published T2D GWA studies has provided both the identifi-

cation of novel associated loci and the landscape of T2D susceptibility across the
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Fig. 2.1 Effect sizes of established T2D-susceptibility loci. Established T2D-susceptibility var-

iants have only modest individual effects. The x-axis gives the per-allele odds ratio estimated for

European-descent samples or for the ethnic group of discovery, if association was reported after
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whole genome, the latter providing a point of reference for the previous equivocal

findings accumulated through candidate-gene and linkage studies (Parikh and

Groop 2004). Thus, controversial evidence for variants in Calpain-10 (CAPN10)
and the insulin (INS) gene in T2D has not been confirmed by the GWA approach.

Similarly, while the 1q chromosome region (30-Mb region near to centromere)

contained a number of highly plausible candidates supported by genome-wide

linkage analyses in multiple ethnicities, none have been confirmed through associ-

ation studies and large-scale GWA meta-analyses to date (Prokopenko et al. 2009b;

Morris et al. 2012; Replication and Meta-analysis 2014).

Simultaneously with the advent of GWA studies, large-scale replication efforts

confirmed two loci highlighted by the candidate-pathway pre-GWA studies. Var-

iants within Wolfram syndrome 1 (WFS1) gene and common variants in hepatocyte

nuclear factor 1-b (HNF1B, also known as TCF2) were confirmed as associated

with T2D (Franks et al. 2008; Sandhu et al. 2007; Winckler et al. 2007). These

variants, along with KCNJ11 and PPARG, provide interesting examples of the

convergence between Mendelian and polygenic causes of diabetes, as coding

variants in these genes had previously been isolated in families with autosomal

dominant inheritance of diabetes (Maturity Onset Diabetes of the Young, MODY)

and as part of the multisystemWolfram syndrome (McCarthy and Hattersley 2008).

As anticipated, GWA studies, by testing hundreds of thousands of genetic

variants in parallel, have identified loci with modest effects (Manolio et al. 2009).

To contend with the stringent significance thresholds that account for the number of

independent tests performed across the genome, identification of additional T2D

susceptibility loci required larger population samples, which was achieved by

combining existing GWA studies in meta-analyses. The Diabetes Genetics Repli-

cation And Meta-analysis (DIAGRAM, http://www.diagram-consortium.org/) con-

sortium carried out the first meta-analysis for T2D (Zeggini et al. 2008) of three

GWA studies of European-descent individuals, including ~4500 cases and 5500

controls. Differences in the genotyping platforms used for individual GWA studies

were overcome by imputation using a common variant set based on haplotype

structure of densely characterized reference samples in HapMap (Consortium

IH 2005) and extended the analysis to ~2.2 million SNPs across the genome

Fig. 2.1 (continued) mid-2012 (Table 2.1) for each locus listed on the y-axis. Loci are sorted by

descending order of per-allele effect size within each year. Colors highlight the discovery study

approach: red, candidate gene; yellow, large-scale association; blue, genome-wide association;

dark blue, genome-wide association meta-analysis; sky blue, genome-wide meta-analysis with

Metabochip follow-up; green, genome-wide meta-analysis of glycemic traits; pink, genome-wide

sex-differentiated meta-analysis with larger effects in women; brown, genome-wide sex-differ-

entiated meta-analysis with larger effects in men; hacky, genome-wide meta-analysis in lean/

obese; gray, whole-exome sequencing. For loci with sex differentiation, the effect size for the sex

with larger effect is presented. X-axis lists loci names, labeled by the gene names within region. Y-
axis shows odds ratio for T2D observed at a given locus. Loci are split by the year of discovery and

are ordered from top to bottom by the decreasing OR on T2D risk within each year. Shadow is used

for loci from studies with discovery including non-European individuals
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(Scott et al. 2007b; Zeggini et al. 2007; Diabetes Genetics Initiative of Broad

Institute of H et al. 2007). Following a 2-stage replication with genotyping of

selected SNPs in ~75,500 individuals, the DIAGRAM study identified six novel

loci (Tables 2.1 and 2.2), including only one reasonable biological candidate gene

(NOTCH2, Notch homologue 2, Drosophila), which is involved in pancreatic

development.

The DIAGRAM consortium published two further meta-analyses, each based on

increasingly larger case-control samples from European populations. The first

combined discovery data from 21 GWA studies in up to 8130 individuals with

T2D and 38,987 controls all imputed to a HapMap 2 reference panel, followed by

large-scale replication in 34,412 cases and 59,925 controls where 13 (11 novel) out

of 23 autosomal signals were confirmed (Tables 2.1 and 2.2) (Voight et al. 2010).

This meta-analysis was the first to examine T2D associations on chromosome X

(taking X-inactivation into account) and identified an association at DUSP9 with a

large effect on T2D risk (OR¼ 1.27, Table 2.2; Fig. 2.1) (Voight et al. 2010). The

second meta-analysis, in addition to dramatically increasing the sample size

(34,840 cases and 114,981 controls), implemented a novel cost-effective strategy

for large-scale replication based on the CardioMetabochip (Metabochip), an

Illumina iSelect genotyping array. Metabochip, which was designed through col-

laboration between six GWA consortia studying metabolic and atherosclerotic/

cardiovascular diseases and traits (Voight et al. 2012), permitted follow-up of

~66,000 putative signals for cardiometabolic phenotypes (~5000 of which were

selected for T2D) (Morris et al. 2012). The Metabochip array also contained

approximately 120,000 SNP probes to fine map 257 established loci in an attempt

to identify causal T2D susceptibility variants. The DIAGRAM meta-analysis with

Metabochip follow-up established T2D associations at 10 loci (Tables 2.1 and 2.2),

including two at CCND2 and GIPR with larger effects on T2D risk in males and

females, respectively (Morris et al. 2012). Among previously established T2D loci,

sex differentiation in effect size has been shown for KCNQ1, DGKB, and BCL11A
(larger effects in males) and GRB14 (larger effects in females).

A separate DIAGRAM GWA meta-analysis of the effects of obesity on

T2D risk, performed in Europeans through GWA meta-analysis of lean

(BMI< 25 kg/m2) and obese (BMI� 30 kg/m2) T2D diabetics with ~54,000 con-

trols, identified associations with lean diabetic participants at LAMA1 and with

obese subjects at HMG20A (Perry et al. 2012). A GWA meta-analysis in >8000

T2D cases and >10,870 controls in Europeans with large replication, including

several additional datasets with de novo genotyping and the DIAGRAM discovery

meta-analysis data in silico, reported association at RBMS1 (Tables 2.1 and 2.2)

(Qi et al. 2010).

In parallel to studies in European populations, T2D GWA studies in Asian ethnic

groups (representing Japanese, Chinese, Punjabi Sikhs, Indians, South Asian, and

East Asian subjects) have established T2D associations at 27 loci (Table 2.1). These

studies have generally followed a design based on a GWA study with large-scale

replication in an individual ethnic group, frequently undertaken in multistage

fashion. In addition, several groups have combined efforts to complete a recent
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East Asian GWA meta-analysis in up to 6952 T2D cases and 11,865 controls

(with imputation based on the East Asian HapMap 2 reference panel) and identified

eight novel loci, including GLIS3, PEPD, FITM2-R3HDML-HNF4A, KCNK16,
MAEA, GCC1-PAX4, PSMD6, and ZFAND3 (Cho et al. 2012). A second meta-

analysis of Chinese samples (with imputation based on the 1000 Genomes Project

JPT (Japanese in Tokyo) and CHB (Han Chinese in Beijing) reference panels) has

described T2D association with a common variant in the PAX4 gene, which is

expressed in early pancreatic endocrine cells. The association, which was con-

firmed in a multiethnic analysis including European and five East Asian populations

(Ma et al. 2013), adds another example of common variant associations with T2D at

a MODY locus as heterozygous mutations in PAX4 have been identified as a cause

of MODY9 (omim.org/entry/606391). Therefore, while rare coding mutations

severely impair islet function and cause rare monogenic forms of diabetes, common

variants can act through the same genes, but with smaller effects, to increase an

individual’s risk of developing a more common form of diabetes.

A small number of GWA studies have been reported for other ethnic groups.

Studies in Mexican individuals reported associations at several established loci

(Parra et al. 2011) and a novel association at SLC16A11/SLC16A13 where the

haplotype carriers had amino acid substitutions in SLC16A11 (Consortium

et al. 2014b). The locus is thought to affect triacylglycerol metabolism and shows

stronger association in leaner and younger people. While common in Native

Americans and Asians, risk variants at this locus are rare in European and African

individuals and have introgressed into modern humans through admixture with

Neanderthals. A second study in American Pima Indians confirmed associations for

a set of previously established loci while reaching study-wise significance

(P-value¼ 6.6� 10�8) at the DNER gene (Hanson et al. 2014). Finally, an African

American GWA study has provided evidence for association at RND3/RBM43
(Palmer et al. 2012).

Methodological development in to combine data from multiple ancestry groups

by accounting for heterogeneous allelic effects (Morris 2011) has enabled

performing meta-analysis across different ethnicities. For example, combining

European, East Asian, South Asian, and Mexican and Mexican-American GWA

meta-analyses in up to 26,488 T2D cases and 83,964 controls has identified seven

novel T2D susceptibility loci TMEM154, SSR1-RREB1, FAF1, POU5F1-TCF19,
LPP, ARL15, and MPHOSPH9 (Replication et al. 2014). Importantly, the study

demonstrated an overwhelming concordance of allelic effects across ethnicities,

even at loci with only weak evidence of association, supporting the hypothesis that

T2D risk variants predate migration of humans out of Africa and arguing against the

“synthetic association” hypothesis, which predicts that associations at common

variants are driven by unobserved lower frequency causal alleles with large effects

(Dickson et al. 2010).

It has long been suggested that the high prevalence of metabolic disorders

related to impaired glucose homeostasis may be a result of selective evolutionary

advantage of T2D and obesity-risk variants during periods of scarce food resources,

which resulted in an increase in their frequency at the population level (thrifty gene
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hypothesis) (Neel 1962, 1999). Given that food intake is known to act as a trigger

for insulin release, it has also been hypothesized that a positive selection may have

operated in particular on those loci associated with T2D through an influence on

β-cell function (Ayub et al. 2014). Some evidence of directional population differ-

entiation and nominal positive selection at individual T2D risk loci, including

TCF7L2, THADA, and NOTCH2, has been reported (Chen et al. 2012; Corona

et al. 2013; Klimentidis et al. 2011). The collective analysis of all T2D-associated

variants along with stratified by their impact on β-cell function or insulin resistance
has to date found no support for global or differential positive selection at T2D loci,

thus offering little support for the thrifty gene hypothesis (Ayub et al. 2014;

Southam et al. 2009).

2.4 Common Variants with Modest Effect Sizes

Most GWA study designs are based on common variant genotyping arrays, which

have determined the allele spectrum of the resulting T2D-associated variants

(Table 2.2). The 88 known T2D risk loci (Table 2.2) show only modest effects

(OR¼ 1.1–1.2), with TCF7L2 being the only locus showing larger effects in

European populations (OR ~1.40, Fig. 2.1) (Morris et al. 2012). While this has

led to an intense search for additional rare and common variants (particularly for

causal variants which are expected to have larger effects), the early search for rare

coding variants has had limited success (Table 2.2) (Steinthorsdottir et al. 2014;

Albrechtsen et al. 2013). Additionally, studies in non-Europeans have recently

provided support for a number of novel T2D susceptibility loci that show low allele

frequencies in European populations (Unoki et al. 2008; Hanson et al. 2014; Con-

sortium et al. 2014b). While this provides a challenge to validating these loci in

European populations, the high concordance of the direction of effects across

ethnicities for T2D risk variants (Replication et al. 2014) suggests that additional

common T2D risk variants with consistent and modest effects across ethnic groups

remain to be described. Their identification will require larger sample sizes and

combined efforts of many studies and research centers (Morris et al. 2012).

The discriminatory capacity of genetic variants for T2D risk prediction and

patient stratification has been assessed in longitudinal studies by examining

whether inclusion of genetic risk scores (GRS) in predictive models increases the

area under the receiver-operating-characteristic curve compared to predictive

models including only clinical parameters. Early studies suggested that inclusion

of GRS provided little improvement in T2D risk prediction compared to clinical

risk factors and family history alone (Lyssenko et al. 2008; Meigs et al. 2008;

Balkau et al. 2008; Talmud et al. 2010; de Miguel-Yanes et al. 2011). More recent

studies, incorporating increasing numbers of T2D risk variants into the GRS, have

also had mixed results (Hivert et al. 2011; Muhlenbruch et al. 2013; Vaxillaire

et al. 2014). For example, while a recent study incorporating 43 T2D associated

variants showed little improvement in T2D prediction, inclusion of the GRS in
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predictive models improved the receiver-operating-characteristic curve for sub-

groups of subjects at increased risk of T2D, including obese subjects, older partic-

ipants, and those with a family history of diabetes (Muhlenbruch et al. 2013).

Similarly, Hivert et al. have shown that a GRS with 34 variants was significantly

associated with increased risk of progression to T2D in high-risk individuals, as

well as a reduced effect of lifestyle interventions on genetic risk (Hivert et al. 2011).

A recent study comparing the discriminative capacity of GRSs including 65 -

T2D-associated loci and 36 FG-associated loci FG showed modest but significant

improvement in T2D reclassification rates in models including a GRS incorporating

T2D risk loci and modestly improved reclassification rates of incident and

non-incident T2D and impaired fasting glucose (IFG) using the GRS incorporating

both T2D risk and FG loci, suggesting that inclusion of risk loci associated with

glycemic traits may be beneficial for intermediate phenotypes such as IFG

(Vaxillaire et al. 2014). Further studies using GRS based on new loci and causative

variants will help to improve insight into the longitudinal impact of genetic variants

associated with glycemic traits on T2D risk of and disease trajectories.

2.5 Understanding Relationship with Other Phenotypes

Two critical processes leading to T2D development are β-cell dysfunction and

insulin resistance in peripheral tissues including fat, muscle, liver, and elsewhere

(Prokopenko et al. 2008). Beginning long before the clinical diagnosis of T2D,

these processes are hallmarks of prediabetes; following which, progressive deteri-

oration of β-cell function reaches a point when they are no longer able to meet the

increased insulin demands from peripheral tissues, leading to the development of

diabetes. In parallel to T2D GWA meta-analyses, a number of large-scale associ-

ation studies have been successful in identifying genetic loci that influence quan-

titative glycemic traits, including fasting and postprandial glucose and serum

insulin levels. These studies take advantage of the increased power that can be

obtained when similarly sized cohorts studied for continuous traits compared to

dichotomous outcomes; their success relies on the hypothesis that genes influencing

blood levels in normal subjects will also increase diabetes risk. Significantly, while

the genetic risk loci identified for T2D overlap to some degree with quantitative

trait loci for blood glucose and insulin, several genes have shown association only

with glycemic traits or only with increased T2D risk (Fig. 2.1). While it’s possible
that this discordance may reflect the statistical power of the studies completed to

date, the milder phenotypes observed in patients with glucokinase mutations com-

pared to patients with other forms of MODY (McDonald and Ellard 2013) suggest

that it is important to distinguish two overlapping but distinct groups of GWAs loci

that are associated with altered glucose homeostasis on the one hand and the

progressive of metabolic decompensation that leads to T2D on the other.

The only association with FG established before the GWA study era was at the

glucokinase (GCK) locus (Weedon et al. 2005, 2006), a gene in which rare
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mutations cause MODY2 (Froguel et al. 1992). GCK catalyzes the first step in

glycolysis and is one of the principal regulators of FG concentration and of β-cell
secretory activity. An indicative association at the glucokinase regulator (GCKR)
locus (rs780094) with FG, as well as an association at the same variant with serum

triglyceride levels, was described by the DGI T2D GWA study, which however was

not powered enough to detect an effect on T2D (Diabetes Genetics Initiative of

Broad Institute of H et al. 2007). The product of GCKR regulates GCK activity and

is a highly plausible candidate involved in T2D pathogenesis (see Chap. 16). The

GCK and GCKR loci have since been associated with FG/HOMA-B (homeostasis

model assessment of β-cell function) and FG/FI/HOMA-IR (homeostasis model

assessment of insulin resistance), respectively, and with T2D (Dupuis et al. 2010;

Manning et al. 2012). These findings prompted further interest in well-powered

GWA studies for glycemic traits to detect reliable genetic associations which may

be relevant to T2D pathogenesis (see Chap. 3).

In 2009, the collaborative Meta-Analyses of Glucose and Insulin-related traits

Consortium (MAGIC, http://www.magicinvestigators.org/) was established to con-

solidate the efforts of many groups working on glycemic trait genetics, in order to

understand the variation of these traits within the physiological range and investi-

gate their impact on T2D risk and other cardiometabolic traits (Prokopenko

et al. 2009a). The first effort of MAGIC confirmed the association at GCK and

G6PC2 loci and identified a novel signal at the melatonin receptor 1B (MTNR1B)
locus for higher FG and lower insulin secretion. The inverse correlation between

the levels of the neurohormone melatonin, secreted by the pineal gland, and insulin

has long been known. However, few studies had investigated the relationship

between melatonin signaling in pancreatic islets and metabolic disease (Peschke

et al. 2007), prior to publication of large-scale association studies (Prokopenko

et al. 2009a; Bouatia-Naji et al. 2009; Chambers et al. 2009; Go et al. 2013;

Lyssenko et al. 2009). Association with T2D at MTNR1B locus was subsequently

confirmed at genome-wide significance (Prokopenko et al. 2009a; Dupuis

et al. 2010; Voight et al. 2010; Lyssenko et al. 2009).

To extend the first MAGIC study, a new, larger, whole GWA meta-analysis

(21 studies, up to 46,186 nondiabetic individuals) was performed (Dupuis

et al. 2010). It increased the number of glycemic trait loci to 16 and reported

novel effects on T2D from a large-scale analysis at five of the FG/FI-associated loci

(ADCY5,GCK,GCKR,DGKB, PROX1), thus highlighting that the overlap between
the genetic variation influencing glucose homeostasis and risk of T2D is only partial

(Fig. 2.1). Four of these loci contributed to impaired β-cell function as measured by

HOMA-B and one (GCKR) was associated with insulin resistance.

Three MAGIC GWA meta-analyses for additional glycemic traits provided

further insights into pathophysiology of T2D. A study focusing on 2-hour post-

prandial glucose (2hGlu) levels (15,234 nondiabetic individuals in discovery and up

to 30,620 in replication) identified five associated loci (GIPR, VPS13C, ADCY5,
GCKR, TCF7L2), including the novel locus GIPR (rs10423928) containing the

gene encoding the GIP receptor for the insulin-response stimulating hormone

GIP (glucose-dependent insulinotropic polypeptide) in pancreatic islet β-cells
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(Saxena et al. 2010) and in linkage disequilibrium (LD, HapMap CEU r2¼ 0.78)

with BMI-associated rs2287019 (Speliotes et al. 2010). Genome-wide meta-analy-

sis of HbA1c, including study in 46,368 in nondiabetic individuals by the MAGIC

investigators, identified 10 genetic loci, of which MTNR1B and GCK also increase

T2D risk, suggesting that their effect on hyperglycemia (as measured by FG)

extends an effect on average glycemia over a 2- to 3-month period (as detected

through HbA1c) and is related to T2D pathogenesis, while ANK1maps close to T2D

risk variant (Soranzo et al. 2010). Variants at VPS13C/C2CD4A/B and GIPR were

subsequently associated with T2D, the latter showing larger effects in women, but

both were in weak LD with glycemic trait variants (Yamauchi et al. 2010; Morris

et al. 2012). Similarly, the ANK1 HbA1c locus variant rs4737009 identified by

Soranzo et al. is not in LD with the T2D risk variant (rs516946, HapMap CEU

r2< 0.01) (Morris et al. 2012). The genetic architecture at these three loci is

complex and requires further investigation to dissect the relationships between

genetic effects on the associated glycemic phenotypes.

Large-scale studies of glycemic traits using Metabochip have discovered addi-

tional common variant loci with small effects on FG/FI/2hGlu loci trait variability

and further increased the overlap with T2D risk loci. In this study, 39 FG-raising

alleles were related to increased T2D risk, although only 20 (>60 %) of them

showed at least nominal significance (P< 0.05) for T2D. Similarly, 13 of the 19 FI

loci were nominally associated with T2D and all but TCF7L2. Similarly, 13 of the

19 FI loci were nominal association with T2D and all, but TCF7L2, FI/insulin
resistance-increasing alleles were associated with higher T2D risk and showed an

impaired lipid profile (Fig. 2.2) (Scott et al. 2012).

FG-associated loci from GWAS studies have also helped define the relationship

between T2D and abnormal insulin processing and secretion in β-cells. Among

other glycemic trait analyses by the MAGIC, nine genome-wide significant loci

were described for corrected insulin response (CIR), seven of which were previ-

ously associated with both T2D and other glycemic traits (MTNR1B, GCK, HHEX/
IDE, CDKAL1, CDKN2A/2B, ANK1, C2CD4A/B) (Prokopenko et al. 2014). Two

other loci included G6PC2 associated with glycemic trait variability in nondiabetic

individuals and the novel GRB10 association, which showed potential tissue-

specific methylation and parental imprinting that might mask its association with

T2D). Meta-analysis of GWA studies by MAGIC for fasting proinsulin levels

adjusted for FI identified eight loci, of which four demonstrated that both

proinsulin-raising (for TCF7L2, SLC30A8, and VPS13C/C2CD4A/B) and

proinsulin-lowering alleles (for ARAP1) influenced T2D risk through a decrease

in insulin secretion caused by distal or proximal impairment of proinsulin conver-

sion, respectively (Strawbridge et al. 2011). Similarly, Dimas and colleagues

described associations at the HHEX/IDE and MTNR1B loci with defects in early

insulin secretion through reduced insulinogenic index for the T2D risk allele and

showed that the T2D risk allele at ARAP1 was related to defects in the first steps of

insulin production, through association with 32,33 split proinsulin (Dimas

et al. 2014).
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These large-scale discovery efforts in nondiabetic individuals have provided

genetic markers that may provide mechanistic insights into the pathogenesis of T2D

and possibly to classify disease mechanisms that are active in individual patients.

Fig. 2.2 Effects of established T2D loci: (a) on cardiometabolic phenotypes and (b) on glycemic

traits. (a) Among a total 88 T2D loci, only 49 do not overlap with other cardiometabolic traits. The

independent loci were defined by physical distance more than 500 kb from each other and by CEU

LD r2> 0.01. (b) Among a total 88 T2D loci, only 27 overlap with fasting glucose or fasting

insulin levels. The independent loci were defined by physical distance more than 500 kb from each

other and by CEU LD r2> 0.01
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For example, physiological characterization of the effects of glycemic and T2D loci

on quantitative glycemic traits has revealed a clear separation of hyperglycemic

loci (MTNR1B and GCK) which are associated with reduced basal and stimulated

β-cell secretion and consequent fasting hyperglycemia without large effects on T2D

risk from β-cell loci that show an effect on insulin processing and secretion that

only modestly change FG but exert much stronger effects on T2D risk (TCF7L2,
SLC30A8, HHEX/IDE, CDKAL1, CDKN2A/2B, THADA, DGKB, PROX1, ADCY5)
(Dimas et al. 2014).

Loci with effects on insulin sensitivity represent a much smaller proportion of

T2D variants. Physiological characterization of T2D loci grouped variants with

primary effects on insulin sensitivity in basal and stimulated state (IRS1, GCKR,
PPARG, KLF14); in addition, weak effects on insulin sensitivity have also been

suggested for HMGA2 (Voight et al. 2010). Insulin sensitivity indices showed

consistently decreased effects for T2D risk alleles only for loci with known effects

on insulin resistance at basal measures (HOMA-IR) (Dimas et al. 2014). In many

cases, these loci may exert widespread biochemical changes affecting

cardiometabolic risk (Fig. 2.2): some FI-associated loci can alter BMI and body

fat distribution, while most loci associated with higher insulin levels are also

associated with lower HDL cholesterol and higher triglyceride levels (Manning

et al. 2012). For example, variants within the fat mass and obesity-associated (FTO)
gene and at melanocortin-4 receptor (MC4R) exert their T2D effect through a

primary impact on BMI (Frayling et al. 2007; Loos et al. 2008; Morris

et al. 2012). In contrast, effects of IRS1 and PPARG on insulin resistance and

T2D are independent from obesity (Scott et al. 2012; Kilpelainen et al. 2011; Rung

et al. 2009). For a number of loci, the association with lipids and T2D (HNF4A,
CILP2, KLF14, HNF1A/TCF1, MC4R) and additionally with FI (GRB14, GCKR,
FTO, PEPD, ANKRD55, IRS1, ARL15) has been reported independently for each

phenotype, underlying the close relationship between increased lipids/adiposity and

increased insulin (Fig. 2.2) (Scott et al. 2012). This picture is consistent with the

first stages of diabetes, where high adiposity in peripheral tissues causes insulin

resistance, which is complemented by an increase in β-cell insulin production.

Several T2D loci appear to have an effect on complex diseases whose patho-

genesis is not commonly associated with changes in metabolic fitness: pleiotropy

could be a probable mechanism for these effects, since the correlation between the

associated disease outcomes is low for them to be considered as comorbidities.

Thus, variants at ~20 T2D loci, including CDKN2A/2B, JAZF1, HNF1B, THADA,
CCND2, ZMIZ1, and IGF2, have a role in cancer susceptibility (Gudmundsson

et al. 2007; Thomas et al. 2008; Finkel et al. 2007). Interestingly, T2D risk alleles at

THADA, TSPAN8, and HNF1B are protective against prostate cancer, an inverse

relationship that supports epidemiological observations. The genetic links between

diabetes and cancer point to a set of shared biological pathways, including opposing

roles in regulation of cell cycle and common signaling pathways.
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2.6 What Is Next in T2D GWA Studies?

Despite the success of GWA studies in identification of common variant associa-

tions, the largest heritable component of T2D susceptibility remains unexplained.

Rapid development and reduced costs of exome sequencing approaches has opened

wide opportunities in both sequencing of large numbers of individuals and gener-

ation of large reference panels for imputation of rare variants from resequencing

[e.g., those from the 1000 Genomes Project (Genomes Project et al. 2010)].

Population-based studies have also benefited from sequencing through implemen-

tation of population-specific next-generation sequencing-based reference panels,

including deCODE Icelandic and Genome of the Netherlands (GoNL) reference

panels (Boomsma et al. 2014; Steinthorsdottir et al. 2014). To date, these sequenc-

ing studies have not succeeded in identifying a large number of novel risk loci. For

example, whole-exome sequencing at 8� depth in a Danish sample of 1000 T2D

cases and 1000 controls hasn’t produced evidence of association with T2D at rare

exomic variants, but has confirmed associations with T2D at common variants in

COBLL1 and MACF1 (Tables 2.1 and 2.2) (Albrechtsen et al. 2013). While the

sample size used in the study was small and the variant calling accuracy was not

optimal for detecting small indels or changes in copy number, the results are

consistent with previous regional resequencing studies which suggest that most

causative variants linked to the GWA risk loci will not alter protein coding

sequences. A recent whole-exome sequencing study in 3756 Latinos with an

average depth 67.17� has identified a rare missense variant in HNF1A
(c.1522G>A [p.E508K], odds ratio [OR]¼ 5.48) (Consortium et al. 2014a). As a

result, there is considerable interest in pursuing whole-genome and whole-exome

sequencing studies, particularly in cohorts that have sufficient statistical power to

detect epistatic interactions that may confer additional T2D risk. Several interna-

tional T2D collaborations have recently focused their efforts on large-scale

sequencing projects, including the GoT2D (genomics of T2D) consortium that

has undertook whole-genome (low-pass 4–6�) and deep whole-exome sequencing

for ~2800 T2D case and control individuals from Northern Europe and the T2D

Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples

(T2D-GENES) consortium that has undertook trans-ethnic deep whole-exome

sequencing in ~10,000 individuals distributed equally between five ethnic groups

(McCarthy 2010).

GWA studies have provided an excellent springboard for large-scale T2D

studies through international collaborative efforts focused on Europeans and

being widely extended to other ethnic groups. Improved sequencing technologies

and variant calling algorithms will extend the variant set to other types of genetic

variability, including copy number variation, which may have significant impact on

the dissection of T2D susceptibility. These collaborations will enable well-powered

fine-mapping studies and identification and functional characterization of disease-

causing variants. Overall, identifying causative genetic variants and discovering the

molecular mechanisms linking them to the development of prediabetic changes will
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be essential in understanding the pathophysiology of T2D. This in turn may lead to

rational drug development and suggest therapies that can be applied appropriately

and early to those most at risk of developing T2D (Tuomilehto and Lindstrom

2003). This outcome is potentially feasible as genes that have already been asso-

ciated with diabetes have also acted as targets for its treatment: while this is best

demonstrated by the use of sulfonylureas to treat neonatal diabetes associated with

inactivating mutations of the Sur1 protein (Gloyn et al. 2004), the same family of

drugs have also provided a mainstay for treating adults with polygenic T2D for

many years.
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Chapter 3

Genome-Wide Association Studies

of Quantitative Glycaemic Traits

Inês Barroso and Robert Scott

Abstract Genome-wide association studies (GWASs) of patients with type 2 diabe-

tes (T2D) and unaffected control participants (case-control studies) are designed to

identify genetic variants that predispose to T2D, although the mechanisms by which

these variants predispose to T2D are unclear. In 2008, theMeta-Analysis of Glucose
and Insulin-related traits Consortium (MAGIC) was established to facilitate meta-

analysis of GWAS data of quantitative glycaemic traits (including fasting and post-

challenge glycaemic measures) from persons without diabetes. These traits are

associated with cardiovascular outcomes even below the diabetic threshold and are

important in and of themselves. Our aims were threefold: (a) to identify loci influenc-

ing glycaemic traits as a way to understand the similarities and differences between

loci influencing glucose regulation within the normal physiological range and those

affecting pathophysiological states (T2D); (b) to identify new loci impacting T2D

risk using an alternative approach; and (c) to use glycaemic traits to begin to elucidate

disease mechanism, i.e. how loci impact biological pathways to promote disease.

Here, we describe the approaches used in MAGIC, what we have learned about the

genetic architecture of glycaemic traits and T2D itself, and how we see future

genomic studies further refining disease aetiology.

3.1 Genetic Association Studies: From Diabetes

to Quantitative Glycaemic Traits

The advent of genome-wide association studies (GWASs) in 2007 quickly

transformed the landscape of complex disease genetics. Prior to 2007, genetic

variation at three loci [KCNJ11, PPARG, and TCF7L2 (Hani et al. 1998; Altshuler
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et al. 2000; Grant et al. 2006)] had been robustly associated with type 2 diabetes

(T2D). Within the first year of GWAS, this number had more than quadrupled to

13 (Zeggini et al. 2007; Sladek et al. 2007; Saxena et al. 2007; Steinthorsdottir

et al. 2007; WTCCC, 2007; Scott et al. 2007), although these variants were of

relatively small effect (odds ratios of ~1.1–1.4 per risk allele) and explained only a

small proportion of the genetic contribution to T2D risk. It was recognised that

these small effect sizes would necessitate large sample sizes for their identification,

and large, international consortia were formed to investigate the genetic basis of

complex disease. Furthermore, it was identified that some loci associated with T2D

increased risk via diverse pathways. For example, variants in the FTO gene were

associated with T2D (WTCCC, 2007), although this association was identified to be

secondary to the primary association of these variants with adiposity (Frayling

et al. 2007). This suggested that a complementary approach of studying the genetic

basis of T2D-related quantitative glycaemic traits, such as fasting glucose (FG),

would be informative. Such phenotypes were felt to relate to in vivo physiology

more closely, had been precisely measured, and it was hypothesised that their

genetic dissection would lead to clearer insights into disease pathophysiology.

Fasting glucose had been shown to be heritable in family studies (Snieder

et al. 1999), and prior to GWAS approaches, specific genetic variants in the

glucokinase gene (GCK) had been shown to influence FG levels (Weedon

et al. 2006). Early GWAS efforts replicated these findings (Bouatia-Naji

et al. 2008; Chen et al. 2008) and identified other highly biologically plausible

genes including G6PC2 (see Chap. 17) and GCKR (see Chap. 16) associated with

FG levels (Scott et al. 2007; Bouatia-Naji et al. 2008; Vaxillaire et al. 2008; Orho-

Melander et al. 2008) highlighting the utility of the GWAS approach in elucidating

the genetic aetiology of glycaemia. Thus, theMeta-Analysis ofGlucose and Insulin-
related traits Consortium (MAGIC), a large-scale international collaboration, was

formed to investigate the genetic bases of quantitative glycaemic traits including

fasting glucose and insulin as well as post-challenge phenotypes.

Although the diagnosis of T2D is based on either fasting or post-challenge

hyperglycaemia, it likely encompasses individuals with many different types of

disease. T2D is a complex disease that typically develops as a result of impaired

beta-cell function, insulin resistance, or a combination of both. Indeed, T2D often

develops when beta-cell function is insufficient to maintain normoglycaemia in the

face of obesity-induced insulin resistance. Thus, improved understanding of the

underlying pathophysiology of T2D in each affected person might lead to better

disease sub-classification and potentially improved or more targeted treatments.

Identifying genetic loci that influence glycaemic traits, which are tightly regulated

within each individual, presented a potential avenue for disease sub-classification

and exploration of disease pathophysiology. Fasting or 2h glucose levels after an

oral glucose tolerance test are also associated with future cardiovascular disease,

even below the diabetic threshold, further highlighting the independent utility in

understanding their regulation in nondiabetic individuals. Indeed, it has been

suggested that there are distinct aetiologies among individuals diagnosed with

T2D on the basis of either fasting glucose or 2h glucose (Færch et al. 2013), with

2h glucose concentrations more strongly associated with cardiovascular risk than
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fasting glucose levels (DECODE Study Group, the European Diabetes Epidemiol-

ogy Group, 2001). Recently, glycated haemoglobin (HbA1c) has been proposed as

an additional diagnostic measure of T2D (Farmer 2012), as it reflects average

glycaemia over the preceding 120 days and also predicts future vascular compli-

cations (Khaw et al. 2004). Further, insulin resistance, often closely associated with

obesity, is an important risk factor for T2D, and understanding its genetic basis, and

that of its more widely available surrogate measures such as fasting insulin (FI) and

insulin resistance by homeostasis model assessment [HOMA-IR (Matthews

et al. 1985)], may also provide clues of how various loci impact T2D risk.

MAGIC was therefore established to garner power from large-scale meta-analyses

of GWAS of glycaemic traits in persons without T2D to improve our understanding

of glucose homeostasis. While a diagnosis of T2D is likely to result in a number of

changes: lifestyle, anthropometric, and metabolic, by studying the genetic basis of

quantitative traits in individuals free from T2D, we can minimise the effect of these

potential confounding factors resulting from disease and its treatment and begin to

dissect individual pathophysiological pathways to T2D. More sophisticated pheno-

types, such as measures of proinsulin, data from insulin or glucose clamps, or

longitudinal follow-up, are generally harder to obtain in large epidemiological

settings; therefore, GWASs of these phenotypes have been more limited. However,

they do provide significant additional utility to dissect disease pathways, as

discussed further below (Sect. 3.2.5).

3.2 Genetic Associations with Glycaemic Traits

3.2.1 Early GWAS Approaches to Fasting Glucose
and Fasting Insulin

The first effort from MAGIC focused on FG levels and described a novel associ-

ation with the MTNR1B locus (encoding the melatonin receptor 1B), where the

glucose-raising allele also increased T2D risk (Prokopenko et al. 2009). The same

locus was independently identified in French individuals without diabetes (Bouatia-

Naji et al. 2009) and soon after validated in individuals of Finnish (Sabatti

et al. 2009) and Indian Asian descent (Chambers et al. 2009). More recently, loss

of function mutations inMTNR1B were associated with T2D, implicatingMTNR1B
as the causal gene in the association region and suggesting that GWASmay identify

loci in which independent rare variants (not tagged by common alleles) further

contribute to disease heritability (Bonnefond et al. 2012). Functional follow-up

work on this locus is described in more detail in Chap. 21. Among these initial

GWASs, variants near DGKB-TMEM195 (Sabatti et al. 2009) were also associated

with fasting glucose. In independent work, a variant in IRS1 (encoding insulin

receptor substrate 1) was associated with T2D risk, hyperglycaemia, and also

fasting insulin (FI) and HOMA-IR (Rung et al. 2009).
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3.2.2 Large-Scale Genome-Wide Collaboration in MAGIC

Soon after, MAGIC efforts were expanded to include a genome-wide discovery

sample size of over 45,000 nondiabetic participants for fasting glucose and to

include surrogate measures of beta-cell function including homeostasis model

assessment (HOMA-B). This aided identification of a further nine loci (in or near

ADCY5,MADD, ADRA2A, CRY2, FADS1,GLIS3, SLC2A2, PROX1, and C2CD4B)
associated with FG, increasing the total number of loci to 16 (Dupuis et al. 2010)

(Table 3.1). This effort also identified the association of known T2D genes TCF7L2
and SLC30A8 with FG. This expanded effort also included fasting insulin (FI) and

HOMA-IR. While the discovery sample size for FI was broadly comparable

(N¼ 38,238) to that for FG (N¼ 46,186), only two genome-wide significant asso-

ciations were identified: a novel locus near IGF1 and GCKR, where the FG-raising
allele was also associated with higher fasting insulin. In parallel, analyses of 2h

glucose were also performed (Saxena et al. 2010). However, fewer studies had

measured 2h glucose, and as such, the sample size was smaller (N¼ 15,224) and

subsequently yielded fewer associations, namely, those with TCF7L2, GCKR,
GIPR, ADCY5, and VPS13C (Table 3.1). While four of these loci were associated

with fasting traits, the variants in GIPR were identified to have an association with

glycaemic traits for the first time. GIPR encodes the receptor for gastric inhibitory

polypeptide (GIP), an incretin hormone secreted from the gut, which potentiates

insulin secretion in response to oral glucose challenge above and beyond that in

response to an intravenous glucose challenge. This association with 2h glucose

highlighted the role of genetic variation in the incretin pathway in impaired glucose

tolerance.

3.2.3 Alternative Approaches to Unravel the Genetic Control
of Glycaemic Traits

A surprising finding of the MAGIC effort was the discrepancy in the number of loci

associated with FG compared to only two identified for FI. While it has been

suggested that the heritability of insulin resistance, a trait for which FI is a

commonly used proxy, is lower than that for insulin secretion (Prudente

et al. 2009), estimates typically suggest that up to half of the variation in insulin

resistance is attributable to genetic factors (Poulsen et al. 2005). It was speculated

that the fewer FI associations detected might be due to a different genetic architec-

ture of this trait (e.g. perhaps the variants influencing FI had lower allele frequen-

cies or smaller effect sizes). However, another possibility was considered, namely,

that the effect of body mass index (BMI) on each of these traits might influence the

results obtained. While FG is weakly associated with BMI (Scott et al. 2012a),

insulin levels are strongly associated with BMI (Reaven 1988), therefore a MAGIC

effort was undertaken to account for differences in BMI in these genetic
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associations (Manning et al. 2012). An approach was applied to jointly meta-

analyse the association of genetic variants with glycaemic traits, adjusted for

BMI, as well as their interaction with BMI. This approach identified six previously

unidentified associations with FI, including variants in or near LYPLAL1, COBLL1-
GRB14, IRS1, PDGFC, UHRF1BP1, and PPP1R3B (Table 3.1). This effort also

identified another seven loci to be associated with FG (Table 3.1) (Manning

et al. 2012).

One of the major challenges of GWAS is the stringent levels of statistical

significance that have to be reached in order to overcome the burden of multiple

testing arising from the number of single nucleotide polymorphisms (SNPs) tested.

Considering one million independent tests, it follows that a SNP must reach

p< 5� 10�8 (0.05/1,000,000) to be considered a significant association. The con-

ventional approach is that the most promising SNPs in the discovery stage are

genotyped de novo in additional replication samples to maximise the opportunity to

reach this stringent level of association. The limited capacity and high per-unit cost

for de novo genotyping meant that only the top loci were routinely followed up and,

as such, it was likely that some “real” associations remained among SNPs not

previously selected for replication. In order to address this challenge and leverage

the large amount of data generated in GWAS, an ambitious update to the experi-

mental design was undertaken. MAGIC and other consortia collaborated with

Illumina to design the Illumina Cardio-MetaboChip (Voight et al. 2012), an

iPLEX custom-array with approximately 200,000 markers designed to facilitate

cost-effective and large-scale replication and fine-mapping of loci influencing

cardiometabolic traits. The chip comprised the most promising loci from the

discovery phase association analyses from a range of cardiometabolic traits and

disease outcomes including anthropometric (Speliotes et al. 2010; Heid et al. 2010),

glycaemic (Dupuis et al. 2010; Saxena et al. 2010), and lipid (Teslovich et al. 2010)

traits, as well as T2D (Voight et al. 2010). This experimental design allowed an

expanded analysis within MAGIC, including up to 133,010 individuals and 66,000

variants that were suggestively associated with cardiometabolic traits. This

approach identified or confirmed 20 additional loci for FG and 17 for FI relative

to the initial MAGIC discovery effort from which the follow-up list was compiled

(Dupuis et al. 2010), as well as another 4 loci for 2h glucose (Scott et al. 2012b)

(Table 3.1). Of these 53 nonoverlapping loci, 33 were also associated with T2D

(Morris et al. 2012).

3.2.4 HbA1c

HbA1c has recently been proposed as a useful diagnostic marker of diabetes

(Farmer 2012), as it reflects average glycaemia over the life of the erythrocyte

(~3 months). This means that day-to-day variability of the measure is lower than

that for fasting or 2h glucose. An additional advantage of HbA1c is that it does not

require the participant to be fasted before measurement and may, therefore, be more
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feasible in large population-based studies. The potential for larger sample sizes,

required for successful GWAS, means this is a promising alternative to unravel the

genetic basis of T2D and related traits. Initial loci associated with HbA1c levels

were first identified by earlier approaches focused on other glycaemic traits

(G6PC2 and MTNR1B) (Bouatia-Naji et al. 2008, 2009), and the first HbA1c

GWAS, performed in over 14,000 women, confirmed previously established

glycaemic loci (GCK, G6PC2, and SLC30A8) and identified a novel association

at HK1 (Paré et al. 2008). Subsequent studies by MAGIC in up to 46,368 individ-

uals identified six novel associations with HbA1c and extended the number of

genome-wide significant associations to ten (Soranzo et al. 2010) (Table 3.1). As

expected, many previously identified glycaemic and T2D risk loci also have effects

on HbA1c, though not all reach genome-wide significance levels (Paré et al. 2008;

Franklin et al. 2010).

While HbA1c is a valid marker of glycaemia, it is known that a number of

medical conditions, including hereditary anaemias and iron storage disease, change

erythrocyte number and turnover and affect glycated haemoglobin levels (Coban

et al. 2004; Roberts et al. 2005). By leveraging information gleaned from GWAS

for blood traits (Soranzo et al. 2009), the role of HbA1c-associated loci in both

glycaemic and haematological parameters could be investigated. Of the ten loci

associated with HbA1c, seven harbour rare mutations that cause hereditary anae-

mias or iron storage disease. Analyses of HbA1c associations adjusted for FG and

haematological traits suggested that these seven loci were likely to affect HbA1c

levels via non-glucose-mediated pathways (Soranzo et al. 2010). Further, the other

three loci (G6PC2, GCK, and MTNR1B) are the only ones to have shown associ-

ation with other glycaemic traits in recent meta-analyses (Scott et al. 2012b). This

posed the question of whether loci influencing HbA1c through their effect on

haematological traits might lead to diabetes misdiagnosis, if HbA1c were to be

used as a diagnostic measure. However, the degree of diabetes misclassification due

to variation in the levels of HbA1c influenced by common variants mediating their

effect via non-glycaemic pathways was estimated to be low (Soranzo et al. 2010).

3.2.5 Detailed Phenotypes and Indices of Insulin Secretion

While isolated fasting and 2h measures of glycaemia represent widely available and

useful approximations to the major components of glucose homeostasis, their

correlation with “gold-standard” estimates of insulin secretion or sensitivity can

be modest (Muniyappa et al. 2008; Hanson et al. 2000). The ratio of circulating

proinsulin relative to circulating insulin is elevated in T2D and reflects reduced

beta-cell secretory capacity (Røder et al. 1998) or impaired early insulin processing.

Indeed, several of the T2D-associated loci known to impact beta-cell function show

associations with proinsulin/insulin ratio (Ingelsson et al. 2010; González-Sánchez

et al. 2008; Dimas et al. 2013). Proinsulin levels are available in some
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epidemiological cohorts, which enabled GWAS of proinsulin adjusted for fasting

insulin (essentially equivalent to the ratio, but more amenable to statistical ana-

lyses) (Strawbridge et al. 2011). Nine variants at eight loci were associated with

fasting proinsulin including highly plausible biological candidates, such as a mis-

sense variant in PCSK1 (which encodes prohormone convertase 1, the key enzyme

in the early processing of proinsulin to insulin). Previously identified variants

associated with T2D and thought to influence beta-cell function also showed

associations with proinsulin levels (Strawbridge et al. 2011). A known variant at

ARAP1 showed an interesting pattern of association, being associated with lower

proinsulin levels as well as higher fasting glucose, lower beta-cell function, and

higher T2D risk. This result runs counter to the observed epidemiological associ-

ations, is suggestive of an early impairment in the proinsulin processing pathway,

and illustrates that both elevated and reduced proinsulin levels relative to FI can

signal beta-cell stress. A risk score comprising these nine loci was not associated

with coronary artery disease (CAD), arguing against a direct role for proinsulin in

the aetiology of CAD, despite the observational epidemiological associations

(Zethelius et al. 2002), and further demonstrating the utility of studying intermedi-

ary quantitative traits to aid causal inference (Chap. 26).

A recent effort focusing on rare and low-frequency coding variation associated

with proinsulin levels (adjusted for insulin) identified low-frequency,

nonsynonymous variants in SGSM2 and MADD to be associated with insulin

processing (Huyghe et al. 2013). Notably, these variants had a larger effect size

than those reported previously for common variants: each allele being associated

with a difference of >0.3 standard deviations. Further, the identification of coding

variants in these genes lends support to these being the causal genes underlying

previously identified associations at these loci. This effort also identified three

novel associations with low-frequency variants for proinsulin processing pheno-

types and insulinogenic index (a measure of early insulin secretion) (Table 3.1)

(Huyghe et al. 2013), as well as three loci which showed aggregate gene-level

associations of low-frequency nonsynonymous variants with proinsulin, including

one at ATG13, which had not previously been identified.

A recent GWAS investigating the determinants of early insulin secretion iden-

tified variants in the GRB10 gene (encoding growth factor receptor-bound protein

10) and seven other previously reported glycaemic loci to be associated with

reduced glucose-stimulated insulin secretion (GSIS) (Prokopenko et al. 2014).

While variants in GRB10 had previously been associated with FG, follow-up

analyses in this effort suggested a parent-of-origin effect, where the maternally

inherited alleles showed association with GSIS, while the paternally inherited

alleles did not. Furthermore, results actually suggested opposite directions of effect

on FG for alleles dependent on their parental origin which, while difficult to

reconcile with previous findings, may explain the absence of association of these

variants with T2D and highlight additional complexity worth consideration when

investigating the genetic basis of glycaemic traits.
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3.3 What Insights Have We Gained from These Studies?

3.3.1 Biological Insights

Most loci associated with glycaemic traits are represented by a lead SNP with no

known functional consequence, often being intergenic or intronic. Recent analyses

focusing on coding variants have identified some associations with missense var-

iants (Huyghe et al. 2013), but these remain in the minority. This makes immediate

functional interpretation of these findings less tractable, but recent advances in

understanding the tissue-specific regulatory function of the non-coding genome

(Dunham et al. 2012) show promise in interrogating genetic associations. A recent

study identifying genomic sequences with regulatory function in pancreatic islet

cells showed that loci previously associated with FG were enriched for these

regulatory sequences (Pasquali et al. 2014). Indeed, loci associated with FG showed

more enrichment than those associated with T2D, again highlighting the value of

studying quantitative traits to minimise heterogeneity in the observed associations.

From these genetic studies, specific pathways and processes linked to glycaemic

traits are beginning to emerge. Observational epidemiological data previously

demonstrated circadian rhythms in metabolic parameters (Boden et al. 1996a, b),

while this rhythmicity is impaired in T2D (Polonsky et al. 1988). In addition, Clock
and Bmal1 mutant mice show impaired glycaemic control (Turek et al. 2005;

Bunger et al. 2000), while ablation of pancreatic rhythmicity in these genes leads

to diabetes (Marcheva et al. 2010). However, the association ofMTNR1B and CRY2
with FG provided the first human genetic evidence for this link, and subsequent

studies in human islets highlighted the differential expression of CRY2 in islets

from individuals with T2D (Stamenkovic et al. 2012). Also, and while the causal

variants are still unknown, a number of loci influencing glycaemic traits are very

proximal to classical candidate genes with a role in glucose metabolism or insulin

secretion and processing, such as SLC2A2 (encoding the glucose transporter two),

GCK, GCKR, and PCSK1, as well as transcription factors with a role in pancreas

development including PDX1 and FOXA2 (Jonsson et al. 1994; Gao et al. 2008).

While these associations highlight genes known to be associated with glycaemic

control, such findings also highlight the utility of glycaemic traits to identify highly

plausible genes and suggest that many of the genes identified with unknown

function are likely to have similarly important roles in glycaemic control, which

are as yet uncharacterised. The identification of a number of “classical” genes with

a plausible role in glycaemia contrasts with T2D loci where many of the underlying

genes and pathways were previously unanticipated and of broad importance

(e.g. cell cycle regulation) (Morris et al. 2012).

While insulin resistance is a major risk factor for T2D (Reaven 1988), few loci

associated with T2D are implicated in mediating their effect on T2D via insulin

resistance (Ingelsson et al. 2010; Dimas et al. 2013). As discussed, loci associated

with fasting insulin were less tractable to GWAS (Dupuis et al. 2010). Adjustment

for BMI aided in the identification of more SNPs associated with insulin resistance
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(Manning et al. 2012; Scott et al. 2012b). This was at least in part attributable to

removing the variance in fasting insulin attributable to BMI, as evidenced by the

reduced variance estimates for the effect sizes (Scott et al. 2012b). While fasting

insulin is an imperfect measure of insulin resistance, we noted that of the 19 loci

associated with fasting insulin, 10 were associated with a dyslipidaemic profile of

elevated triglycerides and lower HDL, a hallmark of insulin resistance. The iden-

tification of FTO as being associated with fasting insulin, an association entirely

mediated by BMI, highlights the positive epidemiological association between BMI

and fasting insulin. Also, several of these loci were associated with a higher waist-

hip ratio, indicative of a tendency to store fat centrally, another trait strongly

associated with insulin resistance (Kahn et al. 2006). However, we also noted that

some of these loci were associated with lower BMI (Scott et al. 2012b), which runs

counter to the observed epidemiological evidence. It is likely, therefore, that these

associations were masked in previous analyses, at least in part due to negative

confounding by BMI. One such locus was IRS1, which had previously been

identified to be associated with body fat percentage although the body-fat-lowering

allele was associated with increased risk of T2D and CAD (Kilpeläinen et al. 2011).

These intriguing, and apparently paradoxical, associations highlight the novel

insights that the study of T2D-related quantitative traits can bring. For example,

loci such as IRS1 and GRB14 have no demonstrable association with fasting

glucose, yet are associated with fasting insulin and dyslipidaemia, indicative of

an effect on insulin resistance (Fig. 3.1).

3.3.2 From Biology to Disease and Vice Versa

Although few of the loci associated with T2D were characterised as influencing

insulin resistance (Dimas et al. 2013). Among the 19 loci with genome-wide

significant associations with FI, 13 were associated with T2D ( p< 0.05) (Scott

et al. 2012b). Thus the study of quantitative traits can bring additional, and more

precisely focused, insights into the aetiology of T2D. Indeed, even among those loci

now associated with T2D at genome-wide significance, many were first uncovered

through studies focused on glycaemic traits (e.g.MTNR1B, ADCY5, PROX1, GCK,
GCKR, GIPR, and DGKB-TMEM195). Of 53 loci associated with FG, FI, or 2h

glucose, 33 are associated with risk of T2D ( p< 0.05) (Scott et al. 2012b), although

only 14 are at genome-wide levels of significance for both glycaemic traits and

T2D. Another utility of identifying genetic variants associated with quantitative

traits is the opportunity to use these as instrumental variables to understand the

causal role of a range of risk factors in T2D (De Silva et al. 2011; Li et al. 2011), as

described further in Chap. 26. While the major route to diagnosis of T2D is a

measurement of fasting glucose, there is a poor correlation between the effect size

on FG and the magnitude of association with T2D. Indeed some of the loci

associated with FG at genome-wide significance have no discernible association

with T2D (e.g. G6PC2, FADS1, MADD) (Scott et al. 2012b; Morris et al. 2012)
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(Fig. 3.1). Given the vast sample sizes in these analyses, it is unlikely that these

discordant associations are driven completely by lack of power to detect them;

rather that those loci which influence variation in FG among healthy individuals are

not inevitably associated with disease. Alternatively, they may highlight unknown

pleiotropic associations where the associations with FG are counteracted by other

associations which reduce risk of T2D through some other pathway, as has been

snp locus Fas�ng Glucose Fas�ng Insulin 2h Glucose Triglycerides
rs10203174 THADA
rs10278336 GCK
rs10401969 CILP2
rs10811661 CDKN2A/B
rs10830963 MTNR1B
rs10842994 KLHDC5
rs10923931 NOTCH2
rs11063069 CCND2
rs1111875 HHEX/IDE
rs11257655 CDC123/CAMK1D
rs11634397 ZFAND6
rs11717195 ADCY5
rs12427353 HNF1A (TCF1)
rs12571751 ZMIZ1
rs12899811 PRC1
rs12970134 MC4R
rs13233731 KLF14
rs1359790 SPRY2
rs1496653 UBE2E2
rs1552224 ARAP1 (CENTD2)
rs163184 KCNQ1
rs17168486 DGKB
rs17791513 TLE4
rs1801282 PPARG
rs2075423 PROX1
rs2261181 HMGA2
rs243088 BCL11A
rs2796441 TLE1
rs2943640 IRS1
rs3802177 SLC30A8
rs3923113 GRB14
rs4402960 IGF2BP2
rs4458523 WFS1
rs459193 ANKRD55
rs516946 ANK1
rs5215 KCNJ11
rs6795735 ADAMTS9
rs6878122 ZBED3
rs7177055 HMG20A
rs7202877 BCAR1
rs7756992 CDKAL1
rs780094 GCKR
rs7845219 TP53INP1
rs7903146 TCF7L2
rs7955901 TSPAN8/LGR5
rs8108269 GIPR

HDL-cholesterol LDL-cholesterol BMI

P<5x10-8

P<0.0001
P<0.01
P<0.05
P>0.05
P<0.05
P<0.01

P<0.0001
P<5x10-8

rs849135 JAZF1
rs9936385 FTO

T2D risk allele associated with higher levels of lookup trait

T2D risk allele associated with lower levels of lookup trait

Fig. 3.1 T2D loci and their association with FG, FI, 2hGlu, and other metabolic traits
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suggested for GIPR, where the 2h glucose-raising allele is associated with lower

BMI, largely mitigating the increased risk of T2D.

An advantage of studying quantitative traits is the ability to highlight particular

aetiological pathways to disease through follow-up of loci associated with T2D via

close collaboration between MAGIC and the T2D consortium (DIAGRAM). Initial

follow-up of those loci involved testing the association of SNPs including those

associated with T2D with a range of detailed quantitative traits and highlighted the

considerable heterogeneity in the associations they displayed with traits including

insulin secretion, processing, and sensitivity (Ingelsson et al. 2010). A more recent

approach sought to take an objective hierarchical clustering approach on loci

associated with T2D at genome-wide levels of significance (Voight et al. 2010)

by identifying clusters of SNPs displaying distinct patterns of association with

quantitative traits (Dimas et al. 2013). This approach identified four main clusters:

insulin resistance, hyperglycaemic, proinsulin, and beta cell. Interestingly, fewer

than half of the 37 SNPs tested were classified into one of the four defined clusters,

highlighting that a diverse range of aetiological pathways can lead to the

hyperglycaemia common to a diagnosis of T2D (Ingelsson et al. 2010; Dimas

et al. 2013). This work highlights the diverse range of pathways that can lead to

T2D and also leaves the question of why many SNPs were not associated with any

of these traits. It is intriguing that the majority of variants did not cluster into a

particular category; yet whether this reflects type II error or these SNPs are

associated with T2D through other, as yet unknown mechanisms, is unclear.

3.4 Where Do We Go from Here?

Genetic approaches have allowed major advances in understanding the genetic

aetiology of T2D and variance in glycaemic traits since the advent of genome-

wide technologies. Indeed, while some of the loci identified are proximal to

prominent drug targets for T2D (Plenge et al. 2013), the identification of ~100

further loci causally implicated in the aetiology of T2D suggests that they may have

the potential to uncover the drug targets of tomorrow. Recent work on rheumatoid

arthritis has employed a range of bioinformatics techniques including

characterising eQTLs and other functional annotation to identify candidate genes

in associated loci. Their approach also showed evidence of enrichment of associ-

ation in genes encoding drug targets and identified treatments for other diseases

which may represent candidates for repositioning (Okada et al. 2013). However, a

number of steps are required for this goal to become a plausible reality for

glycaemic associations. For example, while most genetic associations map to loci

containing multiple potentially functional genes, a major step in understanding the

nature of the associations is to identify the causal genes. While compelling evidence

exists for some of these loci (KCNJ11, TCF7L2, SLC30A8, GCK, GCKR), the
majority are uncertain. This is further complicated by the observation that the

most of these associations are in non-coding elements of the genome. The recent
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report of a variety of previously unrecognised functional roles for these non-coding

elements via the ENCODE project (Dunham et al. 2012), and the observation that

the downstream functional mediators of these associations may be quite distal to the

associated SNP (Sanyal et al. 2012), offers both promise to understand the nature of

these associations (Trynka and Raychaudhuri 2013) and caution that understanding

these associations will be challenging (Smemo et al. 2014) (Chaps. 15–21). Regard-

less, a useful first step in this process is fine-mapping association signals to a high

degree of resolution to allow more refined functional follow-up. These efforts are

described in more detail in Chap. 6.

While over 100 individual loci are associated with T2D and related quantitative

traits to date, the SNPs typically explain less than 5 % of the variance in quantitative

glycaemic traits (Scott et al. 2012b) or T2D risk (Morris et al. 2012). This suggests

that a large number of loci are yet to be uncovered. A range of approaches is being

employed to uncover these loci, including imputation to higher density reference

panels to cover more of the variation in the genome (Abecasis et al. 2012; Marchini

J on behalf of the HC 2013), newer generation arrays designed to target

low-frequency and rare coding variation (Huyghe et al. 2013), and targeted

(Flannick et al. 2014), whole exome (Albrechtsen et al. 2013), and genome-

sequencing efforts (Steinthorsdottir et al. 2014). Recent work (Scott et al. 2012b;

Morris et al. 2012) suggests that a large number of individual loci remain to be

discovered among those not currently reaching genome-wide significance, and with

increasing sample sizes, further loci will be uncovered. However, it is likely that the

development of alternative modelling approaches accounting for environmental

factors, epistasis, or disease stratification will help to exploit the currently available

data and aid future discovery efforts. In addition, with newer sequencing technol-

ogy that brings the aspiration for the $1000 genome closer to reality (Check Hayden

2014), the large sample sizes needed to uncover additional lower-frequency vari-

ants with modest allele frequency and effect size (Agarwala et al. 2013; Zuk

et al. 2014) will be more attainable. Indeed large-scale sequencing efforts are

now planned within existing healthcare systems bringing these approaches directly

to the clinic (http://www.genomicsengland.co.uk/), which are likely to yield addi-

tional knowledge on the allelic architecture of disease in the forthcoming years.
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Chapter 4

Genome-Wide Association Studies (GWAS)

of Adiposity

Erik Ingelsson and Tuomas O. Kilpeläinen

Abstract Adiposity is strongly heritable and one of the leading risk factors for type

2 diabetes, cardiovascular disease, cancer, and premature death. In the past 8 years,

genome-wide association studies (GWAS) have greatly increased our understand-

ing of the genes and biological pathways that regulate adiposity by identifying more

than 100 novel susceptibility loci for overall adiposity and more than 70 loci for

body fat distribution. The results for overall adiposity highlight a significant

neuronal component, whereas loci regulating body fat distribution demonstrate a

central role for adipocyte biology and insulin resistance in the pathophysiology.

The effect sizes of all identified loci are small, and even in aggregate, they explain

<3 % of the variance in each adiposity trait. This and other evidence suggest that

numerous new loci will be identified in extended meta-analyses in the future. The

translation of the new discoveries into clinical care remains a major challenge. As

the first step, further studies are required to establish the causal genes and variants

and to disentangle the exact physiological mechanisms underlying each genotype-

phenotype association.

4.1 Introduction

Since the advent of the genome-wide association study (GWAS) approach in

complex disease genetics, some of the most extensive collaborations utilizing the

method have focused on adiposity traits. Most recently, meta-analyses of adiposity
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The Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic

Genetics, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen,

Denmark

e-mail: tuomas.kilpelainen@sund.ku.dk

© Springer International Publishing Switzerland 2016

J.C. Florez (ed.), The Genetics of Type 2 Diabetes and Related Traits,
DOI 10.1007/978-3-319-01574-3_4

91

mailto:tuomas.kilpelainen@sund.ku.dk


GWAS have amassed>300,000 samples from up to 125 studies (Locke et al. 2015;

Shungin et al. 2015). Such large-scale efforts have been motivated by (1) the major

impact of adiposity on public health and in particular its strong link to type

2 diabetes, the incidence of which is currently increasing in a pandemic manner

(WHO 2000; Zimmet et al. 2001); (2) the evident heritability of obesity of ~40 %

(Hemani et al. 2013) and the poor success in identifying genetic susceptibility loci

before the GWAS era (Li and Loos 2008); and (3) the availability of the simple,

noninvasive adiposity measurements in most epidemiological studies, which has

enabled GWAS investigators to collect very large sample sizes for meta-analyses.

Most GWAS of adiposity traits have focused on overall adiposity (assessed as

BMI, weight divided by height squared) that has a strong link to morbidity and

mortality (WHO 2000; Pischon et al. 2008). However, the genetic basis of body fat

distribution (often assessed by measuring waist and hip circumferences and their

ratio) has raised additional interest because of the well-documented association

between intra-abdominal fat and elevated risk of metabolic and cardiovascular

diseases, beyond that of overall adiposity (Pischon et al. 2008).

Since 2006, meta-analyses of GWAS have identified more than 100 loci for

overall adiposity and more than 70 loci for fat distribution. These discoveries have

given valuable novel insights into the genetic architecture of adiposity, which may

ultimately open up new avenues for the prevention of obesity and its related

comorbidities. In this chapter, we will review these recent discoveries, discuss

their biological and public health significance, and reflect on the prospects for the

next few years.

4.2 GWAS of Overall Adiposity

4.2.1 The First Discoveries: FTO and MC4R

The first discovery of a locus regulating overall adiposity was made in 2007 when

three separate GWAS identified variants in the first intron of the FTO gene as being

unequivocally associated with BMI (Frayling et al. 2007; Scuteri et al. 2007;

Hinney et al. 2007). The initial discovery of FTO did not, however, occur in a

GWAS of an adiposity trait, but in a GWAS of type 2 diabetes. This study identified

a common variant in the first intron of the FTO gene to be highly significantly

associated with type 2 diabetes, but adjustment for BMI abolished the association,

indicating that the association was mediated through increased adiposity (Frayling

et al. 2007). The association of FTO with BMI was replicated in 38,759 adults and

children, where each risk allele of the FTO variant increased adult BMI by

0.34–0.46 kg/m2 (~1 kg of body weight) and the variant explained 0.34 % of the

interindividual variance in BMI (Frayling et al. 2007). Two other studies, including

a GWAS of BMI among 4741 Sardinians (Scuteri et al. 2007) and a GWAS of

early-onset extreme obesity in 487 cases and 442 healthy lean controls (Hinney
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et al. 2007) confirmed FTO as the first locus robustly associated with common

adiposity.

In addition to FTO, the three initial GWAS of adiposity traits took forward

several other variants, but none of these initial discoveries were replicated in

subsequent analyses suggesting that larger sample sizes were required to identify

additional adiposity loci. Consequently, an extensive collaboration between scien-

tists from Europe and the USA was initiated, and the first meta-analysis of the

Genomic Investigation of ANthropometric Traits (GIANT) consortium was

published in 2008. By combining GWAS data from 16,876 adults of European

descent and with a replication in additional 60,000 adults, the consortium reported a

novel BMI signal 188 kb downstream ofMC4R, a very obvious candidate gene due
to its role in the hypothalamic regulation of food intake and whose mutations were

known to be the most common source of monogenic obesity (Loos et al. 2008;

Huszar et al. 1997; Farooqi et al. 2003).

4.2.2 Extended Meta-Analyses Identify 100 New BMI Loci

The number of known BMI loci increased drastically in 2009 when two large-scale

GWAS meta-analyses were carried out by the GIANT consortium and deCODE

genetics. GIANT used data from 32,387 adults of European descent to identify six

novel BMI loci in or near the NEGR1, TMEM18, SH2B1, KCTD15, GNPDA2, and
MTCH2 genes (Willer et al. 2009). At the same time, deCODE genetics carried out

an independent GWAS meta-analysis of 31,392 adults of mainly Icelandic origin,

which identified four of the loci discovered by the GIANT consortium while also

identifying four additional new loci in or near the SEC16B, ETV5, BDNF, and
BCDIN3D genes (Thorleifsson et al. 2009).

In 2010, the third meta-analysis of the GIANT consortium was published, this

time involving 123,865 individuals of European ancestry at the genome-wide stage

with a follow-up of the strongest signals in 125,931 additional adults (Speliotes

et al. 2010). This meta-analysis confirmed all 12 loci identified in previous studies

and enabled the identification of 20 novel BMI-associated loci (Fig. 4.1). In

aggregate, the 32 confirmed BMI loci explained 1.45 % of the interindividual

variation in BMI (Speliotes et al. 2010).

The discoveries of BMI loci in GWAS of individuals of European ancestry were

followed by large-scale meta-analyses in populations of non-European ancestry, in

whom the differing allele frequencies and effect sizes may facilitate the discovery

of novel adiposity loci. Indeed, in 2012, two large GWAS meta-analyses of South-

Asian populations with genome-wide sample sizes of 26,620 and 27,715 individ-

uals discovered four novel loci in or near the CDKAL1, KLF9, PCSK1, and GP2
genes (Wen et al. 2012; Okada et al. 2012). A year later, a meta-analysis of 39,144

men and women of African ancestry with replication in 32,268 Africans identified a

new locus in GALNT10. Furthermore, when the African-ancestry data were meta-

analyzed with the data of 123,865 white European adults from the meta-analysis of
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the GIANT consortium (Speliotes et al. 2010), another novel locus was identified

near the NFE2L3 gene (Monda et al. 2013) thus raising the total number of

identified BMI loci to 38.

In 2013, yet another novel adiposity locus, TOMM40, was identified in a meta-

analysis utilizing a gene-centric array of 49,320 SNPs across ~2100 metabolic and

cardiovascular-related loci in 108,912 adults of European, African-American, His-

panic, or East Asian ancestry (Guo et al. 2013).

The most recent meta-analysis from the GIANT consortium, published in 2014,

included 236,231 individuals with genome-wide data and 103,047 individuals

genotyped with the Metabochip—a custom-selected genotyping array designed to

cover the loci that fell just below genome-wide significant thresholds in previous

GWAS of anthropometric and metabolic traits (Locke et al. 2015; Voight

et al. 2012). Of the 339,226 individuals that were included in this meta-analysis,

322,154 were of European descent and 17,072 of non-European descent. A meta-

analysis of the European-ancestry individuals identified 77 loci reaching genome-

wide significance (Fig. 4.1). Ten additional loci were identified when including the
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Fig. 4.1 Sample size of the discovery stage (number of individuals with genome-wide data) and

the new loci identified in the GIANT consortium meta-analyses of individuals of European descent

for BMI in 2008 (Loos et al. 2008), 2009 (Willer et al. 2009), 2010 (Speliotes et al. 2010), and

2015 (Locke et al. 2015) and for BMI-adjusted waist-hip ratio (WHR adj. BMI) in 2010 (Heid

et al. 2010) and 2015 (Shungin et al. 2015)
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non-European-descent individuals and 10 further loci in stratified analyses (3 loci in

men, n¼ 152,893; 3 loci in women, n¼ 171,799; and 4 loci in population-based

studies, n¼ 209,521). The total number of loci with a genome-wide significant

association with BMI in this meta-analysis thus reached 97, of which 56 were novel

and 41 had been identified in previous meta-analyses of adiposity traits (Monda

et al. 2013; Berndt et al. 2013; Kilpelainen et al. 2011; Guo et al. 2013; Speliotes

et al. 2010; Bradfield et al. 2012).

In summary, GWAS meta-analyses of adult populations have discovered

102 loci to be associated with BMI. These findings have been highly significant

and reproducible in large populations, but the effect sizes of all loci are tiny. The

more recently identified loci generally have lower minor allele frequency and/or

smaller effect sizes than the loci identified in the early meta-analyses and explain a

smaller proportion of variance in BMI. In total, the 97 loci identified in the latest

GIANT paper (Locke et al. 2015) explain 2.7 % of the variance in BMI in adults of

white European descent (Fig. 4.2).

4.2.3 GWAS of Body Fat Mass and Fat Percentage

Although BMI is a good indicator of overall adiposity and disease risk, it cannot

distinguish between lean and fat body mass. The identified BMI loci may thus

increase BMI by regulating either the level of body fat mass, body lean mass, or

both. Studies of more specific measures of adiposity, including body fat mass or

body fat percentage (fat mass/weight), assessed with dual-emission X-ray absorp-

tiometry (DEXA) or bioelectrical impedance analysis, may therefore be helpful in

disentangling genetics of adiposity.

In 2011, a GWAS meta-analysis of body fat percentage, measured with DEXA

or bioimpedance, in 36,626 individuals of European (n¼ 29,069) or Indian-Asian

(n¼ 7557) descent and a follow-up in 39,576 additional individuals of European
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Fig. 4.2 Cumulative variance explained by the 97 BMI loci identified in Locke et al. (2015) and

49 BMI-adjusted waist-hip ratio loci in Shungin et al. (2015). The loci are ordered by the

proportion of the phenotypic variance explained with the loci explaining largest proportion of

variance on the left and the loci explaining smallest proportion of variance on the right

4 Genome-Wide Association Studies (GWAS) of Adiposity 95



ancestry confirmed FTO as an adiposity locus but also reported two novel loci

associated with body fat percentage near the IRS1 and SPRY2 genes (Kilpelainen

et al. 2011).

In 2013, a meta-analysis of 10,196 individuals of mainly European ethnicity and

a follow-up in 3923 individuals of European ancestry and 2740 Hans Chinese

identified a novel locus in the CTSS gene associated with DEXA-measured fat

body mass while adjusting for lean body mass (Pei et al. 2013).

4.3 GWAS of Extreme Obesity

The reasons for using samples of extremely obese individuals when searching for

new adiposity loci include the assumptions of larger effect sizes with resulting

higher statistical power per individual included, greater genetic contribution to trait

variance, enrichment of highly penetrant variants, and lower locus heterogeneity.

The definitions of extreme obesity have typically been based on fixed levels of

BMI, such as clinically established cut points for obesity class II (BMI>¼35) or

class III (BMI>¼40) or on relative cut points based on the BMI distribution, such

as >99th percentile of BMI. Studies have included children and adolescents

(Hinney et al. 2007; Scherag et al. 2010; Bradfield et al. 2012; Wheeler

et al. 2013), adults (Cotsapas et al. 2009; Jiao et al. 2011; Paternoster et al. 2011;

Wang et al. 2011; Berndt et al. 2013), or both children and adults (Meyre

et al. 2009) in their discovery stages.

The earliest GWAS of extreme obesity, published in 2007–2011, were based on

a relatively small number of extremely obese cases (less than 1500 individuals in

the discovery stage) and normal-weight controls. As a result, these studies had

limited statistical power and most either failed to report any statistically significant

loci (Hinney et al. 2007); reported only known adiposity loci, such as FTO orMC4R
(Cotsapas et al. 2009; Scherag et al. 2010; Wang et al. 2011); or reported loci that

have proven difficult to replicate in further studies, such as KCNMA1 (Jiao

et al. 2011). Meyre and colleagues included 1380 individuals with early-onset

and morbid adult obesity and 1416 age-matched normal-weight controls with

follow-up in 14,186 additional individuals. In addition to FTO and MC4R, they
reported three new risk loci: NPC1, PTER, andMAF (Meyre et al. 2009). NPC1 and
PTER have been replicated in later studies (Berndt et al. 2013), while it still remains

uncertain whetherMAF represents a false-positive or a population-specific finding.

In 2011, a study of 2633 individuals drawn from the extremes of the BMI

distribution and 2740 controls from two very large Danish cohorts reported

genome-wide significant associations with FTO, MC4R, FAIM2, and TFAP2B, all
previously known adiposity loci (Paternoster et al. 2011). Bradfield and colleagues

used a slightly less extreme definition of childhood obesity (>95th percentile of

BMI) and increased the sample size to 5530 cases and 8318 controls (<50th

percentile of BMI), which resulted in two new loci that reached genome-wide

significance when combined with the replication stage, OLFM4 and HOXB5
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(Bradfield et al. 2012). Both loci showed evidence of association in two extreme

childhood obesity cohorts, as well as in the GIANT meta-analysis of adult BMI

published in 2010 (Speliotes et al. 2010).

In 2013, a study of 1509 children with severe early-onset obesity (BMI standard

deviation score (SDS)> 3 and onset of obesity before the age of 10 years) and 5380

controls with follow-up in additional 971 severely obese children and 1990 controls

identified 4 new loci associated with severe obesity (LEPR, PRKCH, PACS1, and
RMST) (Wheeler et al. 2013). They also reported a significant burden of rare, single

CNVs in severely obese cases. Integrative gene network pathway analysis of rare

deletions indicated enrichment of genes affecting G protein-coupled receptors

involved in the neuronal regulation of energy homeostasis.

In the same issue of Nature Genetics, the GIANT consortium presented their

study of extreme obesity conducted in a sampling frame of up to 168,267 individ-

uals with follow-up in up to 109,703 additional individuals (Berndt et al. 2013).

Using relative cut points (upper vs. lower 5th percentiles of body mass index), as

well as clinical classes of obesity, they found seven new loci (HNF4G, RPTOR,
GNAT2, MRPS33P4, ADCY9, HS6ST3, ZZZ3) associated with clinical classes of

obesity. Further, using various methods, they showed that there is a large overlap in

terms of genetic structure and distribution of variants between traits based on the

extremes and the general population and little etiologic heterogeneity between

obesity subgroups. The seven novel loci showed a consistent direction of effect

and a similar effect size in five studies that applied other ascertainment strategies

for defining extremely obese; and conversely, out of the 13 loci previously associ-

ated with extreme obesity, only MAF and KCNMA1 failed to show evidence of

association in the GIANT study. They also performed systematic comparisons of

the genetic inheritance and distribution of SNPs between the tails and full distri-

bution, which indicated that (a) effect sizes observed in tails and those expected

based on the overall distribution were similar and (b) genetic determinants for the

tails were similar to those for the full distribution and that common variant loci

contribute to extreme phenotypes.

In summary, current knowledge implies that common genetic variation associ-

ated with extreme forms of obesity is overlapping with that of overall BMI to a

large degree. Also, while some common variants can have larger effects in the

extremes, these effects as a whole are not larger than expected based on the effects

in the overall distribution. A strategy with selection of individuals from the

extremes for genetic analyses is a cost-effective approach that will reveal loci

that are likely to be relevant and largely generalizable to the full population. That

said, the sample sizes needed to reveal true novel loci are still substantial, as

evidenced by the earliest GWAS of extreme obesity, which were underpowered

to robustly detect novel loci.
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4.4 GWAS of Body Fat Distribution

Increased abdominal fat is a risk factor for cardiovascular disease and type 2 dia-

betes, independent of overall adiposity (Wang et al. 2005; Canoy 2008), whereas

the accumulation of gluteal subcutaneous fat may be protective (Snijder et al. 2003;

Yusuf et al. 2005). Therefore, in addition to studies of overall adiposity, it is

important to unravel the genetic basis of body fat distribution. Most commonly,

fat distribution is assessed by waist and hip circumference and their ratio. A larger

waist circumference or waist-hip ratio indicates relatively more abdominal fat

whereas a larger hip circumference or smaller waist-hip ratio indicates relatively

greater gluteal fat accumulation. However, as these measures are strongly corre-

lated with overall adiposity, recent studies have adjusted circumference-based

measures for BMI. Other GWAS have focused on computer tomography-based

measures of fat distribution to give a more direct and precise measurement of the

visceral and subcutaneous fat tissue compartments (Fox et al. 2007).

4.4.1 Discovery of the First Fat Distribution Loci

In 2009, the GIANT consortium carried out its first GWAS meta-analysis of waist

circumference and waist-hip ratio, including 38,580 adults of European ancestry

with follow-up in 70,689 additional adults (Lindgren et al. 2009). Two loci were

found to be robustly associated with waist circumference, TFAP2B and MSRA. In
addition, a locus near the LYPLAL1 gene was associated with waist-hip ratio, but

only in women. At the same time, a meta-analysis of the Cohorts for Heart and

Aging Research in Genomic Epidemiology (CHARGE) consortium for waist cir-

cumference, including 31,373 individuals of European ancestry and a replication in

the GIANT consortium meta-analysis, identified a novel locus in the NRXN3 gene

(Heard-Costa et al. 2009). Each of the four loci identified in these first meta-

analyses were, however, also highly significantly associated with BMI. This

suggested that the loci do not only affect fat distribution but also overall adiposity,

which was expected due to the strong phenotypic correlation of waist and hip

circumferences with BMI (Lindgren et al. 2009; Heard-Costa et al. 2009).

To identify loci that are more purely associated with fat distribution rather than

overall adiposity, GWAS meta-analyses published since 2010 have mainly focused

on BMI-adjusted waist-hip ratio. This measure provides a relative comparison of

central and subcutaneous fat compartments after accounting for overall adiposity.

The 2010 meta-analysis from the GIANT consortium in 77,167 adults of European

ancestry with follow-up of the strongest findings in 113,636 adults identified

13 novel loci associated with BMI-adjusted waist-hip ratio, along with the previ-

ously identified signal in the LYPLAL1 gene (Heid et al. 2010) (Fig. 4.1). Interest-

ingly, seven of the 14 loci showed a stronger association in women than in men,

whereas the other 7 loci showed a similar magnitude of association in both sexes.
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Waist circumference is a good proxy for visceral adiposity and increased disease

risk, but it is not able to discriminate between visceral and subcutaneous adipose

tissue. More refined phenotypes for fat distribution may help to identify novel loci

associated with specific adipose tissue compartments. In 2012, a GWAS of abdom-

inal adipose tissue depots, assessed with computed tomography in 5560 women and

4997 men, identified the known waist-hip ratio locus in the LYPLAL1 gene to be

associated with the ratio of visceral fat to abdominal subcutaneous fat (Fox

et al. 2012). Furthermore, a novel locus near the THNSL2 gene was associated

with visceral fat in women, but not in men.

In 2013, a locus in the TMCC1 gene was identified to be associated with waist-

hip ratio adjusted for BMI in a meta-analysis utilizing a gene-centric array of

49,320 SNPs across ~2100 metabolic- and cardiovascular-related loci (Guo

et al. 2013).

4.4.2 Sex and Ethnicity-Specific Meta-Analyses Identify
Additional Loci

The findings of pronounced sexual dimorphism for many of the loci regulating fat

distribution led to a focused meta-analysis of sex differences in anthropometric

traits within the GIANT consortium (Randall et al. 2013). In 2012, this

sex-stratified GWAS meta-analysis of up to 60,586 men and 73,137 women with

follow-up in 62,212 men and 74,657 women identified seven loci with sex-specific

effects, including four of the previously established loci for waist-hip ratio adjusted

for BMI (COBLL1, LYPLAL1, VEGFA, ADAMTS9) but also two novel loci near the
HSD17B4 and PPARG genes and a novel locus for BMI-adjusted waist circumfer-

ence nearMAP3K1. All seven loci were genome-wide significant in women but not

in men. Interestingly, no loci showed strong sex differences in body weight, BMI,

or hip circumference.

There is also wide variation in body fat distribution between ethnic groups (Lear

et al. 2010), encouraging genetic studies of fat distribution traits in individuals of

non-European ancestry. In 2008, a GWAS of 2684 Indian-Asians with a replication

in 11,955 individuals of Indian-Asian or European ancestry identified the same

MC4R locus that has been associated with BMI in European-ancestry individuals,

to be associated with waist circumference (Chambers et al. 2008). In 2009, a

GWAS meta-analysis of 8842 Korean individuals and a replication in 7861 addi-

tional Koreans identified a locus near the C12orf51 gene to be associated with

waist-hip ratio (Cho et al. 2009). In these two studies, the associations were not

adjusted for BMI and the findings could thus be explained by association with

overall adiposity. More recently, GWAS of BMI-adjusted traits in up to 33,591

individuals of African ancestry identified a locus in LHX2 for waist circumference

adjusted for BMI and a locus in RREB1 for waist-hip ratio adjusted for BMI (Liu

et al. 2013).
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4.4.3 Extended Meta-Analyses Identify 51 New Loci
for Waist- and Hip-Related Traits

The most recent meta-analysis of the GIANT consortium for waist- and hip-related

traits, published in 2015, pooled data from 224,459 individuals, of whom 142,762

had genome-wide data and 81,697 had been genotyped with the Metabochip

(Shungin et al. 2015; Voight et al. 2012). Of the Metabochip-genotyped individuals,

14,371 were of non-European ancestry. Meta-analysis of waist-hip ratio adjusted

for BMI identified 49 loci, of which 32 were new and 17 were already known

(Fig. 4.1). Again, the results emphasized strong sexual dimorphism in the genetic

regulation of fat distribution, with 19 loci showing significantly stronger effects in

women and only one locus showing a stronger effect in men, and supported by

higher heritability of these traits in women (Shungin et al. 2015). The 49 SNPs

explained 1.36 % of the variance in WHR adjusted for BMI overall (Fig. 4.2). In

meta-analyses of other BMI-adjusted and unadjusted waist and hip measures,

19 additional loci were identified, of which seven for BMI-adjusted waist circum-

ference, six for BMI-adjusted hip circumference, three for unadjusted hip circum-

ference, and three for unadjusted waist-hip ratio.

In summary, the GWAS of fat distribution traits have identified 75 independent

loci in recent years. These results have demonstrated that the genetic regulation of

fat distribution is largely distinct from the mechanisms regulating overall adiposity.

Furthermore, the strong pattern of sexual dimorphism that is seen for the genetic

loci regulating body fat distribution has not been observed for loci regulating

overall adiposity.

4.5 Many Obesity Loci from GWAS: What to Make Out

of It?

4.5.1 Pathways Implicated by Adiposity Loci

It is becoming clear that overall obesity as assessed by BMI and body fat distribu-

tion as assessed by BMI-adjusted waist-hip ratio are driven by different and largely

non-overlapping biological pathways. As highlighted already in the first study of

BMI by the GIANT consortium in 2009, neuronal pathways are central to the

development of overall obesity (Willer et al. 2009). Several of the first loci found

to be associated with BMI were indeed suggested to act through the central nervous

system (CNS), as well as to be highly expressed in the brain and often in the

hypothalamus. The important role of the CNS for obesity development was further

detailed in the subsequent GIANT paper on BMI in 2010 (Speliotes et al. 2010),

where several lead variants mapped near key hypothalamic regulators of energy

balance. In the most recent study on BMI by the GIANT consortium (Locke

et al. 2015), an enrichment in gene expression of BMI-associated loci was seen
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not only in the hypothalamus and pituitary gland, important for appetite regulation

and implicated in earlier work, but even more clearly in the hippocampus and

limbic system—tissues that are important for functions such as learning, cognition,

and emotion. This study also reported strong enrichment for gene sets associated

with CNS, such as synaptic function, long-term potentiation, and neurotransmitter

signaling, including glutamate signaling, norepinephrine, dopamine, and serotonin

release cycles. Examples of CNS-related genes within BMI loci include ELAVL4,
GRID1, CADM2, NRXN3, NEGR1, SCG3, PCDH9, TAOK2, and STX1B that are

implicated in synaptic function, cell-cell adhesion, or glutamate signaling (Locke

et al. 2015). There is evidence also for other mechanisms being involved in overall

obesity coming from GWAS on BMI, as exemplified by the intriguing GIPR
locus—GIPR is the receptor of GIP, an incretin that stimulates insulin release

potently in the presence of orally ingested glucose (Speliotes et al. 2010). Also,

gene set analyses have shown enrichment for mechanisms such as energy metab-

olism, polyphagia, secretion and action of insulin and related hormones, and MTOR

signaling (involved in cell growth after nutrient intake via insulin and growth

factors) (Locke et al. 2015). That said, there is now strong evidence that genetic

determinants of overall obesity primarily derive from neuronal tissues and

pathways.

This is in contrast to the genetics underlying body fat distribution, which seems

to be driven by processes related to insulin and adipocyte biology. Gene set

enrichment analyses of BMI-adjusted waist-hip ratio have highlighted gene sets

involved in body fat regulation (including adiponectin signaling, insulin sensitivity,

and regulation of glucose levels), skeletal growth, transcriptional regulation, and

development (Shungin et al. 2015). Among these gene sets, there are several that

are specific for metabolically active tissues including the adipose, heart, liver, and

muscle—tissues that also showed higher expression of genes within loci associated

with BMI-adjusted waist-hip ratio. Examples of specific pathways that are associ-

ated with body fat distribution include the VEGF and PTEN signaling pathways.

VEGF signaling has a central role in angiogenesis, insulin resistance, and obesity

(Elias et al. 2013), while phosphatase and tensin homolog (PTEN) signaling has

been shown to promote insulin resistance (Pal et al. 2012). In the recent paper from

the GIANT consortium (Shungin et al. 2015), the 49 BMI-adjusted waist-hip ratio

loci were examined for overlap with regulatory elements from the ENCODE and

RoadMap Epigenomic data. The strongest enrichments were seen for enhancer

activity in the adipose, muscle, endothelial cells, and bone, suggesting that variation

in loci involved in body fat regulates transcription in these tissues and cells. Taken

together, current evidence highlights the central role of genes, pathways, and tissues

involved in adipocyte metabolism and insulin resistance as being central for body

fat distribution.
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4.5.2 Associations of Adiposity Loci with Other
Cardiovascular and Metabolic Traits

As expected, loci that have been discovered for their association with BMI or

BMI-adjusted waist-hip ratio are also associated with other cardiovascular and

metabolic traits more than expected by chance. Specifically, both BMI and

BMI-adjusted waist-hip ratio loci are often associated with high-density lipoprotein

cholesterol, triglycerides, type 2 diabetes, and insulin (Locke et al. 2015; Shungin

et al. 2015). BMI loci also showed directionally consistent effects on age at

menarche, while several BMI-adjusted waist-hip ratio variants were strongly asso-

ciated with low-density lipoprotein cholesterol or adiponectin. These observations

emphasize the common pathophysiology between adiposity and cardiometabolic

traits; however, based on GWAS data, it is not possible to disentangle whether this

represents pleiotropy or underlying causal relations between adiposity and other

traits.

There are also several adiposity loci which show effects in directions opposite to

what would be expected based on known observational trait correlations. One such

locus contains GIPR, the incretin receptor, where the BMI-increasing allele is

associated with higher fasting glucose levels and lower 2-h glucose levels after an

oral glucose challenge (Speliotes et al. 2010). GIP was originally called gastric

inhibitory polypeptide, but more recently it has been referred to as the glucose-

dependent insulinotropic polypeptide, since it has been shown to be an incretin

hormone with similar effects as the other main incretin hormone, GLP-1, i.e.,

increasing release of insulin from the pancreas in response to high levels of glucose

or fat in the duodenum (Speakman 2013). Mice with disruption of Gipr show higher

glucose and an impaired early insulin response, which is consistent with the incretin

function, as well as resistance to diet-induced obesity. These data suggest that GIP

and GIPR have an important role in the utilization of ingested nutrients by increas-

ing insulin secretion, stimulation of fat uptake in adipocytes, and adipogenesis.

Consequently, variants in GIPR that are associated with increased incretin effect

should increase adiposity as well as insulin secretion, with resulting lower 2-h

glucose.

Another intriguing locus is IRS1, where the BMI-increasing allele is associated

with a beneficial cardiovascular risk profile (less dyslipidemia, lower fasting insu-

lin, and higher adiponectin) and lower risk of coronary heart disease, type 2 diabe-

tes, and diabetic nephropathy (Locke et al. 2015). The BMI-increasing variant is in

perfect LD with a variant that has been associated with increased body fat percent-

age (and improved cardiovascular risk profile), but also with a higher ratio of

subcutaneous adipose tissue to visceral adipose tissue in men (Kilpelainen

et al. 2011). This suggests that the BMI-increasing and body fat percentage-

increasing alleles increase subcutaneous deposition of fat, leading to lower visceral

and ectopic fat accumulation and more beneficial cardiometabolic profile.

Other examples of loci with unexpected effect directions include HHIP (where

the BMI-increasing allele is associated with decreased risk of type 2 diabetes and
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higher high-density lipoprotein cholesterol) and TCF7L2 (where the

BMI-increasing allele is associated with reduced risk of coronary heart disease

and type 2 diabetes and decreased fasting glucose, 2-h glucose, and total cholesterol

levels) (Locke et al. 2015). However, further studies are needed in order to

disentangle these associations, especially in light that there is quite convincing

data indicating that the association of the TCF7L2 diabetes risk allele with adiposity
is driven by ascertainment bias (Stolerman et al. 2009).

4.5.3 Functional Follow-Up of Adiposity Loci

To be able to fully appreciate the new adiposity loci arising from GWAS, there is a

need for mechanistic studies to understand the pathophysiology in detail. However,

before any such studies can be undertaken, the first step is to establish the causal

genes and variants from the GWAS loci as they usually contain many genes, several

of which are good candidates. One approach to search for the causal variants is fine-

mapping of GWAS loci. Using data from both European and non-European

populations genotyped on the Metabochip (Voight et al. 2012), the GIANT con-

sortium managed to narrow the genomic regions and decrease the number of SNPs

in the regions that were likely to contain the causal variant in 10 BMI and 17 -

BMI-adjusted waist-hip ratio loci that were fine-mapped on the Metabochip (Locke

et al. 2015; Shungin et al. 2015). For example, these analyses narrowed the SEC16B
and FTO loci (BMI) and the HOXC13 locus (BMI-adjusted waist-hip ratio) to

include a single SNP (see Chap. 20 for more details on FTO and fine-mapping).

Future fine-mapping efforts using more ethnically diverse study samples and more

complete panels of variation are likely to narrow GWAS signals further, as will

other fine-mapping approaches including resequencing projects. Other approaches

attempting to establish causal variants and genes include analyses of functional

variants, as well as eQTL analyses. Such analyses have been employed in large

consortium papers (Speliotes et al. 2010; Heid et al. 2010; Locke et al. 2015;

Shungin et al. 2015), resulting in lists of genes that are more likely to be causal

within the GWAS loci. As an example, there are two BMI-associated loci which

harbor copy number variants (CNVs): a 45-kb deletion near NEGR1 (Willer

et al. 2009) and a 21-kb deletion 50 kb upstream of GPRC5B (Speliotes

et al. 2010). Even if correlations of lead variants from GWAS loci with plausible

functional variants or eQTLs cannot ultimately prove that these are the causal

variants and genes, they provide good clues and form a basis for functional

follow-up studies.

Since the adiposity loci uncovered by GWAS were established only in the past

few years and since the causal genes are not unequivocally established for most

loci, the functional aspects of the absolute majority of adiposity loci are still not

well understood. The first adiposity locus that was established from GWAS was the

FTO locus, and although the exact function of the protein encoded by the fat mass
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and obesity-associated gene (FTO) is still unknown, there has been some progress

in the past years (see Chap. 20).

Also the second locus to be established for adiposity, the melanocortin-4 recep-

tor (MC4R) locus, is well characterized—primarily since loss-of-function variants

inMC4R were already known to cause monogenic obesity (Yeo et al. 1998; Vaisse

et al. 1998). Mc4r-deficient mice are characterized by hyperphagia,

hyperinsulinemia, hyperglycemia, and mature-onset obesity (Huszar et al. 1997).

The MC4R is expressed on the surface of neurons in the arcuate nucleus of the

hypothalamus and is activated by the alpha-melanocyte-stimulating hormone

[a cleavage product of proopiomelanokortin (POMC)] leading to appetite-

decreasing effects (De Jonghe et al. 2011). For other adiposity loci identified in

GWAS, the level of mechanistic understanding is lower. Some of the loci that were

established in 2009 (De Jonghe et al. 2011) are better understood, such as SH2B1,
NEGR1, and ETV5 (Speakman 2013), but for most loci that have been discovered

thereafter, there is still much research to be done before we can harvest the fruits of

GWAS of adiposity.

4.6 Future Avenues in Obesity Genetics

The GWAS methodology has been extremely successful in identifying novel loci

associated with adiposity and other complex traits. This means that we now have a

large number of loci robustly associated with adiposity traits that need further

investigation using a range of methodologies, as well as a large number of samples

that have been genotyped on GWAS microarrays that can be utilized for additional

studies. We have summarized some of our suggestions of where the field may be

moving in the next few years in Fig. 4.3.

In terms of follow-up of the already established adiposity loci, the first step is to

establish the causal genes and variants, as discussed above. Apart from fine-

mapping methods using GWAS data with denser catalogues of variation [e.g., the

1000 Genomes Project (Abecasis et al. 2012) or UK10K (Muddyman et al. 2013)],

along with more ethnically diverse samples and improved imputation methods,

resequencing approaches can also provide evidence for causal variants and genes.

Such projects can be targeted at the known adiposity loci or can use whole-exome

sequencing data to assess rarer variation that may not be well-tagged by GWAS

arrays. Another approach addressing rare variation in the exomes is to use the

HumanExome BeadChip (Grove et al. 2013), a microarray that has been designed

based on exome and whole-genome sequencing projects to allow for cost-effective

mapping of exonic variation in large study samples. Other methods to identify

causal variants include eQTL studies (where associations of gene variants from

GWAS are studied in relation to gene transcripts from the region), targeted prote-

omics (where proteins encoded by genes in the GWAS loci are studied in relation to

outcome), and large-scale screening in model systems (such as yeast, Drosophila
melanogaster (fruit fly), or human cells).
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Once the causal genes have been identified, the next step should be to undertake

mechanistic studies to understand the pathophysiology underlying the genotype-

phenotype association. Here, we refer to mechanistic studies in its broadest sense,

and the methods can vary from in vitro model systems, to in vivo model systems, to

further studies in humans. Often, it will be beneficial to combine several of these

approaches to achieve a more complete understanding, as the methods are comple-

mentary. Genomic editing in cell cultures as well as in animal model systems is a

very useful tool to study the effect of overexpression or knockdown of a certain

gene and allows for detailed studies of specific gene variants, as well as tissue-

specific effects. Animals used for in vivo systems have traditionally often been

rodents, but given the large number of loci to follow-up and the advent of high-

throughput techniques in new fields, more and more groups are turning to simpler

model systems such as Caenorhabditis elegans (roundworm), Drosophila
melanogaster, and Danio rerio (zebrafish), sometimes as an intermediate step

before proceeding to rodent models. Overall, since the targets have first been

identified in human studies, this represents a translation-back translation approach,

which may be more successful in informing human medicine than studies that are

based entirely on animal model systems where findings sometimes have been

proven difficult to translate to humans. Mechanistic studies in humans often utilize

more detailed phenotypes than in the original GWAS, for example, computer

tomography-determined fat distribution or longitudinal studies with repeated phe-

notype assessments, but can also involve combinations with other -omics data, such
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as transcriptomics, epigenomics, proteomics, metabolomics, or metagenomics.

Other examples of human studies that can further characterize gene function are

interventions with pharmaceutical agents or genotype-based recall studies, where

individuals with certain genotypes are selected from a large population and

re-invited for detailed physiological examinations and/or functional studies.

As noted, there are a large number of samples that have already been genotyped

on GWAS microarrays that can be utilized for additional studies, for example,

gene-environment or gene-gene interaction studies, pathway analyses, gene-based

analyses, studies of pleiotropy, or studies of other phenotypes than the phenotype

for which the study was originally initiated. The large number of new GWAS loci

together with genotyped samples also provides us with new and improved tools for

studies of risk prediction (see Chap. 23) as well as causality using Mendelian

randomization (see Chap. 26). Finally, even if the number of loci robustly associ-

ated with adiposity and other complex traits is already large, there is overwhelming

evidence that there are even more loci out there to find (Locke et al. 2015; Shungin

et al. 2015; Wood et al. 2014). Since the potential biological value is not likely to be

lower with the decreasing effect sizes or minor allele frequencies of variants that

can be discovered with larger sample sizes, there are good reasons to perform even

larger GWAS meta-analyses than those that have already been performed. Since

there are several very large genotyping efforts ongoing, for example, within the UK

Biobank (Manolio et al. 2012) where 500,000 participants are being genotyped with

a GWAS microarray, we can rest assured that there will be additional large GWAS

meta-analyses which most likely will report a substantial number of new loci in the

next few years to come.

4.7 Conclusions

In the past 8 years, GWAS have been tremendously successful in increasing our

understanding of the genetic basis of adiposity with more than 100 novel suscep-

tibility loci identified for overall adiposity and more than 50 loci for body fat

distribution. Each susceptibility locus, however, confers only a small effect, and

even in aggregate the loci explain <3 % of the variability in each adiposity trait.

Nevertheless, these genetic discoveries have already provided invaluable new

insights into the biological mechanisms and pathways that underlie adiposity, and

numerous new loci are likely to be identified in extended GWAS meta-analyses in

the future. However, it is now crucial to increasingly focus on the translation of

novel discoveries into clinical care. The presence of hundreds of loci robustly

associated with adiposity presents the scientific community with unparalleled

opportunities for groundbreaking discoveries in the next decade to come.
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Chapter 5

Sequencing Approaches to Type 2 Diabetes

Jeffrey W. Kleinberger and Toni I. Pollin

Abstract Rapid advancement and decreasing costs of DNA sequencing techno-

logies have yielded great strides in improving our understanding of the genetic

etiology of human disease, including type 2 diabetes (T2D). The state of the science

of sequencing in human disease has progressed from being largely restricted to

single-gene disorders, to elucidating common variants conferring susceptibility to

common diseases, and most recently to the cataloging of rare variants involved in

common diseases. Sanger sequencing, DNA amplification, and microarrays pro-

vided early insights into the genetic architecture of type 2 diabetes, but the

establishment of massively parallel sequencing platforms has accelerated the pro-

cess. There are several different platforms, including Illumina, Pacific Biosciences,

and Ion Torrent technologies. Each platform has its own specific strengths and

weakness, and proper quality control and variant-calling techniques are crucial for

accurate sequencing data. The high-throughput capabilities of these technologies

have allowed population-based sequencing projects, such as the 1000 Genomes

Project, to create repositories of human genomic variation. Genetic variants first

associated with T2D were discovered through sequencing a number of candidate

genes, with PPARG and KCNJ11 yielding variants with consistent enough associ-

ation to be established universally as the first two T2D susceptibility genes.

Variants in the HNF4A pancreatic-specific P2 promoter and TCF7L2 gene were

both discovered through sequencing of linkage signals. Genome-wide association

studies have found many T2D-associated regions, but a limited amount of sequenc-

ing has been performed to follow up these studies with limited numbers of causal

variants being discovered. The growth of massively parallel sequencing has led to
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the generation of comprehensive sequencing across the exome and genome of large

numbers of individuals with T2D in projects such as the T2D-GENES consortium.

These data will provide the enhanced understanding of the genetic architecture of

T2D necessary for improving approaches to the prevention and treatment of T2D.

5.1 Introduction

All discovery of genetic variants begins with DNA sequencing. In the pre-Human

Genome Project era, the focus of human disease genetics was on finding the genetic

cause of Mendelian diseases or diseases where there is a clear and near-perfect

relationship between genetic variation and phenotypic variation. Then the gene

would be cloned and sequenced in affected individuals to find disease-causing

variants. Next, a number of healthy individuals including relatives of affected

individuals would be studied to make sure those variants were specific to the

disease.

In the common disease era, a group with a particular interest in the role of a

candidate gene in a common disease, based on prior knowledge of that gene’s

function, would sequence a small number of individuals to find what variant(s)

occurred naturally in the coding region of the gene. The investigators would then

genotype that variant(s) in a number of individuals with and without the disease or

in group of individuals with appropriate quantitative phenotypes. They would then

look for genotype/phenotype associations. Once the variants in a particular gene

were published, other groups would seek to replicate the association of the common

variant with the same disease after genotyping specific variants only. Such non-

sequencing-based approaches became increasingly feasible after the completion of

the Human Genome Project and with the dawning of dbSNP and other related

resources that followed, including HapMap. HapMap revealed the correlation

between SNPs and thus made it possible to reduce the number of SNPs that needed

to be genotyped in order to get equivalent information.

More recently, 1000 Genomes and other publicly available datasets are begin-

ning to provide comprehensive information on genetic architecture. The latter was

enabled by the evolution of next-generation or massively parallel sequencing

technologies. However, the databases still do not obviate the interest in sequencing

within individual populations, which allows for the possibility of discovery of

novel, rare variants in single individuals or small numbers of individuals.
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5.2 Overview of Sequencing Technologies

5.2.1 Sanger Sequencing

DNA sequencing was first performed in 1977 and has created a scientific revolution

as a result. The first method of sequencing, called Sanger sequencing after discov-

erer Frederick Sanger, utilized primer-based replication of template DNA with both

natural nucleotides and chain-terminating dideoxynucleotides to create differently-

sized fragments (Sanger et al. 1977). By tagging the dideoxynucleotides and

aligning the fragments by size through electrophoresis, the sequence of the template

DNA could be uncovered. This process could initially sequence DNA fragments of

up to 200 base pairs (bp), but has been optimized to accurately sequence 1000 bp

with current technology (e.g., Applied Biosystems 3730xl DNA Analyzer: http://

www6.appliedbiosystems.com/products/abi3730xlspecs.cfm). Sanger sequencing

is still considered the most accurate method to obtain and validate DNA sequence.

5.2.2 PCR/YAC/Genome Project

The invention of the polymerase chain reaction (PCR) and discovery of yeast

artificial chromosomes (YACs) in the 1980s paved the way for larger scale

sequencing studies (Murray and Szostak 1983; Mullis et al. 1986). PCR uses

DNA polymerase and thermal cycling to exponentially amplify DNA. This process

greatly improved the speed and output of previous sequencing techniques. The

discovery of YACs allowed larger fragments of DNA (up to 1 Mbp) to be carried

and transported into cells. The YACs paved the way for bacterial artificial chro-

mosomes (BACs), which can more stably carry about 200 Kbp DNA (O’Connor et

al. 1989). These techniques allowed the Human Genome Project to sequence the

entire human genome using a technique called “chromosome walking” (Kere et al.

1992). This technique used Sanger sequencing to perform sequential DNA analysis

along a fragment of human DNA that had been incorporated into a BAC. This

process was repeated for thousands of BACs that together contained the entirety of

the human genome. This painstaking and expensive process produced the first

reference human genome in 2003 (Schmutz et al. 2004; International Human

Genome Sequencing Consortium 2004).

5.2.3 Arrays

While the Human Genome project was in its early days, microarray technology was

beginning to emerge as a potential tool for genetic studies (Fodor et al. 1991). DNA

microarrays are single chips that can carry hundreds to millions of genetic markers
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across the genome. An individual’s DNA can be fragmented and bound to the

genetic markers of a DNA microarray to determine the individual’s DNA sequence

at those markers. It provides a low-resolution framework of the identity of regions

of the genome (Dupuis et al. 1995). This greatly pushed forward the capabilities of

position-dependent cloning of genes and provided a general roadmap for the entire

genome.

5.2.4 Massively Parallel Sequencing

In the mid-1990s, massively parallel sequencing, or next-generation sequencing,

first became a possibility with the inception of the pyrosequencing method of

sequencing (Nyren 2007). Massively parallel sequencing uses many independent

sequencing operations on amplified input DNA to simultaneously determine the

DNA sequence through the use of a flow cell. Pyrosequencing uses emulsion PCR

to amplify the target DNA and bind the amplified region to many beads. In the

presence of primers and polymerase, each of the four nucleotides is flowed over the

beads. If the nucleotide matches the target DNA and is incorporated, it will release a

pyrophosphate molecule that can be detected through a luciferase reaction. The

output of the pyrosequencing reaction is the sequence of the amplified DNA, as

aggregated from the parallel sequencing events of each of the beads (Gharizadeh et

al. 2006). This platform became commercially available in 2005, popularized by

Roche’s 454 platform. In 2011, Ion Torrent released a sequencing platform that

uses a similar sequencing method. Ion Torrent uses the same emulsion PCR, bead

attachment, and nucleotide flow system, but the proton released from the polymer-

ase incorporation of the flowed nucleotide is the molecule that is detected through a

pH monitoring system (Rothberg et al. 2011). However, the most prominent

sequencing platform in the field is Illumina and their sequencing-by-synthesis

method (Mardis 2013). This platform uses short-read shotgun sequencing. Short-

read sequencing allows Illumina to use paired-end sequencing that amplifies input

DNA using a bridge-amplification technique that creates fragments of equal length

that represent a “scaffold” of a known distance separating two sequencing reads.

Each end of the fragment is sequenced using a polymerase with cyclic reversible

terminators and fluorescently labeled nucleotides. As each nucleotide is polymer-

ized to the growing strand, the elongation process is stopped as the fluorescence of

the nucleotide is detected by a laser before the process may proceed for addition of

the subsequent nucleotide (Mardis 2013). This process allows much greater

throughput and the paired-end sequencing data can be more easily assembled.

Another recently introduced technology is single molecule, real-time sequencing

(SMRT). This system has a suspended polymerase molecule that circularized input

DNA is read through in the presence of fluorescent nucleotides. As the nucleotides

are added, the fluorescence is detected before being cleaved off the molecule (Eid et

al. 2009). This technology, found in Pacific Bioscience’s sequencing platform,

allows much longer reads than any other system currently available (Quail et al.
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2012). There is also much anticipation with the future of sequencing technology

moving into nanopore sequencing techniques. These methods push input DNA

through a single pore with a voltage bias. As the different nucleotides are passed,

the residual pore current is altered to different levels, which provide the identity of

the nucleotides (Buermans and den Dunnen 2014). The continued evolution of

DNA sequencing technology promises to continue to explode the scale of human

genetic sequencing.

5.2.5 Advantages and Disadvantages of Each Platform

With the growing types of sequencing platforms available, it is important to take

into account the strengths and weaknesses of each. Illumina is the most popular

platform, mainly due to its high throughput and lower overall cost per data output

(Liu et al. 2012). Illumina also boasts the first FDA-approved next-generation

sequencing platform for clinical use in the lower throughput MiSeqDx (FDA

2015). Additionally, they offer the HiSeq X Ten, a platform that is advertised as

having the capacity to sequence a human genome for under $1000 (Check 2014).

However, Illumina platforms have difficulty with substitution errors and the short

sequencing reads can have difficulties in long repetitive elements of DNA (Liu et al.

2012). The Pacific Bioscience’s platform solves the problems associated with short

reads by having a read length of several thousand Kbp; however, it has the most

common error rate and difficulty calling indels, especially in homopolymer regions

(Quail et al. 2012). An interesting strength of Pacific Bioscience is that it does not

need PCR amplification prior to sequencing (Liu et al. 2012). Pyrosequencing

platforms like 454 or Ion Torrent also have difficulty calling indels and homopol-

ymer regions. Each platform has its strengths though, with 454’s low error rate and

Ion Torrent’s rapid runtime (Frey et al. 2014).

5.2.6 Quality Control and Variant Calling

After sequencing has been performed, it is important for proper quality control

procedures to remove all low-quality data. This process carries a great deal of

importance for massively parallel sequencing because the large amount of data

produced ensures that there will also be a larger amount of low-quality data that

needs to be removed. Sequencing data provides quality scores for each base, and

this information is stored in the raw sequencing data. If the reads’ average quality

score is below the QC threshold, those reads will be removed completely through

filtering. Each individual read is also assessed for low-quality bases that need to be

trimmed from the ends of the read (Pabinger et al. 2014). Factors such as total reads,

filtered reads, trimmed reads, and average read length all constitute important

components that can describe the quality of the sequencing run. After QC
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procedures, the sequences are mapped to the reference genome. Metrics such as

average coverage, proportion covered at >20X, and proportion of bases with zero

coverage can all lend information about the quality of the sequencing data post-

alignment (Allcock 2014). Finally, variant-calling software is necessary to analyze

the number of base calls that match the reference genome compared to alternate

base calls. The variant caller must also detect indels by detecting where gaps or

insertions between the reference genome and the sequenced reads are. By correlat-

ing this information with the quality of the bases in the read, highly accurate variant

calls can be made. In any case, the QC, alignment, and variant caller should be

optimized for both the sequencing platform and the DNA region being sequenced

for the most accurate data.

5.2.7 HapMap/dbSNP/1000Genomes

The explosion of data coming from advances in sequencing technology has pro-

vided a number of resources that can fuel future study. Based initially on DNA

microarray data, the International HapMap project was performed in the mid-

2000s. This project developed a haplotype map of the human genome by

genotyping over 1.6 million SNPs across what turned out to be 11 populations.

This provided a great deal of information about blocks of linkage disequilibrium in

each population (International HapMap 3 Consortium et al. 2010). The HapMap

project has been an important resource for discovery of genetic variants associated

with disease. The HapMap project has also provided many entries to the NCBI’s

dbSNP database that is a collection of SNPs, indels, and other short sequence

variants submitted by individuals or groups that are then validated before becoming

entries. In addition to these tools, massively parallel sequencing has been utilized to

create multiple databases of variants across the genome. The 1000 Genomes Project

is a multi-institute project that has already performed whole-genome sequencing at

an average of 4X depth for 1092 individuals across 4 different populations, which

will expand to over 2500 individuals for the next phase of the project (1000

Genomes Project Consortium et al. 2012). This study has become the primary

resource for determining the prevalence of variants across the genome. Other

large-scale sequencing projects include the NHLBI Grand Opportunity Exome

Sequencing Project and the UK 10,000 Genomes Project (Tennessen et al. 2012;

Kaye et al. 2014). These projects, in addition to future large-scale collaborations,

help characterize the variation across the human genome, including common

variants, rare variants, and structural variants.
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5.3 Candidate Gene Approaches Pre-linkage

Prior to the GWAS era, genetic discoveries in type 2 diabetes (T2D) relied on

sequencing candidate genes in small numbers of individuals to discover common

variants, followed by genotyping identified variants in cases and controls. Two

variants from that era withstood replication efforts and are considered to be T2D

susceptibility genes.

In 1997, PPARGwas mapped and cloned (Beamer et al. 1997) and was chosen as

a candidate gene for T2D because of its respective proteins role in adipocyte

differentiation and as a target for thiazolidinediones. The Pro12Ala variant was

discovered by molecular scanning (Yen et al. 1997). In this case, molecular

scanning meant running single-strand conformational polymorphism analysis

(SSCP) followed by sequencing of subjects with aberrant SSCP patterns. This

variant was subsequently associated with insulin resistance (Deeb et al. 1998;

Jacob et al. 2000; Stumvoll et al. 2001) and then confirmed in a meta-analysis to

be associated with diabetes (Altshuler et al. 2000).

The KCNJ11 E23K variant was identified in a similar manner: Samples from 35

individuals with T2D were subjected to SSCP followed by sequencing of variants

identified (Inoue et al. 1997). Initially the E23K was not associated with diabetes in

an expanded set of 306 diabetic cases and 175 nondiabetic controls. However, a

subsequent meta-analyses provided evidence of association, particularly for a

recessive model, (Hani et al. 1998) and a larger meta-analysis of 2486 subjects

confirmed the association (Gloyn et al. 2003).

5.4 Sequencing Post-linkage

Following up on a linkage for T2D signal on chromosome 2q37 in Mexican

American families which was denoted as NIDDM1, the gene CAPN10 encoding

Calpain-10 (Horikawa et al. 2000) was proposed as a susceptibility gene for T2D.

The investigators used information from revised genetic maps (Broman et al. 1998)

and additional analyses showing an interaction with chromosome 15 (Cox et al.

1999) to a 7 cM region on chromosome 2, 259–266 cM. They needed to first

construct a physical map of the region using yeast, bacterial, and plasmid-derived

artificial chromosomes. They then sequenced regions that mapped to the GenBank

database in 10–20 diabetic cases to look for polymorphisms. After finding each

polymorphism, they would genotype it in 112 randomly selected individuals and

110 patients. They evaluated the variants both individually and as haplotypes. In a

66 kb interval containing three genes, a variant then labeled SNP-UC43 was found

to be increased in frequency in the patient sample vs. the random sample (80 % vs.

75 %); the case frequency increased to 88 % when restricted to those contributing to

the linkage and 95 % when further restricted to those contributing to the joint

linkage on chromosome 15. They also showed that the variant had strong evidence
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for linkage in the families. Further sequencing and genotyping resulted in the

identification of a three-SNP haplotype explaining more of the association

(Horikawa et al. 2000). It was not concluded that NIDDM1 had been positionally

cloned. Results of replication attempts were inconsistent, but a subsequent meta-

analysis was consistent with an association (Tsuchiya et al. 2006).

HNF4A was considered a strong positional candidate gene for T2D because rare,

highly penetrant mutations cause maturity-onset diabetes of the young type 1

(MODY1) and several groups found linkage to the region of chromosome 20

containing it (Bowden et al. 1997; Ji et al. 1997; Zouali et al. 1997; Ghosh et al.

1999; Permutt et al. 2001; Luo et al. 2001; Mori et al. 2002). However, sequencing

of the coding region and proximal putative promoter region did not initially reveal

any variants associated with T2D or explaining the linkage (Ghosh et al. 1999).

Subsequently, a pancreatic-specific promoter P2 was discovered 46 kb upstream of

the hepatic promoter P1 (Thomas et al. 2001). A comprehensive analysis of the

linkage region identified SNPs near this promoter that were associated, including

the sequencing of 12 individuals contributing to the linkage signal (Silander et al.

2004).

Another illustrative example of post-linkage sequencing is that of TCF7L2.
Following up on a suggestive linkage signal on chromosome 10q, (Reynisdottir et

al. 2003; Duggirala et al. 1999) Grant et al. conducted a fine mapping study using

densely placed microsatellite markers that uncovered a strong association with a

microsatellite marker located in an intron of the gene TCF7L2 (Grant et al. 2006).

Because of the availability of HapMap, no sequencing was required to find SNPs in

strong linkage disequilibrium with the microsatellite; they simply genotyped the

microsatellite in the HapMap CEU samples and initially found one strongly corre-

lated intronic SNP variant. In this case sequencing was used to try to find the causal

variant that the microsatellite and SNPs might be tagging. Since the effects of

coding variants are better understood and because only exon 4 appeared within the

same linkage disequilibrium block as the association signals, they first sequenced

exon 4 of TCF7L2 in a subset of 557 diabetic cases and 769 controls and found no

exonic variants to explain the association. They then sequenced all exons of the

gene in 93 cases and 91 controls with a similar result. They first searched the entire

LD block in HapMap and identified the five most highly correlated SNPs. The final

sequencing effort was to sequence the entire LD block in 538 cases and 462

controls. In this case the goal of the sequencing was to fine map the association

to find a better candidate for a causal variant; the effect was to rule out anything else

(Grant et al. 2006). Therefore as the authors recommended, replication efforts

focused on the two SNPs in highest LD with the initial signal, and little additional

sequencing was done. These replication efforts were highly successful (Cauchi et

al. 2007) and placed TCF7L2 on the map as the strongest T2D susceptibility gene to

date (at that time and now). Understanding the specific manner in which variation in

the gene impacts disease has been complex but has provided new insights into the

etiology of the role of the Wnt signaling pathway in diabetes (Cauchi and Froguel

2008).
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5.5 Sequencing Post-GWAS

Limited sequencing follow-up was done with GWAS genes prior to the convening

of the T2D-GENES consortium described below. A resequencing effort was

described genes for quantitative traits including glucose and insulin (Service et al.

2014). The authors selected loci previously associated with one or more of six

quantitative traits: triglycerides (TGs), high-density lipoprotein cholesterol (HDL-

C), low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), glucose,

and insulin. They resequenced 78 genes from 17 loci in nearly 8000 individuals.

Most variants identified were for lipids, but they identified a probably damaging

missense variant in G6PC2 associated with fasting glucose. They also evaluated

association of the variants with T2D status but found no associations (Service et al.

2014).

Few causal variants have been identified for T2D GWAS genes. To find loss-of-

function variants in T2D genes that could identify targets for downregulation as

novel treatment approaches, Flannick et al. (2014) sequenced exonic regions of

115 T2D GWAS genes from the 65 replicated loci in 758 Finnish or Swedish

individuals (352 cases and 406 controls). They were unable to identify any SNP or

gene with study-wide significant association with T2D. However, they did find a

rare truncating variant in SLC30A8 with borderline nominal evidence toward

protection from diabetes. The ability to identify even this variant was due to a

founder effect, as subsequent studies to expand the sample size to examine this

variant found it to be virtually nonexistent outside of western Finland, (Flannick et

al. 2014) though other rare variants were found. An additional founder variant was

identified by taking advantage of existing data from the DeCODE project, in which

2500 Icelanders had undergone whole-genome sequencing (Gudmundsson et al.

2012). Additional rare, mostly singleton variants were found in the 13,000 exomes

from the T2D-Genes/GoT2D consortium. These data strengthened the evidence

for loss-of-function variants in SLC30A8 having a protective effect against T2D.

This example illustrates how the decreased cost of sequencing changes what is

possible. In contrast to the candidate gene studies of the 1990s discussed above, in

which a small number of individuals were sequenced after first using SSCP to

select regions to sequence, here a large number of people were sequenced, neces-

sary in order to discover rare variants with large effect size. It is important to note

the value of founder populations for having any power to associate these variants

with disease.
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5.6 Emergence of Next-Generation Sequencing and Effects

on Diabetes Gene Discovery

5.6.1 Effects on Scope

The massive amount of information that results from next-generation sequencing

has altered the methods of genetic analysis moving forward. In the past, it was

necessary to have either common genetic variants, large effect sizes, or large

numbers of individuals to properly power an association between a genetic variant

and a phenotype. Massively parallel sequencing, in conjunction with the genetic

variant databases that have been produced by the sequencing technology, allows

associations to be made with rare variants in smaller populations. These associ-

ations are possible due to the increased amount of data, but it becomes more vital to

properly filter true associations from background noise. This can be done through

proper QC and variant calling, in addition to appropriate predesigned variant

filtering based on variant annotation tools. The implementation of massively par-

allel sequencing has shifted the target of genetic analysis from finding the causative
variants to filtering down to the causative variants.

5.6.2 Targeted Sequencing

One common approach to filter out background data uses sequencing targeted to

only select regions of the genome. This approach differs from Sanger sequencing

because it has the capacity to sequence up to hundreds of different genomic regions

simultaneously, while Sanger sequencing only identifies a single region at a time.

Targeted sequencing uses primers that only amplify regions of interest, such as the

coding sequence of specific genes (Summerer 2009). Panels for targeted sequencing

therefore only sequence a fraction of the genome, which can be done more quickly

and less expensively than whole-exome or whole-genome sequencing. Lower

amounts of target sequence also provide the opportunity for sample multiplexing,

which can greatly increase the efficiency of each sequencing run (Fokstuen et al.

2014). Platforms like the Illumina MiSeq or the Ion Torrent Personal Genome

Machine were created specifically for the lower throughput needs of targeted

sequencing panels (Koshimizu et al. 2013). These techniques are useful for identi-

fying previously discovered variants or discovering novel variants in genes or loci

previously associated with the phenotype. Targeted gene sequencing is already

being incorporated into the analysis of highly penetrant, genetic forms of diabetes,

like maturity-onset diabetes of the young (MODY) and transient or permanent

neonatal diabetes mellitus (NDM) (Ellard et al. 2013; Gao et al. 2014; Chapla

et al. 2014).
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5.6.3 Whole-Exome Sequencing

The human exome, making up only 1–2 % of the human genome, is the region of

DNA that codes for the mature mRNA translated into peptides. Sequencing of the

exome allows a snapshot of the most well-understood genetic material without the

flood of information that makes up the whole genome. The exome is the region in

which our current understanding of genomic architecture and function best allows

us to predict whether a mutation is damaging. Exome sequencing, like targeted

sequencing, uses specific primers to amplify all of the coding regions of the human

genome. The whole human exome can be analyzed singularly on the Illumina

MiSeq or the Ion Torrent Proton, or multiple samples can be multiplexed in a

single run using the Illumina HiSeq (Boland et al. 2013). The data from exome

sequencing can also be analyzed in a targeted manner. Using that method, only the

targeted genes and loci are analyzed for phenotype-causing variants, with the option

of expanding the search for phenotype-causing variants post hoc. Whole-exome

sequencing is already being implemented as a tool for discovering causative

variants in cases of families with monogenic diabetes that lack a genetic diagnosis

(Bonnefond et al. 2012; Dusatkova et al. 2014; Johansson et al. 2012).

5.6.4 Whole-Genome Sequencing

Whole-genome sequencing represents the most comprehensive method to discover

a phenotype-causing variant. This method uses random primers to amplify the input

DNA, which allows an even distribution of amplification across the genome. As a

result, whole-genome sequencing can more efficiently detect structural variants

such as copy number variants, translocations, and mobile element insertions, in

addition to SNPs and indels (Tan et al. 2014; Suzuki et al. 2014; Wu et al. 2014).

However, the sheer amount of data can be overwhelming, with a single-genome

sequencing file taking up several dozens of gigabytes of storage. This amount of

data is not easily manipulated, and analysis of genome can take hours to days of

computing time (O’Driscoll et al. 2013). Additionally, sequencing of a single

genome still generally costs over $1000, which can be prohibitive when added to

the costs of data storage and management for large studies (Check 2014). Despite

these difficulties, the wealth of information from the genome may outweigh the

costs and difficulties, especially as technology and computing capabilities improve

in the future, and our understanding of the function of noncoding DNA through

efforts such as the ENCODE Project (ENCODE Project Consortium. An integrated

encyclopedia of DNA elements in the human genome. Nature 2012) progresses.
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5.6.5 T2D-GENES Consortium Goals

The Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-

Ethnic Samples (T2D-GENES) consortium is incorporating many next-generation

sequencing techniques to further understand the pathophysiology of T2D. The first

of three projects in T2D-GENES uses whole-exome sequencing of 10,000 indi-

viduals across five different ethnicities, of which half of the participants are controls

(Teslovich et al. 2012). This goal of this project is to discover the genes related to

T2D pathogenesis in addition to studying genes associated with monogenic and

syndromic T2D cases. Whole-exome sequencing data from this study was used by

Flannick et al. to find additional apparently protective loss-of-function mutations in

SLC30A8 (Flannick et al. 2014). This is an example of filtering whole-exome

sequencing down to only the genes of interest, and the T2D-GENES consortium

exome data has also been used this way for the PPARG and NPHS1 genes (Majithia

et al. 2014; Bonomo et al. 2014). The second project of T2D-GENES is using

whole-genome sequencing of 600 individuals from Mexican American families

(dbGaP|phs000462.v1.p1|T2D-GENES Project 2 2015). This study intends to dis-

cover rare variants found in less than 1 % of the population that can alter risk for

T2D. The third project used over 100,000 individuals from five consortia of

different ancestries in order to discover the causative variants linked to GWAS

hits for T2D. The results from this study have been published as a meta-analysis,

demonstrating an improved resolution of common variant associations for T2D in

addition to discovering new susceptibility loci through trans-ethnic analysis (Con-

sortium et al. 2014). Overall this project utilizes multiple sequencing techniques

(whole-exome sequencing, whole-genome sequencing, and GWAS) to thoroughly

analyze the human genome and its role in T2D pathophysiology. Publication of the

results of these efforts and further analysis are ongoing and ultimately provide a

greatly enhanced and importantly comprehensive understanding of the underlying

genetic architecture of T2D.

5.7 Concluding Remarks

In 1974, R.B. Tattersall wrote:

The genetics of diabetes is a confused subject in which almost every possible mode of

inheritance has been proposed. It is apparent, however, that no simple genetic hypothesis is

compatible with the data gathered from large groups of diabetics. One reason . . . may be

that diabetes is not homogeneous but rather consists of a number of different diseases in

which carbohydrate intolerance is the common factor (Tattersall 1974).

Today we know that even T2D alone is not one disease but many. Over the past

couple of decades, the genetic heterogeneity of T2D has begun to be unraveled,

enabled by the discovery of increasingly efficient and powerful sequencing

methods, analytical tools, and the work of multiple determined individuals. The
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journey is only really at the beginning, and now that we are on the cusp of the $1000

genome, technology and cost will cease to be a limit of the goal of elucidating the

etiology and therefore hope for prevention, treatment, and cure of every case of

T2D.
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Chapter 6

Fine-Mapping of Type 2 Diabetes Loci

Laura J. Scott and Karen L. Mohlke

Abstract Genetic association analyses have identified a large number of loci that

are associated with type 2 diabetes (T2D); however, the underlying functional T2D

variants at most loci remain unknown. Identification of functional T2D variants can

be critical to identifying the target gene(s) and direction of effect by which a locus

influences T2D risk. A useful approach to narrow a search for these variants is to

perform fine-mapping. In this approach, large sample sizes and defined regions are

analyzed using genotypes for as many variants as possible through imputation,

arrays of densely spaced markers, or sequencing. Meta-analyses are performed in

genetically homogeneous and/or in ancestrally diverse samples, and evidence of

multiple association signals in a region is dissected. Credible sets of variants for

each association signal are then annotated for potential effects on gene function or

regulation that can be examined in laboratory studies. Use of the identified variants

may improve power to detect interactions with other variants or the environment

and may improve genetic predictions of T2D risk.

6.1 Introduction

As described in earlier chapters, the number of identified type 2 diabetes (T2D)-

associated loci continues to increase as the number of T2D cases and controls

analyzed and the proportion of the genome assayed increase (Grant et al. 2006;

Diabetes Genetics Initiative of Broad Institute of et al. 2007; Scott et al. 2007;

Sladek et al. 2007; Zeggini et al. 2007; Wellcome Trust Case Control Consortium

2007; Voight et al. 2010; Morris 2011; Morris et al. 2012). Currently, >80

associated regions have been identified often with multiple apparently independent

variants per region (DIAbetes Genetics Replication Meta-analysis Consortium
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et al. 2014). These lead associated variants (index variants), however, represent a

small fraction of the total genetic variation of T2D (estimate of 5.7 % for 63 loci)

(Morris et al. 2012), and likely hundreds to thousands of additional variants remain

to be identified (Morris et al. 2012; DIAbetes Genetics Replication Meta-analysis

Consortium et al. 2014). The underlying goals of T2D genetic association studies

are to identify the functional T2D variants, for which one allele increases risk of

T2D, and the genes and mechanisms through which they work. Fine-mapping is the

process of starting with an index variant association signal and proceeding through

a series of steps to localize, and ultimately identify, the functional T2D variants that

are responsible for the association signal.

Many large- and small-scale efforts have been undertaken to identify functional

T2D variants, but currently, relatively few likely functional T2D variants have been

identified (Ng and Gloyn 2013). The ease or difficulty in translating initial associ-

ation signals into functional T2D variants is influenced by three broad classes of

factors: the architecture of functional T2D variants (Sect. 6.2), the resources and

methods for narrowing the number of variants of interest (Sects. 6.3.1–6.3.6), and

the availability of annotation and biological assays for relevant variant functions

(Sect. 6.3.7). The investigator’s goal is to use available resources to capture

functional T2D variants while reducing the number of nonfunctional variants

considered.

6.2 Locus Architecture

The planning and approaches to current fine-mapping studies are based on our

understanding of the allelic architecture of functional T2D variants, assuming that

we are starting with a common (>5 % minor allele frequency [MAF])

T2D-associated variant and the surrounding genomic neighborhood. These archi-

tectural features include the allele frequency(s), number, and effect sizes of the

functional T2D variants underlying the original association signal. Other features

include the presence of nearby functional T2D variants that do not contribute to the

index variant association signal and the extent of linkage disequilibrium (LD), as

measured by D’ and r2, between functional T2D variants and surrounding variants.

6.2.1 Evidence for Rare, Low-Frequency and Common
Functional T2D Variants

The spectrum of views about the number, allele frequency, and types of functional

T2D variants underlying an index variant stems from our current knowledge of

Mendelian and complex diseases (Dickson et al. 2010; Wang et al. 2010; Visscher

et al. 2012).
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Much of what we know about rare functional T2D variants in non-autoimmune

forms of diabetes comes from MODY and other Mendelian forms of diabetes

(Schwitzgebel 2014; Yamagata 2014). In MODY, variants are inherited in an

autosomal dominant pattern (Fajans and Bell 2011), and most identified functional

T2D variants have been rare and located in the coding or promoter regions of genes

(Yamagata 2014). Allelic heterogeneity is common, meaning that many different

genetic variants can affect a single gene’s function or expression to cause disease.

Some genetic heterogeneity exists, meaning that variants in different genes can

cause the same or similar disease in different families, but for most Mendelian

diseases, a modest number of genes have been implicated.

In contrast, from genome-wide association studies of T2D, it is clear that

extensive genetic heterogeneity exists. Hundreds to thousands of functional vari-

ants (and their target genes) may be scattered throughout the genome (Morris

et al. 2012; DIAbetes Genetics Replication Meta-analysis Consortium et al. 2014;

Stahl et al. 2012). In addition, allelic heterogeneity in single genes is likely the

cause of the clustering of many independently associated variants within close

proximity (Rees et al. 2012b; Bonnefond et al. 2012; DIAbetes Genetics Replica-

tion Meta-analysis Consortium et al. 2014).

Most currently known T2D-associated variants are common and noncoding, but

more rare and low-frequency T2D-associated variants are beginning to be identified

by sequencing and large-scale genotyping. A large Icelandic sequencing and

imputation study detected a 1.4 % variant in an intron of CCND2 and

low-frequency and rare coding variants in PAM-PPIP5K2 and PDX1
(Steinthorsdottir et al. 2014). Twelve rare protein-truncating variants in SLC30A8
were associated with lower risk of T2D, suggesting loss-of-function decreases risk

(Flannick et al. 2014). The CCND2 and SLC30A8 variants are independent from the

common T2D index SNP associations at these loci. Although there has been great

interest in exploring if rarer variants underlie common index variant signals

(Dickson et al. 2010; Wang et al. 2010), with some disappointment, using targeted,

exome, or genome sequencing, there has been little evidence of rare variant

(s) underlying common T2D and other common disease variant association signals

(Visscher et al. 2012; Steinthorsdottir et al. 2014; Shea et al. 2011). This result is

consistent with the findings that rarer underlying variation with strong enough

effects to have caused the T2D index variant association signal would have resulted

in much stronger linkage signals than had been observed previously for T2D

(Anderson et al. 2011; Guan et al. 2012), or more broadly for common diseases

(Wray et al. 2011). The lack of underlying rare variants is also consistent with

observation that common T2D index variants have a strongly consistent direction of

effect across ancestries with different LD patterns (DIAbetes Genetics Replication

Meta-analysis Consortium et al. 2014).

More generally, genome-wide, a simulation-based study of T2D risk found that

models for which T2D risk was highly concentrated in a relatively small number of

rare variants were not consistent with the overall pattern of linkage or association

observed in published studies, although models with substantial rare variant con-

tribution to T2D risk could not be ruled out (Agarwala et al. 2013). Likewise,
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models where the bulk of the variance in T2D risk was explained by coding variants

in small number of genes were not consistent with the lack of significant associa-

tions in an exome sequencing study of 1000 cases/1000 controls (Lohmueller

et al. 2013).

6.2.2 Possible Models for Functional T2D Variants
Underlying Common T2D Index Variants

Current data suggest that most functional variants underlying common index

variants will be common, although it remains possible that rare or low-frequency

variant(s) might underlie a small number of signals. Figure 6.1 shows some possible

haplotypic relationships between a common index variant and the underlying

functional T2D variant(s). In the simplest scenarios, a single common (Fig. 6.1a)

or a single low-frequency or rare variant (Fig. 6.1c) underlies the index variant

signal. In more complex models, multiple common (Fig. 6.1b) or low-frequency

(Fig. 6.1d) functional T2D variants are present on the same haplotype, or multiple

rarer functional T2D variants are present on different haplotypes (Fig. 6.1e). Of

these scenarios, functional variants can only be strongly suspected from statistical

analysis alone when a single variant in a very large thoroughly queried region has a

much stronger association signal than other variants, i.e., the functional variant is

not in strong r2 with surrounding variants (a scenario with increased probability of

sequencing artifacts for the variant of interest).

6.2.3 Visualization and Features of Index SNP Signals

A beginning assessment of the properties of a locus and a set of potentially

functional variants is done by visualization of the T2D-variant association signals

plotted by physical distance, often spanning hundreds of kilobases, with annotation

of gene transcripts and recombination rates (Pruim et al. 2010; Scott et al. 2007).

Loci have very different structures; some may have few T2D-associated variants in

well-defined recombination intervals (Fig. 6.2a), others may have hundreds of

variants with similar evidence of T2D association that stretches over multiple

genes and hundreds of kilobases (Fig. 6.2b), and others may have evidence of

multiple independently associated variants in the same region (Fig. 6.2c). This

high-level view gives an initial assessment of the LD surrounding the index variant

(s) and the strength of the signal(s) but on its own yields few clues as to the allele

frequency, effect size, and number of underlying functional T2D variants.
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Fig. 6.1 Possible configurations of a common index SNP and underlying functional T2D variants.

Low-frequency and rare functional T2D variants that are responsible for an index variant associ-

ation signal can be detected in smaller sample sizes than the sample required for the index variant.

In all scenarios, the index variant has an effect allele frequency of 0.3 and a relative risk (RR) of

1.1. The sample size to detect a functional T2D variant is the sample size required for 80 % power

to detect the variant using a significant threshold of 5� 10�8. For each scenario (a–e), the sample

size required to detect a functional T2D variant with 80 % power using a significance threshold of

5� 10�8 is shown. (a) One common functional T2D variant (r2¼ 1 with the index variant); (b)

three common functional T2D variants on the same haplotype (r2¼ 1 with the index variant). The

sample size is equivalent to that of (a) because we assume that the effects of the three variants are

multiplicative (1.0353¼ 1.1), and these three variants can’t be tested independently of each other;

(c) one low-frequency variant (r2¼ 0.048 with the index variant); (d) three low-frequency variants

on the same haplotype (r2¼ 0.048 with the index variant). The sample size is equivalent to that of

c because we assume that the effects of the three variants are multiplicative (1.43¼ 2.5), and these

three variants can’t be tested independently of each other; (e) Five rare variants on different

haplotypes (r2¼ 0.0014 with index variant). In (e), for clarity, the sample size is shown for just one

of the five functional T2D variants; the same sample size is required for each of the variants
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Fig. 6.2 Regional plots of three established T2D loci with different patterns of associated

variants. Genotyped and HapMap-imputed variants from an analysis of 8130 cases and 38,987con-

trols (total effective sample size ¼22,044; Voight et al. 2010) are plotted with their meta-analysis

-log10 p-values as a function of genomic position (NCBI Build 37). In each panel, the index

association SNP is represented by a diamond. Estimated recombination rates (taken from

HapMap) are plotted to reflect the local LD structure around the associated SNPs and their

correlated proxies (according to a scale from r2¼ 0 to 1, based on pairwise r2 values from 1000

Genomes Europeans). Gene annotations were extracted from the University of California-Santa

Cruz genome browser. ChromHMM enhancer tracks were called from human islet ChIP-seq data

(Parker et al. 2013). (a) The SLC30A8 locus has a small number of common strongly associated

variants (rare variants not shown); (b) the THADA locus has a very broad association signal; (c) the

KCNQ1 locus includes multiple independent signals, two of which are evident in this plot
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6.3 Approaches to Fine-Mapping

Fine-mapping a GWAS locus involves a series of steps that take into account the

expected and observed locus architecture to increase the chance that a functional

variant(s) will be analyzed and can be distinguished from other variants.

6.3.1 Identify Large Numbers of Samples of Similar and/or
Diverse Ancestry

The sample size required depends on several factors, including the belief about

functional T2D variant frequency(s). For common functional T2D variants, ideally

the sample size would be large enough to have a substantial association signal for

each index variant. Fine-mapping sample sizes that are smaller or different from

those used for locus discovery may be too weak to distinguish the set of potentially

functional T2D variants from surrounding variants in relatively high LD (Wellcome

Trust Case Control Consortium et al. 2012; DIAbetes Genetics Replication Meta-

analysis Consortium et al. 2014). In contrast, if the assumption is that a single

low-frequency or even several rare functional T2D variants underlie a common

index variant, then considerably smaller samples would have comparable power to

detect a genome-wide significant association of the rare and low-frequency variants

(Fig. 6.1c, e).

Combination of samples of diverse ancestry in fine-mapping can help identify

new loci and reduce the size of the locus region. Analyses across ethnicities have

been successful as most established loci have genetic effect sizes that are remark-

ably similar across different populations (Ng et al. 2013; DIAbetes Genetics

Replication Meta-analysis Consortium et al. 2014; Sim et al. 2011; Waters

et al. 2010). Patterns of LD differ across populations due to differing evolutionary

and migratory histories, and variants that are in high LD with each other in one

population may be in lower LD in another population, which allows narrowing of

the set of likely functional T2D variants (DIAbetes Genetics Replication Meta-

analysis Consortium et al. 2014). Likewise differences in allele frequencies

between ancestries may allow detection of signals due to different functional

T2D variants (Unoki et al. 2008; Yasuda et al. 2008). Concerns about inflation of

signals through population stratification can be allied through meta-analysis of

samples with relatively homogeneous ancestry.

6.3.2 Define Genomic Region to Be Fine-Mapped

Defining a region to analyze is an important step toward identifying a functional

T2D variant. The regional boundaries again depend on the researchers’ beliefs

about the expected allele frequency of the underlying variant(s) and the available
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resources. In designing the genotyping part of the study, researchers typically

choose either to focus on variants within a defined region around the index variant

or on a whole genome or whole exome sequencing approach. In the analytical

phase, more or less restrictive definitions can be employed depending on the

question and data available.

Now that genome sequence-based reference panels contain almost all common

variants in designated populations, chances are large that a common functional T2D

variant would be both on the panel and well-imputed. In this scenario, the func-

tional T2D variant should be in high r2 with the index (strongest) variant and

located within the same recombination interval. Using these assumptions, regions

of interest are often defined based on combination of criteria including LD with

index variants (say r2> 0.1) and/or genetic distance (Wellcome Trust Case Control

Consortium et al. 2012; DIAbetes Genetics Replication Meta-analysis Consortium

et al. 2014). In regions with extensive LD, the locus size can be large, 500 kb–1 Mb.

When there is no cost to searching a larger region, all variants in up to 5–10 Mb

surrounding the index variant, can be tested for completeness. Choosing a larger

region can impact downstream analysis, particularly the size of credible variant sets

(Sect. 6.3.6).

When the goal is to be able to detect underlying functional T2D variants that are

rare, a much wider interval needs to be considered because LD between a common

variant and rare variants may extend beyond strong recombination hot spots

(Huyghe et al. 2013).

6.3.3 Increase Coverage of Variants at Identified T2D Locus/
Loci

Completeness of variant coverage is also critical to identifying functional variants.

The three approaches below, imputation, genotype arrays, and sequencing, require

increasing financial resources. The completeness of coverage of the rarest variants

increases dramatically from imputation to higher pass sequencing. Each of these

approaches is limited by the complexity of the DNA surrounding the functional

T2D variant(s). Variants in repetitive or other regions that are difficult to assay will

be much less likely to be identified without specific and substantial investment.

6.3.3.1 Imputation

The goal of imputation is to infer nucleotides at un-genotyped variants. Imputation

of a study sample requires a scaffold of genotyped variants in that sample and a set

of reference haplotypes from more densely spaced variants. Imputation allows

association results from disparate genotyped variant sets to be combined and

greatly extends the number of variants that can be assayed from even the largest
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genotyping arrays. Imputation was initially used in T2D to identify association

signals (Scott et al. 2007; Zeggini et al. 2008; Voight et al. 2010) but is equally

useful in fine-mapping loci (Shea et al. 2011; Morris et al. 2012; Kulzer et al. 2014).

Multiple methods have been developed and have evolved for genotype imputa-

tion. Three of the most commonly used methods/software are MaCH, IMPUTE2,

and BEAGLE (Browning and Yu 2009; Howie et al. 2009; Li et al. 2010; Marchini

and Howie 2010). For large-scale datasets and reference panels, these methods use

a two-stage process (Howie et al. 2012). First, GWAS variants from the study

samples are phased to produce a “best guess” set of haplotypes. Second, the more

densely genotyped reference panel is then used to impute (predict) genotypes in

the study sample. Imputation’s greatest strength is that it makes an existing

dataset much more powerful solely through investment in computational resources.

Imputation currently works best for common variants. Because both alleles of

common variants are present on multiple reference haplotypes, the chances of

correctly imputing a variant are high. Still, direct genotyping can improve an

association signal compared to imputation. Imputation quality measures usually

accurately reflect information lost compared to direct genotyping for common

variants (Li et al. 2010). As the reference panel sizes increase, our ability to

accurately impute low-frequency variants has grown and will continue to increase.

With current reference panel sizes of <2700 individuals, variants with frequency

<0.5 % are poorly imputed, and the imputation quality statistics are not reliable.

To improve the quality of low-frequency and particularly of rarer variants, refer-

ence panels of >25,000 individuals are currently being constructed; these

should allow imputation into allele frequency ranges currently not analyzed in

most association studies. Regardless of the reference panel size, imputation

will likely not provide a way to recover the very rarest and potentially most

deleterious variants because they will not be present in sufficient numbers in the

reference panels to provide high-quality imputation. In particular, singleton vari-

ants are currently excluded from reference panels, as they cannot be phased

statistically.

6.3.3.2 Specialized Arrays

A cost-effective approach to increasing variant coverage in very large numbers of

samples is to create a custom genotyping array. Such an array can contain very

densely spaced variants, or possibly all known variants, in a specified genome

region. Genotyping arrays are most cost-effective when the cost of design can be

split among the cost of tens or hundreds of thousands of arrays.

Two arrays used recently to identify or characterize T2D loci are the

“Metabochip” (Voight et al. 2012; Morris et al. 2012) and the ITMAT-Broad-

CARe (IBC) array (Saxena et al. 2012). The Metabochip included variants to fine-

map 257 loci previously associated with one or more of 23 metabolic or cardio-

vascular traits. The variants were chosen from the HapMap project (International

HapMap Consortium et al. 2007) and an early version of the 1000 Genomes Project
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(1000 Genomes Project Consortium et al. 2010). Across T2D loci included, the

array contains ~90 % of common variants (MAF> 0.05) and ~60 % of

low-frequency variants (MAF 0.01–0.05) (Voight et al. 2012). Using this array,

two of 36 loci analyzed, PROX1 and KLF14, contained a variant with notably lower
allele frequency and stronger odds ratio than the original GWAS variant (Morris

et al. 2012). The IBC array contains ~50,000 variants and was designed to capture

genetic diversity across 2000 loci previously associated with a cardiovascular,

inflammatory, or metabolic trait. Using this array and conditional analysis to

fine-map T2D loci, multiple established and new independent signals were

identified within five loci in European ancestry samples and within HMGA2 in

African Americans (Saxena et al. 2012).

Practical issues in the use of specialized arrays include the array design and

genotype calling for low-frequency variants. Ideally, an array design would include

all known variants in all regions to be studied. If resources are limited, a dense but

incomplete framework of variants can be selected based on LD between variants,

with the expectation that variants not included on the array can be subsequently

imputed. Not all variants can be successfully designed into genotyping assays, and

not all designed assays succeed to generate high-quality genotypes. To accommo-

date those genotyping failures, array designs may include redundant or partially

redundant variants. Genotyping calling for low-frequency variants can be inaccu-

rate if genotypes are called on small numbers of samples and if rare homozygote

genotypes are inaccurately clustered with heterozygotes or inaccurately removed as

perceived outliers. Genotype calling can be improved by clustering genotypes

across thousands of samples.

6.3.3.3 Sequencing of Candidate Regions, Exomes, and Genomes

Sequencing of candidate regions (Shea et al. 2011), whole exomes (Consortium

et al. 2014; Albrechtsen et al. 2013), and whole genomes (Steinthorsdottir

et al. 2014) allows a more complete enumeration and analysis of rare and

low-frequency variation and can slightly improve common variant genotyping.

Whole genome sequencing combined with imputation has led to identification of

T2D associations with an associated low-frequency variant in a CCND2 intron as

well as low-frequency and rare coding variants in PAM-PPIP5K2 and PDX1
(Steinthorsdottir et al. 2014). Exome sequencing has identified protein-truncating

variants in SLC30A8 (Flannick et al. 2014) and a low-frequency missense variant in

HNF1A (MODY3) (SIGMA Type 2 Diabetes Consortium et al. 2014).

Other large sequencing efforts are underway, including whole genome sequenc-

ing of T2D cases and controls in GoT2D (2657 low-pass genomes (Gaulton

et al. 2013)) and in T2D-GENES (590 high-pass genomes (Jun et al. 2013)) and

exome sequencing in T2D-GENES and GoT2D (12,940 exomes (Mahajan

et al. 2014)). The initial results suggest that a small number of low-frequency

variants with strong effects can be detected in samples of this size.
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One of the largest challenges in sequencing is the presence of batch effects due

to sample source, sample preparation, or technical issues. As with any genotyping/

sequencing method that aims to compare cases and controls and particularly given

the large potential technical variability in sequencing, balancing cases and controls

side-by-side throughout the experiment is strongly advised to help avoid many

artifact associations in the analysis stage.

6.3.4 Analyze and Perform Meta-analysis from Multiple
GWAS of Similar and Diverse Ancestry

Although fine-mapping efforts can be performed within a single study, most studies

are not large enough to provide sufficient power to detect and discriminate between

variants based on evidence of association. Meta-analysis is used to combine the

association results from multiple studies.

6.3.4.1 Meta-analysis of Similar Ancestry Studies

For common variants, meta-analysis is an efficient way to combine results,

retaining almost all the power of a combined analysis of all samples (Lin and

Zeng 2010). Variants are typically tested using logistic regression and an additive

model, with the effect of each allele and significance evaluated using the Wald,

likelihood ratio, or score test. Of these, the Wald and likelihood ratio tests also

provide estimates of the effect size. Each study’s results are then combined using

fixed effects meta-analysis, which has the advantage of producing an effect size

estimate or by sample size weighting of the z-scores. Multiple quality checks help

ensure the results are reliable and include comparing allele frequencies across

studies, ensuring standard errors are consistent with the corresponding sample

size and allele frequency, and testing for effect size heterogeneity (Winkler

et al. 2014).

Study-specific analysis and meta-analysis are less straightforward for

low-frequency variants, or more exactly, for variants with lower minor allele

count (MAC) in a given study. When stringent significance thresholds are used,

the asymptotic assumptions of these tests begin to break down at total MAC< ~

400 and can result in conservative or anti-conservative results dependent on the test

and sample (Ma et al. 2013). For studies with a balanced number of case and control

samples, the Firth and score tests preserve the most power and are the best

calibrated; conversely, the Wald test should not be used because it is highly

conservative. For studies with case-to-control sample ratios modestly to highly

different from 1:1, all tests can be anti-conservative, and the score test is highly

anti-conservative and should not be used (Ma et al. 2013).
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6.3.4.2 Meta-analysis of Diverse Ancestry Sample

Trans-ancestry meta-analysis methods assume that the same functional T2D variant

exists across populations and use fixed effects, random effects, or modifications of

these models. Prior to identifying a functional T2D variant, its effect size across

populations is unknown. If the effects are truly similar, then fixed effect models will

have higher power. If effects are dissimilar, then random effects’ models theoret-

ically perform better. One recently described method improves on a random effects

model by relaxing a conservative assumption that effect sizes differ even under the

null hypothesis (Han and Eskin 2011). Another method applies a Bayesian

approach and assumes that more genetically similar populations will have more

similar effect sizes, allowing the effect sizes in less similar populations to vary

(Morris 2011). Application of these standard and newer meta-analysis methods to

T2D loci showed that the new methods can identify loci not detected by standard

fixed or random effects models (Wang et al. 2013).

6.3.5 Identify Likely Independent Signals at Loci Through
Direct or Indirect Conditional Analysis

A main goal of conditional analysis is to determine if one or more apparently

independently associated signals exist in a region. A second, reciprocal goal is to

ask if one or more non-index variants have more evidence for association than the

index variant and can explain the index variant signal, that is, if there is a better

index variant for the signal. We focus on the first goal, but many of the same

principles hold true for the second. Conditional analysis is performed in two main

ways, directly using genotype data (exact) (Scott et al. 2007; Zeggini et al. 2008) or

indirectly using association results and LD information (Genome-Wide Complex

Trait Analysis (GCTA)-based) (Yang et al. 2013).

Conditional analysis has been used to show that an index variant can explain the

association signals from variants surrounding it (Scott et al. 2007; Zeggini

et al. 2008) and to identify multiple independently associated variants at a number

of loci including KCNQ1, CDKN2A/B, DGKB, and MC4R (Voight et al. 2010;

Morris et al. 2012). GCTA has been used to perform conditional analysis of height

(Yang et al. 2012) and in ongoing work in T2D.

6.3.5.1 Exact Conditional Analysis

In exact conditional analysis, each study performs conditional analyses for each

variant by including the index variant(s) as a covariate(s) in the logistic regression;

the results for each variant are combined using meta-analysis (Sect. 6.3.4). Condi-

tional analysis can be performed with index variants from a specific region (Scott
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et al. 2007; Zeggini et al. 2008) or with all index variants in the genome (Voight

et al. 2010). As the number of associated variants increases, the inclusion of all

index SNPs may cause instability in the analysis. In regions with very strong

association p-values, some residual (likely false) association signal may remain

following conditioning when the conditioning variants are poorly imputed or serve

as a poor proxy for a more strongly associated functional T2D variant. Thus,

interpretation of secondary signals surrounding a very strong primary signal

requires caution. Unless genotype data is centrally analyzed, exact conditional

analysis can be logistically challenging and can become impractical with large

numbers of studies.

6.3.5.2 GCTA-Based Conditional Analysis

A faster, potentially more feasible alternative is to perform GCTA-based condi-

tional analysis. This approach uses meta-analysis association results and LD data

from a representative sample (Yang et al. 2013). Essentially, GCTA removes the

proportion of the association signal that could be explained by the index variant

given the LD between the variants. The standard errors from the meta-analysis and

the GCTA-based (or exact) conditional analysis should be very similar; differences

indicate that analytical issues need to be resolved.

6.3.6 Identify Credible Sets of Variants That Are Likely
to Contain a Functional T2D Variant

The objective of credible set analysis is to identify the smallest set of analyzed

variants that are likely to contain the functional T2D variant. The analysis takes a

Bayesian approach, assuming a single functional variant. The Bayes factor for each

variant in the region is divided by the sum of the Bayes factors for all variants in the

region to obtain a posterior probability for each variant. The credible set is

comprised of variants that contain 95 % or 99 % of the posterior probability

(Wellcome Trust Case Control Consortium et al. 2012; DIAbetes Genetics Repli-

cation Meta-analysis Consortium et al. 2014).

The size of the credible set typically mirrors what is observed in regional

association plots (Wellcome Trust Case Control Consortium et al. 2012; DIAbetes

Genetics Replication Meta-analysis Consortium et al. 2014). Strong signals in

regions with little LD have the smallest credible sets; weak signals in regions

with extensive LD have the largest credible sets. In the trans-ethnic meta-analysis,

which used HapMap-based imputation, the JAZF1 and SLC30A8 loci were sub-

stantially narrowed (DIAbetes Genetics Replication Meta-analysis Consortium

et al. 2014).

6 Fine-Mapping of Type 2 Diabetes Loci 139



Credible set analysis assumes that the functional T2D variant is present within

the set of genotyped variants considered for analysis. Use of sequence-based data or

more complete reference panels for imputation typically increases the number of

variants in the credible set for a given study (Wellcome Trust Case Control

Consortium et al. 2012) but means the functional variant is more likely to be

present. To reduce the possibility that variants not responsible for the index signal

can decrease the size of the credible set, variants outside of an r2-defined region

may be excluded (Sect. 6.3.2). An alternative approach would be to remove the

effects of other known independent signals in the region through conditional

analysis.

A second assumption of credible set analysis is that the functional T2D variants

association signals are among the strongest of those considered for analysis. This

assumption should be true when a sizable index variant association signal exists in

the tested sample and when the number of functional variants underlying the signal

is not large (see Fig. 6.1). Regions in which the most strongly associated variant has

a p-value greater than 5 � 10�8 are less likely to have small credible sets

(Wellcome Trust Case Control Consortium et al. 2012; DIAbetes Genetics Repli-

cation Meta-analysis Consortium et al. 2014). If a functional T2D variant has a

higher standard error than expected for its allele frequency, due to either to smaller

sample size or poorer imputation quality than other variants in the region, the

variant may not have sufficient association evidence to be included in the credible

set. Credible set analysis may also miss functional T2D variants if one variant in a

haplotype shows association in single variant analysis, while the second variant is

only detected after adjusting for the first variant, such as at the CDKN2A/B locus

(Wellcome Trust Case Control Consortium et al. 2012).

6.3.7 Incorporate Genome Annotations and Examine
Experimentally

Once a credible set of variants has been identified, annotations can be used to

predict which of them are more likely to have a functional effect. The annotations

can be split broadly into sources that predict the effect of changing protein structure

via amino acid substitution and those that predict regulatory activity. Numerous

resources exist to annotate both types of variants (Cooper and Shendure 2011).

These annotations can be used to prioritize variants for laboratory experimental

analysis and to understand more generally which regions of the genome influence

T2D risk.

Annotations of protein-coding variants make use of evolutionary conservation,

biochemical principles, and consideration of protein structure. Some approaches

make predictions based on similarity to a defined property, while other approaches

train a classifier based on known functional T2D variants. T2D loci that harbor

multiple protein-coding variants include GCKR and MTNR1B (Bonnefond
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et al. 2012; Rees et al. 2012a). For these loci, multiple protein-coding variants were

tested experimentally and found to have an effect on function. In both examples, the

results were only partly predicted by annotations, confirming the need for func-

tional studies (Bonnefond et al. 2012; Rees et al. 2012a).

Regulatory elements can be defined using known transcription factor binding

motifs, genomic regions at which the chromatin is open and accessible to transcrip-

tion factor binding or histone modification, and conservation across species. Anno-

tations based on chromatin accessibility can be cell-type-specific. Many regulatory

annotations are available from the ENCODE (ENCODE Project Consortium

et al. 2012), Roadmap Epigenomics (Bernstein et al. 2010) and BluePrint projects

(Abbott 2011) that provide experimental evidence of regulatory elements in hun-

dreds of cell types. In addition, individual laboratories are generating data to define

regulatory elements specifically in tissue types relevant to T2D, such as pancreatic

islets (Gaulton et al. 2010; Stitzel et al. 2010; Parker et al. 2013; Pasquali

et al. 2014). Regulatory annotations have been used to prioritize among T2D

variants for experimental assays to identify effects of alleles on gene regulation

(Gaulton et al. 2010; Stitzel et al. 2010; Fogarty et al. 2013; Travers et al. 2013;

Kulzer et al. 2014). On a broader scale, identification of other annotated functional

classes that show genome-wide enrichment of T2D signals will help guide the

choice of regulatory elements and variants to study.

6.4 Summary and Future Directions

Known association signals, our current lampposts (Collins 2006), serve as markers

for genomic regions likely to harbor functional T2D variants; fine-mapping is a way

of strengthening and focusing this light on the underlying T2D variants and the

genes they influence. Successful fine-mapping requires sample sizes large enough

to have sufficient association signals to distinguish between variants and requires

dense genotyping/imputation/sequencing to assure that the functional T2D variants

are tested for association. The width of the interval queried depends both on the LD

structure of the locus and on assumptions about the number and allele frequency of

those variants. Based on fine-mapping efforts to date, it appears that few, if any,

common T2D signals are caused by rare or low-frequency functional variants,

although associated rare and low-frequency variants are present in and near loci

identified by common T2D index variants. Credible sets of variants can be formed

and further annotated with functional elements to help guide selection of variants

for functional follow up.

Credible sets with small numbers of plausible variants with predicted functions

and practical biological assays are most attractive. As the architecture of the

genome is characterized, functional elements and the boundaries of regulatory

domains will be identified. These findings should enable easier mapping of regula-

tory variants to genes, though a direct one-to-one mapping of each regulatory

noncoding variant to its target gene(s) is, as of yet, not possible. As the number
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of identified functional T2D variants grows, we will better understand the classes of

variants and genes that influence T2D risk. These discoveries may, in turn, lead to

the development of new drugs and a better ability to prevent and treat T2D.
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Chapter 7

Genetics of Diabetic Micro-

and Macrovascular Complications

Niina Sandholm, Per-Henrik Groop, and Alessandro Doria

Abstract The micro- and macrovascular long-term complications of diabetes

account for the majority of mortality and morbidity in diabetes. The diagnosis of

diabetic nephropathy is highly correlated with the presence of other complications

and associated with an increased risk of mortality, whereas cardiovascular disease

is often the final cause of death in diabetes. While environmental factors, especially

the blood glucose level, play an important role in the development of diabetic

complications, the familial clustering of diabetic complications suggests that

genetic factors affect their risk as well. As for most of the common and complex

diseases, linkage studies and candidate gene studies have resulted in only a few

robust genetic risk factors for diabetic complications. Whereas genome-wide asso-

ciation studies have identified multiple susceptibility loci for chronic kidney disease

and cardiovascular disease in the nondiabetic population, the first results are now

emerging from genome-wide association studies on micro-and macrovascular com-

plications in persons with diabetes as well.
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AGE Advanced glycation end products

BMI Body mass index

CAC Calcium content

CAD Coronary artery disease

CAN Cardiovascular autonomic neuropathy

CARe Candidate gene association resource

CI Confidence interval

cM Centimorgan

CVD Cardiovascular disease

DCCT Diabetes control and complications trial

DN Diabetic nephropathy

DR Diabetic retinopathy

eGFR Estimated glomerular filtration rate

ERα Estrogen receptor α
ESRD End-stage renal disease

GENIE Genetics of nephropathy and international effort

GoKinD Genetics of kidneys in diabetes

GWAS Genome-wide association study

h2 Heritability

JHS Joslin heart study
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LD Linkage disequilibrium

LDL Low-density lipoprotein

LOD Logarithm of odds

MI Myocardial infarction

OR Odds ratio

SNP Single nucleotide polymorphism

T1D Type 1 diabetes

T2D Type 2 diabetes

7.1 Introduction

Chronic micro-and macrovascular complications are common in diabetes. The

microvascular complications include the sight-threatening diabetic retinopathy

(DR), diabetic nephropathy (DN), and peripheral and autonomous neuropathy,

whereas the macrovascular complications refer to the cardiovascular complications

and strokes. Both environmental and genetic factors affect the risk of the compli-

cations, but this chapter overview concentrates on genetic findings behind the

diabetic complications.

Identifying the genetic variants’ modulating susceptibility to diabetic complica-

tions would have important translational implications. First, these variants may

point to as yet unidentified molecular pathways linking diabetes to increased

atherogenesis and microvascular damage, which may in turn suggest new targets
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for prevention and/or treatment. Second, they may be used to build algorithms for

early identification of diabetic individuals at high risk of complications who may

benefit from especially aggressive prevention programs. Finally, such knowledge

may allow stratification of diabetic subjects based on their response to

antiatherogenic therapies, enabling personalized treatment programs.

7.2 Genetic Factors of Diabetic Microvascular

Complications

7.2.1 Diabetic Nephropathy

Diabetic nephropathy is the most devastating microvascular complication of dia-

betes. In the most severe cases, it can lead to renal failure and end-stage renal

disease (ESRD) when regular dialysis treatment or kidney transplantation is

required for the patient’s survival. In type 1 diabetes (T1D), patients with ESRD

carry an 18-fold risk of premature mortality compared with the general population

(Groop et al. 2009), whereas the patients with T1D but without DN have no excess

of premature mortality compared with the nondiabetic age-matched subjects

(Groop et al. 2009; Orchard et al. 2010). Excess mortality has been attributed to

DN also in patients with type 2 diabetes (T2D) (Afkarian et al. 2013).

7.2.1.1 Heritability

Persistent hyperglycemia is a major risk factor for DN, and intensive glucose

lowering treatment was shown to reduce the occurrence of DN by 54 % in the

Diabetes Control and Complications Trial (DCCT) (Reichard et al. 1993). Other

important risk factors for DN include high blood pressure, dyslipidemia, male

gender, and long duration of diabetes (Parving and Smidt 1986; Tarnow

et al. 2008; Tolonen et al. 2009). In addition, familial clustering has been reported

for DN (Seaquist et al. 1989; Borch-Johnsen et al. 1992; Harjutsalo et al. 2004) as

well as for the mildest form of DN, microalbuminuria (The DCCT Research Group

1997). The sibling recurrence risk for DN after 25 years of T1D duration was

estimated to be 2.3-fold, suggesting that genetic factors do affect the risk of DN

(Fig. 7.1) (Harjutsalo et al. 2004).

7.2.1.2 Candidate Genes

Candidate gene studies for DN have involved hundreds of candidate genes, with

only a few being replicated. In order to critically assess the cumulative evidence

for putative candidate genes, Mooyaart et al. performed a literature-based
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meta-analysis of all the variants that were associated with DN in the initial study

and subsequently reproduced in at least one additional study (Mooyaart et al. 2011).

Starting with 671 genetic association studies on DN, they identified only 21 variants

that remained significant after meta-analysis. The most studied candidate was the

rs1799752 insertion/deletion polymorphism in the ACE gene encoding the angio-

tensin I-converting enzyme (ACE), with some of the 42 studies supporting and

some refuting the finding. Nevertheless, the meta-analysis indicated that the dele-

tion significantly predisposes to higher risk of DN (Table 7.1). Carriers of the

deletion have higher ACE expression (Rigat et al. 1990), leading to elevated plasma

angiotensin II levels which promotes podocyte injury (Campbell et al. 2011). Other

replicated variants in the meta-analysis implicated genes involved in the polyol

pathway, lipid metabolism, inflammatory cytokines, angiogenesis, and oxidative

stress. However, a literature-based meta-analysis may be affected by publication

bias, potentially leading to overestimation of the effects.

The strongest evidence of association for a candidate gene in terms of a p-value
is obtained for rs1617640 located on the promoter region of the erythropoietin

(EPO) gene. The original publication consisted of three studies with participants

with T1D and European ancestry and compared the cases with ESRD and prolif-

erative diabetic retinopathy with controls without DN or retinopathy, resulting in a

Fig. 7.1 Cumulative incidence of DN in diabetic siblings according to the DN status of probands.

Both probands and siblings had T1D. DN-: proband did not have DN. DNþ: proband had DN,

ESRD excluded. ESRD: proband had ESRD [Modified from Harjutsalo et al. (2004)]
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p-value of 2.8� 10�11 (Tong et al. 2008). Evaluation in two additional studies did

not replicate the finding, but the association remained significant ( p-value
2� 10�9) after meta-analysis of all five studies (Williams et al. 2012) (Table 7.1).

Table 7.1 Most plausible genes involved in DN

Gene Variant Source Supporting evidence

ACE rs1799752 Candidate gene The most studied candidate gene, signifi-

cantly associated with DN in a literature-

based meta-analysis with a pooled odds ratio

of 1.24 (95 % CI 1.12–1.37) (Mooyaart

et al. 2011)

EPO rs1617640 Candidate gene p-value 2� 10�9 in a meta-analysis of five

studies (Tong et al. 2008; Williams

et al. 2012)

NCK1 rs1866813 Fine-mapping Strongest association with DN at the 3q21–35

region linked to DN in T1D (Rogus

et al. 2008; Moczulski et al. 1998; Imperatore

et al. 1998; Bowden et al. 2004; Osterholm

et al. 2007; Wessman et al. 2011). p-value
7.1� 10�7, OR 1.33 (He et al. 2009)

FRMD3 rs10868025 GWAS on DN in

T1D

Strongest signal from the GWAS on DN in

T1D in GoKinD US, p-value 5.0� 10�7, with

nominal replication in the DCCT/EDIC study

(p-value 0.02) (Pezzolesi et al. 2009a).

Supported in a GWAS of African American

participants with T2D after adjusting for

MYH9 variants (Freedman et al. 2011) and in

Japanese participants with T2D

(p-value< 0.05) (Maeda et al. 2010a), but not

supported in European participants with T1D

(Williams et al. 2012)

AFF3 rs7583877 GWAS on ESRD

in T1D

Genome-wide significantly associated with

ESRD ( p-value 1.2� 10�8) in a meta-

analysis of 10,500 participants with T1D

(Sandholm et al. 2012)

15q26

(RGMA—
MCTP2)

rs12437854 GWAS on ESRD

in T1D

Genome-wide significantly associated with

ESRD ( p-value 2.0� 10�9) in a meta-

analysis of 10,500 participants with T1D

(Sandholm et al. 2012)

2q31.1

(CDCA7—
SP3)

rs4972593 GWAS on ESRD

in women with

T1D

Genome-wide significantly associated with

ESRD in women with T1D (p-value
3.0� 10�8) and replicated in independent

participants ( p-value 0.02) (Sandholm
et al. 2013)

GLRA3 rs1564939 GWAS on

albuminuria

Genome-wide significantly associated with

albuminuria in T1D (5 SNPs with p-value
<5� 10�8). Nominally associated with albu-

minuria ( p-value¼ 0.04) in seven replication

studies, but effect in opposite direction

(Sandholm et al. 2014)
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Candidate genes for DN have been explored also with family-based linkage

studies. One of the strongest linkage peaks for DN with the logarithm of odds

(LOD) score of 3.1 was obtained in a candidate gene study of the AGTR1 gene,

located at the genetic position 157 cM on chromosome 3q (Moczulski et al. 1998).

Interestingly, all the performed genome-wide linkage scans on DN in T1D

(Osterholm et al. 2007; Rogus et al. 2008; Wessman et al. 2011) and in T2D

(Imperatore et al. 1998; Bowden et al. 2004) suggestively support a linkage peak

on the same chromosome 3q region (chromosomal position 134 cM–181 cM).

Whereas the region is rather large and the obtained signals were mainly suggestive

rather than confirming, this chromosomal region has been a target for intensive fine-

mapping efforts. Vionnet et al. examined 69 polymorphisms in 14 genes on the

3q23–q29 region and found the strongest association ( p-value 0.01) with DN at

variants in the adiponectin (ADIPOQ) gene (Vionnet et al. 2006). Adiponectin is a

cytokine exclusively produced by adipose tissue that has insulin-sensitizing effects,

thus affecting glucose and lipid metabolism; the serum level of adiponectin has

been associated with renal function in T1D (Saraheimo et al. 2005). The chromo-

some 3q21–25 region (134 to 157 cM) which was implicated in the T1D studies was

further fine-mapped in nearly 3700 Icelandic, Finnish, and British participants with

T1D. The study identified rs1866813 at 3q22 as the strongest factor associated with

DN, with an overall p-value of 7.1� 10�7 (He et al. 2009). The variant is located

close to the NCK1 gene which is expressed in the kidney podocyte where Nck1

links the slit diaphragm protein nephrin to the actin cytoskeleton (Jones et al. 2006)

(Table 7.1).

7.2.1.3 Genome-Wide Association Studies (GWASs)

Multiple GWASs on DN have emerged in the last few years, both in participants

with T1D and T2D. The first GWAS on DN was performed on Japanese subjects

with T2D, reporting a potential association with DN at rs741301 and eight other

single nucleotide polymorphisms (SNPs) in the ELMO1 gene (Shimazaki

et al. 2005). The reported variants have not been replicated in other studies

(Pezzolesi et al. 2009b; Leak et al. 2009; Williams et al. 2012), but investigations

in participants with T1D of European origin and in African American participants

with T2D identified other variants in the ELMO1 gene suggestively associated with
DN (Pezzolesi et al. 2009b; Leak et al. 2009).

The first GWAS on DN in T1D, performed in the US Genetics of Kidneys in

Diabetes (US GoKinD) study including 1500 participants with T1D, reported

multiple suggestive associations (P< 10�5) with DN in or near the CHN2,
FRMD3, CARS, and IRS2 genes, although none of the loci reached genome-wide

statistical significance (i.e., p-value <5� 10�8) (Pezzolesi et al. 2009a). Their

subsequent analysis using imputed GWAS data resulted in four additional sugges-

tively associated loci in the SORBS1 gene, near the TRPS1 gene and between the

CDCA2 and EBF2 genes, and near the BUB3 and GPR26 genes (Pezzolesi et al.
2010). Among these loci, the variants near the CARS gene and on the FRMD3 gene
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were suggestively replicated in further studies in patients with T1D (Pezzolesi

et al. 2009a). The association at the FRMD3 gene was subsequently supported by

a GWAS in African American participants with T2D after adjusting for the major

genetic risk factors for nondiabetic kidney disease (Freedman et al. 2011), whereas

the association analysis was inconclusive in Japanese participants with T2D

( p-value< 0.05 but not withstanding correction for multiple testing) (Maeda

et al. 2010a) and not supported in European participants with T1D (Williams

et al. 2012). Another GWAS on ESRD using pooled DNA from the same US

GoKinD T1D participants suggested associations in the ZMIZ1 and MSC genes

and supported the association on chromosome 13q identified by Pezzolesi

et al. (Craig et al. 2009).

A large meta-analysis of three GWASs on DN and ESRD was performed in

the Genetics of Nephropathy, an International Effort (GENIE) Consortium including

6691participantswithT1DandwithEuropean origin. After a combinedmeta-analysis

with nine additional studies onDN in T1D, variants in theAFF3 gene and between the
RGMA and MCTP2 genes were associated with ESRD with genome-wide statistical

significance (p-value <5� 10�8) (Sandholm et al. 2012). AFF3 encodes a nuclear

transcriptional activator that can bind to DNA and RNA (Melko et al. 2011). Variants

upstream and in the 50 end of the AFF3 gene have been suggestively associated

with autoimmune diseases, including juvenile idiopathic arthritis (Hinks

et al. 2010), rheumatoid arthritis (Barton et al. 2009), Graves’ disease (Todd

et al. 2007), and T1D (Todd et al. 2007). In vitro analyses of the AFF3 expression

levels on renal epithelial cells suggested that AFF3 may influence the TGF-β1-
induced fibrotic responses (Sandholm et al. 2012). In addition to the ESRD findings,

a suggestive association withDN (p-value 2.1� 10�7) was reported for variants in the

ERBB4 gene. Whereas ErbB4 has been previously implicated in the development of

cardiac, mammary gland, and neural tissues (Gassmann et al. 1995; Tidcombe

et al. 2003) and associated with cancer (Prickett et al. 2009), recent research on

conditional ERBB4 overexpression and knockout mice models suggests that ERBB4
is important for the development of the kidneys as well (Veikkolainen et al. 2012).

Interestingly, ErbB4 has been suggested as a therapeutic target molecule for cancer

and psychiatric and cardiovascular disorders, and ErbB4-binding ligands have been

patented for enhancement of the ErbB4 signaling (Paatero and Elenius 2008).

A gender-specific GWAS on ESRD in Finnish participants with T1D identified

rs4972593 between the SP3 and CDCA7 genes associated with over twofold risk of
ESRD in women ( p-value 3� 10�8). The association was confirmed in indepen-

dent studies in women with T1D, whereas no association was seen in men or in

women with T2D (Sandholm et al. 2013). The RegulomeDB database indicated

potential regulatory activity for rs530673 (in strong linkage with rs4972593, r2¼ 1)

(Boyle et al. 2012), but no direct link has been established between rs4972593 and

any of the nearby genes. Nevertheless, the SP3 gene expression was found higher in
the glomeruli of women compared with men ( p-value 0.004, fold change �1.45)

(Woroniecka et al. 2011), and the Sp3 transcription factor is known to directly

interact with the estrogen receptor α (ERα), forming a receptor complex for

estradiol (Stoner et al. 2000, 2004). One of the many target genes of Sp3 is the
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CD2AP gene encoding a protein that is essential for the glomerular filtration barrier

and interacts with nephrin and podocin—two important proteins in the glomerular

slit diaphragm (Shih et al. 2001; Schwarz et al. 2001). Therefore, the SP3 gene

seems like a plausible culprit gene to explain the association between rs4972593

and ESRD in women with T1D.

Further, GWASs on DN in Japanese and African American participants with

T2D have suggested associations in or near the ACACB, RPS12, LIMK2, SFI1, and
other genes, but none of the loci have reached genome-wide statistical significance

(McDonough et al. 2010; Maeda et al. 2010b). A multimarker data mining approach

supported the association between ESRD and the loci between the RGMA and

MCTP2 genes and suggested variants between theWNT4 and ZBTB40 and between
the SEMA6D and SLC24A5 genes as novel risk loci for ESRD (Sambo et al. 2014).

However, these loci still warrant further confirmation.

The majority of the published association studies on DN has used a case–control

study setting and defined cases as participants with macroalbuminuria or ESRD, or

ESRD only, to obtain a more extreme phenotype. Indeed, most of the reported loci

with genome-wide statistical significance were obtained with the ESRD case

definition rather than a milder case definition, possibly reflecting i) survival bias,

i.e., association with the high mortality observed in DN (Forsblom et al. 2011;

Groop et al. 2009) instead of ESRD, ii) higher heritability of ESRD than DN

(Harjutsalo et al. 2004), iii) clustering of more genetic risk factors for the participants

with the most extreme phenotype following the liability model (Gibson 2012), or iv)

specific genetic factors predisposing for the transition from macroalbuminuria to

ESRD. Only one GWAS has been published thus far using quantitative traits to assess

the severity of DN. The study examined genetic risk factors for elevated albumin

excretion rate (AER) in 1925 Finnish participants and identified five variants in the

GLRA3 gene associated with elevated AER with p-value< 5� 10�8. Some evidence

of association (p-value 0.028, not significant after correction for multiple testing) was

also seen in non-Finnish participants with T1D but with the opposite allele associated

with elevated AER. The authors hypothesize that population-specific rare variants

may explain the association and the difference in the effect direction but that larger

sequencing efforts are required to confirm the finding (Sandholm et al. 2014).

GWASs have been performed on both albuminuria and estimated glomerular

filtration rate (eGFR), the two main quantitative traits for evaluation of kidney

disease, in the general (mainly nondiabetic) population. A missense mutation

rs1801239 in the CUBN gene was identified as a risk locus for albuminuria in

nondiabetic participants, and the same variant was associated with

microalbuminuria in participants with diabetes. CUBN encodes cubilin, which is

essential for the reuptake of albumin and other low-molecular-weight proteins in

the proximal tubules (B€oger et al. 2011). Furthermore, multiple loci have been

identified for reduced kidney function in nondiabetic subjects, evaluated with

eGFR. These include variants in or near the UMOD, SHROOM3, GATM-
SPATA5L1, CST, and STC1 genes (K€ottgen et al. 2009); LASS2, GCKR, ALMS1,
TFDP2, DAB2, SLC34A1, VEGFA, PRKAG2, PIP5K1B, ATXN2, DACH1,
UBE2Q2, and SLC7A9 genes (K€ottgen et al. 2010); and MPPED2, DDX1,

160 N. Sandholm et al.



SLC47A1, CDK12, CASP9, and INO80 genes (Pattaro et al. 2012). Variants in the

GCKR, SHROOM3, and UMOD loci were suggestively associated with eGFR also

in participants with T2D (Deshmukh et al. 2013). In addition, variants in theMYH9
and APOL1 genes that predispose to chronic kidney disease in the nondiabetic

population have been associated with kidney disease in African American partic-

ipants with T2D as well. In contrast, none of the variants affecting eGFR or risk of

chronic kidney disease in the general population were associated with DN or ESRD

in the GWAS meta-analysis of participants with T1D (Sandholm et al. 2012). Thus,

the overlap between genes predisposing to diabetic and nondiabetic kidney disease

seems limited to individuals with T2D.

7.2.2 Diabetic Retinopathy

Diabetic retinopathy belongs to the severe microvascular complications of diabetes

(Klein 1987) and is one of the leading causes of blindness worldwide (Resnikoff

et al. 2004). Family studies have shown that DR clusters in families in both T1D

and T2D, with the heritability estimates ranging from 25 % in T2D to 52 % in T1D

(Hietala et al. 2008; Hallman et al. 2005; Rema et al. 2002; The DCCT Research

Group 1997; Arar et al. 2008). As for the other diabetic complications, many

candidate gene studies have been conducted, but convincing replication of the

reported associations has been rare. Abhary et al. published in 2009 a literature-

based meta-analysis of the association analyses on DR. They identified 160 publi-

cations containing 196 genetic polymorphisms in 65 genes and finally evaluated

associations at 34 repeatedly assessed variants from 20 genes. The most consistent

association was obtained for variants in the aldose reductase encoding AKR1B1
gene, whereas some association with specific subtypes was also seen for variants in

the NOS3, VEGF, ITGA2, and ICAM1 genes (Abhary et al. 2009).

Paving the way for GWAS, the Candidate Gene Association Resource (CARe)

performed a large-scale candidate gene analysis containing 49,320 SNPs from

roughly 2000 genes suspected to affect the risk of cardiovascular, metabolic, and

inflammatory diseases. The study included 2691 participants with T2D and fundus

photographs available for the classification of DR, and replication of the main

findings was attempted in more than 5000 participants with T2D or T1D and with

diverse ethnicity. None of the evaluated variants were consistently associated with

DR, but among the 39 genes that had been previously associated with DN, DR, or

T2D, the strongest evidence of association was obtained for variants in the

P-selectin encoding SELP gene ( p-value 3.1� 10�6). Among all the studied vari-

ants, the strongest association was obtained for a variant near the IDUA gene

( p-value 3.1� 10�6) (Sobrin et al. 2011).

Four GWASs have been performed on DR. An early GWAS on DR in 290 par-

ticipants with T2D suggested variants in the TINAG and C6orf170 genes, but the

p-values were only moderate (Fu et al. 2010). The largest GWAS on DR to date

included 2829 participants with T1D evaluated at 2.5 million SNPs after genotype
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imputation. None of the loci reached genome-wide statistical significance, but the

strongest signal with p-value 1.2� 10�7 was obtained for rs476141 near the AKT3
gene. However, the results were not assessed in any independent replication cohorts

(Grassi et al. 2011). A GWAS including 174 DR cases and 575 non-DR controls

from the Taiwanese T2D population identified two loci with genome-wide statis-

tical significance using a recessive association model: rs17376456 on chromosome

5q with p-value 3.0� 10�15 and rs2038823 in the HS6ST3 gene. However, these

findings were not replicated in independent participants (Huang et al. 2011).

Finally, a GWAS on DR in 1007 Chinese participants with T2D suggested associ-

ations on the TBC1D4-COMMD6-UCHL3, LRP2-BBS5, and ARL4C-SH3BP4 gene
regions but were unable to replicate the findings in 585 Hispanic participants with

T2D (Sheu et al. 2013). All in all, the candidate gene studies and GWASs have

suggested multiple potential risk factors for DR, but none of them have yet been

confirmed in independent studies. Thus, role of these variants remains uncertain.

7.2.3 Diabetic Neuropathy

Diabetic neuropathy is one of the most common but least studied diabetic compli-

cations, and the pathophysiology remains poorly understood. In addition, the

phenotype is not well defined and can be further divided into peripheral and

autonomic neuropathy. Although candidate gene studies on diabetic neuropathy

in both T1D and T2D exist, no systematic replication or meta-analysis has been

performed to summarize the findings. Many of the studied candidate genes were

candidates for diabetes or other diabetic complications as well, such as APOE
associated with the severity of peripheral neuropathy (Monastiriotis et al. 2013),

VEGF associated with diabetic neuropathy (Tavakkoly-Bazzaz et al. 2010), and

TCF7L2 variants associated with cardiovascular autonomic neuropathy (CAN)

(Ciccacci et al. 2013), but the number of participants with neuropathy has been

small, typically ranging from tens to few hundreds.

Despite the scarcity of candidate gene studies, a GWAS on chronic pain was

recently performed in 3063 UK-based patients with T2D, including 572 cases with

a positive monofilament test result in at least one foot. The strongest evidence of

association was obtained for a locus on chromosome 8 near the GFRA2 gene with

the lowest p-value of 1.8� 10�7 for rs17428041. The authors conclude that their

next step is to attempt replication of the association to confirm the finding (Meng

et al. 2014). In a pilot GWAS on erectile dysfunction in men with T1D diabetes, the

strongest association was obtained for two SNPs near the ALCAM gene ( p-value
7� 10�7). Similar to the other GWAS on neuropathy, the final conclusions regard-

ing this locus are pending replication in independent studies (Hotaling et al. 2012).

162 N. Sandholm et al.



7.3 Genetic Factors of Macrovascular Complications

A large proportion of the morbidity and mortality associated with diabetes, espe-

cially with the type 2 form, is due to the macrovascular complications of the

disease. Relative to nondiabetic subjects, patients with diabetes have a two- to

fourfold increased risk of cardiovascular death (Krolewski and Warram 2005;

Stamler et al. 1993; Warram et al. 1997). The impact of diabetes on coronary artery

disease is so profound that diabetic patients without a previous myocardial infarc-

tion (MI) carry the same risk for an acute coronary event as nondiabetic patients

with a previous MI (Haffner et al. 1998). Diabetes also worsens early and late

outcomes in acute coronary syndromes, determining an increased risk of compli-

cations after an MI (Beckman et al. 2002). Part of this increase in cardiovascular

risk is fostered by conventional cardiovascular risk factors, such as increased levels

of small low-density lipoprotein (LDL), hypertension, low high-density lipoprotein

(HDL) cholesterol, and central obesity (Warram et al. 1997), which are particularly

frequent in T2D and are often associated with hyperinsulinemia in the so-called

insulin resistance syndrome or syndrome X (Reaven 1997). These metabolic

abnormalities can antedate the onset of T2D by several decades (“prediabetic”

exposures). Once diabetes becomes manifest, prediabetic exposures continue but

are augmented by the pro-atherogenic effects of hyperglycemia (Laakso 1999)

through the buildup of advanced glycation end products (AGE) (Brownlee 1994);

activation of protein kinase C (Rask-Madsen and King 2005); increased production

of superoxide, polyols, and hexosamine (Nishikawa et al. 2000); and other as yet

unidentified cellular pathways.

While all diabetic subjects are at increased cardiovascular risk, their suscepti-

bility to the detrimental effect of diabetes varies, in part under the control of their

genetic background. Genetic factors have been known for many years to modulate

the development of coronary artery disease in the general population (Shea

et al. 1984). In a landmark study from Sweden published in 1992, 50 % of twins

of subjects with early cardiovascular disease (CVD) mortality were reported to die

before age 70 as compared to 10 % in unselected subjects (Marenberg et al. 1994).

Several reports have extended this evidence to individuals with diabetes. In a study

of families with T2D, Wagenknecht et al. found that up to 50 % of the variance of

coronary calcium content (CAC, an index of atherosclerotic burden) is accounted

for by familial factors (Wagenknecht et al. 2001). Such estimate was minimally

affected by adjustment for HDL, body mass index (BMI), and hypertension,

indicating that this effect was not due to familial aggregation of traditional risk

factors. Similar heritability estimates (h2¼ 0.41) have been obtained using carotid

intima thickness as a marker of subclinical atherosclerosis (Lange et al. 2002).
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7.3.1 Candidate Gene Studies

As with other complex disorders, initial efforts were based on the study of candidate

genes chosen on the basis of their postulated function in the etiology of coronary

artery disease. Among the most interesting results obtained through this approach

are those concerning adiponectin (briefly discussed above) (Scherer et al. 1995).

Adiponectin also has direct antiatherogenic effects on the arterial wall by antago-

nizing monocyte adhesion to the endothelium, smooth muscle cell proliferation,

and foam cell formation (Kadowaki and Yamauchi 2005). A SNP in an intron of the

adiponectin gene (rs1501299) was reported to be associated with a twofold increase

in the risk of coronary artery disease (CAD) in a meta-analysis of four different sets

of diabetic subjects (Qi et al. 2006). An effect of this SNP, or other variants in

linkage disequilibrium (LD) with it, on circulating adiponectin levels appears to be

responsible for this association (Menzaghi et al. 2007). Genetic variability in the

adiponectin receptors may also play a significant role. Genetic variants in the 30 half
of ADIPOR1—one of the adiponectin receptors described to date—have emerged

as being associated with CAD among individuals with T2D from the USA and Italy.

These variants were also associated with lower ADIPOR1 mRNA levels in carriers,

suggesting a blunted response to the antiatherogenic effects of adiponectin on the

vascular wall as a mechanism mediating this genetic effect (Soccio et al. 2006).

Interesting findings have also been obtained for three relatively infrequent

non-synonymous variants that had been previously shown to affect insulin-signal-

ing—ENPP1K121Q, IRS1G972R, and TRIB3Q84R (Prudente et al. 2009; Sharma

et al. 2011; Bacci et al. 2011, 2013; Morini et al. 2009). The first of these variants,

which enhances the inhibitory effects of the phosphodiesterase ENPP1 on insulin

receptor signaling (Pizzuti et al. 1999), was found to be significantly associated

with an increased risk and a younger age at onset of major cardiovascular events

among diabetic subjects, especially in the presence of obesity ( p-value for gene x
obesity interaction¼ 0.003) (Bacci et al. 2011). Considered jointly, the three

variants were associated with an 18 % increase in CAD risk as well as with

whole-body and endothelium-specific insulin sensitivity (Bacci et al. 2013). Alto-

gether, these findings confirm the well-known association between insulin resis-

tance and cardiovascular risk and point to possible targets for new interventions to

break this link.

7.3.2 Genome-Wide Association Studies (GWAS)

7.3.2.1 Studies in the General Population

Over 40 loci have been identified to date by GWASs in the general population as

being associated with CAD or MI with genome-wide significance. Examining these

findings, three general themes emerge that are also common to GWAS for other
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complex disorders (Schunkert et al. 2011; Coronary Artery Disease (C4D) Genetics

Consortium 2011; Deloukas et al. 2013). The first one is that most genetic variants

are associated with a relative small increase in cardiovascular risk, with allelic odds

ratios (OR) that do not exceed 1.30 and are mostly below 1.20. The second feature

is that most of the variants associated with CAD are placed in noncoding regions,

suggesting that the genetic effects involve regulatory elements and alteration of

gene expression rather than the amino acid sequence. The third one is that many of

the genes that are placed in the vicinity of these variants have functions that cannot

be easily connected to what we currently know about the pathophysiology of

atherosclerosis. Among the few exceptions are LDLR, which codes for the LDL

receptor, PCSK9, which codes for a serine protease modulating the expression of

the LDL receptor and mutated in Mendelian forms of hypercholesterolemia

(Abifadel et al. 2003), and the SLC22A3-LPAL2-LPA cluster, which include the

coding sequences for the atherogenic lipoprotein Lp(a).

In all the GWAS for CAD conducted to date, the strongest association signal has

been observed at a locus on chromosome 9p21, with odds ratios in the order of 1.30.

The increased cardiovascular risk associated with this locus is unaffected by

adjustment for other cardiovascular risk factors, implying that this effect is inde-

pendent from known risk pathways. The SNPs most strongly associated with CAD

at this location are placed in a 60 Kb LD block. Given the strong LD, it has been

difficult to pinpoint the variant(s) responsible for the association with CAD based

solely on the association data. Extensive resequencing of this region has failed to

identify coding variants on the CAD-associated haplotypes, suggesting that this

association results from allelic variability in gene expression and/or splicing

(McPherson et al. 2007). The LD block where the association signal is placed

includes the most 30 exons of the noncoding gene CDKN2B-AS (a.k.a. ANRIL),
which is expressed in many cell types relevant to the atherosclerotic process

(Broadbent et al. 2008; Jarinova et al. 2009). The CDKN2B-AS gene is transcribed

as two alternatively spliced transcripts—a long one including the 30 exons placed in
the CAD-associated block and a short one missing those exons. It has been

proposed that the balance of these splice variants is altered in carriers of the 9p21

allele and that this may in turn affect the expression of other genes through

mechanisms such as RNA interference or chromatin remodeling. Special attention

as potential targets has been given to CDKN2A and CDKN2B, which are adjacent to
and partially overlap with CDKN2B-AS L. These two genes code for inhibitors of

cyclin-dependent kinases that are involved in the control of cell proliferation, cell

aging, and apoptosis and are expressed at high levels in endothelial and inflamma-

tory cells (Kamb et al. 1994; Pomerantz et al. 1998; Hannon and Beach 1994). In

support of a role of these genes, a positive correlation, albeit marginally significant,

was found between transcript levels of the long variant of CDKN2B-AS L and

CDKN2B mRNA (Jarinova et al. 2009). Thus, the risk allele at 9p21 might

predispose to CAD by decreasing the expression of the long form of CDKN2B-
AS, which in turn decreases CDKN2B expression, thereby promoting a proliferative

phenotype in cell types relevant to atherogenesis such as smooth muscle cells.
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The 9p21 locus influences cardiovascular risk also in the presence of diabetes. In

fact, data from the Joslin Heart Study (JHS) suggest that this locus may have a

larger effect on CAD risk among individuals with T2D than in the general popu-

lation (Doria et al. 2008). In this study, individuals with T2D and angiographic

evidence of significant CAD were compared to subjects who had a negative

cardiovascular history of CAD and a normal exercise treadmill test despite a

long-term (>5 years) exposure to T2D. The odds ratios associated with a represen-

tative 9p21 variant (rs2383206) were 1.45 (95 % confidence interval

(CI) 0.94–2.22) for heterozygotes and 2.37 (1.52–3.70) for homozygotes. The

larger odds ratio as compared to the general population suggests the possibility of

an interaction with some aspect of diabetes such as hyperglycemia. Consistent with

this hypothesis, in the JHS, the odds of CAD for individuals who were homozygotes

for the risk allele and were also in poor glycemic control (upper tertile of HbA1c at

examination) were increased almost four times as compared to subjects who were

not homozygous for the risk allele and were in good glycemic control (Fig. 7.2). By

contrast, individuals who had either the homozygote genotype or poor glycemic

control had only a small increase in the odds of CAD as compared to subjects who

had neither risk factor. Such interaction between homozygous genotype and gly-

cemic control was significant and was also observed with respect to cardiovascular

mortality in a separate prospective study of 475 type 2 diabetic subjects from the

Joslin Clinic. After 10 years of follow-up, 36 % of risk allele homozygotes with a

history of poor glycemic control had died because of a cardiovascular cause as

compared to only 15–20 % of all other subjects (Doria et al. 2008).

These findings have several implications. From an epidemiological perspective,

they may explain past difficulties in demonstrating an association between glyce-

mic control and cardiovascular outcomes (Beckman et al. 2002; Rask-Madsen and

King 2005; Libby and Plutzky 2002; UK Prospective Diabetes Study (UKPDS)

Group 1998; Haffner 1999; Wild et al. 1999). If poor glycemic control has a major

impact on cardiovascular risk in only the 30 % of individuals with T2D who are

homozygous for the 9p21 risk allele, one would expect the association between CAD

and poor glycemic control to be quite modest among unselected individuals. From a

clinical perspective, they indicate that the 9p21 genotype could be potentially used to

identify candidates for intensive glycemic control interventions, and they call for

clinical trials to test this hypothesis. From a biological perspective, they suggest that

the atherogenic pathways on which the 9p21 variant and hyperglycemia act may

intersect at some level(s). Thus, identification of the gene(s) whose function is affected

by the risk allele may also provide clues to the molecular mechanisms linking excess

glucose to increased atherosclerosis, which are the object of intense debate still

(Beckman et al. 2002; Rask-Madsen and King 2005; Libby and Plutzky 2002). As

discussed above, the candidate genes at 9p21 include CDKN2A and CDKN2B, which
code for three inhibitors of cyclin-dependent kinases (p16INK4a, ARF, and p15INK4b)

controlling cell proliferation, cell aging, and apoptosis (Kamb et al. 1994; Pomerantz

et al. 1998; Hannon and Beach 1994). These functions, which are all potentially

relevant to the atherosclerotic process, may also be influenced by high glucose

(Zheng et al. 2007) or other conditions associated with it, such as insulin resistance.
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By dissecting the interaction between hyperglycemia and 9p21 locus, it may be

possible to identify critical nodes in these pathways that can be used to develop new

preventive interventions or treatments.

7.3.2.2 Studies in the Diabetic Population

The modifying effect of glycemic levels on the 9p21 genetic effect raises the

possibility that genetic effects may exist that interact so strongly with the diabetic

milieu to be observed only among individuals with diabetes. To investigate this

hypothesis, a GWAS for CAD was recently conducted specifically among subjects

with T2D. The study, consisting of three stages, included a total of 1517 CAD cases

and 2671 CAD-negative controls, all with T2D, from the USA and Italy. One SNP

(rs10911021) was nominally associated with CAD at each stage and reached

genome-wide significance in the three stages combined ( p¼ 2� 10�8)

(Qi et al. 2013). Two features make this finding especially remarkable. First, the

Fig. 7.2 Synergism between poor glycemic control and 9p21 locus on the odds of CAD in T2D.

Data are from the study in Doria et al. (2008) and refer to 322 CAD-positive cases and 412 -

CAD-negative controls from the Joslin Heart Study. Adjusted odds ratios of CAD are shown

according to HbA1c value at examination (top tertile [HbA1c> 7.6] vs. lower two tertiles) and

genotypes at rs2383206 (G/G homozygosis vs. other genotypes)
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strength of this association between rs10911021 and CAD (summary OR¼ 1.36) is

in the same order of magnitude as the strongest genetic effect on CAD identified in

the general population. Second, this genetic effect appears to be specific for

diabetes as no significant association could be identified among nondiabetic indi-

viduals (OR¼ 0.99, 95 % CI 0.87–1.13, p-value for SNP � diabetes

interaction¼ 2.6� 10�4). In further support of the specificity for diabetes,

rs10911021 was found to be associated with CAD in the general population

(CARDIoGRAM) at the level that one would expect (OR¼ 1.04, p¼ 0.01) if the

genetic effect was present only in the diabetic subset of the population with the

same strength as that observed in our GWAS (Qi et al. 2013).

SNP rs10911021 is located between two genes, ZNF648 in centromeric direction

and GLUL in telomeric direction. No missense variants in LD with this variant are

present in the HapMap or the 1000 Genome Projects databases, suggesting that the

association with CAD is mediated by an effect on gene regulation. Indeed, the

rs10911021 risk allele was found to be associated with a significant reduction in the

expression of the neighboring GLUL gene in endothelial cells. The other flanking

gene (ZNF648) was not expressed in endothelial cells, and none of the other

neighboring genes were associated with rs10911021. The GLUL gene encodes the

enzyme glutamate–ammonia ligase (also known as glutamine synthase), which

catalyzes the conversion of glutamic acid and ammonia into glutamine (Fig. 7.3)

(Krebs 1935). No significant association was detected between rs10911021 and

plasma glutamic acid or glutamine concentrations in a sample of 100 Joslin Heart

Study participants. However, the ratio between plasma pyroglutamic acid (the

immediate precursor of glutamic acid in the γ-glutamyl cycle [Fig. 7.3]) and

glutamic acid was significantly lower in risk allele homozygotes than in protective

allele homozygotes ( p¼ 0.029) (Qi et al. 2013). The pyroglutamic-to-glutamic

Fig. 7.3 Schematic representation of the γ-glutamyl cycle. GLUL glutamate–ammonia ligase

(also known as glutamine synthase), GLS glutaminase
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ratio was also significantly lower in CAD cases than in CAD-negative control

( p¼ 0.02). The OR for CAD of risk allele homozygotes decreased from 1.83 to

1.39 (a ~50 % reduction in the log scale) after adjustment for the pyroglutamic-to-

glutamic acid ratio, suggesting that the effect of this locus on CAD was at least in

part mediated by its effect on this parameter.

These findings implicate the γ-glutamyl cycle, of which pyroglutamic acid is an

intermediate, in the etiology of CAD in diabetes. One can hypothesize that alter-

ations of this pathway may limit the synthesis of the natural antioxidant glutathione,

compounding the known negative effect of diabetes on this metabolite (Yoshida

et al. 1995) and decreasing glutathione levels below a critical threshold, under

which subjects become more vulnerable to oxidative stress and, consequently, more

susceptible to the development of atherosclerosis. In vitro and in vivo studies are in

progress to test this hypothesis as well as others based on the role of glutamate and

glutamine in several other pathways that are potentially relevant to vascular biology

and atherosclerosis.

7.4 Conclusions and Future Aspects

While many of the genetic risk factors for cardiovascular disease identified in the

general population seem to play an important role in diabetic participants as well,

little overlap has been found between kidney, eye, and neuronal complications in

the general and the diabetic populations. The recent advances in the genetic studies

on the diabetic complications have revealed novel susceptibility loci especially for

diabetic kidney complications. The good news are that large studies are ongoing to

further dissect the genetic background of DN, and large GWASs on DR are

emerging. Importantly, international consortia, required for increased sample

sizes, have already been established. However, larger studies are still needed to

identify common genetic risk factors with modest effect or rarer causal variation.

Apart from increasing the sample size, improving the phenotype may be another

way to find further susceptibility loci especially for the microvascular complica-

tions where the disease manifestation is more difficult to diagnose, especially at the

early stages of the disease.

As for any complex disease, exome and whole-genome sequencing are the likely

next steps in order to identify rare and causal variation in both existing and novel

susceptibility loci. Epigenetic factors have also been suggested to affect the risk of

diabetic complications, especially due to the phenomenon known as “metabolic

memory,” i.e., the persistence of adverse effects of high blood glucose despite

subsequent intensive diabetes treatment (Keating and El-Osta 2013). Currently, the

field of genetics of diabetic complications is in the stage of finding associated

variants. Once the susceptibility loci are established, functional studies are needed

to define the molecular mechanisms behind the associations.
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Chapter 8

Transferability Across Ethnic Groups

Richa Saxena and Nicholette D. Palmer

Abstract Type 2 diabetes (T2D) is a common complex disease increasing in

prevalence worldwide. While studies in populations of European ancestry

predominated early gene discovery efforts, extension of genome-wide association

studies (GWAS) to multiple ethnic groups has identified additional novel loci and

insights based on differences in allele frequency, physiologic effect, and evolution-

ary history between populations. These studies highlight the value of global genetic

studies in diverse populations. Transferability studies of T2D, and to a limited

extent related traits, are now under way across diverse ethnic groups and have

revealed (a) consistent effects for several T2D loci across most ethnic groups

implying shared underlying causal variants; (b) allelic heterogeneity at several

loci, validating a critical role for these loci in disease risk; (c) the utility of studies

in different ethnic groups, especially of those with recent African ancestry, in fine

mapping of genetic associations based on regional differences in linkage disequi-

librium (LD); (d) heterogeneity of effect between ethnic groups at some T2D loci;

and (e) population-specific effects. Discovery and transferability studies across

ethnic groups promise to be integral in advancing our understanding of the genetic

basis of T2D and providing insights into differences in prevalence and physiology

of disease between ethnic groups. Multiethnic genetic studies for T2D are critical
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for addressing health disparities and developing preventive and therapeutic strate-

gies to reduce disease burden.

8.1 Introduction

The prevalence of diabetes is estimated at 6.4 % worldwide, with 3.8 % in Africa,

4.7 % in the West Pacific region including East Asia, 6.6 % in South and Central

America, 6.9 % in Europe, 7.6 % in South Asia, 9.3 % in the Middle East, and

10.2 % in North America (Shaw et al. 2010). Between 2010 and 2030, there is

expected to be a 69 % increase in the number of adults with diabetes in developing

countries and a 20 % increase in developed countries, underscoring the need for a

global understanding of the etiology of diabetes.

In the USA, compared to a prevalence of 7.1 % in non-Hispanic whites, Asian

Americans (8.4 %), Hispanics (11.8 %), and African-Americans (12.6 %) are all at

a higher risk for developing T2D. Yet despite a stronger demonstrated genetic

component to disease in Hispanics (h2¼ 53 %; Duggirala et al. 1999) and African-

Americans (h2¼ 60 %; Duggirala et al. 1999) as compared to Europeans

(h2¼ 25 %; Almgren et al. 2011), studies of these populations have been limited.

Increased prevalence of disease coupled with a stronger genetic basis emphasizes

the importance of genetic studies in minority populations. Studies of T2D in

multiple ethnic groups have the potential to refine association signals at established

T2D susceptibility loci and identify novel pathways and variants that contribute to

disease.

8.2 Transferability of Established T2D Loci

8.2.1 East Asians

T2D in East Asians (including Japanese, Chinese, Korean, and Southeast Asian

populations) is often characterized by earlier onset and lower body mass index

(BMI) than in Europeans. Whether genetic differences between East Asians and

Europeans underlie this differential phenotypic manifestation is still unknown, but

analyses of cross ethnic transferability of loci using recent large-scale GWAS are

beginning to shed light on genetic similarities and differences.

Approximately 30 % of the novel T2D genetic loci discovered to date are from

GWAS in East Asians. In 2010, two independent GWAS in individuals of Japanese

ancestry identified novel variants in the potassium voltage-gated channel gene

KCNQ1 (Yasuda et al. 2008; Unoki et al. 2008). Subsequent GWAS identified

two novel loci (UBE2E2 and C2CD4A-C2CD4B) in Japanese (Yamauchi

et al. 2010) and four loci (PTPRD, SRR, SPRY2, and CDC123/CAMK1D) in Han

Chinese (Tsai et al. 2010; Shu et al. 2010). The largest East Asian study to date, the
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AGEN-T2D consortium meta-analysis of GWAS (6952 cases/11,865 controls),

identified eight additional novel signals (PSMD6, MAEA, ZFAND3, KCNK16,
GCC1/PAX4, GLIS3, PEPD, and FITM2/R3HDML/HNF4A; Cho et al. 2012a).

Most recently, two Chinese GWAS reported three novel loci (GRK5, RASGRP,
and PAX4; Ma et al. 2013; Li et al. 2013), and a Japanese GWAS reported three

additional novel loci (MIR129-LEP, GPSM1, and SLC16A13; Hara et al. 2014).
East Asian GWAS have augmented gene discovery in Europeans by revealing

novel associations at variants with increased frequency in Asians as compared to

Europeans, thus improving power to detect true associations that escaped notice in

European populations. Interestingly, East Asian T2D GWAS have also discovered

new signals at previously established European T2D loci (e.g. CDC123/CAMK1D
and CDKAL1) revealing allelic heterogeneity. A novel T2D signal overlapping with

a previously established European fasting glucose locus (GLIS3) was also found,

confirming the role of this fasting glucose locus in the pathogenesis of T2D.

Numerous studies have examined the transferability of index T2D SNPs, i.e., the

first reported variant, across European and East Asian populations, with a recent

comprehensive survey evaluating 47 SNPs (Cho et al. 2012b; Voight et al. 2010).

Transferability was observed for 24 associations (20 loci originally discovered in

Europeans and 4 in East Asians), of which most surpassed the genome-wide

significance threshold (P< 5� 10�8) in both populations. Sixteen additional vari-

ants were associated in Europeans only and not in East Asians. Of these, the lack of

transferability of seven signals could be explained by differences in allele fre-

quency between the two ethnicities; these alleles were rare or monomorphic in

East Asians. Conversely, seven variants were associated in East Asians only and did

not show consistent effects in Europeans despite excellent power and high allele

frequency. Whether this apparent nonreplication between populations is because of

LD differences between index SNP and causal variant(s) between the ethnic groups,

insufficient power, or because of true nontransferability remains to be determined.

Notably, regional variants at three of the East Asian signals that do not show index

SNP transferability (UBE2E2, GLIS3, and CAMK1D/CDC23) show nominal asso-

ciations in large-scale European T2D meta-analysis; therefore, differences in LD at

these loci should be explored. A recent large trans-ethnic meta-analysis reports

ancestry-specific effects at two loci: PEPD1, with an association only in samples of

East Asian ancestry, and KLF14, with an association only in samples of European

ancestry (Diabetes Genetics Replication Meta-analysis Consortium 2014).

The transferability of most European loci to East Asians also extends to

diabetes-related quantitative traits, including fasting, post-load glucose and insulin

measures, and derived indices of insulin secretion and sensitivity. A recent trans-

ethnic fine-mapping study in a Chinese population evaluated SNPs at 50 primarily

European loci for T2D and related glycemic traits using the Metabochip, an SNP

array specifically designed for fine mapping of metabolic and cardiovascular loci.

Remarkable consistency across ethnicities (replication at 38/50 loci) and multiple

novel, independent signals were found, highlighting allelic heterogeneity across

these populations both in T2D and related traits (Kuo et al. 2013). Functional

follow-up of allelic variants should reveal common biological insights as well as

those relevant to disease in each population. We expect that imminent fine-mapping
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efforts using targeted arrays such as the Metabochip will enable refinement of trans-

ethnic associations and assist in defining causal variants underlying T2D

associations.

8.2.2 South Asians

Like East Asians, South Asians have an earlier onset of T2D at lower BMI than

Europeans and, in addition, a faster progression to cardiovascular and renal com-

plications. T2D GWAS in globally assembled individuals of South Asian ancestry

have identified six loci (GRB14, ST6GAL1, VPS26A, HMG20A, AP3S2, and

HNF4A) (Kooner et al. 2011) for T2D. In addition, GWAS in northern and southern

Indian populations have found another two novel loci (SGCG, TMEM163;
Tabassum et al. 2013; Saxena et al. 2013) that merit additional replication.

Transferability of European loci to South Asians has also been addressed in

multiple GWAS, with a large proportion of European association signals (>70 %)

found to be consistent in direction and magnitude of effect in all three South Asian

GWAS (Kooner et al. 2011; Saxena et al. 2013; Tabassum et al. 2013), but genome-

wide significance observed only at the transcription factor 7-like 2 (TCF7L2) locus.
Index SNPs from six South Asian loci are associated in both European and East

Asian populations (Cho et al. 2012b; Kooner et al. 2011), but a northern Indian

variant in the gene encoding sarcoglycan (SGCG) does not replicate in other South

or East Asian populations and is absent from Europeans, raising the possibility of an

untyped mutation contributing a population-specific effect (Saxena et al. 2013).

8.2.3 Arabs

GWAS for T2D or related traits have not yet been reported in Arabs, but initial

studies have examined the transferability of individual SNPs at European GWAS

loci and suggest considerable genetic overlap (Almawi et al. 2013; Cauchi

et al. 2012). In the largest study to date evaluating 44 SNPs from 37 European

loci in a Moroccan Arab population (1193 cases/1055 controls) from North Africa,

15 loci were nominally associated with a consistent direction of effect and, of these,

13 were further confirmed in Tunisians (1446 cases/942 controls). Importantly,

replicated associations included those with the strongest effects (TCF7L2,
CDKN2A/CDKN2B, and IGF2BP2) with similar allele frequencies and effect

sizes as in Europeans (Cauchi et al. 2012). A concordant direction of effect, with

differences in risk allele frequency and/or regional LD structure between the

Moroccan and European populations, was reported for most remaining variants.

Nominal replication of index SNPs from eight loci has also been reported in

Lebanese Arabs (Almawi et al. 2013), but larger studies with greater coverage at

T2D loci in Arab populations are warranted to more completely evaluate
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transferability. The high levels of consanguinity in many Arab populations may

also aid novel gene discovery for T2D and related traits by GWAS and familial

sequencing.

8.2.4 African-Americans

African-Americans represent one of the most understudied populations in the

GWAS era with only one published evaluation (Palmer et al. 2012). However,

parallel with ongoing discovery efforts, several groups have evaluated the transfer-

ability of established T2D loci. Among these reports, a recent study utilizing

electronic medical records evaluated GWAS-identified T2D loci in a large

African-American cohort (1554 cases/2734 controls) from the southeastern United

States (Long et al. 2012). Among the SNPs evaluated, >75 % were directionally

consistent, with replication of multiple loci especially among larger effect variants

in genes such as insulin-like growth factor 2 (IGF2BP2) and Wolfram syndrome

1 (WFS1) where this study was well powered to observe association. TCF7L2,
which has one of the largest effects observed across studies, replicated and attained

genome-wide significance.

To further explore the fine-scale allelic architecture of this population, more

sophisticated analyses have examined locus transferability. These methods seek to

overcome limitations to replication arising from differential LD patterns, effect

sizes, and allelic heterogeneity while concurrently using these features to fine-map

loci to identify causal variants. Using a large meta-analysis from six African-

American cohorts (2806 cases/4265 controls), seven of 41 T2D susceptibility

index variants replicated with the strongest association observed at TCF7L2
(Ng et al. 2013). Examination of locus transferability identified significant associ-

ations and differential LD with reported susceptibility variants observed at KLF14,
HMGA2, and KCNQ1. Interestingly at the Kruppel-like factor 14 (KLF14) gene, the
strongest signal was observed 38 kb proximal to the index variant, and while these

variants were in complete LD in Caucasian populations, only weak correlation was

observed in African-Americans with the newly identified SNP accounting for the

residual association at the index variant.

In addition to transferability of T2D loci, quantitative intermediate phenotypes

of disease that more directly assess glucose homeostasis have been evaluated for

effect in the African-American population (5984 individuals) (Liu et al. 2012). All

18 index variants evaluated displayed a consistent direction of effect with prior

reports in Europeans with four loci significantly associated with glycemic traits.

With the exception of MTNR1B, all other variants displayed differential LD

between the index and “best” SNP suggesting multiple signals or, more likely,

shared haplotype structure with the causal variant. This is exemplified with the gene

encoding glucose-6-phosphatase (G6PC2). The index SNP and the “best” SNP

from this study are correlated with a known functional variant in their respective

populations, European and African-American, but not with one another potentially

giving rise to the novel signal observed.
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These studies take advantage of the ancestry-rich accumulation of genetic

variation in this minority population, fine-scale allelic architecture, and power

afforded from quantitative trait analysis while not suffering from the limitations

of disease classification. These efforts have aided attempts to refine association

signals from European populations and provided evidence of shared genetic influ-

ences in the African-American population.

8.2.5 Latinos

Latinos are a US minority population with variable ancestral genetic contributions

from Europeans, Native Americans, and Africans. This population experiences a

disproportionate increase in prevalence with T2D incidence at younger ages (Pleis

and Lucas 2009). Moreover, prevalence rates differ based on country of birth with

individuals from Mexico having higher rates than those from Central America.

Published studies of T2D, to date, have focused on Latinos from the southern

United States and Mexico (Hayes et al. 2007; Parra et al. 2011). Exploration of the

genetic ancestry of a Mexico City population identified strong contributions from

American Indians (63 %), which varied between cases and controls, and Europeans

(34 %) with nominal influence from West Africans (3 %). Signals of association

were observed in previously identified loci including HNF1A and KCNQ1, derived
from European and East Asian populations, respectively, and more nominal asso-

ciations in CDKN2A/B and IGF2BP2. Notably at the KCNQ1 locus, studies in

Japanese and Europeans have identified two distinct, uncorrelated signals, of which

the variant identified in Japanese was associated despite the reduced frequency

observed in the American Indian population.

Extension of these findings to quantitative intermediate phenotypes has been

facilitated through population-based studies limited to T2D index variants. Among

the early evaluations of European-derived susceptibility variants, 17 have been

evaluated in a cohort of Hispanic Americans with comprehensive metabolic testing

of diabetes-related quantitative traits (Palmer et al. 2008). The most striking

association was observed at the CDKAL1 locus with reduced insulin secretion.

Additional nominal associations with consistent direction of effect were observed

between SLC30A8 and IGF2BP2 and insulin signaling and response as measured by

the disposition index. Subsequent evaluation of TCF7L2 in this (Palmer et al. 2008)

and other studies (Watanabe et al. 2007) has demonstrated association with reduced

insulin response.

With a renewed focus on the utility of genetic mapping in minority populations,

new efforts are under way to extend these findings. More recently, a GWAS of

Mexicans was published by the Slim Initiative in Genomic Medicine for the

Americas (SIGMA) T2D Consortium (SIGMA Type 2 Diabetes Consortium

et al. 2014) that demonstrates progress toward amassing larger numbers of samples

to evaluate T2D. The key finding from that effort is discussed in detail in

Sect. 8.3.5. Additional studies such as the Genetics UndeRlying DIAbetes in
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HispaNics (GUARDIAN) consortium (Goodarzi et al. 2014) will evaluate the

physiological metabolic phenotypes of disease. As has been demonstrated

(SIGMA Type 2 Diabetes Consortium et al. 2014), these studies have the potential

to uncover novel variants involved in T2D and related traits.

8.2.6 American Indians

American Indians display the highest T2D prevalence rates among minority groups

in the United States with an estimated 14.2 % of the population diagnosed with

disease and increasing to as much as 33.5 % among those living in southern Arizona

(Centers for Disease Control and Prevention 2011). The high prevalence rate of

disease and strong familial aggregation (Knowler et al. 1990) coupled with limited

genetic and environmental variability makes the Pima Indians from southern Ari-

zona an ideal population for the identification of the genetic determinants of T2D.

Early GWAS of T2D in the Pima Indians were inconclusive, with no association

of established T2D loci identified primarily from European populations (Hanson

et al. 2007). TCF7L2, one of the most widely replicated loci for T2D across multiple

ethnicities, failed to show association with T2D even following a more comprehen-

sive evaluation (Guo et al. 2007). Moreover, the protective allele in Europeans was

associated with increased adiposity potentially mitigating its protective effects.

Apparent nontransferability of additional established T2D loci, including CDKAL1,
SLC30A8, and IGFBP2, has been subsequently evaluated with additional, focused

genotyping (Rong et al. 2009) yielding estimated effects that were consistent with

previous publications. Notably, nominal association of CDKAL1 and HHEX was

observed with reduced insulin response, a key predictor of T2D. Taken together,

the results argue for additional genetic studies in a population disproportionately

affected by disease with limited genetic and environmental variability. This will aid

in the conclusive evaluation of previously identified loci and identify novel loci that

contribute to the highest rates of T2D observed in a US minority population.

8.3 Studies in Diverse Ethnic Groups: Understanding

the Genetic Architecture of T2D

8.3.1 Allele Frequency Differences Facilitate Gene Mapping
and Fine Mapping: KCNQ1, CDKAL1,

CDC/CAMKD1, and TCF7L2

Population differences in disease allele frequencies influence the power to detect

genetic effects, as illustrated for KCNQ1, the first East Asian T2D locus identified

independently by two Japanese GWAS in 2008 (Unoki et al. 2008; Yasuda
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et al. 2008). Both groups used East Asian samples of Chinese and Korean or

Singaporean ancestry and European replication datasets to establish that this asso-

ciation was trans-ethnic and not previously detected in large European-ancestry

studies due to a much lower risk allele frequency (5 vs. 40 %). GWAS meta-

analysis subsequently confirmed association of KCNQ1 variants in Europeans but at
nominal significance levels and identified an independent, common variant in

Europeans that reached genome-wide significance (Voight et al. 2010). This second

KCNQ1 signal is in turn less frequent in East Asians (15 vs. 48 %) and has only been

nominally replicated in recent East Asianmeta-analyses.More recent GWAS in East

Asians have identified additional signals at CDKAL1 (Kuo et al. 2013) and CDC/
CAMKD1 (Shu et al. 2010), pointing to allelic heterogeneity at these loci across

populations and confirming a central role for these loci in T2D pathophysiology.

Population differences in LD help to fine-map genetic associations as demon-

strated for SNPs at TCF7L2 with the strongest effect on T2D across most ethnic

groups. To refine the association between three highly correlated markers within a

64 kb region of strong LD in Europeans, researchers genotyped these markers in a

West African T2D case–control population and found robust replication only of the

rs7903146 variant, while association to the other two markers was absent or much

weaker (Helgason et al. 2007). More recently, resequencing and fine mapping in a

4.3 kb region of strong LD encompassing this variant in African-Americans

(Palmer et al. 2011) points to this variant as the most likely causal variant.

8.3.2 Nontransferability of T2D Association in East Asians
Despite Associations with T2D-Related Quantitative
Traits: MTNR1B and GCK

Two examples of European T2D loci that appear to have diminished T2D effects in

East Asians, despite higher allele frequencies, are the lead SNPs at the MTNR1B
(Wang et al. 2013; Cho et al. 2012a, b) and GCK (Wang et al. 2013) loci. Melatonin

receptor 1B (MTNR1B) rs10830963 is consistently associated with fasting glucose

and multiple measures of insulin secretion in studies of nondiabetic individuals

from China (Hu et al. 2010; Song et al. 2011; Tam et al. 2010) demonstrating

transferability across diabetes-related quantitative traits to East Asians. In locus-

transferability analyses, this SNP also shows the most robust replication for fasting

glucose in African-Americans (Liu et al. 2012). These results suggest a role for this

SNP as the causal variant or as highly correlated with the causal variant at this

locus. Despite these trans-ethnic associations to fasting glucose, no association has

consistently been observed for T2D in East Asian populations in either SNP-based

or locus-based analyses (Xia et al. 2012; Cho et al. 2012b; Wang et al. 2013),

raising the possibility that the physiology, genetic background, or environmental

conditions in this ethnic group may diminish or abrogate the genetic effect.

Interestingly, a similar profile is observed for variants in the glucokinase (GCK)
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gene, with demonstrated association to fasting glucose but not T2D in East Asian

populations (Wang et al. 2013). Recently, physiologic analyses of T2D loci dem-

onstrated that MTNR1B and GCK variants form a cluster that acts through reduced

insulin secretion and fasting hyperglycemia, likely through different mechanisms

(Dimas et al. 2013) but currently, the basis or significance of this differential impact

on T2D is unknown.

8.3.3 BMI-Independent Effect of FTO on T2D

In 2007, the fat mass- and obesity-associated (FTO) gene was found to contribute to
the risk of T2D through BMI in a GWAS of European populations (Frayling

et al. 2007). The strong association between FTO SNPs and T2D was completely

abolished by adjusting for BMI. Since then, association of FTO with BMI and waist

circumference has been observed in GWAS of multiple ethnic groups, including

populations of European, South Asian, and East Asian ancestry.

In recent meta-analyses examining transferability of this locus in East and South

Asian populations, the association between FTO and T2D was only partly

accounted for by association with BMI (Li et al. 2012; Rees et al. 2011; Vasan

et al. 2013), suggesting an impact on the risk of T2D independent of BMI in both

populations. More recent examination of prevalent and incident T2D in a European

cohort confirmed that the association of FTO SNP rs9939609 with T2D was partly

independent of its effect on BMI in Europeans as well, demonstrating the value of

transferability studies in elucidating the differential impact of this variant (Hertel

et al. 2011).

8.3.4 A Population with Unique Genetic Effects for T2D:
HNF1A in the American Indian Oji-Cree

Targeting population isolates with an unusual prevalence of disease for gene

discovery can identify founder alleles that rise to detectable frequency, thereby

informing the underlying disease biology relevant to all populations and relevant to

physiology, epidemiology, and risk of T2D in the specific population. An early

example in the field of T2D genetics was the discovery of a novel missense variant

(G319S) in the HNF1 homeobox A (HNF1A) gene in a Canadian Native American

population with an unusually high prevalence of impaired glucose tolerance and

T2D (40 %). Rare, often familial mutations inHNF1A are associated with maturity-

onset diabetes of the young (MODY). Using candidate gene resequencing, inves-

tigators identified HNF1A G319S in the Sandy Lake Oji-Cree population with a

frequency of 20.9 % in adult subjects with T2D and 8.7 % in nondiabetic subjects.

G319S was associated with a distinct form of T2D characterized by earlier age of
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onset, lower body mass, and a higher post-challenge plasma glucose than typical of

T2D. More recently, common variants in HNF1A have also been associated with

T2D in GWAS from Mexican and European populations (Parra et al. 2011; Voight

et al. 2010), demonstrating that this gene contributes to T2D across the entire allelic

spectrum harboring rare variants with strong deleterious effects and population-

specific or trans-ethnic common variants.

8.3.5 Novel Insights into T2D from Latino Populations:
SLC16A11

GWAS of T2D in ethnic minority populations, particularly in Latino populations,

were previously limited to two published reports (Below et al. 2011; Hayes

et al. 2007), despite an increased prevalence of disease that is twice that of their

non-Hispanic White counterparts (Centers for Disease Control and Prevention

2011). More recently, the SIGMA T2D Consortium has begun to characterize the

genetic basis of disease in a large Mexican and Latin American population (3848

cases/4366 controls) (SIGMA Type 2 Diabetes Consortium et al. 2014). While

previously reported susceptibility variants in TCF7L2 and KCNQ1 were among the

most associated variants, a novel association on 17p13.1 spanning the two solute

carrier genes (SLC16A13 and SLC16A11) was observed. The strongest signals of

association were within the SLC16A11 locus from one silent and four missense

mutations and associated with a 20 % increased risk for T2D. These individuals

develop T2D 2.1 years earlier at a decreased BMI. This finding is estimated to

explain 20 % (9.2–29 %) of the increased disease burden observed in Mexican and

Latin American populations relative to populations of European ancestry.

This discovery is a novel finding despite large-scale GWAS that have been

conducted for T2D in European (Voight et al. 2010) and Asian (Cho et al. 2012a;

Kooner et al. 2011; Hara et al. 2014) ancestry samples. This lack of association is

attributed to mutations that are rare or absent in representative European

populations (1 %), of intermediate frequency in East Asian populations (~16 %),

and common (~50 %) in the Americas (1000 Genomes Project Consortium

et al. 2012). Trends of association in the East Asian population, with additional

signals observed (Hara et al. 2014), argued against population stratification which

was further supported by high sequence divergence which precedes the “out of

Africa” population bottleneck (Li and Durbin 2011). The latter observation is

consistent with admixture attributable to Neanderthals and collaborated by high

sequence homology with an unpublished Neanderthal genome fromDenisova Cave.

Although poorly characterized, SLC16A11 is a member of the monocarboxylic

acid transporter family of solute carriers. Analysis of T2D-related quantitative traits

offered little insight in the physiological role of this protein in vivo. However,

in vitro metabolomic profiling suggested an effect on T2D risk mediated through

effects on lipid metabolism consistent with expression in the liver. This finding
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demonstrates the utility of disease mapping in diverse populations in an effort to

illuminate disease etiology and dissect its genetic architecture.

8.4 Novel Approaches to Disease Identification Using

Diverse Populations

8.4.1 Admixture Mapping to Identify Genetic Variants
Contributing to T2D

Admixture mapping offers a powerful approach to identifying genetic variants

contributing to T2D with considerable cost savings using significantly smaller

marker panels (2000–3000 SNPs) than traditional GWAS approaches. Admixture

mapping is a genetic association strategy that takes advantage of long haplotype

blocks created by admixture among populations with disparate disease prevalence

(Stephens et al. 1994). As a consequence of differing prevalence rates, this

approach identifies disease-associated alleles derived from one of the ancestral

populations, which differ in frequency. As a complex disease with a demonstrated

genetic component, T2D represents a disease with a high probability of success for

admixture mapping. This is particularly seen in admixed populations such as

African-Americans and Latinos where a higher relative risk is observed, e.g., the

population relative risk in Africans vs. Europeans is 1.99 (Songer and Zimmet

1995).

African-Americans represent an admixed population derived, on average, with

80 % African and 20 % European genetic ancestry and displaying a twofold

increase in T2D prevalence (Centers for Disease Control and Prevention 2011).

With knowledge of the ancestral populations, African-Americans have previously

represented the most intensively studied population for admixture mapping. The

largest admixture mapping study for T2D published to date evaluated greater than

7000 African-Americans (Cheng et al. 2012). As expected, participants displayed

increased African ancestry attributable to the higher prevalence of disease in this

population despite adjustment for adiposity and socioeconomic status. Moreover,

African ancestry was correlated with surrogate measures of insulin resistance

consistent with the literature (Karter et al. 1996). As with most common complex

diseases, signals of association were observed; however, the study failed to identify

a locus of large effect. Given the unexplained (Manolio et al. 2009) yet established

genetic component to T2D, this latter observation could suggest that while individ-

ual effects are minimal, these may function in aggregate to explain the missing

heritability and ethnic disparities of disease. This work is now being extended to

Latino populations which represent populations of varied contributions from Native

Americans and Europeans and with and without contributions from West Africans

(Hanis et al. 1991).

8 Transferability Across Ethnic Groups 193



As with other approaches, admixture mapping is not without its limitations.

Aside from computational nuances, admixture mapping has the inherent potential

for false-negative results when a causal variant is of similar frequency among the

ancestral populations. However, it has been demonstrated that power for admixture

mapping is relatively consistent over a range of admixture proportions, i.e.,

10–90 % (Patterson et al. 2004). Moreover, admixture mapping suffers from the

same limitation as linkage analysis in that variant localization is problematic

requiring additional genetic makers and alternative analytical approaches. Despite

these limitations, admixture mapping has facilitated profound discoveries in com-

plex disease genetics (Genovese et al. 2010).

8.4.2 Ethnic Transferability and Meta-analyses

A transferability study in the Multiethnic Cohort (MEC) in 2010 showing consistent

association of European T2D loci in African-Americans, Latinos, Japanese Amer-

icans, and Native Hawaiians provided strong support for the idea that shared

genetic variation contributes to T2D risk in multiple populations (Waters

et al. 2010). The authors found consistent association with 14 of 19 loci across

populations and consistent direction of effect for the five remaining loci. Concur-

rently, a genotype risk score based on 16 European fasting glucose-associated

variants showed consistent association with fasting glucose in non-Hispanic

Whites, non-Hispanic Blacks, and Mexican Americans, despite variations in allele

frequency by race/ethnicity, suggesting shared genetic influence on fasting glucose

levels across populations (Yang et al. 2010). More recently, a large-scale transfer-

ability analysis of ten genetic variants associated with fasting glucose and insulin

across an ethnically diverse population of Europeans, African-Americans, His-

panics, American Indians, and Asians revealed that several glucose SNPs were

associated across multiple racial and ethnic groups, confirming generalizability and

importance of these loci (Fesinmeyer et al. 2013). The transferability of associa-

tions across populations also implies that rare variants are unlikely to underlie the

common variant associations since rare variants would be expected to differ

between ethnic groups. Transferability of signals across ethnic groups are illus-

trated for signals discovered in subjects of European ancestry (Fig. 8.1), subjects of

East Asian ancestry (Fig. 8.2) and subjects of South Asian ancestry (Fig. 8.3).

Larger multi-ethnic GWAS are needed to discover new robust T2D and related-

trait loci with trans-ethnic effects. At loci with lack of heterogeneity in genetic

effects across multiple populations, trans-ethnic GWAS also offers opportunities

for simultaneous fine mapping by taking advantage of differences in the distribution

of LD. A recent genome-wide trans-ethnic meta-analysis of European, East Asian,

South Asian, Mexican and Mexican-American ancestry demonstrates the promise

of this approach for gene discovery, transferability assessment, and fine mapping

(Diabetes Genetics Replication Meta-analysis Consortium 2014). This study iden-

tified seven new T2D susceptibility loci, found concordant direction of effect across
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Fig. 8.1 Comparison of effect sizes (Panel A) and allele frequencies (Panel B) for T2D suscep-

tibility variants discovered in populations of European descent across ethnically diverse

populations. Panel A compares the odds ratio (OR) and 95 % confidence interval observed in

Europeans (background gray; Voight et al. 2010) to those evaluated for transferability in

populations of East Asians (red; Cho et al. 2012a), South Asians (orange; Kooner et al. 2011),
Arabs (blue; Cauchi et al. 2012), African-Americans (green; Ng et al. 2013), and Latinos (purple;
SIGMA Type 2 Diabetes Consortium et al. 2014). Variants that achieved nominal levels of

significance (P< 0.05) are denoted with a diamond. Panel B compares the allele frequency

observed in a representative European population (CEU; black) to those evaluated for transfer-

ability in populations of East Asians (red; Cho et al. 2012a), South Asians (orange; Kooner
et al. 2011), Arabs (blue; Cauchi et al. 2012), African-Americans (green; Ng et al. 2013), and

Latinos (purple; SIGMA Type 2 Diabetes Consortium et al. 2014). Variants for both panels are

ordered by descending effect size observed in Europeans

Fig. 8.2 Comparison of effect sizes (Panel A) and allele frequencies (Panel B) for T2D suscep-

tibility variants discovered in populations of East Asian descent across ethnically diverse

populations. Panel A compares the odds ratio (OR) and 95 % confidence interval observed in

East Asians (background gray) to those evaluated for transferability in populations of European

(black; Voight et al. 2010), South Asians (orange; Kooner et al. 2011), Arabs (blue; Cauchi
et al. 2012), African-Americans (green; Ng et al. 2013), and Latinos (purple; SIGMA Type

2 Diabetes Consortium et al. 2014). Variants that achieved nominal levels of significance

(P< 0.05) are denoted with a diamond. Panel B compares the allele frequency observed in the

East Asian GWAS (red; Cho et al. 2012a) to those evaluated in a representative European

population (CEU; black) and in populations of South Asians (orange; Kooner et al. 2011),

Arabs (blue; Cauchi et al. 2012), African-Americans (green; Ng et al. 2013), and Latinos (purple;
SIGMA Type 2 Diabetes Consortium et al. 2014). Variants for both panels are ordered by

descending effect size observed in East Asians
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34/52 (65 %) index SNPs across all ethnic groups, and led to reduction in genomic

intervals and number of candidate causal variants by fine mapping at 8/10 associ-

ation signals.

8.4.3 T2D Genetic Risk Assessment

Cumulative risk assessment for the effects of T2D susceptibility variants derived

predominantly from European populations has been evaluated for their predictive

value in diverse ethnic groups which display differential disease prevalence rates.

In a multi-ethnic approach, Waters et al. (Waters et al. 2010) evaluated the

distribution of risk alleles among 19 variants reproducibly associated with T2D in

European populations with transferability to populations of African-Americans,

Latinos, Japanese Americans, and Native Hawaiians. Investigators observed a

similar incremental increase in risk per allele with all populations except Japanese

Americans. Risk per allele was approximately double in this population, which also

demonstrated a 3.1-fold increased risk of disease for upper quartile of disease allele

carriers. However, compared to Europeans, a greater disease burden was not

associated with the genetic risk assessment. A more focused analysis in African-

Americans has extended these findings; however, it suggests that the effects

observed with TCF7L2 may be driving the association of a risk score with T2D

(Cooke et al. 2012). Taken together, these results hint at potential utility; however,

Fig. 8.3 Comparison of effect sizes (Panel A) and allele frequencies (Panel B) for T2D suscep-

tibility variants discovered in populations of South Asian descent across ethnically diverse

populations. Panel A compares the odds ratio (OR) and 95 % confidence interval observed in

South Asian GWAS (background gray; Kooner et al. 2011) to those evaluated for transferability in
populations of European ancestry (black; Voight et al. 2010) and in Latinos (purple; SIGMA Type

2 Diabetes Consortium et al. 2014). Variants that achieved nominal levels of significance

(P< 0.05) are denoted with a diamond. Panel B compares the allele frequency observed in the

South Asian GWAS (orange; Kooner et al. 2011) to those evaluated in a representative European

population (CEU; black) and in Latinos (purple; SIGMA Type 2 Diabetes Consortium et al. 2014).

Variants for both panels are ordered by descending effect size observed in South Asians
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the variants identified to date likely do not represent causal alleles suggesting

further mapping studies may yield more fruitful risk assessment as predictive

indices of T2D risk.

8.4.4 Transferability of Loci Across Ethnic Groups: The Role
of Rare Variants

As demonstrated for MODY genes that harbor an allelic spectrum of common and

rare T2D-associated variants, recent examples show that new or known T2D or

related-trait loci harbor rare variants of high functional impact in Europeans (e.g.,

MTNR1B, CCND2, PAM, and PDX1 for T2D (Bonnefond et al. 2012;

Steinthorsdottir et al. 2014) and SGSM2, MADD, TBC1D30, KANK1, and PAM
for insulin processing and secretion traits; Huyghe et al. 2013), but studies in other

populations have not yet been reported. Rare variants are expected to be recent and

therefore population specific. Discovery of rare high-impact functional variants

contributing to one or more populations would be important for the field of diabetes

genetics because it would (1) highlight that a gene is causal for diabetes patho-

physiology, bypassing difficulties of identifying the causal gene within a region of

common variant association; (2) be amenable for functional studies to elucidate

disease mechanisms; and (3) add to the growing understanding of the role of rare

variants in the genetic architecture and heritability of the disease, perhaps contrib-

uting to the differences in prevalence and disease presentation across ethnicities.

Future screening of multiple population groups for rare variation is thus a powerful

and necessary approach to understand the genetic basis of T2D (McCarthy 2011).

8.5 What We Have Learned

Genetic studies of T2D in ethnically diverse populations, stemming from studies in

Europeans, have revealed transferability of effect, while differences in allele

frequency resulting in reduced statistical power may have impacted the ability to

observe significant associations. A number of established T2D susceptibility loci

exhibit allelic heterogeneity with differential signals of association observed across

populations. The analysis of common variants in the GWAS era has culminated in

the identification of novel variants in diverse ethnicities, which could contribute to

the observed ethnic disparity of T2D across populations. The next generation of

genetic studies with a focus on rare variants to explain the missing heritability will

rely upon studies of T2D in multiethnic cohorts and may reveal novel insights into

the genetic architecture of T2D (Table 8.1).
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Table 8.1 Advantages of genetic studies in diverse populations (Rosenberg et al. 2010)

Feature

varying among

ethnicities Examples in T2D genetics Advantage

Population-

specific alleles

HNF1A in American Indian Oji-Cree Novel gene discovery: Risk or pro-

tective variants occur in a specific

population, allowing for novel

insights into etiology of disease rel-

evant globally, but relevant for risk

prediction only in the specific popu-

lation. Founder mutations in popula-

tion isolates with high inbreeding

may lead to increase in allele fre-

quency and lead to a substantial

contribution to disease prevalence in

the specific population. Rare variants

are also expected to be population-

specific

Evolutionary

history

SLC16A11 introgressed into modern

humans via admixture with Neander-

thals and high frequency in Latinos

Novel gene discovery: Different

ethnic groups have varying preva-

lence and heritability of disease, as

well as unique evolutionary histories,

enabling novel genetic discovery

Allele-

frequency

KCNQ1 in East Asians with a signal

transferable to other ethnicities;

SLC16A11 in Latinos

Improved detection: Variants are

more common and thus more easily

detected in some populations based

on population genetic history; this is

also manifest as allelic heterogeneity

across populations, which confirms

the role of critical loci in suscepti-

bility to disease

Linkage-dis-

equilibrium

(LD)

TCF7L2 fine-mapping in West Afri-

cans and African-Americans; trans-

ethnic fine-mapping at JAZF1 and

SLC30A8

Fine-Mapping: Populations with

differential LD facilitate fine-

mapping of association signal to

localize a causal variant

Allelic effect tentative: MTNR1B, GCK, PEPD1 in

East Asian ancestry; KLF14 in

European ancestry

Insights on ethnicity-dependent

disease presentation: Risk variants

have heterogeneity of effect across

populations, based on underlying

differences in genetic or environ-

mental background leading to possi-

ble differences in disease

presentation
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Chapter 9

Physiology Insights

Richard M. Watanabe and Torben Hansen

Abstract In recent years, the search for genetic determinants of type 2 diabetes has

resulted in identification of numerous type 2 diabetes-associated loci as well as a

number of loci associating with related prediabetic traits. These findings have

illuminated new biological pathways contributing to the pathogenesis of type

2 diabetes, but have also demonstrated that type 2 diabetes is an extremely

heterogeneous disease with limited overlap between genetic loci associating with

type 2 diabetes and loci associating with diabetes-related traits, such as body mass

index, fasting glucose levels, and fasting insulin levels. Combined, these loci only

account for a fraction of the observed familial clustering of type 2 diabetes and only

up to about 10 % of the variation in prediabetic quantitative traits. Improved

methods are needed to dig deeper into a biological understanding of the pathophys-

iology of type 2 diabetes.

9.1 Introduction

“There may be 2 types of diabetes, but there’s more than 2 types of patients with

diabetes.” This quote comes from an advertising campaign started in 2009 by Novo

Nordisk. This was a simple message highlighting the challenge faced by clinicians

across the globe struggling to treat and prevent diabetes. This simple message also

highlights the challenges faced by geneticists as we gain more insights into the

genetic basis for diabetes and attempt to translate genetic findings into clinically

relevant tools or interventions. Diabetes, as a group of related conditions, involves a
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complex interplay of genetic risk, lifestyle, and socioeconomic factors. Although

broadly categorized into two major forms, type 1 and type 2 diabetes, monogenic,

syndromic, and other rare forms of the disease exists. It is easy to forget that the first

description of diabetes as a medical condition was as early as 1500 BC and research

into the underlying physiology and causes of diabetes has stretched across centu-

ries. The complexity of the disease led the late James Neel (1915–2000) to declare

diabetes as the “geneticists’ nightmare” (Neel 1976).

However, recent advances in genetics have resulted in the identification of loci

underlying risk for both type 1 and type 2 diabetes mainly through genome-wide

association (GWA) studies. These findings have not just illuminated new biological

pathways contributing to the pathogenesis of diabetes but have reinforced and

provided additional insights into previously known pathways and revealed potential

new pharmacologic targets. These new genetic insights have slowly allowed us to

awaken from the “geneticists’ nightmare.”

In this chapter, we will explore the relationship between genetic variation and the

pathophysiology of type 2 diabetes.We will examine how physiology can be used to

inform genetics and how genetics can inform physiology. The complex relationship

between genetic variation and physiology, so-called genotype-phenotype relation-

ships, will be critical to understanding how genetic variation may be leveraged to

derive improved interventional strategies, both pharmacologic and lifestyle, that

may reduce diabetes-attributable morbidity and mortality.

9.2 Hallmarks of Type 2 Diabetes

Insulin resistance, pancreatic beta-cell dysfunction, and obesity are traditional

hallmarks of type 2 diabetes. Parsing the disease to these three components helps

to distinguish it from other forms of diabetes, but each component in and of itself is

a complex phenotype we have yet to fully understand. Furthermore, each compo-

nent is part of a larger complex feedback regulatory system designed to maintain

glycemia in the normal range. The robust nature of this system is evident when

examining the progression toward type 2 diabetes. Buchanan et al. in Mexican

Americans (Xiang et al. 2006) and Mason et al. in Pima Indians (Mason et al. 2007)

showed that glycemia creeps upward as patients progress toward type 2 diabetes.

This progressive, but restrained, increase in glycemia reflects the physiologic

system attempting to maintain glucose levels in the normal range. There is then a

rapid increase in glycemic levels as beta-cell function deteriorates to a point where

normoglycemia cannot be maintained. This simple glycemic pattern in the progres-

sion to diabetes provides two important lessons. First, the regulatory feedback

system is very robust and can restrain glucose levels for a significant proportion

of the temporal trajectory toward hyperglycemia. Second, it reveals that beta-cell

function is the primary mechanism used to regulate glucose levels, and despite

other pathways being available to control glucose, those pathways cannot replace

the critical role of beta-cell function.

208 R.M. Watanabe and T. Hansen



9.2.1 Obesity

There is clear evidence that type 2 diabetes and obesity are connected. Overweight

and obesity have been estimated to account for 65–80 % of new cases of type

2 diabetes, and it has been demonstrated that lifestyle or pharmacologic interven-

tion can significantly reduce risk for type 2 diabetes (Diabetes Prevention Program

Research Group 2002; The Diabetes Prevention Program Research Group 2005;

Buchanan et al. 2002). For years, body fat was considered only as an insulin-

sensitive energy depot. However, this view has radically changed over the past

couple of decades. It is now recognized that adipose tissue acts as an endocrine

organ that secretes a wide variety of adipokines signaling a variety of tissues. There

is additional evidence that low-grade inflammation in adipose tissue may play a

critical role in altering the milieu of adipokines, which changes feedback signaling

to the brain to affect feeding behavior.

One might expect significant overlap in loci contributing to risk for obesity,

obesity-related traits, and type 2 diabetes, given that obesity is a known risk factor

and a hallmark of type 2 diabetes. However, when one compares results from GWA

studies of obesity and obesity-related traits with those identified from genetic

studies of type 2 diabetes, there is very little overlap in signals (Fig. 9.1). As a

simple demonstration, we examined genetic loci firmly established as type 2 diabe-

tes risk loci for overlap with established unique “obesity” loci (adapted from Grarup

et al., Diabetologia, accepted). There were only three loci that appeared in both

lists: FTO, MC4R, and QPCTL/GIPR (Fig. 9.1). It is of interest to note that FTO
was first identified as a type 2 diabetes locus, but its relevance to adiposity was

quickly identified as the diabetes association signal was significantly attenuated

when body mass index (BMI) was included as a covariate in the analysis (Diabetes

Genetics Initiative of Broad Institute of Harvard and MIT Lund University and

Novartis Institute for Biomedical Research et al. 2007; Scott et al. 2007; Zeggini

et al. 2007).

So what is the implication of this lack of overlap? This may, in part, reflect the

heterogeneity underlying both obesity and type 2 diabetes. The diagnosis of “obe-

sity” is typically based on BMI. BMI is strongly correlated with measures of body

fat, but in reality, BMI is more a measure of body density than it is of adiposity. Too

often individuals with the same BMI will have widely different levels of body fat.

Also, in terms of genetic studies, it is equivocal whether BMI captures the same

genetic variation as body fat. This question has not been adequately addressed by

the field and is not restricted to obesity, but extends to other diseases and disease-

related phenotypes. In fact, even within different obesity-related anthropometrics,

e.g., waist circumference, waist-to-hip ratio, etc., the overlap among GWA signals

is lower than one might expect. This lack of overlap suggests that while GWA

studies based on direct measures of body fat may reflect the effect of genes on

adiposity, signals based on other obesity-related phenotypes may be capturing

variation due to other adiposity-related biology. Additional research is needed to
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quantify the degree to which genetic variation underlying one trait is captured by

related phenotypes.

Another possibility is etiologic heterogeneity introduced by the clinical defini-

tion of obesity. The current clinical standard using BMI cutoffs to classify individ-

uals was established in 1997 by the World Health Organization (2000) and

generally groups individuals as being “underweight,” “normal,” “overweight,”

“obese,” or “morbidly obese.” The fact that actual body fat can vary widely across

individuals with the same BMI might introduce unwanted heterogeneity in a

genetic analysis. Also, it is important to remember that the relationship between

body fat and BMI differs by sex, so using a single scale for both sexes further blurs

the boundaries between obesity categories. There is also clear evidence that the

traditional BMI scale does not apply to Asian populations where individuals who

might be classified as “overweight” are actually “obese” (Kanazawa et al. 2002).

Thus, clinical classification can be fraught with etiologic heterogeneity that may

reduce power to detect genetic loci by conventional association methods. A similar

situation exists for the classification of diabetes, whose definition has changed over

the last several decades coupled with the fact that the glycemic cutoffs for diagnosis

are selected based on risk for retinopathy, which is also likely to result in etiologic

heterogeneity.

BMI
Type 2 Diabetes

Fas�ng 
Insulin

Fas�ng 
Glucose

FTO

MC4R

GCKR

IRS1 PPARG 
GRB14 
COBLL1
ANKRD55 ARL15

ADAMTS9 ANK1 AP3S2 BCAR1 
BCL11A BCL2 CCND2 CDC123 CENTD2 CHCHD9 
CILP2 DUSP9 FAF1 FAM58A GATAD2A GPSM1 
GRK5 HCCA2 HHEX HMG20A HMGA2 HNF1A 

HNF1B HNF4A INS JAZF1 KCNJ11 KCNK16 KCNQ1 
KLF14 KLHDC5 LAMA1 LEP LPP MACF1 MAEA 

MPHOSPH9 NOTCH2 PAM PAX4 PEPD POU5F1 
PRC1 PSMD6 PTPRD RASGRP1 

QPCTL/
GIPR

RBM43 RBMS1 SGCG SLC16A13 SPRY2 SREBF1 
SRR ST6GAL1 THADA TLE1 TLE4 TMEM154 

TMEM163 TP53INP1 TSPAN8 UBE2E2 VPS26A 
WFS1 ZFAND3 ZFAND6 ZMIZ1

28 loci associa�ng with
fas�ng glucose, but not with
Type 2 diabetes

36 loci associa�ng
with BMI, but not with
Type 2 diabetes
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with fas�ng 
insulin, but not 
with Type 2 

diabetes

Fig. 9.1 Venn diagram of the intersection between loci associated at genome-wide significance

with type 2 diabetes, BMI, fasting glucose, and fasting insulin levels. Shown are genome-wide

significant associations for type 2 diabetes and three type 2 diabetes-related metabolic traits. Gene

names shown in the plot are as convention the closest gene and not necessarily the functional gene
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9.2.2 Insulin Resistance

It is interesting to note that among the loci contributing to risk for type 2 diabetes to

date, only a handful can be considered “insulin resistance” loci; among these are

PPARG, IRS1, GCKR, and IGF1 (Fig. 9.1). Why are there so few insulin resistance

loci? This is an important question given the central role played by insulin resis-

tance in the pathogenesis of type 2 diabetes coupled with the fact that a significant

proportion of investigators consider understanding the biology of insulin resistance

the key to “curing” type 2 diabetes. This latter viewpoint is not without merit,

especially given pharmacologic intervention trials that have targeted amelioration

of insulin resistance show clear reductions in risk for type 2 diabetes. For example,

the Diabetes Prevention Program (DPP) showed that metformin monotherapy

reduced incidence for type 2 diabetes by 31 % (Diabetes Prevention Program

Research Group 2002). Although this reduction was not as dramatic as the intensive

lifestyle arm of the study, it clearly demonstrated that treating hepatic insulin

resistance using metformin could have an impact on risk for disease. The

troglitazone arm of the DPP was prematurely terminated due to the removal of

the drug from the market. Troglitazone, a member of the thiazolidinedione (TZD)

class of insulin-sensitizing agents, showed a larger 75 % reduction in risk for type

2 diabetes compared to intensive lifestyle (58 % reduction) and metformin (44 %

reduction) in the relevant subset of the overall DPP study (The Diabetes Prevention

Program Research Group 2005). In fact, Buchanan et al. were the first to show that

treating at-risk individuals with a TZD could reduce risk for future diabetes by 55 %

(Buchanan et al. 2002), a result that was replicated by the DPP and in larger trials

using other members of the TZD class of medications. While one might take these

results to suggest that amelioration of insulin resistance was the direct cause of the

reduction in risk, Buchanan et al. nicely show that, in reality, the reduction in

insulin resistance was accompanied by a concomitant reduction in insulin secretion,

an unloading of the pancreatic beta cells, and it is the ability to reduce the demand

on the pancreatic beta cell that may be responsible for the reduction in risk and not

the reduction in insulin resistance per se (Buchanan et al. 2002). This highlights the

importance of carefully considering the closed-loop feedback nature of

glucoregulation when considering the effect of a single change in one part of the

system.

It is also important to remember that insulin resistance is not a single entity.

Insulin resistance can occur in any of the insulin-sensitive tissues. In the case of

type 2 diabetes, we need to carefully consider hepatic vs. peripheral insulin

resistance, with the latter further partitioned into insulin resistance in primarily

fat vs. muscle. Sadly, methods to quantify insulin resistance are time consuming,

invasive, and costly and have rarely been applied to large sample studies. Addi-

tionally, the ability to distinguish hepatic vs. peripheral resistance requires addi-

tional use of stable label isotopes or other specialized techniques, which add an

additional barrier for use in large sample studies. The lack of precise measures of

insulin resistance has led many studies to rely upon indirect measures of insulin
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resistance, such as the HOMA-IR (Matthews et al. 1985) or Stumvoll et al. (2000)

indices among others. Unfortunately, similar to the discussion regarding measures

of adiposity, it is not clear these indirect measures adequately capture genetic

variation underlying insulin resistance or whether these various indices capture

the same genetic variation underlying insulin resistance. Evidence would suggest

such indices are poor reflections of actual insulin resistance. For example, HOMA-

IR has a high overall correlation with the insulin sensitivity index (SI) from the

minimal model (Bergman et al. 1981), but a low genetic correlation, suggesting that

while the two indices capture the same overall variation, they are capturing

different genetic information (Bergman et al. 2003). Similar results have been

reported with respect to HOMA-IR and the euglycemic glucose clamp

(Rasmussen-Torvik et al. 2007). Additionally, computer simulation studies suggest

changes in insulin secretion can confound many of the indirect measures of insulin

resistance (Hücking et al. 2008), which in turn can lead to misleading genetic

associations (Watanabe 2010). Dimas et al. examined 37 SNPs showing evidence

for association with type 2 diabetes from GWA studies in samples of northern

European ancestry and tested them for association with a variety of type 2 diabetes-

related traits (Dimas et al. 2013). These 37 SNPs were tested for association with

five different indirect measures of insulin resistance/sensitivity: Belfiore

et al. (1998), Stumvoll et al. (2000), Matsuda & DeFronzo (1999), Gutt

et al. (2000), and HOMA-IR (Matthews et al. 1985). Each individual index showed

nominal association ( p� 0.05) with one or more SNPs (Dimas et al. 2013): 7 for

Belfiore, 5 for Stumvoll, 8 for Matsuda, 8 for Gutt, and 10 for HOMA-IR. The

association between indices and SNPs was consistent across all five indices only for

IRS1 and PPARG, illustrating the challenges faced when using indirect measures of

insulin resistance for genetic association. It should be noted that at the time of this

writing, independent GWA studies examining insulin resistance assessed by more

direct measures were underway in the Meta-Analyses of Glucose- and Insulin-

related Traits Consortium (MAGIC), GENEticS of Insulin Sensitivity (GENESIS)

consortium, and Genetics UndeRlying DIabetes in HispANics (GUaRDIAN) con-

sortium. The limited sample size in these consortia will limit power to detect

association, but results from those GWAmeta-analyses could potentially illuminate

additional loci underlying variation in insulin resistance and type 2 diabetes.

9.2.3 Beta-Cell Dysfunction

A large proportion of the signals from GWA studies of type 2 diabetes are linked to

the pancreatic beta cell. This may not be surprising given the studies by Buchanan

(Xiang et al. 2006) and Mason et al. (2007) showing that glycemia does not rapidly

increase until beta cells fail in their ability to compensate for insulin resistance.

Also, numerous studies have shown changes in insulin secretion or beta-cell

function to be predictive of type 2 diabetes (Lorenzo et al. 2010; Abdul-Ghani

et al. 2007; Weyer et al. 1999; Saad et al. 2005; Lyssenko et al. 2008). Signals from

212 R.M. Watanabe and T. Hansen



GWA studies of type 2 diabetes have highlighted almost every known component

of insulin secretion, e.g., glycolysis, ATP-sensitive potassium channel, components

of insulin processing, transcriptional regulation of genes regulating insulin secre-

tion, and components related to beta-cell turnover (Diabetes Genetics Initiative of

Broad Institute of Harvard and MIT Lund University and Novartis Institute for

Biomedical Research et al. 2007; Scott et al. 2007; Zeggini et al. 2007, 2008;

Sladek et al. 2007; Steinthorsdottir et al. 2007; Florez et al. 2007; Hayes et al. 2007;

Hanson et al. 2007; Yasuda et al. 2008; Unoki et al. 2008; Voight et al. 2010; Rung

et al. 2009). Despite the number of type 2 diabetes signals mapping to the pancre-

atic beta cells, when testing 37 SNPs associated with type 2 diabetes for association

with fasting insulin levels in nondiabetic individuals, only 10 showed evidence for

association at P� 0.05 (Dimas et al. 2013). Interestingly, loci that are clearly

related to the pancreatic beta cell, such as the zinc transporter SLC30A8 and

ATP-sensitive potassium channel KCNJ11, were not associated with fasting insu-

lin, suggesting fasting insulin may not capture the effects of these gene variants.

This may not be too surprising given the known physiology of insulin secretion.

Insulin is essentially directly secreted into the liver where approximately 50 % is

extracted before entering the systemic circulation. There is good evidence demon-

strating that the level of hepatic extraction is dependent upon both insulin concen-

tration and glucose tolerance status. Thus, the effect of genetic variants at the level

of the pancreatic beta cell may not be reflected in fasting levels of insulin, which

reflect the net integrated effect of secretion, hepatic extraction, and peripheral

clearance. If the threshold for association were set to the genome-wide level, only

GCKR and IRS1 would show evidence for association with fasting insulin (Dimas

et al. 2013). In fact, GWA studies of fasting insulin have identified only two loci

showing convincing evidence for association: GCKR and IGF1 (Dupuis

et al. 2010).

The lack of association with fasting insulin suggests other beta-cell-related

phenotypes need to be examined to better understand how these loci contribute to

insulin secretion and beta-cell function. Indeed, when the insulinogenic index

(Phillips et al. 1994) or HOMA-B (Matthews et al. 1985) is examined, a larger

number of type 2 diabetes loci show evidence for association, 15 for insulinogenic

index and 21 for HOMA-B, but concordance between the two indices is 78 %

(Dimas et al. 2013) suggesting they may be capturing different aspects of beta-cell

biology. Like indices for insulin resistance, the ability to capture loci contributing

to insulin secretion or beta-cell function is highly dependent upon the phenotype

examined. There is clear evidence that measures of stimulated insulin from oral

glucose tolerance test (OGTT) or meal tolerance test will significantly differ from

measures derived from intravenous glucose administration, e.g., hyperglycemic

glucose clamp, FSIGT, or amino acid stimulation. Oral glucose engenders the

release of gut hormones, primarily glucagon-like peptide-1 (GLP1) and gastric

inhibitory polypeptide (GIP), which act as insulin secretagogues and enhance

insulin secretion (Nauck et al. 1986). Thus, one must carefully consider whether

associations with oral glucose-stimulated measures of insulin reflect biologic

effects at the level of the pancreatic beta cell or effects within the incretin signaling
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pathway. This argues for comparing oral vs. intravenous glucose-stimulated mea-

sures of insulin secretion to tease out incretin effects from non-incretin effects

and/or to examine stimulated incretin release and incretin effects on beta-cell

function.

Amino acid stimulation during a hyperglycemic clamp is typically used to assess

beta-cell mass as opposed to insulin secretion. Thus far, there have not been GWA

studies examining amino acid-stimulated insulin secretion or studies of more

limited sample size. Such studies could differentiate loci involved in regulation of

beta-cell mass from those involved in insulin processing or secretion.

Most investigators make no distinction between insulin secretion and pancreatic

beta-cell function. However, these represent different aspects of insulin response to

stimuli. Insulin secretion represents the amount of insulin released, in total or per

unit time, in response to a stimulus. Beta-cell function is a quantitative assessment

of the ability of beta cells to respond to a stimulus. Differentiating these concepts is

important to the understanding of the role of the pancreatic beta cell in the

pathogenesis of type 2 diabetes and in the interpretation of genetic associations.

For many years, studies measured and compared insulin secretion across groups to

draw conclusions regarding the role of insulin secretion in the pathogenesis of type

2 diabetes. However, this approach ignored the underlying feedback regulatory

nature of insulin resistance and secretion. Differences in underlying insulin resis-

tance confounded direct comparison of insulin secretion among groups. Bergman

and colleagues introduced the disposition index (DI), which generally states there is

a hyperbolic relationship between insulin secretion and insulin sensitivity

(Bergman et al. 1981; Bergman 2007), i.e., the pancreatic beta cells adjust their

output in a nonlinear relationship to the level of insulin sensitivity. This relationship

could be captured by DI, which was derived as the multiplicative relationship

between insulin secretion, measured as the acute insulin response (AIR) to glucose,

and SI (DI¼ SI�AIR) (Bergman et al. 1981; Bergman 2007). It is important to

emphasize that DI is the quantitative representation of the hyperbolic relationship

and by definition is unitless. This fact may seem trivial, but is an important

distinction of DI as a quantitative measure of beta-cell function. Many have taken

to multiplying any measure of insulin secretion with any measure of insulin

resistance and calling that quantity a “disposition index.” However, indices

constructed in this fashion tend not to be unitless and therefore are not hyperbolic

in nature. They form what can be considered “disposition index-like” measures of

beta-cell function. The fact that these indices are not hyperbolic means they will

over- or underestimate true beta-cell function at the extremes of insulin resistance.

The general distinction in conclusions derived from examining insulin secretion

vs. beta-cell function can be summarized by examining Fig. 9.2. Results from the

Insulin Resistance Atherosclerosis Study (IRAS) are summarized showing the

average SI, AIR, and DI for individuals with normal glucose tolerance (NGT),

impaired glucose tolerance (IGT), and type 2 diabetes (Wagenknecht et al. 1995).

One might conclude focusing on AIR alone that individuals with IGT have a

modest 32 % beta-cell “defect” compared to individuals with NGT, while individ-

uals with type 2 diabetes have a more extreme 87 % “defect” compared to
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individuals with NGT. However, note these groups have substantial differences in

underlying insulin resistance. This means that beta-cell function, as represented by

DI, reveals a substantial beta-cell “defect” in individuals with IGT compared to

NGT (65 % lower) and almost nonexistent beta-cell function in individuals with

type 2 diabetes compared to NGT (97 % lower) (Fig. 9.2). In other words, both the

IGT and type 2 diabetes groups need to be secreting significantly more insulin than

the NGT group to compensate for the underlying insulin resistance and maintain

normal glucose tolerance. Thus, focusing on AIR alone would result in a substantial

underestimation of the existing beta-cell defect. Insulin secretion is diminished, but

given the underlying differences in insulin resistance, the pancreatic beta cells in

individuals with IGT and type 2 diabetes are functioning significantly below levels

necessary to maintain normal glucose tolerance. The distinction between secretion

and function has important implications for the physiologic interpretation of the

effect of genetic variation on the pancreatic beta cell and the different aspects of

beta-cell biology they represent.

9.3 Discovery in Individuals Without Diabetes

Discovery of loci underlying type 2 diabetes need not be restricted to solely

examining the disease as an outcome phenotype. Identifying loci underlying vari-

ation in type 2 diabetes-related traits has the potential to illuminate other loci that

may contribute to risk for the disease. The MAGIC was established with this

approach in mind and has performed a series of GWA studies in individuals with

fasting glucose <7 mM and has identified numerous loci underlying variation in

fasting glucose (Dupuis et al. 2010; Prokopenko et al. 2009), OGTT 2-h glucose

(Saxena et al. 2010), and fasting insulin (Dupuis et al. 2010). Although the majority

of these loci appear to only contribute to the variation in these phenotypes, several,

like MTNR1B and ADCY5, were found to also be associated with type 2 diabetes

(Fig. 9.1), supporting the strategy of examining disease-related traits to further

identify loci underlying disease risk. Unlike other traits, when the known type
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2 diabetes risk loci were tested for association with fasting glucose in the study by

Dimas et al. (2013), a larger proportion, 25 of the 37 SNPs, showed evidence for

association with fasting glucose, which is also reflected in Fig. 9.1.

One might ask the question, “why does association with fasting glucose reveal so

few additional type 2 diabetes susceptibility loci?” One potential answer is the

sample used for such association studies. The MAGIC analyses, which has identi-

fied the majority of variants underlying glycemic traits, were restricted to individ-

uals with fasting glucose <7 mM and not taking anti-diabetes medications (Dupuis

et al. 2010; Prokopenko et al. 2009; Saxena et al. 2010). This restriction avoided the

confounding effects of hyperglycemia per se and effects due to treatment for

diabetes. Therefore, the analysis was based on individuals who were

normoglycemic or modestly hyperglycemic, the latter comprising individuals

with IGT or impaired fasting glucose (IFG) (The Expert Committee on the Diag-

nosis and Classification of Diabetes Mellitus 1997). The IGT/IFG grouping consists

of individuals who are at risk for future development of diabetes and from a clinical

perspective forms a “prediabetes” category. However, the proportion of individuals

with IGT converting to type 2 diabetes widely varies by population (18–50 %),

suggesting a relatively large proportion never covert to type 2 diabetes. Thus, only

type 2 diabetes risk variants with relatively strong effect are likely to be identified

from the analysis of glycemic traits in a sample that is a mixture of NGT/IGT/IFG

individuals. This may explain why many of the variants underlying variation in

glycemic traits do not show subsequent association with type 2 diabetes. However,

understanding the general genetic architecture underlying day-to-day regulation of

fasting glucose can reveal important insights into the pathogenesis of type 2 diabe-

tes. We encourage the reader to examine the study by Ingelsson et al. (2010), who

tested the known variants underlying fasting glucose for association with other type

2 diabetes-related traits in order to gain insights into the physiology of

glucoregulation.

9.4 What About All the Known Variants?

The study by Dimas et al. (2013) represents one of the early attempts to better

understand the underlying physiology of the genetics of type 2 diabetes. However,

this study was restricted by the available phenotypes, mainly fasting values and

variables constructed from the fasting data. Classic physiologic studies have shown

that more detailed phenotype can provide unique insights into the underlying

biology of type 2 diabetes that many times cannot be gained through the study of

readily available phenotypes. Also, based on our physiologic knowledge of type

2 diabetes, we know that gene–gene and gene-environment interactions are likely to

be a critical component of the larger genetic architecture of the disease.

As part of the ongoing attempts to understand the role of gene variants and to

push forward discovery, many groups have taken to using the genotype score or

genetic score as a single representation of the net effect of genetic variation and test
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this score for association with phenotypes of interest. There are several assumptions

underlying the use of the genotype score, but fundamentally, such a score represents

the overall genetic burden for a given phenotype. However, the score also assumes

that the effect of each locus is additive and actually contributing information

regarding the phenotypic variation. The results of an analysis in which a genotype

score based on type 2 diabetes risk loci is created and tested for association with

diabetes-related phenotypes to gain physiologic insights could be misleading. As an

example, we examined 38 type 2 diabetes risk variants for association with type

2 diabetes-related traits in the BetaGene study (Watanabe et al. 2007). We

performed three different analyses: univariate association with each trait and

correcting the significance level for the number of SNPs tested, multiple linear

regression analysis where each SNP is tested for inclusion in the overall model

conditional on the other SNPs followed by an omnibus test of association for SNPs

remaining in the model, and genotype score-based association. We restricted our

analyses to only samples with complete data across all SNPs to ensure fair com-

parison among approaches and adjusted for the effects of age and sex.

There were only three SNPs showing evidence for association with three traits in

the univariate analysis. This reflects the relatively low power given the modest

sample size of approximately 700 individuals and the need to correct for multiple

testing. KCNQ1 rs2237892 was associated with both disposition index (corrected

P¼ 0.002) and insulin clearance rate (P¼ 0.032). GCKR rs780094 was associated

with triglyceride levels (P¼ 0.002) replicating a previously known association, and

MTNR1B rs10830963 was associated with disposition index (P¼ 0.002), replicat-

ing results we previously reported in the complete BetaGene sample (Ren

et al. 2014). We can look through the pattern of associations across phenotypes

for each individual SNP to make an inference on its physiologic effect, but this is

fraught with potential bias, since the inference would be based on our perceived

knowledge of the underlying biology. The results of the multiple regression anal-

ysis are summarized in Table 9.1. The number of SNPs comprising the final

association model ranged from a minimum of 4 to a maximum of 10, depending

upon the trait. On average, these models accounted for 3.8 % of the variation in

phenotype, with a low of 0.79 % for the 3 SNPs associated with HDL cholesterol

(P¼ 0.137) to a high of 7.2 % for the 8 SNPs associated with AIR (P¼ 8.0� 10�7).

The SNPs associated with AIR represented ADCY5, CDKAL1, DGKB/TMEM,

KCNQ1,MTNR1B, and PRC1, all loci that have relevant biology for the pancreatic
beta cell and subsequent effects on insulin secretion. Scanning across the results,

different subsets of SNPs show statistically significant association with different

traits. This approach provides an opportunity to isolate loci that may have the

greatest relevance for a given phenotype conditional on the effects of the other

SNPs and provide a “best” subset of loci that helps to refine the physiologic

interpretation.

In contrast, when the genotype score is tested for association with the pheno-

types, on average only 0.44 % of the variation in phenotype is accounted for the by

score (Table 9.1). The genotype score accounted for essentially none of the

variation in fasting glucose, diastolic blood pressure, and BMI, but accounted for
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2.69 % of the variation in AIR (P¼ 4.6� 10�5) and 2.48 % of the variation in DI

(P¼ 1.6� 10�5). There was also evidence for association with glucose effective-

ness (P¼ 0.02), a measure of the ability of glucose per se to enhance glucose uptake

and suppress hepatic glucose output at fasting insulin (Bergman et al. 1979, 1981;

Ader & Bergman 1985). These associations may not be too surprising given that the

genotype score represents the overall genetic load for type 2 diabetes and the key

phenotype for the transition to type 2 diabetes based on physiologic studies is

insulin secretion or beta-cell function. The result for glucose effectiveness may

also not be too surprising, given that this parameter has been shown to be a

significant contributor to the regulation of glucose tolerance. However, this exam-

ple illustrates the need to carefully consider the use of the genetic score.

Table 9.1 Comparison of multiple regression and genotype score association analysis for

38 known type 2 diabetes SNPs

Multiple regression

analysis Genotype score

Trait n

No. of

SNPsa
% of variation

explainedb P-value*
% of variation

explainedb P-value*

BMI 719 4 3.03 0.002 0 0.92

Percentage

body fat

719 8 1.38 9.9� 10�5 0.08 0.56

Fasting

glucose

727 5 2.27 0.03 0 0.78

2-h glucose 723 5 2.37 0.03 0.24 0.11

Fasting

insulin

726 10 4.81 6.3� 10�5 0 0.54

2-h insulin 722 10 4.12 3.9� 10�4 0.14 0.09

30-min

Δinsulin
717 6 3.99 4.0� 10�4 0.25 0.22

Glucose

effectiveness

718 9 4.69 5.0� 10�4 0.68 0.02

Insulin

sensitivity

718 7 3.27 0.004 0.01 0.94

AIR 718 8 7.19 8.0� 10�7 2.69 4.6� 10�5

DI 718 5 7.19 5.5� 10�9 2.48 1.6� 10�5

Insulin

clearance

717 9 5.49 4.9� 10�5 0.02 0.82

Cholesterol 718 4 3.39 6.7� 10�4 0.40 0.23

HDL

cholesterol

718 3 0.79 0.14 0.21 0.17

Triglycerides 718 7 4.44 3.8� 10�5 0.04 0.71

Systolic BP 721 3 2.93 2.9� 10�4 0.28 0.22

Diastolic BP 721 5 3.36 5.9� 10�4 0 0.87

*P-value for the omnibus test of the effect of SNPs or genotype score
aNumber of SNPs that entered into the multiple regression analysis
bThe percentage of total phenotype variation explained by either SNPs or genotype score
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The indiscriminate use of the genotype score can lead to a misguided physiologic

interpretation of the role of genetic variation in the pathophysiology of disease.

9.5 Final Thoughts

The search for genetic risk factors in type 2 diabetes and related traits is now

targeting low-frequency and rare variations as well as copy number variations (see

Chap. 5). It was expected that combining major data sets will enable discovery of

rare variants and structural variations with relatively high effect sizes within the

coming few years. However, initial results suggest relatively low effect sizes even

for rare variants, which add an additional piece of the puzzle that is the genetics of

type 2 diabetes. However, gene variants, both common and rare, have a multitude of

effects, and their contributions to underlying disease mechanisms are at present

unknown. Systemic integration of complex data obtained from other “omics”

techniques such as transcriptomics, proteomics, metabolomics, and microbiomics

and modeling of the combined composite impact of common metabolic phenotypes

are projected to illuminate further breakthroughs in understanding the genetic

determinants of type 2 diabetes and metabolic dysfunctions. Possibly, genetic

identification of pathophysiological specific subgroups of patients will pave the

road for stratified treatment to a highly heterogeneous patient group.
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Chapter 10

Insights from Monogenic Diabetes

Tormund Salvesen Njølstad, Sian Ellard, and Pål Rasmus Njølstad

Abstract Monogenic diabetes arises from single-gene mutations, mostly affecting

β-cell physiology and endocrine function. More than 30 different genes in which

mutations cause monogenic diabetes have been described. The identification of

these genes has shed new light on their biological function as well as etiology and

mechanisms of common forms of diabetes. Monogenic diabetes is traditionally

subclassified as neonatal diabetes, maturity-onset diabetes of the young (MODY),

or syndromic diabetes. The most common forms have few features other than

endocrine dysfunction. However, in some families, additional clinical features

including neurological abnormalities, urogenital malformations, or exocrine pan-

creas dysfunction may be present and can aid the diagnostic classification. Correct

diagnosis according to the genetic etiology has important implications for both

prognosis and treatment. While mutations in GCK cause a mild fasting hypergly-

cemia which rarely needs insulin treatment and has a low risk for complications,

HNF1A mutations lead to diabetes in that, in severity, treatment and complication

risk resembles type 1 diabetes (T1D). Furthermore, the majority of patients with

mutations in the MODY genesHNF1A andHNF4A, as well as the neonatal diabetes
genes ABCC8 and KCNJ11, experience that sulfonylurea treatment is superior to

insulin. Genome-wide approaches using next-generation DNA sequencing technol-

ogy have revealed new genetic etiologies, and targeted next-generation sequencing

assays now allow simultaneous testing of all monogenic diabetes genes in a single

test. We expect that this technology will facilitate further important breakthroughs

in unraveling the causes of monogenic diabetes during the next few years.
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10.1 Introduction

Insight into monogenic causes of non-immunological diabetes has greatly increased

over the last decades. An explosion of inquisitive work fueled by vast advances in

genetic research methodology and decreasing costs of genetic analysis has provided

important understanding into the entire chain of steps controlling glucose homeo-

stasis. This research has proved beneficial for patients affected with specific forms

of monogenic diabetes, when in some cases tailoring therapy to an individual’s
genetic constitution can improve glycemic control and quality of life. Additionally,

lessons from monogenic diabetes into disease mechanism by the distinct correlation

between genotype and phenotype can be applicable to type 2 diabetes (T2D),

suggesting that similar approaches to individualizing treatment could be beneficial.

A great number of excellent and well-written reviews describing, reflecting, and

elaborating on the topic of monogenic diabetes have been published the recent

decade (see Aguilar-Bryan and Bryan (2008), Ashcroft and Rorsman (2012),

Molven and Njølstad (2011), Murphy et al. (2008), and Rubio-Cabezas and Ellard

(2013) among others). The interested reader is encouraged to consult these for

further information.

10.2 Definitions

Monogenic diabetes encompasses relatively rare forms of diabetes with exclusively

genetic origin, caused by single gene-gene defects or chromosomal abnormalities

affecting normal β-cell physiology, development, and differentiation or the insulin

gene itself. The different monogenic forms may be dominantly or recessively

inherited or caused spontaneously by a de novo mutation. Traditionally, monogenic

diabetes has been phenotypically classified as neonatal diabetes mellitus (NDM),

maturity-onset diabetes of the young (MODY), or syndromic diabetes. Neonatal

diabetes is characterized by diabetes that develops within the first 6 months of life,

while MODY is commonly used to describe patients with non-insulin-dependent,

nonketotic diabetes diagnosed at a young age (typically before 25 years old), with

autosomal dominant inheritance and lack of autoantibodies (Tattersall et al. 1975).

Some argue, however, that the denomination today is misleading, as maturity-onset
was introduced as a term to distinguish it from young-onset diabetes now known as

type 1 diabetes (T1D), implying a resemblance to T2D. Although MODY in its

classical form is distinct from T1D and early-onset multifactorial T2D, several

patients might have features of two or more diabetes types, possibly due to the

increasing prevalence of obesity leading to patients that can be difficult to classify.

In the 1998 revision of diabetes classification toward a more etiological basis, the

term MODY is now included in the group of other forms of diabetes.
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10.3 Clinical Clues of Monogenic Diabetes

Although each individual form of monogenic diabetes is much rarer than the

multifactorial common subtypes of T1D or T2D, they collectively share an impor-

tant proportion of total diabetes disease burden, affecting millions of people

worldwide.

The majority of patients with genetically proven monogenic diabetes are initially

incorrectly diagnosed as having T1D or T2D. Noticeably, a precise diagnosis is of

great importance, as it can predict both clinical course and associated clinical

manifestations. Most importantly, it can guide improved treatment and disease

follow-up based on risk for complications, as this varies with the underlying genetic

defect. Several clinical features can indicate that the initial diagnosis of T1D or

T2D is incorrect and that further genetic evaluation should be considered. For

example, a monogenic origin should be suspected when the diagnosis is made

before 6 months of life (suggesting neonatal diabetes), if diabetes is familiar with

an affected parent, if there are associated extra-pancreatic features (suggesting

syndromic diabetes), and when a child has mild fasting hyperglycemia

(5.5–8.5 mmol/l) (Hattersley et al. 2009). Specific examples of “atypical” T1D

suggesting the possibility of a monogenic cause include evidence of endogenous

insulin production outside the honeymoon period and absence of pancreatic islet

antibodies, in addition to the aforementioned early diagnosis and presence of an

affected parent. Features suggesting monogenic etiology in children initially

thought to have T2D can be the lack of marked obesity, presence of diabetic

normal-weight family members, absence of acanthosis nigricans, or lack of insulin

resistance with normal fasting C-peptide. Furthermore, in addition to manifesting

clinical features uncharacteristic of T1D or T2D, the patient can also have features

of a specific genetic subtype of monogenic diabetes, especially in the case of

concomitant extra-pancreatic, multisystemic manifestations, pointing toward a

particular gene to aid in the diagnostic approach.

10.4 Monogenic Forms of Diabetes

An increasing number of single-gene abnormalities leading to monogenic diabetes

have been identified, each leading to a specific disease phenotype with variations in

age of onset, severity of hyperglycemia, risk of complications, associated clinical

manifestations, and treatment possibilities. These subtypes are hence defined by

their specific description of the known genetic defect. Table 10.1 systematically

presents different monogenic diabetes genes with high penetrance, corresponding

diabetes types, pattern of inheritance, and relevant clinical characteristics. Attempts

of subcategorizing monogenic diabetes are multifarious: genetically splitting

between impaired insulin secretion and abnormal insulin response, clinically
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dividing between ages of symptom onset, or by the presence of extra-pancreatic

manifestations (syndromic, monogenic diabetes).

In such an attempt of subcategorizing monogenic diabetes, a convenient division

is to consider neonatal diabetes-only, young-onset diabetes-only without extra-

pancreatic features, and syndromic diabetes independently, although increasing

evidence point to some same-gene mutations manifesting effects at different ages.

10.4.1 Neonatal Diabetes Mellitus

Neonatal diabetes, frequently defined as diabetes diagnosed within 6 months of life,

is a monogenic disorder caused by mutations affecting β-cell function. Once

considered a rare variant of T1D, it is contrasted by the absence of islet antibodies,

serving as an important diagnostic clue (one exception, however, is IPEX syn-

drome). It is now widely accepted that diabetes presenting before 6 months of age is

unlikely to be autoimmune T1D, and an assessment for monogenic origin should be

pursued (Iafusco et al. 2002). The majority of these presenting patients have an

identifiable monogenic disorder responsible for their diabetes and, in some cases,

also for other associated extra-pancreatic features. It should be noted that although

patients presenting with diabetes at an age between 6 and 12 months have a higher

baseline probability of autoimmune T1D, there are reports of neonatal diabetes

debuts extending beyond 6 months of life (Mohamadi et al. 2010; Rubio-Cabezas

et al. 2012).

Neonatal diabetes is a genetically heterogeneous disease, and multiple genetic

abnormalities have been identified as causes. Mutated genes have the joint feature

of playing key roles in β-cell function or development, often involving glucokinase,

the β-cell ATP-sensitive potassium (KATP) channel, or insulin itself. Consequently,

the majority of cases exhibit impaired insulin secretion rather than impaired insulin

sensitivity. As insulin is an important growth factor, children with neonatal diabetes

often have intrauterine growth restriction and are born small for gestational age.

The diabetic manifestation may portray a permanent (PNDM), transient (TNDM),

or relapsing-remitting course and is often classified according to this presentation.

Transient neonatal diabetes usually remits within 3 months after presentation on

average and within 18 months of age. Interestingly, it frequently relapses later in

life in adolescent or young adult age (Temple et al. 2000). Permanent neonatal

diabetes, on the other hand, requires lifelong medical therapy.

10.4.1.1 Transient Neonatal Diabetes Mellitus

Children with transient neonatal diabetes are typically of low birth weight, and

diabetes is usually diagnosed within the first weeks of life due to development of

severe nonketotic hyperglycemia. One-third also have macroglossia, and some have

umbilical hernia. The majority of cases remit within 12 weeks of diagnosis with
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relapse commonly seen in adolescence or early adulthood. During the neonatal

phase, patients are conventionally treated with insulin. However, if relapsing after a

period of remission, treatment may include dietary modification, oral hypoglycemic

agents, and/or insulin (Temple et al. 2000). The most prevalent genetic cause is the

overexpression of paternal chromosome 6q24 genes PLAGL1 and HYMA1,
accounting for about 70 % of cases. The disease is linked to different abnormalities

in an imprinted region on chromosome 6q24 resulting from paternal duplication,

paternal uniparental disomy, or abnormal methylation of the maternal allele

(Temple et al. 2000). This methylation defect can arise secondary to biallelic

mutations in zinc finger protein 57 (ZFP57), resulting in a generalized

hypomethylation syndrome. Ultimately, it results in an overexpression of genes

PLAGL1 (pleomorphic adenoma gene-like 1, also often referred to as tumor

repressor ZAC) and HYMA1 (hydatidiform mole-associated and imprinted gene).

It should be noted that the transient form also can result from several other

mutations in the same genes that are associated with permanent neonatal diabetes,

such as mutations in KCNJ11 and ABCC8. This constitutes the majority of the

remaining patients with TNDM.

10.4.1.2 Permanent Neonatal Diabetes Mellitus

By definition, permanent neonatal diabetes does not relapse and requires lifelong

treatment. Apart from this, the clinical debut differs a little from the transient type.

Mutations in more than 20 different genes have been described as causing rare

forms of permanent NDM, but sporadic mutations in a few genes account for the

majority of cases. The most common causes are activating mutations in the genes

KCNJ11 and ABCC8. Encoding subunits KIR6.2 and SUR1 of the KATP channel

(inwardly rectifying potassium channel and sulfonylurea receptor 1, respectively),

KCNJ11 and ABCC8 play an essential role in insulin secretion. KATP channel ATP

sensitivity determines the tendency to close in response to increased metabolism

(specifically, to a high ATP-ADP ratio in the β-cell from increased plasma glucose

levels). KATP closing promotes membrane depolarization, calcium influx, and

consequently insulin secretion. Activating mutations reduce ATP sensitivity and

thus hinder closing of the KATP channel despite increased β-cell metabolism, in turn

reducing insulin secretion and ultimately leading to diabetes (Proks et al. 2006;

Gloyn et al. 2004). Meanwhile, loss-of-function mutations tend to increase ATP

sensitivity and facilitate insulin secretion resulting in congenital hyperinsulinism.

There is a direct correlation between magnitude of the KATP channel current and

disease severity; mutations that greatly reduce KATP channel ATP sensitivity can

lead to severe forms of neonatal diabetes and associated neurological manifesta-

tions such as developmental delay and early-onset epilepsy (DEND syndrome)

(Gloyn et al. 2004). This is consistent with observations of genes encoding KATP

channels also being expressed in the central nervous system. Mutations causing

smaller alterations in ATP sensitivity cause neonatal diabetes alone, without extra-

pancreatic manifestations. Hence, it has been hypothesized that “more active”
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PNDM mutations completely suppress insulin release, whereas “less severe”

TNDM mutations permit some insulin release, sufficient for diabetes remission.

The most important consequence of diagnosing an activating KATP channel

mutation is one of vital therapeutic impact: the responsiveness to oral sulfonylurea

medication, which closes the KATP channel in an ATP-independent manner. More

than 90 % of patients can safely discontinue their insulin regimen and start high-

dose oral sulfonylurea without compromising glycemic control and with reduced

risk of hypoglycemia (Pearson et al. 2006). Patients with DEND also respond

positively on sulfonylurea treatment with neurological improvement (Aguilar-

Bryan and Bryan 2008; Shah et al. 2012).

The second most common cause of permanent NDM is a mutation affecting the

insulin (INS) gene. Heterozygous missense mutations are thought to affect correct

folding and processing of the insulin molecule, leading to accumulation of

misfolded proinsulin in the endoplasmic reticulum (ER) causing ER stress and

pancreatic β-cell destruction. As β-cell destruction continues gradually, their dia-

betes is permanent and requires lifelong insulin treatment, but is without extra-

pancreatic features other than low birth weight (Støy et al. 2007).

Heterozygous mutations in KCNJ11, ABCC8, and INS most often occur de novo

and can hence be passed on to descendants who will each be at 50 % risk of neonatal

diabetes.

10.4.2 Young-Onset Diabetes

The term MODY traditionally described a subgroup of diabetes patients with

nonketotic, dominantly inherited diabetes with early-onset and (usually) lacking

positive islet antibody tests. The characteristics of obesity and insulin resistance,

often seen in T2D, are an uncommon feature. However, there is often significant

clinical overlap between MODY and both T1D and T2D, leading to frequent

misdiagnosis. Today several single-gene mutations have been included to the

growing list of MODY causes, generally characterized by being transcription

factors important for β-cell function and regulation or encoding the glucokinase

enzyme responsible for β-cell response to changes in glycemia. Currently, there are

at least 11 MODY genes, and Table 10.2 displays their details and clinical charac-

teristics, restricted to MODY forms listed by the National Center for Biotechnology

Information (NCBI), USA, as of March 2014. Some MODY forms are extremely

rare, but four subtypes account for 80–90 % of MODY cases with a known genetic

origin (Tables 10.1 and 10.2).

10.4.2.1 GCK-MODY, Mild Fasting Hyperglycemia

The first MODY gene identified encodes for the enzyme glucokinase (GCK) and is

commonly classified as GCK-MODY (or MODY2) (Froguel et al. 1992; Njølstad
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et al. 2001). More than 600 different inactivating GCK mutations have been

identified, and it is one of the most common monogenic causes of young-onset

diabetes. Patients with heterozygous loss-of-function GCK mutations are charac-

terized by having mild fasting hyperglycemia (5.5–8.0 mmol/l) from birth, but are

often undiagnosed until incidental testing reveals hyperglycemia (Feigerlova

et al. 2006). Disease misclassification is usually determined by the age at diagnosis:

as T1D in early childhood, as well-controlled T2D if discovered as an adult, or as

gestational diabetes if detected routinely during pregnancy. Consequently, if the

Table 10.2 MODY genes, restricted to MODY forms listed by the National Center for Biotech-

nology Information (NCBI), USA, as of March 2014

Gene Location

OMIM

number

Prevalence

(%)

Clinical features other

than diabetes References

HNF4A Chromosome

20q13.12

125850 ~5 Transient hyperinsulin-

ism of infancy, hypo-

glycemia, macrosomia,

increased lipoproteins

Yamagata

et al. (1996a)

GCK Chromosome

7p13

125851 10–80 None Vionnet

et al. (1992)

HNF1A Chromosome

12q24.2

600496 20–50 Glycosuria Yamagata

et al. (1996b)

PDX1 Chromosome

13q21.1

606392 <1 None Stoffers

et al. (1997)

HNF1B Chromosome

17q12

137920 ~5 Urogenital

malformations, renal

cysts, renal dysfunc-

tion, pancreatic hypo-

plasia, exocrine

dysfunction

Horikawa

et al. (1997)

NEUROD1 Chromosome

2q32

606394 <1 Malecki

et al. (1999)

KLF11 Chromosome

2q25

610508 <1 None Neve

et al. (2005)

CEL Chromosome

9q34

609812 <1 Pancreatic cysts, exo-

crine pancreatic

dysfunction

Ræder

et al. (2006)

PAX4 Chromosome

7q32

612225 <1 None Plengvidhya

et al. (2007)

INS Chromosome

11p15.5

613370 <1 None Molven

et al. (2008),

Edghill

et al. (2008)

BLK Chromosome

8p23

613375 <1 Obesity Borowiec

et al. (2009)

Abbreviations: BLK B-lymphoid tyrosine kinase, CEL carboxyl ester lipase, GCK glucokinase,

HNF hepatocyte nuclear factor, INS insulin, IPF1 insulin promoter factor 1, KLF11 Kruppel-like

factor 11, MODY maturity-onset diabetes of the young, NEUROD1 neurogenic differentiation

factor 1, PAX4 paired box 4 gene, PDX1 pancreatic and duodenal homeobox 1
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diagnosis of T1D is made, it may lead to unnecessary insulin treatment—and thus

the correct genetic diagnosis is essential to avoid this. An important and distinct

feature of this disease phenotype is the relatively low risk of developing character-

istic late complications of diabetes, differing it from the other MODY forms (Steele

et al. 2014).

The glucokinase enzyme normally catalyzes glucose phosphorylation from

glucose to glucose-6-phosphate, enabling appropriate β-cell response to glycemia.

GCK can thus be regarded as the body’s glucose sensor, increasing insulin secretion
in response to increased glucose levels. In the case of defective glucokinase,

glucose-dependent ATP production is impaired, which inhibits the closing of

KATP channels and thus affects insulin secretion (Negahdar et al. 2012, 2014).

Despite this, it is only the “set point” of fasting glucose that is increased in GCK

mutations; glucose metabolism remains well regulated at the increased set point

level, reflected by only small increments in postprandial plasma glucose levels and

adequate insulin response. This can explain why microvascular complications are

rare and why hemoglobin A1c seldom exceeds 7.5 percent (Steele et al. 2013).

As glucose homeostasis is not severely impaired, pharmacological treatment is

rarely needed; the majority of patients can be managed by diet alone (Stride

et al. 2014). Despite low risk of microvascular complications, a GCK mutation

does not protect against concomitant development of multifactorial T2D.

Insulin treatment is sometimes used in cases of pregnancy with a GCK mutation

if the fetus has excess growth; if the fetus does not inherit the mutation (50 %

chance), the fetal response to maternal fasting hyperglycemia is through insulin

secretion and hence increased intrauterine growth. If the fetus inherits the GCK

mutation, the fetus experiences the same increased “set point” for sensing maternal

hyperglycemia, and consequently, it will produce normal amounts of insulin and

grow normally despite maternal fasting hyperglycemia.

10.4.2.2 Transcription Factor MODY

Hepatocyte nuclear factors (HNFs) are transcription factors interacting in a com-

plex network regulating gene expression. The HNF proteins are expressed in

various organs and tissues; as the name implies, correct development and function

of the liver is an important attribute. Mutations in some HNF subtypes can cause

young-onset diabetes, with phenotypes differing from T1D and T2D suggesting

further genetic evaluation.

Heterozygous mutations in genes encoding HNF1A (Yamagata et al. 1996b) and

HNF4A (Yamagata et al. 1996a) cause what is commonly referred to as HNF1A-

MODY (MODY3) and HNF4A-MODY (MODY1), respectively. They collectively

portray a similar clinical picture, with progressive β-cell dysfunction leading to

increasing hyperglycemia and eventually diabetes. Despite HNF gene expression

being present in a variety of tissues, it is primarily the pancreatic activity that is

affected. As a consequence of poor glucose control, these patients are at risk of
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diabetic late complications, such as cardiovascular disease, kidney failure, retinop-

athy, and neuropathy, and should be followed up accordingly (Isomaa et al. 1998).

HNF1A mutations are the most common HNF subgroup with more than 400 dif-

ferent mutations reported (Colclough et al. 2014). About two-thirds present before

the age of 25 (thus fitting traditional MODY criteria), the remainder present later in

life. Age of diabetes diagnosis is partly determined by mutation location/isoform

affected (Harries et al. 2006). Risk of microvascular complications equals that of

T1D or T2D and relates directly to poor glycemic control. An important attribute to

patients with HNF1A mutations is their high sensitivity to sulfonylurea treatment,

facilitating the transfer from insulin to low-dose oral treatment without worsening

glycemic control. Low-dose sulfonylurea treatment is therefore recommended as

first-line treatment (Pearson et al. 2003). HNF4Amutation carriers present in a very

similar clinical picture, but tend to differ in terms of their lipid profile—a finding of

which clinical significance is not yet determined. Management with oral sulfonyl-

urea is equally effective. Highly sensitive C-reactive protein and altered patterns of

plasma protein fucosylation seem promising as biological markers to discriminate

those at highest risk of having HNF1A-MODY from common forms of diabetes

(Thanabalasingham et al. 2011, 2013).

Mutations in PDX1 (pancreatic and duodenal homeobox 1 gene; also known as

insulin promoter factor 1) or NEUROD1 (neurogenic differentiation factor 1) can

cause MODY but are extremely rare. A small number of families with MODY have

been shown to have mutations in PAX4 (paired box 4 gene) and CEL (carboxyl ester

lipase).

10.4.3 Syndromic Diabetes

The term syndromic diabetes is characterized by additional presence of nondiabetic
features dominating the clinical presentation and can by this definition consist of

both neonatal and young-onset diabetes.

The most prevalent cause of syndromic diabetes is a mutation in the transcription

factor HNF1B. As noted, the transcription factor family of HNFs is expressed in

both pancreatic and extra-pancreatic tissue. Although HNF1A and HNF4A muta-

tions usually only display endocrine affection, HNF1B mutation is usually system-

ically manifested. HNF1B-MODY (or MODY5 as it is sometimes known) is

characterized by diabetes in addition to renal cysts and other malformations, renal

dysfunction, pancreatic hypoplasia, urogenital abnormalities, hypomagnesaemia,

and liver and exocrine pancreas dysfunction. Hyperuricemia and gout may also

occur. Birth weight is usually reduced due to reduced intrauterine insulin secretion.

Coexistence of pancreatic atrophy and insulin resistance makes HNF1B mutation

carriers insensitive to sulfonylurea treatment and dependent on insulin therapy.

Concurrent exocrine and endocrine dysfunction in monogenic diabetes patients

is not uncommon, and identifying contributing genetic factors of this phenotype has

been thoroughly searched for. Mutations in the gene coding for carboxyl ester
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lipase (CEL) have been found to be a cause of exocrine pancreas dysfunction,

commonly denoted CEL-MODY (or MODY8), more specifically characterized by

a single-base deletion in the variable number of tandem repeats containing exon

11 of the CEL gene (Ræder et al. 2006). Other mutations in the CEL gene have since

been discovered, with similar symptoms of exocrine dysfunction, predominantly

from the gastrointestinal tract such as steatorrhea, malabsorption, and episodic

abdominal pain. Findings indicating that CEL is not expressed in pancreatic

β-cells support a theory of diabetogenic effect secondary to this exocrine

dysfunction.

Wolcott-Rallison syndrome (WRS) is an autosomal recessive disorder caused by

mutations in the gene encoding a regulator of translation initiation factor 2 alpha

(EIF2AK3), important during the unfolded protein response. It is the most common

form of permanent neonatal diabetes in consanguineous families, caused by homo-

zygous EIF2AK3 mutations (Delépine et al. 2000). The syndrome is characterized

by neonatal or early infancy insulin-requiring diabetes, epiphyseal dysplasia, oste-

oporosis, and growth retardation. The clinical picture is also frequently contem-

plated by other multisystemic manifestations, including acute hepatic failure and

renal dysfunction, exocrine pancreas insufficiency, as well as intellectual disability,

hypothyroidism, neutropenia with recurrent infections, and cardiovascular

abnormalities.

Wolfram syndrome (WS) is a recessively inherited, multisystemic neurodegen-

erative disorder, also known as diabetes insipidus, insulin-deficient diabetes

mellitus, optic atrophy, and deafness (DIDMOAD). Mutations in the gene WFS1
encoding the protein wolframin cause this disease phenotype (Inoue et al. 1998).

WFS1 is shown to have a protective function on endoplasmic reticulum stress, and

observations of WSF1-deficient β-cells in mice and WS patients’ lymphocytes

exhibiting dysregulated ER stress signaling suggest chronic, unresolvable ER stress

leading to pancreatic β-cell death in diabetes (Fonseca et al. 2010).

10.4.4 Mitochondrial Diabetes

Mutations in mitochondrial DNA can also be a cause of diabetes. As glucose

homeostasis is greatly dependent on mitochondrial function, the task of ATP

production is disrupted when mutations causing mitochondrial dysfunction affect

the highly metabolic active pancreatic β-cells, in turn reducing β-cell mass and

resulting in insulin deficiency. Mutations are characteristic of strict maternal

inheritance and often cause sensorineural hearing loss. It is therefore often denoted

as maternally inherited diabetes and deafness (MIDD) syndrome, reviewed in

Gerbitz et al. (1995). Heteroplasmy of mitochondrial DNA (mtDNA) within an

individual, or within a cell, complicates diagnostics as the ratio of normal-to-

mutated mitochondria may vary between family members and between tissues

within the same patient. Different point mutations in mtDNA are also differently

manifested; in severe cases, the patient may present with mitochondrial myopathy,
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encephalopathy, lactic acidosis, and stroke-like episodes syndrome. The majority of

patients resemble the phenotype of T2D and can initially be managed with dietary

modification or oral antidiabetic drugs, but a switch to insulin is usually required.

10.5 Insights from Monogenic Diabetes

Advances in the understanding of monogenic causes of diabetes and the discovery

of single-gene mutations responsible for different phenotypes have greatly

increased our knowledge of β-cell physiology. Insight into the chain of steps

controlling glucose homeostasis has thus markedly improved understanding of

diabetes pathophysiology. First and foremost, such advances have had implications

for the individual patient diagnosed with the specific monogenic cause of diabetes.

Findings of sulfonylurea responsiveness in patients with mutated MODY genes

HNF1A and HNF4A and neonatal diabetes genes ABCC8 and KCNJ11 are remark-

able examples of pharmacogenomic medicine allowing for the discontinuation of

insulin among a subgroup of patients with diabetes who were previously insulin-

dependent. Such breakthroughs also deliver hope for future antidiabetic drugs,

tailored to the patient’s diabetes genetic etiology.
Furthermore, combining research into identifying rare, highly penetrant single-

gene mutations involved in monogenic forms of diabetes with findings from

genome-wide association studies (GWAS) of multifactorial T2D, a significant

overlap has been observed (Fig. 10.1). Evidence points toward common
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Fig. 10.1 Diagram showing the overlap between genes in which mutations are known to cause

monogenic forms of diabetes and those genes where variants increase the risk of T2D. Note that for

the T2D genes, the gene listed may be that located nearest to the risk variant and may not

necessarily be the causal gene
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polymorphism in or near some monogenic diabetes genes may also affect suscep-

tibility to adult T2D. For example, single-nucleotide polymorphisms in and

upstream of the HNF1A gene have been identified increasing the risk for T2D

and accelerating disease onset (Voight et al. 2010). A relationship between KCNJ11
and ABCC8 genotypes and responsiveness to sulfonylurea in T2D has also been

discovered. Enhanced hypoglycemic effects of sulfonylurea have been observed

among subjects carrying specific KCNJ11/ABCC8 haplotypes, explained by

increased sensitivity to gliclazide for the specific KATP channel subtype (Hamming

et al. 2009). Moreover, subjects carrying Ala at position 1369 in the SUR1 protein

have lower fasting glucose than those carrying Ser at position 1369 when treated

with gliclazide (Feng et al. 2008). Such findings suggest that pharmacogenomic

approaches to individualized therapy also can be applicable to T2D.

With these advances in mind, early-onset monogenic diabetes will remain of

high value in the search to identify new targets of β-cell dysfunction. Fuelled by

advances in genetic research methodology, such as whole-exome/genome sequenc-

ing, and gradually decreasing costs, novel genetic causes of diabetes are very likely

to emerge, with important translational implications for treatment and disease

follow-up.
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Chapter 11

Epigenetics in Type 2 Diabetes

Charlotte Ling and Lorenzo Pasquali

Abstract Combinations of genetic and environmental factors contribute to the

pathogenesis of type 2 diabetes (T2D); however, our knowledge of the molecular

mechanisms by which these factors trigger diabetes is still limited. While genome-

wide association studies have identified and characterized more than 60 genomic

loci associated with T2D, recent methylome charts and reference regulatory maps

obtained from tissues central to T2D can help to pinpoint the causative genetic

variants. Yet, the proportion of overall trait variance explained by these genetic

variants is still modest. Aging, diet, obesity, and physical inactivity represent

nongenetic risk factors that may be reflected in epigenetic processes promoting

T2D. Recent studies have characterized epigenetic modifications in pancreatic

islets, skeletal muscle, and adipose tissue from T2D patients suggesting a central

role for epigenetic mechanisms in the pathogenesis of the disease. Altered epi-

genetic patterns have also been found in first-degree relatives of patients with T2D

and in healthy subjects born with a low birth weight suggesting that epigenetic

modifications may predispose to diabetes. Lifestyle interventions including exer-

cise and diet have also been shown to alter the epigenome in target tissues for T2D.

Overall, these data propose a model where combinations of genetic, epigenetic, and

nongenetic factors contribute to the risk of T2D. In this book chapter, we will

explore the potential role of epigenetic mechanisms in T2D and discuss how

genetics, epigenetics, and environment may interact to define the risk of developing

the disease.
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11.1 Introduction

Type 2 diabetes (T2D) is a polygenic, multifactorial disease characterized by

chronic hyperglycemia due to impaired insulin secretion in combination with

insulin resistance in target tissues such as skeletal muscle, adipose tissue, and the

liver (Alberti and Zimmet 1998). While it is well established that a sedentary

lifestyle and high-calorie food intake increase the risk of T2D, family-based studies

have shown that genetic factors also contribute to disease susceptibility

(Kobberling and Tillil 1990). Recently, many studies have focused on the genetic

contribution to common diseases such as diabetes. T2D genome-wide association

studies (GWAS) uncovered many loci each containing genetic variants associated

to the diabetic phenotype (McCarthy 2010) (see Chap. 2). Although important

improvements have been made into defining loci and variants contributing to

individual risk of T2D, even when combined, these established loci account for

only a modest proportion of the observed familial aggregation (Willems et al. 2011;

Voight et al. 2010; Manolio et al. 2009; Billings and Florez 2010).

Additional factors therefore remain to be found to elucidate the remaining

genetic contributions to the disease susceptibility. These may include rare variants,

copy number variation, or epigenetic modifications. Epigenetics was first intro-

duced by Conrad Waddington who in the 1940s (Holliday 2006) focused his

research on combining embryology and genetics. Later Griffith and Mahler

suggested that DNA methylation may have an important biological role by contri-

buting to long-term memory in the brain. In 1975, it was further proposed that DNA

methylation could regulate gene expression, explaining the changes in expression

taking place during development. At the same time, it was suggested that the DNA

methylation pattern could be inherited. At a more recent Cold Spring Harbor

meeting, epigenetics was defined as “a stably heritable phenotype resulting from

changes in a chromosome without alterations in the DNA sequence” (Berger et al.

2009). The epigenome includes DNA methylation, hydroxymethylation, histone

modifications, and noncoding RNA. These factors contribute to cell differentiation

during development, parental imprinting, X-chromosome inactivation, and cell-

specific gene expression. This book chapter will mainly focus on DNA methylation

and histone modifications.

In differentiated mammalian cells, DNAmethylation mainly occurs on cytosines

in CG dinucleotides (Lister et al. 2009). These are called CpG sites. Enzymes

responsible for adding methyl groups to the mammalian DNA include DNMT1,

which is responsible for copying the methylation pattern during replication, and

DNMT3a and 3b, which are responsible for de novo methylation. Demethylation

may occur if the DNMT1 activity is low during replication. Recently, TET enzymes

were suggested to contribute to demethylation by oxidizing methyl groups (Wu and

Zhang 2014).

DNA methylation of promoter regions has been found to decrease the transcrip-

tional activity of the corresponding genes (Bird 2007; Suzuki and Bird 2008).

Today, it is known that DNA methylation of different genomic regions also affect
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alternative splicing events, the recombination rate, and it may increase the tran-

scriptional elongation process (Jones 2012). The chromatin is built of nucleosomes,

which is made up of approximately 147 bp DNA and an octamer of histones. The N-

terminal tails of these histones can be chemically modified by numerous enzymes

which are responsible for adding methyl, acetyl, and phosphor groups to histones.

These histone modifications affect the chromatin structure and can subsequently

control the chromatin accessibility at certain genomic locations. While some

histone modifications such as H3K9me3 contribute to a dense, closed chromatin

structure, others are enriched at active genes (e.g., H3K9ac and H3K4me3) or at

distal regulatory elements (e.g., H3K27ac and H3K4me1) (Fig. 11.1). As aging and

environmental factors can alter the DNA methylation pattern and introduce histone

modifications (Fraga et al. 2005), epigenetics may affect the development of a

complex, multifactorial disease such as T2D. Indeed, during the last years

Fig. 11.1 Schematic representation of the main posttranslational modifications of the four core

histones. Different combinations of posttranslational histone modifications result in a “histone

code” that contributes to establishing the global and local chromatin states that eventually

determine gene expression. Highlighted in the table are the major histone modifications and

their functional association
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numerous studies have tried to identify epigenetic modifications that play a role in

the pathogenesis of T2D (Ling and Groop 2009). This book chapter aims at

summarizing current knowledge in the field of epigenetics in T2D.

11.2 The Epigenetic Basis of T2D

In 2008, the first epigenetic modifications were identified in pancreatic islets from

patients with T2D (Ling et al. 2008). Here, the promoter of the transcriptional co-

activator PPARGC1A was found to have increased DNA methylation in human

islets from subjects with T2D. Importantly, the diabetic islets also had decreased

PPARGC1A expression in parallel with lower glucose-stimulated insulin secretion

in vitro compared with nondiabetic controls. Additionally, silencing of PPARGC1A
in human islets using siRNA resulted in decreased insulin secretion. Later, Barres

et al. found increased DNA methylation of PPARGC1A also in skeletal muscle

from patients with T2D compared with nondiabetic subjects (Barres et al. 2009).

More recent studies have identified altered DNA methylation patterns in skeletal

muscle from diabetic versus nondiabetic twins, using twin studies with monozy-

gotic twin pairs discordant for T2D (Ribel-Madsen et al. 2012; Nitert et al. 2012).

Additional studies have found epigenetic modifications in pancreatic islets from

human donors with T2D (Yang et al. 2011, 2012; Volkmar et al. 2012; Dayeh et al.

2014). Using a candidate gene approach, INS and PDX1 were found to have

increased DNA methylation and decreased mRNA expression in islets from

human donors with T2D (Yang et al. 2011, 2012). Additionally, the degree of

DNA methylation correlated negatively with expression of these two genes,

suggesting a potential regulatory role of methylation on expression. Indeed,

reporter assays, where promoter regions of PDX1 were inserted into a luciferase

vector and then methylated with methyltransferases, showed that increased DNA

methylation of the PDX1 promoter and its enhancer region reduced the transcrip-

tional activity (Yang et al. 2012). Hyperglycemia, measured by HbA1c, was

associated with increased DNA methylation and decreased expression of INS and

PDX1. Importantly, glucose was shown to have a direct effect on methylation of

INS and PDX1 as well as on DNMT1 expression in clonal beta cells cultured in

vitro (Yang et al. 2011, 2012). Two additional studies have analyzed DNA methyl-

ation of ~27,000 and ~480,000 in human pancreatic islets from donors with T2D

and controls, respectively (Volkmar et al. 2012; Dayeh et al. 2014). While Volkmar

et al. found differential DNA methylation of 276 CpG sites at P< 0.01 (Volkmar et

al. 2012), Dayeh et al. found altered methylation of 3116 CpG sites based on a false

discovery rate analysis (Dayeh et al. 2014). Importantly, none of these two studies

found any differences in beta-cell content between diabetic and nondiabetic human

islets, supporting that the epigenetic differences seen in diabetic islets are not due to

an altered cell composition. Interestingly, both studies found that the majority of the

differentially methylated CpG sites show decreased methylation in diabetic versus

nondiabetic islets. Moreover, Dayeh et al. found altered methylation in sites

244 C. Ling and L. Pasquali



connected to genes that previously have been shown to play a role in pancreatic

islets, in the exocytosis process and in apoptosis. They also found decreased

methylation of genes associated with T2D, e.g., TCF7L2, FTO, and KCNQ1, in
islets from donors with T2D compared with controls. Noncoding RNAs do also

contribute to epigenetic regulation (Moran et al. 2012), and a recent study found

altered expression of microRNAs in parallel with differential DNA methylation in

human diabetic islets (Kameswaran et al. 2014). The epigenome is also altered in

adipose tissue from subjects with T2D (Nilsson et al. 2014). There was a significant

enrichment of genes involved in inflammation and glycan degradation as well as

pathways in cancer, Wnt signaling, and MAPK signaling. Additionally, numerous

genes previously associated with T2D including KCNQ1, IRS1, PPARG, and

TCF7L2 showed differential DNA methylation in adipose tissue from diabetic

compared with nondiabetic subjects. While these studies demonstrate that epi-

genetic modifications exist in diabetic patients, the data does not show whether

epigenetic modifications are the cause or consequence of the disease. However,

altered DNA methylation patterns have also been found in healthy first-degree

relatives of patients with T2D (Nitert et al. 2012). Additionally, healthy young

men with an increased risk for diabetes due to their low birth weight demonstrate

epigenetic modification in skeletal muscle (Brons et al. 2010; Jacobsen et al. 2014).

Moreover, aging, obesity, and hyperglycemia are associated with differential DNA

methylation in human pancreatic islets from nondiabetic subjects of CpG sites/

genes that also show altered methylation in islets from subjects with T2D (Dayeh et

al. 2014). Together these data support that epigenetic modifications contribute to

the pathogenesis of T2D.

11.3 Epigenetics, Diabetes, and Insulin Secretion

Impaired insulin secretion from pancreatic islets is a hallmark of diabetes. As

epigenetic modifications have been identified in pancreatic islets from patients

with T2D (Ling et al. 2008; Yang et al. 2011, 2012; Volkmar et al. 2012; Dayeh

et al. 2014; Kameswaran et al. 2014), which show impaired insulin secretion, it is

likely that epigenetic mechanisms also affect the secretion of insulin. PDX1 is a

transcription factor that plays a key role during development of the pancreas. It does

also regulate beta-cell expression of insulin in postnatal life. Animals lacking islet

Pdx1 expression develop diabetes, and mutations in PDX1 can give a monogenic

form of diabetes (Ahlgren et al. 1998; Stoffers et al. 1997). Animal studies have

also shown that an impaired intrauterine environment causes epigenetic modifi-

cations of Pdx1, which result in decreased islet Pdx1 expression, perturbed insulin

secretion, and eventually diabetes later in life (Park et al. 2008). In a different

animal study, Sandovici et al. showed that a low-protein intake in pregnant mothers

causes epigenetic modifications of Hnf4a in islets from the offspring and conse-

quently decreased Hnf4a expression, perturbed insulin secretion, and eventually

hyperglycemia in adult life (Sandovici et al. 2011). These studies suggest that
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epigenetic modifications that take place in pancreatic islets during development can

contribute to impaired insulin secretion and diabetes in postnatal life. A recent

genome-wide epigenetic study followed up identified target genes, which showed

differential DNA methylation and gene expression in pancreatic islets from patients

with T2D, in clonal beta cells (Dayeh et al. 2014). This study showed that genes

with both altered DNA methylation and expression in human diabetic islets directly

affect insulin secretion and exocytosis in beta cells. Interestingly, while over-

expression of Cdkn1a and Pde7b resulted in decreased glucose-stimulated insulin

secretion, Exoc3l deficiency resulted in decreased exocytosis. Additionally,

increased age was associated with decreased DNA methylation of CDKN1A and

increased DNAmethylation of EXOC3L2, which is in line with what is seen in T2D
islets. Obesity increases the risk of T2D, and diabetic subjects often have elevated

circulating lipid levels. To mimic the situation in people with diabetes, clonal beta

cells were exposed to palmitate, and insulin secretion, metabolomics, gene expres-

sion, and histone modifications were analyzed (Malmgren et al. 2013). Lipotoxicity

impaired glucose-stimulated insulin secretion and induced histone modifications of

genes showing differential gene expression, e.g., Insig1. Importantly, palmitate also

regulated the histone acetyl transferase activity and the H3K27me3 methyl-

transferase activity in the clonal beta cells. Together, these data show that epi-

genetic modifications of numerous genes affect islets’ function and insulin secretion
and potentially are linked to the development of diabetes.

11.4 Epigenetics, Diabetes, and Insulin Resistance

Insulin resistance and decreased insulin action in target tissues such as skeletal

muscle, adipose tissue, and the liver contribute to the development of T2D. Mul-

tiple studies have therefore tried to dissect the impact of epigenetic modifications

on insulin sensitivity in these tissues. While regular exercise is known to have

beneficial effects, a high-fat diet, physical inactivity, and aging may reduce insulin

sensitivity. Interestingly, skeletal muscle from elderly subjects was found to exhibit

increased DNA methylation and decreased expression of genes involved in oxi-

dative phosphorylation, and these subjects had decreased glucose uptake during

clamp compared to young subjects (Ling et al. 2007; Ronn et al. 2008). Also a high-

fat diet for 5 days induces epigenetic changes in human skeletal muscle and

increased insulin resistance in the young men exposed to the high-fat diet (Brons

et al. 2012; Jacobsen et al. 2012). Additionally, a 9-day bed rest in young men was

found to decrease expression and increase DNA methylation of PPARGC1A in

skeletal muscle and to deteriorate whole-body insulin action (Alibegovic et al.

2009, 2010). In contrast, both acute and regular exercise decreased DNA methyl-

ation of PPARGC1A in human muscle (Nitert et al. 2012; Barres et al. 2012).

Moreover, an exercise intervention induced epigenetic modifications of thousands

of genes, including genes with known function in diabetes and obesity, in both

skeletal muscle and adipose tissue from middle aged sedentary men (Nitert et al.
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2012; Ronn et al. 2013). This took place in parallel with altered gene expression and

improved metabolism. Functional in vitro studies of genes that exhibit decreased

expression and increased DNAmethylation in adipose tissue in response to exercise

further showed that knockdown of identified genes, e.g., Ncor2 and Hdac4 in an

adipocyte cell line, increased the insulin-stimulated lipogenesis (Ronn et al. 2013).

It subsequently seems that epigenetic modifications in muscle and fat contribute to

whole-body insulin sensitivity.

11.5 Genetics, Epigenetics, and Environment Interplay

As a prototype of a multifactorial complex disease, T2D arises from an intricate

interaction of environment factors and inherited predisposition. The attempt to

partition individual propensity to develop T2D among genetic and environmental

components may be often frustrated by the intimate connections between them.

Subsequently, our knowledge about the molecular mechanisms linking genetic

variation and environmental factors with T2D remains limited. In this scenario,

epigenetics may play an important role in interfacing the molecular response of an

organism to an external influence by orchestrating and modulating tissue-specific

gene expression (Fig. 11.2). In this view, understanding the epigenetic processes in

Fig. 11.2 Model proposing that epigenetic mechanisms may play an important role in the

pathogenesis of T2D by mediating the impact of genetic and environmental factors on the

phenotype of organs central to the disease
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the context of T2D will likely shed light on the molecular mechanisms underlying

the development of the disease.

11.6 Linking GWAS and Epigenetics

So far GWAS revealed broad genomic regions, and only in very few cases it was

possible to pinpoint the causal sequence variant and identify a possible mechanism

linking the associated polymorphism with the development of T2D (Pasquali et al.

2014; Gaulton et al. 2010; Stitzel et al. 2010; Dayeh et al. 2013; Kulzer et al. 2014).

In summary, several important observations emerged from the GWAS:

1. For a significant fraction of loci, genetic variation impacts insulin secretion

indicating the central role of pancreatic islet as a relevant tissue to study

in order to understand the genetic mechanisms underlying this disease.

2. Most of the loci do not harbor variations residing in coding regions suggesting

that the risk variant may influence transcript regulation rather than altering the

sequence of the protein itself.

3. For most loci, it is unclear which of the genes in the region is mechanistically

responsible for the association effect observed.

4. The discovered common variant signals have at most a modest effect accounting

for no more than 5–10 % of overall trait variance even when considered in

combination, fractions that make them unsuitable for use in clinic for disease

prediction (Willems et al. 2011). Nevertheless whole-chip heritability estimates

indicate that as much as 50 % of the heritability of T2D may be explained by

common variants, accounting for an estimate of 3000 variants (Stahl et al. 2012;

Morris et al. 2012).

The fact that almost all the variants identified are located in noncoding regions

suggests that gene regulation has a central role in the development of the disease

and that epigenetic factors such as protein-DNA interactions, DNA methylation, or

chromatin modification might be involved in the development of T2D. A logical

path to shed light on the disease mechanisms that modify gene regulation goes

thereby through the analysis of chromatin structure and posttranslational modifi-

cations of nucleosomal histones.

In the past, human geneticists took advantage of relevant genetic maps such as

the exon annotation to identify coding mutations causing monogenic forms of

diabetes (Fajans et al. 2001). For T2D as well as for other complex diseases

where the associated signals do not reside in the coding part of the genome, we

instead need maps of the active regulatory elements in disease-relevant tissues.

Such tissue-specific regulatory maps could in turn help us to identify the associated

variants that may have a causative role by disrupting the tissue-specific transcrip-

tional regulatory activity.

Large consortia such as ENCODE (Dunham et al. 2012) and the Epigenome

Roadmap (Bernstein et al. 2010) provided extensive epigenetic maps allowing
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annotation of the noncoding regions of the human genome for a large amount of

tissues including several relevant to T2D such as adipose tissue and skeletal muscle,

while other less accessible primary tissues such as the endocrine pancreas were not

prioritized in these studies. For their central role in diabetes pathogenesis, different

laboratories embarked in profiling the epigenetic landscape of human pancreatic

islet cells (Dayeh et al. 2014; Pasquali et al. 2014; Gaulton et al. 2010; Stitzel et al.

2010; Bhandare et al. 2010; Parker et al. 2013) in an ongoing effort to dissect the

molecular mechanisms of human T2D (Ashcroft and Rorsman 2012).

Early this year, the first assembly of a complete human pancreatic islet cis-
regulome map unmasked an enrichment of T2D-associated variants in islet-specific

distal regulatory elements, implicating genetic variation at islet enhancers in the

susceptibility for T2D (Pasquali et al. 2014). These findings confirm the primary

role of the islet-cell gene regulation in the pathogenesis of T2D and demonstrate the

potential of integrating different levels of experimental data such as genetics,

epigenetics, and transcripts maps in shedding light on the molecular mechanisms

underlying complex polygenic diseases such as diabetes. While these advances

unmasked the tissue-specific gene expression regulatory framework in nondiabetic

islet cells and enable the identification of T2D-associated variants with a potential

regulatory function, a major question still remains open: “how does genetic vari-

ation affect the pancreatic islet tissue-specific epigenetic landscape in the context of

T2D?” Proof-of-concept examples showed that at least in some cases, genetic

variants do impact the human islet epigenetic landscape (Gaulton et al. 2010;

Dayeh et al. 2013) or disrupt the regulatory potential of a genetic site in vitro,

implicating a functional role for those variants (Pasquali et al. 2014; Gaulton et al.

2010; Stitzel et al. 2010; Dayeh et al. 2013).

In particular, along these lines in a recent publication, Dayeh et al. demonstrated

that about 50 % of SNPs associated with T2D in GWAS introduce or remove CpG

sites. Importantly, all these diabetes-associated CpG-SNPs were associated with

differential DNA methylation in the SNP site as well as altered expression, alter-

native splicing events, and hormone secretion in human pancreatic islets (Dayeh

et al. 2013).

Future progress in understanding the impact of genetic variants on the tissue-

specific epigenome in the context of T2D will necessarily need to go through:

(a) Whole-genome sequencing of patients with T2D resulting in the identification

of low-frequency variants associated with the disease.

(b) Charting epigenetic maps in T2D-relevant tissues including early and late

stages of development, as well as pertinent metabolic states.

These advances will enable us to dissect the contribution of genetic variation to

the disease development and unmask mechanistic links with the tissue-specific gene

regulation.

The expansion of association studies to rare or personal sequence variants will

certainly improve the estimates of variance explained, but will unlikely achieve a

complete explanation of the predisposition. An open road in an attempt to unmask

the fraction of disease variance still unexplained by the GWAS may pass through
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the epigenetic characterization of humans at risk of T2D. Few studies mostly

focusing on the methylation status of selected CpG sites have so far attempted

this challenge using pancreatic islets from T2D-affected individuals (Ling et al.

2008; Yang et al. 2011, 2012). The first epigenome-wide association studies

(EWAS) are also now starting to be performed with tissues obtained from people

with T2D (Toperoff et al. 2012; Rakyan et al. 2011; Bell et al. 2010), but only in

few cases it was possible to use relevant tissues (Barres et al. 2009; Ribel-Madsen et

al. 2012; Volkmar et al. 2012; Dayeh et al. 2014). These first studies, as it had been

initially for the GWAS, are limited by low statistical power and rare follow-up

replication. EWAS will almost certainly rely on centralized community efforts due

to the high costs of the experiments and the difficulty of accessing to sufficient

numbers of samples from disease-relevant tissues and/or cell types. These studies

will allow understanding the contribution of the epigenome rather than the

sequence composition to the disease development. Finally integration of genetics

and epigenetic data will allow a clearer picture of the molecular mechanisms behind

the development of T2D.

11.7 Linking Environment and Epigenetics

It is well established that the environment plays a central role in the development of

complex polygenic diseases such as T2D with the onset arising after a long latency

period from the environmental trigger. In particular, early life events such as the

diet during pregnancy and lactation may have an important effect not only on the

mother’s health but also on the health of her offspring. The correct development of

an organism and its continuous interaction with the environment requires a plastic

adaptation of the cells that continuously modulates and fine-tunes their gene

expression. This process is at least in part mediated by epigenetic mechanisms

such as methylation and histone modification placing epigenetics as an interface

between the environment stimuli and the molecular adaptation of an organism

(Fig. 11.1). In this view, epigenome and genome interactively influence the mature

phenotype and may determine sensitivity to the development of a disease later in

life.

Studies of individuals who were in utero during famine periods have shown a

correlation between maternal nutrient deficiency and increased risk of T2D in the

offspring (Ravelli et al. 1998; Li et al. 2010). These observations are supported by

animal models showing that maternal diet during pregnancy influence the long-term

risk of developing T2D (Ozanne and Hales 2002; Gluckman et al. 2007).

Rodent maternal nutrition is able to change epigenetic marks during fetal

growth, but yet a small number of studies have examined DNA methylation in

the context of diabetes. An example of how environmental exposure can influence

diabetic risk through epigenetic mechanisms was shown by Sandovici et al. In this

study, carried out in rats, maternal low-protein diet silenced, through an epigenetic

mechanism involving the lifelong inhibition of a distal regulatory element,

250 C. Ling and L. Pasquali



pancreatic islets’ expression of the transcription factor HNF4A which in turn was

associated with an increased risk of T2D (Sandovici et al. 2011). In another

example on the same line, Ozanne et al. showed a reduced expression of the insulin

signal-transduction pathway components in skeletal muscle such as GLUT4 in rats’
offspring of mothers on a protein-restricted diet. These abnormalities could contri-

bute to insulin resistance later in life (Ozanne et al. 2005).

Environment may also influence the disease metabolic risk through epigenetic

mechanisms not only during the development of the organisms but also in adult

individuals. For example, as described in a previous section, several studies showed

that physical activity has an effect on the epigenome of organs central to T2D and

does influence the disease pathogenesis (Nitert et al. 2012; Barres et al. 2012;

Ronn et al. 2013).

Finally, the impact of the environment may also be observed over multiple

generations in humans and animal models (Jimenez-Chillaron et al. 2009; Carone

et al. 2010). Along this line, paternal high-fat diet consumption was shown to

induce transcriptome alterations and islets dysfunction in female rat offspring.

Importantly, epigenetic marks such as the promoter methylation of IL13 receptor

were found to be decreased in the offspring with concomitant increase in its

expression (Ng et al. 2010). While it is now clear that epigenetics can confer stable

functional genomic configurations within somatic lineages, this and other epidemio-

logical observations (Carone et al. 2010; Kaati et al. 2007) place epigenetic mecha-

nisms as possible mediators of environmental effects that may impact and influence

disease related phenotypes over multiple generations. From these observations, it

could be speculated the possibility of a transgenerational transmission of metabolic

risk (Pembrey et al. 2006). However, a clear molecular mechanism for such inherit-

ance is still missing. The relative contribution of genetic and epigenetic variation to

transgenerational epigenetic inheritance will be better understood in the future

through the use of isogenic strains in animal studies.

Epigenetic mechanisms may mediate the gene-environment dialogue in early

life and adult individuals influencing the metabolic risk eventually resulting in

T2D. Understanding how early and adult life experiences can give rise to lasting

epigenetic marks conferring an increased risk for T2D is a challenge that is now

in an important focus for the diabetes research field. An attractive working hypo-

thesis is to consider epigenetic modifications in a final common pathway through

which both genetic and environmental effects can impact T2D risk.

The downstream consequences of alterations in gene expression influencing

glucose homeostasis could be the result of genetic variants modifying the regu-

latory potential of a sequence (e.g., disruption of a transcription factor binding site

or introducing a CpG site) but could as well be caused by environmental cues able

to alter the methylation or histone modifications’ profiles at the same genetic loci.

To which extent genetic variants rather than environmental factors are responsible

of the altered gene regulation that reflects the diabetic phenotype is an open

question that the diabetic field will address in the upcoming years.
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Chapter 12

Gene-Environment Interaction: Methods

and Examples in Type 2 Diabetes and Obesity

Alisa K. Manning

Abstract Although both genetics and environmental factors play important roles

in the etiology of type 2 diabetes (T2D), the extent to which genetics influence the

environment (or vice versa) is still an open question. In this chapter, we first

motivate the study of gene-environment (G�E) interaction with T2D, present

statistical models of interaction, and then share illustrating examples of G�E

interaction in the literature: PPGARG with T2D, COBLL1/GRB14 with fasting

insulin levels and FTO with T2D, obesity, and physical activity.

12.1 Introduction

Debates on the causes of type 2 diabetes (T2D) often center on the question of

“nature vs nurture”—to what extent is the disease caused by genetics or exposure to

environmental risk factors? In this chapter, we explore the idea of incorporating

these external, non-genetic variables in genetic association studies of diabetes and

diabetes-related traits with the goals of identifying novel genetic associations which

might be modulated by environmental factors (or vice versa) and thus better

understand disease mechanisms. We will present the methodology and current

best practices of gene-environment interaction studies.

It is important to distinguish between biological and statistical interaction.

Biological interaction is a term used to describe dependent biological systems.

The simplest example relevant to diabetes physiology concerns the canonical

relationship between insulin secretion and insulin action, captured by the molecular

interaction between circulating insulin and its receptor.

The statistical study of gene-environment interaction is concerned with finding

genetic variants for which the association effect between an outcome and the
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variant is modified by an additional covariate, the environmental variable. In the

presence of statistical interaction, the association between the genetic variant and

the outcome is different for the various levels of the environmental variable

(see Fig. 12.1). Note that the relationship can be viewed in a reciprocal manner,

that is, the effect of the environmental variable on the outcome differs by genotype

(or degree of genetic exposure).

Questions related to gene-environment interaction include:

• Are there individuals with particular genetic profiles who are more likely to

develop T2D when exposed to sedentary lifestyles and/or poor nutrition? (See

Chaps. 27 and 28.)

Fig. 12.1 Interpreting gene-environment interaction: For each panel, two plots are presented. In

the top plot, the outcome (Y) value is displayed for the three genotypes under an additive genetic

model. The association in the exposed group (blue) is compared to the genetic association in the

unexposed subgroup (red). In the bottom plot, Y values are displayed for the two exposure groups

with the three lines showing the values in the three genotype groups (0/0, purple; 0/1, red; and 1/1,
blue). Three different interaction models are presented: (a) positive interaction occurs when the

genetic effect and the interaction effect are in the same direction. Here, there is a genetic

association in the absence of the exposure variable (when E¼ 0, βSNP¼ 0.1). In the exposed

group, the association is strengthened (when E¼ 1, βSNP¼ 0.3). (b) Masking can occur when the

genetic association is not present in one exposure group. Here, there is no genetic association in the

non-exposed group (when E¼ 0, βSNP¼ 0). In a test of only the genetic main effect (black line),
the association may still be detectable (βSNP¼ 0.09) but it is much stronger in the exposed group

(when E¼ 1, βSNP¼ 0.2). (c) The third example illustrates a situation where the genetic effect in

the exposed group (βSNP¼ 0.1) is in the opposite direction as the genetic effect in the unexposed

group (βSNP¼�0.1)
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• Can we personalize treatment knowing that certain medications work best in

individuals with particular genetic profiles? (See Chaps. 24 and 25.)

12.1.1 Type 2 Diabetes, Glycemic Traits, and Gene-
Environment Interactions

Type 2 diabetes is a disease of deteriorating beta-cell function and increasing

insulin resistance with lifestyle risk factors such as lack of physical activity and

obesity (McCarthy 2010). Candidate gene studies of genes in known diabetes

pathways or previously implicated in neonatal diabetes or maturity-onset diabetes

of the young (MODY) (Altshuler et al. 2000; Gloyn et al. 2004; Winckler

et al. 2007; Sandhu et al. 2007) and genome-wide association studies (GWAS) of

common genetic variants (Voight et al. 2010; Saxena et al. 2012; Morris et al. 2012)

point to two mechanistic pathways of T2D disease progression: (1) variants near

genes such as CDKAL1, CDKN2A, and CDKN2B reduce beta-cell mass and vari-

ants near genes such as MTNR1B, TCF7L2, and KCNJ11 influence beta-cell

dysfunction, both of which result in reduced insulin secretion to lower glucose

levels, and (2) insulin resistance, where cells and tissues become resistant to the

effects of insulin, with association in or near genes such as FTO (related to obesity),

IRS1, and PPARG (McCarthy 2010). Genetic variants associated with fasting

glucose levels (related to beta-cell dysfunction) and fasting insulin levels (related

to insulin resistance) have also been published (Prokopenko et al. 2008; Dupuis

et al. 2010; Manning et al. 2012; Scott et al. 2012) (see Chaps. 2 and 3).

Studies show that both dietary fats and free fatty acids impact insulin resistance,

possibly through mediating genetic factors such as PPARG variation (Roden

et al. 1996; Kubota et al. 1999; Haag and Dippenaar 2005). External environmental

variables (lifestyle factors such as diet or exercise) that impact T2D disease

progression, beta-cell deterioration, and/or insulin sensitivity have been proposed

as environmental exposures that may interact with genetics in the etiology of T2D.

Furthermore, obesity contributes to insulin resistance by creating an “obesogenic

environment,” making continuous body mass index (BMI) or categorical obesity

(as defined by BMI� 30 kg/m2) attractive candidate variables for interaction

studies.

The measurement of lifestyle variables (physical activity, diet, and smoking

status) can differ between studies, making meta-analysis and replication of genetic

associations more difficult. For example, physical activity is a measure of an

individual’s energy expenditure that can be summarized through questionnaires

or more direct means such as continuous heart rate monitoring. Crude categories

(sedentary, active, and/or very active) are often used in order to reach concordance

between the various measures of physical activity used across the study designs,

resulting in a loss of information in the subset of studies using sophisticated
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measurement tools. Other exposures such as smoking status and diet may be

inconsistently measured across studies.

The InterAct project was designed to investigate lifestyle interactions in the

development of T2D (The InterAct Consortium 2011) using a case-cohort sample

of 10,901 incident diabetes cases from eight EPIC countries and a control cohort of

15,352 participants including 736 cases of incident T2D. Findings include an

increased incidence of T2D with high total protein intake (HR¼ 1.13, 95 % con-

fidence interval [CI]: 1.08–1.19) and high animal protein intake (HR¼ 1.12 95 %

CI: 1.07–1.17), where effect modification was observed by sex (P< 0.001) and

BMI among women (P< 0.001).

12.2 Statistical Model, Study Designs, and Interpretation

Numerous reviews of the design, implementation, and interpretation of GWAS of

gene-environment interaction are available (Ottman 1996; Thomas 2010; Ober and

Vercelli 2011; Aschard et al. 2012; Gauderman et al. 2013). Here, we first present

the basic methodology of gene-environment interaction analyses and then describe

several popular extensions.

12.2.1 Type 2 Diabetes as the Outcome

Although other models might be appropriate for the scientific question at hand, and

complex diseases can be studied with a variety of models (Clayton 2012), the

association between T2D and genetic factors is often assessed using logistic

regression models in appropriate samples.

The term “main-effects model” refers to a test of the marginal association

between a genetic variant and the outcome (without interaction). Here, disease

status is dichotomous and coded as T2D¼ 1 for individuals with T2D and T2D¼ 0

otherwise. Along with the independent genetic variable G, coded for an appropriate
genetic model, additional covariates such as age and sex are usually included in the

main-effects model:

log odds of T2Dð Þ ¼ β0 þ β1SEXþ β2AGE þ β3G ð12:1Þ

Using the regression estimates, an estimate of the odds ratio for the association

between G and T2D can be obtained: ORG ¼ eβ̂3 .
Statistical interaction by an independent variable E is defined as a departure from

the multiplicative odds ratio model for the joint effect of G and E. Using the odds

ratio for the association between T2D and E, ORE, a relationship between ORG and

ORE can be defined: if there is no interaction, and the association between G and

T2D is the same for all levels of E, then the two variables are independent and
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ORG,E ¼ ORG � ORE. When ORG,E 6¼ ORG � ORE, or
ORG,E

ORGORE
6¼ 1; statistical

interaction is present.

One statistical test for interaction can be performed by including term for G, E,
and the product of the two variables in the regression model:

log odds of T2Dð Þ ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4Eþ β5G� E ð12:2Þ

In this model, the odds ratio estimate for the increased or decreased risk of T2D

must be derived using both β̂3 and β̂5 (see Fig. 12.1).

12.2.2 Quantitative Outcomes

With quantitative outcomes such as glucose or insulin levels, linear regression

models can be used to assess G�E interaction effects. There are several assump-

tions of linear regression that should be considered and are discussed in many

statistical texts.

As with T2D, covariates such as age and BMI are commonly included in the

genetic association tests of diabetes-related quantitative traits.

The main-effects regression model describes the relationship between Y and G:

Y ¼ β0 þ β1SEX þ β2AGE þ β3Gþ ε ð12:3Þ

A test for gene-environment interaction can be performed by adding an interaction

term to the main-effects regression model:

Y ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4Eþ β5G� Eþ ε ð12:4Þ

When fit to data, there is evidence for statistical interaction if the estimate of the

regression estimate β̂5 is significantly different from zero.

12.2.3 Dichotomous Environmental Variable

Alternatively, if the E is dichotomous, the sample can be split into two strata, one

with E¼ 1 and another with E¼ 0. The main-effects regression models, in which

only the association between G and the outcome is considered, are assessed within

strata of the environmental variable.

12 Gene-Environment Interaction: Methods and Examples in Type 2 Diabetes and. . . 263



For logistic regression:

logðodds of T2DÞ ¼ βE1

0 þ β1SEXþ β2AGEþ βE¼1
3 G

logðodds of T2DÞ ¼ βE2

0 þ β1SEXþ β2AGEþ βE¼0
3 G

ð12:5Þ

For linear regression:

Y ¼ βE1

0 þ β1SEXþ β2AGE þ βE¼1
3 Gþ ε

Y ¼ βE2

0 þ β1SEXþ β2AGE þ βE¼0
3 Gþ ε

ð12:6Þ

Here, statistical interaction is present if the estimate β̂
E¼1

3 differs significantly from

the estimate β̂
E¼0

3 (Aschard et al. 2010).

The interpretation of interaction for linear regression is in terms of the different

slopes of the relationship between G and Y for different values of E, when E is a

continuous measure, or different strata of E, when it is dichotomous (see Fig. 12.1).

12.3 Genome-Wide Interaction Tests

12.3.1 Screening for Interaction and “Case-Only” Tests

Often genome-wide main-effects analyses are performed prior to interaction studies

being undertaken. This approach runs the risk of type II error (the failure to reject a

false null hypothesis), as genetic variants with strong environmental interactions

may have weak overall main effects and greater heterogeneity in main-effects

testing, hindering their detection by main-effects screens. One proposed method

studying gene-environment interaction while reducing the number of interaction

tests performed was to choose a threshold P0 (e.g., 0.05 or 0.01) and only investi-

gate the interaction model (testing only the interaction term) on those genome-wide

variants with a main-effects P-value less than P0 (Kooperberg and LeBlanc 2008).

Another statistical test for interaction is the case-only test for gene-environment

interaction (Piegorsch et al. 1994), which tests for an association between the

environmental exposure (E) and the genetic variant (G) in a sample of “cases,”

people with T2D, for example. Under the assumption that the genetic variable is not

associated with the environmental variable, the estimated odds ratio, ORE, from this

model is mathematically identical to the interaction odds ratio ORG¼1,E¼1 from

formula (12.2). Although a large increase in statistical power is observed with the

case-only test (Yang et al. 1997), there is a strong assumption that G is independent

of E in the overall population. The case-only method and other methods that

leverage the G and E independence assumption can exhibit both an increase in

type I error (the false-positive rate) and a decrease in statistical power

(Wu et al. 2013; Gauderman et al. 2013). Several methods that use the case-only

test, but retain statistical power when the G-E independence assumption is violated,
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have been proposed. These include screening methods (Murcray et al. 2009, 2011)

and “cocktail” methods (Mukherjee et al. 2012; Hsu et al. 2012) that combine the

case–control test for interaction with case-only methods by using screening or

model averaging (Mukherjee et al. 2008; Li and Conti 2009) approaches. Another

method proposed for testing for interactions include a screening method that jointly

assess the significance of the environment-gene association (as in the case-only

test) and the disease-gene association in the screening step (Gauderman et al. 2013).

12.3.2 Joint Test of Main and Interaction Effects

The joint test of marginal G and interaction effects was introduced as a flexible test

for genome-wide discovery of genetic associations when the underlying interaction

model is suspected but unknown (Kraft et al. 2007). A statistical test is constructed

to test if either or both of the genetic terms in the interaction model are significantly

different from zero (H0 : β3 ¼ β5 ¼ 0). The statistic can be constructed using a

likelihood ratio test or Wald test; it follows a 2 degree-of-freedom chi-square

distribution and remains valid when the gene-environment independence assump-

tion is violated. Over a range of models, the joint test has comparable or better

power than the interaction or case-only test, making it an attractive approach for

genome-wide analysis, as only one statistical model needs to be applied to the

genetic data.

12.3.3 Meta-Analysis Methods

Meta-analysis has become the de facto standard for performing genetic discovery

analyses when the genetic effects are too small for detection with individual

cohorts. Most common genetic discoveries were possible only when consortia

were formed to conduct these meta-analysis (Prokopenko et al. 2008; Dupuis

et al. 2010; Voight et al. 2010). In order to detect genetic interactions, much larger

samples are required than that needed to detect comparable main effects (Aschard

et al. 2010). One recent efficient and powerful meta-analysis method for testing the

interaction effect across multiple studies has been proposed (Li et al. 2014). This

method uses summary statistics from the individual studies (as in other meta-

analysis methods) and a meta-regression approach to adaptively estimate the

gene-environment interaction effect.

The joint test has been extended to a meta-analysis framework (Aschard

et al. 2010; Manning et al. 2011). The joint meta-analysis, or JMA, is a meta-

analysis method that allows individual cohorts to submit regression statistics from

the interaction model: Y ¼ β0 þ β1SEXþ β2AGE þ β3Gþ β4Eþ β5G� Eþ ε.

The statistics that need to be submitted for meta-analysis are the estimates of β̂4
and β̂5, the robust standard error and robust covariance of these estimates. The
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method is implemented in a modified version of the METAL software (Willer

et al. 2010), available from the corresponding authors of the JMA paper (Manning

et al. 2011), which produces summarized regression estimates of β3 and β5 and a

2 degree-of-freedom chi-square test of significance.

If the environmental variable is dichotomous, a simplified version of the joint

test can be applied using a score test approach (Aschard et al. 2010). Regressions

are performed in the stratum-specific main-effects models and the regression

estimates of βE¼1
3 and βE¼0

3 are meta-analyzed using a standard inverse variance

approach (de Bakker et al. 2008; Zeggini and Ioannidis 2009). The joint test,

constructed with a sum of the fixed-effects tests for βE¼1
3 ¼ 0 and βE¼0

3 ¼ 0, follows

a chi-square distribution with 2 degrees-of-freedom.

12.3.4 Statistical Issues and Best Practices

Statistical tests for interaction can be dependent on the trait scale—the interactions

can be present in one scale (after a log-transformation, for example) and

undetectable if modeled on another scale. Issues of environmental exposure and

departures from the gene-environment independence assumption have been

recently discussed (Lindstr€om et al. 2009; Cornelis et al. 2012). Generally, the

joint test performs well in the presence of environmental misspecification, a

problem that can be somewhat controlled for through the use of robust standard

error estimates (Cornelis et al. 2012). Furthermore, the use of robust standard error

estimates corrects an issue of apparent QQ-plot inflation, from violations of

assumptions such as linearity and homoscedasticity between Y and E, observed
when comparing the P-values for a test of β5, to those from the expected P-value
distribution (Voorman et al. 2011).

Finally, a recent paper discusses the implication of confounding on the interac-

tion term in the interaction model (12.2) (Keller 2014). The G�E term will be

biased if either (a) a covariate (C) is associated with the SNP and the relationship

between E and Y differs according to C (βC�E 6¼ 0) or (b) C is associated with E and

the relationship between G and Y differs according to C (βC�G 6¼ 0). This implies

that if either of these relationships holds, then the interaction terms βC�E or

βC� SNP should be included in the model for each covariate considered. These

models should be considered on a case-by-case basis, depending on the outcome,

environmental variable, and whether or not the additional covariates could be

independently associated with the SNP or be candidates for G�E interaction.
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12.4 Illustrating Examples

12.4.1 PPARG

Of the candidate gene associations previously described, one of the early confirmed

genetic associations with T2D was the Pro12Ala polymorphism in the PPARG gene

(Altshuler et al. 2000; McCarthy 2010). Replication of this association was not

universal, with several studies confirming the association and other studies failing

to replicate it (see Ludovico et al. for a comprehensive citation list of the PPARG
studies and Gouda et al. for a comprehensive review). Among the first attempts to

explain this heterogeneity of effects, some groups found that along with increasing

the risk for diabetes, the Pro121 allele also decreased insulin sensitivity, possibly

lowered BMI, and was associated with increased adipose tissue formation (Roden

et al. 1996; Kubota et al. 1999; Haag and Dippenaar 2005; Cecil et al. 2006).

In an analysis of “time to onset of diabetes” in the Diabetes Prevention Program,

a significant gene-environment interaction was found between the Pro12Ala variant

and obesity traits (Florez et al. 2007). Self-reported ethnicity was considered as an

additional variable in a test for potential interaction but was not found to be

significant. The Pro121 carriers progressed more quickly to diabetes (HR, 1.24;

95 % CI, 0.99–1.57; P¼ 0.07), and in models with P121Q-adiposity interactions

with BMI (interaction P¼ 0.03) and waist circumference (interaction P¼ 0.002),

the incidence of diabetes increased for higher mean BMI levels, showing that the

protective effects of the alanine allele were attenuated at higher BMI levels.

A large meta-analysis (N¼ 42,910) was conducted based on 41 published stud-

ies and 2 unpublished studies to determine possible sources of the effect heteroge-

neity in the association of PPARG Pro121Ala with T2D (Ludovico et al. 2007). The

association was confirmed (Ala12 OR¼ 0.81, P¼ 0.005), and population-specific

differences in the reduced risk of T2D due to the Ala12 variant were also reported:

the odds ratio was 0.65 in the Asian subgroup, 0.82 in the North American

subgroup, and 0.85 in the European subgroup. Although the authors describe that

the difference in the Asian subgroup could be due to BMI (48 % of the heteroge-

neity was explained by the BMI in the control groups), different population-specific

genetic backgrounds were stated as a more likely cause for the heterogeneity

observed in the European and North American studies.

In a subsequent meta-analysis, of 60 studies with up to 32,849 type 2 diabetes

cases and 47,456 controls, the estimated odds ratio for the 121Ala allele was 0.86

(95 % CI: 0.91–0.90) and 0.85 (CI: 0.82–0.88) for random-effects and fixed-effects

meta-analyses, respectively (Gouda et al. 2010). The authors report a moderate

degree of inconsistency among the studies contributing to this meta-analysis

(I2¼ 37 %, 95 % CI 9–54; P¼ 0.003). Ethnicity accounted for some of the

heterogeneity (14 % of the between-study variance), but mean BMI levels among

the T2D cases in the studies varied widely: although not significant, a trend was

observed such that the protective effect of the variant was strongest (the odds ratio

was lowest) for studies with mean case BMI< 25 kg/m2, and the protective effect
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was attenuated (the odds ratio increased toward the null) as the mean BMI in cases

increased.

12.4.2 BMI Interactions with Fasting Insulin

Initial publications from the Meta-Analysis of Glucose and Insulin-related traits

Consortium (MAGIC) described 16 loci associated with fasting glucose levels

compared to two loci associated with fasting insulin levels (Prokopenko

et al. 2008; Dupuis et al. 2010), indicating differences in the genetic architectures

for beta-cell dysfunction and insulin resistance. The marginal models investigated

by MAGIC included minimal adjustments for age and sex. Subsequently, two

efforts were undertaken to investigate the role of obesity in the variation of

quantitative glycemic traits: (1) interaction models on a subset of MAGIC cohorts

for which obesity measures were available (Manning et al. 2012) and (2) meta-

analyses of main-effects models adjusting for obesity measures including larger

sample sizes with the inclusion of Metabochip genotype data (Scott et al. 2012) (see

Chap. 3).

For the first analysis, two terms were added to models for fasting glucose and

log-transformed fasting insulin: the adjustment for body mass index (BMI) and the

interaction between a genetic variant and BMI.

Fasting Glucose ¼ β0 þ β1SEXþ β2AGEþ β3Gþ β4BMIþ β5G� BMIþ ε

logðFasting InsulinÞ ¼ β0 þ β1SEXþ β2AGE þ β3Gþ β4BMIþ β5G� BMIþ ε

The joint meta-analysis was applied in a genome-wide analysis of 2.4 million single

nucleotide polymorphisms (SNPs) and six and seven additional loci were found to

be associated with fasting insulin and fasting glucose, respectively (Manning

et al. 2012), with one locus,PPP1R3B, showing association with both fasting insulin
and fasting glucose levels. Of these loci, one fasting insulin association (rs7607980

in the COBLL1/GRB14 locus, joint P¼ 4.3� 10�20) and three fasting glucose loci

displayed a greater degree of significance in the joint test compared to a model that

only included an adjustment for BMI. All loci were reported as significant in the

second analysis, demonstrating that either larger sample sizes or adjustment for BMI

was necessary for their discovery (Scott et al. 2012). Although a number of the loci

reported in Manning et al. showed differential evidence for significance and effect

sizes in the high BMI group compared to the low BMI group (as defined by a BMI

cutoff of 28 kg/m2), only rs7607980 showed evidence for an interaction effect when

a meta-analysis of the interaction term was performed (P¼ 0.0002). The additive

main effect of rs7607980 on log-transformed fasting insulin levels was 0.02 (with

standard error 0.0033), similar to the BMI-adjusted main effect of 0.028 (0.0033). In

the subset with high BMI, the effect was 0.041 (0.0064) with P¼ 3.0� 10�10, while

in the lower BMI stratum, the effect was weaker and less significant at 0.0175
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(0.0041) with P¼ 1.8� 10�5. The stratum-specific effect was consistent with the

jointly estimated effect from the interaction model (Fig. 12.2). These findings

support the sensible assumption that taking adiposity into account can augment

discovery of genetic variants that underlie insulin resistance.

12.4.3 FTO: Type 2 Diabetes, Body Mass Index,
and Interaction with Physical Activity

In 2007, the Wellcome Trust Case Control Consortium (WCCC) performed a

genome-wide association study for type 2 diabetes and described a strong increase

of risk for T2D associated with SNPs in the first intron of the FTO gene (rs9939609,

OR¼ 1.27; P¼ 5� 10�8 in 1,924 T2D cases and 2,938 controls) which was repli-

cated in an independent sample (OR¼ 1.15; P¼ 9� 10�6 in 3,757 T2D cases and

5,346 controls) (Frayling et al. 2007). A strong association with BMI was also

observed (P¼ 3� 10�35 in 30,081 individuals with BMI values). As a classic dem-

onstration of confounding, the T2D association was abolished in subsequent analyses

that adjusted for BMI as a covariate in the regression procedure (OR¼ 1.03;

P¼ 0.44). FTO is now recognized as a locus harboring strong associations with

obesity (Frayling et al. 2007; Scuteri et al. 2007)with associationswith T2Dappearing

because the typical T2D cases are more obese than typical nondiabetic controls.

An analysis was performed in the Danish Inter99 cohort exploring SNP by

physical activity interactions at the FTO locus (Andreasen et al. 2008). First the

association between the FTO SNP rs9939609 and BMI was established: the AA

genotype group had 1.1 kg/m2 higher BMI levels on average compared to the TT

Fig. 12.2 The genetic effect estimate of rs7607980 from the COBLL1/GRB14 locus accounting

for the interaction with BMI. The additive genetic effect of rs7607980 changes for different

BMI levels. (a) For the joint meta-analysis, where BMI is a continuous exposure variable,

the estimate (solid black line) and 95 % confidence interval (gray curves), the estimate is

β̂ SNP ¼ �0:06þ 0:003� BMI. (b) The studies were dichotomized into high- and low-BMI groups

and the estimate of the genetic effect was obtained within each subgroup. The additive genetic effect

is displayed with the circles, with the 95 % confidence interval of the estimate shown by the vertical

lines. In the subset with high BMI, β̂ SNP ¼ 0:04, and in the subset with the lower BMI, β̂ SNP ¼ 0:02
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genotype group, and those in the AT genotype had BMI levels 0.3 kg/m2 higher

than the TT genotype group (additive effect P¼ 1� 10�9 with N¼ 5,722). Physical

activity status was assessed by questionnaire and individuals were classified into

three groups: physically inactive (N¼ 1,914), lightly or moderately physically

active (N¼ 3,224), and very physically active (N¼ 416). A statistically significant

interaction was observed (P¼ 0.007). The genetic effect between rs9939609 and

BMI was weaker in the individuals with the highest physical activity: the average

BMI in the AA genotype group was 0.47 kg/m2 (not significant) higher compared to

the TT group. This association was stronger in the physically inactive group: here,

the average BMI in the AA genotype group was 1.95 kg/m2 higher than the TT

group, a much larger increase than 0.38 kg/m2 difference observed between the AT

group and the TT group.

A careful exploration of this interaction effect was reported in a meta-analysis of

218,166 adults (Kilpeläinen et al. 2011). The physical activity interaction was

replicated (P¼ 0.005), although the effect was not as strong as originally reported,

an example of a possible winner’s curse. In all individuals, the additive effect of the
BMI-increasing allele (A) of rs9939609 was 0.36 kg/m2 (P¼ 1.8� 10�75). In the

two physical activity strata applied across the study samples, the additive effect of

the BMI-increasing allele was 0.46 kg/m2 in the inactive group (P¼ 3.7� 10�23,

N¼ 54,611) and 0.32 kg/m2 in the active group (P¼ 4.5� 10�69, N¼ 163,555).

Interestingly, heterogeneity was observed (I2¼ 36 %), mainly from cohorts of

European origin. When the North American cohorts were analyzed on their own,

the interaction was much stronger (P¼ 1.6� 10�9): the additive effects were

0.82 kg/m2 (P¼ 2.7� 10�21, N¼ 9,438) and 0.34 kg/m2 (P¼ 6.1� 10�12,

N¼ 38,500) in the inactive and active groups, respectively, with no measurable

heterogeneity (I2¼ 0 %). The authors of this study carefully consider sources of

bias and confounding in this association, and although they note that this result has

importance for public health (being physically active can further alleviate a genetic

predisposition toward obesity beyond the obvious health benefits), they further note

that the changes in the genetic association due to physical activity could be

confounded by correlated lifestyle and environmental factors. The observed inter-

action does not imply causation—as in other studies of genetic effects, the appro-

priate epidemiological interpretations apply.

12.5 Summary

In this chapter, we have introduced the concept of statistical interaction by exposure

variables in the study of the genetic determinants of T2D and related traits. The

basic methodology of gene-environment interaction studies was presented along

with several extensions that have been recently proposed. Finally, three relevant

examples of gene-environment interaction in the literature were described.

Of the greatest importance for future studies of gene-lifestyle interaction are the

following. First, we suggest a careful consideration of the epidemiological design
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and hypotheses to be tested in the study—if the harmonization of exposure vari-

ables and outcomes increases noise and heterogeneity in your study data, then the

potential gain in power from larger sample sizes might be obliterated. Second,

appropriate statistical tests must be applied—if there is a reasonable expectation

that there is a genetic basis for the exposure variable, then methods that depend

upon gene-exposure independence may not be ideal.

Studies that account for differences in genetic effects due to environmental

exposures will continue to be important as genetic association studies query

low-frequency and rare genetic variants. Testing for interaction, accounting for

the variability in the outcome due to the exposure (by using it as a covariate) or

looking for genetic associations in distinct subgroups (revealing masking effects),

may reveal additional genetic susceptibility loci that could illuminate biological

pathways in the pathophysiology of type 2 diabetes.
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Chapter 13

The Gut Microbiota in Type 2 Diabetes

Trine Nielsen, Kristine H. Allin, and Oluf Pedersen

Abstract The exploration of the gut microbiota has intensified within the past

decade with the introduction of cultivation-independent methods. By investigation

of the gut bacterial genes, our understanding of the compositional and functional

capability of the gut microbiome has increased. It is now widely recognized that the

gut microbiota has profound effect on host metabolism and recently changes in the

gut microbiota have been associated with type 2 diabetes. Animal models and

human studies have linked changes in the gut microbiota to the induction of

low-grade inflammation, altered immune response, and changes in lipid and glu-

cose metabolism. Several factors have been identified that might affect the healthy

microbiota, potentially inducing a dysbiotic microbiota associated with a disease

state. This increased understanding of the gut microbiota might potentially contrib-

ute to targeted intervention strategies to prevent or treat type 2 diabetes.

13.1 Introduction to the Gut Microbiota

The study of microbes has intrigued scientists for centuries. With the introduction

of cultivation-independent methods, the focus has expanded from investigations of

pathogenic organisms to a deeper interest in the symbiotic, nonpathogenic, i.e.,

commensal, microbes and their interaction with their human host. By far, the largest

concentrations of microbes are located in the human distal gut, where the vast

majority is of bacterial origin. The gutmicrobiota, which is the collective microbial

community in the gut, exhibits profound effects on human health. The gut

microbiota can be regarded as a microbial organ within the human body, and

while the host provides for an appropriate environment, the gut microbes execute

pertinent functions that the host is unable to perform by itself. These functions

include production of short chain fatty acids (SCFA) by fermentation of otherwise

indigestible polysaccharides from the diet and synthesis and absorption of vitamins
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such as B and K vitamins. Importantly, the gut microbiota also plays a significant

role in the maturation and adaptation of the immune system and in the defense

against pathogens, in regulation of intestinal hormone secretion, and in gastroin-

testinal nerve activity.

The gut microbiota can be described in terms of its composition (which bacteria

are present?) and in terms of its functional capability (what functions do the bacteria

exert?). To describe the composition of the gut microbiota, microbial DNA is

usually extracted from fecal samples, as these generally are considered to be

representative of the distal colon microbiota and sequenced either in a targeted or

untargeted manner. Describing the functional capability of the gut microbiota is

typically done by applying whole-genome shotgun sequencing which allows char-

acterization of the collective genome of the gut microbiota—the microbiome. The
human gut microbiota is estimated to consist of approximately 1000 prevalent

bacterial species, and each individual harbors at least 160 such species (Qin

et al. 2010). It has been suggested that a core microbiome exists as gut bacterial

species seem to be shared among individuals (Qin et al. 2010). Yet, based on

current evidence, this “core microbiome” probably represents a core of common

functions necessary for correct functioning of the gut (Tap et al. 2009), rather than a

core of common organisms. The concept of grouping individuals based on their gut

bacterial composition was elaborated with the introduction of enterotypes

(Arumugam et al. 2011). The bacterial composition of the three identified

enterotypes is driven by the genera Bacteroides, Prevotella, or Ruminococcus and
they seem to be independent of age, body mass index, and nationality. Not all

studies have been able to reproduce these three clusters but suggest gradients of

genera (Zupancic et al. 2012; Claesson et al. 2011), and future research will reveal

which functions clusters or gradients of bacteria might possess.

13.2 Assessment of the Gut Microbiota

Historically, the microbial community was studied by culture-based methods where

the presence of certain microorganisms was identified by their growth on special-

ized media. However, it has proven difficult to culture the majority of the com-

mensal microorganisms and to overcome this limitation, culture-independent

methods were developed. Whereas culture-dependent methods are based on the

culturing of single microorganisms, culture-independent methods are based on

studying DNA extracted collectively from the microbial community present in a

sample. Today, DNA-based studies of the gut microbial community are dominated

by two methods: targeted 16S rRNA gene sequencing focusing on the composition

and diversity of the microbiota and whole-genome shotgun sequencing allowing in

addition for a deeper evaluation of the functional capability of the gut microbiota

(Fig. 13.1).

16S rRNA gene sequencing includes targeted amplification and subsequent

next-generation sequencing of phylogenetically informative marker sequences of
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microbial DNA (Kuczynski et al. 2012). Prokaryotic ribosomes contain three types

of rRNA: 23S, 16S, and 5S. The 16S rRNA gene sequence is about 1550 base pair

long and is composed of eight highly conserved regions and nine hypervariable

regions that differ across bacterial taxa. Universal primers complementary to the

conserved regions are used to amplify one or more of the variable regions, and the

sequences of the variable regions are used to classify bacteria, typically at the

family or genus levels (Kuczynski et al. 2012). From 16S data the number of

different taxa present in a sample and their relative abundance can be estimated

by comparisons with 16S rRNA sequence databases or by using software packages

to cluster highly similar sequences into operational taxonomic units (OTUs)

(Weinstock 2012). Thus, targeted 16S rRNA gene sequencing can describe the

bacterial community in terms of which taxa/OTUs are present, their relative

abundance, and their phylogenetic relationships, but when it comes to genetic and

functional information, the 16S method as of today falls short. Another approach

which has been used to describe the bacterial community based on 16S rRNA is

phylogenetic oligonucleotide microarrays (phylochips) by which a large number of
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Fig. 13.1 16S rRNA gene sequencing and whole-genome shotgun sequencing. Left panel:
targeted 16S rRNA gene amplification using specific PCR primers followed by next-generation

sequencing to reveal the microbial composition. Right panel: untargeted next-generation sequenc-
ing of community DNA to reveal the functional potential of the microbiota

Reprinted with permission from Paul D. Cotter rights holder of: Clarke SF et al.: The gut

microbiota and its relationship to diet and obesity. Gut microbes 3(3), 2012:186–202
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pre-specified microbes can be identified at high throughput (Rajilic-Stojanovic

et al. 2009).

To describe the genetic content and the functional potential of a community,

whole-genome shotgun sequencing must be applied. In contrast to targeted

16S rRNA gene sequencing, whole-genome shotgun sequencing or metagenomic

sequencing involves directly next-generation sequencing of community DNA with-

out amplification of certain regions of the DNA. This method is far more expensive

than targeted sequencing but may provide a less biased and a high-resolution view

of the bacterial composition compared to targeted sequencing of 16S marker genes,

which depends on the choice of primers (Kuczynski et al. 2012). Moreover, given

its high level of resolution, it enables a complete description of the genes present

and consequently the functional capabilities of the community as well as identifi-

cation of single-nucleotide polymorphisms and other variant sequences (Morgan

and Huttenhower 2012). In order to identify which organisms and genes are present

and their relative abundances, shotgun reads are compared to bacterial reference

genomes and gene catalogues whereas comparisons with functional databases

enable prediction of pathways (Weinstock 2012). Although metagenomic sequenc-

ing is an extremely powerful tool to describe in detail the composition and the

functional capabilities of the gut microbiota, it creates an overwhelming amount of

data to be analyzed. In 2010 the first catalogue of the distal gut microbiome was

released and 3.3 million genes were identified (Qin et al. 2010) based upon

discoveries in Danish and Spanish individuals. This is more than 100 times the

number of genes in the human genome. The genes were estimated to belong to

~1000 different abundant bacterial species, where each individual was believed to

harbor at least 160 of these abundant species, many of which were believed to be

shared among individuals. As more samples are sequenced at high sequencing

depth, the number of identified genes increases (The Human Microbiome Project

2012; Qin et al. 2012), and current gut microbiome reference catalogues have

identified about 10 million microbial genes and are believed to cover the majority

of abundant microbial genes shared among individuals (Li et al. 2014; Karlsson

et al. 2014). As a considerable number of the genes can’t be mapped to taxonom-

ically known bacteria, methods have been developed to enable grouping of genes

that vary in abundance in a similar manner across a dataset into gene clusters. The

identified groups or clusters of certain sizes, also termed metagenomic clusters or

units, are believed to represent yet taxonomically unknown bacterial species,

whereas other clusters might represent bacteriophages (Karlsson et al. 2013; Qin

et al. 2012; Nielsen et al. 2014).

Before undertaking expensive sequencing and complex quantitative bioinfor-

matics of the gut microbiome, it is very important to consider how the biological

samples are best obtained, how they are best stored, and which method is the

optimal one for microbial DNA extraction. All three factors may have major impact

on whether the extracted basis material DNA accurately reflects the microbial

diversity in the samples (Yuan et al. 2012). Hopefully, future exhaustive studies

will relate to this issue and consensus standards will be agreed upon and generally

applied internationally within the research field. Additionally, in the near future,
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more microbiota studies will likely include data on microbial transcriptomics and

proteomics as well as information on the metabolic activity of the microbial

community. Lastly, more emphasis will also be put on the study of human viruses,

bacteriophages, and fungi which are also crucial members of the gut microbial

community.

13.3 Factors Influencing the Gut Microbiota

The human fetus is believed to be colonized from birth by microbes from the

mother and the surroundings. Thus, the human gut is presumably sterile at the

time of birth, and colonization depends on the mode of delivery and feeding and is

narrow and highly changeable until weaning. Along with the introduction of solid

food, the child’s microbiota changes over the first 4 years to achieve the character-

istics of the adult microbiota, which remains relatively stable and rich throughout

adulthood until immune function-related changes of gut microbiota occur at

advanced age (Spor et al. 2011). Thus, despite high interindividual variation, the

composition of the gut microbiota of an individual remains relatively stable over

time in the absence of perturbation (Dethlefsen and Relman 2011). Host genotype,

dietary factors, smoking, antibiotics and other medications, age, and probably

several additional yet unidentified factors all seem to influence the composition

of the gut microbiota. Of these, diet and antibiotics are to date the most investigated

factors that seem to exert profound effects on host metabolism via changes in gut

microbiota.

Mice studies have clearly demonstrated the dynamics of the gut microbiota in

response to changes in diet (Turnbaugh et al. 2009b; Hildebrandt et al. 2009; de Wit

et al. 2012), yet there are still only few reports on the effect of long-term dietary

habits on the gut microbiota in humans. The composition and functional capabil-

ities of the human gut microbiota seem to adapt to the diet consumed. Dietary habits

enriched in plants products are reflected by an increased abundance of gut bacteria

known to degrade plant polysaccharides (De Filippo et al. 2010), whereas, a diet

rich in protein and fat is reflected by increased activity of gut bacterial pathways

needed for digestion of these macronutrients (Yatsunenko et al. 2012). Recently, it

was demonstrated that the human gut microbiota can adapt to changes in dietary

patterns within 2–4 days, as illustrated by the consumption of a diet entirely

composed of either plant or animal products for 4 days (David et al. 2014). On

the other hand, the enterotypes seemed to be resistant to a 10-day controlled dietary

intervention with either high fat or high fiber, but was found to be associated with

differences in long-term dietary patterns (Wu et al. 2011). Finally, there is evidence

that a diet rich in fibers and low in fat is associated with a more diverse gut

microbiota compared to a diet rich in fat and low in fiber and that a permanent

change in diet could lead to long-term effects on the composition of the gut

microbiota (Claesson et al. 2012).
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Current speculations on whether the introduction of antibiotics in the early

twentieth century may contribute to the obesity epidemic are supported by a few,

but large epidemiological studies showing that exposure to antibiotics early in life

increases the risk of being overweight at 7 years old (Ajslev et al. 2011; Trasande

et al. 2012; Bailey et al. 2014; Murphy et al. 2014). Other (nonrandomized) studies

have also observed increased adiposity in humans after antibiotic treatment

(Francois et al. 2011; Thuny et al. 2010). In industrial farming subtherapeutic

doses of antibiotics have been given to farm animals to spur growth for decades

and experiments in mice given low doses of antibiotics increased total fat mass and

bone mineral density and shifted the composition of the gut microbiota (Cho

et al. 2012). An increased cecal content of SCFA and lower caloric output in

feces in the mice treated with antibiotics, despite similar caloric intake as the

non-treated mice, support previous suggestions of an increased energy harvest by

microbiota leading to obesity (Turnbaugh et al. 2006; Cho et al. 2012). In contrast

to these observations, other mice studies using germ-free or conventionalized mice

have indicated improved glucose tolerance independent of weight changes, lower

levels of circulating lipopolysaccharide (LPS), as well as a lower bacterial count,

following antibiotic treatment as indications of an improved metabolic state

(Carvalho et al. 2012; Membrez et al. 2008). While the possible role of antibiotics

in development of metabolic diseases needs further elucidation, present studies

indicate that antibiotics have not only short- but also long-term effect on the

diversity and/or composition of the gut microbiota (Jernberg et al. 2007) and

consequently a potential association between antibiotics and development of met-

abolic diseases may partly be mediated through perturbations of the gut microbiota.

13.4 Genotype-Microbiota Interaction

It is likely that variation in host genes influences the composition of the gut

microbiota as evidenced in mice knockout models and twin studies in humans.

On the other hand, the microbiota is expected to regulate host gene transcription

through epigenetic modifications. So far the evidence to support a contribution of

host genetics to the diversity of the microbial community has been limited, mainly

due to low numbers of investigated samples in available datasets, but data are

slowly emerging. Monozygotic twins have a higher degree of similarity in their gut

microbiota than dizygotic twins, and the microbiota of family members is more

similar than unrelated subjects (Stewart et al. 2005; Palmer et al. 2007; Zoetendal

2001; Turnbaugh et al. 2009a; Tims et al. 2013). Just recently, the first study

attempting to estimate the heritability of the human gut microbiota was published,

supporting a role of host genetics controlling the gut microbiota. Heritability

estimates of 0.40 of certain taxa were reported, whereas other taxa seemed to be

more environmentally determined (Goodrich et al. 2014). Interestingly, based on

their finding in twins, the authors demonstrated that the most heritable family

of bacteria had an impact on host metabolism and was associated with a lean
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phenotype. Few earlier studies have taken a more traditional candidate gene

approach to investigate the genotype-microbiota interaction. Most evidence

comes from knockout mice models, but few studies in humans have found the

investigated variant to be associated with a shift in the bacterial composition (Spor

et al. 2011). All of these reports support a role of host genetics in determining the

gut microbiota.

A quantitative trait locus (QTL) detection approach has been attempted to

elucidate the effect of host genotype on the features of the gut microbiota in mice

(Benson et al. 2010). The authors found a commonmeasurable core of 64 conserved

taxonomic groups identified in 16S RNA gene sequences from 645 mice. By using

QTL analysis, they searched for taxa that co-segregated with 530 genomic markers

and revealed 13 loci that showed significant linkage with the relative abundance of

the specific taxa. Another study using a similar approach on a different mouse

model could also detect linkage between loci and variation across taxa (McKnite

et al. 2012). Interestingly, loci identified in both studies included genes with

immune function or the potential to affect the gut community structure. Lessons

from the candidate genes studies and genome-wide linkage scans in the search for

susceptibility genes in human metabolism should guide studies of genotype-

microbiota interactions, implying that investigators should aim for statistically

well-powered studies and replication of findings in separate cohorts. Likely,

genome-wide association approaches will also be undertaken to relate variation in

host genotype to variation within the gut microbiota. Considering the gut

microbiota as a phenotypic trait, this approach might be feasible, once the gut

microbiome profiles are available in a large number of individuals probably needed

for these studies.

13.5 The Gut Microbiota in Obesity, Insulin Resistance,

and Type 2 Diabetes

Within the past decade, the focus has been on defining the dysbioticmicrobiota; that

is the altered microbial composition or the altered functional capacity of the

microbiota associated with disease, and less focus has been on defining the healthy

microbiota. However, with the current evidence, it is not possible to tell whether a

dysbiotic state is a cause or consequence—or both—of disease.

Obesity, insulin resistance, and type 2 diabetes have been correlated with an

altered gut microbiota composition. The first studies in this area reported that

obesity was associated with changes in the ratio of the two main phyla in the gut,

Bacteroidetes and Firmicutes, with increased levels of Firmicutes associated with

the obese state. However, some but not all studies have since been able to reproduce

these compositional changes at the phylum level (Furet et al. 2010; Duncan

et al. 2008; Schwiertz et al. 2010; Zhang et al. 2009). Whereas one study has

reported a higher proportion of Actinobacteria in obese individuals (Turnbaugh
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et al. 2009a), other reported an inverse relationship of the Bacteroidetes/Firmicutes

ratio (Schwiertz et al. 2010).

While inconsistent findings at the phylum level have been reported, reduced

bacterial diversity has been associated with obesity (Turnbaugh et al. 2009a).

Reduced diversity has also been associated with inflammatory bowel diseases and

recently also with markers of low-grade inflammation and insulin resistance. In

292 nondiabetic Danish individuals investigated using shotgun sequencing and

quantitative metagenomics, 23 % of the population had low gene richness (a marker

of diversity) and had on average a 40 % lower bacterial gene count than individuals

with sustained bacterial gene count (Le Chatelier et al. 2013). Individuals with low

richness were characterized by low-grade inflammation, insulin resistance,

dyslipidemia, and overall adiposity, which put them at a high metabolic risk of

progression to obesity-related comorbidities.

It has been reported that individuals with type 2 diabetes have an altered

taxonomic composition and functional potential of their gut microbiota compared

to nondiabetic individuals (Larsen et al. 2010; Qin et al. 2012; Graessler et al. 2012;

Furet et al. 2010; Karlsson et al. 2013; Zhang et al. 2013). The largest metagenomic-

based study to date included 368 Chinese individuals and identified a moderate

degree of gut bacterial dysbiosis, with a decline in butyrate-producing bacteria

and an increase in opportunistic bacteria among type 2 diabetes patients

(Qin et al. 2012). However, no difference in diversity between type 2 diabetes

patients and healthy controls was observed. Butyrate-producing bacteria have

been associated with increased insulin sensitivity (Vrieze et al. 2012) and in other

studies with lower levels of markers of low-grade inflammation (Furet et al. 2010)

and are now generally believed to be associated with a healthy gut. A study of

145 Swedish women with normal, impaired, or diabetic glucose regulation also

applying a metagenomics approach found similar, but not identical, compositional

changes associated with type 2 diabetes suggesting ethnic or regional differences in

microbiota characteristics (Karlsson et al. 2013). In this study, the type 2 diabetes-

associated changes in the gut microbiota were used to subgroup 49 women with

impaired glucose regulation into a type 2 diabetes or normal glucose tolerance like

metabolism. This stratification could potentially help to identify the ~ 40 % of

individuals with prediabetes who are at high risk of progression to type 2 diabetes

and hence need careful attention. In both the Swedish and the Chinese study

(Karlsson et al. 2013; Qin et al. 2012), it was possible with few metagenomic

markers (gene clusters) to discriminate between type 2 diabetes patients and

nondiabetic controls with high accuracy corresponding to an area under the curve

of ~ 0.8 in receiver operating characteristic analyses. Such observations may pave

the way for future biomarker developments where few gut microbial signatures with

high accuracy predict risk of diabetes development.

Interestingly, the Swedish study found a few known species to be associated

with metformin treatment, yet the significance of this is unsolved. No information

on the intake of metformin was reported in any of the other studies investigating

type 2 diabetes patients. However, metformin, which is known to have gastrointes-

tinal side effects, may have a substantial impact on the composition of the gut
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microbiota and therefore could seriously confound the reported findings of

type 2 diabetes. In support of this hypothesis, a study of high-fat diet-fed mice

showed that metformin treatment in parallel with its beneficial effects on glucose

metabolism also resulted in an altered composition of the gut microbiota, including

a higher abundance of Akkermansia. Moreover, oral administration of Akkermansia
muciniphila to high-fat diet-fed mice that were not treated with metformin

improved glucose tolerance suggesting a novel mechanism for the glucose-

lowering effect of metformin (Shin et al. 2013). A.muciniphila have in other studies
been reported to correlate with a healthy metabolic phenotype (Everard et al. 2013),

underlining the beneficial properties of this bacteria.

While investigations of the gut microbiota in humans have indicated that a

dysbiotic state is associated with development of metabolic diseases, animal studies

have generated hypotheses of the role of the microbiota in the pathogeneses of

obesity, insulin resistance, and type 2 diabetes. Early studies in mice suggested that

the gut microbiota might function as an environmental factor that could regulate

energy metabolism and affect development of obesity (Backhed et al. 2004). Most

of the evidence came from a series of elegant studies of germ-free and

conventionalized mice, showing that germ-free mice were leaner than the conven-

tional mice and were resistant to diet-induced obesity when introduced to a high-fat

western style diet (Backhed et al. 2004; Rabot et al. 2010). By colonizing germ-free

mice with microbiota from normal mice, the amount of body fat increased and the

insulin sensitivity decreased in the germ-free mice (Backhed et al. 2004).

It was furthermore discovered that obese mice had an altered composition of

their microbiota compared to lean mice, characterized by a higher content of

Firmicutes and fewer Bacteroidetes (Ley et al. 2005). These changes in the

microbiota were associated with an increased capacity for energy harvest from

otherwise indigestible polysaccharides in the diet (Turnbaugh et al. 2006). The

obesity phenotype was shown to be transmissible when lean germ-free mice were

colonized with gut microbiota from the obese mice, suggesting a causal relation for

the microbiota in the pathogenesis of obesity (Turnbaugh et al. 2006). Moreover, it

was discovered that the gut microbiota suppress the secretion of the lipoprotein

lipase inhibitor angiopoietin-like protein 4 (Angptl4), thereby inducing deposition

of triglycerides in adipocytes (Backhed et al. 2004). In addition, inhibition of

Angptl4 in conventionalized mice was associated with de novo hepatic lipogenesis

(Backhed et al. 2007).

The induction of endotoxemia is another widely discussed hypothesis on how

the gut microbiota can promote obesity and obesity-associated low-grade inflam-

mation. LPS is produced in the intestine from Gram-negative bacteria and triggers

secretion of pro-inflammatory cytokines (Wright et al. 1990). Animal models have

shown that a high-fat diet increased the absorption of LPS either through an

increased uptake in chylomicrons or through increased gut epithelium permeability,

and infusion of LPS in mice can induce weight gain, insulin resistance, and

deposition of triglycerides in the liver (Cani et al. 2007). Hence, based on mice

studies, it has been hypothesized that a high-fat diet induces changes in the gut

microbiota in favor of the Gram-negative bacteria, which increases circulating
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levels of LPS through an increased intestinal permeability contributing to

low-grade inflammation, obesity, and type 2 diabetes (Cani et al. 2007, 2008).

The microbiota could modulate the intestinal permeability through a GLP-2 depen-

dent mechanism, as decreased permeability and reduced LPS levels were observed

after an endogenous GLP-2 increase (Cani et al. 2009). However, the exact mech-

anism by which an altered microbiota triggers inflammation is unknown, but there

is evidence of an interaction with the innate immune system. LPS binds to the Toll-

like receptor 4 (TLR4)-CD14 complex, which activates pro-inflammatory pathways

(McGettrick and O’Neill 2010). Toll-like receptors are part of pattern recognition

receptors (PRRs) that activate the innate immune system through recognition of

microbial molecules and are suggested to have a substantial role in the cross talk

between the immune system, inflammation, and metabolism (Burcelin 2012). Other

TLRs like the flagellin receptor TLR5 and the TLR2 have both been reported to be

involved in development of the metabolic syndrome or components of the syn-

drome (Caricilli et al. 2011; Vijay-Kumar et al. 2010). Tlr5-deficient mice have

been shown to exhibit signs of the metabolic syndrome, a feature that was trans-

missible with transplantation of gut microbiota to wild-type mice (Vijay-Kumar

et al. 2010), again suggesting that the microbiota itself may mediate disease. Also

other PRRs, the NOD-like receptors, recognize peptidoglycans from Gram-

negative bacteria, activate pro-inflammatory pathways, and are believed to mediate

immune responses (Burcelin 2012). Finally, a study of gut inflammasomes, which

are multi-protein complexes that recognize microbiota-associated molecular pat-

terns and are involved in the pro-inflammatory IL-1β and IL-18 pathways, revealed
a connection between altered gut microbiota and development of nonalcoholic fatty

liver disease (NAFLD), which is often seen in obese individuals, probably through

altered gut permeability (Henao-Mejia et al. 2012). The gut microbiota has

also been reported to influence the circulating levels of the incretins GLP-1 and

GIP—important hormones regulating the postprandial insulin response (Wichmann

et al. 2013; Lin et al. 2012), most likely through the production of SCFA.

SFCA, especially butyrate, are recognized for their beneficial effects on host

metabolism and have just recently been shown to play a role in the activation of

intestinal gluconeogenesis (De Vadder et al. 2014). Hence, SCFA along with their

G-protein-coupled receptors GPR41 and GPR43 are currently being intensively

investigated, as they offer novel targets not only for modulation of the gut

microbiota toward a healthy state but also for treatment or prevention of obesity

and type 2 diabetes.

Bile acids have also been described as signaling molecules in the interplay

between gut microbiota and glucose metabolism in both mouse models and

human intervention studies (Vrieze et al. 2014; Ryan et al. 2014). The gut bacteria

mediate the conversion of primary bile acids to secondary bile acids, and when the

balance of the gut microbiota is disrupted, changes in bile acids have been

observed. This was reported after one week of vancomycin treatment, where an

increase in primary bile acids was reported along with a decrease in insulin

sensitivity (Vrieze et al. 2014). In a mouse model of gastric bypass, here using a

vertical sleeve model, the improvement in glucose metabolism co-occurred with
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changes in bile acid concentrations. Furthermore, it was shown that the ability to

lose weight and improve glucose homeostasis was dependent on the bile acid

receptor FXR (Ryan et al. 2014).

While convincing pieces of evidence for a causal role of gut microbiota in

disease development are present in animal studies, only few human studies have

addressed this issue. Based on the concept of stool transplantation, a Dutch study

investigated whether fecal transplantation could be used to correct the disturbances

observed in metabolic disease. This study investigated 18 insulin-resistant men that

were randomized to receive either autologous or allogeneic gut microbiota infusion

from healthy, lean donors (Vrieze et al. 2012). Insulin sensitivity as estimated from

hyperinsulinemic, euglycemic clamp studies was improved 6 weeks after transfu-

sion from lean donors, along with increased diversity of the microbiota. Despite the

lack of reported long-term effects on insulin sensitivity, the concept proposes the

most interesting target for the future and fecal matter transplantation has with great

success been implemented in the treatment for recurrent Clostridium difficile
infection (van Nood et al. 2013).

From the current evidence, it may be hypothesized that an adverse combination

of host genetic susceptibility, lifestyle, and environment in a broad sense may

trigger a change in the gut microbiota from a healthy microbiota to an unhealthy

perturbed microbiota which may result in increased energy extraction from dietary

fibers, a leaky mucosa, increased gut permeability with absorption of macromole-

cules from intestinal content triggering systemic immune alterations, altered lipid

metabolism, and low-grade inflammation leading to insulin resistance and eventu-

ally contributing to type 2 diabetes pathogenesis (Fig. 13.2) (de Vos and Nieuwdorp

2013).

To fully understand whether the gut microbiota is a cause or consequence—or

both—of type 2 diabetes, well-designed prospective studies of humans are needed.

A possibility could be to follow carefully phenotyped prediabetic individuals in

order to identify the dysbiotic microbiota associated with the progression to

type 2 diabetes. Prospective studies could optimally be followed up by mechanistic

studies in suitable mice models. By inoculating mice with human gut microbiota

from prediabetic individuals who rapidly have progressed to overt type 2 diabetes

and with gut microbiota from prediabetics who have regressed to normal glucose

tolerance during follow-up, we could possible solve some of the current discussion

of whether altered gut microbiota by itself can mediate dysglycemia in genetically

susceptible individuals.

13.6 Perspectives

The first landmark studies of quantitative metagenomics published within the area

of metabolic research have contributed significant knowledge both in the context of

biological understanding of the role of the gut microbiota in metabolic disease and

in the context of data handling and analyses. From the latter point of view,
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metagenomic studies have revealed that the majority of sequenced microbial genes

cannot be mapped to known taxonomic or functional references, and current efforts

to generate new bacterial genome sequences will most certainly facilitate subse-

quent taxonomic and functional annotation for future studies. Concurrent develop-

ment and improvement of bioinformatic tools are needed to reduce and comprehend

the impressive amount of data produced with deep shotgun sequencing. Finally,

international efforts to implement standardized approaches for sample processing

and extraction of DNA and RNA are highly needed to enable reliable comparisons

across studies.

While convincing evidence suggests that a dysbiotic state of the gut microbiota

composition is associated with metabolic disease, we do not yet understand the
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Fig. 13.2 Potential mechanisms underlying an association between the gut microbiota and

type 2 diabetes. The composition of the gut microbiota is influenced by host genetics

(single-nucleotide polymorphisms, copy-number variations, and mutations), diet (intake of fat,

carbohydrates, fruit, and vegetables), age, and environmental factors such as mode of birth

(vaginal or caesarean section) and exposure to antibiotics, especially in early life. An adverse gut

microbiota may result in elevated circulating levels of pro-inflammatory cytokines and lipo-

polysaccharide originating from Gram-negative bacteria and decreased butyrate levels. This

may induce inflammation in adipose, liver, and muscle tissue as well as increased adipogenesis

in adipose tissue and lipogenesis and steatosis in the liver which may lead to insulin resistance

and type 2 diabetes. Finally, type 2 diabetes may also potentially adversely influence the

composition of the gut microbial community creating a vicious circle
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underlying mechanisms. Although we cannot claim causality, several studies have

documented that metabolic health or disease is transmissible in both animal and

humans studies when stools are transplanted, but also that modulation of a dysbiotic

microbiota toward a healthier microbiota is possible. An elegant proof of principle

of this was reported by the Gordon laboratory (Ridaura et al. 2013). In this study, it

was firstly shown that gut microbiota and its associated phenotype—in this case

obesity—are transmissible between mice. Secondly, the authors used the fact that

mice are coprophagic and they went on to show in cohousing experiments that

development of obesity could be prevented by lean microbiota. Finally, it was

shown that this phenotypic rescue was diet dependent and occurred only in mice

eating a “humanized diet” low in fat and high in fruits and vegetables (Ridaura

et al. 2013). Thus, it is clear that disease-promoting communities of gut microbes

can be transmitted from a donor to a recipient and that the recipient in a reversible

way and dependent on environmental conditions adapts to the phenotype of the

donor. Obviously, in the context of obesity, findings as discussed above inspire to

hunt for discovery of anorexigenic microbial gut communities to be tested for their

potential as bacterio-therapeutical tools to eliminate or diminish obesity pheno-

types. Another example of an upcoming task is characterization and culture of

health-promoting complex bacterial communities of multiple specific and

interdependent healthy and in most cases anaerobically living gut bacterial species.

These may in randomized clinical trials be administered daily as slow-release

encapsulated microbial cultures along with a diet high in prebiotics (nondigestible

but fermentable food ingredients that selectively stimulate the growth or activity of

beneficial gut microbes) to test their preventive and therapeutic potentials.

The quantitative metagenomics studies also suggest that we need much focus at

the microbial community functions instead of only focusing on the specific com-

position of the gut microbiota. Future systems biology studies will integrate micro-

bial metabolic pathways identified and featured through metatranscriptomics,

metaproteomics, and metabolomics to enable discovery of the huge reservoir of

bioactive compounds produced by gut microbes including bacterial metabolites,

neurotransmitters, immunological factors, and noncoding RNAs which impact the

host biology in multiple ways. Some of these bacterial compounds that due to

microbe-human coevolution are familiar to the host may as well be tested for their

therapeutic or disease-preventive potentials.
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Part III

From Association to Function



Chapter 14

Transcription Factor 7-Like 2 (TCF7L2)

Struan F.A. Grant and Leif Groop

Abstract In 2006 a genetic signal within the gene encoding transcription factor

7-like 2 (TCF7L2) was first reported to be associated with type 2 diabetes. Since

then multiple genome-wide association studies have revealed this signal to be

among the most strongest associations reported with this disease to date. Further-

more, multiple studies around the world have revealed the global relevance of this

locus in intron 3 of the gene and have helped pinpoint, with relative confidence, the

causal lesion at this locus. However, despite this association being beyond doubt,

there is still a lack of consensus with respect to mechanisms of action and which

tissue(s) it actually exerts its influence on the pathogenesis of type 2 diabetes.

14.1 TCF7L2: The Genetic Hallmark of T2D

Type 2 diabetes (T2D) is a complex trait that clearly results from the interaction

between a number of factors. Despite this complexity, there is strong evidence for a

genetic component contributing to an individual’s risk for presenting with T2D.

This evidence largely comes from the observation that the disease is heritable,

although with an approximate sibling risk of 3.5-fold (Rich 1990), its heritability is

somewhat modest when contrasted with type 1 diabetes (T1D), which exhibits an
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approximate sibling risk of 10–15 times greater than the general population

(Clayton 2009). As such, given the relatively weak genetic contribution to T2D,

it has proven historically challenging to identify genes associated with this very

common disease, with T2D earning the nickname of the “geneticist’s nightmare”

prior to the advent of genome-wide association studies (GWAS). Indeed, before the

GWAS era, only a handful of loci had been reported to be associated with T2D,

primarily as a consequence of candidate gene and family-based linkage studies. The

genetic basis of T2D has therefore been largely elusive until relatively recently,

when the utility of high-throughput single-nucleotide polymorphism (SNP)

genotyping arrays became a reality. This technology has allowed investigators to

carry out non-hypothesis-driven GWAS analyses to uncover key genetic compo-

nents to the pathogenesis of most complex traits. Indeed, GWAS has now clearly

revealed many tens of loci driving T2D risk (Sladek et al. 2007; Wellcome Trust

Case Control Consortium 2007; Saxena et al. 2007; Zeggini et al. 2007; Scott et al.

2007; Steinthorsdottir et al. 2007; Salonen et al. 2007; Gudmundsson et al. 2007;

Zeggini et al. 2008a; Unoki et al. 2008; Yasuda et al. 2008; Rung et al. 2009; Voight

et al. 2010; Dupuis et al. 2010; Cho et al. 2011; Kooner et al. 2011; Morris et al.

2012; DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium

2014).

Just before the dawn of GWAS, the first author of this chapter uncovered the

strong association of variants in the transcription factor 7-like 2 (TCF7L2) gene
with T2D (Grant et al. 2006). Other investigative groups rapidly and independently

replicated this finding in different ethnicities, and, interestingly, from the first

GWAS reports of T2D, undertaken in European ancestry populations, the strongest

association was indeed with TCF7L2 (Sladek et al. 2007; Wellcome Trust Case

Control Consortium 2007; Saxena et al. 2007; Zeggini et al. 2007; Scott et al.

2007); as such this is now considered one of the most significant genetic findings in

T2D reported to date (Zeggini and McCarthy 2007; Weedon 2007; Hattersley

2007).

Although variation (primarily represented by rs7903146) in the third intron of

the TCF7L2 gene confers the strongest inherited risk of T2D among common

variants worldwide, many questions remain regarding the mechanisms by which

it increases susceptibility to this disease. First, by which molecular mechanisms

does an intronic variant exert its effect? Second, what are the target tissues for its

detrimental effects on glucose metabolism? While pancreatic islets represent the

logical explanation for a defect leading to diabetes, discrepant results from cell

lines, animal models, and humans do not provide a unifying explanation whether it

is due to gain or reduced function of TCF7L2. Finally can genetic variants in

TCF7L2 help elucidate the origin of the diabetic subgroup referred to as “latent

autoimmune diabetes in adults” (LADA)?

This chapter reviews what has been learned about the TCF7L2 locus thus far and
what it can teach us about how to address the increasing number of loci emerging

from ever larger genome-wide surveys of T2D.
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14.2 Discovery in Iceland

The strong association between TCF7L2 and T2D was first detected in a 2006 report

(Grant et al. 2006) as a result of a fine-mapping exercise, leveraging highly

polymorphic microsatellite markers, of a linkage region on chromosome 10

(Reynisdottir et al. 2003). This region of linkage was observed as a consequence

of extensive recruitment and genotyping of large extended Icelandic pedigrees

consisting of multiple cases of T2D.

The variation found at this locus turned out to be common in the population,

occurring in a noncoding region within the TCF7L2 gene and resulting in an

approximate 40 % increase in T2D risk (Grant et al. 2006) when considered in

isolation. Within the same study, this signal was robustly replicated in European

ancestry cohorts from Denmark and the USA, revealing a very similar frequency

and relative risk, leading to the calculation of an overall population attributable risk

of 21 %. The risk alleles of the variants in linkage disequilibrium with each other

within the gene that captured the association were approximately 1.5 times more

common in patients than in controls; this corresponded to an approximately 50 %

increase in risk of T2D per copy carried. As such, more than one third of individuals

in the European ancestry populations studied carried one copy of the at-risk variant

and were at an approximately 45 % increased risk of the disease compared to

controls, while 7 % carried two copies and were at a 141 % greater risk.

This genetic finding was all the more remarkable as the genetic component to

T2D risk has always been considered so mild for this phenotype (Rich 1990) (see

above). As a consequence of this unexpected discovery and the great thirst at that

time to uncover a robust genetic component to T2D, the finding received extensive

media attention, including being featured on the front page of the New York Times
(http://www.nytimes.com/2006/01/16/science/16gene.html).

As early as 2007, a meta-analysis of published follow-up studies of this genetic

relationship estimated a pooled odds ratio, using a Mantel–Haenszel procedure, of

1.46 worldwide (with a highly notable P¼ 5.4� 10�140) (Cauchi et al. 2007a),

making it one of the most statistically significant genetic findings in T2D to date.

Indeed, it has now been confirmed via several T2D GWAS (Sladek et al. 2007;

Wellcome Trust Case Control Consortium 2007; Saxena et al. 2007; Zeggini et al.

2007; Scott et al. 2007) (see below).

14.3 Observations from GWAS

T2D has been the focus of more GWAS efforts than any other complex trait studied

to date, primarily due to the sizeable proportion of the many populations it blights

during an individual’s lifetime (see Chap. 2). The first batch of such studies,

published in Nature (Sladek et al. 2007; Wellcome Trust Case Control Consortium

2007) and Science (Saxena et al. 2007; Zeggini et al. 2007; Scott et al. 2007) and
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performed in European ancestry cohorts, revealed multiple loci, with the strongest

association by far residing within TCF7L2. Interestingly, when GWAS analyses

were subsequently carried out in East Asian populations, TCF7L2 was by no means

the strongest associated locus, rather a signal coinciding with the gene encoding

potassium voltage-gated channel, KQT-like subfamily, member 1 (KCNQ1), which
yielded the lowest P-value (Unoki et al. 2008; Yasuda et al. 2008; Cho et al. 2011).
Although the TCF7L2 locus was detected, these observations suggest that it exerts

its effect differently depending on the population being considered, potentially as a

consequence of differences in diet (Helgason et al. 2007a).

Despite the many breakthroughs, the proportion of the predicted genetic contri-

bution to T2D pathogenesis uncovered is still very much in the minority. Although

variation at the TCF7L2 locus confers a highly statistically significant contribution

to the trait, when combined with all the other GWAS-implicated loci subsequently

reported, together they only explain approximately 10 % of the predicted genetic

component to the disease. Therefore, much more work is going to be required to

uncover the remaining genetic etiology of T2D, primarily by leveraging new

advances in whole-genome sequencing technologies.

14.4 Leveraging Global Patterns to Infer the Causal

Variant

Although GWAS has uncovered genetic signals robustly associated with various

complex traits over recent years, the approach was never intended to interrogate the

actual underlying causal variant in the first instance, but rather simply “tag” the

approximate location of a disease-associated variant (McCarthy et al. 2008;

Manolio et al. 2008; Altshuler et al. 2008), typically down to a few 100 kb. As

such it has turned out to be very challenging to distill out the underlying causal

variant driving a particular signal. In this sense, the T2D association with TCF7L2
may be at a more mature stage, as there is strong consensus that the causal variant

has actually been identified through a process of statistical elimination and func-

tional work, reflecting the longer time that this associated locus has been known in

comparison with the typical T2D GWAS signal.

This association was first refined and narrowed down utilizing a West African

patient cohort (Helgason et al. 2007b), where this population harbors greater

haplotype diversity. As such, the associated region was contained within a smaller

region of linkage disequilibrium and thus aided the pinpointing of the putative

functional variant. In brief, when this association was reported in European ances-

try populations, it was noted that rs12255372 and rs7903146 both captured the

association well (Grant et al. 2006), but the African ancestry study showed that

rs12255372 was a less optimal tag SNP and revealed rs7903146 to be the better

proxy for the signal detected (Helgason et al. 2007a; Palmer et al. 2011).
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The T allele of the rs7903146 SNP within TCF7L2 is now widely considered to

be the causal variant for this disease through such studies in multiple ethnicities

(Helgason et al. 2007a; Palmer et al. 2011; Tong et al. 2009; Cauchi et al. 2007b) as

well as a Bayesian modeling approach (Maller et al. 2012). Therefore it is viewed as

the best variant to test globally when searching for the association with T2D.

Interestingly, reflecting what was observed in GWAS analyses of East Asians

(Chang et al. 2007; Ng et al. 2007, 2008; Ren et al. 2008; Yu et al. 2010; Zheng

et al. 2012), the risk T allele of rs7903146 is common in European and African

populations but not in the Han Chinese. This latter observation may also explain

some of the inconsistent results of replication studies using Chinese populations,

where many may have been statistically underpowered to detect the association at

the diminished minor allele frequency.

The variant is intronic so clearly does not directly influence the amino acid

sequence of the TCF7L2 protein. Although there is strong evidence of an allelic

difference in open chromatin across this SNP in pancreatic islets (Gaulton et al.

2010) (more details below) suggesting an influence on transcription control, the

overall mechanism of action of this variant still needs to be fully elucidated.

14.4.1 Molecular Mechanisms

TCF7L2 is a high-mobility-group box-containing transcription factor in the canon-

ical Wnt signaling cascade, regulating the expression of downstream target genes

(Clevers 2006) and driving key aspects of embryonic development (Nusse and

Varmus 1992; Paul and Dey 2008). In the absence of β-catenin, TCF7L2 binds to

Wnt-responsive elements to repress target gene transcription, while β-catenin
binding to TCF7L2 activates gene expression. TCF7L2 is expressed in most tissues

including islets and adipose and in organs such as the liver, gut, and brain. It is,

though, unclear whether the Wnt signaling cascade plays a role in regulating insulin

secretion in human pancreatic islets.

Like the vast majority of common variants associated with complex traits

uncovered by GWAS, rs7903146 is located within a noncoding region, i.e., intron

3 of TCF7L2. A number of hypotheses have been proposed to explain the causal

mechanism influenced by this SNP; several studies have shown that rs7903146

resides in an active enhancer region with open chromatin (Gaulton et al. 2010;

Savic et al. 2013; Stitzel et al. 2010). Using FAIRE sequencing to identify active

regulatory elements in islets, Gaulton et al. (2010) demonstrated that the SNP

resides in islet-selective open chromatin. The SNP showed allelic imbalance in

islet FAIRE signals and the risk T allele induced much greater enhancer activity

than the C allele in MIN6 cells. The simplest explanation implicates the intronic

variant as a cis eQTL influencing expression of the TCF7L2 gene in islets. How-

ever, expression of TCF7L2 is not decreased in human islets, if anything it is

increased, and expression is not influenced by the SNP (Lyssenko et al. 2007;
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Taneera et al. 2012) despite the correlation seen with open chromatin across this

key region in human pancreatic islets (Gaulton et al. 2010).

14.4.2 TCF7L2 Is a Master Regulator of Insulin Production

When it was first implicated in T2D, it was shown that the TCF7L2 variant is

associated with impaired glucose and GLP-1-stimulated insulin secretion (Grant et

al. 2006; Yi et al. 2005a; Hansson et al. 2010). Knockout mice for TCF7L2 are

embryonically lethal and among other things characterized by defective prolifera-

tion of crypt stem cells of the small intestine (Korinek et al. 1998a). TCF7L2 also

binds to the promoter region of the proglucagon gene to control its transcriptional

activity in the intestinal GLUTag cell line, where the dominant-negative mutant of

TCF7L2 abolishes proglucagon mRNA levels (Yi et al. 2005b). However, this role

in humans remains elusive. TCF7L2 though seems to play a key role in regulating

pancreatic β-cell function. This was clearly demonstrated in a recent paper showing

that disruption of tcf7l2 in mice, a rat insulinoma cell line (INS1), and in human

pancreatic islets resulted in downregulation not only of genes and proteins in the

proinsulin pathway (MAFA, ISL-1, etc.) but also of genes and proteins regulating

processing of proinsulin (PCSK1 and PCSK2) (Zhou et al. 2014a). These multiple

hits on insulin (both synthesis and processing) could explain why variants (with

most likely inhibitory effects) confer the greatest risk of T2D. Disruption of Tcf7l2
in primary mouse islets and MIN6 and INS-1 cells results in impaired glucose-

stimulated insulin secretion and promotes a diabetic phenotype (da Silva Xavier et

al. 2009; Shu et al. 2008, 2009; Zhou et al. 2012). The Tcf7l2 mutant mice die

within 24 h of birth displaying defects in crypt stem cells of the small intestine

(Korinek et al. 1998b). However, they were also characterized by hypoglycemia at

birth. Two studies with β-cell-specific knockdown of Tcf7l2 using Pdx1 (da Silva

Xavier et al. 2012) or Ins2 (Takamoto et al. 2014) promoters have also described

islet dysfunction, impaired insulin secretion, and reduced β-cell mass. In contrast,

disrupting or overexpressing the 92 bp genomic interval carrying the rs7903146

variant in mice yielded opposite phenotypes, i.e., impaired glucose tolerance (Savic

et al. 2011). A recent paper applying a tamoxifen-inducible β-cell-specific disrup-
tion of Tcf7l2 added further confusion to the field by showing no diabetic phenotype
even during high-fat feeding (Boj et al. 2012). However, in a series of follow-up

studies, the authors presented results pointing at a key role of the liver. First, they

reassessed the total body knockout of Tcf7l2 showing that newborn mice die of

hypoglycemia because they could not turn on genes necessary for glycogen break-

down (e.g., Gys2) and gluconeogenesis (e.g., Pck1, G6pc). During the embryonic

period the fetus is dependent upon energy metabolism of the mother but after birth

upregulation of these liver genes is dependent upon Tcf7l2 and the Wnt pathway.

This was confirmed by liver-specific disruption and overexpression of Tcf7l2.
Similar results were obtained by Norton et al. (2011) by disrupting Tcf7l2 in rat

hepatoma cell line, H4IIE. These data are also supported by the clinical observation
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of elevated rates of basal hepatic glucose production in carriers of the risk T allele

(Lyssenko et al. 2007). While targeting two tissues (pancreas, liver) could explain

the strong diabetogenic effect of the TCF7L2 variant, but it would require a reduced
function in pancreatic islets and gain of function in the liver. Data on expression of

TCF7L2 (including splice isoforms) in the human liver in relation to genotype is

urgently needed.

Can we rule out effects in other tissues? In adipose tissue expression of TCF7L2
is downregulated by insulin (Ahlzen et al. 2008) and expression of a short isoform

lacking exons 12,13, and 13a decreased after bariatric surgery in adipose tissue

(Kaminska et al. 2012a), but these effects were unrelated to the genotype. TCF7L2

and Wnt signaling has also been ascribed a role in the brain, where a dominant-

negative Tcf7l2 resulted in decreased expression of the proglucagon gene (and

thereby Glp1) in the brain and gut and impaired glucose-stimulated insulin secre-

tion and disposal (Savic et al. 2012; Shao et al. 2012). On the other hand, risk

genotype has not been associated with an impairment in insulin sensitivity

(Lyssenko et al. 2007). Given the link between the brain and islet/liver in regulation

of glucose metabolism, more research is required to explore the potential of

TCF7L2 to influence these central mechanisms.

14.4.3 The Missing Link Between rs7903146 and Expression
in Islets and Liver?

To explain the effects described above in human islets and liver, one would also

need to assume opposite effects in the two tissues. Therefore the question has risen:

Could there be different splice isoforms with activating or inactivating actions in

different tissues? The TCF7L2 gene is comprised of 17 exons, five of which have

been shown to be alternative, at least in colon cancer cells (exons 4 and 5 in the 50

region and exons 13–16 in the 30 region) (Duval et al. 2000a).
TCF7L2 transcripts are heavily spliced at the 30 terminus, with the 50 end being

the most stable region among isoforms which encode the beta-catenin binding

domain (Duval et al. 2000b). To make the picture even more complicated, tissue

specific isoforms have been widely reported (Mondal et al. 2010; Prokunina-Olsson

and Hall 2010; Kaminska et al. 2012b; Prokunina-Olsson et al. 2009a, b).

Despite the strong body of evidence pointing to the extensive alternative splicing

of TCF7L2 transcripts, it is much less clear if such isoforms track with rs7903146

genotype, as large sample populations of the correct tissue types would be required

to uncover any putative allele-specific effects on splicing patterns (Osmark et al.

2009). It is, however, possible that the TCF7L2 locus exerts its effect in more than

one setting and perhaps with a different set of isoforms in play in each instance,

particularly in pancreatic islets and liver.

Using absolute qPCR, we could show that an isoform including exon 4 domi-

nated in human pancreatic islets and its incorporation increased with increasing
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glycated hemoglobin of the donors (Osmark et al. 2009). In the liver, loss of exon 4

promotes development of tumors (Tomimaru et al. 2013). Others have suggested,

using relative qPCR in a small number of human islets, that a low abundant exon 16

containing isoform could be exclusive to islets but no relation to the SNP has been

demonstrated (Mondal et al. 2010; Prokunina-Olsson and Hall 2010). Follow-up

studies have been hampered by the paucity of good antibodies for this region of

TCF7L2. To find the missing link between the SNP and expression, whether it

influences splicing or something else, we need to focus on the variant. This would

be possible today using CRISPR followed by measurements of insulin secretion and

RNA sequencing at high read length of appropriate human islet and liver cell lines

exposed to high glucose.

14.4.4 Epigenomic Studies

The question remains: How does a variant in intron 3 of the TCF7L2 gene increase

susceptibility to T2D? In addition to confirming the open chromatin observations

described above (Gaulton et al. 2010; Savic et al. 2013; Stitzel et al. 2010) through

exploring DNAse hypersensitive sites as well as sites of activating H3 lysine

modifications (H3K4me1, H3K4me3, H3K79me2), Stitzel et al. (2010) also dem-

onstrated a threefold increased transcriptional activity of the T allele than the C

allele. In support of these findings, Savic et al. (2013) observed allele-specific

properties for trs7903146, which was not restricted to the β-cell line MIN6 cells

but also seen in myoblasts. Taken together with previous findings of increased

expression of TCF7L2 in human islets from particularly TT carriers (Lyssenko et al.

2007), the data suggest that excess of the T allele has negative effects on insulin

secretion and glucose tolerance.

When carrying out pathway analyses of the nearest gene to a given TCF7L2

occupancy site derived from ChIP-seq, which combines ChIP and massively

parallel sequencing, strong enrichment was found for molecular networks involved

in metabolism (Zhao et al. 2010). Furthermore, the list of genes bound by TCF7L2

revealed an unexpected enrichment of GWAS-implicated loci, in particular for

diseases related to metabolic and cardiovascular trait areas. As such, it has been

suggested that TCF7L2 operates as a central node in the genetic basis for T2D

through the regulation of a number of genes that contribute to the pathogenesis of

this disease.

The question also remains: What binds to the T allele in the enhancer region to

turn on transcription? This question was recently addressed by performing pull-

down followed by mass spectrometry in a colon cancer cell line, HCT116 (Xia et al.

2014). Strong binding of poly (ADP-ribose) polymerase 1 (PARP1) to the region of

open chromatin was observed, and by overexpressing TCF7L2 with β-catenin, there
was a marked allele-specific increase in transcriptional activity. The main caveat

was that it occurred in the opposite direction than seen in vivo, with stronger

activity seen for the C allele. In addition, as PARP1 is a very abundant protein, it
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cannot be excluded that PARP-1 is simply the dominant partner, from a detection

point of view, in a larger protein complex that binds to the region. Also, the

experiments need to be replicated in human islets and liver. However, interestingly,

it is well established that PARP-1 plays a key role in DNA damage detection and

repair, while other studies have shown that PARP-1 plays an important role in

chromatin and transcriptional regulation (Tulin et al. 2003; Kraus and Lis 2003).

Furthermore, PARP activation has been detected in healthy subjects who are known

to be at risk of developing diabetes plus in established T2D cases (Szabo et al.

2002). Combined with the facts that TCF7L2 and PARP-1 have been shown to be

known protein partners (Idogawa et al. 2005), PARP-deficient mice are protected

from streptozotocin-induced diabetes (Pieper et al. 1999), and PARP-1 inhibitors

are well established to delay diabetic complications (Ilnytska et al. 2006; Li et al.

2005; Obrosova et al. 2004), these findings merit further investigation.

Finally, to understand how the transcriptional signal is transformed in an allele-

specific manner from the enhancer region to the promoter, where the effect on

polymerase should occur, may require studies like chromosomal conformational

capture (4C).

14.5 Variant Correlation with Drug Response

Many therapeutic agents currently available for the treatment of T2D are often

associated with a number of side effects, including an elevation in body mass index

(BMI) and an increased risk of hypoglycemia and gastrointestinal complications.

Furthermore, it is well known that these drugs are often not highly efficacious, with

their optimal impact occurring in the early stages of T2D, where fasting blood

glucose levels are relatively low. Indeed, approximately 40 % of patients with T2D

who are prescribed oral antidiabetes agents fail to actually control their blood

glucose and end up having to use insulin. Therefore it is abundantly clear that

there is an unmet need for improved therapeutics with better response rates; indeed,

this is where gene discovery efforts hold promise. In terms of the established T2D

association with the TCF7L2 locus, there have already been a number of explor-

atory efforts in this context.

Studies in humans have clearly shown that carriers of the risk T allele of the

rs7903146 variant are characterized by impaired glucose- and incretin-stimulated

insulin secretion, increased hepatic glucose production, and elevated circulating

levels of proinsulin and GIP (Lyssenko et al. 2007; Loos et al. 2007; Pilgaard et al.

2009a; Villareal et al. 2010; Gjesing et al. 2010). The variant also predicts pro-

gression from normal or impaired glucose tolerance to diabetes (Florez et al. 2006;

Lyssenko et al. 2008; Wang et al. 2007). Thereby, islet dysfunction seems to be the

culprit of deteriorated glucose tolerance in risk T-allele carriers. This is also

supported by findings of reduced glucose-stimulated insulin secretion and exocy-

tosis (Rosengren et al. 2012), islet density (Le Bacquer et al. 2012), and insulin

content (Zhou et al. 2014b) in islets of human carriers with the T risk allele.
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Exploring how TCF7L2 genotypic status influences drug response is a reason-

able endeavor given the magnitude of its association with T2D. Indeed, it has been

noted that subjects that have both impaired glucose tolerance and carry the TCF7L2
risk variant are more likely to present with T2D, where the effect is more pro-

nounced in untreated individuals than in metformin and lifestyle-intervention

groups (Florez et al. 2006). Treatment options should also be considered in the

context of the observation that the variant is primarily associated with decreased

insulin secretion and not insulin resistance (Florez et al. 2006), suggesting impaired

β-cell function. Interesting, clinic-based studies have revealed that TCF7L2 risk

variants are correlated with response to sulfonylureas but not with metformin

among patients with T2D; however with this former treatment group, it was clear

that the T2D-associated allele was also associated with a higher rate for sulfonyl-

urea treatment failure (Pearson et al. 2007; Holstein et al. 2011) opening an

opportunity for personalized therapeutics. These findings may also provide insight

into how the TCF7L2 locus exerts its effect on T2D risk, where sulfonylureas act on

insulin production from pancreatic β-cells, while metformin influences glucose via

the liver by improving insulin action (Kirpichnikov et al. 2002).

Similarly to insulin, the insulinotropic hormone, glucagon-like peptide 1 (GLP-

1), exerts a strong influence on blood glucose homeostasis (Yi et al. 2005a); indeed,

GLP-1 analogs and inhibitors of dipeptidyl peptidase IV are of intense clinical

interest in the context of T2D. It is has also been speculated that TCF7L2 could

influence levels of GLP-1 (Villareal et al. 2010; Vilsboll et al. 2003; Yu et al. 2009)

because this transcription factor is known to regulate the expression of proglucagon

in enteroendocrine cells. Furthermore, it has been reported that the TCF7L2 protein

is detectable in β-cells where it may regulate expression of receptors to glucose-

dependent insulinotropic polypeptide (GIP) and GLP-1 (Lyssenko et al. 2007; Shu

et al. 2009; Qu and Polychronakos 2007; Pilgaard et al. 2009b). TCF7L2-regulated

incretins could also influence the brain to affect appetite regulation (Shao et al.

2013; Nobrega 2013).

As such there is clinical interest in understanding the role of the TCF7L2 locus in
the context of T2D in order to tailor better therapy for individuals, either at risk or

already presenting with this disease.

14.6 What Can TCF7L2 Variants Tell About the Genetic

Origin of LADA?

As T1D and T2D both result from the metabolic consequences of suboptimal

insulin action, with similar complications, an overlap in the genetic predisposition

to these two diseases has been long suggested (Wilkin 2001). However none of the

genes identified to date in each of these given disorders have been conclusively

shown to be associated with the other disease (Schernthaner et al. 2001; Qu et al.

2008; Raj et al. 2009). And in particular, no evidence has been found for the role of
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the TCF7L2 locus in T1D (Qu and Polychronakos 2007; Raj et al. 2009; Field et al.

2007), suggesting distinct biological mechanisms underpinning these two

phenotypes.

“Latent autoimmune diabetes in adults” (LADA) was first described as an

autoimmune form of diabetes with onset in adult age (over 35 years of age),

characterized by presence of GAD autoantibodies and no absolute dependence of

insulin therapy during the first 6 months of disease (Tuomi et al. 1993, 1999); as

such, LADA patients often exhibit a clinical picture similar to T2D but also exhibit

circulating islet autoantibodies similar to those seen in T1D (Alberti and Zimmet

1998), earning it the nickname “type 1.5 diabetes” (Schernthaner et al. 2001).

Indeed, on average 8–10 % of patients suspected to be presenting with T2D are

thought to be in fact misdiagnosed LADA cases.

A genetic relationship to T1D was demonstrated by showing that LADA patients

shared an increased frequency of T1D-associated HLA genotypes with T1D (Tuomi

et al. 1999) and LADA was considered by the World Health Organization to be a

slowly progressing form of autoimmune type 1 diabetes. At that time it was not

possible to discern a potential influence of a T2D genetic background on LADA,

but this became possible with the discovery of the association between variation in

TCF7L2 and T2D (Grant et al. 2006).

Since then, several studies have shown also an increased frequency of the T

allele of rs7903146 in patients with LADA (Cervin et al. 2008; Bakhtadze et al.

2008; Tuomi et al. 2014) suggesting that LADA is either an admixture of the two

forms of diabetes rather than a subtype of T1D (Tuomi et al. 2014) or driven by

some other form of mechanism at play (Grant et al. 2010).

Additionally, the TCF7L2 rs7903146 T allele has been reported to be overrep-

resented in European LADA cases (Lukacs et al. 2012; Szepietowska et al. 2009).

Furthermore, association of TCF7L2 variation with low GAD autoantibody titer in

LADA subjects has been reported (Zampetti et al. 2010). In addition, it was shown

that the TCF7L2 observation could be used to distinguish middle-aged from young

antibody-positive patients (Bakhtadze et al. 2008).

Given the increasing prevalence of both T1D and T2D, a large number of

patients should share the genetic susceptibility to both diabetic subforms and

understanding how this will influence the phenotype may help to disentangle the

phenotypic heterogeneity of diabetes. Indeed, diabetes genetics has clearly not been

totally resolved, with additional breakthroughs in T1D and T2D becoming increas-

ingly hard to come by. The more recent loci uncovered for T2D through consortia-

based analyses (DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)

Consortium 2014) have revealed them all to have increasingly small effect sizes;

however the fact that such studies do not typically account for LADA cases, that

will invariably be present in the study populations, begs the question: Given what is

observed with TCF7L2, could some of these association signals be due to the

genetics of LADA rather than the genetics of T2D?
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14.7 Pediatric Studies

The health of a child has implications for disease risk later in life. Indeed a genetic

predisposition for T2D in adults may manifest itself in childhood traits, and through

studying pediatric phenotypes, one can gain insight in to the early genetic actors for

disease risk and therefore identify options for both prevention and early interven-

tion. Epidemiological studies have clearly established that low birth weight confers

risk for development of metabolic disease in adulthood (Whincup et al. 2008),

possibly reflecting the important combination of interacting genetic, epigenetic,

intrauterine, nutritional, developmental, hormonal, and environmental factors that

play a role in this complex setting.

A study of over 15,000 individuals plus approximately 8000 mothers showed

that each maternal risk-conferring allele of rs7903146 within TCF7L2 increased

birth weight by 31 g; indeed, when combined with the alleles at the GCK locus, this

birth weight increase went up to 119 g (Freathy et al. 2007). This observation

supports the “fetal insulin hypothesis” where it has been proposed that the intra-

uterine insulin environment has implications for birth weight and subsequent

disease risk in later life (Hattersley and Tooke 1999); indeed, a maternal T2D

risk genotype might lead to maternal hyperglycemia, causing fetal

hyperinsulinemia and macrosomia, whereas a fetal T2D risk genotype might lead

to lower insulin levels in the fetus and lower growth but eventual T2D later in life.

However, some follow-up studies have not observed an effect of fetal TCF7L2
genotype on fetal and postnatal growth (Mook-Kanamori et al. 2009) or an inter-

action between TCF7L2 genotype and birth weight that ultimately influences

disease risk (Pulizzi et al. 2009). Other studies in pediatric populations, albeit

with more limited numbers, did suggest an interaction between TCF7L2 variation

(Dabelea et al. 2011), lifestyle modification in obese children (de Kort et al. 2010),

and growth hormone therapy in lean children born small for gestational age

(Reinehr et al. 2008); however larger studies with greater phenotypic depth and

ideally longitudinal data are required to fully validate these potentially interesting

findings.

Of particular note is that the same genetic variants of TCF7L2 that drive T2D

risk also increase susceptibility to cystic fibrosis-related diabetes (CFRD)

(Blackman et al. 2009, 2013; Furgeri et al. 2012), with the data suggesting that

the T allele of rs7903146 in fact exerts a more pronounced effect in this setting. As

such, a therapeutic developed in the context of the TCF7L2 locus may have a

particularly beneficial effect for CFRD cases.

Given the reported association in LADA patients, who often express a single

islet autoantibody, one study found in children with autoimmune T1D that the

TCF7L2 rs7903146 T allele was more frequent among cases with a single islet

autoantibody than in those with �2 islet autoantibodies (Redondo et al. 2014).

These results resonated with a previous study in children which reported that this

allele is more frequent in autoantibody-negative than autoantibody-positive T1D

children (Yu et al. 2009). However, an investigation in nondiabetic children showed
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that the TCF7L2 rs7903146 T allele did not increase the risk of islet autoantibody

expression (Winkler et al. 2012).

14.8 TCF7L2 Also a Cancer Gene: Possible Connections?

Before it was implicated in the pathogenesis of T2D, TCF7L2 (formerly known as

TCF4) was already a well-characterized cancer gene. Indeed, missense mutations in

TCF7L2 have been known for some time to be playing a role in conferring

colorectal cancer risk (Duval et al. 2000a, b; Yochum et al. 2007). Furthermore,

the TCF7L2 protein regulates the expression of several genes, including those that

encode cyclin D1 (CCND1) and c-myc (MYC) which are involved in the control of

the G1 to S phase transition in the cell cycle (Baker et al. 2000; Tetsu and

McCormick 1999).

Indeed, this connection intensified following reports that the 8q24 locus revealed

by GWAS of a number of cancers, including colorectal carcinomas (Duval et al.

1999, 2000b), was due to an extreme upstream TCF7L2-binding element driving

the transcription of MYC (Pomerantz et al. 2009; Tuupanen et al. 2009; Sur et al.

2012). In addition, it has been shown that when TCF7L2 recurrently fuses with its

neighboring gene, VTI1A, colorectal adenocarcinomas result. Furthermore, a recent

GWAS of breast cancer found four TCF7L2 SNPs (including rs7903146) signifi-

cantly associated with the trait (Connor et al. 2012). Curiously, many of the T2D

GWAS-derived risk-conferring alleles have now also been shown to protect against

prostate cancer (Frayling et al. 2008), including THADA, JAZF1, and HNF1B
(formerly TCF2) (Frayling et al. 2008; Gudmundsson et al. 2007; Thomas et al.

2008; Zeggini et al. 2008b). Thus, some of the T2D associated loci, in particular

TCF7L2, also appear to influence cancer pathogenesis and therefore there may be a

specific yin and yang relationship between cancer and T2D.

Although there are apparent genetic links between cancer and T2D, the impor-

tance of this relationship is still far from understood. Given that TCF7L2 regulates

MYC at the key cancer GWAS-implicated locus, it is conceivable that TCF7L2 in

fact regulates the TCF7L2 gene itself. Functional assay work using a reporter

system showed that TCF7L2 and β-catenin are both required for canonical Wnt

pathway signaling and that Wnt signaling plays a role in the regulation of TCF7L2
expression itself (Xia et al. 2014), suggesting that rs7903146 may perturb the

function of TCF7L2 in the context of conferring T2D risk.

14.9 Summary/Conclusions

Large-scale GWAS efforts have transformed the way investigators search for loci

involved in the pathogenesis of complex traits. Indeed, the past 7 years have

revealed multiple loci robustly associated with T2D, with TCF7L2 having the
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largest effect size. However, as illustrated by the challenges in elucidating how this

key locus affects T2D risk functionally, it is clear that it will take some time to

decipher the mechanism of action of all the T2D loci uncovered to date and the

optimal route to genetically informed therapeutic intervention (Visscher et al.

2012).

As there is great demand for improved therapeutic strategies for T2D, work on

key gene products like TCF7L2 holds great promise for more individualized

treatments in the future. Clearly, in addition to careful functional appraisals, more

detailed genotype-phenotype studies, such as those seen with TCF7L2, are going to
be needed to be carried out to elucidate both the mechanisms of action involved and

how they might be involved in other disorders. Only once we’ve conquered these

challenges, with perhaps work on the TCF7L2 locus leading the way, can such work
ultimately benefit actual patient care.
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Chapter 15

GCKR: How Genetic Variation Across

the Allelic Spectrum Influences Protein

Function and Metabolic Traits in Humans

Marju Orho-Melander and Anna L. Gloyn

Abstract Genome-wide association studies (GWAS) have generated considerable

interest in glucokinase regulatory protein (GKRP; gene name GCKR) which is an

inhibitor of hepatic glucokinase (GCK), an enzyme that plays a critical role in

glucose update and disposal in liver. From the initial discovery of GCKR variants

associated with triglyceride and glucose levels through the identification of pleio-

tropic associations with a wide variety of metabolic phenotypes, we have learned a

great deal about the importance of GKRP as a critical node in hepatic metabolism.

GKRP remains one of the few well-studied GWAS loci where attempts have been

made to understand the functional as well as the phenotypic impact of genetic

variants across the allelic spectrum. Given the interest in developing liver-specific

glucokinase activators and small molecules which disrupt the GKRP:GCK interac-

tion for the treatment of type 2 diabetes, these genetic insights provide a wealth of

information regarding efficacy and potential adverse on-target effects in humans.

15.1 Genome-Wide Association Studies Uncover a Locus

on Chromosome 2 Associated with an Inverse

Relationship Between Fasting Glucose and

Triglyceride Levels

In 2007, one of the first genome-wide association studies (GWAS) performed by

the Diabetes Genetics Initiative (DGI) for a total of 19 traits including plasma lipids

and fasting glucose levels identified the intronic rs780094 single-nucleotide
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polymorphism (SNP) in the gene encoding glucokinase regulatory protein (GKRP;

gene name GCKR) as the first novel quantitative trait locus associated with plasma

triglyceride concentrations in humans (Saxena et al. 2007). This finding has since

then been consistently replicated in other large population cohorts (Kathiresan et al.

2008; Willer et al. 2008; Sparso et al. 2008; Scott et al. 2007; Vaxillaire et al. 2008).

Although the rs780094 variant was in a large block of linkage disequilibrium (LD),

spanning >400 kb and covering 16 protein-coding genes, the location of the SNP

within the highly plausible biological candidate gene, GCKR, suggested that the

causal effect could originate from this gene. Indeed, both imputation and genotype

fine mapping of the GCKR locus highlighted the nonsynonymous coding variant

(Pro446Leu; rs1260326) as the strongest association signal, suggesting that this

coding variant as the causal variant (Orho-Melander et al. 2008). In fact these

efforts at the GCKR locus were one of the first fine-mapping approaches for loci

identified in GWAS and demonstrated that at least within regions of high LD,

genotypes predicted by imputation were highly accurate and provided a good

starting point for genotype fine mapping (Orho-Melander et al. 2008). Association

studies in African-Americans, where rs780094 and Pro446Leu do not correlate as

strongly as in other populations, provided further evidence for Pro446Leu, which

showed a stronger association with triglycerides than rs780094 (Deo et al. 2009).

Prior to this discovery, it was already well recognized that GKRP regulates

glucose disposal in the liver through its function as a negative regulator of hepatic

glucokinase (GCK) activity. An earlier study of adenoviral-mediated

overexpression of Gckr in mouse hepatocytes resulted in increased GCK activity

and reduced fasting blood glucose levels in these animals (Slosberg et al. 2001). In

line with this, two earlier studies had observed that overexpression of Gck in liver

reduced fasting glucose levels but unfortunately this reduction in glucose was

accompanied by elevated triglyceride levels (O’Doherty et al. 1999; Ferre et al.

1996). Furthermore, although Gckr�/�deficient mice had reduced Gck expression

and activity at basal glucose levels following glucose stimulation, they displayed

impaired glucose clearance due to insufficient hepatic nuclear Gck reserves

(Grimsby et al. 2000). Encouraged by these earlier findings, associations between

rs780094 and glucose homeostasis were investigated in both the DGI and replica-

tion samples, and consistent with these earlier studies in mice, the triglyceride-

raising (T) allele of rs780094 was associated with lower fasting glucose levels,

improved insulin sensitivity, and a reduced risk of type 2 diabetes (T2D) (Saxena et

al. 2007). These opposing effects on glucose and triglyceride levels were subse-

quently robustly replicated in a Danish study (Sparso et al. 2008) and in a number of

other population-based cohorts including those from outside Europe (Orho-

Melander et al. 2008; Vaxillaire et al. 2008; Teslovich et al. 2010; Johansen et al.

2010).

The association between GCKR variants with multiple glucose-related meta-

bolic traits is one of the most robust observations and has been confirmed in large

GWAS meta-analyses: the triglyceride-raising allele at this locus is associated with

lower plasma glucose concentrations, improved insulin sensitivity, and decreased
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T2D risk (Saxena et al. 2010; Dupuis et al. 2010). However, despite strong effects

on plasma triglycerides, GCKR variants do not associate with an increased risk for

CAD (Teslovich et al. 2010; Varbo et al. 2011). This special pattern of associations

suggests a pleiotropic role of GKRP in linking carbohydrate and lipoprotein

metabolism in a fashion that was previously unrecognized in humans.

15.2 Evidence for Further Pleiotropic Associations

Pleiotropy can be described as the effect of a single genetic variant or genetic region

on multiple phenotypic traits. As outlined above, the possibility of pleiotropic

associations at the GCKR locus was first proposed by the DGI study where the

triglyceride-increasing allele had an opposite associated effect on fasting glucose

and insulin resistance by homeostasis model assessment (HOMA-IR) (Saxena et al.

2007). It was rapidly recognized that the pleiotropic effects of this locus were not

restricted to glucose and lipid metabolism (Table 15.1). In 2008, Ridker et al.

published a GWAS for C-reactive protein (CRP) levels, and one of the associated

loci was GCKR, where the Pro446Leu T allele (Leu) was associated with higher

CRP levels (Ridker et al. 2008). Elevated CRP levels are a known hallmark of low-

grade systemic inflammation, but the link between GKRP and inflammation had not

been previously recognized. This finding has been widely replicated in multiple

ancestries and the CRP association has been shown to be independent of triglycer-

ide levels (Orho-Melander et al. 2008; Dehghan et al. 2011; Reiner et al. 2012).

Further evidence for pleiotropy at the GCKR locus comes from GWAS for uric

acid (urate) levels (Kolz et al. 2009; Yang et al. 2010). Serum uric acid concentra-

tions are mainly determined by the balance between production and renal excretion

of urate. Genetic associations with serum urate levels could therefore originate from

defects in purine metabolism and renal function or could simply represent a proxy

for another highly correlated trait. Insulin resistance has been proposed as one such

potential metabolic link between these traits and serum uric acid concentrations.

However, since the GCKR rs780094 T-allele associated with higher urate levels is

also associated with reduced insulin resistance, it is unlikely that insulin resistance is

driving this association and therefore mostly likely alternative mechanisms are

involved. Indeed, one study which replicated the association between GCKR vari-

ants and uric acid levels also observed that adjustment for triglycerides levels

considerably attenuated the association with uric acid concentrations while the

association with triglyceride levels remained highly significant when adjusted for

both uric acid concentration and fractional uric acid excretion (van der Harst et al.

2010). Of all the loci associated with uric acid concentrations, GCKR is unique in

that it is also associated with triglyceride levels. These observations are consistent

with the current understanding of the function of GKRP as both a regulator of GCK

activity and intracellular localization. Glucose-6-phosphate (G6P) is a known pre-

cursor for both hepatic glycogen synthesis and de novo purine synthesis and is

produced from glucose by GCK, which in turn is regulated by GKRP. This
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mechanism is also supported by symptoms of glycogen storage disease type 1 (von

Gierke disease), a genetic deficiency of glucose-6-phosphatase, which leads to

accumulation of G6P followed by hypoglycemia and excess glycogen storage but

also hypertriglyceridemia and hyperuricemia (Yang Chou and Mansfield 1999).

Creatine levels have also been reported to be associated with variants GCKR
locus. In 2010, the chronic kidney disease consortium CKDGen performed a meta-

analysis of genome-wide association data in 67,093 Caucasian individuals from 20

population-based studies and identified several new susceptibility loci, including

GCKR, for reduced renal function, estimated by serum creatinine and cystatin C

levels (Kottgen et al 2010).

In 2011, the GCKR locus was identified as a region associated with nonalcoholic

fatty liver disease (NAFLD) (Speliotes et al. 2011). Further support for the impor-

tance of GKRP in hepatic metabolism came from Chambers et al., who carried out a

GWAS in 61,089 study participants to identify genetic loci influencing liver

function measured by concentrations of blood alanine transaminase (ALT), alkaline

Table 15.1 Pleiotropic GWAS significant associations of GCKR locus

Phenotype Variant

Minor

allele

Direct

effect of

minor

allele References

Plasma

triglycerides

rs780094

rs1260326/

(Pro446Leu)

T

T

þ Saxena et al. (2007), Orho-Melander

et al. (2008), Kathiresan et al. (2008),

Sabatti et al. (2009)

CRP rs1260326 T þ Ridker et al. (2008)

Fasting

glucose

rs780094 T � Orho-Melander et al. (2008), Dupuis

et al. (2010)

Serum uric

acid

rs780094 T þ Kolz et al. (2009), Yang et al. (2010)

Fasting insulin rs780094 T � Dupuis et al. (2010)

Type 2

diabetes

rs780094 T � Dupuis et al. (2010)

HOMA rs780094 T � Dupuis et al. (2010)

Serum

creatinine

rs1260326 T þ Kottgen et al. (2010)

Serum

albumin

rs1260326 T þ Kamatani et al. (2010), Franceschini

et al. (2012)

Nonalcoholic

fatty liver

disease

rs780094 T þ Speliotes et al. (2011)

γ-Glutamyl

transpeptidase

(GTT)

rs1260326 T þ Chambers et al. (2011)

Serum calcium rs780094 T þ O’Seaghdha et al. (2013)
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phosphatase (ALP), and γ-glutamyl transferase (GGT) (Chambers et al. 2011).

Several loci were found associated with liver enzymes including GCKR which

was associated with both GGT and ALP levels.

Furthermore, the triglyceride-raising T allele (Leu) of the rs1260326

(Pro446Leu) variant was also associated with HDL, IDL, and LDL cholesterol

levels, VLDL particle size, omega-3 and omega-6 fatty acid levels, and concentra-

tions of the metabolic substrates citrate, pyruvate, and branched-chain amino acids.

These data generated by NMR confirmed and extended previous mass spectros-

copy-based studies, which showed strong association of GCKR variants with

absolute and relative abundances of polyunsaturated fatty acids and hepatic

steatosis (Gieger et al. 2008; Illig et al. 2010; Chambers et al. 2011).

Variants at the GCKR locus have also been reported to associate with serum

albumin levels and this association is independent of effects on triglyceride levels

(Kamatani et al. 2010; Franceschini et al. 2012). The association with albumin

levels is interesting as a wide range of conditions including liver and kidney

diseases, acute and chronic inflammatory states, and cancer manifest as reduced

plasma albumin concentrations.

More recently, O’Seaghdha and coworkers identified GCKR as one of six novel

loci associated with serum calcium levels (O’Seaghdha et al. 2010). Calcium is vital

to many biological processes and its serum concentration is tightly regulated by

three major hormones acting on their corresponding receptors in the gut, kidney,

and bone: parathyroid hormone, calcitonin, and the active metabolite of vitamin D,

1,25(OH)2-D. Consistent with the association with calcium levels, the calcium-

raising allele at rs780094 is also nominally associated with increased bone mineral

density (BMD) at the lumbar spine (O’Seaghdha et al. 2013). Since Gckr is not

actually expressed in any primary calcium handling organs (the duodenum, kidney,

and bone), and the association between GCKR variants and serum calcium concen-

tration is attenuated after adjustment for albumin levels, it is likely that the

association with calcium levels is a consequence of effects on albumin levels

(Franceschini et al. 2012).

Based on published GWAS data, GCKR represents a very pleiotropic locus with

both direct and indirect effects on many human physiological systems (Table 15.1).

In the past, pleiotropic genes have often been recognized to either be involved in

environmental adaptation or to reside in central node positions in protein–protein

interaction networks (Foster et al. 2004; Zou et al. 2008). Recently, a systematic

analysis of the entire GWAS catalog indicated 57 loci with a high pleiotropy index

of �5. Interestingly, the top two loci with most evidence for pleiotropic associa-

tions were GCKR and the obesity locus FTO (fat and obesity associated) (Huang et

al. 2011). Both loci had a very high pleiotropy index of 18, much higher than, for

example, the already earlier well-known pleiotropic ABO region which had a

pleiotropy index of 9 (Huang et al. 2011). In addition, while the pleiotropic-

associated effects of the FTO locus may indicate mostly independent associations

with different adiposity traits, theGCKR locus not only associates with traits related

to glucose and lipid metabolism but also with very distinct traits such as CRP,
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serum uric acid, and albumin levels. GWAS have thus identified the GCKR locus as

an extreme example of classical pleiotropy (Table 15.1).

15.3 Intervention Studies

The GCKR Pro446Leu variant has been investigated in both short- and longer-term

intervention studies. The first was a short-term high-fat challenge study, which

demonstrated that subjects with the T allele (Leu) had higher absolute plasma

postprandial Triglyceride (TG) and incremental TG concentrations, as well as

postprandial VLDL-Cholesterol levels following exposure to a high-fat diet (Shen

et al. 2009). In the Diabetes Prevention Program (DPP), which is a multicenter trial

designed to test whether intensive lifestyle modification or pharmacologic inter-

ventions with metformin or troglitazone prevent or delay the onset of diabetes in

individuals at high risk (The Diabetes Prevention Program. Design and methods for

a clinical trial in the prevention of type 2 diabetes 1999), the intensive lifestyle

intervention markedly lowered incidence of diabetes (Knowler et al. 2002) and

triglyceride levels (Ratner et al. 2005). In 3346 individuals participating in the DPP,

intensive lifestyle change (increased physical activity, dietary changes, and weight

loss) reduced the deleterious impact of the GCKR Leu446 variant on triglyceride

levels without significantly affecting its relationship with insulin sensitivity

(Fulgencio et al. 2001). However, carriers of the glucose-raising allele (Pro446)

showed greater responsiveness to metformin as indicated by more decreased

HOMA-IR index indicating a potentially relevant pharmacogenetic interaction as

GCK has earlier been observed to have a stimulatory effect on metformin in

hepatocytes (Fulgencio et al. 2001). The Leu446 variant has previously been

shown to be associated with greater increases in triglycerides over a 23-years period

(Orho-Melander et al. 2008) and the findings in DPP suggest that increased physical

activity and weight loss could partially mitigate this effect.

15.4 Interaction with Diet

Although environmental and genetic factors together are known to determine lipid

traits and the risk of multifactorial diseases including obesity, T2D, and cardiovas-

cular disease, still very little is known about the environmental influences on

genetic susceptibility or how genetic factors may modify the effects of environ-

mental exposures. The pivotal role of GKRP as a regulator of GCK in the liver and

hence hepatic glucose uptake and de novo lipogenesis makes the genetic variation

in GCKR that influences these key metabolic functions, particularly interesting for

studying the effects of modification by dietary exposures. In one of the largest

“diet� gene” interaction studies performed to date, a meta-analysis of data from 14

cohorts with a total of 48,000 participants of European descent, interactions
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between whole-grain intake and genetic variants associated with fasting glucose

and/or insulin levels were investigated for their interaction (Nettleton et al. 2010).

In line with several earlier studies, higher whole-grain intake was associated with

lower fasting glucose and insulin levels independent of demographics, other dietary

and lifestyle factors, and body mass index (BMI). For the majority of loci included,

the inverse association between whole-grain intake and fasting glucose or insulin

was not observed to be modified by allelic variation at the analyzed genetic loci.

However, effects were observed for carriers of the GCKR rs780094 on fasting

insulin where carriers of the insulin-raising allele (i.e., the allele that associates with

lower triglycerides) displayed a far less reduction in fasting insulin levels for their

whole-grain intake (Nettleton et al. 2010). This observed interaction may suggest

that genetic variation in GCKR could diminish the beneficial effects of whole-grain

foods on insulin homeostasis, possibly as a result of the marked effects of theGCKR
variant on both triglyceride and glucose levels and by extrapolation that the

mechanisms by which whole-grain intake improves insulin resistance could poten-

tially involve hepatic GCK. A further, albeit smaller study of 399 subjects reported

that the GCKR Pro466Leu variant may influence insulin resistance by interacting

with plasma omega-3-polyunsaturated fatty acid levels in patients classified as

having the metabolic syndrome (Perez-Martinez et al. 2009). In a recent study of

20,986 individuals of the European Prospective Investigation into Cancer (EPIC)-

Norfolk study, the association between the GCKR Pro446Leu with triglyceride

levels was not modified by the Mediterranean Diet Score (Sotos-Prieto et al. 2014).

15.5 GKRP and Its Role in Hepatic Glucose Storage and

Disposal

The central role for GCK in hepatic glucose storage and disposal and the impor-

tance of GKRP in regulating glucose phosphorylation by GCK have been under-

stood for some time. GKRP forms a cytosolic protein complex with GCK and

inhibits activity through nuclear import and storage. This process is initiated at low

glucose concentrations and then reversed at high glucose levels (Fig. 15.1a). The

cytosolic GCK–GKRP protein complex assembly and nuclear trafficking are fur-

ther modulated by phosphate esters. Both glucose and fructose 1-phosphate (F1P), a

product of fructose and sorbitol metabolism, oppose GCK–GKRP complex forma-

tion, nuclear sequestration, and the subsequent inhibition of GCK activity, while

fructose 6-phosphate (F6P), an intermediate of glycolysis, glycogenolysis, and

gluconeogenesis, enhances these actions in humans. Critically, studies working

with recombinant forms of rat (rGKRP) and human GKRP (hGKRP) have

highlighted differences in their ability to inhibit GCK (Brocklehurst et al. 2004).

While rGKRP does not appreciably inhibit GCK in the absence of F6P, the human

variety of the protein is much less dependent on F6P and can strongly inhibit GCK
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even in the absence of this modulator. Furthermore hGKRP has a 5–10-fold higher

affinity for F6P than rGKRP (Brocklehurst et al. 2004).

hepatocyte

F6P

+

F1P

-

hepatocyte

Plasma glucose Plasma glucose

glucose

glygogen, lactate, 
pyruvate, amino acids

glucose-6- P

Pro446Pro – GKRP Leu446Leu-GKRP

glycogenolysis
gluconeogenesis

glucose

glucose-6- P

a

b

Fig. 15.1 Schematic representation of hepatic GCK regulation by GKRP and the molecular

mechanism for the Pro446Leu-GKRP variant. (a) At low glucose concentrations GKRP binds to

GCK and sequesters it in the nucleus resulting in reduced GCK activity in the cytoplasm. At high

glucose concentrations GCK and GKRP disassociate and GCK is released into the cytoplasm

where it is metabolically active and available for glycolysis generating the precursors for de novo

lipogenesis. The interaction between GCK and GKRP is further regulated by the phosphate esters

fructose-6-phosphate (F6P) and fructose-1-phosphate (F1P) which bind at the same motif on

GKRP. GKRP inhibition of GCK is enhanced by F6P while F1P opposes the interaction between

the two proteins. (b) The Leu446Leu-GKRP protein is less able to both sequester GCK in the

nucleus and directly inhibit the regulatory protein. GCK is metabolically active leading to

increased glycolysis and triglyceride synthesis
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15.6 Functional Characterization of the Pro446Leu-GKRP

Protein

The early success with fine-mapping efforts and the fact the lead variant altered the

protein sequence of a strong biological candidate greatly facilitated efforts to

identify the molecular mechanisms driving the association of the Pro446Leu variant

with triglyceride and glucose levels. Kinetic characterization of human recombi-

nant proteins demonstrated that the Leu446-hGKRP protein resulted in a reduced

ability to inhibit GCK and that its regulation by the phosphate ester F6P was

impaired leading to a diminished ability of Leu446-hGKRP to inhibit GCK and

consequently glycolysis (Beer et al. 2009). These findings were entirely consistent

with the observed phenotype of the triglyceride-raising Leu446 allele also reducing

glucose levels, since increased glycolysis would simultaneously reduce fasting

glucose levels and increase synthesis of energy storage molecules including glyco-

gen, triglycerides, and cholesterol. Importantly, these findings were in stark contrast

to an earlier study using rGKRP where no differences were observed between

Leu446 and Pro446 rGKRP (Veiga-da-Cunha et al. 2003). The discrepancy is

most likely due to the differences in the kinetic characteristics between rGKRP

and hGKRP which were not appreciated at the time of the study (Brocklehurst et al.

2004).

It is well established that kinetic mechanisms alone are not sufficient to explain

GKRP regulation of GCK in vivo. Gckr�/� knockout mice display impaired

postprandial glucose handling and paradoxical reductions in GCK protein levels

and activity in spite of the removal of GKRP inhibition (Farrelly et al. 1999;

Grimsby et al. 2000). These observations strongly support a role for the nuclear

sequestration in regulating GCK protein concentration and stability and mainte-

nance of glucose homeostasis. In a follow-up study, the impact of the Pro446Leu

variant on intracellular localization of both GKRP and GCK was investigated in

HeLa cells and mouse primary hepatocytes (Rees et al. 2012b). Using a quantitative

method to assess nuclear and cytoplasmic fluorescence of tagged GKRP and GCK

proteins, the authors demonstrated reduced nuclear localization of Leu446-hGKRP

in HeLa cells and mouse primary hepatocytes compared to Pro446-hGKRP. Crit-

ically, the reduction in Leu446-hGKRP levels was accompanied by a reduced

nuclear sequestration of GCK compared to Pro446-hGRKP. Furthermore, a

decrease in the interaction between Leu4446-hGKRP and GCK compared to

Pro446-hGKRP was also demonstrated using fluorescence resonance energy trans-

fer (FRET) in both HeLa and mouse primary hepatocytes (Rees et al. 2012b). Taken

together these data suggest that in addition to the kinetic defects, Leu446-hGKRP

also leads to reduced glucose dependence in its cellular interaction with GCK

(Fig. 15.1b). Increased cytoplasmic levels of both hGRKP and GCK are also

consistent with increased glycolysis and glucose flux.

Similar to the species differences that have been observed for the kinetics of

GKRP, investigation of the cellular localization of rodent and human GKRP

revealed differences. The degree of nuclear sequestration of rGKRP was
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significantly reduced compared to hGKRP in both HeLa cells and mouse primary

hepatocytes and critically the abnormality in nuclear GCK sequestration for

Leu446-GKRP was only observed with hGKRP and not rGKRP (Rees et al.

2012b). These studies further emphasize the differences between human and rodent

GKRP and highlight the need for appropriate assays to decipher complex molecular

mechanisms driving human genetic association signals.

15.7 The Phenotypic and Functional Impact of Rare GCKR
Variants

The majority of studies performed to date have focused on triglycerides as a

continuous trait; however one GWAS compared individuals with extremely high

levels of triglycerides (>95th centile) to those with normal triglyceride levels using

a case–control design (Johansen et al. 2010). The authors reported an association of

the GCKR rs1260326 (Pro446Leu) variant with triglyceride levels and identified

three further genes (APOA5, APOB, LPL) associated with hypertriglyceridemia. In

one of the first studies to assess the role of rare variants in genes implicated in a

trait, they performed targeted exome sequencing of all four genes in additional

cases of hypertriglyceridemia and controls, identifying an enrichment of rare

(defined as minor allele frequency <0.01) nonsynonymous variants in cases. The

absolute count of rare GCKR variants was increased in cases compared to controls

(20 versus 5) suggesting that rare variants in GCKR may contribute to hypertrigly-

ceridemia. This study implicated for the first time a role for rare GCKR variants in

lipid phenotypes.

GCKR has also served as an important paradigm for exploring the challenges of

interpreting the impact and significance of rare coding variants on disease risk and

clinical phenotypes. Given the importance of both common and rareGCKR variants

in influencing lipids, T2D risk, and other metabolic phenotypes and the availability

of robust analytical pipelines for functional characterization, it became an obvious

gene to explore some of these issues. As part of the NIH ClinSeq project, GCKR
was selected as one of several genes for a targeted sequencing project in subjects at

increased risk of developing coronary artery disease (CAD) (Rees et al. 2012a).

Sequencing of 800 individuals identified 19 nonsynonymous (16 missense, one

nonsense, and two frameshift)GCKR variants; all but two (Pro446Leu, Arg540Gln)

had minor allele frequencies <0.01 in the cohort. At the time of the study, 10 of

these variants were novel. Having established that the Pro446Leu variant was

associated with triglyceride levels in this cohort, the potential impact of rare coding

variants on lipid phenotypes was explored. The initial comparison of the collective

group of individuals harboring a rare variant compared to the wild-type

(Pro446Pro) reference group suggested a relationship with triglyceride and choles-

terol levels; however this approach included all variants whether they were neutral

or had altered function and did not distinguish between those that cause loss (LOF)
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or gain of function (GOF), which could diminish statistical power. Given the rarity

of these variants, it was not practical to find large numbers of subjects with a

specific GCKR variant for detailed phenotyping, so to evaluate the contribution of

each variant to triglyceride levels, it was necessary to explore evolutionary, cell

biological, and biochemical effects of each GCKR variant.

At the time of the study, no crystal structure for GKRP was available, although

this has recently been published (Pautsch et al. 2013). Structural information was

extrapolated from homology to bacterial proteins of the sugar isomerase (SIS)

family which contains two separate SIS domains that combine to form a single

site capable of binding to F1P or F6P (Veiga-da-Cunha and Van Schaftingen 2002;

Veiga-da-Cunha et al. 2009). From these analyses it was possible to shed insight on

some variants which were predicted to reside within a sugar binding motif (e.g.,

Val103Met) and hence impact on phosphate ester binding. A comprehensive range

of in silico programs were employed to assess the potential impact of the amino

acid substitutions on GKRP protein function revealing little agreement between

them and poor concordance with empirical data (Rees et al. 2012a). However, using

a suite of cellular and kinetic assays, similar to those employed earlier for the

Pro446Leu variant, it was possible to group the variants into those which were wild-

type like (neutral) and those which led to either LOF or GOF.

As a group, individuals with rare LOF GCKR variants showed a significant

increase in total cholesterol, LDL cholesterol, and triglyceride levels for this

subgroup compared with the wild-type (Pro446) reference group (Rees et al.

2012a). The variants in this group resembled Leu446-hGKPR, showing varying

degrees of reduced expression, nuclear localization, GCK sequestration, and inter-

action with phosphate esters. However, while the functional effects resembled those

of Leu446-hGKRP, they displayed a range in magnitude of functional defects with

the most severe LOF variants (e.g., Val103Met) forming very little if any functional

protein, similar to a null mutation. On the other hand, the potential GOF mutations

were found in the conserved C-terminal restudies of GKRP and greatly reduced

GKRP nuclear localization and GCK sequestration while maintaining high protein

expression and cytoplasmic interaction with GCK. Furthermore, the kinetics of

these variants (e.g., Arg612Cys) showed no differences to wild-type hGKRP. These

findings highlighted a potential and previously unknown role for the C-terminal

residues in the molecular mechanisms for localizing GKRP to the nucleus (Rees et

al. 2012a).

In addition to the valuable mechanistic insights gained from this painstaking

work, the study served two key points. First it demonstrated the poor performance

of currently available and widely used in silico prediction programs in assigning

functionality to rare nonsynonymous variants. Second, it showed the value of

functional studies for the correct assignment of pathogenicity as evidenced by an

improved ability to detect genetic associations (Rees et al. 2012a). Unfortunately,

these kinetic and cellular assays are expensive and time consuming, making their

wider use impractical. However, recent efforts to establish a series of high-through-

put cell-free miniaturized assays for characterizing the GCK:GKRP interaction
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offer the promise of a platform to simultaneously test multiple rare nonsynonymous

GCKR variants in the future (Rees et al. 2014).

15.8 Outlook

The genetic discoveries described above have highlighted a previously underap-

preciated central role for GKRP in a wide range of metabolic processes in the liver.

Through the initial serendipitous finding of a coding variant, driving these genetic

associations, substantial progress has been made in our understanding of the

molecular mechanism driving GKRP dysfunction. However, many questions

remain unanswered, particularly with reference to the more unexpected pleiotropic

associations (e.g., CRP levels) and how altering a regulator of hepatic glucose

disposal influences a marker of inflammation. Given the emerging interest in small

molecular disruptors of the GKRP:GCK complex as a potential therapeutic agent to

treat T2D, close scrutiny of available human genetic data is likely to be of

considerable value when evaluating the potential for adverse on-target side effects

(Lloyd et al. 2013). Many of the rare variants studied to date exert their impact on

GKRP function in a similar manner to these small molecular disruptors by

preventing the GKRP:GCK complex (Lloyd et al. 2013; Rees et al. 2012a, b).

Increasing our understanding of how deterministic these functional variants are for

influencing triglyceride levels and other relevant phenotypes is likely to be of

considerable interest. Furthermore, a more comprehensive understanding of the

spectrum of GKRP defects could identify an optimal therapeutic window for

manipulation of hepatic glucose homeostasis.
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Chapter 16

Genetic and Functional Studies Implicate

G6PC2 in the Regulation of Fasting Blood

Glucose

Nabila Bouatia-Naji and Richard M. O’Brien

Abstract Genome-wide association studies (GWAS) have shown that single-

nucleotide polymorphisms (SNPs) in G6PC2 are the strongest common determi-

nants of variations in fasting blood glucose (FBG) levels. Despite significant allelic

heterogeneity, studies in diverse genetic backgrounds confirmed the role of this

gene as a determinant of FBG in a manner independent from the risk of type

2 diabetes. Molecular studies examining the functional impact of these SNPs on

G6PC2 gene transcription and splicing suggest that they affect FBG by directly

modulating G6PC2 expression. This conclusion is supported by studies on G6pc2
knockout (KO) mice showing that G6pc2 represents a negative regulator of basal

glucose-stimulated insulin secretion that acts by hydrolyzing glucose-6-phosphate,

thereby reducing glycolytic flux and opposing the action of glucokinase. Suppres-

sion of G6PC2 activity might therefore represent a novel therapy to lower FBG and

thereby perhaps influence the risk of cardiovascular-associated mortality. GWAS

andG6pc2 KOmouse studies also suggest that G6PC2 affects other aspects of beta-

cell function. The evolutionary benefit conferred by G6PC2 remains unclear, but it

is likely to be related to its ability to acutely modulate glycolytic flux rather than

establish the long-term set point for FBG.
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16.1 Introduction

It is well established that type 2 diabetes (T2D) and its related quantitative traits,

such as fasting blood glucose (FBG), are highly heritable, with heritability esti-

mates for FBG that are higher than those for T2D (Mills et al. 2004; Poulsen

et al. 2001). There is also important epidemiological evidence that supports a linear

relationship between glucose levels and cardiovascular-associated mortality, even

below the glucose threshold for T2D (Balkau et al. 1999; Coutinho et al. 1999). On

the other hand, important determinants of T2D risk did not initially appear to

markedly impact the variability in FBG in large general populations (Cauchi

et al. 2006), which motivated studies into the genetic basis of FBG using hypothesis-

free approaches. Over the past 5 years, through the power of genome-wide asso-

ciation studies (GWAS), there has been an explosion in our knowledge with respect

to the identity of the genetic loci that influence quantitative traits such as fasting

blood glucose (FBG) levels, glycated hemoglobin A1C (HbA1c) levels (Chap. 3),

and the loci associated with increased risk for the development of T2D (Chap. 2)

and obesity (Chap. 4).

With respect to the genes linked to variations in FBG, multiple GWAS have

shown that the G6PC2 locus harbors the strongest common genetic determinant of

FBG levels in terms of significance and effect size with a common single-nucleotide

polymorphism (SNP), rs560887, explaining ~1 % of the total variance in FBG

(Chap. 3) (Bouatia-Naji et al. 2008; Chen et al. 2008b; Prokopenko et al. 2008;

Reiling et al. 2009; Dupuis et al. 2010; Hu et al. 2009, 2010; Tam et al. 2010).

Common variants in the GCK gene, which encodes glucokinase, have also been

linked to variations in FBG, but the influence of these common GCK variants on

FBG is less than that of the common variants in G6PC2 (Bouatia-Naji et al. 2008;

Dupuis et al. 2010). This observation highlights a critical point, namely, that the

magnitude of the effect of common gene variants identified through GWAS does

not necessarily correlate with the importance of the gene in relation to the param-

eter under investigation. With respect to G6PC2 and GCK, deletion of the G6pc2
gene in mice has a mild metabolic phenotype (Wang et al. 2007; Pound et al. 2013),

and rare mutations in G6PC2 are not a cause of monogenic forms of diabetes

(Bonnefond et al. 2009). In contrast, deletion of the Gck gene in mice is lethal

(Grupe et al. 1995) and rare heterozygous inactivating mutations in GCK are a

cause of maturity-onset diabetes of the young, which is characterized by mild

fasting hyperglycemia, whereas homozygous inactivating glucokinase mutations

result in permanent neonatal diabetes mellitus, which is characterized by severe

hyperglycemia (Osbak et al. 2009). In contrast, glucokinase activating mutations

result in hyperinsulinemia leading to hypoglycemia (Osbak et al. 2009). These rare

GCK mutations have provided fascinating molecular insights into the function of

glucokinase (Osbak et al. 2009) and, along with mouse models of Gck
overexpression (Magnuson et al. 2003) and tissue-specific deletion (Grupe

et al. 1995; Postic et al. 1999), have contributed greatly to the recognition that

glucokinase is the pancreatic islet beta-cell glucose sensor (Matschinsky 2005). Far

less is known about the G6PC2 gene, which is the focus of this chapter.
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16.2 G6PC2 Was the First Genetic Determinant of FBG

Identified by GWAS

In 2008, two large collaborative studies in European populations were published

describing for the first time a very strong statistical signal of association with FBG

on Chr2q31.1. One study, conducted by Chen et al. (2008b), identified rs560887 as

the strongest FBG-associated signal based on two GWAS including a total of 5088

nondiabetic individuals from Finland and Sardinia. The SNP followed up for

replication was rs563694, which is in very high linkage disequilibrium (LD) with

rs560887. This study also highlighted the strong LD that exists between several

SNPs that show very low statistical P-values for association with FBG. These SNPs
are located not only in G6PC2 but also in the intronic regions of the adjacent

ABCB11 gene, which encodes the ATP-binding cassette subfamily B (MDR/TAP)

member 11, making both genes putative candidates to explain the association with

FBG observed on Chr2q31.1 (Chen et al. 2008b).

A second study, conducted by Bouatia-Naji et al. (2008), independently reported

the association of rs560887 with FBG following a GWAS in 654 normoglycemic

participants from the French cohort DESIR and a replication sample in ~10,000

people, including young Finnish adolescents and obese French children. rs560887

is located 21 bp upstream the third intron of the glucose-6-phosphatase catalytic

subunit 2 (G6PC2) gene (Bouatia-Naji et al. 2008). In addition, this study showed

that no SNP genotyped or imputed in the Chr2q31.1 region that associates with FBG

at a P< 0.05 remained associated after conditional regression analyses on rs560887

(Bouatia-Naji et al. 2008). In a very large meta-analysis of GWAS data that

included ~120,000 participants from MAGIC, rs560887 was confirmed as the

most significantly associated variant with FBG with a 0.075 mmol/l increase per

G allele (P¼ 8.5� 10�122) (Dupuis et al. 2010). Both Chen et al. (2008b) and

Bouatia-Naji et al. (2008) demonstrated that a common variant in the GCK gene,

which encodes glucokinase, was also associated with FBG at the genomic level,

consistent with previous candidate gene studies (Weedon et al. 2006).

16.3 Confirmation of G6PC2 as a Genetic Determinant

of FBG in Non-Europeans and a Genetic Isolate

Several later studies supported the association of variants in regulatory and coding

regions of G6PC2 with FBG. These included confirmatory studies in European

cohorts (Reiling et al. 2009; Rose et al. 2009) and several large-scale multiethnic

studies in populations of Asian and African descent. Of note, rs560887 exhibits

major differences in allele frequency across ethnic groups. According to data from

the 1000 Genomes Project, rs560887 is not polymorphic in the Yoruba population

and the G allele is at a frequency of 0.97 in Han Chinese. Despite this complication,

multiethnic studies supported a role for G6PC2 in the regulation of FBG based on
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the association of other G6PC2 variants, that are more frequent in these ethnicities,

with FBG. In a GWAS conducted in ~5700 nondiabetic Indian Asians, several

SNPs were associated with FBG, including rs1402837, which is located 50 of the
G6PC2 gene, that reached genome-wide significant association (P¼ 2� 10�8)

(Chambers et al. 2009). This study also described the replication of the effect of

rs560887 with FBG in Indian Asians (P¼ 9� 10�5) and highlighted the important

difference (P¼ 1.4� 10�146) in terms of frequency for the effect allele of rs560887

between Europeans (frequency of G allele ¼0.69) and Indian Asians

(frequency¼ 0.85), which explains the lack of power in this ethnic group for

detecting a stronger association for this SNP as achieved in the European cohorts

(Chambers et al. 2009). In two Chinese populations, an association with FBG was

reported for rs16856187, a genetic variant located 30 region of the G6PC2 gene,

which is present with a higher frequency in Chinese (minor allele frequency

[MAF]¼ 0.29) compared to Europeans (MAF< 0.01) (Hu et al. 2009; Tam

et al. 2010).

In a study including Japanese and Sri Lankan populations, rs3755157, located in

an intronic region of ABCB11, showed stronger association with FBG than

r560887, which is not surprising given the allelic heterogeneity and low frequency

of the variant allele at rs560887 in Asian populations. In the only study reported in

an African American population, rs560887 was not polymorphic, and the analyses

of the effect of 46 additional SNPs spanning 61.2 kb at G6PC2 locus showed

marginal contribution of this locus to FBG (Ramos et al. 2011), although the ability

to detect true signals may have been affected by the modest sample size (n¼ 927).

Larger GWAS and sequencing studies are required to assess the role of this locus in

this ethnic group.

A recent study by Service et al. (2014) conducted in a Finnish population, which

is a known genetic isolate, demonstrated the utility of the latter approach. Using

targeted resequencing of 78 genes located close to 17 GWAS loci associated with

lipids and glycemic traits, the authors identified a variant in G6CP2 with a sixfold

higher frequency in Finnish (His177Tyr; rs138726309; MAF¼ 0.014 in Finnish

vs. MAF¼ 0.0023 in the European ancestry samples in the Exome Variant Server:

http://evs.gs.washington.edu/EVS/, P< 10�16). This variant changes a highly con-

served amino acid and strongly associates with FBG and is predicted in silico to be

functional (Service et al. 2014). This association was independent from rs560887,

though the effect is in the same direction with the low-frequency alleles associating

with lower FBG (Service et al. 2014). No other variant among the 97 SNPs

identified by the resequencing of the five genes at this locus, including those

identified in ABCB11, associates with FBG (Service et al. 2014). This result for a

coding variant inG6PC2 itself effectively pinpointsG6PC2 as the causative gene at
this associated locus.

Altogether, these genetic data, which are based on multiple cohorts and ethnic

groups, all show that a Chr2q31.1 locus is a major genetic determinant of FBG with

almost all these studies pointing to variants in the G6PC2 as the gene explaining

this genetic association (Fig. 16.1). The molecular and physiological studies

described below suggest that G6PC2 directly modulates FBG.
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16.4 Functional Analyses of SNPs That Modulate G6PC2
Splicing and Gene Transcription

Several studies have examined the molecular effects of SNPs on G6PC2 splicing

and gene transcription. Two SNPs in the G6PC2 promoter, rs13431652 and

rs2232316, were shown to affect G6PC2 fusion gene expression by modulating

NF-Y and Foxa2 binding, respectively (Bouatia-Naji et al. 2010; Baerenwald

et al. 2013). In addition, two SNPs in the third G6PC2 intron, rs560887 and

rs2232321, were shown to affect G6PC2 RNA splicing (Baerenwald et al. 2013),

likely by modulating the strength of a branch point sequence, a key element in RNA

splicing (Sharp 1994; Solis et al. 2008). The in vitro and in situ molecular data

suggest that all four SNPs are potentially causative since the allele that results in

elevated G6PC2 expression is associated with elevated FBG (Bouatia-Naji
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Fig. 16.1 Genomic association of the G6PC2 locus with FBG.

Panel A shows the genomic context of the SNPs on Chrq31.1 that are associated with FBG and was

generated using LocusZoom (Pruim et al. 2010) based on the latest MAGIC meta-analysis of

GWAS data (Scott et al. 2012). Panel B shows key G6PC2 SNPs with those that have been

assessed in functional experiments underlined. The SNPs shown in red are the most likely to be

causal: rs560887 shows the highest level of statistical association and alters G6PC2 RNA splicing

(Baerenwald et al. 2013); rs13431652, which is in strong LD with rs560887, alters NF-Y binding

and G6PC2-luciferase fusion gene expression in vitro (Bouatia-Naji et al. 2010) and is located

within an islet enhancer (Pasquali et al. 2014). The SNPs shown in green are low-frequency

variants that have been demonstrated (rs223216 and rs2232321) or are predicted in silico

(rs138726309) to be functional. The relationship between those SNPs shown in purple and FBG

is controversial at either a functional (rs573225) or genetic (rs563694) level
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et al. 2010; Baerenwald et al. 2013). In contrast, for another G6PC2 promoter SNP,

rs573225, that also affects G6PC2 fusion gene expression by modulating Foxa2

binding, the allele that results in elevated G6PC2 expression is associated with

reduced FBG (Bouatia-Naji et al. 2010; Baerenwald et al. 2013), suggesting that

rs573225 is a functional SNP that opposes the action of causative SNPs on G6PC2
expression (Bouatia-Naji et al. 2010; Baerenwald et al. 2013), a conclusion that

contrasts with an earlier study (Dos Santos et al. 2009). A recent study that mapped

and examined the function of human islet cis-regulatory networks showed that the

rs13431652 promoter variant, though not the rs573225 promoter variant, is located

within an enhancer cluster (Pasquali et al. 2014). This finding further supports the

functional role of this promoter variant in the regulation of G6PC2.

16.5 Challenges in the Identification of Causative

G6PC2 SNPs

There are several key limitations in the analysis of G6PC2 causative SNPs. First,

because these SNPs are in high LD, it is difficult to definitely determine whether

one or all of these SNPs are truly causative (Bouatia-Naji et al. 2010; Baerenwald

et al. 2013). Second, for G6PC2, testing for the association of these SNPs in

non-European populations in an attempt to identify a minimal haplotype that

could include the functional variant is compromised by the very high allelic

heterogeneity of this locus across ethnic groups (Hu et al. 2010; Ramos

et al. 2011). Third, because the G6PC2 gene is only expressed in pancreatic islet

beta cells and because the effects of these SNPs are subtle, the lack of sufficient

human samples has limited the ability to correlate genotypes with endogenous

G6PC2 expression. Finally, multiple caveats are associated with analyzing

G6PC2 promoter SNPs using fusion genes in islet-derived cell lines (Bouatia-

Naji et al. 2010; Baerenwald et al. 2013). Furthermore, most of these cell lines

are derived from rodent islets, and recent studies suggest the existence of significant

differences between rodent and human islets (Dai et al. 2012).

16.6 Challenges in the Demonstration of a Causative Role

for G6PC2 in the Regulation of FBG

As described in Part II of this book, following up on the genes implicated by GWAS

in an effort to understand how particular genes contribute to disease risk is a

difficult proposition because in many instances, the SNPs that have been linked

to disease risk fall in intergenic regions. As such, identifying the disease-related

gene(s) associated with these SNPs is a significant challenge. In some cases, these

intergenic SNPs may impact the function of transcriptional control structures, such
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as enhancers and silencers (Cecchini et al. 2009), such that the genes whose

expression are affected may be located a considerable distance from the SNP,

though in the literature the nearest gene is often assumed to be the likely candidate.

Indeed, as noted above, the G6PC2 rs13431652 promoter variant is located within

an enhancer cluster (Pasquali et al. 2014). This implies that this SNP might not only

modulate G6PC2 expression but also that of distant genes. Similarly, even though

molecular studies show that rs560887 affects G6PC2 RNA splicing (Baerenwald

et al. 2013), Taneera et al. (2012) have suggested that rs560887 also acts in trans to
modulate the expression of multiple other genes.

The complexity of these genetic and molecular data demonstrates the impor-

tance of physiological and biochemical experiments to investigate the function of

G6PC2.

16.7 Correlation Between Genetic Association in Humans

and Knockout Mouse Data with Respect

to the Regulation of FBG by G6PC2

Data from knockout (KO) mouse studies strongly support the hypothesis that

genetic variation within the G6PC2 gene, rather than surrounding genes, directly

contributes to variations in FBG in humans. Thus, a ~15 % decrease in FBG is

observed following a global KO of G6pc2 in mice (Wang et al. 2007; Pound

et al. 2013). This decrease in FBG is observed when G6pc2 KO mice are studied

on a mixed (Wang et al. 2007) or pure C57BL/6J (Pound et al. 2013) genetic

background. Importantly, the direction of the effect of G6pc2 deletion on FBG is

consistent with the molecular analyses of the impact of SNPs onG6PC2 expression.
For example, the rs560887 allele that is associated with reduced G6PC2 RNA

splicing, required to generate a functional transcript, is associated with reduced

FBG (Baerenwald et al. 2013).

16.8 Correlation Between Genetic Association in Humans

and Biochemical Data with Respect to the Regulation

of FBG by G6PC2

16.8.1 G6PC2 Encodes a Glucose-6-Phosphatase Catalytic
Subunit Expressed Exclusively in Pancreatic Islet
Beta Cells

Glucose-6-phosphatase catalyzes the hydrolysis of glucose-6-phosphate (G6P) to

glucose and inorganic phosphate (Mithieux 1997; Foster et al. 1997; van de Werve
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et al. 2000; Van Schaftingen and Gerin 2002; Hutton and O’Brien 2009). It exists as
a multicomponent system located in the endoplasmic reticulum and is composed of

several integral membrane proteins, namely, a catalytic subunit (G6PC), a glucose

transporter, and a G6P/inorganic phosphate antiporter (Mithieux 1997; Foster

et al. 1997; van de Werve et al. 2000; Van Schaftingen and Gerin 2002; Hutton

and O’Brien 2009). Three G6PC isoforms have been identified, designated G6PC,

G6PC2, and G6PC3 (Hutton and O’Brien 2009). Each isoform is encoded by a

separate gene with a distinct pattern of tissue-specific expression (Hutton and

O’Brien 2009). G6PC2 was originally named IGRP, which stands for islet-specific

glucose-6-phosphatase catalytic subunit-related protein (Arden et al. 1999; Ebert

et al. 1999). The gene is expressed exclusively in pancreatic islet beta cells (Hutton

and Eisenbarth 2003). G6PC2 is a major autoantigen in both mouse (Lieberman

et al. 2003; Han et al. 2005; Mukherjee et al. 2005) and human (Yang et al. 2006;

Jarchum et al. 2008) type 1 diabetes, but interestingly, G6PC2 SNPs are not

associated with type 1 diabetes risk (https://www.t1dbase.org/page/Regions/dis

play/species/human/disease/T1D/type/assoc).

16.8.2 The Mechanism of FBG Regulation by G6PC2

A comparison of glucose-6-phosphatase activity in islets isolated from wild-type

and G6pc2 KO mice indicates that activity is abolished in the latter (Pound

et al. 2013). These data led to the simple hypothesis that G6pc2 acts as a negative

regulator of basal glucose-stimulated insulin secretion (GSIS) by hydrolyzing G6P

and thereby opposing the action of the glucose sensor, glucokinase (Matschinsky

1996; Iynedjian 2009) (Fig. 16.2). This glucokinase/G6pc2 futile substrate cycle is

predicted to reduce glycolytic flux and hence insulin secretion (Pound et al. 2013).

Consistent with this model and human genetic association data, a reduction in

G6pc2 expression results in a leftward shift in the dose–response curve for GSIS

explaining why, under fasting conditions, blood glucose levels are reduced (Pound

et al. 2013).

16.9 Do Genetic Association Studies and Knockout Mouse

Data Resolve the Historical Controversy Over Islet

Glucose-6-Phosphatase?

Since liver is the organ primarily responsible for glycogenolysis and gluconeogen-

esis during fasting (Mithieux 1997; Foster et al. 1997; van de Werve et al. 2000;

Van Schaftingen and Gerin 2002; Hutton and O’Brien 2009) and islets do not

express the key gluconeogenic enzyme phosphoenolpyruvate carboxykinase

(MacDonald et al. 1992), historically the role of glucose-6-phosphatase activity in
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pancreatic islets has been highly controversial. Initially there was a debate over

whether such activity even existed in islets though over time the majority of studies

found that activity was detectable but at a lower level than that found in the liver

(Waddell and Burchell 1988; Foster et al. 1997; Arden et al. 1999; Perales

et al. 1991; Trandaburu 1977; Sweet et al. 1997). However, the harder issue to

resolve is whether the level of activity is enough to affect glycolytic flux and hence

GSIS and therefore be of physiological significance. Several groups have investi-

gated this question through studies on isolated rat and mouse islets.

16.9.1 Glucose Cycling in Isolated Rat Islets

Sweet et al. (1997) concluded that while glucose-6-phosphatase activity is present

in rat islets, the level of activity is not enough to result in sufficient G6P hydrolysis

so as to affect GSIS. However, the relevance of these rat islet data to the human

GWAS data is unclear because, in contrast to all other vertebrate species examined

(see http://genome.ucsc.edu/), G6PC2 is a pseudogene in rats (Martin et al. 2001).

Depolarization
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Pyruvate

ATP/ADP
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Fig. 16.2 G6PC2 regulates GSIS by opposing the action of glucokinase.

The model shows the best-characterized pathway for GSIS, though studies on potassium channel

mutations indicate that other pathways clearly contribute (Jensen et al. 2008). The glucose-6-

phosphate (G6P) transporter (G6PT) and inorganic phosphate transporter are shown in the same

color to indicate the fact that G6PT is actually a G6P:Pi antiporter (Chen et al. 2008a). The model

proposes that G6PC2 regulates GSIS by opposing the action of glucokinase, but it also suggests

that G6PC2 might modulate islet calcium metabolism through its ability to promote the generation

of inorganic phosphate in the endoplasmic reticulum lumen resulting in the retention of calcium

(Wolf et al. 1986) (Modified from Pound LD, Oeser JK, O’Brien TP, Wang Y, Faulman CJ, Dadi

PK, Jacobson DA, Hutton JC, McGuinness OP, Shiota M, O’Brien RM: G6PC2: A Negative

Regulator of Basal Glucose-Stimulated Insulin Secretion. Diabetes 2013;62:1547–1556) (Pound

et al. 2013)
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The observations of Sweet et al. (1997) and the absence of G6PC2 in rats raise the

question as to what benefit islet glucose-6-phosphatase activity confers to mice and

humans that is dispensable to rats. However, three observations suggest that the

premise of this question is not well founded. First, rat islets express low levels of the

G6PC isoform, whereas microarray data show no expression of G6pc or G6pc3 in

mouse islets (unpublished data). G6PC is predominantly expressed in the liver and

kidney where it catalyzes the final step in the gluconeogenic and glycogenolytic

pathways (Mithieux 1997; Foster et al. 1997; van de Werve et al. 2000; Van

Schaftingen and Gerin 2002; Hutton and O’Brien 2009), but in various rat models

associated with impaired glucose tolerance, G6PC expression is induced (Khan

et al. 1990b; Laybutt et al. 2003; Tokuyama et al. 1995). Second, Pedersen

et al. (2007) have demonstrated that the rat G6PC promoter is activated strongly

by glucose, much more so than the mouse or human G6PC promoters. This implies

that the estimates of G6P hydrolysis in rat islets will be very dependent on the

glucose concentration in the culture medium and hence the level of induction of

G6PC. Third, G6PC is ~20-fold more active than G6PC2 (Petrolonis et al. 2004)

such that much less G6PC is required in rat islets to catalyze an equivalent rate of

G6P hydrolysis as observed in mouse islets. It therefore appears that G6PC may

play the same role in rat islets as G6PC2 does in human and mouse islets.

16.9.2 Glucose Cycling in Isolated Mouse Islets

Several groups have also examined G6P hydrolysis in mouse, rather than rat islets.

One early study suggested that even though glucose-6-phosphatase activity is

present in mouse islets, G6P hydrolysis does not occur (Ashcroft and Randle

1968). While this conclusion appears counterintuitive, it could be explained if

G6P entry into the ER lumen was restricted. Nevertheless, this conclusion was

challenged by later studies, which showed that the measurement of G6P hydrolysis

within islets is critically dependent on experimental conditions (Khan et al. 1989;

Chandramouli et al. 1991). The G6pc2 KO mouse data described above, and

especially the demonstration that G6pc2 accounts for the low glucose-6-phosphatase

enzyme activity detected in mouse islets (Pound et al. 2013), would seem to resolve

the historical controversy over the importance of glucose-6-phosphatase activity in

islets. However, two potential caveats remain.

The first potential caveat relates to the fact that estimates of glucose cycling in

mouse pancreatic islets are very low (Khan et al. 1990a). However, these estimates

of glucose cycling were generated using radioisotopes, and the methodology

involved is associated with a number of assumptions (Khan et al. 1989;

Chandramouli et al. 1991). To avoid these assumptions, it will be essential to

reassess the level of glucose cycling in pancreatic islets using more recently

developed stable isotope methodology (Jazmin and Young 2013). If the rates of

glucose cycling calculated using this technology are greater than previously esti-

mated using radioisotopes, then this would support the hypothesis that G6PC2
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directly influences GSIS through its ability to hydrolyze G6P. The second potential

caveat is that because the glucose-6-phosphatase activity of G6PC2 is ~20-fold

lower than that of G6PC (Petrolonis et al. 2004; Pound et al. 2013), it heightens the

concern that G6PC2 may be influencing GSIS through a mechanism independent of

its ability to hydrolyze G6P. Indeed, all three G6PC isoforms possesses a phospha-

tidic acid phosphatase domain (Martin et al. 2002) raising the possibility that they

may also have lipid substrates.

16.10 Human Genetic Association Studies Provide Novel

Insights into the Influence of G6PC2 on GSIS

Another potential caveat concerning the function of G6PC2 in pancreatic islets

relates to the unexpected effects of altered G6PC2 expression on insulin secretion

during glucose tolerance tests. This issue was initially uncovered through the

analysis of GWAS data rather than the analysis of G6pc2 KO mice. This provides

an interesting example of how genetic association data can not only provide insight

into genes linked to the initial parameter under investigation but also provide

insight into other functions of the genes identified.

16.10.1 G6PC2 Does Not Influence Glucose Tolerance
in Mice

As mentioned above, a reduction in G6pc2 expression results in a leftward shift in

the dose–response curve for GSIS explaining why, under fasting conditions, blood

glucose levels are reduced (Pound et al. 2013). But under conditions of elevated

blood glucose, this same leftward shift arising from a reduction in G6pc2 expres-

sion should result in increased GSIS. Indeed, in perfused pancreas studies compar-

ing pancreata from wild-type and G6pc2 KO mice, GSIS is increased in the KO

pancreata at submaximal glucose concentrations (Pound et al. 2013). Likewise, in

isolated islet studies comparing islets from wild-type and G6pc2 KO mice, GSIS is

increased in the KO islets at submaximal glucose concentrations (Pound

et al. 2013). This increased insulin secretion at submaximal glucose concentrations

might be predicted to result in improved glucose tolerance in G6pc2 KO mice.

However, neither intraperitoneal and oral glucose tolerance tests show major

differences in glucose tolerance or insulin secretion between WT and G6pc2 KO

mice over a range of glucose concentrations (Pound et al. 2013). This result likely

reflects the fact that glucose tolerance tests, in which blood glucose levels vary over

time, are not the optimal assays for detecting the influence of G6PC2 on GSIS.

Instead, examining GSIS in wild type and KO mice at submaximal glucose con-

centrations, as used in the isolated islet and perfused pancrease studies described

above, is required.

16 Genetic and Functional Studies Implicate G6PC2 in the Regulation of. . . 347



16.10.2 G6PC2 Does Not Influence Glucose Tolerance
in Humans

These observations in G6pc2 KO mice are consistent with earlier human genetic

data showing no association between G6PC2 and glucose tolerance (Li et al. 2009;

Rose et al. 2009; Ingelsson et al. 2010; Heni et al. 2010). Human genetic data also

showed that G6PC2 is not associated with variations in insulin sensitivity in

humans (Li et al. 2009; Rose et al. 2009; Ingelsson et al. 2010; Heni et al. 2010),

an observation that was confirmed in G6pc2 KO mice (Pound et al. 2013). To

further complicate the situation, human GWAS data show that the SNP within the

G6PC2 gene that is associated with reduced G6PC2 expression (Baerenwald

et al. 2013) and reduced FBG (Bouatia-Naji et al. 2008) is actually associated

with a reduction in insulin secretion during glucose tolerance tests rather than the

expected increase (Li et al. 2009; Rose et al. 2009; Ingelsson et al. 2010; Heni

et al. 2010). So in humans, reduced G6PC2 expression appears to promote glyco-

lytic flux leading to reduced FBG, but this enhanced flux not only fails to enhance

glucose tolerance during a glucose challenge but it is actually associated with a

decrease in insulin secretion during that glucose challenge. The data with G6pc2
KO mice appear slightly different to the human GWAS data in that a similar

reduction in insulin secretion was not observed in G6pc2 KO mice during glucose

tolerance tests (Pound et al. 2013). However, this may simply be due to the

relatively low number of animals analyzed (Pound et al. 2013) relative to the vast

number of humans analyzed in genetic association studies (Li et al. 2009). Thus

mouse data are inherently noisy in that significant variations in insulin sensitivity,

and hence insulin secretion, are observed even within inbred C57BL/6 J mice (Koza

et al. 2006). The key consistent observation is that in both mice and humans,

reduced G6PC2 expression does not lead to an improvement in glucose tolerance.

16.10.3 G6PC2 May Influence the Pulsatility of Insulin
Secretion

The unexpected association between reduced G6PC2 expression and reduced

insulin secretion during glucose tolerance tests in humans has been hypothesized

to indicate that either G6PC2 affects the pulsatility of insulin secretion

(Li et al. 2009) or that it affects hepatic glucose production rather than beta-cell

function (Heni et al. 2010). The latter explanation appears highly unlikely since

human G6PC2 (Martin et al. 2001; Bouatia-Naji et al. 2008) and mouse G6pc2
(Arden et al. 1999; Hutton and O’Brien 2009) are only expressed in islets and not in
the liver. Furthermore, while the neighboring ABCB11 gene is expressed in the

liver, its potential role as the molecular mediator of the genetic association between

variants at Chr2q.31.2 and FBG has been ruled out as a result of transethnic genetic

studies (Chambers et al. 2009; Hu et al. 2010; Takeuchi et al. 2010) and through
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resequencing of candidate genes at this locus (Service et al. 2014). In contrast a

change in the pulsatility of insulin secretion, and hence the efficacy of insulin

signaling, would provide an elegant explanation as to how reduced G6PC2 expres-

sion could lead to a reduction in insulin secretion that is not associated with a

counterbalancing change in glucose tolerance or insulin sensitivity (Li et al. 2009;

Rose et al. 2009; Ingelsson et al. 2010; Heni et al. 2010).

16.10.4 G6PC2 May Influence Islet Calcium Localization

Whether the absence of G6pc2 in mice affects the pulsatility of insulin secretion is a

key question that remains to be addressed. However, if this is the explanation for the

reduced insulin secretion during glucose tolerance tests in humans, then the ques-

tion arises as to whether the ability of G6PC2 to influence the pulsatility of insulin

secretion is dependent on its ability to hydrolyze G6P or some other function,

perhaps connected with the phosphatidic acid phosphatase domain mentioned

above (Martin et al. 2002). The generation of a transgenic model in which a mutated

form of G6pc2 lacking glucose-6-phosphatase activity is expressed in the G6pc2
KO mice might provide insight into this question. Merrins et al. (2010) have

elegantly shown that pulsatile insulin secretion is driven by metabolic oscillations

and that the magnitude of the pulses can be amplified by raising intracellular

calcium levels. This then raises the question as to whether G6PC2 might affect

metabolic oscillations, intracellular calcium levels, or both. Merrins et al. (2012)

have recently shown that metabolic oscillations in islets are initiated at an early

stage in glycolysis with the mechanism likely involving the autocatalytic feedback

of fructose 1,6-bisphosphate onto phosphofructokinase 1, with phosphofructoki-

nase 1 being activated by its product resulting in the subsequent depletion of its

substrate (Bertram et al. 2010). Based on these data, it would appear more likely

that G6PC2 affects pulsatile insulin secretion through an action on intracellular islet

calcium levels rather than metabolic oscillations. Indeed, basal cytoplasmic cal-

cium levels are enhanced in islets isolated from G6pc2 KO mice (Pound

et al. 2013). This increase was interpreted as a secondary event resulting from the

enhanced rate of glycolytic flux (Pound et al. 2013), but, based on the studies of

Merrins et al. (2010), if this difference was instead, at least in part, a primary

consequence of G6pc2 deletion, then a difference in intracellular calcium between

wild-type and G6pc2 KO islets would be predicted to be associated with altered

pulsatile insulin secretion. Indeed G6PC2 might modulate islet calcium metabolism

through its ability to promote the generation of inorganic phosphate in the endo-

plasmic reticulum lumen resulting in the retention of calcium (Wolf et al. 1986)

(Fig. 16.2).
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16.11 The Relationship Between G6PC2, FBG, and Type

2 Diabetes Risk

16.11.1 G6PC2 Is Not Associated with T2D risk

Since G6PC2 is associated with variations in FBG and HbA1c (Bouatia-Naji

et al. 2008; Chen et al. 2008b; Prokopenko et al. 2008; Reiling et al. 2009; Dupuis

et al. 2010; Hu et al. 2009, 2010; Tam et al. 2010) and because the accepted dogma

is that elevated FBG and HbA1c are associated with an increased risk for the

development of type 2 diabetes (Droumaguet et al. 2006; Abdul-Ghani and

DeFronzo 2009; Edelman et al. 2004; Ye 2013), one would logically have expected

that G6PC2 would also be associated with increased risk for the development of

type 2 diabetes. Indeed studies on Chinese individuals have shown such an associ-

ation (Hu et al. 2009, 2010). However, the sample sizes used in these studies were

relatively small, and large meta-analyses of GWAS data in this ethnic group do not

support this result with no SNP in or near G6PC2 associated with T2D risk with a

P< 10�4 (Cho et al. 2012; Sim et al. 2011). Similarly, in European populations,

variants inG6PC2 have no significant effect on the risk for the development of T2D

(Bouatia-Naji et al. 2008; Dupuis et al. 2010; Reiling et al. 2009). Interestingly,

while this lack of association between a gene with a confirmed role in controlling

glucose variability in healthy populations and T2D was a surprise, it is now

apparent that G6PC2 is only the first example of a large series of genetic determi-

nants of FBG that have no effect on T2D risk. In the latest meta-analysis from

MAGIC, only 22 loci (out of 36) that are genetic determinants of FBG are also

genetic determinants of T2D risk (Scott et al. 2012). This analysis confirmed that

common genetic variations in GCK but not in G6PC2 are associated with T2D risk

(Scott et al. 2012).

16.11.2 Glucose Tolerance Versus FBG as a Predictor
of T2D Risk

A study by Abdul-Ghani et al. (2010) provides a potentially elegant resolution to

this paradox of the dissociation of the genetic architecture of FBG and T2D, two

highly correlated and interrelated traits. They have reported that the 1-h glucose

level in a glucose tolerance test is a better predictor of type 2 diabetes risk than FBG

such that, after correcting for this variable, the association between FBG levels and

type 2 diabetes risk is lost. The authors suggest that the apparent correlation

between elevated FBG and type 2 diabetes risk is not due to the increase in FBG

per se but is due instead to the correlation between FBG and 1-h glycemia (Abdul-

Ghani et al. 2010). Based on the observations of Abdul-Ghani et al. (2010), one

would predict that variations in GCK would affect both 2-h and 1-h glucose levels

in a glucose tolerance test, in addition to FBG, whereas variations in G6PC2 would
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affect only the latter (Fig. 16.3). Indeed, the rs1799884 GCK variant is associated

with higher 2-h and 1-h glucose levels (Freathy et al. 2010). In some populations

(Freathy et al. 2010), though not others (Li et al. 2009), this variant is also

associated with higher 2-h glucose levels. In contrast, the rs560887 G6PC2 variant

is not associated with altered glucose tolerance (Li et al. 2009; Rose et al. 2009;

Ingelsson et al. 2010; Heni et al. 2010). In support of this explanation, almost all

(eight out of nine) genetic determinants of 2-h glucose levels identified by GWAS

are associated with T2D risk (Scott et al. 2012).

The observations of Abdul-Ghani et al. (2010) also lead to the conclusion that

the observed decrease in G6PC2 expression in islets from donors with type 2 dia-

betes (Taneera et al. 2012) is likely to be a secondary event, specifically a response

to the diabetic environment, rather than a causative event that contributes to the

development of type 2 diabetes. Thus based on G6pc2 knockout mouse data (Wang

et al. 2007; Pound et al. 2013), a decrease in G6PC2 expression would lead to

enhanced insulin secretion, which would make sense in terms of a compensatory

attempt by unhealthy islets to maintain insulin secretion.

Elevated FBG, HbAlc, and body mass have not only been correlated with the

risk of developing type 2 diabetes but also cardiovascular-associated mortality

(Coutinho et al. 1999; Lawes et al. 2004; Poirier et al. 2006). Just as the studies

of Abdul-Ghani et al. (2010) challenge the precise relationships between FBG and

type 2 diabetes, the studies of Sarwar et al. (2010) suggest that the precise

relationship between FBG and cardiovascular-associated mortality requires further

investigation.

G6PC2

Fasting
Blood

Glucose

Type 2
Diabetes

GCK

1 hr
Glucose

Type 2 Diabetes Risk is Associated
with 1 hr Glucose not FBG
(Abdul-Ghani & DeFronzo
Diabetes Care 33:557-561, 2010)

GCK but not G6PC2 is
associated with 1 hr glucose.

(Freathy et al. Diabetes 59:2682-2689,
2010; Dupuis et al. Nature Genetics

42:105-116, 2010)

Fig. 16.3 Variations in GCK but not G6PC2 affect type 2 diabetes risk.

GWAS data show that SNPs in both G6PC2 and GCK are associated variations in FBG but only

SNPs in GCK are associated with type 2 diabetes risk. The model proposes that this observation is

explained by the fact that SNPs in GCK are associated variations in 2-h and 1-h glucose levels

during a glucose tolerance test, whereas SNPs in G6PC2 are not. This concept is based on the

studies of Abdul-Ghani et al. (2010) who showed that the 1-h glucose level in a glucose tolerance

test is a better predictor of type 2 diabetes risk than FBG such that, after correcting for this

variable, the association between FBG levels and type 2 diabetes risk is lost
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As described in Sect. 16.4, the rs560887 G6PC2 variant linked by GWAS to

FBG but not type 2 diabetes risk is predicted to have only a small effect on G6PC2
expression (Baerenwald et al. 2013). However, even though small changes in

G6PC2 expression are not associated by GWAS with the risk for type 2 diabetes,

this would not exclude the possibility that rare variants, such as the His177Tyr

rs13872630 variant recently discovered in Finnish individuals (Service et al. 2014),

which markedly elevated G6PC2 expression or increased activity, might be asso-

ciated with altered risk for type 2 diabetes.

16.12 Evolution and the Function of G6PC2

An intriguing aspect of the human GWAS data discussed above is the conclusion

that the absence of G6PC2 would be beneficial to several aspects of human health.

In relation to FBG, it would be lowered by the absence of G6PC2, which would be

predicted to perhaps reduce the risk of cardiovascular-associated mortality and type

2 diabetes (but see above). Similarly, the human GWAS data imply that if G6PC2 is

affecting the pulsatility of insulin secretion and hence the efficacy of insulin

signaling, then this pulsatility is actually enhanced by the absence of G6PC2,

explaining the reduced insulin secretion during glucose tolerance tests

(Li et al. 2009).

Since the presence of G6PC2 has been retained though mammalian evolution,

with the exception of rats, this implies that there must be beneficial effects con-

ferred by G6PC2 that are not apparent from the human GWAS data. The health

benefits conferred by reduced FBG are unlikely to be relevant to reproductive

potential since the diseases associated with elevated FBG typically occur later in

life long after an individual has passed on their genetic material to their offspring.

Furthermore, such diseases are only prevalent to the modern world and would not

even have been a factor during the course of evolution.

The biological benefit(s) conferred by the presence of G6PC2 are currently

unknown, but one possibility is that G6PC2 expression and G6PC2 enzyme activity

are activated under specific physiological conditions. This would have the effect of

shifting the dose–response curve for GSIS to the right, resulting in reduced insulin

secretion (Fig. 16.4). A number of studies have suggested that the activity of hepatic

G6PC is altered by insulin signaling (Barzilai and Rossetti 1993), though because

the mechanisms involved are unknown, it is unclear whether the same signaling

pathway might regulate G6PC2 enzyme activity. Similarly, while multiple tran-

scription factors that contribute to the islet beta cell-specific expression of G6PC2

have been identified (Hutton and O’Brien 2009), there is currently no evidence that
G6PC2 expression is modulated in vivo under different physiological conditions.

Nonetheless, there is circumstantial data to support the potential impact of altered

G6PC2 expression. First, in various rat models associated with impaired glucose

tolerance, G6PC expression is induced such that G6P hydrolysis would be elevated

and GSIS blunted (Khan et al. 1990b; Laybutt et al. 2003; Tokuyama et al. 1995).
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This induction may play a protective role against excessive stimulation of the beta

cells, which is a concern given their susceptibility to ER (Back and Kaufman 2012)

and oxidative (Karunakaran and Park 2013) stress. Second, experiments in which

G6PC was overexpressed in pancreatic islet beta cell-derived cell lines using

adenovirus (Trinh et al. 1997) or stable transfection (Iizuka et al. 2000) have

directly demonstrated that altered expression of this single gene is sufficient to

inhibit insulin secretion.

16.13 Conclusions and Future Directions

The genetic association and molecular studies described above strongly suggest that

G6PC2 modulates FBG by hydrolyzing G6P, thereby opposing the action of the

beta-cell glucose sensor, glucokinase. However, these studies suggest that G6PC2

has other unexplained effects on islet beta-cell function that merit further investi-

gation. The evolutionary benefit conferred by G6PC2 remains unclear, but it is

likely to be related to its ability to acutely modulate glycolytic flux rather than

establish the long-term set point for FBG. The analysis of rare SNPs that markedly

affect G6PC2 enzyme activity and the analysis of the biological impact of these

SNPs might provide further insight into G6PC2 function, as have similar studies

with glucokinase. Finally, because G6PC2 opposes the action of glucokinase,

suppression of G6PC2 activity might represent a novel therapy to lower FBG and

HbA1c levels and thereby perhaps influence the risk of cardiovascular-associated

mortality. It is noteworthy that the alternate strategy, the use of GCK activators, is

under investigation in clinical trials (Matschinsky 2009; Iynedjian 2009).

[Insulin]

[Glucose]

Basal
State

Activated
State

Fig. 16.4 Elevated G6PC2 expression or enzyme activity would alter the sensitivity of GSIS.

Elevated G6PC2 expression or enzyme activity would alter the sensitivity of GSIS. The evolu-

tionary function of G6PC2 is unknown but is unlikely to be related to the control of FBG. The

model speculates that under specific physiological conditions, G6PC2 expression and enzyme

activity are elevated changing the sensitivity of GSIS. This model is consistent with the observa-

tions that a reduction in G6PC2 expression (Pound et al. 2013) or Gck overexpression (Wang and

Iynedjian 1997b, 1997a) augments glycolytic flux and causes a leftward shift in the dose–response

curve for GSIS
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Recent studies using stable isotopes to examine glucose cycling in pancreatic islets isolated

from wild type mice have shown much higher levels of glucose cycling than previously observed

using radioisotopes. In addition, these studies have shown that glucose cycling is abolished in

islets isolated from G6pc2 KO mice. Both observations support the model presented for the

function of G6PC2 in islets. Reference: Wall ML, Pound LD, Trenary I, O’Brien RM, Young

JD (2015) Novel stable isotope analyses demonstrate significant rates of glucose cycling in mouse
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Chapter 17

From Association to Function: KCNJ11
and ABCC8

Michael N. Weedon and Peter Light

Abstract ATP-sensitive potassium (KATP) channels regulate the secretion of insulin

from pancreatic β-cells in response to glucose. These channels consist of the

sulphonylurea receptor (SUR1, encoded by ABCC8) and the inwardly rectifying

potassium channel (Kir6.2, encoded by KCNJ11) channel subunits. Loss-of-function
mutations in ABCC8 or KCNJ11 cause familial hyperinsulinism, whereas activating

mutations of these genes are the commonest cause of neonatal diabetes. Mutations in

these genes have also recently been shown to cause maturity-onset diabetes of the

young. Given the spectrum of diabetes that can be caused by mutations in KCNJ11
and ABCC8, they are excellent candidate genes for harbouring variants that predis-

pose to later-onset diabetes, and a common haplotype of these genes has been

robustly associated with an increased risk of type 2 diabetes. In this review, we

discuss the role of ABCC8 and KCNJ11 variation in type 2 diabetes.

17.1 ATP-Sensitive Potassium Channels, the ABCC8

and KCNJ11 Genes, and Insulin Secretion

ATP-sensitive potassium (KATP) channels regulate the secretion of insulin from

pancreatic β-cells by coupling metabolism to membrane electrical activity. Two

types of subunit make up the β-cell hetero-octameric KATP channel complex: the

sulphonylurea receptor (SUR1, encoded by the gene ABCC8) and the inwardly

rectifying potassium channel (Kir6.2, encoded by the gene KCNJ11; Fig. 17.1)
(Inagaki et al. 1995; Aguilar-Bryan and Bryan 1999; Bryan et al 2004). The primary

role for β-cell KATP channels is to transduce changes in the cytosolic ATP/ADP
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ratio, resulting from glucose metabolism (Ashcroft et al. 1984), into electrical

activity and the control of the β-cell membrane potential. As glucose-stimulated

insulin secretion is predominately controlled by the β-cell membrane potential,

KATP channels serve to couple glucose metabolism to insulin secretion (Ashcroft

and Rorsman 1989; Ashcroft et al. 1994). When plasma glucose levels are low, the

cytosolic ATP/ADP ratio is lowered resulting in a basal efflux of potassium ions

from the cell via KATP channel activity that maintains the membrane potential of the

β-cell at approximately �70 mV. This polarized membrane potential prevents

calcium entry through voltage-gated calcium channels. As elevations in cytosolic

calcium are the primary trigger for insulin granule exocytosis, insulin secretion is

suppressed when plasma glucose levels are low. However, when plasma glucose

levels rise, glucose enters the β-cells via the glucose transporter (GLUT), although
the precise GLUT isoform in human beta cells is currently under debate (Van de

Brunt and Gloyn 2012). The resultant increase in glucose metabolism leads to an

increase in the ratio of cytosolic ATP/ADP ratio, promoting KATP channel closure.

The resulting decrease in potassium ion efflux depolarizes the β-cell membrane

potential leading to activation of voltage-gated calcium channels, calcium influx,

and calcium-stimulated insulin granule exocytosis (MacDonald and Rorsman

2007). Graded increases in plasma glucose and subsequent metabolism lead to

proportional decreases in KATP channel activity resulting in an appropriate insulin

Fig. 17.1 (a) Pancreatic KATP channels are comprised of the 17 transmembrane domain

sulphonylurea receptor 1 (SUR1) and the inwardly rectifying potassium channel Kir6.2 subunits.

SUR1 is a member of the ATP-binding cassette family of membrane proteins and possesses two

nucleotide-binding folds (NBD1 and 2) that dimerize to form the ADP sensing and MgATPase

catalytic sites. SUR1 is also the high-affinity binding site for the sulphonylurea class of insulin

secretagogues. Note that the S1369A variant (rs757110) is located adjacent to NBD2. Kir6.2 forms

the potassium-selective pore region of the KATP channel complex. The E23K variant (rs5215) is

located intracellularly close to the N-terminus of Kir6.2. (b) SUR1 and Kir6.2 form a hetero-

octamer with 4 Kir6.2 subunits being surrounded by 4 SUR1 subunits
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secretory response that is tightly coupled to the plasma glucose concentration. As

the electrical resistance of β-cell is high, only small changes in KATP channel

activity are necessary to change β-cell excitability (and hence insulin secretion)

via alterations in the β-cell membrane potential. It is of direct clinical relevance to

note that a number of clinically used insulin secretagogues, including the

sulphonylureas, bind to and inhibit the KATP channel complex with high affinity,

leading to insulin secretion (Bryan et al 2005). Indeed, the sulphonylurea receptor

was first named due to its high affinity for sulphonylurea binding and it was then

subsequently cloned (Aguilar-Bryan et al. 1995) leading to the elucidation of the

complete beta-cell KATP channel complex by co-expression with Kir6.2 (Inagaki

et al. 1995). Interestingly, KATP channels are also expressed in pancreatic α-cells
where they play an important role in regulating the secretion of glucagon (Rorsman

et al. 2008; MacDonald et al. 2007) and alterations in α-cell KATP channel activity,

by whatever mechanism, may contribute to elevated blood glucose levels if gluca-

gon secretion is elevated.

17.2 Rare Mutations in ABCC8 and KCNJ11 Cause

Familial Hyperinsulinism and Neonatal Diabetes

Mutations within the KATP channel complex that alter their trafficking, intrinsic

activity, or ability to sense changes in either ATP or ADP will result in altered KATP

channel activity (and hence islet hormone secretion) that is correlated to the specific

effects of the individual mutation on KATP channel activity. Positional cloning and

candidate genes studies first demonstrated that recessive loss-of-function mutations

of these genes cause familial hyperinsulinemic hypoglycaemia of infancy (Thomas

et al. 1995; Dunne et al. 1997). Subsequently, candidate gene studies demonstrated

that heterozygous activating mutations of KCNJ11 and ABCC8, which result in the

KATP channel being constantly open, are the commonest cause of neonatal diabetes

(diabetes diagnosed before the age of 6 months) (Gloyn et al. 2004). More recently,

mutations in KCNJ11 and ABCC8 have been shown to be a cause of maturity-onset

diabetes of the young (Bonnefond et al. 2012; Bowman et al. 2012; Liu et al. 2013),

an autosomal dominant form of diabetes that is typically diagnosed before the age

of 25. While many of these mutations drastically alter KATP channel activity

leading to an overt phenotype (Lang and Light 2010), the potential role of common

variants in the development of type 2 diabetes is less clear.
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17.3 Candidate Gene Association Studies of KCNJ11

and ABCC8 in Type 2 Diabetes

The known biology of the KATP channel and the monogenic conditions associated

with rare, severe, mutations in KCNJ11 and ABCC8make them excellent candidate

genes for harbouring other hypomorphic variants that predispose to late-onset type

2 diabetes. Early candidate gene studies re-sequenced the protein-coding parts of

these genes in small samples of patients with type 2 diabetes and then genotyped

these variants in a few hundred cases and controls to test for association with the

disease. As with most early candidate gene studies in type 2 diabetes (and complex

disease more generally), this led to several putative associations being claimed,

most of which have not subsequently been replicated (Hirschhorn et al. 2002). This

lack of replication has been attributed to a number of factors including multiple

hypothesis testing, population stratification, and publication bias (Hirschhorn

et al. 2002). In hindsight, one of the biggest reasons for the irreproducibility of

genetic association studies was the small effect that individual variants have on type

2 diabetes risk. This meant that the sample sizes used were not sufficiently large to

provide robust statistical support for variants (Lohmueller et al. 2003). It became

clear that large sample sizes, more robust statistics, and replication are essential to

claim a variant as truly associated with type 2 diabetes. This was clearly demon-

strated by Altshuler et al. (2000) when they used a meta-analysis and large-scale

association study approach to show the Pro12Ala variant of PPARG as robustly

associated with type 2 diabetes. We took a similar approach for three variants of

ABCC8 and KCNJ11 that were among the most promising variants from these

initial candidate gene screens.

17.4 Large-Scale Association Study and Meta-Analysis

Demonstrate the Robust Association of E23K

with Type 2 Diabetes

We studied the ABCC8 exon 16–3t/c, the exon 18T/C, and the KCNJ11 E23K

variants. Each of these variants had been inconsistently reported to be associated

with type 2 diabetes (Altshuler et al. 2000; Gloyn et al. 2001; Hani et al. 1997, 1998;

Hansen et al. 1997, 1998; Inoue et al. 1996, 1997; Sakura et al. 1996; ‘t Hart
et al. 1999; van Tilburg et al. 2000; Rissanen et al. 2000). Additionally, there was

some functional study support for the E23K variant that suggested it increased the

threshold ATP concentration required for insulin release (Schwanstecher

et al. 2002a). We performed a meta-analysis of all six published studies on the

three variants (Gloyn et al. 2003). We found strong evidence for association of the

E23K variant with type 2 diabetes, but not the other variants. Meta-analysis of

published studies is prone to positive findings due to publication bias. To confirm

the association of E23K with type 2 diabetes, we genotyped the three variants in
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854 cases and 1182 population-based controls, as well as 150 parent-affected

offspring trios. Although dwarfed by the size of current genome-wide association

studies, at the time this was a large-scale association study. Consistent with the

meta-analyses, we found no evidence for an association of the SUR1 variants, but

we did find nominal evidence for association of KCNJ11 E23K with type 2 diabetes

(P¼ 0.025), with an odds ratio consistent with the meta-analysis result

(OR¼ 1.18). This work confirmed E23K as associated with type 2 diabetes. Sub-

sequent studies, including large-scale genome-wide association studies, have rep-

licated this association in European populations and in other ancestry groups

(Morris et al. 2012; Replication and Meta-analysis 2014). Other studies have

demonstrated that E23K is associated with insulin secretion response to glucose

(Nielsen et al. 2003; Florez et al. 2004).

17.5 Is E23K the Causal Variant?

While E23K is robustly associated with type 2 diabetes, it is not clear if it is the

causal variant that explains the association signal. This is because E23K is inherited

with two other protein-coding variants, V270L in KCNJ11 (rs5215) and S1369A in

ABCC8 (rs757110), and so it is impossible to separate out, using genetics alone,

which of these is the functional variant. This is a common problem in genetic

association studies—identifying causal variants is very difficult because of the

correlation structure of variants in the genome. Florez et al. (2004) performed a

comprehensive haplotype analysis in 3400 individuals and concluded that E23K or

S1369A is the most likely functional variants. In fact, the V270L (rs5215) variant is

the most strongly associated variant from the largest genome-wide association

studies (34,840 cases and 114,981 controls) to date (Morris et al. 2012). But, the

results are statistically indistinguishable from the S1369A or E23K variants (see

Fig. 17.2), with any difference in association signal between these variants probably

due to technical variation (e.g., E23K is not present in the HapMap study and so has

not been imputable). Functional studies have therefore been undertaken in order to

separate out which of these variants are causal. However, early attempts to establish

E23K causality, through mechanistic studies on recombinant channels, did not

account for the S1369A variant (Sakura et al. 1996; Schwanstecher et al. 2002b)

and these studies were performed using ABCC8 clones from different species in

which either S1369 or A1369 was present and not controlled for. To specifically

address the issue of causality, mechanistic studies have recently been performed on

recombinant human KATP channels containing either the E23/S1369 non-risk or

E23K/S1369A type 2 diabetes-risk haplotypes. This study determined that the

E23K/S1369A type 2 diabetes-risk haplotype channels possess reduced ATP sen-

sitivity and that this effect was bestowed upon the channel complex by the S1369A

variant and not the E23K variant (Hamming et al. 2009). Further molecular studies

revealed that the S169A variant increases the intrinsic catalytic MgATPase activity

of the channel complex resulting in the increased generation of stimulatory ADP
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(Fatehi et al. 2012). Based on in silico homology modelling of the nucleotide-

binding domains of SUR1 (Masia and Nichols 2008), residue 1369 is located close

to the top of a hairpin loop adjacent to the major MgATPase site in nucleotide-

binding domain 2 and S1369 can form a hydrogen bond with Q1372 on the opposite

side of the loop, thus stabilizing the adjacent catalytic site (Fig. 17.3). In the

presence of the A1369 variant, the hydrogen bond is lost and this may result in

increased flexibility of the loop resulting in a higher rate of ATP hydrolysis to ADP

(Fatehi et al. 2012). From a physiological perspective, the increase in MgATPase

activity leads to increased KATP channel activity that would suppress insulin

secretion and perhaps also alter glucagon release (Rorsman et al. 2008; MacDonald

et al. 2007). Furthermore, earlier studies have shown altered glucose-induced

insulin secretory response in carriers of the E23K/S1369A type 2 diabetes-risk

haplotype (Nielsen et al. 2003; Florez et al. 2004). While the A1369 variant may

alter the intrinsic nucleotide regulation of the channel, the E23K variant also alters

the KATP channel sensitivity to intracellular long-chain acyl coenzyme As

(LC-CoAs). The LC-CoAs are the intracellular esters of fatty acids and are

known potent activators of KATP channels (Riedel et al. 2003). It has previously

been shown that KATP channels containing the E23K variant in the Kir6.2 subunit

(KCNJ11 gene) are more sensitive to activation by LC-CoAs in a side-chain length

and saturation-dependent manner with longer, more saturated, and trans LC-CoAs

being more potent activators (Riedel and Light 2005). These results suggest that

there may also be an environmental/dietary component to the cellular mechanisms

involved in increased type 2 diabetes risk, with a diet rich in saturated or trans fats

leading to increased KATP channel activity especially in KATP channels containing

E23K in the Kir6.2 subunit (Riedel et al. 2005). In summary, it is difficult to ascribe

causality to either variant alone and it is likely that both E23K and S1369A confer

alterations in the properties of KATP channel in response to metabolites and that

Fig. 17.2 Putative molecular mechanism by which the S1369A variant increases KATP channel

activity. (a) The S1369 residue is located close to the NBD2 MgATPase catalytic site and

predicted to form a hydrogen bond with the adjacent Q1372 residue, constraining movement in

this region. (b) The S1369A variant removes the hydroxyl group from serine and prevents the

formation of the hydrogen bond, leading to increased flexibility in this region and an increase in

MgATPase activity
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both variants contribute to the observed increase in odds ratio. It should be noted

that KATP channels are expressed in many tissue types and can be assembled as

hetero-octamers from multiple gene products such as Kir6.1, Kir6.2, SUR1, and

SUR2A/B. Therefore, there is much we still don’t know regarding the contributions

of the E23K and S1369A to systemic metabolic homeostasis in extra-pancreatic

tissues such as the heart, skeletal muscle, and central nervous system.
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Fig. 17.3 Association results from the latest DIAGRAM consortium genome-wide association

study meta-analysis (Morris et al. 2012). Plots generated in LocusZoom (Pruim et al. 2010) from

DIAGRAM data available at http://diagram-consortium.org/downloads.html. (a) HapMap

imputed results from 12,171 cases and 56,862 controls. (b) Metabochip results from 22,669

cases and 58,119 controls. E23K is not present in the HapMap so results are not available in (a).

E23K was only genotyped in 54,597 samples compared to 86,193 for S1369A and V270L which

explains its weaker association results. However, the odds ratios for the SNPs were 1.075 (V270L),

1.074 (S1369A), and 1.070 (E23K). These results are not statistically different from each other
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17.6 The Clinical Utility of the E23K/S1369A Variant

Haplotype

The current best estimate of the odds ratio for diabetes associated with the K allele

of E23K is 1.07 (95 % CI: 1.05, 1.10) from the DIAGRAM consortium. This is

significantly lower than the odds ratio of 1.23 that we initially reported (Gloyn

et al. 2003), perhaps due to the Winner’s curse (Lohmueller et al. 2003). This low

odds ratio means that this variant has essentially no predictive power for determin-

ing whether an individual will get diabetes, even when in combination with other

known type 2 diabetes variants (Weedon et al. 2006; Lango et al. 2008; Lyssenko

et al. 2005, 2008; Meigs et al. 2008; Mihaescu et al. 2011). The potential for gene-

environment interactions may also further reduce the predictive power as the

increase in risk for type 2 diabetes with these variants may involve altered dietary

or lifestyle choices as discussed further below. However, patients with neonatal

diabetes due to specific activating mutations in KCNJ11 or ABCC8 can be effec-

tively treated with sulphonylureas to close mutant KATP channels, rather than

insulin injections (Pearson et al. 2006). So an obvious question is whether the

E23K/S1369A variant haplotype is associated with response to sulphonylurea

treatment. Several studies have found some association of E23K/S1369A with

response to sulphonylureas. Feng et al. (2008) showed an association in two

Chinese populations of the S1369A variant affecting glycaemic control on

sulphonylureas. A/A homozygotes had 7.7 % higher fasting glucose levels than

S/S homozygotes after 8 weeks of treatment on gliclazide. Sesti et al. (2006) studied

525 UK Caucasian patients with diabetes and found nominal evidence for an

increase in sulphonylurea failure for K allele carriers (OR¼ 1.45). Holstein

et al. (2009) found that carriers of the K allele had reduced incidence of severe

hypoglycaemic events. However, the evidence from other studies is not strong

(Holstein et al. 2012; Ragia et al. 2012; Sato et al. 2010). In the Diabetes Prevention

Program study, Florez et al. (2007) found that K allele carriers were less likely to

develop diabetes but also had a worse response to 1 year of metformin treatment.

Whether all of these associations are true associations or due to relatively small

sample sizes and publication bias remains to be seen as larger pharmacogenetic

studies are performed. Interestingly, recent mechanistic studies on KATP channels

containing E23K and S1369A have revealed differential sulphonylurea sensitivities

to gliclazide but not glyburide (Lang et al. 2012; Hamming et al. 2009). These

studies also found that the increased inhibition by gliclazide was conferred upon the

channel complex by the S1369A variant. Whether this latter observation has

implications for the pharmacogenetic management of type 2 diabetes has yet to

be determined by clinical studies.
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17.6.1 Why Is the E23K/S1369A Haplotype So Common?

It is clear that the E23K and S1369A variants are associated with type 2 diabetes

and that they may act in concert to elicit subtle yet important alterations in

pancreatic endocrine function that may predispose homozygous individuals to

type 2 diabetes. What remains to be determined are the effects of these two variants,

either alone or in haplotypic combination, on cellular function in extra-pancreatic

tissues as well as their precise interactions with environmental factors such as diet

and lifestyle. In this regard, it is worth speculating why ~10 % of individuals are

homozygous for the E23K/S1369A haplotype. We have previously suggested that

these variants may form part of a haplotype offering some evolutionary advantage

that accounts for their stable representation in most ethnic groups tested to date

(Riedel et al. 2005). The E23K/S1369A variant may be a “thrifty utility” gene

improving athletic endurance in early hunter-gatherer societies by maintaining

blood glucose levels via increased glucagon release and decreased insulin release

(pancreatic KCNJ11 and ABCC8) and by enhancing skeletal and cardiac muscle

function (with E23K in KCNJ11). In modern westernized societies that are associ-

ated with excess calories and inactivity, these variants may be disadvantageous in

homozygous individuals, therefore increasing susceptibility to type 2 diabetes.

17.7 Do Rare Coding Variants of ABCC8 and KCNJ11

Predispose to Diabetes?

Advances in sequencing technologies now allow the rapid and cost-effective

sequencing of all protein-coding regions of the genome in large sample sizes.

Several whole-exome as well as whole-genome sequence association studies are

ongoing to identify new causes of type 2 diabetes. The first published large-scale

deep whole-exome sequence study was recently published and analysed 1000 type

2 diabetes cases and 1000 controls (Lohmueller et al. 2013). No novel individual

variants were identified from this analysis that had not been identified from

previous GWA studies. Sequencing analysis, as opposed to microarray-based

association studies, allows the detection of all variants in a patient’s exome or

genome. This allows a statistical test of rare variants by seeing whether there is an

excess of new variants in cases compared to controls. Given the spectrum of effects

of different variants in KCNJ11 and ABCC8 on diabetes risk—from the most severe

V59M mutation which causes syndromic neonatal diabetes to variants that cause

transient neonatal diabetes to the type 2 diabetes-risk variants (Fig. 17.4)—it seems

likely that additional variants in KCNJ11 and ABCC8may be discovered which also

predispose to type 2 diabetes. However, the work by Lohmueller et al. (2013) shows

how difficult it will be, as well as showing that coding variants of KCNJ11 and

ABCC8 will not be a common cause of type 2 diabetes, but rather a contributory

component in haplotypic combination with other gene variants.
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Chapter 18

SLC30A8: A Complex Road from Association

to Function

Jason Flannick and William L. Lowe

Abstract One of the more compelling common variants associated with type

2 diabetes (T2D) in the initial wave of genome-wide association studies was a

missense variant (rs13266634, p.Trp325Arg) in SLC30A8, a gene that encodes a

zinc transporter (ZnT8) expressed primarily in pancreatic islets. This widely repli-

cated association, together with the importance of ZnT8 in the process of zinc

transport into insulin secretory granules, provided a potentially straightforward path

toward insight into T2D pathogenesis. However, since this initial observation, the

path from association to function for SLC30A8 has been far from straightforward. In

this chapter, we review (a) the initial genetic evidence that identified variation in

SLC30A8 as a risk factor for T2D, (b) the biological function of its protein product

(ZnT8), (c) associations between SLC30A8 variation and other diabetes-related

intermediate phenotypes, (d) experiments to discern the mechanism whereby per-

turbation of ZnT8 influences T2D risk, and (e) recent results from large-scale

sequencing and genotyping to identify a broader allelic series within SLC30A8.
Although both genetic and experimental evidences point to clear link between

altered SLC30A8 function and T2D in human populations, the specific mechanism

of pathogenesis is still far from clear.

18.1 Introduction

Genetic mapping and positional cloning together form a paradigm to dissect the

genetic basis of disease. For type 2 diabetes (T2D), genome-wide association studies

(GWAS) have made significant progress mapping loci that harbor disease-causing
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variation—identifying over 80 signals and highlighting potential pathways and

biology relevant to disease. The next step, to translate an association signal to

mechanistic insight and potentially a therapeutic hypothesis, requires the identifica-

tion of the causal variant and gene underlying the signal, phasing of the directional

relationship between gene activity and disease risk, and quantification of the range of

phenotypic effects of a broad series of alleles. However, most common disease-

associated variation lies in noncoding regions, of which biological understanding is

limited, presenting a challenge to translate most association signals to function.

Given our better understanding of the coding genome, disease-associated com-

mon variants that alter protein sequence are of particular value toward the goal of

causal gene and variant identification. For this reason, one of the more compelling

common variants associated with T2D in the initial wave of GWAS was a common

variant (rs13266634, p.Trp325Arg) in SLC30A8, a gene that encodes a zinc trans-
porter (ZnT8) active in pancreatic islets. Given the high relevance of zinc and islets

to T2D pathophysiology, the observation of a T2D-associated protein-altering

variant in SLC30A8 provided one of the potentially more straightforward paths

toward insight into T2D pathogenesis and, perhaps, a candidate drug target.

In reality, the path from association to function for SLC30A8 has been far from

straightforward: spanning GWAS of increasing size and diversity, interrogation of

variant carriers for a wide range of phenotypes, cellular and animal model systems

with at times equivocal results, and resequencing and genotyping in hundreds of

thousands of individuals. In this chapter, we will review (a) the initial genetic

evidence that identified variation in SLC30A8 as a risk factor for T2D, (b) the

biological function of ZnT8, (c) associations of SLC30A8 variation with diabetes-

related intermediate phenotypes, (d) experiments to discern the mechanism

whereby perturbation of ZnT8 influences T2D risk, and (e) recent results from

large-scale sequencing and genotyping to identify a broader allelic series and lend

further insight into the relationship between SLC30A8 activity and human

physiology.

18.2 Association of rs13266634 with Risk of Type

2 Diabetes

In 2007, the first series of GWAS for T2D were published, ushering in an era that

would dramatically expand the number of variants associated with disease risk. The

first such study, by Sladek et al. (2007), replicated the strongest previously reported

association with T2D (mapped to TCF7L2) and also identified four additional

signals. Of these newly reported associations, the strongest was a single-nucleotide

polymorphism (SNP, rs13266634) in SLC30A8, with an estimated frequency of

30 % and an odds ratio of 1.18.

Although most GWAS associations are expected to tag, rather than represent,

truly causal SNPs, the SLC30A8 association was notable given that rs13266634 is a
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missense SNP, causing a change from arginine to tryptophan at residue 325

(p.Trp3235Arg) in the protein product (ZnT8) of SLC30A8. Furthermore, the

authors commented on the biological relevance of ZnT8 to T2D, noting previous

experiments demonstrating increased glucose-stimulated insulin secretion follow-

ing overexpression of SLC30A8 in insulinoma cells (Chimienti et al. 2006). The

rs13266634 association thus presented, at an early stage, a candidate causal gene

and variant that altered risk of T2D.

Soon after the first publication of the SLC30A8 association, four additional

GWAS independently replicated the SLC30A8 association at nominal significance,

producing similar risk estimates as in the original publication (Saxena et al. 2007;

Zeggini et al. 2007; Scott et al. 2007; Steinthorsdottir et al. 2007). Since this first

wave of GWAS, rs13266634 has been analyzed in many association studies,

spanning multiple cohorts, ancestries, and phenotypes. Association was confirmed

in other European (Hertel et al. 2008) and East Asian populations (Tabara

et al. 2009), although association in African populations has been more elusive

(Xu et al. 2011)—perhaps due to the lower frequency of the minor allele (Myles

et al. 2008). Thus, conclusive evidence for association of rs13266634 and T2D was

one of the earliest findings to emerge from the era of GWAS for T2D.

Most recently, increasingly large meta-analyses have propagated rs13266634

into hundreds of thousands of samples, progressively increasing the resolution of

frequency and effect size estimates for the SNP. The largest study in Europeans has

reached ~35,000 cases and ~115,000 controls (Morris et al. 2012) and ranked

rs13266634 as the sixth strongest association ( p¼ 1.3� 10�21), with an estimated

risk-allele frequency of 66 %, odds ratio of 1.13 (95 % confidence interval

1.09–1.16), and liability-scale variance explained of 0.185 % (sibling relative risk

1.003). Among the 63 reported T2D-associated SNPs, rs13266634 was estimated to

have the fourth highest odds ratio.

In addition, meta-analyses have started to expand to include individuals of

increasingly diverse ancestries. The largest trans-ethnic analysis includes ~27,000

cases and ~84,000 controls of European, East Asian, South Asian, and Mexican and

Mexican American ancestry (Consortium DGRAM-aD 2014). In it, consistent

effect size estimates were observed for rs13266634 across all ethnicities (ranging

from 1.11 to 1.16), with independent evidence of association in each ancestry other

than Mexican. Furthermore, the increased sample size narrowed the set of candidate

causal SNPs potentially responsible for the association to only two, with

rs13266634 clearly separated from the rest.

In summary, rs13266634 was one of the earliest, strongest, and most reproduc-

ible common variants associated with risk of T2D. Furthermore, there is strong

statistical and biological evidence that the causal variant responsible for the signal

is a missense variant p.Arg325Trp in SLC30A8. Given the clearer functional

interpretation of coding variation relative to noncoding variation, rs13266634

offers one of the more promising routes to functional insight into T2D pathogenesis

and possibly treatment.
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18.3 Function of SLC30A8

About 10 years ago, prior to the discovery of the association between rs13266634

and T2D risk, SLC30A8 was cloned based on homology to members of the ZnT

family of zinc transporters (Chimienti et al. 2004) and was subsequently localized

to chromosome 8 at 8q24.11. Proteins in the ZnT family transport zinc from the

cytoplasm into intracellular vesicles or extracellular fluid and are one of two

families of eukaryotic zinc transporters; the other, the ZIP (Zrt- and Irt-like proteins

(39A)) family, transport zinc into the cytoplasm from either the extracellular fluid

or intracellular vesicles (Cousins et al. 2006; Eide 2006; Kambe 2012; Huang and

Tepaamorndech 2013; Mocchegiani et al. 2008). To date, 24 members of these two

families have been described, with some being expressed relatively ubiquitously

and others having a more tissue-specific pattern of expression (Cousins et al. 2006;

Eide 2006; Kambe 2012; Mocchegiani et al. 2008; Chimienti 2013). These trans-

porters play a key role in many biological functions of the human body, as zinc is an

essential trace element that binds to a large number of proteins, estimated to be as

many as 3000 or 10–20 % of the human proteome, and is critical for the function of

over 300 enzymes, serving as a key structural component or cofactor (Chasapis

et al. 2012; Jansen et al. 2009). About 1 % of total body zinc is replenished daily

through dietary zinc intake and/or vitamins and other supplements (Jansen

et al. 2009; Cousins et al. 2006).

SLC30A8 contains eight exons, which span 37 kilobases and encode ZnT8: a

369-amino-acid protein predicted to exist as a homodimer (Chimienti et al. 2004;

Kambe 2012; Huang and Tepaamorndech 2013). The three-dimensional structure

of the mammalian ZnT family has not been determined, but members of the family

are predicted to have N- and C-termini, separated by six transmembrane domains,

oriented toward the cytoplasm (Kambe 2012; Weijers 2010; Wijesekara et al. 2009)

(Fig. 18.1). The cytoplasmic C-terminus plays a role in the sensing of zinc and

contains a zinc binding site, while a cytosolic histidine-rich domain between the

fourth and fifth transmembrane domains may serve as an additional zinc binding

site or modulate zinc transport activity (Kambe 2012; Weijers 2010; Wijesekara

et al. 2009; Huang and Tepaamorndech 2013).

Unique among the ZnT family, SLC30A8 is expressed almost exclusively in

pancreatic islets, representing the most highly expressed zinc transporter in this

tissue for both humans and mice (Wijesekara et al. 2009; Chimienti et al. 2004;

Nicolson et al. 2009). Furthermore, localization studies in human islets and pan-

creatic beta-cell lines have demonstrated expression of ZnT8 on secretory granules,

where it is important for zinc accumulation into insulin cell secretory granules

(Chimienti et al. 2004, 2006; Nicolson et al. 2009; Lemaire et al. 2009) (Fig. 18.2).

Based on study of cadaveric pancreata, T2D appears to correlate with decreased

expression of SLC30A8 (Marselli et al. 2010). Low levels of SLC30A8 expression

have also been demonstrated in adipose, thyroid follicular, and adrenal cortical cells

(Chimienti 2013; Smidt et al. 2007); however, the role of ZnT8 in these cell types

has not been determined.
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Fig. 18.2 Role of ZnT8 and zinc in pancreatic beta-cell biology. Intracellular zinc levels are

modulated by transport of zinc into and out of the cell by members of the ZIP and ZnT family,

respectively. One destination for intracellular zinc is transport into insulin secretory granules by

ZnT8. In the granules, a hexameric insulin-zinc crystal is formed. Insulin secretion is stimulated by

glucose transport into the cell via members of the glucose transporter (GLUT) family, including

GLUT1, 2, and 3, and the generation of ATP from glucose via glycolysis and mitochondrial

metabolism. An increase in the ATP/ADP ratio closes an ATP-regulated potassium channel,

leading to cellular depolarization and entry of calcium via an L-type voltage-gated calcium

channel. This, in turn, leads to the secretion of the contents of the secretory granules, which, in

addition to insulin and zinc, includes C-peptide and unprocessed proinsulin
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Pancreatic islets contain five cell types, with beta-cells—in which SLC30A8 is

most highly expressed—responsible for insulin secretion. Beta-cells contain among

the highest concentration of zinc in the body (Wijesekara et al. 2009), in part due to

the important role of zinc in insulin processing and storage (Chimienti 2013;

Dodson and Steiner 1998; Dunn 2005). Specifically, after cleavage of its signal

peptide and transport of proinsulin form the endoplasmic reticulum into the aque-

ous and zinc-rich Golgi apparatus, soluble zinc-containing hexamers of proinsulin

are formed. Proinsulin is then converted to insulin by prohormone convertases, and

the hexameric zinc-insulin complex becomes insoluble and crystallizes. These

stable hexameric insulin crystals are retained in storage vesicles until they are

secreted. Upon secretion, the crystals are released into the intercellular space

where the crystal rapidly dissolves—leading to cosecretion of insulin monomers

and zinc. The cosecreted zinc may have local paracrine effects in islets independent

of insulin: for example, zinc may contribute to the inhibition of glucagon secretion

from neighboring alpha cells (Robertson et al. 2011; Zhou et al. 2007).

Consistent with this molecular role of zinc in insulin storage and processing,

well-established alterations in zinc metabolism in diabetes have been described,

including increased urinary zinc excretion related to hyperglycemia and glucosuria

(Jansen et al. 2009). Lower plasma zinc levels in T2D have also been reported, with

some evidence suggesting that zinc supplementation improves the metabolic state

in T2D (Jansen et al. 2009). A recent meta-analysis demonstrated a significant

reduction in fasting glucose and hemoglobin A1c in individuals with T2D taking

zinc supplements (Jayawardena et al. 2012), whereas a large prospective study of

women demonstrated an inverse association between total zinc intake and T2D risk

(Sun et al. 2009).

Given this relevance of zinc metabolism to insulin and diabetes and that

rs13266634 results in a missense mutation that alters the protein sequence of

SLC30A8 (p.Arg325Trp) (Chimienti 2013), a potential mechanism for the observed

association with T2D might be through a molecular effect on the zinc transport

activity of ZnT8. Indeed, early in silico modeling was interpreted to suggest that,

although the high-risk Arg325 variant would have minimal impact on protein

folding, the variant is present at the interface between ZnT8 monomers and, thus,

may impact the zinc transporting function of the protein (Nicolson et al. 2009).

However, separate in silico homology modeling of ZnT8’s three-dimensional

structure predicted that the zinc-sensing capacity of the ZnT8 C-terminal

domain—in which the variant lies—would not be affected by the high-risk

Arg325 allele (Weijers 2010). Similarly, position 325 was thought to be at too

great a distance from the domains of ZnT8 responsible for zinc docking and

transport to affect these functions. Thus, the impact of p.Arg325Trp on ZnT8

structure or function is still incompletely understood.

Intriguingly, ZnT8 and p.Arg325Trp also are implicated in the pathophysiology

of a different form of diabetes, type 1 diabetes (T1D). Autoantibodies directed

against ZnT8 have been identified as an early biomarker of the T1D autoimmune

response (Wenzlau et al. 2007, 2008), and the main epitopes of these autoantibodies

include the region around amino acid 325 in the C-terminus. In some cases, the
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specificity of the ZnT8 autoantibodies is in fact dictated by the amino acid residue

present at position 325 (Wenzlau et al. 2007, 2008), and patients with onset of T1D

before age 5 years have an increased prevalence of the T2D risk-increasing Arg325

allele compared to those with T1D onset after age 5 (Wenzlau et al. 2007, 2008).

Whether these observations demonstrate that p.Arg325Trp has an impact on ZnT8

protein structure, or whether they have any relationship to the pathophysiological

mechanism of increased T2D risk, is an open question.

In summary, SLC30A8 is a zinc transporter expressed almost exclusively in

pancreatic islets and most highly in beta-cells. Its potential importance as a T2D

susceptibility gene is thus augmented by its strong biological plausibility as a

candidate gene, being responsible for transport of a key diabetes-relevant metabo-

lite within a key diabetes-relevant cell type. Although the extent to which

rs13266634 might impact the function of ZnT8 is unclear, one hypothesis for the

observed T2D association is through altered zinc transport activity.

18.4 Association of rs13266634 with Diabetes-Related

Traits

As one step toward refining understanding of the physiological impact of

rs13266634, its association with a number of additional metabolic and diabetes-

related traits has been examined. These studies have investigated traits that intend

to measure physiological, cellular, and molecular functions relevant to SLC30A8
and diabetes, including, among others, blood glucose levels and progression from

hyperglycemia to diabetes, insulin processing and secretion from beta-cells, and

zinc transport.

One relevant predictor of future diabetes risk is blood glucose levels. In

nondiabetic controls, rs13266634 is associated with fasting glucose in adults and

children, 2-h glucose during an oral glucose tolerance test (OGTT), and hemoglo-

bin A1c (Dupuis et al. 2010; Kelliny et al. 2009; Nettleton et al. 2013). Interest-

ingly, the high-risk C allele of rs13266634 is also associated with a higher rate of

progression from normal fasting glucose to impaired fasting glucose, although not

to progression from impaired fasting glucose to T2D, suggesting that the impact of

the high-risk variant may be predominantly on prediabetic fasting glucose levels

with a lesser effect on the transition to T2D (Walford et al. 2012).

To gain insight into a possible mechanism of action for rs13266634, association

with several measures of beta-cell function has been assessed. One consistent

finding has been decreased insulin secretion in response to intravenous glucose in

nondiabetic individuals of European ancestry (Boesgaard et al. 2008; Ingelsson

et al. 2010; Staiger et al. 2007). When this was examined in detail, the deficit

appeared to be in first-phase as opposed to second-phase insulin release (Boesgaard

et al. 2008), a characteristic of early T2D. Consistent with this finding, the associ-

ation of the risk allele with reduced disposition index, a measure of beta-cell
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compensation for increasing insulin resistance, has been demonstrated in European

as well as African-American and Hispanic ancestry groups (Palmer et al. 2008;

Stancakova et al. 2009). The association of the variant with insulin secretion during

an OGTT is less clear: Two studies have reported association of the C allele of

rs13266634 with decreased early-phase insulin secretion during an OGTT

(Stancakova et al. 2009; Steinthorsdottir et al. 2007), but several studies failed to

demonstrate a similar association (Boesgaard et al. 2008; Staiger et al. 2007;

Kirchhoff et al. 2008; Pascoe et al. 2007). The reason for this apparent difference

in the effect of the risk allele on an intravenous compared to oral glucose load

remains to be determined.

In addition to these relatively broad measures of beta-cell function, more specific

hypotheses about the rs13266634 mechanism of action have been interrogated.

Given the role of ZnT8 in zinc transport into insulin secretory granules, the site of

proinsulin to insulin processing, the association of rs13266634 with proinsulin

levels or processing has been examined. In general, the high-risk C allele of

rs13266634 (or a perfect proxy for it) is associated with a number of related

phenotypes that are consistent with impaired proinsulin to insulin conversion and

beta-cell dysfunction. These include a higher ratio of proinsulin to insulin release

during an OGTT, higher fasting proinsulin levels together with the absence of an

increase in the insulinogenic index (a measure of insulin secretion) as fasting

proinsulin levels increase, and higher levels of 32,33-split proinsulin, the first

cleavage product generated during proinsulin processing to insulin, together with

a lower insulinogenic index (Kirchhoff et al. 2008; Stancakova et al. 2009;

Ingelsson et al. 2010; Strawbridge et al. 2011). As an association with fasting

insulin levels was not demonstrated in the latter case, this finding is consistent

with a defect in insulin processing and secretion distal to the first enzymatic step in

insulin processing (Strawbridge et al. 2011). In the Diabetes Prevention Program

cohort, which included individuals at high risk for developing T2D who underwent

interventions to reduce insulin resistance and progression to diabetes, the high-risk

C allele was associated with higher fasting proinsulin levels at entry into the study,

but after 1 year of intervention, fasting proinsulin levels decreased and were no

longer associated with rs13266634 (Majithia et al. 2011). While various possibil-

ities could explain this finding, one possibility is that the intervention decreased the

effect of the risk allele. Finally, cluster analyses which grouped diabetes risk loci

into different categories based on their relationship to various continuous glycemic

phenotypes placed SLC30A8 into a cluster defined by loci influencing insulin

processing and secretion without changes in fasting glucose (Dimas et al. 2013).

Together, the above studies in nondiabetic individuals who carry the high-risk C

allele of rs13266634 are consistent with the association of the risk variant with beta-

cell dysfunction, suggesting that the primary effect of the risk allele is at the level of

the beta-cell. Consistent with this, multiple studies have failed to demonstrate an

association of rs13266634 with insulin sensitivity (Boesgaard et al. 2008; Staiger

et al. 2007; Stancakova et al. 2009; Ingelsson et al. 2010; Dupuis et al. 2010).

Given the relationship of zinc intake to metabolic control in T2D and diabetes

risk, there has also been interest in the interaction of zinc intake with rs13266634. A
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meta-analysis of 14 cohorts of nondiabetic individuals demonstrated an association

of total, but not dietary, zinc intake with lower fasting glucose (Kanoni et al. 2011).

When an interaction of zinc intake with a proxy for rs13266634 was tested, the

glucose-raising effect of the risk allele was attenuated, in part, with higher total zinc

intake (Kanoni et al. 2011). In a recent study of Asians, higher plasma zinc levels

were associated with a lower risk of T2D or impaired glucose regulation (impaired

fasting glucose and/or impaired glucose tolerance); however, in those bearing one

or two copies of the diabetes risk allele, the inverse association between plasma

zinc concentration and risk of T2D, alone or in combination with impaired glucose

regulation, was weaker (Shan et al. 2013). At the same time, the higher risk for T2D

in those homozygous for the risk allele was partially attenuated in those with higher

plasma zinc concentrations. Together, these studies suggest that the impact of the

rs13266634 risk allele on T2D risk or glucose levels is attenuated, in part, by higher

zinc levels or intake.

Finally, given early hypotheses about the potential candidacy of SLC30A8 as a

therapeutic target, some studies have investigated the potential interaction of

rs13266634 with diabetes treatment. In the Diabetes Prevention Program, the

presence or absence of the SLC30A8 risk allele did not impact the effectiveness

of interventions that were tested: lifestyle interventions, metformin, or troglitazone

(Majithia et al. 2011). In contrast, in a different study, a cohort of individuals with

T2D who carried at least one copy of the protective T allele of rs13266634

exhibited an enhanced response of fasting and postprandial insulin levels after

8 weeks of repaglinide therapy (Huang et al. 2010). Study of a different cohort of

newly diagnosed patients with T2D did not replicate this effect of rs13266634 after

48 weeks of repaglinide treatment (Jiang et al. 2012), although a differential

genotype-dependent response of insulin secretion and fasting proinsulin levels

was demonstrated after treatment with rosiglitazone. Thus, the full range of inter-

actions between rs13266634 and diabetes treatment remains to be determined.

In summary, the bulk of data suggest that the diabetes risk variant of rs13266634

is associated with altered beta-cell function, manifested primarily as impaired

proinsulin to insulin processing and insulin secretion in response to an intravenous

glucose load. Thus, one initial model for the mechanism of rs13266634 action was

through reduced function as a zinc transporter, with a subsequent decrease in

insulin processing and secretion.

18.5 Cellular and Animal Models of SLC30A8

Given (a) the clear association of rs13266634 with T2D risk, (b) the biological role

of ZnT8, and (c) phenotypic measurements suggesting an impact of rs13266634 on

beta-cell function, several groups have sought further mechanistic insight through

model systems of ZnT8 activity. Both cellular models and Slc30a8 knockout mice

have enabled investigation of the impact of SLC30A8 overexpression, perturbation,
or deletion on multiple aspects of beta-cell- or T2D-relevant biology, including zinc
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transport, insulin crystallization, insulin secretion, blood insulin and glucose levels,

and glucose tolerance.

Both overexpression and knockdown of ZnT8 have been investigated in cellular

models. One study overexpressed ZnT8 in rodent beta-cell lines and observed

enhanced insulin secretory capacity (Chimienti et al. 2006). Conversely, two

studies examined the acute effect of ZnT8 knockdown in rodent beta-cells: Cellular

insulin content was decreased in one study, while both demonstrated decreased

cellular zinc content and glucose-stimulated insulin secretion (El Muayed

et al. 2010; Fu et al. 2009). KCl-stimulated insulin secretion was not affected

(Fu et al. 2009). Although limited, these studies seem to suggest that ZnT8 activity

is positively correlated with zinc transport and insulin secretion.

The impact of the p.Arg325Trp variant on rodent beta-cell lines has also been

investigated. In one study, overexpression of the Arg325 and Trp325 variants did

not lead to differences in glucose-stimulated insulin secretion, but the high-risk

Arg325 variant did have lower zinc transport activity and zinc accumulation in

secretory granules—suggesting reduced function as a zinc transporter (Nicolson

et al. 2009). In a second study, insulin and glucagon mRNA levels, as well as basal-

and glucose-stimulated insulin secretion, were similar in human islets homozygous

or heterozygous for the Arg325 risk variant of ZnT8 compared to those homozy-

gous for the Trp325 variant (Cauchi et al. 2010). These two studies thus suggest that

while p.Arg325Trp may affect transport activity of ZnT8, the impact on cellular

measures of beta-cell function is less clear.

As cellular models lack physiological context, a complementary line of research

has been to investigate the phenotypic effects of Slc30a8 deletion in mice. The first

three knockout mice studies, in 2009, were broadly interpreted as providing evi-

dence that loss of Slc30a8 led to defects in insulin secretion (Rutter 2010). All three
studies were consistent in showing reduced islet zinc content and malformed insulin

granules (Lemaire et al. 2009; Nicolson et al. 2009; Pound et al. 2009). Similarly, in

all three studies, mice exhibited abnormal insulin secretion or glucose homeostasis

under some conditions. In one study by Lemaire et al., animals became glucose

intolerant or diabetic on a high-fat diet, proposing a model in which ZnT8 is

essential for normal glucose homeostasis under prolonged beta-cell stress (Lemaire

et al. 2009). In another study by Nicolson et al., young mice exhibited impaired

glucose tolerance, the degree of which was highly dependent on age, sex, and diet

(Nicolson et al. 2009). In the third, null mice had lower plasma insulin levels, and

isolated islets had lower glucose-stimulated insulin secretion (Pound et al. 2009).

Inspired by these findings, additional studies examined the effects of conditional

knockout of Slc30a8. To remove confounding effects of ZnT8 activity in tissues

other than the pancreas, mice lacking Slc30a8 solely in either beta-cells or alpha

cells were generated (Wijesekara et al. 2010). Consistent with expectations, beta-

cell specific knockouts had reduced islet zinc content and first-phase insulin

response and became glucose intolerant; alpha-cell-specific knockouts, on the

other hand, showed no clear abnormalities in glucagon levels or glucose homeo-

stasis. A second study sought to investigate the interactions between a high-fat diet

and ZnT8 deficiency (Hardy et al. 2012). This study suggested that, in response to a
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high-fat diet, global Slc30a8 knockouts had markedly higher rates of obesity,

hyperinsulinemia, and hyperglycemia than beta-cell-specific knockouts—which

exhibited only modest hyperinsulinemia and hyperglycemia—proposing global

loss of Slc30a8 as necessary to fully exacerbate the effects of metabolic stress

due to a high-fat diet.

Despite these potentially promising insights into the impact of ZnT8 on mouse

physiology, heterogeneity in the details of the observations clouds the picture.

Although Lemaire et al. (2009) observed glucose intolerance in null mice on a

high-fat diet, mice on a normal diet were phenotypically normal. Similarly,

Nicolson et al. (2009) did not observe consistent effects on insulin levels or glucose

homeostasis, with only some genders and ages of mice exhibiting elevated fasting

glucose levels or glucose intolerance; in some cases, they even observed an increase

in insulin secretion from isolated islets. Pound et al. (2009), working independently

from the others, observed the least evidence for an effect of ZnT8 knockout on

glucose homeostasis, observing unaltered blood glucose levels in spite of lower

insulin levels and secretion from isolated islets.

This observed heterogeneity in mouse phenotypes suggested that small sample

sizes, different environments, or variable genetic backgrounds might influence

conclusions about the effects of Slc30a8 knockout in mice. To investigate this

possibility, Pound and colleagues (Pound et al. 2012) examined the impact of

Slc30a8 deletion on a pure genetic background. While they again observed null

mice to have clearly reduced islet zinc content, only females showed lower insulin

levels, and all mice had normal glucose levels and glucose-stimulated insulin

secretion. Thus, after controlling for environment and genetic background, the

authors concluded that loss of ZnT8 had a minimal impact on mouse physiology.

The interpretation of these results, in contrast to those obtained on a mixed genetic

background, is unclear (da Silva et al. 2013).

To further clarify the physiological role of secreted zinc, most recently Tamaki

et al. examined potential effects of Slc30a8 deletion on tissues other than the

pancreas (Tamaki et al. 2013). In this study, beta-cell specific knockouts had low

peripheral blood glucose levels, in spite of insulin hypersecretion. Unexpectedly,

the explanation was that knockouts had enhanced hepatic insulin clearance, which

the authors showed to be due to the removal of inhibitory effects of zinc on hepatic

insulin uptake. In the same study, human carriers of the rs13266634 risk allele were

also shown to have higher insulin clearance. Thus, despite clear localization of

SLC30A8 to the pancreas, there is compelling evidence that its physiological effects

extend to other tissues and behave in complex ways.

In summary, cellular and mouse models have not conclusively determined the

physiological role of SLC30A8 and its relation to T2D. Although there are some

signs of altered insulin secretion or glucose intolerance in certain cases, the data are

not wholly consistent, and the findings in some genetic backgrounds suggest a

limited impact of gene deletion on mouse physiology. Future work will be neces-

sary to resolve these inconsistencies and determine the full effect of Slc30a8
deletion on the pancreas as well as other tissues.
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18.6 Next-Generation Sequencing and SLC30A8

Although mouse and cellular models provide essential tools to understand disease

mechanisms, they have the same limitations as all models: they simplify complex-

ities and thus cannot represent the full context of human physiology. The value of

human genetic studies is that naturally occurring variation can model the effects of

gene perturbation in vivo, bridging the gap between molecular or cellular mecha-

nism and ultimate impact on physiology.

These “experiments of nature” have particular value toward the goal of target

validation for drug development (Plenge et al. 2013). Perhaps the most famous

example involves PCSK9, a gene with mutations known to cause hypercholester-

olemia (Abifadel et al. 2003). In 2005, it was discovered that loss-of-function

mutations in PCSK9—resulting in ablation or severe reduction of protein activ-

ity—reduce LDL levels in carriers (Cohen et al. 2005). Further identification and

study of additional loss-of-function mutations showed carriers to have long-term

reduced risk of cardiovascular disease, with no apparent adverse phenotypes

(Cohen et al. 2006; Kathiresan and Myocardial Infarction Genetics 2008; Kotowski

et al. 2006). The desirable clinical endpoint, as well as the presence of a relevant

biomarker, gave confidence that inactivation of PCSK9 in humans would be an

effective therapy—which has since led to the development of a promising candidate

drug (Stein et al. 2012). Similar success stories exist for Nav1.7 (pain) (Nassar

et al. 2004) and CCR5 (HIV) (De Clercq 2007).

The increasing accessibility of DNA sequencing has enabled studies to identify

an increasing number of variants and explore the phenotypic impact of a wider

allelic series for many genes. The first such study for SLC30A8 involved sequencing
its exons and surrounding regions in 380 individuals from five ethnicities, with

subsequent genotyping of identified variants in 3445 individuals (Billings

et al. 2014). Association analysis of 61 variants (44 of which were previously

unidentified) identified several common variants as individually associated with

oral disposition or insulinogenic index (two measures of beta-cell function). In

addition, some measures of the aggregate “load” of rare variation showed modest

association with T2D or changes in insulinogenic index over a 1-year period.

Although this study had limited power to detect low-frequency or rare-variant

associations, it demonstrates that a wider catalog of variation might lend under-

standing to the effects of a range of perturbations of SLC30A8 in humans.

A second study used much larger sample sizes to explicitly study a special

subclass of mutations in SLC30A8: those that cause premature protein truncation

and thus a high likelihood of loss of function (Flannick et al. 2014). Through a

series of studies which ultimately sequenced 15,282 individuals and genotyped an

additional 133,852 individuals, a spectrum of 12 predicted protein-truncating

variants was identified. Two of these—a nonsense mutation p.Arg138* and a

frameshift mutation p.Lys34Serfs*50—were individually associated with T2D

risk and shown to encode unstable ZnT8 proteins.
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Surprisingly, however, heterozygosity for any of the 12 protein-truncating

variants in SLC30A8 was associated with decreased risk of T2D: an estimated

65 % reduction, at levels of significance sufficient to correct for 20,000 genes in the

genome ( p¼ 1.7� 10�6). Furthermore, the p.Lys34Serfs*50 variant was associ-

ated with lower glucose levels in nondiabetic controls. These observations were at

striking odds with the previous model for the directional relationship between

SLC30A8 activity and disease risk—based on biological hypotheses, functional

studies of rs13266634, and mouse models—in which decreased ZnT8 activity

would increase disease risk. Although confounding factors can never be completely

removed from genetic association studies, the observation of multiple independent

protective protein-truncating variants, in multiple ethnicities, provided evidence

that the mechanism linking variation in SLC30A8 to T2D risk is more complex than

previously assumed. Furthermore, they suggested that therapeutics directed against

SLC30A8 might be designed to inhibit the protein, rather than activate it.

In summary, the era of next-generation sequencing enables exploration of the

full allelic series for many genes, including SLC30A8. Initial studies have demon-

strated that multiple variants in the gene are associated with risk of T2D or related

phenotypes (Table 18.1). Strikingly, the evidence from study of protein-truncating

variants in human populations suggests that SLC30A8 loss of function might reduce

risk of T2D, rather than increase it as previously assumed. Although further

research is necessary to elucidate the potential mechanism for this protective effect,

the observed human genetics data must be reconciled with any molecular or cellular

studies in model systems.

18.7 Summary

SLC30A8 represents a promising gene to advance understanding of T2D patho-

physiology, as well as a potential therapeutic target. The association of a missense

variant with T2D, glucose, and proinsulin—at statistical significance far beyond

genome-wide thresholds—clearly implicates it as relevant to T2D. The biological

role of its protein product (ZnT8) and more detailed phenotypic interrogation of

variant carriers suggest that altered zinc transport within the beta-cell may influence

T2D risk. Cellular and animal models have been viewed as supportive of this view,

although not as conclusively as might have initially been expected, and have

recently suggested a role for SLC30A8 in tissues other than the pancreas.

However, the mechanism whereby SLC30A8 perturbation affects T2D risk

remains far from clear (Rutter and Chimienti 2015). Recent evidence from human

genetics is at odds with the model where reduced activity increases risk and

suggests that inhibition, rather than activation, might be the desired therapeutic

strategy. These data, together with heterogeneity in mouse phenotypes, the rela-

tively limited functional study of p.Arg325Trp, and recent evidence for an unex-

pected role of zinc and SLC30A8 in hepatic insulin clearance, suggest complex

disease mechanisms and a fertile path for future research (Table 18.2).
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Nonetheless, SLC30A8 exemplifies perhaps a canonical strategy to translate

common variant associations to mechanistic insight and ultimately treatment.

Specific biological hypotheses, and cellular and mouse models, are key tools to

gain insight into molecular and cellular mechanisms, which are necessary to

identify disease pathways and insight into pathophysiology. Observations from

human genetics are powerful data to help understand the impact of gene perturba-

tion on clinical endpoints. Additional study through, and refinement of, all of these

techniques will be necessary to determine whether SLC30A8 represents a promising

therapeutic target in the treatment of T2D.
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Chapter 19

From Association to Function: MTNR1B

Amélie Bonnefond and Valeriya Lyssenko

Abstract The discovery that variants in the melatonin receptor 2 (MTNR1B) gene
were associated with glucose levels, insulin secretion, and risk for type 2 diabetes

(T2D) in genome-wide association studies (GWAS) reinforced the previously

suggested link between glucose homeostasis and circadian rhythmicity. Diurnal

secretion of melatonin has reported to be altered in people with diabetes and rodent

models of T2D. The proposed underlying mechanisms by which altered melatonin

signaling could predispose to progression to T2D and gestational diabetes mellitus

(GDM) involve altered expression of MTNR1B in pancreatic beta cells, leading to

impaired insulin secretion, consequent increased fasting glucose concentrations,

and eventually overt T2D. Thus blocking the inhibition of insulin secretion may

have potential clinical implications, and these effects could be more pronounced in

individuals carrying risk genotypes. Finally, given that melatonin could emerge as

an attractive treatment for a variety of conditions including pregnancies associated

with GDM, preeclampsia, and intrauterine growth retardation, pharmacogenetic

studies are warranted to determine treatment response and side effects according to

genotype.
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19.1 MTNR1B as a Primary Genome-Wide Association

Signal for Fasting Plasma Glucose Levels

Type 2 diabetes (T2D) is a complex genetic metabolic disorder which has devel-

oped into a major health problem responsible for early morbidities (including

severe micro- and/or macro-vascular complications) and mortality, with a burden

increasing globally, particularly in developing countries (World Health Organiza-

tion 2013). T2D results from progressive dysfunction of insulin secretion from

pancreatic beta cells on the background of resistance to insulin action (American

Diabetes Association 2014a). Since 2007, exponential progress has been made in

identifying genetic determinants of T2D through the use of cutting-edge DNA

microarrays allowing for large-scale genome-wide association studies (GWAS)

and their meta-analyses. After analyzing T2D as a binary disorder in case–control

GWAS, a logical next step was to investigate new variants contributing to the

variation of metabolic quantitative traits linked to the pathophysiological processes

leading to T2D, as this may provide new insights into the etiological mechanisms of

this highly complex disorder. Among such quantitative traits, fasting plasma

glucose (FPG) levels were of major interest as hyperglycemia in the fasting state

remains one of the criteria used by the American Diabetes Association (ADA) to

define T2D (American Diabetes Association 2014b). Furthermore, elevated FPG

levels within the range specified by the ADA was known to be an independent risk

factor for T2D (Tirosh et al. 2005) and for cardiovascular and all-cause mortality

(Barr et al. 2007). Of note, approximately one-third of the variation of FPG was

shown to be genetic (Watanabe et al. 1999; Pilia et al. 2006).

In 2008, via GWAS, two independent groups identified a new genome-wide

association signal with FPG levels closed to G6PC2 and ABCB11 genes, in

nondiabetic European participants (Bouatia-Naji et al. 2008; Chen et al. 2008).

Of note, the single nucleotide polymorphism (SNP; rs560887) in G6PC2 which

significantly contributed to variation of FPG levels was not associated with T2D

risk (Bouatia-Naji et al. 2008) (see Chap. 17).

One year later, using larger sample sizes in GWAS meta-analyses which mark-

edly increased the statistical power, a new locus associated with FPG levels was

identified in MTNR1B (encoding melatonin receptor 2 [MT2]) in nondiabetic

European individuals (Bouatia-Naji et al. 2009; Prokopenko et al. 2009). The

association signal was subsequently refined by genotyping eight SNPs in strong

linkage disequilibrium (r2> 0.70) within the association block (Sparsø et al. 2009).

This study showed that rs10830963, located in the middle of the unique MTNR1B
intron, carried most of the effect on FPG variation (Sparsø et al. 2009). Of note,

rs10830963 was the strongest SNP associated with FPG levels in the first and most

recent publications by the Meta-Analyses of Glucose and Insulin-related traits

Consortium (MAGIC) in 36,610 and 133,010 nondiabetic individuals of

European descent, respectively (Fig. 19.1) (Prokopenko et al. 2009; Scott

et al. 2012). The MTNR1B locus was shown to be robustly associated with

FPG levels in nondiabetic individuals from other various ethnicities including
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African-Americans, Koreans, Japanese, Sri Lankans, Han Chinese, and Indian

Asians (R€onn et al. 2009; Chambers et al. 2009; Liu et al. 2010; Takeuchi

et al. 2010; Kan et al. 2010; Ramos et al. 2011; Kim et al. 2011; Rasmussen-

Torvik et al. 2012), suggesting a putatively causal role of the MTNR1B gene in the

association with FPG levels. Furthermore, studies in adolescents and children

suggested that variants in MTNR1B most likely influence FPG levels early from

childhood onward (Barker et al. 2011).

19.2 Effect of MTNR1B Genetic Variants on T2D Risk

In addition to the variation of FPG levels, the MTNR1B locus was found to be

significantly associated with T2D risk (Bouatia-Naji et al. 2009; Lyssenko

et al. 2009; Prokopenko et al. 2009), demonstrating that studies of continuous

glycemic phenotypes in nondiabetic individuals can successfully complement the

genetic analyses of T2D as a dichotomous trait. Dupuis et al. demonstrated a

genome-wide significant association between MTNR1B SNP rs10830963 and

T2D risk (Dupuis et al. 2010), which was confirmed by the Diabetes Genetics

Replication And Meta-analysis (DIAGRAM) consortium (Voight et al. 2010). The

association between MTNR1B locus and T2D risk was also reported in individuals

Fig. 19.1 Regional plots showing the association between SNPs and FPG levels at the MTNR1B
locus in the lastly published MAGIC study performed in 133,010 nondiabetic individuals of

European descent (Scott et al. 2012)
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from various ethnicities including Han Chinese, Japanese, and Indian Asians (R€onn
et al. 2009; Chambers et al. 2009; Kan et al. 2010; Ling et al. 2011; Ohshige

et al. 2011; Zhao et al. 2014), even though evidence of heterogeneity due to

ethnicity was found in two meta-analyses: the association seemed to be stronger

in Europeans, compared with East or South Asians (Xia et al. 2012; Wang

et al. 2013).

The causal link between theMTNR1B locus and T2D risk has been demonstrated

by a large-scale exon resequencing study ofMTNR1B in combination with system-

atic functional investigations of each identified non-synonymous variant

(Bonnefond et al. 2012). The sequencing of MTNR1B coding exons in 7632

Europeans, including 2186 individuals with T2D, identified 40 non-synonymous

variants of which 36 variants were very rare (with a minor allele frequency below

0.1 %) and significantly associated with T2D, while the four frequent or rare

non-synonymous variants (with a minor allele frequency above 1 %) did not

contribute to T2D risk (Bonnefond et al. 2012). After functional investigations

(including proper surface expression study, melatonin binding study, and ERK or

Gi pathway study of each mutant), Bonnefond et al. demonstrated that 13 partial- or

total-loss-of-function very rare variants in combination yield more than fivefold

increased risk for T2D, while the 23 neutral very rare variants did not exhibit any

effect on T2D (Bonnefond et al. 2012). This study established a firm functional link

between the MTNR1B gene and T2D risk, highlighting that the discovery of

functional coding mutations in a previously associated locus can help establish a

specific gene as the molecular cause of the association signal.

19.3 Effect of MTNR1B Variants on Early Phase Insulin

Secretion

The mechanisms by which variation at MTNR1B raises FPG and T2D risk were

explored by the Diabetes Genetics Initiative GWAS for insulin secretion (Lyssenko

et al. 2009). Lyssenko et al. demonstrated that the glucose-raising allele of the

MTNR1B rs10830963 was associated with impaired early insulin release to both

oral (insulinogenic and disposition index) and intravenous (first phase insulin

response) glucose loads (Lyssenko et al. 2009). In addition, the risk allele carriers

showed deterioration in insulin secretion over time as compared to non-risk allele

carriers (Lyssenko et al. 2009). The same study showed that in the risk allele

carriers, elevated FPG levels and reduced phase insulin response to glucose were

translated into 11 % increased risk for future T2D in two large prospective studies

of more than 18,000 individuals, of whom 2201 developed T2D during a mean

follow-up period of 23.5 years (Lyssenko et al. 2009). Very recently, a largest to

date GWAS meta-analyses for dynamic measurements of insulin secretion during

an oral glucose tolerance test (OGTT) in more than 10,000 nondiabetic individuals

confirmed MTNR1B rs10830963 as the strongest signal for first phase insulin
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secretion (Prokopenko et al. 2014). Importantly, in the Diabetes Prevention Pro-

gram, the association of MTNR1B rs10830963 with impaired early insulin release

persisted at 1 year despite adjustment for the baseline trait, suggesting a progressive

deterioration of the effect at this locus (Florez et al. 2012).

Notably, Lyssenko et al. demonstrated that MTNR1B mRNA was expressed in

human pancreatic islets and more specifically that nondiabetic individuals carrying

the risk allele and patients with T2D display increased expression of the receptor in

pancreatic islets (Lyssenko et al. 2009). These observations were further confirmed

by a large gene-expression analysis of human pancreatic islets (Taneera et al. 2012).

Exogenously administered melatonin has been shown to inhibit insulin secretion in

rodents (Bailey et al. 1974). In line with these observations, Lyssenko et al. showed

that melatonin inhibited insulin release in response to glucose in INS-1 rat beta cells

(Lyssenko et al. 2009).

Of note, MTNR1B rs10830963 significantly increased the risk of isolated

impaired fasting glucose but not the risk of isolated impaired glucose tolerance

(Sparsø et al. 2009), and the same SNP was shown to impact the rate of progression

from normal fasting glucose to impaired fasting glucose, but not the rate of

progression from impaired fasting glucose to T2D (Walford et al. 2012). In the

GLACIER study which is a population-based prospective cohort study from north-

ern Sweden, MTNR1B rs10830963 was reported to increase risk of developing

impaired fasting glucose during 10-year follow-up but to be protective of worsening

glucose tolerance (Renstr€om et al. 2011), which confirmed a strong effect of

MTNR1B locus on impaired fasting glucose, independently of impaired glucose

tolerance measured 2 h after a meal.

In addition to its effects on insulin secretion and isolated impaired fasting

glucose, variants in the MTNR1B gene were also reported to be associated with

hepatic insulin resistance (Sparsø et al. 2009; Vangipurapu et al. 2011). Notably,

the risk carriers of MTNR1B were a clear outlier when known hyperbolic relation-

ship between insulin secretion and the degree of insulin sensitivity was plotted,

showing a strong insulin-resistant phenotype for the given impairment in insulin

secretion (Jonsson et al. 2013). An association with insulin sensitivity could involve

effects of MTNR1B on energy expenditure. In this vein, it has been recently

demonstrated that MTNR1B variant could modify effects of dietary fat intake on

changes in energy expenditure during a 2-year period (Mirzaei et al. 2014). Addi-

tionally, this could involve insular-incretin axis asMTNR1B variants were shown to

be associated with incretin-stimulated insulin secretion (Simonis-Bik et al. 2010).
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19.4 Effect of MTNR1B Variants on the Risk

for Gestational Diabetes Mellitus

In addition to the risk of T2D, there is compelling robust evidence for an association

of the MTNR1B locus with gestational diabetes mellitus (GDM) in several ethnic

populations (Kwak et al. 2012; Vlassi et al. 2012; Huopio et al. 2013). A GWAS in

a Korean population consisting of 468 women with GDM and 1242 nondiabetic

women reported a variant near MTNR1B, SNP rs10830962, to be associated with

GDM at a genome-wide significance level (Kwak et al. 2012). In a smaller study

from Greece, SNP rs10830963 also conferred association with GDM (Vlassi

et al. 2012), while in one study of Chinese pregnant women, several variants in

the MTNR1B gene were associated with elevated glucose concentrations (Liao

et al. 2012). An independent Chinese study demonstrated reduced beta-cell function

as measured with HOMA-B index (Wang et al. 2011). Recently, a large Finnish

study showed that the risk genotypes of the MTNR1B rs10830963 were associated

with GDM risk, increased fasting plasma glucose, and reduced insulin secretion

(Huopio et al. 2013). Notably, melatonin crosses the human placenta easily and

rapidly (Okatani et al. 1998) and has been suggested to play an important role

during pregnancy through its antioxidant properties but also as a regulator of

normal growth and development of fetal organs (Reiter et al. 2014). The underlying

mechanisms were attributed to the melatonin effect on the epigenetic modifications

of genes implicated in placental development, fetal growth, and intrauterine pro-

gramming (Korkmaz et al. 2012). However, there have been no any studies thus far

on whether variants in the melatonin receptor(s) could contribute to these effects.

19.5 Melatonin Secretion and Physiological Functions

Melatonin (N-acetyl-5-methoxytryptamine), also known as the hormone of dark-

ness, is an indoleamine synthesized from the amino acid tryptophan via serotonin.

Tryptophan is converted by 5-tryptophan hydroxylase to 5-hydroxytryptophan,

which then in the pineal gland is converted through hydroxylation and decarbox-

ylation into serotonin. Serotonin is subsequently acetylated by arylalkylamine-N-

acetyltransferase (AANAT, also called serotonin N-acetyltransferase), the rate-

limiting step in melatonin biosynthesis, and, finally, through a methylation reaction

converted into melatonin by acetylserotonin O-methyltransferase (ASMT)

(Axelrod and Weissbach 1960). Melatonin is a key mediator of the entrainment

of biological rhythms in the body, a “zeitgeber” (German: “time giver”), in which

biological rhythmic secretion was initially linked to regulation of seasonal repro-

duction in photoperiodic species (Hoffman and Reiter 1965).

The hormone was traditionally thought to emanate from rhythmicity

pinealocytes located in the pineal gland. This endocrine organ is located in the

midline of the brain, just above the posterior commissure at the dorsal edge of the
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third ventricle, and receives a rich supply of adrenergic innervation from the

superior cervical ganglion. However, melatonin remains detectable after pinealec-

tomy in some species (Axelrod and Weissbach 1960), leading to the realization that

the hormone is produced in neuroendocrine cells of both central (pineal gland,

retina, Harderian glands) and peripheral origins, comprising enterochromaffin cells

dispersed in a number of organs, e.g., the gastrointestinal tract, pancreas, and many

more (Kvetnoy et al. 1997). Melatonin is also produced by numerous non-endocrine

cells, e.g., immune cells. Thus, while substantial local biosynthesis also occurs in

retina and in some other organs, e.g., the gastrointestinal tract, the diurnal rhythm of

the circulating melatonin in blood exclusively accounts for its secretion from the

pineal gland.

Light has a dual effect on the production of melatonin. First, it entrains the

circadian clock, making melatonin production occur during the night. The duration

of melatonin production varies with time over the year, because the onset and offset

of melatonin secretion are controlled by the clock and can move closer (summer) or

apart (winter) (Illnerová and Sumová 1997). In fact, in the absence of light, and in

blind people, the melatonin rhythm persists following a circadian rhythm and cycle

length governed by the suprachiasmatic nucleus (SCN) (Klerman et al. 2002). Light

at night can also have an acute suppressive effect on melatonin production. In

rodents, light at night decreases melatonin within minutes, while RNA levels

remain high for hours. Circulating levels of melatonin peak at 80–100 pg/ml in

the middle of the night and drop to 10–20 pg/ml during day time; the half-life of the

hormone in the circulation is less than 20 min.

The hormone exerts its effects both through activation of its receptors (melatonin

receptor 1 [MT1], MT2, and the orphan GPR50 receptor that can regulate the

function of MT1 and MT2 through receptor heterodimerization) (Boutin

et al. 2005; Jockers et al. 2008) but also via receptor-independent mechanisms

such as its capacity to act as an antioxidant (Hardeland 2005). These effects can

either be through the circulating levels of the hormone or in a more autocrine/

paracrine fashion near target tissues (Kvetnoy et al. 1997; Peschke 2008).

Melatonin is widely known to affect the CNS, where it alters hormone release

and phase shifts neuronal firing both in the 24 h rhythm and seasonal changes

(Dubocovich and Markowska 2005). The phase-advancing effects of melatonin are

taken advantage of treating insomnia or limiting jet lag when traveling across time

zones (Arendt et al. 1997; Zhdanova and Wurtman 1997; Arendt 2006). Recently,

the effects of melatonin in synergizing maternal and fetal circadian rhythms during

pregnancy, the development of normal placentation, and its potential beneficial

properties in the treatment of compromised pregnancies associated with GDM,

preeclampsia, and intrauterine growth retardation have been emphasized (Reiter

et al. 2014).

In the periphery, melatonin promotes vasoconstriction through MT1 and vaso-

dilation through MT2 (Masana et al. 2002). In the adrenal cortex, it lowers cortisol

secretion, an action shared with insulin (Weitzman et al. 1971; Peschke 2008).

Interestingly, human adipocytes, a major target tissue for insulin, express MT2 and

have been shown to reduce the expression of the insulin-dependent glucose
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transporter GLUT4 after melatonin stimulation (Brydon et al. 2001). In muscle

cells, melatonin stimulates glucose uptake by phosphorylation of the insulin recep-

tor substrate-1 (IRS-1) through suggested MT2 signaling (Ha et al. 2006). MT2 is

also expressed in hepatocytes, and melatonin injections elevated glucose release

from the liver in mice (Poon et al. 2001). Melatonin receptors are also widely

expressed in the gut and could thus have an effect on incretin hormones like glucose

insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1) (Chen

et al. 2011).

19.6 Melatonin Receptors: A Putative Role in Pancreatic

Islets?

The genetic studies described above have strongly suggested a putatively direct role

of MTNR1B variants in the dysfunction of insulin secretion from pancreatic beta

cells, leading to T2D. The discovery that genetic variants in theMTNR1B gene were

associated with FPG levels, insulin secretion, and risk for T2D reinforced the

previously suggested link between glucose homeostasis and circadian rhythmicity.

It has been previously observed that plasma insulin levels exhibit a circadian

rhythm and that disturbance in the oscillation affects plasma glucose and hormone

levels (Scheer et al. 2009). Diurnal secretion of melatonin has reported to be altered

in patients and rodent models of T2D and that expression of the melatonin receptor

is increased (Peschke et al. 2006b). Importantly, it has recently been demonstrated

that lower nocturnal melatonin secretion was independently associated with a

higher risk of developing T2D in nondiabetic women (McMullan et al. 2013).

However, the specific role of the melatonin receptors in these observations remains

an open question. How did cell studies and animal models indicate a putative role of

melatonin receptors in pancreatic islets and T2D?

19.6.1 Melatonin Receptors Are G-Protein-Coupled
Receptors (GPCRs)

Melatonin receptors belong to the GPCR superfamily which represents the largest

family of cell membrane receptors in humans with approximately 800 GPCRs

(>1 % of the total protein-coding human genome) (Jassal et al. 2010). GPCRs

are characterized by seven alpha-helical transmembrane domains which are

connected by intra- and extracellular loops of various lengths. They sense extra-

cellular signals (including photons, metabolites, amino acids, lipids, odor mole-

cules, hormones, neurotransmitters, peptides) and activate various intracellular

signaling pathways, through the interaction with G proteins (including Gs proteins

which activate the adenylyl cyclase pathway, Gi/o proteins which inhibit this
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pathway, Gq/11 proteins which activate the phospholipase C pathway, and G12/13

proteins which are involved in the activation of small G proteins and cytoskeleton

rearrangements) and/or beta-arrestin (Kristiansen 2004; Venkatakrishnan

et al. 2013).

Melatonin receptors constitute a subfamily of rhodopsin-like (type A or 1)

GPCRs which include three members: MT1, MT2, and the orphan GPR50 receptor

(Jockers et al. 2008; Jassal et al. 2010). They share specific short amino acid

sequences and approximately 55 % overall sequence homology (Reppert

et al. 1994, 1995). Melatonin receptors have been neglected for a long time by

academic research due to the lack of specific pharmacological tools, apparently

mild phenotypes of knockout mice, and poorly defined functions. Notably, rodent

animal models are limited for the study of the link between melatonin and metab-

olism, as rodents are nocturnal animals (therefore the circadian rhythms of food

intake and metabolism are shifted by 12 h with respect to humans, despite the

nocturnal secretion of melatonin by humans and rodents). Furthermore, some

mouse strains used in laboratory are known to exhibit very low or even undetectable

circulating melatonin levels due to impaired melatonin production within the pineal

gland (Kennaway et al. 2002). Therefore, in the studies of melatonin and its

receptors, the extrapolation of results obtained from rodents to humans must be

done cautiously (Karamitri et al. 2013).

19.6.2 Distribution of MT1 and MT2 in Humans

Melatonin receptors are widely expressed throughout the human body. Notably,

bothMTNR1A andMTNR1B are expressed in the brain (in particular the SCNwhich

is the master circadian pacemaker, the hippocampus, and the thalamus) and in the

retina (Reppert et al. 1995; Jockers et al. 2008). Interestingly, insulin-target tissues

express MTNR1B: adipocytes, muscle cells, hepatocytes, and the gut. Furthermore,

both MTNR1A mRNA and MTNR1B mRNA have been detected in human islets

(Ramracheya et al. 2008). The same study showed that MTNR1A mRNA was

primarily detected in pancreatic alpha cells and the level of MTNR1B mRNA was

globally much lower than the level of MTNR1A mRNA in human islets

(Ramracheya et al. 2008). This last result was not confirmed by Lyssenko et al.,

who did not detect any differences in the levels of MT1 and MT2 in human islets

(Lyssenko et al. 2009). MT2 was predominantly observed in human pancreatic beta

cells, while MT1 was mostly detected in a population of peripherally located beta

cells (Lyssenko et al. 2009).

19 From Association to Function: MTNR1B 411



19.6.3 Melatonin Receptor Signaling in Pancreatic Beta
Cells

Most of the existing literature (based on rodent models) has shown that melatonin

inhibits insulin secretion from pancreatic beta cells (Peschke 2008). However, in

human pancreatic islets, a study demonstrated that melatonin stimulates insulin

secretion, without affecting cAMP levels (Ramracheya et al. 2008).

Melatonin receptors can actually modulate insulin secretion from pancreatic

beta cells via different signaling pathways which can lead to opposite effects

(Fig. 19.2). First, activated melatonin receptors coupled with Gαi proteins inhibit
cAMP production (via adenylyl cyclase [AC]) and activation of cAMP-dependent

protein kinase A (PKA) and therefore decrease insulin granules exocytosis

(Fig. 19.2) (Kemp et al. 2002; Peschke et al. 2002, 2006a). Furthermore, activated

MT2 receptor coupled with Gαi proteins can decrease cGMP levels (via guanylate

cyclase), leading to reduced insulin secretion (Fig. 19.2) (Stumpf et al. 2008, 2009).

In addition, activated melatonin receptors coupled with Gαq/11 enhance phospholi-
pase C (PLC), increasing the release of Ca2+ from intracellular stores (endoplasmic

reticulum) by the stimulation of inositol 1,4,5-triphosphate (IP3) receptor, which

induces insulin granules exocytosis (Fig. 19.2) (Bach et al. 2005). All these results

were obtained from rodent models which can have some limitations. More inves-

tigations based on human pancreatic islets would be of major interest for the field.

Of note, melatonin receptors (in particular MT1) may also play a role in pancreatic

alpha cells, which could regulate glucose homeostasis via the glucagon. However,

the mechanisms are not clear as there are some discrepancies between studies, and

investigations based on human islets are also lacking (Karamitri et al. 2013).

Fig. 19.2 Signal transduction of melatonin in pancreatic beta cells. AC, adenylyl cyclase; ATP,
adenosine triphosphate; cAMP, cyclic adenosine monophosphate; cGMP, cyclic guanosine

monophosphate;DAG, diacylglycerol; IP3, inositol 1,4,5-triphosphate; PIP2, phosphatidylinositol
4,5-bisphosphate; PKA, protein kinase A; PLC, phospholipase C
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19.7 Dysfunction of Circadian Rhythm and Metabolic

Disorders

Organisms, ranging from bacteria to mammals, possess accurate internal biological

rhythms that time various daily events from photosynthesis in plants to sleep/

wakefulness in humans (Takahashi et al. 2008). In mammals, many physiological

processes are actually regulated by these inherent clocks, including glucose homeo-

stasis, body temperature, feeding behavior, and hormone release (Takahashi

et al. 2008). The circadian system (defined as its approximately 24 h cycles in the

absence of environmental clues) represents the hierarchy of these multiple biolog-

ical clocks, which is controlled by the SCN known as the “master clock” or “master

circadian pacemaker,” located in the anterior hypothalamus (Mohawk et al. 2012).

The SCN is synchronized by the daily light–dark cycle in mammals, and in turn, it

regulates output pathways controlling various biological functions and overt

rhythms (e.g., hormone release, feeding, body temperature) which can synchronize

peripheral biological clocks including circadian rhythms in pancreatic islets

(Takahashi et al. 2008). Of note, these peripheral clocks can feed back and interfere

with the master clock SCN (Mohawk et al. 2012).

At the molecular level, circadian clocks are mostly controlled by an

autoregulatory transcriptional feedback loop (the “core circadian clock”) involving

the activator transcription factors CLOCK and BMAL1 and their target genes

period (PER1, PER2, PER3) and cryptochrome (CRY1, CRY2) whose gene prod-

ucts form proteins that complex, translocate into the nucleus, and repress CLOCK

and BMAL1-mediated transcription until the degradation of the Per/Cry repressor

complex (Takahashi et al. 2008; Mohawk et al. 2012). This loop takes roughly 24 h

and operates in most cells of the body to control either ubiquitous or tissue-specific

physiological functions. Of note, there are additional (less essential) loops involv-

ing other clock genes or proteins (e.g., Rev-erbα, Rorα) which influence the core

circadian clock. All these feedback loops interact with electrical and metabolic

oscillations which modulate physiological function (Evans and Davidson 2013).

Compelling evidence has linked a disturbed circadian rhythm to metabolic

syndrome, including T2D and obesity (Bass and Takahashi 2010; Shi et al. 2013).

First, in the early 2000s, an outstanding study showed that a significant part of the

transcriptome follows circadian rhythms in the mouse and that most of the signaling

pathways regulated by these circadian clocks are involved in fundamental metab-

olism (Panda et al. 2002). Furthermore, several mutant animal models for clock

genes (Clock, Bmal1, Rev-erbα, Rev-erbβ) have been shown to present with

metabolic disorders including obesity, diabetic phenotypes (insulin resistance,

hyperglycemia, impaired pancreatic function), hypertension, hyperlipidemia,

and/or hepatic steatosis (Turek et al. 2005; Takahashi et al. 2008; Lamia and

Evans 2010; Marcheva et al. 2010; Cho et al. 2012). Importantly, two studies

demonstrated that pancreatic islets (probably pancreatic beta cells) possess

self-sustained circadian oscillations (Marcheva et al. 2010; Sadacca et al. 2011).

This intrinsic pancreatic circadian clock is required for normal insulin secretion

19 From Association to Function: MTNR1B 413



and glucose homeostasis (Sadacca et al. 2011) and, when disrupted, leads to

hypoinsulinemia and diabetes (Marcheva et al. 2010). In humans, a considerable

number of epidemiological studies have reported that shift work is associated with

increased risk for metabolic syndrome (including T2D and obesity) and cardiovas-

cular disease, relative to day work (Kivimäki et al. 2011; Pan et al. 2011; Vyas

et al. 2012; Buxton et al. 2012; Monk and Buysse 2013). Three main factors were

known to explain these negative effects: circadian misalignment, sleep deprivation,

and exposure to light at night (Evans and Davidson 2013). However, lastly, Eve

Van Cauter’s group has reported that circadian misalignment may increase risk of

T2D and obesity-related phenotypes, independently of sleep deprivation (Leproult

et al. 2014). Finally, some genetic studies reported nominal or genome-wide

significant associations between common SNPs near clock genes (CRY2, PER3,
ARNTL [BMAL1], CLOCK, NR1D1 [REV-ERBΑ]) and risk of T2D/obesity or

variation of related metabolic traits (including FPG, lipid levels) (Woon

et al. 2007; Dupuis et al. 2010; Garaulet et al. 2010, 2013; Below et al. 2011;

Kelly et al. 2012; Goumidi et al. 2013). Interestingly, a functional study showed

that expression of PER2, PER3, and CRY2 genes was significantly decreased in

pancreatic islets of patients with T2D, and this low expression was positively

correlated with increased levels of HbA1c and decreased insulin secretion

(Stamenkovic et al. 2012).

Therefore, it is highly probable that dysfunction of central and/or peripheral

circadian clocks leads to T2D and other cardiometabolic studies. However, the

specific involvement of the melatonin and its receptors into this dysfunction

remains an open question.

19.8 Clinical and Pharmacological Implications

Taken together, as most observations available support an inhibitory effect of

melatonin on insulin secretion, selective blocking of the melatonin ligand-receptor

system in islets would be an attractive potential pharmacological target for the

treatment of T2D. An individual carrying a risk variant may thus be more sensitive

to the inhibitory melatonin effect than an individual without the risk allele, with a

normal level ofMTNR1B expression in islets. Such a restraining effect of melatonin

fits with the impairment of early phase insulin secretion that was observed in risk

carriers (Lyssenko et al. 2009). Thus, assessment of plasma levels of melatonin

during different stages of glucose intolerance (NGT, IFG, and T2D) but also during

pregnancy in GDM women in risk and non-risk genotype carriers of the MTNR1B
gene deserves future studies to support or reject this notion. Furthermore, it remains

to be elucidated whether ascribed protective properties of melatonin during preg-

nancy could be altered in the individuals carrying the risk allele in the MTNR1B
gene. Finally, whether the ascribed effects of melatonin on epigenetic intrauterine

programming contribute to the early defects in abnormal glucose metabolism and

risk for T2D later in life warrants further investigation.
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19.9 Conclusions

The proposed mechanisms by which altering melatonin signaling could predispose

to progression to T2D and putatively GDM involve altering expression ofMTNR1B
in pancreatic beta cells leading to impaired insulin secretion. As a result, this leads

to increased fasting glucose concentrations and eventually overt T2D. Thus, it

would be of great clinical value to evaluate the combined risk for T2D but also

for GDM of a model comprising MTNR1B common and rare functional variants in

the gene, together with melatonin metabolites reflective of the activity of key

enzymes in the melatonin pathway: in an intriguing finding that supports this

notion, Illig et al. have shown that the tryptophan to phenylalanine ratio is affected

by genetic variants in the MTNR1B gene (Illig et al. 2010). Whether this observa-

tion is reproducible and clinically translatable awaits the integration of independent

genomic, metabolomic, and prospective data sets.
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Chapter 20

Type 2 Diabetes Prediction

Shuai Wang, Frank B. Hu, and Josée Dupuis

Abstract In this chapter, we review prediction models for type 2 diabetes, starting

with models without genetic information and moving on to models with increasing

complexity in terms of incorporating genetic information. We discuss the strength

of current prediction models and indicate how we might be able to improve diabetes

prediction in the future. For a complementary discussion of prediction models in the

context of obesity, please see Chap. 23.

20.1 Introduction

One of the promises of the investigation of the genetic causes of type 2 diabetes is

the ability to translate the genetic knowledge into better type 2 diabetes treatments.

One could envision personalized medicine, where therapy would be tailored based

on an individual genetic makeup. However, another aspect that may have a greater

impact would be to use the genetics knowledge in the prevention of type 2 diabetes.

Such an approach would involve determining individuals who are most at risk of

developing type 2 diabetes based on their risk factors, including genetic profile, and

developing interventions to prevent or delay the development of the disease. The

advantage of genetic information for prediction over other risk factors is that some

genetic information, such as alleles at a genetic risk locus, can be measured at birth

and does not change throughout a person’s lifetime. Therefore, an accurate risk

prediction algorithm based solely on genetic factors could determine type 2 diabetes

risk at birth and a prevention program could be implemented early in life, when it is

most likely to have a lifelong impact.
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Before the advent of the Human Genome Project and the ensuing technology

development allowing the measurements of thousands of genetic variants in large

samples in a cost-efficient manner, epidemiologists and clinicians have attempted

to develop models for predicting patients most at risk to develop type 2 diabetes

(Morsiani et al. 1985). The best predictive factors increasing risk of type 2 diabetes

include advanced age, high body mass index (BMI), smoking, physical inactivity,

diet in rich trans-fat, and glycemic load but lower in polyunsaturated fats and fiber,

while moderate alcohol consumption has been found to be protective

(Hu et al. 2001). Even before one could measure genotypes efficiently, family

history was found to be a strong predictor of type 2 diabetes incidence (Pierce

et al. 1995), with approximately a twofold increase in risk of developing diabetes in

individuals with diabetic parents (Pierce et al. 1995; Wilson et al. 2007). In the next

section, we first review the statistical approaches used to predict type 2 diabetes and

to evaluate prediction models. We then present earlier prediction models and

compare them with more recent models that incorporate genetic information. We

conclude with a few thoughts on improving type 2 diabetes prediction.

20.2 Prediction Models

Most prediction models have been developed in prospective cohort studies, where

characteristics at baseline are evaluated for association and predictive ability of

type 2 diabetes incidence some years later, with most models in published reports to

date looking at predictive ability 5–10 years in the future (Noble et al. 2011).

Logistic regression is often used to assess predictive ability, although survival

models such as Cox proportional hazard regression have been used either to

supplement the logistic models (Wilson et al. 2007) or as the primary analysis

(Kahn et al. 2009).

In a logistic model, if we assume that the affection status yi is coded as either

0 (unaffected) or 1 (affected) and that xik is the kth of K risk factors, such as sex, age,

hypertension or genotypes, measured on ith individual, the probability that indi-

vidual i will be affected with type 2 diabetes is modeled as

pi ¼ Pr yi ¼ 1ð Þ ¼ eβ0þβ1Xi1þ...þβKXiK

1þ eβ0þβ1Xi1þ...þβKXiK
:

Evaluation of the importance of each risk factor in predicting type 2 diabetes can be

performed by formally testing the hypothesis that βk¼ 0. Once risk factors have

been established, one can use the above equation to obtain a “risk score” for each

individual by taking a person’s covariate values (xki’s) and the predicted effect sizes

β̂ k. A risk score can be computed for each person ri ¼ β̂ 0 þ
XK

k¼1

β̂ kxik, and a

prediction probabilities obtained as
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p̂ i ¼
eri

1þ eri
:

Note that a model cannot be evaluated in the sample used to estimate the

β- coefficients because it would lead to an overly optimistic evaluation of perfor-

mance. Ideally, an external cohort is used to assess the prediction equation (external

validation). If an independent cohort is not available, another approach is to derive

the prediction score in a subset of the cohort, for example, 75 % of the sample, and

evaluate in the remaining individuals who are not part of the sample used to

estimate the coefficients (internal validation) (Kahn et al. 2009).

20.3 Prediction Model Evaluation

Prediction models are often evaluated based on three characteristics. The first

characteristic, calibration, is the ability of a model to accurately estimate some-

one’s risk. For example, in a subset of individuals assigned 80 % risk of developing

diabetes, the observed proportion of individuals who would eventually develop

diabetes should be close to 80 %. The second characteristic, discrimination, is the
ability of a prediction score to accurately distinguish high-risk individuals who are

likely to develop type 2 diabetes from low-risk patients who are less likely to

eventually develop the disease. The third characteristic, generalization, is the

ability of a prediction model to have high prediction accuracy in a population

other than the one in which the score was derived. This last property is especially

useful for the score to have any clinical relevance.

There are many measures that have been used to assess predictive models,

including the area under a receiver operating characteristic (ROC) curve, often

referred to as AUCROC or c-statistic (Zweig and Campbell 1993), the net reclassi-

fication (Pencina et al. 2008), the Hosmer-Lemeshow test, and the pseudo-

R2(Windmeijer 1995; Veall and Zimmermann 1996).

AUCROC, the area under the ROC curve, measures the performance of a classi-

fier and is a measure of discrimination (see Chap. 23). A ROC curve is constructed

by varying the threshold used to discriminate between cases and controls, comput-

ing the sensitivity (proportion of cases accurately classified as cases) and specificity

(proportion of controls accurately classified as controls) for each threshold used.

For example, in Table 20.1, when all participants with a probability of developing

diabetes greater than 15.4 % were assigned to be cases, we accurately classified

99.2 % of the cases but also misclassified 93.4 % ((100–6.6) %) of the controls. The

higher the threshold, the fewer cases are correctly classified but the larger the

proportion of controls who will be correctly assigned. A perfect classifier would

have a threshold where sensitivity¼ specificity¼ 1. To measure the quality of a

classifier, the sensitivity is plotted against 1-specificity as the threshold for

assigning individuals a case status is varied, as in Fig. 20.1. The resulting plot is

called a ROC curve, and the area under the ROC curve provides a measure of the
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accuracy in prediction of the model, with an area of 1 representing perfect discrim-

ination and an area of 0.5 being no better than a random assignment. Mathemati-

cally, AUCROC measures the probability that a randomly sampled affected

individual will have a higher risk score than a randomly sampled unaffected

individual.

In practice, the AUCROC will fall somewhere between the perfect classification

(AUCROC¼ 1) and the random classification (AUCROC¼ 0.5). In Fig. 20.1,

AUCROC¼ 0.756 meaning that there is a 75.6 % chance that the predictive score

of a randomly selected individual with type 2 diabetes is larger than the predictive

score of a randomly selected unaffected individual.

Table 20.1 Sensitivity and specificity for various probability thresholds

Probability threshold (%) Sensitivity (%) Specificity (%)

15.4 99.2 6.6

19.9 97.0 17.0

28.0 90.6 32.5

31.7 87.8 41.9

35.7 83.6 50.9

48.2 70.9 69.1

51.2 67.1 72.3

63.8 50.1 86.2

70.2 39.9 90.2

75.9 26.1 93.2

81.6 15.6 96.0

85.8 5.0 99.0

Fig. 20.1 Receiver

operating characteristic

(ROC) curve
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In order to determine if a particular set of variables, such as genotypes, improves

the predictive ability of a prediction model, one can compare the AUCROC of

models with and without the added variables. The AUCROC is widely used to

evaluate the incremental improvement resulting from addition of new biomarkers,

such as genotypes, to a prediction model. A great advantage of the AUCROC is that

it does not rely on arbitrary risk categorization because it is computed based on the

continuous risk score, such as predicted probabilities from a logistic model. How-

ever, when there are strong predictors in the baseline model, the AUCROC is

insensitive to predictive gains from adding a new biomarker, especially when

some of the new biomarkers are correlated with the original predictors (Herder

et al. 2013).

Another approach for comparing two prediction models is the net reclassification

improvement (NRI) (Pencina et al. 2008) proposed by Pencina and colleagues in

the context of evaluating performance improvement with newly added information

(e.g., a new biomarker). Because the AUCROC is not sensitive to the addition of new

predictors, especially when there are strong predictors already in the model, NRI

considers the change in the risk assigned by the prediction models to affected and

unaffected individuals separately. For an affected individual, an increase in the

probability of being affected is regarded as an improvement, whereas for an

unaffected subject, a decrease in risk probability is regarded as an improvement.

NRI quantifies the change in risk for affected and unaffected individuals by

comparing the increase in risk probabilities in cases and the decrease in risk

probabilities in controls as follows:

X
i in eventsf g pnew ið Þ � pold ið Þ½ �

# of events
þ
X

j in noneventsf g pold jð Þ � pnew jð Þ½ �
# of nonevents

:

The null hypothesis that NRI¼ 0 is evaluated using a simple chi-squared test for

paired data (McNemar’s statistic) to determine if the added variables significantly

improve the prediction model. Improvement can be tested in the affected and

unaffected separately.

The NRI is more sensitive to detect added value from new biomarkers compared

to the AUCROC. Another advantage of the NRI is that the improvement in predictive

ability of the models with added variables can be assessed in affected and unaf-

fected individuals separately. The general recommendation is to use both AUCROC

and NRI in the evaluation of added predictive ability from a new biomarker

(Pencina et al. 2008).

The Hosmer-Lemeshow test is a widely used measure on how close the fitted

risk probabilities from a model match the observed risk (calibration) (Hosmer

et al. 1988). It is a goodness-of-fit test for logistic regression.

For quantitative traits, the most commonly used measure of goodness-of-fit and

predictive ability of a prediction model is the R2 value, which measures how much

of the variance in the trait can be explained by the variables in the model. A value of

R2 of 100 % represents perfect prediction, and a value of R2 close to 0 would

20 Type 2 Diabetes Prediction 429



indicate that the variables included in the prediction model have no predictive

value.

The concept has been extended to binary traits with the understanding that these

proposed pseudo-R2 measure the variance in the underlying disease risk that is

explained by the prediction model. The most popular pseudo-R2 measures include

Efron’s (Windmeijer 1995), McFadden’s (Windmeijer 1995), McFadden’s adjusted
(Agrawal et al. 2010), Cox and Snell’s (Lowensohn et al. 2007), and Nagelkerke’s
(Nagelkerke 1991), among others.

Efron’s pseudo-R2 shares the same form mathematically with the R2 for

continuous traits (Windmeijer 1995). For binary traits, Efron’s measures are

R2
Efron ¼ 1�

X
yi� p̂ ið Þ2X
yi�yð Þ2

with p̂ i standing for the fitted probability that the ith

observation is a case, and yi ¼ 0 or 1.

Other pseudo-R2 measures compare the likelihood of models with and without

the covariates of interest. It should be noted that the upper limit of 1 is often not

achievable for most pseudo-R2 measures. However, Nagelkerke’s pseudo-R2 has

been adapted from other R2 measures (Lowensohn et al. 2007) so that the upper

limit of 1 is achievable. In addition, Nagelkerke’s pseudo-R2 has a nice interpreta-

tion: 1� R2
Nagelkerke accounts for the proportion of variance unexplained by the

variables included in the prediction model. Although Nagelkerke’s pseudo-R2 has

been reported to assess predictive model for psychiatric disorders (International

Schizophrenia Consortium et al. 2009; Ligthart et al. 2014), its use in type 2 diabetes

prediction has been limited.

There is a direct relationship between the R2 and expected AUCROC (Wray

et al. 2010) that depends solely on the population disease prevalence. It is easy to

see that for a model with R2¼ 100 %, all of the population variance in disease risk is

explained by the predictors included in the model, and we would expect

AUCROC¼ 1 . On the other hand, if the predictors explain none of the variance in

disease risk (R2¼ 0), then the prediction model has no predictive value

(AUCROC¼ 0.5). Expected AUCROC values for a range of R2 are presented in

Table 20.2 for a disease prevalence of 8 %. The R2 measure has a relatively simple

interpretation as the proportion of population variance in disease risk explained by

Table 20.2 Expected

AUCROC for a range of R2 for

a disease prevalence of 8 %.

R2 (%) Expected AUCROC

1 0.55

5 0.62

10 0.67

20 0.74

20 0.79

40 0.83

50 0.86

70 0.91

90 0.95
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the predictors in the model. One can also compare R2 between two models to

quantify the added predictive values of new biomarkers.

20.4 Prediction Models Without Genotype Information

Long before the availability of low-cost high-throughput genotyping and sequenc-

ing technologies, there had been great interest in trying to predict individuals who

were more likely to develop type 2 diabetes. As a proxy for genetic information,

such models often included family history of diabetes in the form of either (1) vari-

ables for both maternal and paternal diabetes status, (2) number of parents with type

2 diabetes, or (3) a simple indicator variable to indicate if a person had one or more

parents affected with type 2 diabetes. In addition to family history of diabetes, the

simplest models include risk factors such as age; one or more measures of adiposity,

such as BMI; waist circumference (WC) or waist/hip ratio; and some measure of

hypertension, either in the form of systolic blood pressure, hypertension diagnosis,

or use of antihypertensive drugs and may or may not include smoking history. Such

basic models have been shown to have reasonable 5- to 10-year predictive ability,

with AUCROC ranging from 0.71 to 0.75. For example, Kahn and colleagues (Kahn

et al. 2009) reported a AUCROC of 0.71 in their validation sample that consisted of

25 % of the Atherosclerosis Risk in Communities Study (ARIC) for their risk scores

that included only the following clinical variables: WC, diabetic mother, diabetic

father, hypertension (140/90 mmHg), short stature, black race, age >55 years,

weight, rapid pulse, and ever smoking. Wilson and colleagues (Wilson

et al. 2007) obtained a similar value of the AUCROC (0.72) in the Framingham

Heart Offspring Study with a basic model that only included age, sex, BMI, and

parental history of diabetes. Similar values have also been obtained for other ethnic

groups, including Thai samples (AUCROC¼ 0.74) (Aekplakorn et al. 2006), an

Iranian cohort (AUCROC¼ 0.75) (Bozorgmanesh et al. 2013), and a Chinese pop-

ulation from Taiwan (AUCROC¼ 0.71) (Chuang et al. 2011). Addition of laboratory

results such as fasting blood glucose and lipid levels (high-density lipoprotein

(HDL) or triglycerides (TG)) increases the AUCROC to around 0.79 to 0.85, giving

very good predictive ability, which is not surprising given that high blood glucose

levels is part of the definition of type 2 diabetes (World Health Organization 2011).

In the ARIC cohort, addition of fasting glucose, triglyceride, HDL, and uric acid

levels improved the AUCROC from 0.71 to 0.79 (Kahn et al. 2009); in the Framing-

ham Heart Offspring Study, a model with the basic risk factors and fasting glucose,

triglyceride, and HDL levels yielded a prediction model with AUCROC¼ 0.85

(Wilson et al. 2007). Addition of additional covariates yielded similar improvement

in the AUCROC in other ethnic groups (AUCROC¼ 0.79 for the Thai study

(Aekplakorn et al. 2006), AUCROC¼ 0.85 for Iranians (Bozorgmanesh

et al. 2013), and AUCROC¼ 0.84 for the Taiwanese study (Chuang et al. 2011)).

In the Nurses’ Health Study and Health Professionals’ Follow-Up Study, a predic-

tion model including age, sex, BMI, family history of diabetes, smoking, alcohol
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intake, a diet quality score, and physical activity yielded an AUCROC of 0.78,

without adding biochemical markers (Cornelis et al. 2009). See Table 20.3 for a

summary of published results in various populations, restricted to reports with type

2 diabetes family history included in the prediction model.

Many of the studies discussed above predate the discovery of tens of loci

associated with type 2 diabetes via genome-wide association studies (GWAS; see

Chap. 2). In the previously described studies, family history was included in the

prediction models as a surrogate for genotypes at the predisposing loci. However,

with better knowledge of the genetic architecture of the disease, many investigators

have attempted to improve on earlier prediction models by including the genotypic

information at risk loci, and we describe some of these attempts in the next section.

20.5 Adding Genotype Information in the Prediction

of Type 2 Diabetes

When genotypes at known risk loci are available, one can incorporate such geno-

types in the prediction of type 2 diabetes. The hope is that genotypes alone could

predict risk and hence be used at birth to identify individuals at risk of developing

type 2 diabetes. However, because non-genetic risk factors play a crucial role in the

Table 20.3 AUCROC from prior reports for various models and study populations of diverse

origins

Study Population Basic model covariates

Basic

model

AUCROC

Additional

covariates

AUCROC

for basic

+ other

covariates

Wilson

et al. (2007)

US white Age, sex, BMI, T2D

family history

0.72 FG, HDL,

TG,

hypertension

0.85

Kahn

et al. (2009)

US black

and white

WC, T2D family his-

tory, hypertension,

race, weight, rapid

pulse, smoking, short

stature

0.71 FG, TG,

HDL, uric

acid, alcohol

0.79

Aekplakorn

et al. (2006)

Thailand Age, sex, BMI, WC,

hypertension, T2D

family history

0.75 GTT, TG,

HDL

0.79

Bozorgmanesh

et al. (2013)

Iran Age, SBP, WHR,

waist-height ratio, T2D

family history

0.75 FG,

TG/HDL

0.85

Chuang

et al. (2011)

Taiwan Age, sex, education,

alcohol, BMI, WC, BP,

T2D family history

0.73 FG, TG 0.84

FG fasting glucose, HDL high-density lipoprotein, TG triglycerides, GTT 2 h glucose tolerance

test, BP blood pressure, SBP systolic blood pressure,WHR waist-to-hip ratio, T2D type 2 diabetes
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development of type 2 diabetes, the best prediction models are likely to include

both genetic and non-genetic risk factors.

When a small number of risk variants are available, each variant can be added to

the prediction model as a separate covariate. However, because of the complexity

of a model that would include dozens of risk loci, it is more common to compute a

risk score and to include the value of the risk score in the prediction model. A

genetic risk score comprised of m risk variants is computed for each individual i as

si ¼
Xm

k¼1

wkgik where gik is the (expected) number of risk alleles carried by individ-

ual i for the kth genetic variant and wk k ¼ 1, . . . , mð Þ are the pre-specified

weights. The risk score si can then be added as an additional covariate in the

prediction equation. How to specify the weights and which variants to include in

such a risk score are discussed below.

For the weight specification (wk), the most common options include regression

coefficients from prior reports (e.g., weights proportional to the effect size in the

original GWAS (Meigs et al. 2008)) or equal weights (wk ¼ 1 for all k). If good
estimates of effect sizes are available, and they can reasonably be assumed to be

similar in the population under study, a weighted score will offer potentially better

predictive power by appropriately giving more emphasis to loci with higher effect

sizes than simply counting the number of risk alleles. However, if the estimates of

effect sizes are expected to be very different in the population under study, an

unweighted score is a reasonable alternative.

In some instances, for example, prediction based on sequencing data, weights

may depend on the allele frequency. Because rare variants may have a larger effect

than common variants that have survived natural selection, one may want to weigh

rarer variants with potentially larger effect on the disease more heavily. For

example, the Madsen-Browning weights (Madsen and Browning 2009) and the

Wu weights (Wu et al. 2011) have been widely used in the association test of rare

variants, and these weighting schemes assign weights that are roughly proportional

to the inverse of the allele frequency, with rarer alleles being upweighted while

more common alleles are downweighted. Whether this assumption applies to type

2 diabetes, where the deleterious effects of natural selection may take place once

the individual is past his/her reproductive age, remains a matter of speculation.

Most risk scores have been constructed from known type 2 diabetes risk variants.

However, it is often of interest to also evaluate variants known to influence other

type 2 diabetes risk factors, such as fasting glucose or BMI, and determine their

impact of type 2 diabetes prediction.

When evaluating risk scores, there are three main questions of interest: (1) What

is the predictive ability of a risk score that includes solely genetic factors without

any other risk factors? (2) what is the added value of a genetic risk score above and

beyond the typical risk factors? and (3) what is the predictive ability of a genetic

risk score above and beyond the information provided in type 2 diabetes family

history?
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So far, 81 GWAS variants have been found to be associated with type 2 diabetes

susceptiblity (DIAbetes Genetics Replication And Meta-analysis (DIAGRAM)

Consortium 2014; Hara et al. 2014; Steinthorsdottir et al. 2014; SIGMA Type

2 Diabetes Consortium et al. 2014), and together these variants account for about

10 % of the population variance in disease (Pal and McCarthy 2013) (see Chap. 2).

Many risk scores based on a partial list of these GWAS variants have been created

and evaluated. Typically, AUCROC serves as a metric to evaluate the performance

of genetic risk models in predicting type 2 diabetes, although one study estimated

the pseudo-R2 of 63 loci to be around 5.7 %(Morris et al. 2012) . In a recent

systematic review (Bao et al. 2013), genetic risk models performed poorly in type

2 diabetes prediction, with the median AUCROC being about 0.6, which was just a

little higher than the AUCROC of a random prediction. The median AUCROC was the

highest in case–control studies and the lowest in cross-sectional studies. The

median AUCROC tended to be positively correlated with the number of cases in a

study, and the median AUCROC tended to be higher in Asian studies, compared to

studies of European-ancestry participants. Moreover, the increment in median

AUCROC by including additional GWAS markers was small in magnitude. In the

context of determining the added value of predictors, the AUCROC may not be a

good measure of the added value of a genetic risk score (Cook 2007). Instead, the

NRI may be a more appropriate measure of the added value of additional risk

factors to a prediction model. In the Framingham Heart Study (de Miguel-Yanes

et al. 2011), a genetic score composed of 40 genetic variants achieved a NRI of

around 10 % in addition to clinical risk factors among participants younger than

50 years old, although the increment to the AUCROC from adding the risk score to

the model was negligible. Moreover, in the Framingham Heart Study the NRI was

much smaller in the full Offspring cohort (NRI¼ 1.8 %) or when restricting the

analysis to participants older than 50 (NRI¼ 0.4 %). The NRI for other reports

range from �2.19 % to 10.2 % (Echouffo-Tcheugui et al. 2013).

Overall, the increment evaluated by AUCROC in the predictive performance by

adding GWAS loci to models with clinical risk factors and family history of type

2 diabetes is minimal, regardless of the study design, ethnicity of the participants,

and the number of GWAS markers included in the model (Bao et al. 2013). It

should be noted that some of the strong clinical risk factors are also influenced by

genetic factors, such as BMI and fasting glucose, and the clinical risk factors are

often studied as traits in GWAS. By including these traits along with family history

in the risk prediction model, investigators are already capturing some of the genetic

susceptibility, albeit in an inaccurate manner. For example, in the EPIC-InterAct

study, the genetic score alone explained only 2 % of the family history-associated

excess risk of type 2 diabetes (InterAct Consortium 2013). In the Nurses’ Health
Study and Health Professionals’ Follow-Up Study, family history of diabetes and

the genetic risk score independently and jointly predict risk of type 2 diabetes

(Cornelis et al. 2009). The fact that GWAS markers account for only a small

amount of the variance in disease susceptibility may explain why they add very

minimal predictive value beyond conventional type 2 diabetes risk factors.

434 S. Wang et al.

http://dx.doi.org/10.1007/978-3-319-01574-3_2


Theoretically, there is room for improvement in the predictive performance of

models based on genetic factors alone. Janssens (Bao et al. 2013; Janssens

et al. 2006) and colleagues suggested that in order to increase AUCROC of genetic

profiling to 0.8 or higher, at least 400 genetic variants with minor allele frequency

of 0.1 and odds ratio being 1.25 or greater are needed. Hence, it is not surprising that

the AUCROC of a model including ~40 genetic variants is low. Moreover, because

the current identified risk loci only explain about 10 % of variance in disease

susceptibility (Pal and McCarthy 2013), it has been estimated that there are

hundreds of risk loci yet undiscovered that could be added to predictive models

to improve the ability to predict type 2 diabetes from genetic variants alone or to

improve prediction based on clinical and genetic risk factors. For example, Stahl

and colleagues estimated that there are approximately 3000 type 2 diabetes risk loci

(Stahl et al. 2012). However, any newly identified common variants through

GWAS are likely to have even smaller effect sizes than known type 2 diabetes

risk loci given the statistical power already accrued in extant GWASmeta-analyses.

In addition, the incremental value of adding rare genetic variants to the prediction

model developed for the general population is unlikely to be substantial since rare

variants by definition are present in only a small proportion of affected individuals

(Mihaescu et al. 2013).

The maximum achievable AUCROC based on genetic risk factors alone can be

computed from estimates of disease prevalence and the recurrence risk to offspring

(Wray et al. 2010). If we assume a population prevalence 8 %, a recurrence risk to

siblings of 1.75 (Wilson et al. 2007), the maximum achievable AUCROC is 0.86

based on genetic factors alone (Wray et al. 2010), a value that is slightly lower than

the value of maximum AUCROC¼ 0.94 obtained by Wray and colleagues (Wray

et al. 2010) using a higher sibling recurrence ratio. It should be noted that this is the

maximum achievable AUCROC if all genetic risk factors were known and included

in the model. A model including genetic variants explaining 10 % of the variance in

disease susceptibility has a maximum AUCROC of 0.67 (see Table 20.2). Hence, it is

not surprising that genetic risk scores evaluated to date that include a subset of the

81 known risk loci reach AUCROC below 0.67, the maximum attainable with the

inclusion of all 81 known loci. The addition of gene-environment interaction effects

(see Chap. 13) may also improve prediction models and may be worth exploring in

the future (Bao et al. 2013).

20.6 Predictive Model with Genetic Information: Beyond

Genotypes

One future research avenue consists of the assessment of the added predictive

ability from other biomarkers, such as RNA (e.g., mRNA and miRNAs), proteins,

and metabolites (Herder et al. 2013). Until recently, only a very small proportion of
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biomarkers have been investigated for their usefulness in predicting development of

type 2 diabetes.

The quantification of proteins and peptides (Herder et al. 2013) in blood samples

on a large scale is still technologically challenging, and this challenge has limited

the exploration of these biomarkers as predictor of type 2 diabetes. Despite the

comparative ease of measures of mRNA expression, their collection has been

mainly restricted to large cross-sectional cohorts, limiting their evaluation as pre-

dictors of type 2 diabetes development. Some miRNAs have been associated with

insulin resistance and beta-cell function (Fernandez-Valverde et al. 2011; Williams

and Mitchell 2012), although their utility in predicting type 2 diabetes above and

beyond clinical measurements has yet to be evaluated. Metabolites have also been

explored as a way to identify individuals at risk of developing type 2 diabetes. A

recent analysis from the Framingham Offspring Study suggested that incorporating

metabolomics data to clinical and genetic factors moderately but significantly

improved accuracy of type 2 diabetes prediction (Walford et al. 2014). However,

addition of metabolites to the prediction models has only yielded modest improve-

ment in prediction, as was the case for the addition of genotypes from known type

2 diabetes loci (Wang et al. 2011). Whether the addition of novel biomarkers such

as metabolite levels can further improve diabetes prediction warrants more

investigations.

One aspect that has not been fully exploited is the use of repeated biomarker

measurements to improve prediction (Herder et al. 2013). Trajectories of fasting

glucose and the hemoglobin A1c (HbA1c) taken over time have been shown to be

different in individuals who go on to develop type 2 diabetes, but this information

has not been incorporated in models for diabetes prediction (Heianza et al. 2012).

Moreover, a model based on multiple measures taken over a long period may be

harder to implement in the clinic and might delay intervention that could prevent

the development of the disease.

Further research on the potential of novel biomarkers to improve our ability to

predict type 2 diabetes is needed. Evaluation of existing and novel biomarkers in

prospective cohort studies, as opposed to cross-sectional studies, with multiple

measurements over time, would enable a better evaluation of the added value of

these biomarkers to the prediction of type 2 diabetes. Studies from multiple ethnic

groups, such as African Americans, Hispanics, and Asians, would be most helpful

given that type 2 diabetes prevalence varies by ancestry and the most useful bio-

markers may also vary across ethnicities. So far, with limited progress in exploring

the added value of novel biomarkers in type 2 diabetes prediction, the conventional

risk models still serve as a good and reliable benchmark (Bao et al. 2013; Vassy and

Meigs 2012).

436 S. Wang et al.



20.7 The Future of Type 2 Diabetes Prediction

The promise of using genotypes to predict type 2 diabetes development rests on the

fact that such an approach would permit targeting individuals at a young age, before

they develop some of other risk factors such as obesity and hypertension. A lifestyle

intervention has been shown to be quite successful for type 2 diabetes (Knowler

et al. 2002), and individuals most at risk are more likely to benefit from such

intervention programs. While we can reasonably predict individuals at high risk of

developing type 2 diabetes in their next 5 to 10 years of life using commonly

measured risk factors such as familial history of type 2 diabetes, BMI, blood

pressure, smoking, and fasting glucose, the addition of genotypes at known risk

loci does not currently improve our short-term predictive ability substantially. This

is not surprising given that identified loci to date only explain about 10 % of the

variance in type 2 diabetes risk (Pal and McCarthy 2013). Moreover, inclusion of

family history in the risk model captures some of the genetic risk factors.

Another consideration is that the majority of identified diabetes variants are in

noncoding intronic or intergenic regions of the genome and thus these variants may

not be true causal variants, but only proxies in linkage disequilibrium with the

causal variants. Theoretically, the true causal variants may have larger effect sizes

and the use of these variants may improve prediction of the cumulative genetic

information. It is conceivable that a genotype risk score that would include all true

disease loci would have the potential to improve current short-term prediction

models but also to make long-term prediction model based on genotypes more

accurate and useful. Expanding the time horizon of diabetes risk prediction beyond

10 years may improve the predictive power of genetic information because such

information represents a lifetime risk, long before conventional diabetes risk factors

such as obesity and unhealthy lifestyle are developed (Vassy and Meigs 2012).

Lyssenko and colleagues observed that the predictive ability of 16 known risk loci

improves as the duration of follow-up increases, with the highest AUCROC of 0.623

achieved for individuals with a mean follow-up time of 28 years (Lyssenko

et al. 2008). In the Framingham Offspring Study, the genetic risk score significantly

improved the NRI in participants younger than 50 years old at baseline, but not in

older individuals (de Miguel-Yanes et al. 2011). Future prediction models may

need to use the life course approach that considers the role of genetic prediction at

different stages of life.

Current evidence indicates that we have not reached a time when we can use an

individual’s genotypes to accurately predict their type 2 diabetes risk beyond

traditional risk factors. Therefore, we conclude that at present, genetic screening

or testing cannot be recommended for type 2 diabetes risk prediction in clinical or

public health settings. It is possible that we may be able to use genotypes in the near

future to identify subgroups of the population who are most at risk for developing

type 2 diabetes for targeted interventions, but more research in this area is

warranted as well. Whether providing genetic risk counseling based on currently

available variants can motivate individuals to improve their diet and lifestyle
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remains uncertain (see Chaps. 23 and 27). Limited evidence suggests that genetic

risk counseling does not significantly improve adherence to diabetes prevention

programs among overweight individuals at high risk for diabetes (Grant

et al. 2013). However, this may change with more education and greater awareness

about genetic risk of diabetes in the health professionals and the general public.

Despite the impressive progress that has been made in the discovery of genetic

variants of type 2 diabetes in the past decade, we still have a long way to go before

genomics information can be translated into prediction and personalized prevention

of type 2 diabetes in clinical practice and public health settings.
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Chapter 21

The Value of Genetic Variation

in the Prediction of Obesity

Ruth J.F. Loos and A. Cecile J.W. Janssens

Abstract Obesity is predominantly caused by an unhealthy lifestyle, but genetic

factors also contribute to people’s susceptibility to gain weight. Rare high-risk

mutations have been identified that cause extreme and early-onset obesity in a

fraction of the population, while numerous common low-risk loci have been

identified through genome-wide association studies that contribute to obesity in

the general population. As insights into the contribution of genetic variation to

obesity increase, the interest in using genetic variants to predict who is at risk to

gain weight has also increased. Before constructing risk models, however, one

needs to have a clear view on what form of obesity needs to be predicted, why, in

whom, and for what purpose. Obesity is multifactorial, in that it results from an

interplay between genes and environmental risk factors, such that models solely

based on genetic variants will be unlikely to reach high predictive ability, as we

illustrate using the literature on currently identified BMI-associated loci. Further-

more, it seems that irrespective of the poor predictive ability, communicating

genetic information does not seem effective in making people adopt a healthy

lifestyle. While using genetic information in the prediction of obesity is a legitimate

aim, we believe that the most valuable contribution of gene discovery studies lies in

their contribution to elucidate new physiological pathways that underlie obesity

susceptibility, which in turn could lead to the identification of therapeutic targets

and make its way into mainstream health care.
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21.1 Introduction

The prevalence of obesity in the USA has more than doubled since the 1970s in

adults and children alike (Flegal et al. 1998; Ogden et al. 2014), and similar sharp

increases have been reported worldwide (Finucane et al. 2011; Popkin et al. 2012;

IASO 2014). While a westernized lifestyle that promotes excessive intake of

energy-dense foods and discourages physical activity has been a major driver of

the epidemic (Swinburn et al. 2011), heritability studies have provided strong

evidence that genetic variation contributes to interindividual differences in obesity

susceptibility as well (Maes et al. 1997; Elks et al. 2012).

Several types of genetic variation have been linked to obesity. These include

high-risk rare mutations, chromosomal abnormalities, and structural variants that

contribute to extreme and early-onset forms of obesity that affect only a fraction of

the population (Chung 2012) and low-risk common variants that contribute to the

multifactorial forms of obesity that is widely present in the general population (see

Chap. 4) (Lu and Loos 2013).

As gene discovery efforts continue to identify more disease-associated loci and

as the cost of high-throughput genotyping decreases, there is growing interest in

applying genetic testing to the general population to identify who will be at risk of

developing disease, allowing opportunities for personalized preventive strategies.

Several companies have already seized this as a business opportunity and have

developed genetic tests that are offered directly to consumers. The assumption is

that knowledge of one’s lifetime disease risk will motivate people to adopt risk-

reducing behavior early.

Here, we review whether genetic variation can be used to effectively identify

individuals at risk of obesity. We have organized our chapter along the key

questions in prediction research: what needs to be predicted, in whom, how, and

for what purpose. The purpose of testing determines what needs to be predicted and

in whom, and this in turn determines the predictors or risk factors that are available

to be considered. We address these key questions with a main focus on multifac-

torial obesity that affects a large proportion of the population. We close the chapter

with reflections on the role of genetic variation in obesity prediction.

21.2 Why Predict Obesity?

Obesity is a primary target for prevention as it not only imposes a substantial

economic burden on societies (Cawley and Meyerhoefer 2012) but also causes

serious personal health problems (Must et al. 1999). Specifically, obesity increases

risk of type 2 diabetes (Vazquez et al. 2007), cardiovascular disease (Yusuf

et al. 2005), some cancers (Renehan et al. 2008), and depression (de Wit

et al. 2010), among others, and increases risk of premature mortality (Adams

et al. 2006). Even obesity in childhood has been shown to have longtime effects
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on cardiovascular and metabolic health in adult life (Baker et al. 2007; Park

et al. 2012).

Early prediction of obesity allows identifying individuals at high risk who can be

offered timely intervention to prevent excess weight gain, or at least contain it,

through health recommendations or regular surveillance of diet and physical activ-

ity (Khan et al. 2009). These health-promoting behaviors are generally effective

short term, but the main challenge is to sustain them over years, adopting them as a

lifestyle. This is particularly difficult in western societies that are notoriously

obesogenic. Awareness of one’s risk of obesity is assumed to enhance motivation

to sustain healthy behaviors.

21.3 What to Predict?

Obesity is defined as excess accumulation of body fat, which is assessed by the

body mass index (BMI). In general, adults with a BMI of 30 kg/m2 or higher are

considered obese (WHO 2000), whereas a lower cutoff point is used in Asian adults

(World Health Organisation 2000). In children and adolescents, a BMI cutoff at or

above the 95th percentile of sex-specific BMI-for-age growth charts is used (Ogden

and Flegal 2010; Cole and Lobstein 2012).

Despite a clear-cut definition, obesity is a heterogeneous condition. For example,

the degree of obesity can vary widely, and subclasses I (BMI 30–34.99 kg/m2), II

(BMI 35–39.99 kg/m2), and III (BMI� 40 kg/m2) distinguish the less from the

more extreme obese cases (WHO 2000). The extremely obese individuals are

believed to be more genetically susceptible than the less extreme, more common,

obese individuals (Katzmarzyk et al. 1999). Also the age at which one becomes

obese ranges with some individuals becoming obese from early on in childhood,

whereas others gain weight throughout their life course. While it has been specu-

lated that individuals with early-onset and extreme obesity might be enriched for

common variants that also contribute to less extreme forms of obesity and thus

share the same genetic susceptibility to some extent (Meyre et al. 2009), there is

evidence that at least a fraction of early-onset and extreme obesity is due to rare

single gene defects or chromosomal abnormalities (Chung 2012; Ramachandrappa

and Farooqi 2011).

In addition, the biological (genetic) mechanisms and environmental causes that

underlie common obesity susceptibility will vary from one person to another, as

well as the obesity-related comorbidities. A respectable proportion of obese indi-

viduals even seems to be protected from cardio-metabolic abnormalities longer than

others (Wildman et al. 2008).

Different forms of obesity may require different risk models. From a genetic

perspective, the distinction between extreme (monogenic) and common (multifac-

torial) obesity is the most important one. Other distinctions that could be relevant

from a prevention perspective include early- vs. late-onset obesity, metabolically

healthy vs. metabolically unhealthy obesity, or obesity classes (I, II, III). These
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distinctions are not mutually exclusive; for example, while extreme and monogenic

obesity almost always has an early onset and common multifactorial forms typi-

cally are seen later in life, due to unhealthier lifestyles, common multifactorial

obesity is nowadays seen at younger ages as well.

Different forms of obesity may result from different risk factors, which should

be accounted for in risk modeling; i.e., these risk factors become either variables in

the risk models or reasons to make separate models. The latter approach is

recommended when many of the other risk factors have different effects between

the types. For example, as the genetic architecture and environmental risk factors

for monogenic obesity differ from those of multifactorial obesity, separate risk

models will be needed that include different genetic variants and environmental

variables. If the effects of the risk factors are similar between subgroups (e.g., class

I vs. class II obesity), but one type has higher risks than the others, the subgroup

classifier (risk factor (e.g., obesity class)) is best added as a variable in the risk

model.

21.4 In Whom Should We Predict Obesity?

Predicting obesity is particularly valuable for those who are not (yet) obese in

whom prevention is most effective, or in overweight individuals in whom the early

consequences are still reversible. For example, screening the population for muta-

tions that cause monogenic obesity might successfully identify individuals at high

risk, but for most of those cases, no effective preventive strategies or treatments

exist. In contrast, multifactorial obesity, which is common in the populations and

caused by an interplay of multiple genetic and environmental factors, might be

harder to predict, but will identify high-risk individuals who could benefit from

early behavioral intervention.

These considerations imply that children and adolescents, overweight nonobese

adults, and/or individuals with a family history might benefit most from risk

prediction and targeted prevention and may be more responsive to risk information

about obesity. Predicting obesity in adults without a family history who have been

of normal weight for many decades seems superfluous.

The target population for prediction needs to be defined before (genetic) risk

models are being constructed as the predictive ability of the risk models might

differ between populations. The risk factors of obesity may be the same across

different subpopulations, but not necessarily. Also, even when risk factors are the

same, their effects on obesity risk might differ. For example, a test may be

predictive for childhood obesity, but does not predict obesity in adults, or vice

versa. Or, one mutation may be fairly predictive of monogenic obesity, but it does

not predict (multifactorial) obesity in the general population.

Thus, the predictive ability of a model needs to be investigated in populations

that are representative for the population in which the implementation of the test is

ultimately intended.
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21.5 How Should We Predict Obesity?

How obesity should be predicted will depend on the answers to the previous

questions, i.e., what to predict, in whom, and for what purpose. Unlike for type

2 diabetes (Chap. 22), few studies have examined the effectiveness of using genetic

variation in risk prediction models for obesity. So far, all have used common

genetic variants identified through genome-wide association studies (GWAS) in

individuals of mainly European ancestry to predict multifactorial obesity

(BMI� 30 kg/m2) (i.e., what?) in adults, which has a high prevalence in the general

population of high-income countries (in whom?) (Chap. 4). An important feature of

this type of common obesity is that variation in susceptibility is due to genetic

(explained variance: 40–70 %) and environmental factors, such that risk prediction

models will need to include predictors that capture both genes and environment to

effectively distinguish those at risk from those who are not at risk.

The effectiveness of genetic prediction varies across diseases and depends on a

number of factors (Table 21.1). The maximum predictive ability that can be

obtained, assuming complete understanding of the genetic origins, is determined

by the heritability of the disease and the complexity of its causes. When the disease

is very heritable and has a simple cause, such as the case for monogenic forms of

obesity, the predictive ability of genetic determinants can be very high. Whether

that predictive ability is achieved in practice depends on whether the mutations are

known and what their penetrance is. When the disease is less heritable and the cause

is complex, such as for multifactorial forms of obesity where genetic and lifestyle

factors interact, the predictive ability of a genetic test will unlikely be very high:

when lifestyle factors play a role, these have to be considered to increase the

predictive ability of the risk model. The predictive ability of genetic tests for

multifactorial forms of disease is determined by the number of variants that are

known, their frequency in the population, and their impact on disease risk (effect

size). The incidence determines the absolute risks of getting the disease.

Here, we review the available literature that has examined the predictive value of

the established obesity-susceptibility loci and their ability to discriminate between

individuals who are at high risk of obesity in adult life versus those who are at low

risk. We focus on BMI-associated loci only (Chap. 4), as currently no data is

available on the predictive ability of any of the other obesity-susceptibility loci,

such as those identified for waist-to-hip ratio, childhood and adult obesity, or body

fat percentage.

To properly assess the predictive ability of genetic information, we first consider

the predictive ability of traditional, nongenetic, risk factors of obesity, which can

serve as a reference or a basis for genetic prediction.
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21.5.1 Traditional Prediction of Obesity Risk

Several longitudinal studies have established that parental obesity and personal

childhood obesity are the strongest traditional risk factors of obesity in adulthood

(Whitaker et al. 1997; Lake et al. 1997; Burke et al. 2001; Magarey et al. 2003;

Cheung et al. 2004; Toschke et al. 2007; Li et al. 2009). The advantage of these

predictors is that the collection of data on family history and childhood obesity is

typically easy, inexpensive, and noninvasive. Importantly, both of these predictors

capture genetic as well as familial environmental susceptibility.

While effects reported across studies are typically consistent, Whitaker

et al. (1997) are one of the few groups who assessed the influence of both family

history and childhood obesity on obesity risk in (young) adulthood. They also

reported the required statistics to allow us to calculate the discriminative accuracy

of these traditional risk factors (Table 21.2), and therefore, we used the data in this

study as a representative example to estimate discrimination based on family

history and childhood obesity.

A total of 854 parent-offspring trios participated in this longitudinal study to

assess the offspring’s adult obesity risk, based on their own and their parents’

Table 21.1 Factors that determine the effectiveness of genetic prediction

Maximum predictive ability

1. Heritability of the disease: The extent to which genetic predisposition contributes to the

variation in disease risk. The higher the heritability, the better the predictive ability based on

genetic variants can be

2. Complexity of its cause:

– Monogenic: One mutation solely or largely causes the disease. There may be thousands of

different mutations for a disease, but each of them is sufficient to substantially increase the risk of

disease

– Multifactorial: Multiple susceptibility variants interact with nongenetic risk factors to cause

the disease; each single genetic variant only has a minor impact on disease risk

Predictive ability in practice

1. Monogenic:

– Penetrance of mutations: The risk of disease associated with carrying the mutation. A

mutation that has a low penetrance will have a lower predictive ability than one with high

penetrance

– Coverage: How many mutations are known to cause disease? If the disease can be cause by

multiple different mutations, but when only a small number of the mutations are known, their

predictive ability will be low

2. Multifactorial:

– Number of susceptibility variants: How many genetic variants are known to be associated

with disease risk? If only few genetic variants have been identified, genetic risk models will be

inaccurate

– Prevalence of the variants: frequency of the risk allele

– Effect size: strength of association between variant and disease risk

– Incidence of the disease: risk of disease in population, percentage of new cases during a

period of time
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obesity status during childhood. Height and weight of the offspring were measured

five times throughout childhood and adolescence and once more during adult life

(21–29 years). Height and weight of the parents were measured at the time their

offspring’s data was collected. Parental obesity during one’s childhood was con-

sistently associated with a greater risk of obesity as a young adult. Having had one

obese parent throughout childhood and adolescence increased the risk of adult

obesity by 2.2- to 3.2-fold compared to someone whose parents were not obese

(Fig. 21.1). When both parents were obese during one’s childhood and adolescence
(with the exception of parental obesity at the age of 10–14 years), the risk of being

obese during adulthood was increased by 5- to 15.3-fold (Fig. 21.1). As expected,

the effect of one’s own obesity status during childhood and adolescence on their

obesity risk in adulthood increased steadily with the age at which they were obese.

For example, having been obese during infancy (1–2 years) did not increase risk of

adult obesity, compared to someone who was not obese as an infant. However,

Table 21.2 Indicators of predictive ability, explained for the prediction of obesity

Discriminative accuracy

For binary predictors, such as gender or a genetic mutation that can be present or not:

Sensitivity

Sensitivity is the proportion of individuals who will become obese that are correctly classified by

the test as being at higher risk

Specificity

Specificity is the proportion of nonobese individuals that are correctly classified by the test as

being at lower risk

For continuous predictors, such as age or risk models:

Area under the receiver operating characteristic curve (AUCROC) (or C-statistic)

When a predictor can have many values, a threshold is needed to identify all individuals above

the threshold as at higher risk of becoming obese and below the threshold as at lower risk.

Because the choice of threshold is arbitrary, sensitivity and specificity are calculated for all

possible cutoff thresholds. When these combinations of sensitivity and specificity are plotted in a

so-called ROC plot, the area under the curve (AUCROC) is indicative for the average sensitivity

across all values of the specificity. It is the probability that a random individual who will develop

obesity has a higher obesity risk than a random individual who will not develop obesity. The

AUCROC ranges from 0.50 (equal to tossing a coin) to 1.0 (perfect prediction)

Predictive value

For binary predictors:

Positive predictive value (PPV)

PPV is the proportion of individuals who will become obese among all individuals who are at

higher risk. It is the risk of obesity in individuals who are at higher risk

Negative predictive value (NPV)

NPV is the proportion of individuals who will not become obese among all individuals who are at

lower risk. It is 1-risk of obesity in individuals who are at lower risk

For continuous predictors, such as age or risk models:

A summary statistic of the predictive ability across all possible thresholds of a continuous

predictor does not exist. The risks associated with specific values of the continuous predictor can

be graphically presented in a risk distribution
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having been obese in adolescence (15–17 years) increased the risk of being an

obese adult by 17.5-fold compared to someone who was not obese at that age

(Fig. 21.1). While these associations support the fact that family history and one’s
own childhood obesity increase the risk of being obese as an adult, they do not tell

us whether these risk factors can effectively predict who will be obese and who will
not be obese.

While association results on the relationship between childhood obesity and/or

family history and future adult obesity are widely available, data on their discrim-

inative accuracy are sparse (Table 21.2). Discriminative accuracy is indicated by

the sensitivity and specificity of a predictor. In this analysis, sensitivity is the

percentage of individuals with adult obesity that had a parent with obesity at

younger age, and specificity is the percentage of nonobese adults that had no parents

with obesity at younger age. Discriminative accuracy should be distinguished from

predictive value, which is the risk of adult obesity in children with or without

parents who are obese. The positive predictive value (PPV) is the probability that

children with at least one obese parent will become obese in adulthood, and the

2.00 (0.80, 5.20)2.00 (0.80, 5.20)
2.20 (1.20, 3.80)2.20 (1.20, 3.80)

5.60 (2.50, 12.40)5.60 (2.50, 12.40)

3.20 (1.80, 5.70)3.20 (1.80, 5.70)

2.20 (1.10, 4.30)2.20 (1.10, 4.30)

17.50 (7.70, 39.50)17.50 (7.70, 39.50)

1.30 (0.60, 3.00)1.30 (0.60, 3.00)

8.80 (4.70, 16.50)8.80 (4.70, 16.50)

13.60 (3.70, 50.40)13.60 (3.70, 50.40)
3.20 (1.80, 5.70)3.20 (1.80, 5.70)

22.30 (10.50, 47.10)22.30 (10.50, 47.10)

15.30 (5.70, 41.30)15.30 (5.70, 41.30)
4.70 (2.50, 8.80)4.70 (2.50, 8.80)

2.60 (1.40, 4.60)2.60 (1.40, 4.60)
5.00 (2.10, 12.10)5.00 (2.10, 12.10)

2 vs 0 obese parents

Age 10-14 yrs
1 vs 0 obese parents

2 vs 0 obese parents

1 vs 0 obese parents

1 vs 0 obese parents

Obese in childhood

Risk factors during childhood

Obese in childhood

Obese in childhood

Age 3-5 yrs

2 vs 0 obese parents

Age 15-17 yrs

Age 6-9 yrs

1 vs 0 obese parents

Obese in childhood

2 vs 0 obese parents
Obese in childhood

1 vs 0 obese parents
2 vs 0 obese parents

Age 1-2 yrs

Risk of obesity in adult life
Odds Ratio (95% CI)

.75 1 2 3 5 10 15

Fig. 21.1 Risk of obesity in adult life (21–29 years) given one parent (blue) or both parents (red)
were obese during the individuals’ childhood or adolescence, or given the individual was them-

selves obese during childhood or adolescence (green). For example, if both parents were obese

when the individual was 3–5 years old, their risk of obesity was 15.30-fold increased compared to

someone whose parents were not obese. Note that adult obesity was defined when BMI was

�27.8 kg/m�2 [Data were derived from Whitaker et al. (1997). Figure adapted from Loos (2012)]
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negative predictive value (NPV) is the probability that children whose parents are

not obese will not be obese in adulthood. Predictive value is assessed prospectively,

while discriminative accuracy is assessed retrospectively. Taken together they

indicate the predictive ability of a risk factor.

We calculated sensitivity, specificity, PPV, and NPV using the Whitaker

et al. (1997) data to illustrate the ability of parental obesity to predict their off-

spring’s adult obesity. For example, parental obesity status has a sensitivity of 0.73

and specificity of 0.59 to predict adult obesity in adolescents (15–17 years)

(Fig. 21.2, gray diamond). In other words, using parental obesity (i.e., having had

at least one parent with obesity at age 15–17 years) to predict whether adolescents

will become obese in adulthood (at age 21–29 years) will correctly identify 73 % of

the obese adults and 59 % of the nonobese adults. Parental obesity status has a PPV

of 0.24 and a NPV of 0.93 during adolescence. This means that 24 % of adolescents

with at least one obese parent will become obese adults themselves, whereas 93 %

of adolescents whose parents are not obese, will not become obese adults. The

sensitivity, specificity, PPV, and NPV of parental obesity to predict one’s adult

obesity for the five age groups are shown in Fig. 21.2. The sensitivity and specificity

of parental obesity to predict adult obesity risk vary with one’s age at the time the

obesity status of the parents was assessed. Overall, it seems that the sensitivity of

parental obesity as a risk factor for one’s own adult obesity increases with the age at
which parental obesity was assessed, whereas the specificity decreases with age.

The PPV and NPV of parental obesity seem more stable, with a generally low PPV

(0.24–0.29) and a high NPV (0.90–0.93) (Fig. 21.2).
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0.25 0.50 0.75 1.00

1- Specificity

AUC32 SNPs = 0.574

Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative 

Predictive Value (NPV) of having at least one obese parent.

Age Specificity Sensitivity PPV NPV

1-2yrs 0.78 0.52 0.29 0.90

3-5yrs 0.74 0.58 0.29 0.91

6-9yrs 0.70 0.58 0.27 0.90

10-14yrs 0.64 0.66 0.26 0.91

15-17yrs 0.59 0.73 0.24 0.93

1-2 years 3-5 years 6-9 years 10-14 years 15-17 years

Fig. 21.2 The AUCROC for the 32 BMI-associated loci to predict obesity in 8120 individuals from

the ARIC study (Speliotes et al. 2010). For comparison, sensitivity, 1-specificity, and

corresponding AUCROC are shown for “parental obesity” as a test at various ages during childhood

and adolescence (1–2 years in dark blue, 3–5 years in green, 6–9 years in red, 10–14 years in light
blue, 15–17 years in gray) to predict obesity in adult life, with data derived from Whitaker

et al. (1997) [Figure adapted and updated from Loos (2012)]
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While Whitaker et al. (1997) did not report required values to calculate the

predictive ability of one’s own obesity status during childhood, the British 1958

Birth Cohort (n¼ 12,327) found that BMI at age 11 years was a good predictor of

obesity at age 33 years. In this study, the area under the receiver operator charac-

teristics curve (AUCROC) was used. This metric results from plotting the sensitivity

of a test against 1-specificity and indicates the probability that a random individual

who will develop obesity has a higher obesity risk than a random individual who

will not develop obesity (Table 21.2). Here, the AUCROC was 0.78 for men and 0.80

for women (Cheung et al. 2004).

These two traditional predictors, childhood obesity and parental obesity, appear

to be reasonably good predictors of obesity risk in young adulthood. Data on how

well they predict obesity risk together, as well as on how well they predict obesity at

older ages (e.g., 40–60 years), is not available. Also, prospective analysis in a

representative population is needed to quantify the predictive value, the risk of

future obesity in children based on their own and their parents’ obesity status.

21.5.2 Genetic Prediction of Obesity Risk

Collecting genetic variation is more expensive, invasive, and cumbersome than

obtaining data on parental and childhood obesity. Thus, genetic prediction of

obesity should be better or at least substantially improve the predictive ability of

traditional noninvasive risk factors. This poses a major challenge on genetic

prediction. Given that 40–70 % of the variation in obesity susceptibility is due to

genetic variation and that the remainder is explained by lifestyle factors, we know a

priori that prediction of obesity solely based on genetic information will never be

perfect (Janssens et al. 2006; Wray et al. 2011). Therefore, genetic prediction

should ideally be considered in the context of supplementing traditional predictors

of obesity, rather than replacing them. Commercially available genome profiling

tests that predict a range of diseases are exclusively based on customers’ genotypes
and typically use only one locus (FTO, see Chap. 20) or occasionally more BMI-

associated loci to predict obesity.

Unfortunately, so far few longitudinal studies that have data on both genetic and

nongenetic risk factors have examined which risk model is most effective in

discriminating obese and nonobese individuals. Four large-scale cross-sectional

studies have examined the ability of the BMI-associated loci to predict adult obesity

(Li et al. 2010; Speliotes et al. 2010; Locke et al. 2015; Belsky et al. 2013)

(Table 21.3). As these studies had no data on parental or childhood obesity, their

results reflect the predictive ability of the commercially available tests that are also

based on genotypes only. We describe the studies according to the number of

BMI-associated loci that were included in the risk prediction models (from one

locus up to 97 loci) and compare the predictive ability of the models using the

AUCROC (Table 21.2).
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Li et al. (2010) examined the predictive ability of three risk prediction models

with each consecutive model including a cumulative number of BMI-associated

loci, which allowed assessing whether more loci in the model would improve

prediction. Models compared normal-weight (18.5 kg/m2�BMI< 25 kg/m2)

vs. obese (BMI� 30 kg/m2) individuals (n¼ 6452, age 39–79 years) from the

population-based EPIC-Norfolk study (Li et al. 2010). The FTO locus was the

first BMI-associated locus to be identified by GWAS in 2007 (Frayling et al. 2007;

Scuteri et al. 2007) and has since been widely replicated across populations of

diverse ancestry and in children and adults alike (Loos and Yeo 2014) (see Chaps. 4

and 20). Of all GWAS-identified obesity-susceptibility loci, the FTO locus has the

largest effect on BMI, is common in populations of European ancestry (risk allele

frequency ~42 %), and yet explains only 0.34 % of the variation in BMI in the

EPIC-Norfolk study, consistent with other reports. For a long time, the FTO locus

was the only variant on commercially available direct-to-consumer (DTC) tests to

predict obesity. However, Li et al. show that FTO genotypes are not able to predict

who will be obese and who will not be obese, with an AUCROC of 0.55 (Table 21.3)

(Li et al. 2010).

The locus near MC4R was the second BMI-associated locus identified (Loos

et al. 2008; Chambers et al. 2008). Together the FTO and near-MC4R loci explain

0.59 % of the BMI variation, and a risk prediction model based on both loci does not

improve the ability to discriminate between obese and nonobese individuals

(AUCROC of 0.55), as compared to using only FTO in the model (Table 21.3).

The results from the ARIC study (age 45–64 years) are remarkably similar to those

of the EPIC-Norfolk study; a model based on both loci has an equally poor

predictive ability (AUCROC of 0.54) in the European ancestry subpopulation and

an even worse predictive ability (AUCROC of 0.52) in the African American

subpopulation (Belsky et al. 2013). The latter might be due to the fact that both

loci were first identified in European ancestry populations; their risk allele fre-

quency, effect size, and explained variance are less pronounced in African than in

European ancestry populations (Monda et al. 2013). Of note is that adding age, sex,

and study center in the models improves the predictive ability in the African

American (AUCROC of 0.61), but not in the European American (AUCROC of

0.55), subpopulation of ARIC (Table 21.3). These observations support the notion

that risk prediction models will require customization by ancestry, not only because

of differences in genetic background but also in environments (lifestyle, culture) as

risk factors of obesity.

In subsequent risk prediction models, an increasing number of BMI-associated

loci were added according to the number of loci that had been identified by the time

the model was established. The loci are typically combined into a genetic risk score

that represents the number of risk alleles an individual carries; the higher the score,

the more genetically susceptible one is assumed to be. So far, models with 12, 32,

and 97 BMI-associated loci have been tested. Despite the increasing number of loci

included, the models’ ability to discriminate between obese and nonobese individ-

uals has not improved substantially, and with AUCROC of 0.61 or less, they have no

clinical utility (Table 21.3). For example, the AUCROC of a model that included the
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12 most strongly BMI-associated loci by 2009 (including FTO and near-MC4R)
was exactly the same (AUCROC of 0.57) (Li et al. 2010) as that of a model that

included an additional 20 BMI-associated loci (i.e., 32 loci in total) that were

identified in 2010 (Speliotes et al. 2010) (Table 21.3). It should be noted that

while the predictive ability of the two genetic predisposition scores (12 loci

vs. 32 loci) is the same, the outcome at the individual level might be different.

For example, an individual who carries many of the first 12 BMI-associated risk

alleles but much fewer of the subsequent 20 BMI-associated risk alleles may be

classified as at high risk of obese when the score based on 12 loci is used, but as at

low risk if the score of 32 loci is used. Thus, tests based on a different configuration

of genetic variants might provide discrepant risk predictions for the same person

(Kalf et al. 2014).

As shown in Fig. 21.2, the specificity and sensitivity for parental obesity on its

own, as derived from Whitaker et al. (1997), are better than that of the genetic

prediction score based on 32 BMI loci. Furthermore, also the AUCROC for child-

hood BMI at age 11 (AUCROC of ~0.80) is substantially higher than that of the

genetic predisposition scores (Cheung et al. 2004). Unfortunately, none of the

studies that assessed the risk models with genetic loci had data available on parental

obesity and/or childhood obesity to allow comparing the predictive ability of

traditional risk factors versus genetic risk factors or to assess the added accuracy

of including genetic risk factors in traditional risk models.

Risk models that include other predictors, such as age, sex, study center, or

principal components, perform marginally better than those based on only genetic

loci (Table 21.3). However, even a model that includes age, sex, and principal

components and a genetic risk score of 97 BMI-associated loci will, with an

AUCROC of 0.60, often wrongly classify individuals as obese or nonobese.

Taken together, the predictive ability of the currently available genetic informa-

tion is poor and does not allow accurate discrimination between those at high risk of

obesity and those at low risk. To design the best predictive models for the targeted

population, large-scale studies with a longitudinal design, data on genotypes,

childhood BMI, parental obesity, and other relevant risk factors, as well as clear

answers on what to predict, in whom, and why, will be needed.

21.6 Does Knowledge of One’s Genetic Obesity Risk

Change Lifestyle?

Irrespective of the generally poor performance of risk prediction models based on

genetic information, DTC genomic profiling that assesses the customer’s disease
risk might change behavior. Proponents of genetic testing believe that knowledge of

one’s genetic susceptibility to disease will motivate them to adopt health-promoting

behaviors. Skeptics fear that the same information might cause anxiety and depres-

sion in others.
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The behavioral and psychological responses to personal genetic risk assessments

will likely be disease specific, e.g., a test that suggests a high genetic risk for lung

cancer will affect a person in a different way compared to a high genetic risk for

restless leg syndrome. Unlike for type 2 diabetes (Chap. 22), we speculate that a

genetic test that assesses one’s risk of obesity will likely have little effect on a

person’s lifestyle or anxiety levels. After all, unlike many other common condi-

tions, obesity and overweight develop early in adulthood or even during childhood

or adolescence, such that by the time a genetic test is undertaken, typically in

adulthood, a person has already a good appreciation of their susceptibility and has

adopted a lifestyle that keeps them relatively weight stable.

While data is still limited, the first insights from early reports suggest that

genetic testing evokes limited or no beneficial or harmful behavioral responses. A

Cochrane review identified 13 studies that examined the effects of communicating

genotype-based disease risk estimates on risk-reducing behaviors and on the moti-

vation to undertake such behaviors (Marteau et al. 2010). Overall, the communi-

cation of genotype-based disease risk estimates had no effect on smoking cessation

or physical activity, whereas there may be a small effect on improved dietary habits

and on intentions to change behavior. Two of the 13 studies focused specifically on

obesity and found only suggestive evidence that higher risk estimates increase

people’s motivation to adopt a healthier lifestyle (Frosch et al. 2005; Sanderson

et al. 2010; Marteau et al. 2010).

A large-scale longitudinal cohort study by Bloss et al. (2011, 2013) examined

whether DTC genome-wide profiling, used to estimate individuals’ lifetime risk for

a variety of health conditions, results in psychological and behavioral changes.

Participants (mean age [SD]: 46.7 [12]) purchased the genetic test at a reduced rate

and were informed about their estimated lifetime risk for 23 conditions, including

obesity. At baseline (n¼ 3639), 3 months (n¼ 2037, 56 % of baseline) and 1 year

(n¼ 1325, 36 %) later at follow-up, their anxiety levels, dietary fat intake, and

exercise behavior was assessed by self-report using a web-based survey. At

3 months of follow-up, the participants’ overall anxiety level, dietary fat intake,

or exercise behavior had not changed (Bloss et al. 2011). Furthermore, the com-

posite lifetime risk score, which combines the risk estimates of the 23 conditions,

was not associated with changes in anxiety level, diet, and exercise. Nevertheless,

for obesity in particular, a higher estimated lifetime risk score was associated with a

significant increase in dietary fat intake. Thus, rather than motivating to adopt a

healthy lifestyle, the genetic information seems to have given participants a sense of

lack of control over their obesity susceptibility. The fact that this is only seen for

obesity may not be a surprise as, more than for any of the other 22 conditions, many

of the participants may have already been “affected” (i.e., be obese or overweight)

at the time of the genetic testing, which may have exacerbated a fatalistic percep-

tion. However, after 1 year of follow-up, the association between lifetime risk of

obesity and increased fat intake was substantially attenuated and not significant

anymore (Bloss et al. 2013). This suggests that the effects of communicating risk

estimates might only be short lived, at least for obesity. It should be noted that there

was a high dropout at 3 months and again at 1 year and that those who persisted
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throughout the whole study tended to be a health-minded bias subsample, who may

be more conscious of their true risk of disease.

The study by Bloss et al. (2011, 2013) is the first large-scale prospective study to

provide valuable insights in the behavioral and psychological responses to

genotyped-based lifetime risk estimates. More large-scale prospective studies,

including randomized control trials, will be needed to examine the effects of

communicating personal genetic information in greater detail.

21.7 Conclusions and Future Directions

The predictive ability of models that use genetic variants to determine who will

become obese and who will remain of normal weight depends on a number of

factors. Before constructing the predictive models, one will need to have a clear

view on what form of obesity needs to be predicted, why, in whom, and for what

purpose. Multifactorial obesity is highly prevalent in the general population and

results from an interplay between genes and environmental risk factors, such that

models solely based on genetic variants will likely never reach high predictive

ability, as we have illustrated using the literature on currently identified

BMI-associated loci.

Whether genetic profiling should be used to change people’s behavior, even

when we know that for common obesity such profiles are often incorrect, opens up

an ethical debate that we should engage in. In the case of common obesity, the first

studies suggest that communicating genetic information may not be effective in

making people adopt a healthy lifestyle.

While using genetic information in the prediction of obesity is an honorable aim,

we believe that the most valuable contribution of gene discovery studies lies in their

contribution to elucidate new physiological pathways that underlie obesity suscep-

tibility, which in turn could lead to the identification of therapeutic targets and make

its way into mainstream health care.
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Mägi R, Randall JC, Winkler TW,Wood AR,Workalemahu T, Faul JD, Smith JA, Hua Zhao J,
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Juliusdottir T, Kinnunen L, Koenig W, Koskenvuo M, Kratzer W, Laitinen J, Lamina C,

Leander K, Lee NR, Lichtner P, Lind L, Lindström J, Sin Lo K, Lobbens S, Lorbeer R, Lu Y,

Mach F, Magnusson PK, Mahajan A, McArdle WL, McLachlan S, Menni C, Merger S,

Mihailov E, Milani L, Moayyeri A, Monda KL, Morken MA, Mulas A, Müller G, Müller-
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Chapter 22

Pharmacogenetics of Metformin

Sook Wah Yee, Kaixin Zhou, and Kathleen M. Giacomini

Abstract Metformin is the most widely prescribed antidiabetic drug in the world.

Despite its beneficial effects in reducing the risk for developing vascular compli-

cations associated with diabetes, the glycemic response to metformin is highly

variable. Genetic factors, along with factors such as various comorbidities and body

weight, contribute to this variability. In this chapter, we focus on genetic poly-

morphisms that associate with metformin pharmacokinetics as well as poor glyce-

mic response to the drug. In particular, genetic polymorphisms in membrane

transporters that play a role in metformin absorption, disposition, and response

are highlighted. Studies in healthy volunteers, prediabetic and diabetic patients, and

patients with polycystic ovary disease are described. Using genome-wide data, it is

estimated that the heritability of glycemic response to metformin is around 30 %.

The first genome-wide association study of metformin glycemic response in

patients with type 2 diabetes reveals a locus in chromosome 11. Finally, we provide

an overview of future directions for metformin pharmacogenomic studies to further

elucidate genetic loci and targets for metformin action.

22.1 Metformin History

The biguanides, metformin (1,1-dimethylbiguanide), and its more hydrophobic

analog, phenformin (2-(N-phenethylcarbamimidoyl)guanidine), are synthetic

derivatives of naturally occurring guanide compounds found in the French lilac.

For centuries, the French lilac was used as an herbal remedy for the treatment of

type 2 diabetes (Watanabe 1918). Synthesized in the 1920s, metformin was
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approved for use in Europe in 1947 and in the United States in 1995. Unlike

phenformin, which was associated with profound life-threatening lactic acidosis

and withdrawn from the market in the 1970s, metformin is extremely safe with an

extraordinarily low incidence of lactic acidosis (3 in 100,000) (see review; Bailey

and Turner 1996). Currently the first-line therapy for type 2 diabetes, metformin is

used in over 120 million people worldwide. In addition to its use in adults diag-

nosed with type 2 diabetes, metformin is also used to prevent diabetes in individuals

at high risk and has been suggested for use in treating women who develop

gestational diabetes or polycystic ovary syndrome (PCOS). Metformin is used

off-label in other diseases associated with metabolic syndrome such as

nonalcoholic fatty liver disease and steatohepatitis. Moreover, recent studies sug-

gest that metformin may be effective in other diseases beyond those associated with

metabolic syndrome. In particular, the drug is in clinical trials for prevention of

tumor recurrence in breast, prostate, colorectal, and pancreatic cancer. Metformin is

also being tested for use in mild cognitive impairment and for improving bio-

markers associated with Alzheimer’s disease. Whether metformin will be the

panacea that it is purported to be is difficult to predict and will be revealed as the

pertinent clinical trials are published. Nevertheless, studies of metformin use in

animal models of various diseases have been highly promising, and a recent study

in mice fed with metformin since middle age shows that the drug prolongs life span

and health span (see reviews Viollet et al. 2012; Viollet and Foretz 2013).

22.2 Metformin Pharmacokinetics

Metformin is a polar (log P¼�0.5), basic drug (pKa¼ 12.4), which at physiologic

pHs is largely (>99 %) present in the ionized form. As such, the drug does not

readily diffuse across biological membranes and requires membrane transporters to

cross. The primary plasma membrane transporters involved in metformin tissue

distribution are in the solute carrier superfamily (SLC) and specifically in two

families: SLC22 and SLC47. SLC22 transporters involved in metformin

biodistribution are OCT1 (encoded by SLC22A1), OCT2 (SLC22A2), and OCT3

(SCL22A3). Metformin is an excellent substrate of all three OCTs. Recently,

metformin was reported to be a substrate of OCTN1 (SLC22A4), although weaker

than the above OCTs (Nakamichi et al. 2013). OCT1 is responsible for the uptake of

metformin into hepatocytes (Shu et al. 2007), whereas OCT2 is responsible for the

uptake of metformin into proximal tubule cells of the kidney, the primary organ

involved in metformin elimination (Chen et al. 2009). The role of OCT3 in

metformin tissue distribution is not established, but the transporter is the primary

organic cation transporter in adipose tissue and skeletal muscle, two tissues thought

to play major roles in metformin pharmacologic action (Chen et al. 2010). MATE1

(SLC47A1), multidrug and toxin extrusion protein 1, is expressed on the apical

membrane of the renal proximal tubule and is involved in the transport of metfor-

min from the proximal tubule cell to the tubule lumen. The transporter is also
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expressed on the canalicular membrane of the hepatocyte and may play a role in

metformin biliary excretion. MATE2 (SLC47A2) and its splice variant (Komatsu

et al. 2011), MATE2K, are expressed in the proximal tubule on the apical mem-

brane and appear to mediate metformin renal elimination (see Figs. 22.1 and 22.2).

Metformin pharmacokinetic properties have been well-established in many

clinical studies (Tucker et al. 1981; Sirtori et al. 1978; Graham et al. 2011). In

particular, the drug is not metabolized and is eliminated by renal excretion with an

overall renal clearance in individuals with good renal function of about 500 ml/min.

Active tubular secretion involving transporters represents about 80 % of its overall

renal clearance. Some studies estimate higher renal clearances in diabetic patients,

perhaps reflecting a disease-dependent regulation in renal transporters (Tucker

et al. 1981; Graham et al. 2011). Recovery studies suggest that metformin may

undergo some intestinal or hepatic elimination since 20 % of an oral dose is not

accounted for in the urine (Tucker et al. 1981). Metformin tissue distribution is

broad, consistent with its interaction with organic cation transporters, OCT1,

OCT2, and OCT3, which collectively are expressed in many tissues in the body.

In particular, the drug is highly distributed to the liver, lung, intestine, and kidney

with an apparent volume of distribution ranging from 63 to 276 L after intravenous

doses of the drug (Graham et al. 2011). In line with its hydrophilicity, the drug

exhibits minimal binding to plasma proteins. The half-life of metformin is around

5 h, and the absolute bioavailability of metformin is 55� 16 % (Graham

et al. 2011).

22.3 Metformin Pharmacodynamics

Metformin pharmacodynamics have been recently summarized in several excellent

review articles (Viollet et al. 2012; Viollet and Foretz 2013; Pernicova and

Korbonits 2014). The drug exhibits well-documented clinical effects with respect

to lowering blood glucose levels in patients with type 2 diabetes. In particular, it

reduces hepatic glucose production and enhances insulin sensitivity (Shu

et al. 2007). In addition, studies have suggested that it antagonizes glucagon-

mediated glycogenolysis through cAMP-mediated effects. It also produces benefi-

cial effects on lipids and enhances oxidation of fatty acids while reducing their

synthesis. The drug’s primary action is through inhibition of complex I in the

mitochondria though the exact target remains elusive. The drug appears to accu-

mulate in mitochondria and reduces the proton gradient across the mitochondrial

membrane, which is essential for synthesis of ATP. As a result, ATP synthesis is

reduced, and AMP accumulates. Changes in the levels of these two nucleotides

ultimately appear to account for most of the beneficial effects of metformin on

glucose metabolism and disposition. In particular, because of its accumulation,

AMP effectively binds to AMP kinase (AMPK), the cell’s energy sensor, resulting

in its phosphorylation or activation. P-AMPK results in a host of regulatory effects

on cellular kinases and transcription factors involved in cellular glucose
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Fig. 22.1 Organic cation transporters play major roles in metformin disposition and response.

Metformin is a substrate of several organic cation transporters: OCT1 (SLC22A1), OCT2

(SLC22A2), OCT3 (SLC22A3), OCTN1 (SLC22A4), PMAT (SLC29A4), MATE1 (SLC47A1),
and MATE2 (SLC47A2). The localization of SLC transporters in three major tissues: the intestine,

liver and kidney (Motohashi et al. 2013; Masuda et al. 2006; Nies et al. 2009; Giacomini

et al. 2010). The major organic cation transporters that are expressed at high levels are highlighted
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disposition, most notably disruption of transcription factor complexes that are

responsible for gluconeogenesis. Independent of AMPK, the reduced ATP levels

directly result in reduced glucose production as ATP is required in synthesis of

glucose molecules.

⁄�

Fig. 22.1 (continued) in yellow. The arrow shows the major directions for the transport of

metformin into or away from the cells. Please note that in the intestine, the arrows for OCT3

and OCT1 could be in the reverse directions depending on the route of administration. After oral

administration of metformin, metformin enters the intestine and is secreted into the blood via

OCT1 and OCT3 (as shown in figure). However, after intravenous injection, metformin enters into

the intestine from the blood via OCT3 and OCT1. On the other hand, OCTN1 could play important

role in bidirectional transport of solutes including metformin across cells (Nakamichi et al. 2013;

Kato et al. 2010)
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Fig. 22.2 The transcript levels of the seven organic cation transporters known to transport

metformin by in vitro, in vivo, and/or genetic studies (see Table 22.1). The expression levels of

these transporters are obtained from the GTEx Portal (http://www.broadinstitute.org/gtex/

searchGenes) (GTEx Consortium 2013). The median transcript levels were plotted in this panel,

and the sample sizes for each tissue are as follows: the liver (n¼ 106); kidney cortex (N¼ 94);

stomach (N¼ 181); colon, transverse (N¼ 181); adipose, subcutaneous (N¼ 189); and skeletal

muscle (N¼ 188). The individual transcript levels were not publicly available, and hence the

median levels were obtained from the GTEx Portal and plotted in Fig. 22.2
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Metformin in vivo pharmacologic effects are dependent on dosage, with increas-

ing doses through 2000 mg associated with improved response with respect to

reduction in fasting glucose levels and glycated hemoglobin (HbA1c) (Garber

et al. 1997). In addition, the drug shows route-dependent effects in rats. That is,

intraduodenal and intra-portal doses are associated with greater effects than intra-

venous doses (at similar systemic plasma concentrations) suggesting that metfor-

min may produce its pharmacologic effects on the first pass through the intestine

and liver (Stepensky et al. 2002). Variation in metformin response is high with

about 35 % of patients with diabetes failing to achieve clinically acceptable HbA1c

levels on metformin monotherapy (Cook et al. 2007; Kahn et al. 2006). Nongenetic

factors that relate to variation in response to metformin are baseline HbA1c levels,

with higher baseline levels associating with better response (more HbA1c reduc-

tion). Increasing dose and higher serum creatinine levels are also associated with

significantly greater response presumably reflecting greater exposure to metformin

(or time-averaged systemic plasma levels). The remainder of the chapter will focus

on genetic determinants of response to metformin.

22.4 Metformin Pharmacogenomics

22.4.1 Heritability of Metformin Glycemic Response

Before performing pharmacogenomics studies, it is essential to address the question

of how much response variation in patients on metformin can be explained by

genetic factors, which is often termed as heritability. Historically, the heritability of

drug response has been rarely established as traditional twin and family-based study

designs are impractical for investigating drug response phenotypes. Recently,

alternative methods using population-based GWAS data for heritability estimation

have been developed. One of these methods, the Genome-wide Complex Trait

Analysis (GCTA) (Yang et al. 2011), can estimate the distant genetic relationship

between conventionally unrelated individuals using GWAS SNP data and correlate

the genetic similarity to the phenotypic similarity in order to partition the total

phenotypic variance into genetic and environmental causes.

The GCTA method was applied to GWAS data from 2058 metformin-treated

patients, and the heritability of glycemic response to metformin was estimated

(Zhou et al. 2014). Univariate analyses showed that for commonly used definitions

of HbA1c-based treatment efficacy measurements, heritability estimates ranged

from 20 to 34 %. These heritability estimates are comparable to the heritability of

21 % for BMI and 30 % for Alzheimer’s disease as estimated by the GCTA method,

suggesting that glycemic response to metformin in patients with type 2 diabetes is

reasonably heritable. Chromosome-wise heritability analysis, which was performed

to understand the genetic architecture of glycemic response, revealed a significant

linear correlation between heritability estimates and chromosome length,
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suggesting that many variants with small to moderate effects on metformin

response are scattered throughout the genome. Response to metformin is associated

with baseline glucose level (pretreatment) as well as to the direct effects of the drug

(on-treatment glucose level); both components may be determined by genetic

factors. To this end, a novel bivariate analysis was applied to jointly estimate the

heritability of pretreatment and on-treatment HbA1c measures. The results showed

that variants contributing to almost half of the heritability had differential impact on

pretreatment and on-treatment HbA1c. Though all of the variants will be informa-

tive in predicting treatment outcome, only those having differential impact on

pretreatment and on-treatment HbA1c will be informative to the drug action

mechanism. It is worth noting that interpretation of all these heritability estimates

from the GCTA analyses and those secondary results can only be made in the

context of the common SNPs captured by the GWAS arrays. Contributions from the

rare variants that are poorly covered by the GWAS panels will not form part of the

heritability estimated by GCTA, but will remain in the environmental component.

Thus, the heritability of glycemic response to metformin may have been

underestimated. Further, sequencing-based genomic studies with an emphasis on

the rare metformin response variants may be worth conducting irrespective of

heritability estimates from GWAS SNPs.

Collectively, the heritability analyses of metformin glycemic response in type

2 diabetes patients suggests that a moderate proportion of the variance is genetic

and reflects underlying biological difference between individuals. As summarized

below, the known metformin response variants identified through candidate gene

studies and the first GWAS study can only explain a small proportion of the

heritability. In future metformin pharmacogenomics, performing GWAS analysis

with larger samples could find more genetic variants that enable us make better

predictions for personalized or stratified medicine, as well as unravel novel mech-

anisms of metformin action at reducing hyperglycemia.

22.4.2 Candidate Gene Studies

Over the last decade, a number of candidate gene metformin pharmacogenetic

studies have been published. Most of these studies focused on the known variants

in transporter genes, which play important roles in metformin accumulations in

tissues such as the liver, which are responsible for the pharmacologic action of the

drug, and in the kidney, which plays a major role in metformin pharmacokinetics. In

Table 22.1, key results from these candidate genes studies related to transporters are

summarized. Included in the table are studies focused on healthy volunteers,

prediabetic patients, and patients with type 2 diabetes. Findings from knockout

mice of these transporters are also included to provide further support of the effects

of the associated genes. These candidate gene studies have been recently reviewed

(Zolk 2012; Becker et al. 2013). Many of the studies investigated variants in

SLC22A1 (OCT1), SLC22A2 (OCT2), SLC47A1 (MATE1), and SLC47A2
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Table 22.1 Effects of genetic polymorphisms of organic cation transporters on metformin

disposition and response

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

OCT1

(SLC22A1)
Healthy volunteers

(Caucasians)

OCT1-reduced function

variants ((R61C

(rs12208357), G401S

(rs34130495), M420del

(rs202220802), G465R

(rs34059508)) were associ-

ated with higher metformin

AUC and reduced response

to metformin (Watanabe

1918; Bailey and Turner

1996)

Intravenous injection of

metformin showed Oct1

knockout mice having

higher plasma concentra-

tions and significantly

lower metformin levels in

the liver, duodenum, jeju-

num, and ileum. However,

there was no difference in

the kidney and urinary

excretion (Viollet

et al. 2012)

Oral dose of metformin to

mice showed Oct1�/�
mice have higher AUC in

initial phase (0–1 h)

(Viollet et al. 2012). There

was a trend that Oct1�/�
mice have greater metfor-

min AUC from 0–24 h and

smaller oral volume of

distribution; however, this

is not significant (Bailey

and Turner 1996)

After 8 weeks of high-fat

diet, Oct1þ/þ mice

showed significant reduc-

tion in fasting plasma glu-

cose after 5 days of

metformin treatment;

however, Oct1�/� mice

showed no effect

(Watanabe 1918)

OCT1

(SLC22A1)
Healthy volunteers

(Caucasians)

OCT1-reduced function

variants ((R61C

(rs12208357), G401S

(rs34130495), M420del

(rs202220802), G465R

(rs34059508)) were asso-

ciated with reduce renal

clearance (Viollet and

Foretz 2013)

OCT1

(SLC22A1)
Healthy volunteers

(Korean)

OCT1-reduced function

variant (P134L

(rs2282143)) was associ-

ated with higher metfor-

min AUC (Nakamichi

et al. 2013)

OCT1

(SLC22A1)
People with type

2 diabetes

(Caucasians)

OCT1-reduced function

variants (R61C

(rs12208357) and

M420del (rs202220802))

were not significantly

associated with metformin

response (Shu et al. 2007)

OCT1

(SLC22A1)
People with type

2 diabetes

(Caucasians)

OCT1-reduced function

variants were not signifi-

cantly associated with

metformin response (Chen

et al. 2009)

OCT1

(SLC22A1)
People with type

2 diabetes

(Caucasians)

The number of OCT1-

reduced function alleles

(R61C (rs12208357),

S189L (rs34104736),

G401S (rs34130495),

M420del (rs72552763),

and G465R (rs34059508))

was correlated with met-

formin trough levels and

HbA1c levels (Chen

et al. 2010)

(continued)

470 S.W. Yee et al.



Table 22.1 (continued)

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

OCT1

(SLC22A1)
People with type

2 diabetes

(Caucasians)

An intronic variant

(rs622342) associated with

HbA1c levels, and also

there is an interaction of

this variant with MATE1

intronic variant

(rs2289669) (Komatsu

et al. 2011)

OCT1

(SLC22A1)
People with type

2 diabetes

(Caucasians)

OCT1 non-synonymous

variant Met408Val

(rs628031) was signifi-

cantly associated with

metformin-induced gas-

trointestinal side effects

(Tucker et al. 1981)

OCT1

(SLC22A1)
Polycystic ovarian

syndrome (PCOS)

Reduced function OCT1

variants were significantly

associated with reduced

total cholesterol and tri-

glyceride levels in patients

on metformin for PCOS

(Sirtori et al. 1978)

OCT1

(SLC22A1)
Postmenopausal

diabetic patients

with or without

cancer (Caucasians)

Investigation of OCT1

variants (rs12208357 and

rs622342) and other can-

didate variants in diabetic

patients with and without

cancer (Graham

et al. 2011)

OCT2

(SLC22A2)
Healthy volunteers

(multiple ethnic

groups)

OCT2 A270S (rs316019)

was associated with

increased metformin renal

clearance and secretory

clearance (Pernicova and

Korbonits 2014)

Oct1/Oct2 double knock-

out mice showed signifi-

cantly lower liver- and

kidney-to-plasma concen-

tration ratios. However,

the double knockout mice

were not significantly dif-

ferent from wild type for

their response to

metformin’s glucose-
lowering effect (Garber

et al. 1997)

OCT2

(SLC22A2)
People with type

2 diabetes (Asians)

OCT2 A270S was associ-

ated with increase plasma

lactate in patients treated

with metformin

(Stepensky et al. 2002)

OCT2

(SLC22A2)
Healthy volunteers

(Korean)

OCT2 A270S was associ-

ated with higher AUC and

Cmax (Nakamichi

et al. 2013)

OCT2

(SLC22A2)
People with type

2 diabetes (multiple

ethnic groups)

OCT2 A270S (rs316019)

was not significantly asso-

ciated with metformin

response (Chen

et al. 2009)

(continued)
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Table 22.1 (continued)

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

OCT2

(SLC22A2)
Healthy volunteers

(multiple ethnic

groups)

OCT2 A270S (rs316019)

was associated with met-

formin response after

adjusted for the MATE1

50UTR variant g.-66 T>C

(Cook et al. 2007)

OCT2

(SLC22A2)
Healthy volunteers

(Korean)

OCT2 A270S was associ-

ated with decreased renal

excretion and increased

plasma concentration of

metformin (Kahn

et al. 2006)

OCT2

(SLC22A2)
Healthy volunteers

(Korean)

No significant difference

in metformin renal clear-

ance and secretory clear-

ance (Yang et al. 2011)

MATE1

(SLC47A1)
People with type

2 diabetes

(Japanese)

Blood lactate levels were

not significantly different

after metformin treatment

in patients with or without

MATE1 non-synonymous

variants (Zhou et al. 2014)

Mate1 (�/�) is associated

with metformin-induced

lactic acidosis (Zhou

et al. 2014)

Mate1 (�/�) has higher

metformin levels in the

liver (Zhou et al. 2014)

Mate1 (�/�) has higher

metformin AUC levels,

lower urinary excretion of

metformin (Zolk 2012)

MATE1

(SLC47A1)
Healthy volunteers

(multiple ethnic

groups)

The reduced function

MATE1 50UTR variant g.-

66 T>C (rs2252281)

associated with enhanced

response to metformin

effects on oral glucose

tolerance test (Becker

et al. 2013)

MATE1

(SLC47A1)
People with type

2 diabetes

(Caucasians)

MATE1 intron variant

(rs2289669) was associ-

ated with metformin

response (Zhou et al. 2007;

Yoon et al. 2013)

MATE1

(SLC47A1)
Prediabetic patients

(multiple ethnic

groups)

MATE1 intron variant

(rs8065082, in high link-

age disequilibrium to

rs2289669) was associated

with metformin response

(Zhou et al. 2009)

MATE1

(SLC47A1)
People with type

2 diabetes (multiple

ethnic groups)

MATE1 intron variant

(rs2289669) was not sig-

nificantly associated with

metformin response (Chen

et al. 2009)

(continued)

472 S.W. Yee et al.



Table 22.1 (continued)

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

MATE2

(SLC47A2)
Healthy volunteers

(Caucasians and

Korean)

MATE2K 50UTR variant

g.-130G>A (rs12943590)

significantly associated

with reduced response to

metformin effects on oral

glucose tolerance test and

change in HbA1c (Chen

et al. 2009; Yang

et al. 2011)

No mouse studies

OCTN1

(SLC22A4)
Healthy volunteers

(Korean)

OCTN1 T306I (rs272893)

showed significant effect

on metformin pharmacoki-

netics. Individuals with

variant allele showed

higher peak concentration

and greater AUC levels

(Nakamichi et al. 2013)

The maximum plasma

concentration (Cmax)

after oral administration of

metformin (50 mg/kg) in

Octn1�/�was higher than

that in wild-type mice,

However, Cmax in

Octn1�/� mice given at

higher dose (175 mg/kg)

was lower than that in

wild-type mice (Stocker

et al. 2013)

OCT2

(SLC22A2)
and MATE1

(SLC47A1)

Healthy volunteers

(Caucasians)

OCT2 A270S was not sig-

nificantly associated with

renal or secretory clearance

of metformin. However,

renal and secretory clear-

ance increased with minor

allele A270S in subjects

with homozygous reference

allele of MATE1 promoter

variant, g.-66T>C

(rs2252281) (Cook

et al. 2007)

No mouse studies

OCT1

(SLC22A1)
and MATE1

(SLC47A1)

People with type

2 diabetes

(Caucasians)

A genetic interaction

between OCT1 intron vari-

ant (rs622342) and MATE1

intron variant (rs2289669)

was reported (Komatsu

et al. 2011)

No mouse studies

This table summarizes the results from studies of (i) genetic polymorphisms and (ii) knockout

mice in organic cation transporters (SLC22A1, SLC22A2, SLC22A4, SLC47A1, and SLC47A2) that
have been investigated in metformin disposition and response. References for these studies are

available in the footnote

Footnote: References from Table 22.1

1. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1 (OCT1) on metformin

action. J Clin Invest 117, 1422–31 (2007).

2. Shu, Y. et al. Effect of genetic variation in the organic cation transporter 1, OCT1, on metformin

pharmacokinetics. Clin Pharmacol Ther 83, 273–80 (2008).

3. Wang, D.S. et al. Involvement of organic cation transporter 1 in hepatic and intestinal

distribution of metformin. J Pharmacol Exp Ther 302, 510–5 (2002).
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Table 22.1 (continued)

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

4. Tzvetkov, M.V. et al. The effects of genetic polymorphisms in the organic cation transporters

OCT1, OCT2, and OCT3 on the renal clearance of metformin. Clin Pharmacol Ther 86, 299–306

(2009).

5. Yoon, H., Cho, H.Y., Yoo, H.D., Kim, S.M. & Lee, Y.B. Influences of organic cation transporter

polymorphisms on the population pharmacokinetics of metformin in healthy subjects. AAPS J 15,
571–80 (2013).

6. Zhou, K. et al. Reduced-function SLC22A1 polymorphisms encoding organic cation transporter

1 and glycemic response to metformin: a GoDARTS study. Diabetes 58, 1434–9 (2009).

7. Choi, J.H. et al. A common 50-UTR variant in MATE2-K is associated with poor response to

metformin. Clin Pharmacol Ther 90, 674–84 (2011).

8. Christensen, M.M. et al. The pharmacogenetics of metformin and its impact on plasma

metformin steady-state levels and glycosylated hemoglobin A1c. Pharmacogenet Genomics 21,
837–50 (2011).

9. Becker, M.L. et al. Interaction between polymorphisms in the OCT1 and MATE1 transporter

and metformin response. Pharmacogenet Genomics 20, 38–44 (2010).

10. Tarasova, L. et al. Association of genetic variation in the organic cation transporters OCT1,

OCT2 and multidrug and toxin extrusion 1 transporter protein genes with the gastrointestinal side

effects and lower BMI in metformin-treated type 2 diabetes patients. Pharmacogenet Genomics
22, 659–66 (2012).

11. Gambineri, A. et al. Organic cation transporter 1 polymorphisms predict the metabolic

response to metformin in women with the polycystic ovary syndrome. J Clin Endocrinol Metab
95, E204-8 (2010).

12. Berstein, L.M., Iyevleva, A.G., Vasilyev, D., Poroshina, T.E. & Imyanitov, E.N. Genetic

polymorphisms potentially associated with response to metformin in postmenopausal diabetics

suffering and not suffering with cancer. Cell Cycle 12, 3681–8 (2013).

13. Chen, Y. et al. Effect of genetic variation in the organic cation transporter 2 on the renal

elimination of metformin. Pharmacogenet Genomics 19, 497–504 (2009).

14. Higgins, J.W., Bedwell, D.W. & Zamek-Gliszczynski, M.J. Ablation of both organic cation

transporter (OCT)1 and OCT2 alters metformin pharmacokinetics but has no effect on tissue drug

exposure and pharmacodynamics. Drug Metab Dispos 40, 1170–7 (2012).

15. Li, Q. et al. SLC22A2 gene 808 G/T variant is related to plasma lactate concentration in

Chinese type 2 diabetics treated with metformin. Acta Pharmacol Sin 31, 184–90 (2010).

16. Christensen, M.M. et al. A gene-gene interaction between polymorphisms in the OCT2 and

MATE1 genes influences the renal clearance of metformin. Pharmacogenet Genomics 23, 526–34
(2013).

17. Song, I.S. et al. Genetic variants of the organic cation transporter 2 influence the disposition of

metformin. Clin Pharmacol Ther 84, 559–62 (2008).

18. Chung, J.Y. et al. Functional characterization of MATE2-K genetic variants and their effects

on metformin pharmacokinetics. Pharmacogenet Genomics 23, 365–73 (2013).

19. Toyama, K. et al. Loss of multidrug and toxin extrusion 1 (MATE1) is associated with

metformin-induced lactic acidosis. Br J Pharmacol 166, 1183–91 (2012).

20. Tsuda, M. et al. Targeted disruption of the multidrug and toxin extrusion 1 (mate1) gene in

mice reduces renal secretion of metformin. Mol Pharmacol 75, 1280–6 (2009).

21. Stocker, S.L. et al. The effect of novel promoter variants in MATE1 and MATE2 on the

pharmacokinetics and pharmacodynamics of metformin. Clin Pharmacol Ther 93, 186–94 (2013).
22. Becker, M.L. et al. Genetic variation in the multidrug and toxin extrusion 1 transporter protein

influences the glucose-lowering effect of metformin in patients with diabetes: a preliminary study.

Diabetes 58, 745–9 (2009).

23. Tkac, I. et al. Pharmacogenomic association between a variant in SLC47A1 gene and

therapeutic response to metformin in type 2 diabetes. Diabetes Obes Metab 15, 189–91 (2013).
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(MATE2) in pharmacodynamic and pharmacokinetic studies in healthy volunteers

and in participants with type 2 diabetes. More recently, SLC22A3 (OCT3),

SLC29A4 (ENT4), and SLC22A4 (OCTN1) have been shown to transport metfor-

min (Nakamichi et al. 2013; Chen et al. 2010; Zhou et al. 2007); however, only

variants in OCTN1 have been associated with metformin disposition in healthy

volunteers and knockout mice (Nakamichi et al. 2013; Yoon et al. 2013). Collec-

tively, the studies shed important light on the clinical pharmacokinetic mechanisms

of metformin.

However, genetic variants in transporters generally have small effects on met-

formin pharmacokinetics and pharmacodynamics, and as a result, their effects may

not be reproducible among studies (Table 22.1). For example non-synonymous

reduced function variants in OCT1 have been shown to significantly reduce met-

formin uptake in cellular assays and in healthy volunteers associated with reduced

metformin response. However, SLC22A1 variants had no impact on treatment

efficacy in 1531 patients with type 2 diabetes in Europe (Zhou et al. 2009). Clinical

confounders such as polypharmacy and gene-by-gene interactions between various

transporters involved in metformin response may mask the genetic impact of

SLC22A1 variants. Recent studies in Caucasian and African American patients

with type 2 diabetes demonstrated that the impact of a genetic variant in

SLC47A1 could only be observed in individuals who harbor the SLC22A1 reference
allele (Stocker et al. 2013). The study highlights the need to investigate the variants

in these transporters jointly in pharmacogenomic studies of people with type

2 diabetes, on the basis of known pharmacokinetic information. However, larger

samples will be required as the statistical power diminishes quickly with the

increasing number of gene-by-gene tests.

As noted in Table 22.1, most of the current candidate gene studies were

performed in healthy volunteers or diabetes patients with ancestry in Europe.

Clearly there is an enormous need to study other populations, as type 2 diabetes

is a global epidemic and metformin is used in millions of people worldwide.

Though metformin is very safe, it does exhibit gastrointestinal side effects in

some patients. Of the studies performed to date, there is only one study that focused

on the identification of genetic variants that associate with metformin gastrointes-

tinal side effects (Table 22.1) (Tarasova et al. 2012).

In addition to identification of genetic variants that associate with glycemic

response to metformin in diabetic patients, several studies have focused on

Table 22.1 (continued)

Transporters

(gene name)

Study populations

(ethnicity) Phenotypes Knockout mouse

24. Jablonski, K.A. et al. Common variants in 40 genes assessed for diabetes incidence and

response to metformin and lifestyle intervention in the diabetes prevention program. Diabetes
59, 2672–81 (2010).

25. Nakamichi, N. et al. Involvement of carnitine/organic cation transporter OCTN1/SLC22A4 in

gastrointestinal absorption of metformin. J Pharm Sci 102, 3407–17 (2013).
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identifying genetic variants that associate with metformin efficacy in different

diseases. These are briefly summarized below.

Individuals with Prediabetes The Diabetes Prevention Program (DPP) includes

patients at increased risk for diabetes, who are randomized to metformin, lifestyle

changes, or placebo for prevention. Though intense lifestyle changes have associ-

ated with the best outcome, metformin has been clearly shown to prevent diabetes

in the DPP. A large candidate gene study carried out in 2994 individuals in the DPP

involved genotyping 1590 SNPs in 40 genes encoding transporters, proteins

involved in metformin action, and proteins associated with type 2 diabetes

(Jablonski et al. 2010). A SNP in SLC47A1 (MATE1) intron (rs8065082) was

associated with metformin response and replicated the finding from a previous

study in patients with type 2 diabetes, which reported an association of the

SLC47A1 intronic SNP rs2289669 in high linkage disequilibrium (LD) with

rs8065082, with response to metformin (Table 22.1) (Becker et al. 2009). Consis-

tent evidence has also been obtained by Tkac et al. (2013).

Women with PCOS Metformin is also used to treat women with PCOS due to its

effect on improving insulin resistance (Pau et al. 2014). Recent study suggests that

metformin results in symptomatic improvement of patients with PCOS by exerting

effects on lowering glucose, testosterone, and androstenedione (Pau et al. 2014). A

group in Italy reported that OCT1-reduced function variants predict metformin

response in patients with PCOS (Gambineri et al. 2010).

Cancer Patients Metformin use has been shown to improve survival in patients

with cancer (Zhang and Li 2014). Although its mechanisms are not fully under-

stood, there are several ongoing clinical trials to evaluate the effect of metformin on

improving treatment and survival in cancer patients. The effect of OCT1 variants

with response to metformin in diabetic patients with or without cancer is under

investigation (Berstein et al. 2013).

Transporters have come under scrutiny in drug development as being associated

with clinical drug-drug interactions. As such, inhibitors of transporters may phe-

nocopy genetic variants. In particular, prescription drugs that inhibit metformin

transporters in the liver or kidney could potentially modulate metformin effects.

Although it is not the focus of this chapter, it is worth mentioning that several

clinical studies have been performed in healthy subjects and have observed effects

on metformin disposition with administration of prescription drugs that are inhib-

itors of organic cation transporters in the SLC22 and 47 families (Ding et al. 2014;

Grun et al. 2013; Kusuhara et al. 2011).

22.4.3 Genome-Wide Association Study

Only one genome-wide association study (GWAS) of metformin glycemic response

has been published to date (Zhou et al. 2011). The authors screened 700,000
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polymorphisms in 1024 metformin users from the GoDARTS cohort and replicated

the top hit in a further 1783 GoDARTS participants as well as 1113 UKPDS

participants. They identified variant rs11212617 near the ATM gene that associated

with achieving a treatment target of 7 % HbA1c (P¼ 2� 10�9) in the combined

analysis of the three data sets. The same variant was also associated with a

per-allele change difference in HbA1c of 0.11 % (P¼ 6.7� 10�7). The variant

could explain up to 2.5 % of the variance in HbA1c reduction among the UKPDS

participants. Subsequently, a meta-analysis of three other independent cohorts of

type 2 diabetes also replicated the association (van Leeuwen et al. 2012).

Despite the concrete evidence of association in people with type 2 diabetes, in an

attempt to replicate the finding in prediabetes patients, no association was observed

between rs11212617 and diabetes incidence in 988 metformin-treated DPP partic-

ipants (Florez et al. 2012). Secondary analyses also found no association with

HbA1c change in the DPP. Further stratified analysis of Caucasian sample in the

DPP showed that ethnic differences were an unlikely explanation to the discrepancy

in genetic impacts of rs11212617 on type 2 diabetes and people with prediabetes.

Given the sample size in the DPP, this study had enough statistical power (>99 %)

to detect an allelic effect of 0.61 % HbA1c change as reported in the replication

sample of UKPDS in the initial GWAS report. The differential genetic effect of

rs11212617 on metformin efficacy in these two large pharmacogenetic studies

suggests that some genetic variants might be expected to have an impact on

glycemic response in certain physiological conditions or a narrow range of glucose

levels. Even without more confirmed genetic variants showing differential impact

on response to metformin between people with type 2 diabetes and prediabetes,

such expectation is not unrealistic given the latest results in GWAS analyses of type

2 diabetes by the DIAGRAM consortium and fasting glucose in MAGIC. Clearly,

there is a significant overlap between the genetic determinants of glucose levels in

the normal physiological state as reported by the MAGIC and those in the patho-

physiological state of type 2 diabetes, suggesting common avenues of glycemic

control. However, there are also a significant number of variants specific to each

state suggesting certain levels of difference in glycemic control between the two

physiological states. Although prediabetes is an intermediate state between normal

physiological conditions and type 2 diabetes state, differences may exist in the

glycemic control between type 2 diabetes and prediabetes states. Therefore, the

genetic impact on metformin treatment efficacy may also vary regardless of the

measurements of treatment outcome. On the other hand, considering the fact that

variants in SLC47A1 have been shown to affect metformin treatment efficacy in

similar manner in both people with prediabetes and those with type 2 diabetes, joint

analyses of data from cohorts of both types are still warranted as long as the

treatment outcomes are defined in the same framework.

Compared to the candidate gene studies based on specific prior biological or

functional knowledge, GWAS analysis is hypothesis-free and bears the potential to

reveal novel mechanism of drug action. Indeed the first metformin response GWAS

identified metformin efficacy associated with a group of variants in strong LD

spanning seven genes, none of which has been previously implicated in the pathway
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of metformin action, and identification of the causal gene at this locus is likely to

shed new light on the action mechanism of this old drug. Previous reports showed

that individuals carrying the recessive mutations of ATM, one of the seven genes in

the LD block, developed the ataxia telangiectasia syndrome and were insulin

resistant. The authors of the GWAS showed that activation of AMPK by metformin

was reduced by treatment with an ATM inhibitor, KU-55933, and suggested that

ATM was the causal gene for metformin response with a direct role in the activation

of AMPK by metformin. However, as shown by two other groups independently,

KU-55933, the supposedly specific inhibitor of ATM, has an off-target effect of

altering metformin uptake by the organic cation transporter OCT1 (Woods

et al. 2012; Yee et al. 2012). Thus the question of which of the seven genes is

causal in metformin glycemic response remains unanswered, and several genes in

the loci may represent viable candidates.

22.5 Conclusions and Future Directions

In conclusion, many candidate gene studies of metformin disposition and glycemic

response have been performed and have added to the body of knowledge of

mechanisms of metformin action and disposition in people with type 2 diabetes.

A single GWAS has revealed new genes that may potentially be involved in

metformin pharmacologic action in people with type 2 diabetes. However, the

study was not replicated in people with prediabetes perhaps because of differences

in pathological states of the populations. Nevertheless, the GWAS identified a locus

with novel genes that need to be studied for their effects on metformin response.

Future human genetic studies should be in four major directions.

• First and foremost, there is an enormous need to identify genetic variants that

predict glycemic response to metformin in other ethnic groups in addition to

those of European ancestries. For example, metformin is commonly prescribed

in African Americans, a population with the highest prevalence of type 2 diabetes

among the four major ethnic groups in the United States (African Americans,

Asian Americans, European Americans, and Hispanics). Moreover, metformin

is increasingly being used on a global basis as the epidemic of metabolic

syndrome continues to grow. In particular, East Asian countries are experiencing

alarming increases in the rates of type 2 diabetes. Moreover, South Asians are at

high risk for type 2 diabetes, and other populations globally have not been

studied. Clearly pharmacogenomics studies identifying genetic variants that

associate with glycemic response to metformin are needed in all ethnic groups.

• Second, large sample sets are needed. To date, only common variants have been

identified, and only a limited number of patients have been studied. Heritability

estimates suggest that many more common variants that associate with glycemic

response to metformin have not been identified because of issues related to small

sample sizes. Consortia and other mechanisms to pool samples are clearly
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needed. Further, gene-by-gene interactions can only be identified in larger

sample sets.

• Third, rare variants have not been ascertained because of limited sample sizes.

Rare variants with large effect sizes may be identified in larger sample sets or in

studies of extreme responders and nonresponders.

• Finally, studies need to extend beyond initial glycemic response to metformin.

Diabetes ultimately leads to a host of life-threatening morbidities, which provide

the rationale for glycemic control with metformin and other diabetic agents.

Studies focused on susceptibility to diabetic complications on metformin such as

cardiovascular events, microvessel disease, and other pathologies are clearly

needed. These studies should extend to complications on metformin combina-

tion therapies, which are commonly used as diabetes progresses. Genetic deter-

minants of resistance to metformin have not been identified. It is clear that some

individuals are initially resistant to metformin, whereas others develop resis-

tance over time. What are the genetic factors that underlie longer-term resistance

to the drug?

Though not a part of this chapter, genetic determinants that underlie response to

metformin for other diseases beyond diabetes such as cancer and PCOS need to be

identified. We envision a future in which investigators worldwide come together

and share samples and data involving metformin disposition and therapeutic

response across a spectrum of human disease. Only in this setting can we begin to

understand the mechanisms of action and predictors of response to this widely

prescribed and highly beneficial therapeutic agent.
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Chapter 23

Pharmacogenetics of Sulfonylureas

Peter Kovacs and Ewan Pearson

Abstract Despite tremendous efforts and recent advances in the understanding of

the molecular biology and genetics of type 2 diabetes (T2D), its translation into

clinical practice remains limited primarily to monogenic forms of diabetes.

Pharmacogenetics, which focuses on the relationship between individual gene

variants and their influence on drug action or side effect, may substantially improve

patients’ health by enabling application of therapies targeted to patient subgroups.

The present review focuses on the pharmacogenetic aspects of treatment with the

widely used oral antidiabetic drugs—sulfonylureas (SUs). Initially, the review

addresses two dramatic clinical applications of pharmacogenetics in diabetes—

extreme sensitivity to SUs in patients with HNF1A MODY and SU treatment in

patients with neonatal diabetes due to mutations in the potassium channel genes

KCNJ11 (encoding Kir6.2) and ABCC8 (encoding SUR1). In addition to mono-

genic forms, pharmacogenetic aspects of treatment with SUs in polygenic T2D will

be elaborated as well. Whereas pharmacodynamic variation in polygenic T2D is

attributed to genetic variants in ABCC8/KCNJ11 and TCF7L2, known to be

strongly associated with T2D, variants in CYP2C9 encoding sulfonylurea

metabolising cytochrome P450 isoenzyme 2C9 play a major role in pharmacoki-

netic variation in polygenic T2D. Despite currently lacking large-scale population

studies addressing the pharmacogenomics of SUs, it is our hope that given the

recently established international collaborative efforts in this field, the next few

years will see pharmacogenomics of SUs in T2D mirror the success seen in

monogenic diabetes.
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23.1 Introduction

Personalised medicine, as one of the major challenges of modern medicine, may

greatly benefit from better knowledge of genetic mechanisms underlying human

diseases, which is essential to improve diagnostics, prognostics and treatment

strategies. The role of human as well as animal genetics in illuminating molecular

processes in the pathophysiology of human diseases has been well documented. For

instance, it has been reported that variants in the disintegrin and metalloprotease

33 gene (ADAM33) confer a 1.4-fold increased risk for asthma (Blakey et al. 2005).

This may mean little to the individual patient when considering the complexity of

disease aetiology and numerous additional factors contributing to the manifestation

of the clinical outcome. However, it was exactly these studies which ultimately

helped to clarify the exact role of metalloproteases in the function of fibroblasts and

smooth muscle cells. Likewise, genome-wide association studies (GWAS) for

diabetes and related traits revealed multiple variants with modest associations

which pointed to the beta cell as central to the pathophysiology of type 2 diabetes

(T2D) (Pal and McCarthy 2013). Yet, the contribution of genetics should not be

limited to better understanding of biological functions and disease mechanisms.

From a clinical point of view, it is potentially more relevant to derive clinical

application for the individual patient, i.e., personalising their management. In this

context, the link between breast cancer and mutations in the tumour suppressor

genes BRCA1 and BRCA2 is a good example. Women with specific mutations in

these genes are at high risk of developing breast cancer and thus are advised to

undergo a prophylactic, bilateral mastectomy (Meijers-Heijboer et al. 2001). In

diabetes, it is particularly the monogenic forms such as maturity onset diabetes of

the young (MODY) whose treatment may strongly depend on the underlying

molecular mechanisms. There are clear differences between the diabetes caused

by the different MODY genes, which result in discrete clinical entities. For

instance, patients with glucokinase (GCK) mutations have mild fasting

hyperglycaemia from birth which deteriorates very little with age. Consequently,

pharmacological treatment is rarely required, and it is only occasionally associated

with microvascular complications (Hatterslay 2005) (see also Chap. 11).

Despite tremendous efforts and recent advances in the understanding of the

molecular biology and genetics of T2D, its translation into clinical practice remains

limited, primarily to monogenic forms of diabetes. This may be attributed to the

physiological and genetic complexity of T2D, but also to genetic heterogeneity of

the studied populations, which makes judging the effects of genetic variants in a

single patient with diabetes highly challenging. Nevertheless, it is reasonable to

assume that there is likely to be greater clinical application resulting from genetic

studies of T2D as our knowledge of its genetic basis continues to expand. In

particular, pharmacogenetics, which focuses on the relationship between individual

gene variants and their influence on drug action or side effect, may substantially

improve patients’ health by enabling a stratified application of current therapies or

development of novel therapies targeted to patient subgroups (Roden et al. 2006).
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The present review focuses on the pharmacogenetic aspects of treatment with

widely used oral antidiabetic drugs—sulfonylureas (SUs).

23.2 Mechanism of Action of Sulfonylureas

Sulfonylureas have been in clinical use for more than 60 years and are a potent anti-

hyperglycaemic drug established to reduce microvascular complications of diabetes

[UK Prospective Diabetes Study (UKPDS) Group 1998]. They have two major side

effects: insulin secretion is stimulated even in the presence of normal or low

glucose and thus hypoglycaemia is a significant risk; hyperinsulinemia results in

an increase in body weight. SUs act on the pancreatic beta cell to promote insulin

secretion by bringing about closure of ATP-sensitive potassium channels at the

pancreatic beta-cell membrane (Fig. 23.1). The ATP-sensitive potassium channels

are heteromultimers including an inward rectifying potassium channel (Kir6.1 or

Kir6.2) in close association with SU binding sites. Various tissue-specific isoforms

of SU-receptors (SUR) are known: SUR-1 in pancreatic beta cells, SUR-2A in

cardiac cells and SUR-2B in smooth muscle cells (Seino 1999). The different SUs

bind with differing affinity to these SUR subtypes. Tolbutamide, chlorpropamide,

gliclazide and glipizide bind specifically to SUR-1, whereas glibenclamide and

glipizide bind to both SUR-1 and SUR-2 subunits (Evans et al. 2008). See Chap. 18

for further details.

23.3 Variability of Glycaemic Response to Sulfonylureas

and Potential Mechanisms

There is considerable variation in efficacy of action of SUs. Whilst some of this

variation in response could reflect variation in adherence or lifestyle, it is likely that

some of the variation is intrinsic to the individual. These intrinsic differences may

reflect differences in diabetes aetiology or differences in SU pharmacokinetics or

variation in the pharmacodynamics of SUs. These will be discussed in turn, initially

focusing on the two dramatic clinical applications of pharmacogenetics in diabe-

tes—extreme sensitivity to SUs in patients with MODY 3 and SU treatment in

patients with neonatal diabetes due to mutations in the potassium channel genes

KCNJ11 (encoding Kir6.2; potassium inwardly rectifying channel, subfamily J,

member 11) and ABCC8 [encoding SUR1; ATP-binding cassette, subfamily C

(CFTR/MRP), member 8].
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23.3.1 Diabetes Aetiology and Sulfonylurea Response:
HNF1A and HNF4A Maturity Onset Diabetes
of the Young (MODY)

As discussed in Chap. 11, MODY type 1 and MODY type 3 are caused by

mutations in genes encoding the hepatic nuclear factor 4 alpha (HNF4α) and the

hepatic nuclear factor 1 alpha (HNF1α), respectively. Both MODY types are

characterised by progressive beta-cell dysfunction (Yamagata et al. 1996a, b),

and unlike MODY 2, they are frequently associated with diabetic complications

(Gloyn and Ellard 2006).
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Fig. 23.1 Proposed model of the glycaemic response to sulfonylureas in beta cells with mutations

in the Kir6.2 subunit of the KATP channels.

(a) Beta-cell regulation of nutrient stimulated insulin secretion under physiologic conditions.

Glucose entering the beta-cell is metabolised and the increased ATP leads to closure of the

KATP channels, which results in depolarisation of the membrane. This keeps the voltage-gated

calcium channels open, allowing calcium influx which stimulates exocytosis of insulin-containing

secretory granules. (b) Since mutations in the Kir6.2 subunit of the KATP channel are less sensitive

to ATP inhibition, KATP channels remain open in the presence of glucose, which keeps the plasma

membrane hyperpolarized. The calcium channels remain closed and insulin cannot be released

from the granules. Also stimuli such as GLP1 are ineffective. (c) Sulfonylureas can bind to SUR1

subunit of the KATP channels, close them and so, depolarize the membrane. Consequently, the

voltage-gated calcium channels open, allowing calcium influx and insulin release [Adapted from

Pearson et al. (2006)]
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Subjects with MODY 3 are extremely sensitive to the glucose-lowering effects

of SUs. Their response to gliclazide is markedly greater than their response to

metformin, and this is even more pronounced than in the patients with T2D

(Pearson et al. 2003). The mechanism for this SU sensitivity is likely to reflect

the underlying beta-cell defect seen in these patients. Patients with HNF1AMODY

have poor insulin secretory response to intravenous glucose but maintain a robust

insulin secretory response to intravenous tolbutamide (a SU) (Pearson et al. 2003).

This is consistent with the HNF1Amodels where loss of HNF1A results in impaired

glucose metabolism but does not alter the KATP channel expression or the post-

KATP channel mechanism mediating insulin release (Wang et al. 2000).

Many patients with HNF1A mutations are often assumed to have type 1 diabetes

(T1D) due to the age at which they present and are treated with insulin from

diagnosis. Once a diagnosis of HNF1A MODY is made, most of these patients

can transition off insulin onto SUs to control their blood glucose even after insulin

treatment lasting several decades (Shepherd et al. 2009). However, patients with a

long duration of diabetes often fail quickly after transition to SUs. Here, the

combination of long-acting insulin with SUs can be an effective therapy (Shepherd

et al. 2009). SU sensitivity is also seen with other ‘SU-like’ drugs such as

nateglinide, with low-dose nateglinide being reported to be more effective than

glibenclamide at limiting acute postprandial glucose rises (Tuomi et al. 2006).

Although randomised clinical studies have not been carried out in patients with

HNF4A mutations, they too appear to be SU sensitive (Pearson et al. 2005).

In summary, identification and characterisation of the various MODY genes

have improved our understanding of the associated clinical outcome and allowed

clinicians to offer specific treatments based on genetic aetiology. Replacing insulin

treatment by oral antidiabetic drugs in patients with HNF1A or HNF4A mutations

leads to an improved quality of life with a stable or even better glycaemic control.

These insights strongly demonstrate the relevance of genetic testing in all potential

patients with monogenic forms of diabetes.

23.3.2 Neonatal Diabetes

Neonatal diabetes is characterised by diabetes onset before 6 months of age, and

these infants usually present with marked hyperglycaemia, insulin deficiency and in

many cases diabetic ketoacidosis. As a result, they are treated with insulin injec-

tions. Multiple studies have reported that activating mutations in the KCNJ11 and

ABCC8 cause neonatal diabetes. As the KATP channel is the site of action of SUs,

this raised the possibility that patients with KATP channel mutations could be treated

with SUs (Fig. 23.1). Early work showed a robust insulin secretory response to

intravenous tolbutamide in 3 patients (who had minimal insulin response to glu-

cose) (Gloyn et al. 2004; Hattersley and Ashcroft 2005; Flanagan et al. 2007).

Subsequently, it has been robustly established that 90 % of patients with neonatal

diabetes due to KATP channel mutations can successfully change from insulin to
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high-dose oral SU therapy, with improved glycaemic control; the blood glucose can

often be normalised (to that of a nondiabetic) without risk of hypoglycaemia

(Pearson et al. 2006). Physiological studies carried out in these patients before

and after transition off insulin onto SUs suggest that the SU treatment is not having

a marked ‘direct effect’ on insulin secretion; rather, it is enabling the beta cell to

respond to the potentiating effect of other stimuli such as the incretin peptides

GLP-1 and GIP, which may explain why these patients can achieve

normoglycaemia without hypoglycaemia (Fig. 23.1). The specific response of

these patients to SUs clearly illustrates the value of genetics in assigning the best

therapeutic strategy based on identification of subgroups of patients that might

benefit from targeted treatment. Considering these therapeutic consequences, it is

strongly recommended to sequence the KCNJ11 and ABCC8 for mutations in all

patients who are diagnosed with diabetes within the first 6 months of life (see www.

diabetesgenes.org). Admittedly, this form of diabetes is extremely rare, and it

cannot be anticipated that this study would result in a dramatic increase of patients

offered genetic screening in T2D. Nevertheless, these key examples from mono-

genic diabetes provide hope that further genetic studies could lead to classification

of subgroups for a specific treatment even in patients with polygenic T2D.

23.3.3 Pharmacodynamic Variation in Polygenic Type
2 Diabetes

As SUs are fairly specific in their site of action—the KATP channel of the pancreatic

beta cell—it seems likely that variation in the beta-cell regulation of nutrient-

stimulated insulin secretion will alter glycaemic response to SUs. Genetic studies

of diabetes risk have implicated many variants in beta-cell genes predicted to alter

mass or function (Ahlqvist et al. 2011). Each of these variants is a potential

candidate for SU response. Unfortunately, there have yet to be any systematic

assessment of these diabetes variants, or indeed a composite genetic risk score,

on SU response. Nevertheless, it is possible that depending on the point at which a

given genetic variant interferes with this pathway, the carriers may respond better

or worse to the action of SUs. If the genetic defect is proximal to the action of SUs

on SUR/Kir6.2, the SUs could make the system work, such that carriers would show

an enhanced response (as in neonatal diabetes); however, if the genetic defect is

distal to the point of entry of SUs or affect beta-cell mass more generally, then

carriers may respond worse (e.g., TCF7L2). Thus, SU perturbations can also help

clarify the site of action of novel genetic variants.
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23.3.3.1 ABCC8/KCNJ11

Functional polymorphisms in genes such as KCNJ11 which control beta-cell

function might result in alterations in response to SU therapy in patients with

T2D. Sesti et al. showed an impairment of glibenclamide-induced insulin secretion

after 24 h exposure to high glucose concentration in islets isolated from carriers of

the E23K variant of KCNJ11 which might at least partially explain the observed

increased risk of secondary failure to SUs in patients with T2D carrying this variant

(Sesti et al. 2006). Although it has to be noted that the study of Sesti et al. describes

rather the failure of the combination of SU and metformin treatment than of SU

itself, Holstein et al. supported its data by showing that patients with T2D who carry

the K variant of the E23K polymorphism in KCNJ11 had reduced response to SU

therapy, which resulted in increased glycated haemoglobin (HbA1c) and conse-

quently in lower risk for severe hypoglycaemia (Holstein et al. 2009). In contrast, a

recent study by Javorsky et al. demonstrated that carriers of the KCNJ11 K-allele

had a better therapeutic response to gliclazide (Javorsky et al. 2012). A significant

greater reduction in HbA1c following gliclazide treatment has also been shown in

Chinese carriers of A-allele of ABCC8 S1369A polymorphism (Zhang et al. 2007;

Feng et al. 2008). This is noteworthy as ABCC8 S1369A is in high linkage

disequilibrium with KCNJ11 E23K, and so, it does support the findings by Javorsky
et al. in Caucasian subjects (Javorsky et al. 2012). It appears that the discrepancies

may at least in part be attributed to different structural and pharmacokinetic

properties of the investigated drugs. Lang et al. investigated the pharmacogenomics

of SUs to determine the structure–activity relationships of SUs in KATP channels

containing either the E23/S1369 nonrisk or K23/A1369 risk haplotypes (Lang

et al. 2012). They demonstrated that KATP channels carrying the K23/A1369

haplotype were more sensitive to gliclazide and mitiglinide inhibition, whereas

channels containing the E23/S1369 haplotype were more sensitive to tolbutamide,

chlorpropamide and glimepiride. This is most likely to be explained by the distinct

drug structure motif (ring-fused pyrrole moiety) in several A-site drugs which may

underlie the observed inhibitory potency of these drugs on KATP channels

containing the K23/A1369 risk haplotype. Data by Lang et al. have potential

clinical application which includes either the selection of drug on the basis of

patient genotype/haplotype or enhancing drug efficacy by a dose escalation for

patients who are less sensitive to specific drugs, although the magnitude of effect

reported to date is too small to be of clinical utility.

23.3.3.2 Transcription Factor 7-Like 2 (TCF7L2)

Although numerous susceptibility loci for T2D have been discovered recently (see

Chap. 2), from a clinical point of view, their effects are rather moderate. Besides

genes such as KCNJ11 (Gloyn et al. 2003) or PPARG (peroxisome proliferator-

activated receptor gamma) (Altshuler et al. 2000), TCF7L2 is one of the few genes
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whose variants seem to have notable effects on the genetic predisposition to T2D

(Grant et al. 2006) (see Chap. 15). The TCF7L2 gene encodes a transcription factor
(Tcf-4) that is involved in the regulation of cellular proliferation and differentiation

(Clatworthy and Subramanian 2001). Variants in TCF7L2 have initially been

shown to be associated with T2D in the population isolate of Iceland (Grant

et al. 2006) and have subsequently been replicated in independent studies in

multiple ethnic populations (Cauchi et al. 2007). The diabetes risk associated

with TCF7L2 variants reaches an allelic odds ratio (OR) near 1.40 which is

impressive for a polygenic disease, but still with limited relevance in a clinical

context. Clinically, it would be desirable to have a possibility to find those yet

nondiabetic individuals who are at higher risk to manifest the disease since they

carry the disease risk genotype.

Although relevant and noteworthy, an odds ratio of 1.40 is relatively negligible

for such a variant, when considering that a body mass index change from 20 to

30 kg/m2 results in a tenfold increase of risk to develop diabetes. Therefore, when it

comes to predicting a disease, clinical information may still be of more value for a

clinician than various genetic models (Lyssenko et al. 2008; Meigs et al. 2008).

Moreover, we have to bear in mind that conclusions of such studies need to be seen

with caution as they are just pieces of a complicated puzzle in the context of

environmental factors, lifestyle habits and other, not yet known risk genotypes.

This complex interaction is particularly evident in the Diabetes Prevention Program

(Florez et al. 2006). Here, it was demonstrated that within an observation period of

3 years, an intensive lifestyle improvement can significantly reduce the diabetes

risk independent of the TCF7L2 risk genotype. Although this does not really help in
the decision to propagate intensive lifestyle change, as it helps in all genotypic

groups, another study by Pearson et al. clearly demonstrated the pharmacogenetic

potential of TCF7L2 (Pearson et al. 2007). In 911 sulfonylurea users of 4469

patients with T2D from the DARTS/MEMO (Diabetes Audit and Research

Tayside/Medicines Monitoring Unit) collaboration database, who were recruited

to GoDARTS between 1997 and 2006, the authors observed that homozygous

carriers of the TCF7L2 risk alleles for rs1225372 and rs7903146 were twice as

likely not to respond to SUs as patients homozygous for the nonrisk alleles. Forty-

two percent of SU users with the risk genotype failed to respond to the therapy

which suggested that variation in TCF7L2 influences therapeutic response to SUs.

In contrast to SUs, no association was observed between metformin response and

either single nucleotide polymorphism (SNP), after adjusting for baseline HbA1c.

This result has subsequently been replicated in small studies (Holstein et al. 2011;

Schroner et al. 2011), but widespread replication is limited. From a mechanistic

point of view, failure to respond to SUs in patients with TCF7L2 diabetes risk

alleles might be partially explained by the role of the TCF7L2 protein in insulin

secretion. It has been shown that a small fraction of the insulin granules is situated

in close proximity of the voltage-gated calcium channels and is immediately

available for release in the presence of TCF7L2 (da Silva Xavier et al. 2009;

Gloyn et al. 2009). In the absence of TCF7L2 however, the calcium channels

may detach from the secretory granules resulting in reduced glucose-stimulated
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insulin secretion (da Silva Xavier et al. 2009; Gloyn et al. 2009) (Fig. 23.2). This

results in reduced glucose-stimulated insulin secretion under physiologic condi-

tions and might consequently lead to altered glycaemic response to SUs. Again, this

illustrates that whether SUs lead to better or worse glycaemic response in risk

genotype carriers depends on the specific site along the insulin secretion pathway at

which the relevant gene product exerts its molecular action, relative to the point of

entry of SUs into this pathway.

23.3.4 Pharmacokinetic Variation in Polygenic Type
2 Diabetes

SUs are mainly metabolised by the cytochrome enzyme CYP2C9, a major factor for

drug clearance and drug response. More than 30 known variant alleles are known for

the CYP2C9 gene. Each named CYP2C9 star (*) allele denotes a genotype at one or
more SNPs. Individuals homozygous for the reference CYP2C9 allele (CYP2C9*1)
have the ‘normal metaboliser’ phenotype, and CYP2C9*2 (rs1799853) and

CYP2C9*3 (rs1057910) are the two most common variants with reduced enzyme

activity among individuals of European ancestry (Lee et al. 2002). Whereas the

CYP2C9*2 polymorphism seems to have moderate effects, the CYP2C9*3 poly-

morphism has been shown to be associated with strong reduction of the enzyme

activity in healthy volunteers. For instance, compared with the CYP2C9*1/*1

genotype, the tolbutamide clearance in subjects with the CYP2C9*2/*2 genotype

was reduced by 25 % and in those with the CYP2C9*3/*3 genotype by 84 %
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Fig. 23.2 Proposed model of changes in glycaemic response to sulfonylureas mediated by

TCF7L2.

(a) A small fraction of the insulin granules is situated in close proximity of the voltage-gated

calcium channels and are immediately available for release in the presence of TCF7L2 [Adapted

from Gloyn et al. (2009)]. (b) In the absence of TCF7L2, the calcium channels may detach from

the secretory granules resulting in reduced glucose-stimulated insulin secretion [Adapted from

Gloyn et al. (2009)]. Consequently, it may lead to altered glycaemic response to SUs
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(Kirchheiner et al. 2002a). Furthermore, pharmacokinetic studies in healthy subjects

demonstrated that the clearance of glibenclamide and glimepiride in CYP2C9*3/*3

carriers was only 20 % of that in the wild-type carriers (Kirchheiner et al. 2002b).

Consistently, even the CYP2C9*2/*3 genotype has been shown to be associated

with significantly lower clearance of glibenclamide and glimepiride in nondiabetic

subjects (Niemi et al. 2002). Wang et al. reported 1.3–2.8-fold increase in the SUs

exposure in volunteers with a CYP2C9*3 allele compared with carriers of the

CYP2C9*1/*1 genotype (Wang et al. 2005; Suzuki et al. 2006). However, a

population-based study by Becker et al. revealed variation in SU response among

patients with different CYP2C9 polymorphisms only for tolbutamide but not for

glibenclamide, gliclazide and glimepiride. Albeit not statistically significant, the

mean decrease in fasting serum glucose levels after initiation of tolbutamide was

larger in CYP2C9*3 allele carriers when compared with patients with the wild-type

genotype (Becker et al. 2008). Also recent data from the GoDARTS Study including

1073 SU-treated patients, 80 % of whom received gliclazide, showed that patients

with two copies of the CYP2C9*2 or CYP2C9*3 loss-of-function alleles were 3.4

times more likely to reach HbA1c levels of <7 % as compared with wild-type

carriers (Zhou et al. 2010). In summary, there is convincing evidence that the

CYP2C9*2/*2, CYP2C9*2/*3 and CYP2C9*3/*3 genotypes impair SU metabo-

lism and so influence the glycaemic response to SUs.

The proposed effects on glycaemic response to SUs would imply that the

CYP2C9 genotypes might affect the risk of hypoglycaemia as well. Although

limited by a small sample size, Holstein et al. reported a significant overrepresen-

tation of the CYP2C9 genotypes *3/*3 and *2/*3 in subjects treated with

glimepiride and glibenclamide who had experienced severe hypoglycaemia (Hol-

stein et al. 2005). Another retrospective study indicated that the CYP2C9*3 allele

might be a determinant for mild hypoglycaemia in patients treated with glimepiride

or gliclazide. However, it is of note that in this study, the definition of

hypoglycaemia did not comply with accepted standards as it included self-reported

unspecific symptoms with partially missing confirmation of a blood glucose con-

centration <65 mg/dl (Ragia et al. 2009).

23.4 Pharmacogenetics of Sulfonylurea-Like Drugs:

Meglitinide Derivatives

Repaglinide, a benzoic acid derivative, and nateglinide, a d-phenylalanine deriva-

tive, are the major meglitinide derivatives. Similarly to SUs, they stimulate insulin

release via ATP-sensitive K+ channels and voltage-sensitive Ca2 +�channels but

through different binding sites on the beta-cell receptor. In contrast to SUs, the

meglitinides are characterised by a rapid onset and shorter duration of action.

Repaglinide and nateglinide are metabolised in the liver (repaglinide to 100 %

and nateglinide to >85 %), whereas they are eliminated via bile (repaglinide to
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~90 %) and via urine (nateglinide to ~80 %). Strong interindividual and interethnic

differences in pharmacokinetics suggest that genetic factors might underlie

meglitinides disposition in humans. In addition to CYP3A4, nateglinide is

metabolised mainly via CYP2C9, whilst repaglinide metabolism involves predom-

inantly CYP2C8 (Scheen 2007). Functional polymorphisms in CYP2C8 and

CYP2C9 drug-metabolising genes have been described to be associated with

meglitinides pharmacokinetics. For instance, repaglinide AUC was 45 % lower in

healthy subjects with the CYP2C8*1/*3 genotype when compared with the wild-

type CYP2C8*1 homozygotes (Niemi et al. 2003). Also nateglinide AUC was

twofold higher in CYP2C9*3 homozygotes compared to wild-type CYP2C9*1

homozygotes (Kirchheiner et al. 2004). In addition to the metabolising enzymes,

genes encoding transporters of meglitinides have to be considered. Indeed, numer-

ous functional variants in SLCO1B1 have been described. The gene encodes the

organic anion-transporting polypeptide 1B1 (OATP1B1) which is the principal

transporter of meglitinides. However, preliminary data indicate that the definitive

role of these SLCO1B1 polymorphisms still warrants further investigations to

clearly validate their pharmacogenetic potential (Pacanowski et al. 2008).

23.5 Conclusions

SUs are a commonly used diabetes drugs. In monogenic diabetes, the SU drug class

provides some of the clearest clinical examples of an individual’s genotype altering
treatment response seen anywhere in the pharmacogenomic literature, with genetic

identification of HNF1A/HNF4A MODY and neonatal diabetes due to KATP chan-

nel mutation having a profound impact on patient care. In polygenic diabetes, like

all other polygenic disease, the clinical translation is proving challenging. Yet SUs

offer considerable potential for pharmacogenomics as the biology of action is

relatively well understood; the beta cell is the predominant site of defect in T2D,

and SUs expose risk of patients to a severe side effect—hypoglycaemia. Given this,

it is disappointing that to date no clinical translation has occurred for SU therapy in

T2D. This mostly reflects the limited sample sizes available for study. For example,

in the population-based resources, metformin is used first line, and the sample sizes

available (e.g., in GoDARTS) are nearly threefold greater than for SUs. However,

unlike metformin, SUs are often used as comparator drugs in clinical trials, where

clear efficacy endpoints and adverse reactions are properly documented. To make

progress in the pharmacogenomics of SUs in T2D, it is clear that there needs to be

greater access to and coordination of clinical trials. A number of initiatives may

enable this: firstly, the greater access to clinical trial data, led by GSK (www.

clinicalstudyrequest.com), although access to this is limited to data rather than

samples; secondly, the increasing collaboration between pharma and academia, as

exemplified in the EU Innovative Medicines Initiative, which in diabetes has a

focus on stratified medicines’ approaches in the consortium IMI-DIRECT (www.

direct-diabetes.org/). These collaborative efforts would not only allow testing the
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effects of candidate genes (preferentially those known to be involved in the

regulation of insulin secretion) on glycaemic response to SUs but also running

GWAS for discovery of novel players in pharmacogenomics of SUs. Even though

GWAS are unlikely to yield large-effect variants, they might suggest novel mech-

anisms of how SUs work in humans. Hopefully, the next few years will see

pharmacogenomics of SUs in T2D mirror the success seen in monogenic diabetes.
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Chapter 24

Causal Inference in Medicine via Mendelian

Randomization

Timothy M. Frayling and Benjamin F. Voight

Abstract The central aim of preventative care is to manage or avoid entirely life-

threatening and costly disease endpoints. Success in this broad goal requires

researchers and clinicians to correctly distinguish between biomarkers that cause
disease from those that are simply correlated with outcome. The randomized

controlled trial is a scientifically valid approach to assess causal relationships, but

is time-consuming and expensive, and success is not a guaranteed endpoint.

Recently, a statistical approach has been translated from the econometrics litera-

ture, a strategy which utilizes genetic information identified from human subjects as

“instruments” to generate an assessment of causality between biomarker and

disease. This methodology, dubbed Mendelian Randomization, is directly analo-

gous to that of the controlled trial, circumventing the issues of confounding and

reverse causation that precludes conventional epidemiological studies from making

causal assessments. Owing to the growing dissection of genetically heritable traits

in the literature, Mendelian Randomization has emerged as a high-value tool for

efficient translation of genetics research to the bedside. In the following chapter, we

present the framework of Mendelian Randomization and motivation for causal

assessment, the analogy of Mendelian Randomization to the randomized controlled

trial, discuss general considerations for study design and assumptions of the

approach, and exemplify case studies from the literature of applications of MR to

type 2 diabetes and other clinical endpoints.
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24.1 Overview and Scope

The central aim of preventative care is to manage at an early stage—or avoid

entirely—life-threatening and costly disease endpoints, like type 2 diabetes (T2D),

coronary heart disease (CHD), or stroke. Precise and early diagnosis of pre-disease

states with subsequent monitoring is a critical first step in this process, achieved

through predictive strategies to identify high-risk patient populations. Once high-

risk groups have been identified, a second step applies an intervention to a modi-

fiable exposure (e.g., diet, exercise, lifestyle, etc.) or by other means (e.g., phar-

macologic) at early stages, to ameliorate or avoid significant morbidity in later

stages.

For success to be achieved, knowledge of the biological, physiological, and

molecular factors that cause disease is required, as well as possession of a suitable,
therapeutically beneficial intervention for the established cause. Thus, two key

questions must be addressed: First, which exposures are causal for—as distinct

from those merely correlated with—a disease state? Second, does an intervention

for that exposure modify disease risk in a beneficial way? Addressing these two

questions are active areas of research, and in human subjects this is achieved

through randomized controlled trials, an expensive and time-consuming experi-

ment to undertake.

Recently, an approach analogous to the study design of the controlled trial but

that utilizes genetic information from human subjects to make causal inference has

received much deserved attention (Katan 1986; Smith and Ebrahim 2003; Sheehan

et al. 2008). Termed Mendelian Randomization (MR), the approach is intrinsically

translational, owing to the increasing abundance of genetic information in large

numbers of individuals; the increasing study of genetically heritable, but modifi-

able, biomarkers prognostic for disease endpoints; and the relative efficiency of the

approach to evaluate causality, compared to a controlled trial. As such, we posit that

MR studies will be an important tactic deployed in an overall strategy to compre-

hensively understand the biology of human disease, one that maximizes the pace in

which new beneficial interventions successfully reach the bedside.

In this chapter, we present the framework of MR first with a discussion of the

limits of epidemiology and motivation for causal assessment, the model underlying

causal inference, and an analogy of MR to the randomized controlled trial (24.2).

Then, we discuss general considerations for study design and assumptions of the

approach (24.3). Finally, we exemplify case studies from the literature of applica-

tions of MR to T2D and other clinical endpoints (24.4). Awareness and under-

standing of the MR design, approach, assumptions, and methodology will be a

useful keystone for translational scientists keen on pursuing interventional studies

in humans in the near future.
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24.2 Causal Inference: Rationale, Models, and Mendelian

Randomization

To achieve the promise of preventive care, one must begin with knowledge of

exposures that are predictive for the disease endpoint in question. These factors are
generally obtained from epidemiological studies, whose primary purpose is to

measure the correlation between an exposure and hazard to disease over time.

These observations are typically made from longitudinal studies of population

cohorts such as the Framingham Heart Study (Splansky et al. 2007) and numerous

studies beyond this are ongoing. Classic prognostic biomarkers obtained from such

studies include (not limited to) blood pressure and cholesterol levels and risk to

coronary heart disease (Kannel et al. 1964), C-reactive protein for CHD (Danesh

et al. 1998), as well as many others. For research primarily interested in predicting

the hazard of disease, any biomarkers, variables, and environmental exposures are

relevant.

24.2.1 Correlation Does Not Imply Causation: Limits
of Epidemiology

The underlying hypothesis tested in prospective cohort studies is that an identified

marker is correlated, or associated, with hazard to a disease endpoint. An inappro-

priate conclusion from a significant correlation—particularly those with prior

biological significance—is that the exposure also causes disease. Unfortunately,

the causation assumption is a common one. Most (if not all) epidemiological

monitoring studies do not provide a hypothesis test of causality, because most

studies lack a formal intervention required for causality to be tested.

But why does one require an intervention to provide determination of causality?

First off, determination of the direction of the associated variables—which is the

cause and which is the effect—may be challenging (Fig. 24.1). In a prospective

cohort study where a risk factor is measured years before disease onset, one might

argue that reverse causation from the disease or disease treatment might be con-

trolled. However, for many diseases, and particularly metabolic diseases, the

disease process may have started many years before the disease is diagnosed,

even as early as age 10 in the case of raised lipid levels (Whincup et al. 2002). In

another example, increasing serum levels of an inflammatory biomarker may

appear to precede a coronary event and, thus, correctly predict such events. But

instead, unfavorable conditions in arterial walls (e.g., coronary plaques or calcifi-

cation) could instead produce such an inflammatory marker, as damage to the

coronary artery progresses over time. Specific inflammatory markers may not

actually be the underlying cause of such events, even though such markers are

substantially prognostic. A classic example of such confusion with an inflammatory

marker is the much-studied association between raised high-sensitivity C-reactive
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protein (hsCRP) and CHD. MR using genetic variants that alter circulating hsCRP

provided robust evidence, in several large studies, that hsCRP is not causal for CHD

(Casas et al. 2006, CCGC et al. 2011).

Second, epidemiological studies may not fully capture—or control for—all

exposures related to the endpoint of interest (Fig. 24.1). This is problematic only

if such exposures are also associated with the marker of study. In this situation, our

inference is confounded by that unmeasured factor. For metabolic diseases like type

2 diabetes, many variables are often correlated with the disease, e.g., body mass

index (BMI). Changes in BMI result in many perturbations in serum biomarkers

and anthropometric traits; but correcting for BMI may not fully account for all of

these additional effects. For example, correcting for BMI does not fully correct for

adiposity and, in particular, visceral adiposity including fatty liver that is associated

with and likely the cause of many adverse metabolic features. Without precise

control of the direction of the prognostic marker, as well as addressing potential

unmeasured factors that may confound, we are limited in our abilities to correctly

interpret the manner in which an exposure impacts an important clinical outcome.

While epidemiology yields a large, baseline collection of biomarkers or expo-

sures that are worth testing, correlational observation does not constitute etiologic
evidence. In some cases, intervention based on epidemiologic evidence alone was

successful. That said, we should temper these examples with the larger number of

cases where causality was strongly refuted after controlled trial (Tatsioni

et al. 2007).

24.2.2 Approach to Causal Inference: The Randomized
Clinical Trial

In order to directly test for causality, any approach needs to address the issues of

reverse causality and confounding as far as possible within feasible design param-

eters. Once established, the general framework in which these factors are

Exposure Disease

Confounding 
Factor

Reverse 
Causation

Fig. 24.1 The challenges in performing causal inference. Imagine one wants to determine if a

specific exposure is causally related to a disease state (black arrow). Epidemiologic studies often

cannot address the issue of reverse causation, where the disease leads to a change in the exposure,
or confounding, where a second factor which is correlated to the exposure is related to the disease
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controlled—and causality evaluated—is the randomized controlled trial (RCT). For

the purpose of exposition, imagine a pharmacologic therapeutic which lowers a

particular biomarker, in which previous epidemiological study has correlated

reproducibly with hazard to a disease endpoint (Fig. 24.2a). Here, we are interested

in testing the hypothesis that lowering the biomarker through drug intervention

reduces hazard to the disease endpoint of study. Patients are collected and random-

ized for the intervention who are disease-free at baseline, with biomarker and

outcomes over time measured and compared between groups—this is the general

design for trials used to determine clinical benefit (Gray et al. 2006). This design

controls for reverse causality, as the intervention occurs before measurement of the

outcome. This design also controls for confounding, with the assumption that the

groups (intervention and placebo) are indistinguishable from one another for

measured (as well as potentially unmeasured) factors.

The barriers to activate this line of experimental inquiry are daunting. First, the

approach relies upon possession a suitable, proven intervention for the biomarker of

interest, and such an intervention might not actually be readily available. For drug

intervention trials, a great deal of time and expense are required for any drug to

enter this stage of testing (i.e., Phase I and II trials). However, even with an

intervention in hand, this trial takes years to deploy and a great deal of cost to

complete, in order to obtain a final result. The low-throughput and increasingly

Subjects

Randomization

Intervention Control

Biomarker 
Lower

Biomarker 
Higher

Event
Rate Lower

Event
Rate Higher

Mendelian 
Randomization

Randomized 
Control Trial

A) B)

Genotype aa Genotype AA

Biomarker 
Lower

Biomarker 
Higher

Event
Rate Lower

Event
Rate Higher

Random allocation 
of Alleles at meiosis

Population

Fig. 24.2 Mendelian randomization is “nature’s clinical trial.” (a) A summarized depiction of a

placebo-based clinical trial to evaluate efficacy of a therapeutic agent. A population is divided at

random into two groups that are disease-free at the start of the study, which are indistinguishable

from each other, except that one group is administered a drug which reduces a biomarker and the

other is given a placebo. The prediction is that dosage of drug lowers the biomarker, which in turn

lowers hazard to the endpoint if the biomarker is causally related to the endpoint. (b) A summa-

rized version of the Mendelian Randomization design. A genetic variant is selected with a strong

impact on the biomarker of interest. As a result of meiosis, a sampled population is “naturally”

divided into two groups: carriers and noncarriers of the gene. These two groups are equivalent to

having experienced reduced or elevated levels of the biomarker—analogous to having received a

“weak drug” since birth. Association between variant and endpoint rejects the null hypothesis that

the biomarker is not causally related to the disease endpoint

24 Causal Inference in Medicine via Mendelian Randomization 503



abundant prognostic biomarkers that await formal causal evaluation now represent

a significant barrier to progress in translational science.

24.2.3 The Case for Mendelian Randomization

MR studies will not replace RCTs, but rather serve as a complement to them.

Beyond the technical feasibility of the MR study design in addressing reverse

causality and nongenetic confounding (Fig. 24.3), application of the MR design

offers other advantages. Perhaps the main advantage is cost and pace of discovery:

multiple phases of RCT take years and millions of dollars to complete, and success

is not guaranteed at the end of the trial (Arrowsmith and Miller 2013). Approaches

that can help prioritize trials most likely to succeed would be of tremendous benefit

in terms of cost saving and development of safe and effective therapeutics. Fur-

thermore, high-throughput technologies developed in the last 10 years have

increased the rate of assay and characterization of human phenotypes and molecular

markers in genetic and epidemiologic studies. Such growth makes RCT on all such

discoveries infeasible; thus, screening tools like MR can help to separate prognostic

from high-priority biomarkers with etiologic support from human subjects, where

the latter are moved into RCT.

MR studies are also uniquely powerful beyond the designs of the RCT. First, MR

has the advantage that it usually tests the effects of lifelong exposure to a subtle

change in a potential risk factor. In contrast, RCTs test the effects of much more

acute, short-term, and stronger interventions. Second, MR also provides a strategy

for scientific advance, whereby in a standard RCT, it might be unethical to provide

such an intervention, for example, evaluating the causal relationship between

LDL-C CHD

Gene B

PCSK9

Gene C

Confounding 
Factor

Fig. 24.3 The Mendelian randomization design in graphical terms. Here, we depict that a gene

(in this case, PCSK9) influences the exposure (LDL-C). As a result, a polymorphism that strongly

influences LDL-C which segregates randomly in the population can be used to test the hypothesis

that LDL-C causally impacts risk to CHD (black arrow). Other variants which may associate with

confounding factors, which impact the endpoint beyond LDL-C, violate the assumptions of MR

and are not considered for analysis (gray arrows). Individually weak variants may be used in a

combined score, if assumptions for each variant are met
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developmental stunting and infection to strains of Plasmodium known to cause life-

threatening malaria (one is ethically obligated to treat the infection!).

Owing to the efficiency of design, availability of data, and utility as a screening

tool, MR is a powerful experimental approach, one which can help to clarify cases

where an RCT has not been successful or to motivate new RCTs where evidence is

altogether unclear.

24.2.4 The Analogy of MR to Randomized Clinical Trial

Despite their differences, the RCT is a useful analogy for the Mendelian Random-

ization design (Fig. 24.2b). Intuitively, MR is “nature’s randomized trial”

(Thanassoulis and O’Donnell 2009) whereby individuals in the population have

been randomly assigned into carrier and noncarrier genotype groups, at meiosis.

Ideally, these two groups are indistinguishable from one another, except for geno-

type at the given locus of interest. The genetic variant that is used to stratify groups

is carefully selected, such that carriage of a specific allele modifies the level of the

trait exposure one wants to test a causal role for to the endpoint. For example,

carriage of loss-of-function alleles at the proprotein convertase subtilisin/kexin type

9 (PCSK9) gene results in lower LDL cholesterol (LDL-C) compared to noncar-

riers, and these two genotype groups are otherwise indistinguishable from one

another. Thus, a loss-of-function genotype would facilitate a formal test of the

hypothesis that LDL-C is causality related to CHD or stroke (Fig. 24.3) and would

make the prediction that carriage of PCSK9 loss-of-function would protect against

hazard to these endpoints, via LDL-C lowering (Cohen et al. 2006). Intuitively, one

can conceptualize allele carriage (dosage) as analogous to the intervention in a

typical RCT, as a weak drug perturbation administered over a lifetime. And because

genotypes are almost always going to be independent of nongenetic confounding

and are unmodified by disease processes, reverse causality is controlled for

appropriately.

24.3 Considerations and Approaches for Mendelian

Randomization

Given the increasing abundance of genetic information available today and the

power of the approach, it is perhaps unsurprising that the number of MR publica-

tions has skyrocketed, with over 550 citations after 2006, compared to <30 before

hand. MR studies can be initiated in many ways, varying in their approach to study

design and selection of genetic variants, which may come with additional required

assumptions. We turn our attention next to these details.
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24.3.1 Study Design Considerations for Mendelian
Randomization

A primary study design for MR can be initiated in a large prospective cohort, where

each variable of interest is measured directly in all participants. These measures

include the monitored endpoint, the intermediate trait or biomarker, genetic vari-

ables which influence the tested intermediate trait, and any additional confounding

variables (Fig. 24.3). This design has the advantage of the availability of individ-

ualized genotypes and phenotypes and, thus, allows the most direct control over the

analysis and interpretation. The main limitation of this design is low statistical

power owing to small sample sizes. The probability of obtaining a meaningfully

interpretable result is proportional to the number of participants surveyed, partic-

ularly the number who have suffered an endpoint. Prospective cohort studies

monitor thousands of individuals, of which only hundreds of whom progress to a

disease condition. One important question to determine is if observed correlation

between trait and endpoint—estimated from epidemiologic studies—is the same as

a causal estimate through a genetic instrument. While it is plausible to combine

evidence across multiple studies through meta-analysis, the numbers of disease

endpoints may still not be sufficient to generate a conclusive result for even this

straightforward comparison.

To overcome this limitation, a class of MR statistical approaches have been

developed that take advantage of “summary-level” association data. Summary-

level data are distinct from individual-level genotype or phenotype data, in that

the estimates of effects between SNP and traits that are used for the MR study are

pooled across a large number of individuals (often hundreds of thousands), though

no individual relationships are identifiable from such data. Summary level data are

available for a large number of traits and disease endpoints, with traits that may

potentially confound. This "two-stage" approach generates a substantial boost in

statistical power to estimate causal relationships, but at the costs of some control

over the testing procedure. Importantly, the statistical test for causality is valid for

this data type (Burgess and Thompson 2013), though the standard assumptions still

must be met.

24.3.2 Development of Genetic Instruments for Mendelian
Randomization

The most easily interpretable MR analyses begin with a single genetic instrument,

one with a profound impact on the intermediate trait of interest. Often, these are

coding mutations that result in partial or complete loss of function, i.e., see

examples described below in PCSK9 or LIPG for LDL and HDL cholesterol,

respectively (Cohen et al. 2006; Voight et al. 2012). While it is advantageous to

select instruments where the mechanism between genotype and phenotype has been
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established, this is not strictly required for MR to provide a meaningful result.

Individual genetic instruments that stratify populations into two groups (carriers

vs. noncarriers) allow for a straightforward evaluation of effects, particularly

confounding associations, and fit readily into the controlled trial analogy.

Unfortunately, individual genetic instruments that have a strong impact on the

intermediate trait are the exception, rather than the rule. Often, genetic variants with

a strong trait effect tend to be rare in the population. Catalogs of low-frequency

human genetic variation, also tending toward rare, have only been made available

recently (1000 Genomes Project Consortium et al. 2012), and much work remains

to relate this spectrum of variation to human phenotypes. That said, even if rare

variants and their association to disease were known, owing to their frequency, the

statistical power to make causal inference would still be challenging; one might still

need to combine evidence across multiple variants into a single statistical test to

make appropriate inference.

It should also be noted that an individual, specific genetic instrument tests only a

single mechanism and trait/disease pathway. In some cases, this might be precisely

what one requires. In other cases, a stronger argument can be made through

examination of multiple gene targets and mechanisms of action (Voight

et al. 2012). Consequently, to address both of these concerns, statistical approaches

that aggregate multiple genetic instruments into a single assessment of causality

have been developed (Johnson 2012; Burgess and Thompson 2013), resulting in a

valid assessment if certain assumptions are satisfied. While this approach is typi-

cally based on summary-level data, it can also be applied in the individual-level

data types, via a genetic risk score, a variable that linearly combines allele dosage

with effect over a collection of genetic variants (Voight et al. 2012; Johnson 2012).

24.3.3 Assumptions Underlying Mendelian Randomization

For all MR study designs, there are three primary assumptions that must be held in

order for the test to be valid (Smith and Ebrahim 2003; Hernán and Robins 2006;

Sheehan et al. 2008):

1. Confounding. The genetic instrument is not related to another, causal variable

which has a measurable effect on the endpoint (confounder). A confounding

variable could be another trait or other factor that associated with the trait, SNP,

and/or endpoint measurements. This is often referred to as pleiotropy in the

genetics literature—meaning a genetic variant influences two or more indepen-

dent traits.

2. Potency. The genetic instrument selected must have a strong and reliable impact

on the intermediate trait tested.

3. Exclusivity. The effect on the endpoint must occur through the intermediate trait

of interest, with no additional impact outside the two variables measured. Put
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another way, the genetic instrument selected should not have a direct effect on
the endpoint above and beyond the effect through the intermediate trait.

In typical designs, genetic instruments are selected to have a strong reproducible

effect on the trait of interest. Confounding is typically addressed by measuring

additional associations with variables that may potentially confound. For example,

if using a genetic instrument to test the causal relationship between raised tri-

glycerides and coronary artery disease, we would want to know that the genetic

variant is not also associated with raised blood pressure or increased BMI. In

addition, instruments must also not be subject to genetic confounding, from unac-

counted for differences in allele frequency due to population ancestry. Those

instruments that have no obvious or reproducible association with confounders

are subsequently advanced into further MR analysis (Fig. 24.3).

Variants identified by genetic studies of common variation are individually

weak, which may raise a concern if the potency assumption is upheld. To address

this concern, multiple genetic instruments are often combined together to perform a

specific test. If multiple instruments are utilized, there are additional required

assumptions (Johnson 2012):

1. Uncorrelated. Each variant included in the genetic score should be mutually

uncorrelated, i.e., should not be in strong linkage disequilibrium with one

another (inherited on the same ancestral chromosomal segment).

2. Equanimity. Individual variants included should not contribute excessively rel-

ative to other included SNPs.

3. Additivity. For some tests, the dosage of alleles at each variant should influence

the intermediate trait in an additive manner.

While this approach can address the potency assumption, using multiple variants

still requires care to construct valid tests. The use of multiple variants increases the

likelihood of pleiotropy confounding the results—that the accumulated genetic

instrument will be related to additional traits. Furthermore, situations could arise

where individual variants analyzed separately are more powerful or useful than

collecting multiple instruments and evaluating collectively. Overall, the challenges

and benefits of using multiple instruments have not been fully described, though

research along these lines continues actively.

24.4 Highlighted Applications of Mendelian

Randomization

With a broad overview of the approach and its underlying assumptions, we now

turn to specific examples of MR studies from the literature, describing the question,

approach, inferences made, and residual challenges. While here, our focus is on

cardiovascular and T2D phenotypes, we point curious readers to additional
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examples of MR studies outside of these traits which exemplify the approach (Chen

et al. 2008; Pfister et al. 2011).

24.4.1 Serum Plasma Cholesterol Levels and Heart Disease

Epidemiological studies have demonstrated reproducible association with serum

levels of cholesterol and risk of CHD (Kannel et al. 1964). Specifically, elevation of

LDL-C is associated with increased risk to CHD, while elevation of serum high-

density lipoprotein cholesterol (HDL-C) is associated with protection against

atherosclerosis. With the accumulated body of knowledge of genetic factors related

to LDL-C and HDL-C (Teslovich et al. 2010), the stage was set to apply the

framework of MR to both of these traits. For LDL-C, in one MR study of nine

polymorphisms strongly associated with LDL-C levels (Ference et al. 2012), they

reported a causal 54.5 % estimated risk reduction to CHD for each mmol/l lower

LDL-C, consistent with another MR study (Voight et al. 2012). Collectively, these

results are consistent with randomized controlled trials for LDL-C lowering ther-

apies, which have been successful at reducing cardiovascular events (Baigent

et al. 2005).

In contrast, evidence for a causal role for HDL-C is quite uncertain. Controlled

trials for drug interventions (e.g., torcetrapib, dalcetrapib, niacin, and others) that

raise plasma HDL-C over a range of mechanisms have not met with success in

lowering rates of myocardial infarction (MI). To address the hypothesis that

HDL-C is causally related to MI, one study applied a two-pronged MR approach

(Voight et al. 2012). First, the authors took advantage of a low-frequency coding

mutation in endothelial lipase, LIPG N396S, strongly associated with higher

HDL-C (0.14 mmol/L), but not associated with other MI-related confounding

factors. Association analysis in prospective cohorts, combined with data from

case/control studies of MI, found no association (P¼ 0.85). Second, the authors

collected a set of 14 genetic variants associated exclusively with HDL-C and

performed a combined variant MR analysis. In contrast to LDL-C, the HDL-C

instrument was not causally associated with risk to MI (P¼ 0.63). A conservative

conclusion from this data is that some genetic mechanisms that elevate plasma

HDL-C do not seem to confer protection against MI. These observations challenge

the simple hypothesis that HDL-C elevation—by any means—will systematically

lower risk to MI.

24.4.2 The Controversy of hsCRP

Subclinical inflammation is associated with many metabolic diseases and higher

levels of adverse metabolic traits including raised cholesterol, fatty liver markers,

and insulin resistance (Brunner et al. 2008). Furthermore, animal studies provide

evidence that some inflammatory markers may causally influence obesity
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(Bachmaier et al. 1999). Studies in humans have identified a number of genetic

variants associated with several markers for inflammation, including interleukin

6 signaling, C-reactive protein, soluble intercellular adhesion molecule-1, and

P-selectin (Raman et al. 2013). One recent MR study has provided evidence that

the interleukin 6 signaling pathway is causally linked to heart disease (IL6R MR

Consortium et al. 2012). These observations strongly motivate translation work in

humans, that is, do markers of inflammation, particularly hsCRP levels, cause
metabolic disease or adverse metabolic conditions?

Mendelian Randomization studies have now provided a very strong case that

increased levels of subclinical (non-acute phase) C-reactive protein do not causally

increase the risk of heart disease (Casas et al. 2006, CCGC et al. 2011). Known to

be a marker of heart disease and other traits, considerable research efforts have been

made to understand its role as both a biomarker and causal factor. Fortunately, the

presence of common genetic variants that alter circulating CRP levels, in the gene

that encodes the C-reactive protein, provided an exquisite, early example of the

power of the MR approach (Timpson et al. 2005). Additional MR studies have

examined the role of hsCRP in a range of metabolic diseases. These variants are not

associated with any metabolic traits, and the instrumental variable analyses using

them provide no evidence of a causal relationship between higher hsCRP and

metabolic disease and traits (Brunner et al. 2008).

24.4.3 Serum Urate, Heart Disease, and Type 2 Diabetes

An end product of purine metabolism is uric acid, which circulates in blood serum

as the anion urate. Patients with gout have shown elevated levels of serum urate,

and consistent with a causal role in gout, randomized clinical trials with urate

lowering therapies have demonstrated these drugs as effective therapeutics (Tayar

et al. 2012). Epidemiologic studies have also correlated serum urate levels with a

number of cardiometabolic traits, including blood pressure, lipids, as well as

endpoint disease (Hozawa et al. 2006; Holme et al. 2009; Kim et al. 2010). A

number of genetic variants that result in population level variation in serum urate

levels have been identified (K€ottgen et al. 2013). Predictably, these variants are also
risk factors for gout. With such genetic factors in hand, several studies have looked

for association at markers related to serum urate levels with heart disease (Stark

et al. 2009; Yang et al. 2010). Altogether, these studies indicate no causal relation-

ship. A particularly strong variant (rs12398742) at the SLC2A9 locus is associated

with a profound change in serum urate levels (0.37 mg/dl). However, this variant is

not associated with T2D (odds ratio (OR)¼ 0.99, P¼ 0.52). This contrasts to the

effect expected from epidemiology (expected OR¼ 1.06, given a 0.37 mg/dl

change in serum urate), which have demonstrated a positive correlation between

urate levels and T2D (Kodama et al. 2009). These data strongly de-emphasize the

need for a randomized clinical trial for urate versus CHD and T2D endpoints. But

additional work to evaluate other endpoints—including kidney disease, stroke, or
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heart failure, with MR analyses that utilize multiple genetic variants for urate

levels—is certainly possible and source of active investigation.

24.4.4 Adiponectin and Insulin Resistance

MR studies have recently provided much needed insight into the relationship

between insulin resistance and adiponectin. Adiponectin is a large, multimeric,

circulating protein produced and secreted exclusively from adipose tissue (Stefan

and Stumvoll 2002). Adiponectin is strongly and inversely correlated with insulin

resistance (Stefan and Stumvoll 2002). Studies in mice, including the adipose

tissue-specific knockout of the adiponectin receptors, has led many to suggest

adiponectin is an important mediator of insulin resistance (Okada-Iwabu

et al. 2013). In human subjects, however, the evidence is less clear cut. For

example, individuals with severe mutations that cause a primary disorder of insulin

resistance have reduced adiponectin levels, providing evidence that altered

adiponectin levels are a consequence, not cause of insulin resistance (Semple

et al. 2008). Several studies have identified common genetic variants within the

gene that encodes adiponectin (ADIPOQ) as associated with circulating levels. A

combination of four variants at this locus explain approximately 4 % of the

population variance in adiponectin levels, more than sufficient to meet the potency
assumption required for MR studies (Yaghootkar et al. 2013). Furthermore, because

these variants are situated in and around the gene that encodes the protein of

interest, the chances that they have pleiotropic effects on other phenotypes—

which are not a consequence of altered adiponectin levels—are greatly reduced

compared to variants elsewhere in the genome. Consequently, these genetic vari-

ants provide a great tool to evaluate the causal consequences of altered adiponectin

levels on important clinical endpoints and are excellent proof of principle examples

of MR. A recent MR study (Yaghootkar et al. 2013) of more than 29,000 individ-

uals with both adiponectin and fasting insulin measurements found no causal

evidence between lower adiponectin and higher insulin resistance (P¼ 0.60), or

with T2D (P¼ 0.77). While studies of proportionally fewer samples have sugges-

tive evidence to the contrary (Gao et al. 2013), the overall current weight of

evidence appears to be that in humans, altered adiponectin levels are more likely

to be a consequence rather than cause of insulin resistance in the general

population.
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24.4.5 Circulating Sex Hormone-Binding Globulin and Type
2 Diabetes

Common genetic variants in the gene that encodes an important carrier protein—

sex hormone-binding globulin (SHBG)—provide another example of an excellent

instrument for measuring the causal effects of the SHBG protein. SHBG binds to

and transports testosterone and, to a lesser extent, estrogen, around the circulation

to its target tissues (Petra 1991). Produced by the liver, it is inversely correlated

with insulin resistance (Ding et al. 2006), and as with adiponectin, higher levels are

associated with a healthy metabolic profile and with lower risk of T2D. In contrast

to adiponectin, most people had assumed that lower SHBG levels were merely a

consequence of insulin resistance and T2D, not a cause. However, two independent

studies have recently shown that common variants in the SHBG gene are associated

with T2D (Ding et al. 2009; Perry et al. 2010). MR effect estimates (OR per SHBG

raising allele: 0.94, 95 % confidence interval (CI): 0.91–0.97) are consistent to the

extent expected given the association between the gene variants and circulating

SHBG and the phenotypic association between SHBG and T2D as observed from

epidemiologic studies (expected OR 0.92, 95 % CI: 0.88–0.96) (Perry et al. 2010).

While further studies are needed to establish the mechanism behind this association,

MR studies have changed conventional thinking about the role of SHBG in

diabetes.

24.4.6 FTO: A Good Instrument for Evaluating Adiposity
to Related Traits and Endpoints?

In 2007, several groups described the first reproducible association between a

common genetic variant and normal variation in BMI. An allele in an intron of

the “fatso” gene, FTO, was associated with a 0.5 kg/m2 increase in BMI. Carriers of

two copies of the BMI-increasing allele (approximately 16 % of Europeans) were

1 kg/m2 larger than individuals who carried zero copies of this allele. This finding

potentially offered a superb opportunity for Mendelian Randomization studies.

Epidemiologic data has shown that variation in BMI is correlated with multiple

metabolic traits and disease endpoints, including susceptibility to T2D, CHD, some

cancers, hypertension, raised circulating inflammatory markers, lower adiponectin,

and SHBG. The difficulty in dissecting cause and effect in obesity is further

illustrated by the fact that more than half of all human genes are differentially

expressed in the adipose tissue of larger individuals compared to smaller individ-

uals, presumably, mostly as a consequence rather than cause of obesity (Emilsson

et al. 2008). Furthermore, many of these measures are correlated with each other

independently of BMI. Multiple, phenotypic correlations between many (and

potentially confounding) traits make understanding the causal factors that link

obesity to increased risk of disease difficult, at best. A genetic variant that
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effectively randomizes people to higher or lower BMI could be extremely useful for

disentangling some of these relationships.

To this end, several studies have performed MR experiments using FTO as an

instrument for altered BMI (Fall et al. 2013; Holmes et al. 2014). These studies

have suggested that higher BMI is causally related to susceptibility to T2D, heart

failure, and several circulating biomarkers of public health importance including

lower vitamin D levels (Vimaleswaran et al. 2013). However, some scientists have

raised concerns that we must be cautious when using FTO as an instrument for

BMI. First of all BMI is used as a surrogate of adiposity, but more importantly, little

is known about how FTO alters BMI—we are still uncertain as to whether or not the

genetic variant targets FTO itself or a nearby gene, and even if FTO is the target, we

do not know exactly how it alters BMI. These are legitimate concerns, but several

lines of evidence suggest that the variant in FTO can help improve our knowledge

of causal relationships between adiposity and other traits. First, DEXA scans in

children show that it is specifically associated with an alteration in fat mass, not

increased skeletal or muscle mass (Frayling et al. 2007). Second, most studies show

that the associations between the FTO variant and related traits are entirely consis-

tent with that expected given the association between the FTO variant and BMI and

the association between BMI and the “outcome” related trait. For example, FTO
variants are associated with raised triglycerides and insulin levels (a marker of

insulin resistance) to a greater extent than blood pressure and cholesterol levels—in

keeping with the stronger phenotypic associations between BMI and triglycerides

and insulin compared to BMI and blood pressure and cholesterol (Freathy

et al. 2008).

24.4.7 Triglycerides and Fasting Insulin, Glucose, or Type
2 Diabetes

Elevated circulating triglyceride levels are strongly correlated with a poor meta-

bolic state, including insulin resistance, higher levels of fasting glucose, and overt

type 2 diabetes. Observational data suggest that elevated circulating triglycerides

could be causal for this state, for example, through accumulation in adipose or liver

resulting in lipotoxicity or impairment of hepatic insulin signaling resulting in

insulin resistance (Trauner et al. 2010). Because genome-wide studies had accu-

mulated associations with plasma triglycerides along with lipid levels, a Mendelian

Randomization study was once again possible. De Silva et al. (2011) identified ten

genetic variants strongly associated with triglyceride levels (P< 2 � 10�72) and,

when aggregated in a score, resulted in a 0.59 SD change in triglyceride levels

(upper vs. lower quintile). But in contrast to observational epidemiology (the

Go-DARTS study), where a 1-SD increase in log10-triglyceride level was associ-

ated with elevated fasting glucose levels, HOMA-B, fasting insulin, HOMA-IR,

and type 2 diabetes, the genetic risk score was not associated with any of these
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outcomes in diabetic or in control populations. Furthermore, the score was also not

associated with frank type 2 diabetes (De Silva et al. 2011). While additional

clarifying work is required, particularly to consider confounding in the context of

this analysis, this raises significant questions about the expected efficacy of triglyc-

eride control in prediabetic populations as a strategy to control or prevent type

2 diabetes onset.

24.5 Closing Summary

The simple idea underlying Mendelian Randomization is that a genetic variant,

strongly related to a biomarker of interest, by the transitive property facilitates an

appropriate framework to test the hypothesis that the given biomarker is causal for
the endpoint of interest. Instrumental variable analysis—a procedure utilized in

great detail in the field of econometrics—provides the precise framework by which

this test can be formally implemented. Today, the wide abundance of human

genetics data across a great range of phenotypes provides a unique opportunity to

test a range of hypotheses that, until today, could not have been evaluated rigor-

ously by the clinical research community, owing to the prohibitive and time-

consuming costs of randomized controlled trials. For example, a potential applica-

tion of great relevance to the T2D and CHD field, as yet untested, is whether

hyperglycemia is pathogenic for T2D, given the controversy of conflicting RCTs in

T1D and T2D.

Excitingly, genetic information across human subjects—hundreds of thousands

of individuals—is accruing at a rapid pace. This growth is following in step with

separate advances in sequencing technologies, which is enabling the characteriza-

tion of less-common genetic variation and association studies with human disease.

This next-generation of data sets will facilitate the application of a great deal of

useful and important MR studies to understand—and develop targeted therapies

for—disease endpoints. While the initial model and framework for MR is a solid

advance for the field, a great deal of methodological work still remains to improve

the approach to widen applicability, to take advantage of these upcoming data sets.

That said, MR studies have been, and will continue to be, an essential tool in the

arsenal of translational studies in human disease.
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Rudan I, Bouatia-Naji N, Metspalu A, Loos RJ, van Duijn CM, Borecki IB, Ferrucci L,

Gambaro G, Deary IJ, Wolffenbuttel BH, Chambers JC, März W, Pramstaller PP, Snieder H,

Gyllensten U, Wright AF, Navis G, Watkins H, Witteman JC, Sanna S, Schipf S, Dunlop MG,

T€onjes A, Ripatti S, Soranzo N, Toniolo D, Chasman DI, Raitakari O, Kao WH, Ciullo M, Fox

CS, Caulfield M, Bochud M, Gieger C (2013) Genome-wide association analyses identify

18 new loci associated with serum urate concentrations. Nat Genet 45(2):145–154

24 Causal Inference in Medicine via Mendelian Randomization 517



Okada-Iwabu M, Yamauchi T, Iwabu M, Honma T, Hamagami K, Matsuda K, Yamaguchi M,

Tanabe H, Kimura-Someya T, Shirouzu M, Ogata H, Tokuyama K, Ueki K, Nagano T,

Tanaka A, Yokoyama S, Kadowaki T (2013) A small-molecule AdipoR agonist for type

2 diabetes and short life in obesity. Nature 503(7477):493–499

Perry JR, Weedon MN, Langenberg C, Jackson AU, Lyssenko V, Sparsø T, Thorleifsson G,

Grallert H, Ferrucci L, Maggio M, Paolisso G, Walker M, Palmer CN, Payne F, Young E,

Herder C, Narisu N, Morken MA, Bonnycastle LL, Owen KR, Shields B, Knight B, Bennett A,

Groves CJ, Ruokonen A, Jarvelin MR, Pearson E, Pascoe L, Ferrannini E, Bornstein SR,

Stringham HM, Scott LJ, Kuusisto J, Nilsson P, Neptin M, Gjesing AP, Pisinger C,

Lauritzen T, Sandbaek A, Sampson M, MAGIC, Zeggini E, Lindgren CM,

Steinthorsdottir V, Thorsteinsdottir U, Hansen T, Schwarz P, Illig T, Laakso M,

Stefansson K, Morris AD, Groop L, Pedersen O, Boehnke M, Barroso I, Wareham NJ,

Hattersley AT, McCarthy MI, Frayling TM (2010) Genetic evidence that raised sex hormone

binding globulin (SHBG) levels reduce the risk of type 2 diabetes. Hum Mol Genet 19

(3):535–544

Petra PH (1991) The plasma sex steroid binding protein (SBP or SHBG). A critical review of

recent developments on the structure, molecular biology and function. J Steroid Biochem Mol

Biol 40(4–6):735–753

Pfister R, Sharp S, Luben R, Welsh P, Barroso I, Salomaa V, Meirhaeghe A, Khaw KT, Sattar N,

Langenberg C, Wareham NJ (2011) Mendelian randomization study of B-type natriuretic

peptide and type 2 diabetes: evidence of causal association from population studies. PLoS

Med 8(10), e1001112

Raman K, Chong M, Akhtar-Danesh GG, D’Mello M, Hasso R, Ross S, Xu F, Paré G (2013)
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Chapter 25

Diabetes Prevention

Marie-France Hivert and William C. Knowler

Abstract Type 2 diabetes (T2D) can be prevented or delayed in individuals at high

risk by adoption of healthful lifestyle and moderate weight loss or via medication—

the most commonly used drug being metformin. This chapter focuses primarily on

genetics in the context of lifestyle interventions to prevent T2D. We cover the main

findings about the impact of risk variants at candidate genes and known T2D loci

(derived from genome-wide association studies) on response to the lifestyle inter-

ventions and the few studies that have addressed genetic counseling for risk of T2D

on motivation and behavior changes. We also summarize the limited data available

on pharmacogenetics of metformin and acarbose in the diabetes prevention trials

that included genetics investigations. For a fuller treatment of the pharmacogenetics

of metformin, the reader is referred to Chap. 24.

25.1 Lifestyle Interventions for Diabetes Prevention:

Evidence from Trials

Behavioral interventions to support healthful lifestyle and moderate weight loss

have shown great success in preventing T2D in high-risk populations. These

interventions have worked consistently in different racial/ethnic groups in several

randomized controlled trials (Knowler et al. 2002; Lindstrom et al. 2003; Pan

et al. 1997; Ramachandran et al. 2006; Saito et al. 2011). Good reviews on the

subject have been published (Crandall et al. 2008; Yoon et al. 2013), and the

relationship of genetic susceptibility to diabetes prevention has been reviewed
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(Hivert et al. 2014). We summarize here the main results of the original trials while

emphasizing genetics findings with implications for prevention.

The Diabetes Prevention Program (DPP) recruited 3234 overweight or obese

adults with elevated fasting glucose and glucose intolerance representing five com-

mon self-identified racial/ethnic groups in the US (White, African American, His-

panic, American Indian, Asian) and randomly assigned them to participate in an

intensive lifestyle intervention (ILI) or to receive metformin or placebo (Knowler

et al. 2002). The ILI aimed to achieve and maintain a weight loss of at least 7 % by

dietary modification and increasing physical activity. Case managers provided behav-

ioral support on a one-to-one basis during 16 sessions over the first 24weeks, followed

by monthly encounters to reinforce maintenance of healthful lifestyle. After a mean

follow-up of 2.8 years, individuals in the ILI group had lost 5.6 kg compared with

0.1 kg in the placebo group and 2.1 kg in themetformin group (P< 0.001). Theweight

loss and adoption of healthful lifestyle in the ILI group led to a reduction of 58% [95%

confidence interval¼ 48–66 %] in diabetes incidence compared with the placebo

group. The effect was consistent across subgroups stratified either by age, sex, race/

ethnicity, or baseline BMI or fasting glucose. During long-term follow-up of DPP

participants, the risk reduction related to the initial ILI was still present, but dimin-

ished, 10 years after randomization, despite the fact that the lifestyle intervention was

offered to all participants after the end of the active phase of the trial (Diabetes

Prevention Program Research Group et al. 2009).

The Finnish Diabetes Prevention Study (DPS) reported strikingly similar find-

ings (Lindstrom et al. 2003). The lifestyle intervention aimed to achieve and

maintain 5 % weight loss through dietary modification and physical activity.

After 2 years, individuals assigned to the lifestyle intervention lost 3.5� 5.5 kg

compared with 0.8� 4.4 kg in the control group (P< 0.001) leading to a 58 %

reduction in diabetes incidence at 4-year follow-up. In other populations, similar

lifestyle interventions convincingly reduced diabetes incidence, albeit with slightly

lower effect sizes. In the Da Qing, China, study, persons with IGT were assigned by

clinic to one of four interventions: diet alone, exercise alone, or diet + exercise

intervention, compared with only follow-up for diabetes (Pan et al. 1997). The

diabetes hazard rates were reduced by 31–46 % by the three interventions. In India,

a lifestyle intervention based on the DPP experience led to a 38 % risk reduction

over 3 years in glucose-intolerant individuals (Ramachandran et al. 2006). In Japan,

a frequent-contact intervention compared with low-frequency contact intervention

to support healthful lifestyle reduced diabetes incidence rate by 44 % over 3 years

in overweight individuals with impaired fasting glucose at baseline (Saito

et al. 2011). Following publications of these controlled trials, many programs

have implemented similar approaches in communities that seem to be effective

(Ali et al. 2012). Lacking randomized comparison groups, however, the effects of

these programs are hard to evaluate (Knowler and Ackermann 2013).

Overall, today there is no doubt that intensive intervention supporting lifestyle

modifications such as reduction of caloric intake and increase in physical activity

leading to modest weight loss is the most effective way to prevent diabetes in

individuals at high risk, and this seems to be consistent across many factors
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including ethnic origin and country of residence. Nevertheless, there is a wide

variation in response to the intervention, either defined as the amount of weight loss

or the risk of developing diabetes according to weight loss. For example, in the

DPP, participants who responded “highly” (top quartile of weight loss) to the

intervention lost a mean of 10 kg at 1 year, while the participants who were

“low” responders (bottom quartile) showed a weight loss of about 2.6 kg over the

first year and about 10 % participants even gained weight. The different responses

to the intervention might be partly explained by genetic differences.

Moreover, despite the large benefit and cost-effectiveness of diabetes preven-

tion, intensive lifestyle interventions are not offered in most health-care settings

because of lack of resources (dietician, kinesiologist, behavioral counselor). One

hope of the “personalized medicine era” in the field of T2D is to identify patients

that are more likely to response to or to benefit from intensive lifestyle intervention.

25.2 Lifestyle Intervention and Genetic Risk

The effect of lifestyle intervention according to genetic risk has been investigated first

looking at candidate T2D genes and known T2D-associated loci (based on GWAS

results) and then usingmany known loci to capture an aggregated genetic risk for T2D.

25.2.1 TCF7L2 (See Table 25.1)

Variants at the TCF7L2 gene have been most often replicated and have one the

largest effect sizes for increasing the risk of T2D in European populations

(OR� 1.4 per risk allele, most often reported being the T allele at rs7903146; see

Chap. 15). Many lifestyle intervention studies have, therefore, investigated the

impact of risk variants at TCF7L2 on the effect of interventions in individuals at

high risk of T2D (summarized in Table 25.1).

In the DPP, individuals carrying two copies of the T risk allele at rs7903146 had

a higher risk of developing T2D in the placebo group (HR¼ 1.81; P¼ 0.004), as

expected from the observational studies (Florez et al. 2006). In contrast, the risk

allele was not associated with progression to T2D in the ILI arm (HR¼ 1.15;

P¼ 0.60) suggesting that the lifestyle intervention overcame the excess risk con-

ferred by the genetic variant (T risk allele). Similar results were found in the Finnish

DPS (Wang et al. 2007). Together, these two studies strongly suggest that the

intensive lifestyle intervention trumped the genetic progression toward T2D attrib-

utable to the risk allele at TCF7L2.
Another diabetes prevention randomized clinical trial tested a 1-year lifestyle

intervention in individuals with metabolic syndrome at baseline (Bo et al. 2009).

The 1-year intervention had a significant effect on weight and glycemic indices at

1 year, but the impact was not maintained at the 4-year follow-up (3 years after the
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intervention ended). The T risk allele at rs7903146 was nominally associated with

T2D incidence at 4 years (P¼ 0.05) but there was no overall effect of the inter-

vention and no interaction between the intervention and presence of the T risk

allele. The lack of main effect of the intervention at 4 years was suggested to be due

to the short duration of the intervention (1 year), making it difficult to compare

these findings with DPP and Finnish DPS.

In the Tübingen Lifestyle Intervention Program (TULIP), TCF7L2 risk allele

(T) carriers had less reduction in BMI over the course of the 9-month lifestyle

intervention compared with the non-carriers (Haupt et al. 2010). These results are

difficult to compare to the findings from DPP and DPS since the TULIP study had a

single-arm design (pre/post-intervention), included “at-risk” individuals with and

without IGT (60 % with NGT), and investigated intervention over a shorter period

than DPS or DPP trials. Interestingly, in a subsequent investigation of the TULIP

participants those with IGT at baseline who carried the T risk allele at rs7903146

had a significant increase in insulin secretion during lifestyle intervention compared

with NGT participants (Heni et al. 2010). This observation is consistent with the

findings from DPP and DPS suggesting that lifestyle intervention may mitigate the

progression to T2D in TCF7L2 risk carriers with IGT.

In summary, intensive lifestyle interventions seem to overcome the increased

risk of T2D conferred by the now well-established T2D risk variants at TCF7L2.
Whether this effect is restricted to individuals with IGT at very high risk of

progression to T2D remains to be investigated. Mechanisms by which the lifestyle

intervention can limit the progression toward T2D in risk allele carriers are also

unknown.

25.2.2 PPARG (See Table 25.2)

Variant Pro12Ala at rs1801282 within the PPARG gene was one of the first T2D

risk loci identified and among the few genes derived from candidate genes that were

subsequently confirmed in GWAS. The Pro allele is associated with increased risk

of T2D with an odds ratio around 1.2 per risk allele (Morris et al. 2012). Consistent

with the observational data, the Pro allele was associated (but not significantly) with

the risk of developing T2D (HR¼ 1.24; P¼ 0.07) in DPP participants, and there

was no significant genotype by intervention interaction (Florez et al. 2007a). The

protective Ala allele was associated with more favorable weight changes at 1 year

in all 3 main arms (placebo, metformin, and ILI) of the DPP (Florez et al. 2007a).

By contrast, in the one-arm TULIP study, the Pro12Ala variant was not associated

with difference in weight change over 9 months of intervention (Rittig et al. 2007).

In the Finnish DPS, the protective Ala allele was also associated with greater

weight loss in the intervention arm, consistent with DPP findings (Franks

et al. 2007), while the weight change in the control arm was not associated with

the Pro12Ala variant (Lindi et al. 2002). Nevertheless, the report concerning this

PPARG variant in the DPS participants was puzzling by the observation that the
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known “protective” Ala allele was associated with higher risk of developing T2D

over the 3 years of the study in the control group (OR¼ 2.36; CI¼ 1.21–4.60), and

this remained significant even after adjustment for weight at baseline and weight

change over time. In the intervention arm, risk of developing T2D was not signif-

icantly associated with Pro12Ala, but the direction of effect still suggested that the

Ala allele was positively associated with risk of T2D (OR¼ 1.90 CI¼ 0.70–5.18)

opposite to the direction of effect expected from observational studies. In a subse-

quent report (Kilpelainen et al. 2008), the Ala allele was again associated with

increased risk of T2D in the overall DPS participant analyses, but the association

was attenuated and not significant when adjusted for multiple factors including

baseline fasting glucose.

In light of all these reports, it is difficult to draw conclusions about the impact of

Pro12Ala variant in response to lifestyle intervention in individuals at risk of T2D.

The current body of evidence suggests that Ala carriers (protective allele) might

experience a greater weight loss in the context of lifestyle intervention and that the

levels of initial BMI might modulate the risk attributed to the Pro12Ala variant

(Florez et al. 2007a; Lindi et al. 2002). Yet, the relatively smaller effect size

(compared with TCF7L2) and low minor allele frequency at rs1801282 limited

the power in each study reported so far (power being even lower for detecting

interaction). Other variants within or near PPARG have also been investigated in

DPP and DPS (Florez et al. 2007a; Kilpelainen et al. 2008), but results were null or

inconsistent.

25.2.3 ENPP1

Ectoenzyme nucleotide pyrophosphatase phosphodiesterase 1 (ENPP1) reduces

insulin signaling by direct inhibition of the insulin receptor’s tyrosine kinase

activity. The genetic variant K121Q (rs1044498) in ENPP1 may result in a gain-

of-function mutation leading to greater inhibition of the insulin receptor and clinical

insulin resistance, prompting many investigations of the association between

K121Q and T2D or glycemic traits.

In the DPP, participants carrying at least one copy of the Q risk variant at K121Q

in ENPP1 were more likely to develop T2D in the placebo group (HR¼ 1.38;

P¼ 0.03), but this risk was abolished in the intensive lifestyle arm (HR¼ 0.89;

P¼ 0.51) (Moore et al. 2009). In contrast to the lack of genetic effect in the

intervention arm of the DPP, improvement in insulin sensitivity was greater in

KK homozygotes in the TULIP single-arm intervention while it decreased in QQ

individuals (Mussig et al. 2010). The differences between studies are difficult to

explain and underline the importance of replication in genetics, especially with

respect to gene-lifestyle interactions. Overall the role of ENPP1 in T2D is still

obscure since the current largest GWAS meta-analyses of T2D cases have not

revealed ENPP1 as one of the T2D loci (Morris et al. 2012), but previous reports
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suggested possible interaction with BMI in testing the association with T2D

(McAteer et al. 2008).

25.2.4 Investigations of Biological Candidate Genes

Many other candidate genes for T2D or weight/glycemic regulation have been

tested for interaction with lifestyle intervention before the wave of GWAS discov-

ery, with mostly mixed and contradictory results, again illustrating the challenges

of testing gene-lifestyle interaction. For example, 1536 single-nucleotide polymor-

phisms (SNPs) located in 40 candidate genes selected for potential biological

relevance were investigated in the DPP participants to reveal genotype by treatment

interactions. Twenty-three loci had nominally significant interactions with the

lifestyle intervention, but none of the loci maintained significance after adjustment

for multiple testing (Jablonski et al. 2010).

25.2.5 Known Loci Derived from GWAS: T2D and Obesity

25.2.5.1 T2D Loci

Since the early 2000s, technological and scientific advances have led to identifica-

tion of more and more genetic variants associated with T2D. As of early 2014, more

than 60 loci are accepted and “established” T2D risk loci based on associations that

reached the genome-wide significance level (P< 5x10�8; see Chap. 2). In DPP,

many of the known variants were tested for their effect on T2D incidence, overall

and within each treatment arm (Jablonski et al. 2010; Hivert et al. 2011; Moore

et al. 2008). Among the 34 loci known at the time, association with T2D was

detected at TCF7L2, HNF1B, and PROX1 in the overall DPP study participants,

independent of treatment allocation (Hivert et al. 2011). Only 3 loci were sugges-

tive of gene-treatment interaction: KCNJ11, HNF1A, and PLEHF2—and only at

PLEHF2 was the risk variant associated with higher risk in the placebo group

(HR¼ 1.28; CI¼ 1.06–1.54; P¼ 0.009) and that risk was overcome by the lifestyle

intervention (HR¼ 0.91; CI ¼0.71–1.16; P¼ 0.45). Again, this needs to be

interpreted with caution given multiple testing. The lack of replication of loci

detected in T2D case–control studies is likely due to the difference in study design,

the limited power, and the fact that DPP participants were already glucose intoler-

ant at baseline, decreasing the effect size that genetic risk variants might have on

progression to T2D.
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25.2.5.2 Obesity/Adiposity Loci

Genome-wide association studies have also revealed genetic variants associated

with obesity and adiposity traits, and some of these variants might also play a role in

diabetes and glycemic regulation. The most commonly known genetic variant for

risk of obesity is located near FTO and was initially identified as a T2D locus until

its effect on BMI was unmasked. The risk allele A at rs9939609 near FTO was not

associated with weight changes over >3 years in DPP (Franks et al. 2008) or in the

Finnish DPS (Lappalainen et al. 2009) and no significant interaction with lifestyle

intervention was detected on change in BMI. In a subsample of DPP participants

with CT scan measurements of body composition, a possible gene-treatment inter-

action (P¼ 0.05) was detected for change in 1-year subcutaneous tissue, possibly

due to the A risk allele that tended to be associated with greater increase in

subcutaneous tissue at 1 year in the placebo group (Franks et al. 2008).

Other known obesity loci were investigated in DPP for effects on weight change

(Delahanty et al. 2012). The Ala allele at rs1801282 near PPARG was associated

with greater weight loss at 6-month and 2-year follow-up, irrespective of treatment

allocation. For the 2-year weight change, there was a suggestive interaction

between treatment arms and genetic variants at NEGR1 in addition to FTO, in
line with the suggestive interaction on the 1-year change in subcutaneous fat

previously reported (Franks et al. 2008). Genetic variants at PPARG and BDNF
were associated with weight regain after 6 months independent of treatment arm,

and possible interactions were suggested at TMEM18 and KTCD15. Yet, as the

authors underlined, these results must be interpreted with caution and are mainly

hypothesis generating.

25.2.6 Genetic Risk Scores for Risk of T2D

Another question that can be addressed from the T2D prevention trials is whether

individuals at high risk based on their global genotype profile for risk of T2D are

likely to benefit from an intensive lifestyle intervention. The impact of an aggre-

gated T2D genetic risk score on the risk of developing T2D over the course of the

lifestyle intervention to prevent T2D was assessed in both the DPP and DPS studies.

Based on 34 T2D loci known at the time, DPP participants were classified

according to their genetic risk profile: the 34 GRS predicted the risk of developing

T2D in the overall cohort (HR¼ 1.02; CI¼ 1.00–1.05 per risk allele; P¼ 0.03 in

fully adjusted model) and a lower chance to regression to normoglycemia

(HR¼ 0.95; CI¼ 0.93–0.98; P< 0.001) (Hivert et al. 2011). Individuals at highest

genetic risk (top quartile of the GRS) clearly benefited from the intensive lifestyle

intervention; in this subgroup, diabetes incidence was 12 cases/100 person-years in

the placebo vs. 5 cases/100 person-years in lifestyle arm (P< 0.001). The results

also suggested that the benefit of the lifestyle intervention might be greater in the
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individuals at higher genetic risk, but the interaction between GRS and treatment

arm was not significant. Moreover, the lifestyle intervention significantly increased

the chance of regression to normoglycemia (P< 0.001) in participants with the

greater T2D genetic burden (top quartile of GRS) (Hivert et al. 2011).

In the DPS, the lifestyle intervention prevented T2D independently of a GRS

composed of 19 known T2D loci (Uusitupa et al. 2011). There was no significant

interaction between the GRS and treatment arm on the risk of T2D (P¼ 0.65). None

of the 19 individual loci was significantly associated with T2D incidence in the

overall DPS participants, which was not surprising given the relatively small

sample size (N¼ 522).

Overall, those studies are reassuring and can help clinicians to have a positive

message to communicate with their patients: T2D can be prevented by lifestyle

modification and modest weight loss, no matter how “genetically” at risk an

individual may be. On the other hand, whether knowing ones “T2D genetic risk

profile” will increase the likelihood of sustained behavior changes leading to health

benefits is a separate question addressed in the next section.

25.3 T2D Genetics for Motivating Health Behavior Change

Aside from its ability to improve the risk stratification of individuals, it has been

suggested that personal knowledge of being at higher genetic susceptibility to T2D

would increase motivation for behavior changes. In surveys and questionnaires,

patients have reported that they would be more motivated to adopt healthier eating

habits and be more physically active if they learned they were at greater genetic risk

of T2D (Grant et al. 2009; Vassy et al. 2012, 2013). In a primary care practice

population, 53 % of patients reported that they would be “very likely” to order a

genetic test to know their risk of T2D and 71 % of them reported they would be

“highly motivated” to make behavioral modification to their lifestyle if they were

found to be at higher risk (Grant et al. 2009). However, translating intentions into

actual behaviors is another leap, especially when complex behaviors such as

healthy eating and physical activity have to be maintained over a long period

of time.

So far, observational and experimental studies do not support that knowledge of

personal genetic risk of T2D leads to sustained behavior change. In an assessment

of direct-to-consumer genome-wide genetic profiling for 22 conditions (including

T2D), the Scripps Genomic Health Initiative followed 2037 people after they

received the results of their genetic profile. In an examination of T2D risk in

particular, the magnitude of the genetic risk estimate for T2D (expressed as risk

over lifetime or compared with the general population) provided to each individual

was not associated with a change in fat intake or exercise at 3 months after receiving

the results (Bloss et al. 2011).

The Genetic Counseling and Lifestyle Change for Diabetes Prevention (GC/LC)

Study randomized patients at risk of T2D to genetic testing and counseling or not
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(control group) (Grant et al. 2013). For participants randomized to the genetic

testing/counseling arm, genetic susceptibility to T2D was estimated from a genetic

risk score composed of 36 established T2D genetic variants. Persons either at

“higher” or “lower” risk of T2D based on the score were invited to participate to

the lifestyle intervention program. A certified genetic counselor provided the

genetic counseling session and used visual cues to explain “higher” and “lower”

risk of developing T2D compared with the general population. Participants ran-

domized to control group did not undergo genetic testing and were not seen by the

genetic counselor before entering the lifestyle intervention program. All partici-

pants were then enrolled in a 12-week lifestyle modification program based on the

DPP curriculum. The program succeeded in achieving a mean weight loss of 3.9 kg,

but this did not differ between the group that received genetic testing and counsel-

ing or not. There was also no difference between participants who learned they were

at higher or lower genetic risk.

As of early 2014, a few other trials are currently testing whether genetic

counseling for risk of T2D enhances adoption of a healthier lifestyle to prevent

T2D, mainly in the primary care setting (Voils et al. 2012; Cho et al. 2012;

Vorderstrasse et al. 2013). The results of these trials are yet to be published and

should inform clinical practice in the future.

25.4 Pharmacogenetics in Diabetes Prevention

25.4.1 Metformin

As of early 2014, investigations concerning metformin-gene interactions in pre-

vention of T2D are exclusively derived from reports in the DPP participants (Florez

et al. 2006, 2007b, 2008, 2012; Jablonski et al. 2010; Moore et al. 2008; Chiasson

et al. 2002). Because of the current lack of replication available, readers should be

cautious in interpretation of the findings, despite many being biologically possible.

For a full overview of metformin pharmacogenetics, please refer to Chap. 24.

Potential interactions were discovered at genes encoding metformin transporters

(SLC22A1, SLC22A2, and SLC47A1). Effects of genotypes on T2D incidence were

detected only in the metformin group, but not in the placebo or lifestyle groups

(Jablonski et al. 2010). Analyses also suggested interactions in genes encoding

proteins in gluconeogenesis pathways (PRKAA1, PRKAB2, PRKAA2, STK11, and
PCK1) (Jablonski et al. 2010). In pathways related to peroxisome proliferator-

activated receptors, genetic variants at PPARA (G at rs4253652) and PPARGC1A
(C at rs10213440) associated with increased risk of T2D in the metformin group

appeared protective in the placebo group (Jablonski et al. 2010).

Among the loci known for risk of T2D in the general population, risk variants at

TCF7L2, WFS1, CDKAL1, IGF2BP2, HHEX, and SCL30A8 did not interact with

metformin treatment (Florez et al. 2006; Moore et al. 2008; Chiasson et al. 2002).
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At KCNJ11, no significant interaction was detected at the T2D-associated SNP

rs5219 (Florez et al. 2007b), but an interaction was suggested at rs7124355

(Jablonski et al. 2010). Interactions were also suggested in a few other known

T2D genes: CDKN2A/B, HNF4A, HNF1B, and GCK (Jablonski et al. 2010; Moore

et al. 2008). Other loci associated with fasting glucose or fasting insulin (G6PC2,
FADS1, ADRA2, DGKB, IGF1, PROX1, GCK, GCKR, GLIS3, IRS1, ADCY5,
MTNR1B) had no significant interactions with treatment on change in fasting

glucose at 1 year of treatment, except for MADD and C2CD4B loci (each

P¼ 0.04 for interaction with metformin treatment) (Florez et al. 2012). Interactions

were suggested at candidate genes selected for their known or suspected role in

glycemic regulation such as ABCC8, ENPP1, and ADIPOR2 (Jablonski et al. 2010).

25.4.2 Acarbose

In the STOP-NIDDM randomized controlled trial, acarbose reduced the risk of

developing T2D by 25 % compared with placebo in persons with glucose intoler-

ance (Andrulionyte et al. 2007). Genetic investigations in candidate genes

suggested interactions in PPARA (2 out of 11 SNPs investigated) (Andrulionyte

et al. 2006), HNF4A (2 out 6 SNPs) (Zacharova et al. 2005), LIPC (Andrulionyte

et al. 2004), and PPARGC1A [49], but not at PPARG locus [49]. Those results were

derived from a single clinical trial, with no validation or replication available at this

time, warranting caution in interpretation.

25.5 Future Perspectives

As described in Sect. 25.2 of this chapter, genetic investigations to determine who is

more likely to response physiologically to an intensive lifestyle intervention such as

DPP or DPS has not been highly successful so far. The genetics of “high

responders” to a lifestyle intervention are unlikely to lie within genes identified in

GWAS since they detected main genetic effects based on case–control studies.

Indeed, the “known loci” approaches have mainly told us that adoption of healthful

lifestyle and modest weight loss can successfully prevent T2D largely indepen-

dently of genetic burden. With health-care resource allocation in mind, we could

argue that it would be worth identifying individuals at the higher end of the

spectrum for T2D genetic burden since they seem to benefit at least as much from

the intensive lifestyle intervention. This will require cost-effectiveness analyses

that take into account the cost of genotyping, counseling, and the number of cases of

T2D avoided or delayed in that subgroup, in addition to the cost of the lifestyle

intervention.

One of the next challenges will lie in identifying “responders” genes to target

individuals that would have higher response to our known successful interventions
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or who would need less intensive versions of behavioral support for lifestyle

modifications. This will require larger sample sizes to investigate gene-lifestyle

(or gene-intervention) interactions or acceptance of less stringent thresholds to

define interaction. Other “omics” scientific advances are likely to contribute to

our understanding of “response” to dietary and physical activity modifications.

Large-scale epigenetic (e.g., DNA methylation), transcriptomic (expression), and

metabolomic studies may help identify pathways that “respond” to nutritional and

exercise challenges over short (meal test, exercise testing) and long periods of time

(weeks or years of intervention). If such “responder” genes are identified based on

samples and data collected in previous trials, their interaction with interventions

should be tested in independent T2D prevention trials before we can hope to

influence clinical practice and witness clinical applications of genetics in preven-

tion of T2D. Further, it is hoped that better understanding of the pathways leading to

T2D will lead to development of new behavioral or pharmacological interventions

for prevention.
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Chapter 26

Nutrigenetics of Type 2 Diabetes

Lu Qi and Paul W. Franks

Abstract Type 2 diabetes has become a leading health problem throughout the

world. The escalating epidemic of type 2 diabetes is believed to result from a

collision between inherent biological susceptibilities (genotypes) and a shift toward

dietary habits and lifestyle that promote obesity over the past several decades; the

transition from “traditional” to modern “obesogenic” lifestyles is characterized by

widespread access to highly palatable, nutrient-deficient, and calorie-dense foods

and beverages, as well as circumstances that promote sedentary behaviors and

inhibit physical activity. In the past decades, a large body of epidemiological

studies has associated various dietary factors with type 2 diabetes risk. In the

meantime, genetic studies have made great strides in unraveling the genetic basis

of type 2 diabetes by identifying more about 100 common genetic loci related to the

disease. Nutrigenetics, a relatively new branch of nutrition science, focuses on

determining the interplay between dietary exposures and genetic factors in the

etiology of many diseases including type 2 diabetes. Even with many hundreds of

gene-diet/lifestyle interaction studies on diabetes-related traits published over the

past two decades, few examples have been adequately replicated or validated. By

contrast, a number of replicated examples of interactions between lifestyle factors

(e.g., consumption of sugar sweetened beverages and fried foods and low physical

activity and sedentary lifestyles) and genetic factors in obesity (a major risk factor

for diabetes) have recently emerged. Further advances are likely to come from the

optimization of methods and study designs for nutrigenetic analyses. The develop-
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ment of methods to integrate genetic, transcriptomic, epigenomic, proteomic, and

metabolomic data to help define the functional mechanisms that might underlie

observations of gene-lifestyle interactions is an especially exciting, yet challenging,

area. Nutrigenetic studies hold great promise to inform personalized diet and

lifestyle interventions to reduce type 2 diabetes risk and improve human health;

however, deriving replicated examples of such interactions and determining how

best to translate these findings into public health practice and medical intervention

remain major challenges.

Abbreviations

AAA Aromatic amino acid

BCAA Branched chained amino acid

BMI Body mass index

GWAS Genome-wide association studies

SNP Single-nucleotide polymorphism

SSB Sugar-sweetened beverage

26.1 Introduction

Susceptibility to type 2 diabetes varies within and between populations, with

American Indians and people descending from the Middle East, South Asia, and

the Pacific Islands being at high risk and people of northern European ancestry at

considerably lower risk (Kooperberg and Leblanc 2008). At diagnosis, patients are

often overweight or obese (American Diabetes Association 2010); in these indi-

viduals, intensive lifestyle modification centered on dietary changes that lead to

substantial long-term weight loss can halve the risk of developing diabetes, regard-

less of ethnic background (Gillies et al. 2007). Although in many people overweight

and obesity are prerequisites for diabetes to develop, the extent to which dietary

modification influences diabetes risk in lean persons is unclear, as the large clinical

trials exploring the effects of lifestyle in diabetes incidence have been undertaken in

overweight and obesity populations. Although dietary modification and weight loss

are now frontline therapies for diabetes prevention, the effects of these interven-

tions vary greatly from one person to the next, as do patients’ responses to

antidiabetic drugs (Knowler et al. 2002). The variable physiological characteristics,

susceptibilities, treatment requirements, and treatment responses of people at risk of

or with diabetes strongly suggest the presence of different pathophysiological

subclasses. These subclasses may be determined to some extent by genetic differ-

ences between individuals. Understanding the genetic basis to diabetes and the

extent to which genotypes modify the response to risk factors and preventive

interventions might help tackle the rising prevalence of diabetes, improve treat-

ment, reduce unnecessary side effects, and lower costs directly and indirectly

540 L. Qi and P.W. Franks



related to the disease. Although gene-environment interactions have been clearly

defined in animal (Baron 1935) and plant models (Meyer and Purugganan 2013;

Des Marais et al. 2013), and to some extent also in human Mendelian diseases

caused by single gene mutations (Horner and Streamer 1956), as we explain below,

evidence of gene-diet interactions in type 2 diabetes in human populations is fairly

limited, but stronger evidence of such interactions exists for diabetes-related traits

such as obesity.

The past decades have witnessed a systematic transition from “traditional”

lifestyles, where fibrous, nutrient-rich foods and occupational physically actives

were commonplace, to an “obesogenic pattern” characterized by increased con-

sumption of energy-dense foods and beverages and sedentary lifestyles (Zimmet et

al. 2001; Polonsky 2012). In parallel, the prevalence of type 2 diabetes has

increased at an alarming rate in both developed and developing countries (Whiting

et al. 2011). Compelling evidence from epidemiological studies and clinical trials

clearly indicates these obesogenic habits and obesity are among the most important

modifiable risk factors for type 2 diabetes (Gillies et al. 2007). However, suscep-

tibility to environmental risk factors and response to clinical interventions varies

considerably between individuals. Such difference in susceptibility to obesogenic

environments and responsiveness to lifestyle interventions appears to have a heri-

table component (Bouchard 2012; Bouchard et al. 1990). A widely discussed

explanation for this phenomenon is that selective pressures throughout human

evolution have, to some degree, determined genetic diversity as it relates to a

person’s predisposition to metabolic diseases. Studies of common variation in the

human genome have so far resulted in the discovery of hundreds of variants

associated with type 2 diabetes, glycemic traits, and obesity (Lindgren et al.

2009; Randall et al. 2013; Speliotes et al. 2010; Berndt et al. 2013; Morris et al.

2012; Scott et al. 2012). Nonetheless, even in aggregate, these variants explain a

fairly small proportion of the heritability of these metabolic disorders, and there is

little evidence to suggest these variants are present in the genome because of

selective pressures (Ayub et al. 2014), which forms the basis to some hypotheses

about gene-environment interactions (the thrifty genotype hypothesis) (Neel 1962);

alternative explanations propose that allelic variation is a consequence of genomic

drift (Ohta and Kimura 1969) and hence unaffected by strong selective forces

throughout most of human evolution or migration to environments contrasting

those within which populations primarily evolved (Sellayah et al. 2014).

“Nutrigenetics” is an emerging branch of nutrition science that seeks to address

the interplay between genetic factors and diet or lifestyle factors. Many hope that by

identifying genetic variants that interact with dietary or lifestyle factors, it may be

possible to use this information to stratify nutritional advice for the prevention or

treatment of type 2 diabetes by targeting specific population subgroups classified by

genotypes.

This chapter will review the rationale for testing gene-diet/lifestyle interactions

and summarize the recent advances in this rapidly growing area. This chapter will

also briefly discuss the implication of nutrigenetics in public health and medical

practice and the potential challenges and possibilities that lie ahead.
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26.2 Nutrigenetics: Interaction Between Nutrition/Diet and

Human Genome

Throughout the twentieth century, nutrition science concentrated on the discovery

of nutrients such as vitamins and minerals, as well as defining their roles in

preventing diseases caused by deficiency of these nutrients. As nutrition-related

health problems of the developed world shifted from undernutrition to overnutrition

and technologies that allow detailed characterization of biologic systems (e.g., at a

genomic, transcriptomic, proteomic, metabolomic level) have improved manifold,

the focus of nutrition research has changed accordingly (Isaak and Siow 2013) .

Type 2 diabetes is one of the major overnutrition-related metabolic disorders of

our time, and its rapid rise in the United States and many other countries has

followed the widespread adoption of dietary patterns that favor consumption of

energy-rich processed foods and beverages, accompanied by reduced physical

activity and more sedentary lifestyles (Polonsky 2012). For example, high intakes

of red meat and sugar-sweetened beverage (SSB) are related to an increased risk

(Aune et al. 2009; Malik et al. 2010a), while high consumption of coffee and whole

grains is associated with a reduced risk of type 2 diabetes (Jiang et al. 2014; Cho et

al. 2013). Data from randomized clinical trials also show that reducing caloric

density of the diet and increasing the consumption of fruits, vegetables, and fibrous

foods reduce type 2 diabetes risk (Gillies et al. 2007).

An implicit assumption of most nutrition research is that the risk of disease

conferred by dietary exposures is uniform within populations. However, the high

degree of variability in the associations between dietary exposures and disease

outcomes and the heterogeneous responses to dietary interventions observed in

clinical trials undermines this view. Such heterogeneity may reflect complex

interactions between dietary factors and a person’s biological characteristics, such
as their genotypes. These observations have motivated efforts to investigate the

interplay between genetic and dietary factors and to understand how nutrients affect

the transcription and translation of genes. This area of research, often called

“nutrigenomics” or “nutrigenetics” (Junien 2001), has become popular since the

turn of the twenty-first century but was alluded to almost a century earlier by Garrod

when he observed that “even those idiosyncrasies with regard to drugs and articles

of food. . . . . .presumably have a chemical [genetic] basis” (Garrod 1909).

26.3 Statistical Considerations

Multiplicative interactions are defined by the departure from an additive effect of

two or more independent variables, usually in a regression model, on a selected

outcome. Early efforts to detect gene-diet interactions largely focused on candidate

genes that were selected on the basis of prior biological information that supported

their role in a given interaction effect. More recently, the field has been dominated
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by interaction studies that follow up on established disease-associated variants,

usually discovered through genome-wide association studies (GWAS). For type 2

diabetes, about 100 such variants had been identified by 2015 (see Chap. 2).

Although only one study to date has undertaken a comprehensive assessment of

these loci in relation to gene-lifestyle interactions in diabetes incidence (Langberg

et al. 2014), a handful of other interaction studies have explored subsets of these

variants in relation to diabetes (several selected studies are shown in Table 26.1).

Hundreds of publications have reported on gene-diet/lifestyle interactions for

diabetes-related traits since the mid-1990s (reviewed in: Ahmad et al. 2013a;

Franks et al. 2013); the majority of these studies were performed in relatively

small epidemiological cohorts, case-control studies, and clinical trials. With few

exceptions, these reports have not been accompanied by compelling replication

data, suggesting that many of these are likely to be false positive, the implications

of which we discuss elsewhere (Franks and Nettleton 2010). The examples of gene-

diet/lifestyle interactions that have been convincingly replicated suggest that for

common gene variants, diet/lifestyle exposures, and outcomes, such interaction

effects are likely to relatively small in magnitude. Hence, statistical power is a

major barrier to the detection of interactions (Luan et al. 2001a). For this reason,

great emphasis is being placed on developing methods and approaches that help

overcome this problem (reviewed in Cornelis et al. (2012)). Because most analyses

on gene-diet/lifestyle interactions are undertaken in existing materials (rather than

by conducting new studies specifically designed to detect interactions), maximizing

sample size by pooling cohorts and developing more statistically powerful analyt-

ical tools are the two main strategies for enhancing statistical power.

Almost all studies of gene-diet/lifestyle interactions in diabetes-related traits

published prior to 2005 involved sample sizes of <2000 participants, with many

totaling <500 participants (Franks et al. 2007). However, the availability of afford-

able, massively parallel genotyping technologies, and the emergence of consortia

that leverage large cohort collections for genetic association studies have raised

expectations across all areas of population genetics research. Thus, small studies of

gene-diet/lifestyle interactions are now difficult to publish in reputable journals

without robust replication data, and scrutiny of statistical methods and data

reporting practices has increased considerably.

Only a handful of large individual cohorts (n> 10,000 participants) exist within

which studies of gene-diet/lifestyle interactions have been performed; hence, epi-

demiologists often pool results from many cohorts using an approach called “meta-

analysis.” This approach is appealing because very large sample collections can be

constructed, and sharing of individual level data between cohorts is not necessary,

as the meta-analysis is performed on summary statistics generated locally by cohort

analysts. Indeed, several very large meta-analyses have been reported recently, with

a recent study of gene-physical activity interactions in obesity including ~220,000

adults (Kilpelainen et al. 2011).

However, the gains in statistical power that one might anticipate by increasing

the total sample size by pooling cohorts are often partially offset by residual error
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Table 26.1 Selected studies of gene-diet/lifestyle interaction on type 2 diabetes

Candidate

gene Study design Sample size Environment Main findings

PPARG-
Pro12Ala

Cross-sec-

tional (Nel-

son et al.

2007)

1482 Physical activity PPARG Pro12Ala

interacted with physical

activity on risk of type 2

diabetes (P for

interaction¼ 0.022). The

Pro12 allele was signifi-

cantly associated with

T2D in those with low

physical activity

PPARG-
Pro12Ala

and

1431C>T

Cohort

(Lamri et al.

2012)

4676 Dietary fat Dietary fat intake modu-

lated the association of

polymorphisms at the

PPARG locus with type 2

diabetes risk (P for

interaction¼ 0.05). A high

fat consumption was asso-

ciated with an increased

type 2 diabetes risk among

ProPro and CC homozy-

gotes, but not in Ala and T

carriers

GWAS

identified

loci Study design Sample size Environment Main findings

TCF7L2-
rs7903146

Case-control

(Fisher et al.

2009)

3042 Dietary

whole grain

The TCF7L2 rs7903146 T

allele modified the inverse

association between

whole-grain intake and

type 2 diabetes risk (P for

interaction ¼0.016).

Whole-grain intake was

inversely associated with

type 2 diabetes risk among

rs7903146 CC homozy-

gote carriers, the T allele

negated the protective

effect of whole-grain

intake

SLC30A8-
rs13266634

Case-control

(Shan et al,

2014)

1796 Plasma zinc

concentration

Each 10 μg/dl increment

of plasma zinc was asso-

ciated with 22 % (OR,

0.78; 95 % CI, 0.72–0.85)

lower odds of type 2 dia-

betes in TT genotype car-

riers, 17 % (0.83; 0.80–

0.87) lower odds in CT

genotype carriers, and 7 %

(0.93; 0.90–0.97) lower

(continued)
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Table 26.1 (continued)

GWAS

identified

loci Study design Sample size Environment Main findings

odds in CC genotype car-

riers (P for

interaction¼ 0.01)

GIPR-
rs10423928

Cohort

(Sonestedt et

al. 2012)

24,840 Dietary carbohy-

drate and fat

There is significant inter-

action between GIPR
genotype and dietary car-

bohydrate (P for

interaction¼ 0.0005) and

fat intake (P for

interaction¼ 0.0006) on

incident type 2 diabetes.

The TT genotype carriers

within the highest com-

pared with the lowest car-

bohydrate quintile were at

23 % decreased T2D risk.

In contrast, AA genotype

carriers in the highest

compared with the lowest

fat quintile were at 69 %

decreased type 2 diabetes

risk

HNF1B-
rs4430796

Cohort

(Brito et al.

2009)

16,003 Physical activity Physical activity

interacted with theHNF1B
rs4430796 variant (P for

interaction¼ 0.0004) in

determining type 2 diabe-

tes risk. Subjects with GG

genotype have lower risk

of T2D than those with

GA or AA genotypes

FTO-
rs9939609

and MC4R-
rs17782313

Case-control

(Ortega-

Azorin et al.

2012)

3430 T2D

patients,

3622 control

subjects

Adherence to the

Mediterranean

diet

The associations of the

FTO-rs9939609 and the

MC4R rs17782313 with

type 2 diabetes depended

on a high adherence to the

Mediterranean diet. When

adherence to the Mediter-

ranean diet was low, car-

riers of the variant alleles

had higher type 2 diabetes

risk (P for

interaction¼ 0.019 for

FTO-rs9939609 and P for

interaction¼ 0.035 for

MC4R-rs17782313) than
wild-type subjects
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that is introduced by combining data from cohorts that vary in the methods used,

data structures, and participant characteristics (Ahmad et al. 2013b). Thus, while

meta-analysis of data on gene-diet/lifestyle interactions from multiple cohorts may

seem intuitive on the surface, the careful selection of cohorts will maximize the

benefits of this approach, whereas meta-analyzing all available materials, which is

often done, may prove counterproductive when it comes to statistical power.

Statistical methods for modeling gene-environment interaction effects are evolv-

ing rapidly, driven by the recognition that conventional statistical approaches are

underpowered for the detection of interactions when, as is often so, multiple

hypotheses are tested in relatively small cohorts that include crudely characterized

nutritional and lifestyle exposures. Those conventional approaches include pairwise

tests of interaction, when the product of the genetic and environmental exposures is

modeled (e.g., SNP x dietary fiber) against a quantitative (e.g., blood glucose

concentrations) or categorical (with or without diabetes) outcome. The objective

of these tests is usually to numerically characterize complex biologic phenomena;

however, these simple statistical approaches may be poorly suited to this task.

Hence, a range of new methods are now coming online that aim to integrate several

layers of biological information (systems genetics) (Civelek and Lusis 2014) and to

do this on a genome-wide scale; there are several major barriers to doing this

though, which include the impact on multiple testing on type 1 error rates and the

challenges of aligning diverse data structures. To address this problem, several

innovative genome-wide interaction tests have been proposed recently; these

include approaches that collapse the tests of main effect and interaction effect

into a single test (Aschard et al. 2010; Manning et al. 2011), as well as inferential

tests that model genetic effects on the signatures of an interaction, as such as

phenotypic variance (Pare et al. 2010; Visscher and Posthuma 2010).

To date, no studies have reported on genome-wide gene-diet interaction analysis

in type 2 diabetes incidence, although a large European study is under way to

address this issue (InterAct et al. 2011). The primary challenges with conventional

approaches include the need to test a large number of hypotheses (upward of one

million), the requisite for a sufficiently powered sample size, and prospective

design. Several methods have been developed to address the statistical challenges,

for example, multistage procedures and Bayesian model selection, among others

(Kooperberg and Leblanc 2008; Zhang and Liu 2007). However, application of

these methods may not match the theoretical expectations on which they are based,

and to our knowledge, no replicated interaction has been published to date using

these methods. Recently, a “variance prioritization” method was proposed to

identify genetic variants that are sensitive to the environment and thus prioritize

variants for interaction studies (Pare et al. 2010). The prioritization procedure is

based on the analysis of phenotypic variance per genotype. By using the variance

prioritization procedure, Pare et al. identified gene-environment interactions on

several CVD risk factors. However, whether the approach could lead to the iden-

tification of gene-diet/lifestyle interactions on type 2 diabetes has yet to be

validated.
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26.4 Gene-Diet Interaction in Type 2 Diabetes

26.4.1 Observational Studies

The PPARG Pro12Ala variant is an established diabetes-associated locus. Of all the

published studies focused on interactions between dietary factors and non-GWAS

candidate genes, the PPARG Pro12Ala variant is probably the most intensively

explored locus (Table 26.1). Several small studies have examined interactions

between this locus and dietary factors such as the total fat, ratio of polyunsaturated

fat to saturated fat (P:S ratio) (Luan et al. 2001b), oleic acid (Soriguer et al. 2006),

fish intake and marine n-3 fatty acids (Ylonen et al. 2008), and lifestyle factors such

as physical activity (Nelson et al. 2007; Brito et al. 2009) with type 2 diabetes risk

or blood glucose concentrations. In studies from the United Kingdom and the

United States, the association of dietary fats with plasma insulin levels and BMI

differed by Pro12Ala genotype, with an inverse association between these variables

observed in carriers of the minor Ala12 allele and no detectable association in

Pro12Pro homozygotes. Numerous follow-up studies have been reported (Franks et

al. 2007); however, attempts to summarize this evidence failed (Palla et al. 2010), in

part because publications on gene-environment interactions generally lack key

details needed for pooled analyses and dietary exposures are often measured with

approaches that cannot be adequately standardized across studies.

Several studies have assessed interactions between SNPs in other GWAS-iden-

tified loci, such as TCF7L2, SLC30A8, GIPR, HNF1B, and FTO, and dietary factors
in relation to type 2 diabetes (Table 26.1). Among these diabetes-related genes,

some are involved in nutrient metabolism and therefore interesting candidates for

testing gene-diet interactions. For example, zinc is an essential trace element found

in most foods that facilitates catalytic, structural, and transcriptional actions (Prasad

2007). In epidemiology studies, plasma zinc concentrations have been associated

with impaired glucose regulation (IGR) and type 2 diabetes risk. The type 2

diabetes-associated zinc transporter-8 (SLC30A8) gene is exclusively expressed in

pancreatic beta cells and encodes a protein that transports zinc from the cytoplasm

into insulin secretory vesicles, an important step in insulin synthesis and secretion.

Shan et al. recently assessed the interaction of the variants in this gene with plasma

zinc levels in relation to type 2 diabetes in 1796 Chinese: 218 participants with

newly diagnosed IGR, 785 participants with newly diagnosed type 2 diabetes, and

793 individuals with normal glucose tolerance (NGT) (Shan et al. 2014). In all the

study samples, the multivariable OR of type 2 diabetes associated with a 10 μg/dl
higher plasma zinc level was 0.87 (0.85–0.90). It was found that the association of

plasma zinc concentrations with type 2 diabetes was modified by SLC30A8
rs13266634. Each 10 μg/dl increment of plasma zinc was associated with 22 %

(OR, 0.78; 95 % CI, 0.72–0.85) lower odds of type 2 diabetes in TT genotype

carriers, 17 % (0.83; 0.80–0.87) lower odds in CT genotype carriers, and 7 % (0.93;

0.90–0.97) lower odds in CC genotype carriers (P for interaction¼ 0.01).
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The Cohorts for Heart and Aging Research in Genomic Epidemiology

(CHARGE) consortium has published several reports on gene-diet interactions

for diabetes-related quantitative traits. Analyses have focused on exploring whether

established glucose- and insulin-associated loci modify the relationships of whole

grains, zinc, and magnesium and overall dietary patterns with fasting blood glucose

and insulin concentrations. These studies yielded tentative evidence of interactions

for variants in GCKR and dietary whole grains in insulin concentrations (Nettleton

et al. 2010) and in SLC30A8 and total zinc intake on fasting glucose concentrations
(Kanoni et al. 2011); however, no evidence of interactions between the selected

genetic variants and dietary magnesium or dietary patterns was observed. In a large

prospective cohort study from southern Sweden, Ericson et al. (2013) and Sonestedt

et al. (2012) reported interactions between IRS1 and GIPR variants, respectively,

and dietary fat and carbohydrate intakes in relation to incident type 2 diabetes.

The TCF7L2 locus harbors the strongest common variant association signals for

type 2 diabetes; hence, the possibility that TCF7L2 variants interact with dietary

factors, such as whole grains, fiber, fat, protein, glycemic index, and Mediterranean

diet, has also attracted extensive attention. Hindy et al. assessed the interactions

between TCF7L2 rs7903146 and intakes of carbohydrate, fat, protein, or fiber in a

case-control study of 1649 diabetes cases and 5216 nondiabetic controls from the

Malm€o Diet and Cancer Study (MDCS) (Hindy et al. 2012). It was found that the

genetic associations with type 2 diabetes risk increased with higher intake of dietary

fiber, with ORs ranging from 1.24 (95 % CI, 1.04, 1.47) to 1.56 (95 % CI, 1.31,

1.86) from the lowest to highest quintile (P for interaction¼ 0.049). Interestingly, it

was also found that high intake of dietary fiber was inversely associated with

diabetes incidence only among CC genotype carriers (OR 0.74, 95 % CI, 0.58,

0.94 per quintile, P¼ 0.03). Whole grain consumption has been inversely associ-

ated with diabetes risk, and the protective effect is thought to be partly attributable

to the fiber component. In the European Prospective Investigation into Cancer and

Nutrition (EPIC)-Potsdam cohort, Fisher et al. found that TCF7L2 rs7903146

genotype modified the inverse association between whole-grain intake and diabetes

risk (P for interaction¼ 0.02). While whole-grain intake was significantly associ-

ated with a reduced diabetes risk among the CC homozygotes (hazard ratio [HR] for

50 g portion/day¼ 0.86; 95 % CI, 0.75, 0.99), the T allele attenuated the associa-

tions (HR¼ 1.08; 95 % CI, 0.96, 1.23) (Fisher et al. 2009). In the Diabetes

Prevention Program (DPP), (Florez et al. 2006) a stronger association between

the TT genotype of TCF7L2 rs12255372 and the diabetes risk was found in the

placebo group (hazard ratio¼ 1.81; 95 % CI, 1.19–2.75) than in the lifestyle-

intervention groups (reduced intakes of total fat and saturated fat and increased

intake of fiber; moderate exercise for at least 30 min per day; HR¼ 1.24; 0.73–

2.12). Although the test of interaction was not statistically significant (P> 0.10),

these data suggest that healthy diet/lifestyle intervention may attenuate the diabe-

togenic effects of this locus. In a prospective study of 7018 individuals with a

median follow-up of 4.8 years, Corella et al. found that adherence to the Mediter-

ranean diet reduced the increase in blood levels of fasting glucose and lipids

associated with TCF7L2 rs7903146 (Corella et al. 2013). Of note, replication data
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are largely lacking for these reported gene-diet interactions, most have not

accounted for the effects of multiple testing on type 1 error, and they do not all

provide complementary findings in terms of the direction of interaction effects.

Most studies of gene-diet interactions have focused on single nutrients or foods.

However, there are several conceptual and methodological drawbacks to this

approach. First, people do not consume single nutrients or foods. Rather, meals

consist of a variety of foods with complex combinations of nutrients that are likely

to be interactive or synergistic. Thus, the “single nutrient/food” approach may not

adequately account for complicated nutrient interactions in free-living populations.

Second, while the effect of a single nutrient/food may be too small to detect,

cumulative effects of multiple nutrients/foods, such as those comprising a dietary

pattern or quality index, may be sufficiently large to identify. Third, individually

analyzing a large number of single nutrients or foods may produce statistically

significant associations simply by chance, and few studies adequately account for

this. Therefore, overall dietary patterns may be more appropriate dietary variables

in studying gene-diet interaction. Qi et al. examined the interactions between the

genetic predisposition and dietary patterns in a prospective cohort of US men from

the Health Professionals Follow-Up Study (HPFS) (Qi et al. 2009). A group of type

2 diabetes-associated loci HHEX, CDKAL1, IGF2BP2, SLC30A8, WFS1,
CDKN2A/B, TCF7L2, PPARG, and KCNJ11 were selected from the GWAS, and

a genetic risk score (GRS) was calculated using a simple count method to feature

the overall genetic susceptibility to type 2 diabetes (Cornelis et al. 2009). The

participants were grouped into low (GRS< 10 alleles), median (10–11 alleles), and

high (>12 alleles) genetic risk. Based on the baseline dietary information, the factor

analysis identified two major dietary patterns (van Dam et al. 2002): a prudent
dietary pattern was loaded heavily with vegetables, legumes, and whole grains and

a Western dietary pattern. The GRS interacted with Western dietary pattern in

relation to diabetes risk (P for interaction¼ 0.02; Fig. 26.1). The multivariable ORs

of type 2 diabetes across increasing quartiles of the Western dietary pattern were

1.00, 1.23 (95 % CI, 0.88, 1.73), 1.49 (1.06, 2.09), and 2.06 (1.48, 2.88) among men

with a high GRS only. Further analyses indicate that intakes of red meat, processed

meat, and heme iron might be the major foods/nutrients driving the interactions.

These findings suggest that the adoption of a Westernized diet may increase

diabetes risk especially among the genetically high-risk population.

26.4.2 Randomized Controlled Trials

Although observational studies often prove extremely valuable for generating

hypotheses around gene-diet interactions, such data are prone to bias, confounding,

and reverse causation. On the other hand, randomized controlled trials are fairly

robust to many of these limitations and provide a powerful adjunct through which

observations of interactions can be causally evaluated.
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Only one randomized controlled trial (the DPP) has reported on gene-lifestyle

interactions in type 2 diabetes incidence. The DPP is the largest randomized

controlled trial of lifestyle modification for diabetes prevention. The DPP investi-

gators have examined interactions between variants at TCF7L2 (Florez et al. 2006),
PPARG (Moore et al. 2008), WFS1 (Florez et al. 2008), other established type 2

diabetes-associated loci (Moore et al. 2008; Hivert et al. 2011), established glucose-

and insulin-associated loci (Florez et al. 2012), common and rare variants at the

MC4R (Pan et al. 2013) and SLC80A8 loci (Billings et al. 2014; Moore et al. 2009),

and other candidate loci (Moore et al. 2009; Mather et al. 2012; Jablonski et al.

2010). Gene-centric tests have also highlighted possible gene-lifestyle interactions

at the PARGC1A locus for several cardiometabolic traits in the DPP (Franks et al.

2014).

26.5 Gene-Diet Interaction in Obesity and Weight Change

Obesity is the predominant modifiable risk factor for type 2 diabetes. The diabeto-

genic role of obesity has also been demonstrated in genetic studies. In fact, the

identification of the strongest obesity locus FTO is a by-product of GWAS of type 2

diabetes (Frayling et al. 2007). In addition, it has been demonstrated that many

other obesity-related genetic variants also affect risk of type 2 diabetes or its risk

Fig. 26.1 Interaction between genetic variants and dietary patterns on risk of type 2 diabetes. The

analyses were performed in the Health Professionals Follow-Up Study. The figure shows the odds

ratios of type 2 diabetes risk according to joint classifications of the Western dietary pattern score

(in quartiles) and the genetic risk score for type 2 diabetes (GRS, <10, 10–11, and �12). The

analyses were adjusted for age, body mass index, smoking, alcohol consumption, physical activity,

family history of diabetes, and total energy intakes
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factors (Speliotes et al. 2010). There have been major efforts to develop diet

interventions to improve weight loss and maintenance and ameliorate type 2

diabetes risk (Sacks et al. 2009; Schellenberg et al. 2013). Compelling evidence

has shown that modification of diet is effective in reducing body weight. However,

considerable interindividual heterogeneity in participants’ response has been noted,
possibly because of genetic differences.

During the past decades, the temporal patterns in the increasing consumption of

sugar-sweetened beverages (SSBs) have paralleled the rise in the prevalence of

obesity in the United States; both have more than doubled since the late 1970s.

Compelling evidence supports a positive link between the consumption of SSBs

and the risk of obesity (Mozaffarian et al. 2011; Malik et al. 2010b; Schulze et al.

2004). However, there is scarce evidence concerning whether the risk of obesity is

modified by the genetic background. Qi et al. (2012) analyzed the interaction

between a genetic risk score (GRS)—an index for genetic predisposition to obesity

calculated by adding up the number of risk alleles of 32 BMI-associated SNPs—

and the intake of SSBs in relation to BMI and obesity risk in 6934 women from the

Nurses’ Health Study (NHS) and in 4423 men from the Health Professionals

Follow-Up Study (HPFS) and in a replication cohort of 21,740 women from the

Women’s Genome Health Study (WGHS). The genetic association with adiposity, a

long-term BMI increase, and the risk of incident obesity appeared to be more

pronounced with greater intake of SSBs. When combining the three cohorts, the

pooled relative risks (RR) of incident obesity for each increment of ten risk alleles

were 1.35 (95 % CI, 1.18 to 1.54), 1.59 (95 % CI, 1.33 to 1.91), 1.56 (95 % CI, 1.26

to 1.92), and 3.35 (95 % CI, 2.22 to 5.05) across the four categories of intake

(P< 0.001 for interaction). In a similar analysis among the three cohorts NHS,

HPFS, and WGHS, consistent interactions were found between the obesity GRS

and fried food consumption in relation to BMI (Qi et al. 2014). In the NHS and

HPFS (P for interaction� 0.001), among participants in the highest tertile of the

GRS, the differences in BMI between individuals who consumed fried foods �4

times/week and those consumed <1 time/week amounted to 1.0 (SE 0.2) in women

and 0.7 (0.2) kg/m2 in men, whereas the corresponding differences were 0.5 (0.2)

and 0.4 (0.2) kg/m2 in the lowest tertile of the GRS. The gene-diet interaction was

replicated in the WGHS (P for interaction< 0.001). In addition to SSBs and fried

food intakes, numerous studies have examined interactions of various dietary

factors such as total fat, P:S ratio, and carbohydrate (Qi and Cho 2008) with

preselected genetic variants (in candidate genes or GWAS-identified obesity

genes) in relation to body weight, BMI, and obesity risk. However, few findings

are reproducible. By the end of year 2013, no study has reported significant gene-

diet interactions on obesity-related traits on the whole-genome scale.

The Preventing Overweight Using Novel Dietary Strategies (Pounds Lost) is a

clinical trial including in total of 811 overweight (BMI� 25 kg/m2) and obese

(BMI� 30 kg/m2) adults who were randomly assigned to one of four weight-loss

diets varying in macronutrient contents (fat, protein, and carbohydrates) for 2 years

(Sacks et al. 2009). At 6 months, participants assigned to each diet had lost an

average of 6 kg, which represents 7 % of their initial weight. The participants began
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to regain weight after 12 months. By 2 years, weight loss remained similar in those

who were assigned to various diets. In the Pounds Lost trial, a series of analyses

have been performed to test gene-diet interactions in relation to weight loss. In the

Pounds Lost trial, the type 2 diabetes-associated TCF7L2 SNP rs12255372

(strongly correlated with the causal SNP rs7903146 in Europeans) significantly

interacted with fat intake on changes in BMI, total fat mass, and trunk fat mass (all

P< 0.05) at 6 months, with nonsignificant larger decreases for TT (risk genotype)

carriers on a low-fat diet (Mattei et al. 2012). Elsewhere (Haupt et al. 2010), T allele

(vs. C) at rs7903146 in TCF7L2 was associated with greater weight loss following

lifestyle intervention in the Tübingen Lifestyle Intervention Program (TULIP),

which consisted of exercise and diet intervention with decreased intake of fat and

increased intake of fibers (>15 g fiber per 1000 kcal), but not in the control arm

(Haupt et al. 2010). However, the findings were not replicated in the DPP, possibly

because fiber intake was not explicitly part of the DPP intervention, although

consumption of whole grains was. In a follow-up study of 304 participants from

TULIP, the rs7903146 SNP CC genotype of the TCF7L2 SNP was associated with

significantly greater weight loss in participants with high fiber intake, but not in

those with low fiber intake (Heni et al. 2012).

Other type 2 diabetes- and obesity-associated genetic variants have been also

found to modify diet interventions on weight change. For example, the FTO SNP

rs1558902 was found to interact with dietary protein on 2-year changes in fat-free

mass, total percentage of fat mass, and total-, visceral-, and superficial adipose

tissue mass in the Pounds Lost trial (Zhang et al. 2012). Also in this trial, Qi et al.

found significant interactions between the IRS1 SNP rs2943641 and carbohydrate

intake in relation to changes in weight loss and insulin resistance (Qi et al. 2011). At

6 months, participants with the risk-conferring CC genotype had greater decreases

in weight loss (P¼ 0.02) than those without this genotype in the highest-carbohy-

drate diet group, whereas the genetic effect was not significant in participants

assigned to the lowest-carbohydrate diet group (P for interaction¼ 0.03). The

gene-diet interaction was attenuated at 2 years due to weight regain. These data

highlight that nutrigenetic analyses in the randomized clinical trials may generate

data reflecting direct response to dietary intervention. However, how to validate the

findings of gene-diet interactions remains a major challenge, considering the

relatively small sample size in most of the existing trials and that studies are

generally different in designs.

26.6 Interactions Between Genetic Variants and Prenatal

Nutrition

Reduced birth weight is associated with adulthood risk of T2D; however, the

mechanisms underlying the association remain unclear. The thrifty phenotype

hypothesis (sometimes known as Barker’s hypothesis) states that malnutrition
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during fetal development leads to poor fetal and infant growth and predisposes to

adverse health outcomes (Hales and Barker 2001). According to the hypothesis,

fetal adaptation to a deprived intrauterine environment may produce permanent

changes that affect insulin secretion and resistance, and such metabolic changes

lead to elevated risk of late-onset diseases such as T2D. Of note, an alternative

explanation, known as the fetal insulin hypothesis, is that genetic variants that

reduce insulin secretion or action may predispose to T2D and also reduce birth

weight, since insulin is a key fetal growth factor. Such hypothesis has been

evidenced by observations that diabetes risk alleles are associated with low birth

weight in several studies including recent GWAS in the EGG Consortium (Freathy

et al. 2009; Freathy et al. 2007; Horikoshi et al. 2013).

Small birth size (birth weight), which is widely used as an indicator for fetal

malnutrition and growth retardation, has been associated with glucose intolerance,

impaired beta-cell secretory function, and an increased type 2 diabetes risk (Barker

et al. 1993; Whincup et al. 2008). These associations may be modulated by type 2

diabetes variants, which are involved in glucose metabolism and insulin secretion

(Grarup et al. 2007). An earlier study reported significant interactions between early

malnutrition during midgestation and the PPARG Pro12Ala polymorphism in

relation to impaired glucose tolerance and type 2 diabetes (de Rooij et al. 2006).

Several recent studies analyzed the interactions between the GWAS-identified

variants and birth weight—a marker of prenatal nutrition status—in relation to

adulthood diabetes risk and provided further evidence to the hypothesis.

In one study, variants of nine type 2 diabetes loci, TCF7L2, HHEX, PPARG,
KCNJ11, SLC30A8, IGF2BP2, CDKAL1, CDKN2A/2B, and JAZF1, were tested

(Pulizzi et al. 2009). The study includes 928 men and 1075 women. 15.6 % of the

participants had developed type 2 diabetes. Risk variants at the HHEX, CDKN2A/
2B, and JAZF1 loci significantly interacted with birth weight to predict future type 2
diabetes (P¼ 0.04, 0.03 and 0.02, respectively). A lower birth weight amplified the

risk conferred by the pooled variants in nine type 2 diabetes genes, and a higher

birth weight compensated the genetic effects. In another study, Van Hoek et al. (van
Hoek et al. 2009) assessed the interactions between type 2 diabetes susceptibility

genes and fetal exposure to famine. Seven SNPs at genes CDKAL1, CDKN2AB,
HHEX, IGF2BP2, KCNJ11, SLC30A8, and TCF7L2 were determined in 772

participants of the Dutch Famine Birth Cohort, which is composed of individuals

born around the time of the Dutch famine during World War II. Prenatal exposure

to famine was defined as a daily food ration of the mother <1000 calories during

any 13-week period of gestation. The IGF2BP2 polymorphism showed an interac-

tion with prenatal exposure to famine on glucose level (P¼ 0.009). However, none

of the polymorphisms interacted with birth weight. Taken together, these data may

provide a clue that an individual’s genetic background may modulate the response

to prenatal nutrition and subsequently affect type 2 diabetes risk caused by

hypercaloric environment in later life.

In two nested case-control studies of 2591 type 2 diabetes cases and 3052

healthy controls from the NHS and HPFS (Li et al. 2012), Li et al. tested the

interactions between genetic susceptibility to obesity or type 2 diabetes, evaluated
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on the basis of 32 BMI-associated variants or 35 type 2 diabetes-associated variants

and birth weight in relation to adulthood risk of type 2 diabetes. A significant

interaction was observed between birth weight and obesity GRS, which showed a

stronger association with type 2 diabetes risk in individuals with low birth weight.

In low-birth-weight individuals, the multivariable-adjusted odds ratio (OR) was

2.55 (95 % CI, 1.34–4.84) by comparing the extreme quartiles of the obesity GRS,

while the OR was 1.27 (1.04–1.55) among individuals with birth weight>2.5 kg (P
for interaction¼ 0.02). The type 2 diabetes-related GRS, however, did not interact

with birth weight. The data suggest that low birth weight and genetic susceptibility

to obesity may synergistically affect adulthood risk of type 2 diabetes. In a Chinese

cohort (Hong et al. 2013), Hong et al. calculated an obesity GRS based on six SNPs

associated with obesity risk in Chinese. The obesity GRS showed significant

interaction with birth weight in relation to obesity (P for interaction< 0.001).

The genetic effect appeared to be more pronounced in individuals with normal

range of birth weight (25–75 %) than those with either low (<25 %) or high

(>75 %) birth weight. The data suggest birth weight may significantly modify

genetic susceptibility to obesity risk.

26.7 Summary and Future Directions

A collection of dietary factors has been related to type 2 diabetes risk; in the

meanwhile, genetic research has identified numerous variants in human genome

that also affect type 2 diabetes and its risk factors. These findings have paved new

avenue for extensive investigations on gene-diet interactions. However, data from

this fast-moving area, namely, nutrigenetics, are still preliminary, and major chal-

lenges exist in study design and analytical strategies. Although GWAS have

demonstrated the validity of cross-sectional design in the identification of dis-

ease-predisposing variants, inherent bias of cross-sectional analysis such as

confounding and reverse causation becomes paramount in testing gene-diet inter-

action (Qi 2012). In addition, the lack of replication is also a serious limitation. An

epidemiologic framework for evaluating gene-diet/lifestyle interaction has yet to be

well established, which should include a method to account for the unbounded

universe of potential hypotheses. In contrast to the genomic space, where the

number of independent tests among common variants in the human genome is

finite and can be quantified, the number of nutritional components being evaluated

by nutrigenetics investigators is far more diffuse. Nevertheless, several recent

large-scale studies with prospective design and replication have emerged to shed

light on the potential ways to move forward. Previous studies largely focused on

preselected candidate genes or GWAS-identified genes; a usually very productive

next step would be to perform genome-wide analysis. In addition, to integrate

genomic studies with investigations on other global features of the human body,

such as epigenomics, proteomics, and metabolomics, as well as functional studies is

essential to provide insights into the potential mechanisms underlying the
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interactions between genetic and dietary factors. These should include the putative

effects of genetic variation on human dietary behaviors.

One of the ultimate goals of nutrigenetics is to develop personalized diet and

lifestyle interventions based on genetic profile that are better tailored to meet the

individuals’ needs. Understanding gene-diet interactions in relation to type 2

diabetes risk holds great promise for achieving such a goal. However, how statis-

tically significant interaction may reflect biological interaction has been a contro-

versial topic. In addition, the interactions determined for populations cannot be

applied directly to the individuals. Developing individual risk or benefit factors in

light of the individual’s genetic makeup and the complexity of foods remain

significant challenges for personalizing dietary advice for the prevention of the

disease. In addition, curbing the epidemics of obesity and related disorders calls not

only for changes in diet habits but also changes in policy, physical and social

environment, and lifestyles. In the following years, public health practice targeting

type 2 diabetes will not be able to ignore the impact of nutrigenetics, although it is

still a long journey to better appreciate its relevance to the practice of preventive

approaches for delaying onset of the disease, diminishing its severity, and optimiz-

ing human health.
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Chapter 27

Epilogue: What the Future Holds:

Genomic Medicine at the Heart

of Diabetes Management

Mark I. McCarthy, David Altshuler, and Michael Boehnke

Abstract Individual predisposition to type 2 diabetes is influenced by the combi-

nation of genetic variants, environmental exposures, behaviour and chance. Human

genetics offers a method to identify specific genetic variants that influence disease

risk and thereby the pathways and mechanisms through which they operate. These

pathways provide a powerful lens through which to develop biological insights into

metabolism and disease and have the potential to inform diagnosis and treatment.

Indeed, this potential is already being realised in precision medical management of

monogenic and syndromic forms of diabetes. While substantial progress has been

made identifying genetic variants for the common, multifactorial forms of type

2 diabetes, major challenges remain before we gain insight and translational benefit.

The difficulty derives from the genetic architecture of type 2 diabetes and other

common diseases, which involves a large number of variants of modest effect,

many non-coding and presumably regulatory in nature. The ability to define more

complete individual inventories of genetic risk and environmental exposure is only
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a start towards understanding the complex molecular pathophysiology that under-

lies disease, understanding that will support the development of integrative read-

outs that track causal pathogenetic mechanisms and the invention of new therapies

that restore homeostasis through these pathways.

Abbreviations

GLP-1 Glucagon-like peptide-1

GWAS Genome-wide association studies

An individual’s risk of developing type 2 diabetes reflects a mix of genetic

predisposition, environmental influence, behaviours and their interactions. The

rising global prevalence of type 2 diabetes highlights the limitations of current

preventative strategies, and high complication rates attest to the deficiencies of

available treatments. The increase in prevalence and complications speaks to the

importance of understanding the heterogeneous aetiology and complex pathophys-

iology of type 2 diabetes.

For many diseases, human genetics has provided transformative insights into the

biology of disease and in some cases, defined entirely novel translational opportu-

nities. However, despite the robust identification of scores of genetic loci influencing

risk of type 2 diabetes over the last decade (Morris et al. 2012; Mahajan et al. 2014),

the impact of these discoveries on clinical management has so far been negligible.

This is not specific to type 2 diabetes: the same is true for most other common

chronic diseases in which the last decade has seen the mapping of many new loci for

each disease. Most large-scale efforts to accelerate the implementation of genomic

medicine into clinical care (such as the UK’s plan to sequence 100,000 genomes and

the USA’s efforts towards a Precision Medicine Cohort) are, at least initially,

focussed on rare diseases and cancer and barely recognise the potential value for

common chronic diseases. Some observe this long timeline and have concluded that

the role of genetics as an engine for clinical advances for common diseases has been

massively oversold (Joyner & Paneth 2015).

Such sentiments combine natural impatience with a failure to appreciate the true

timescales for translation: in the few cases of Mendelian diseases where new

treatments emerged, the timeline from gene discovery to new therapy has been

long. For example, it took over 20 years to develop new treatments in the case of

cystic fibrosis, and most Mendelian diseases lack any targeted therapy. Similarly,

despite the great success identifying genetic underpinnings of cancer, only a

handful of targeted therapies are widely used, and most cancers lack mechanistic

treatment. After all, most genetic discovery in type 2 diabetes is less than a decade

old. In addition to the timeline, there is the greater complexity of type 2 diabetes

and common diseases that makes the path harder still. This begs the question: What

will it take to make genomic medicine a reality for common complex diseases, what

would it look like, and what impact will it have in the coming decades?
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27.1 An Assessment of the Genetics of Type 2 Diabetes

As described earlier in this volume, prior to the 2000s, there was little genetic

insight into the common forms of type 2 diabetes. Linkage studies and candidate

gene studies had failed to provide durable findings, and understanding was limited

to Mendelian forms. The recent advances in unravelling the genetics of type

2 diabetes and other common complex diseases date to the implementation of

genome-wide association studies (GWAS) and consequent development of the

scientific and collaborative framework that allowed large-scale data aggregation

and sharing. These efforts have rapidly generated a catalogue of more than 100 loci

with robust and reproducible associations to type 2 diabetes (Morris et al. 2012;

Mahajan et al. 2014), each surpassing stringent thresholds for significance (typi-

cally P< 10�8 or better) and reproducibility. Due to the technologies available at

the time, almost all the risk alleles discovered to date have been common (minor

allele frequency>5%), and most are widely represented across human populations.

Both these observations are consistent with the model that these type 2 diabetes risk

alleles arose long ago in human prehistory and suggest a degree of tolerance to their

evolutionary impact that is consistent with their modest effects on glucose homeo-

stasis. Cumulatively, these 100 loci explain 5–10 % of the variation in type

2 diabetes predisposition (Morris et al. 2012; Mahajan et al. 2014) and thus

10–20 % of the heritability of the disease.

The modest fraction of heritability explained by these statistically highly signif-

icant loci has prompted considerable speculation regarding the nature and extent of

the remaining component of genetic variance. The two main models are based

around (a) additional common alleles (the so-called infinite alleles model) or

(b) rarer variants of large effect (or a mixture of the two). Analyses that incorporate

all common variants (including those with statistical significance that fails the reach

the thresholds that are taken to constitute unequivocal association) consistently

show much higher fractions of heritability explained, indicating a long tail of

common variants of more modest effects (Morris et al. 2012). To date, sequencing

studies have failed to document more than a handful of lower-frequency variants

(see Chap. 5), and those found have had modest rather than Mendelian effects.

Larger-scale sequencing studies are in process and will more definitively assess the

contribution of rare variants, but there is little evidence that they will explain much

of the variance, even if discovering such variation may prove to be useful in its own

right. Based on analyses of available GWAS data, little of the undiscovered variance

resides in the interaction between genetic variants themselves or between genes and

the environment (Langenberg et al. 2014). No doubt, larger studies with extensive

and consistent data on lifestyle factors will increase power to address this possibility.

The picture emerging is one of great complexity in the genetic basis of type

2 diabetes—as was expected for a late-onset disease with a high population

prevalence involving core processes of energy homeostasis that are redundant and

highly conserved. Before the advent of GWAS, some argued that the genetics of

type 2 diabetes was likely so complex that no significant findings would be found.
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Having observed that a large but finite number of genetic risk factors can be found,

the key question is whether new biology can be learned and new interventions

developed based on this insight. Where it has been possible to transmute those

signals into biological inference, the data point to the involvement of multiple

etiological pathways, reflecting the diverse mechanisms through which the complex

machinery of glucose homeostasis can be perturbed.

27.2 From Genetics to Biology and Interventions

It is our hope that in a generation or two, the management of type 2 diabetes will be

significantly advanced as compared today. The focus will be on preserving normal

glucose homeostasis in those demonstrated at substantial risk, rather than dealing

retrospectively with the consequences of prolonged hyperglycaemia. It is tempting

to imagine a greater emphasis on public health-based prevention and education

focussed on an individual’s identified risk profile and observed lifestyle and behav-
iour, although that will require interventions much more effective than those

currently available. This will include new drugs capable of effective prevention

based on reversing the underlying causes of disease. Where intervention is required

in those who have escaped prevention and developed disease, effective approaches

may include surgical or cell-based therapies in addition to pharmacological agents:

these should aim to reverse the disease process (to restore beta-cell mass and/or

function and/or to correct the primary defects in insulin sensitivity) rather than, as

now, attempting merely to control the hyperglycaemia that is a manifestation of

disease.

For human genetics to play a major role in these developments, risk variants

revealed by population-level sequencing must be used to identify targets and

pathways causally implicated in the development of human diabetes (Plenge

et al. 2013). The overlap between genetics and treatment is already evident: the

genes encoding the targets of sulfonylureas and thiazolidinediones harbour variants

associated with type 2 diabetes (Morris et al. 2012; Mahajan et al. 2014), and

variants in and around the genes encoding the receptors for gastric inhibitory

polypeptide and glucagon-like peptide-1 (GLP-1) are associated with diabetes

risk or related glycaemic traits, paralleling the clinical value of therapeutic manip-

ulation of this pathway using GLP-1 receptor agonists and dipeptidyl peptidase-4

(DPP-4) inhibitors (Morris et al. 2012; Wessel et al. 2015; Mahajan et al. 2015). A

similar story holds for the targets of statins and ezetimibe, both of which appear

amongst the GWAS signals for lipid traits (Teslovich et al. 2010; Global Lipids

Genetics Consortium et al. 2013). These examples provide evidence of the overlap

between genetic causation and therapeutic benefit.

If we are to translate findings from GWAS into therapeutic hypotheses, the effort

will require identification of the genes responsible for mediating the effects of each

variant, assembling these genes into pathways and understanding the directional

relationship between pathway activity and disease risk. Connecting non-coding
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variants to the genes they regulate is a major challenge, but the ability to generate

hypotheses has been made more tractable by emerging maps of epigenetic regula-

tory factors and of tissue-specific gene regulatory networks. The ability to test these

hypotheses has been powerfully enabled by the advent of gene editing to rigorously

test the role of individual gene variants in their native genomic context. Rapid

advances in stem cell differentiation may offer human cell models in which the

cellular context as well as the genomic context can be tailored to the human disease

state.

Given the many technical hurdles required to understand non-coding variants, at

present the most direct route to novel targets lies in the detection, through sequenc-

ing, of rare, large-effect alleles. Those with protective phenotypic effects can point

to targets to inhibit, with a primary example being PCSK9 for LDL-cholesterol and
coronary artery disease (CAD). It is little more than a decade since it was shown

that loss-of-function variants in this gene have profound effects on lipid levels and

CAD risk, and two different potent proprotein convertase subtilisin/kexin type

9 (PCSK9) inhibitors have been shown to lower LDL-cholesterol and reduce risk

of CAD (Cohen et al. 2006). Evidence that individuals with only one functional

copy of the SLC30A8 gene have a 70 % reduction in diabetes risk offers similar

potential (Flannick et al. 2014). The latter example illustrates the overlap of genes

with common and rare variants, as the SLC30A8 gene was selected for deep targeted
sequencing because it harbours a common variant signal of modest effect identified

initially by GWAS.

While it is unclear how many such examples remain to be discovered, the

numerical relationship between the per-base mutation rate (~1� 10�8 per base

per generation) and the size of the human population (~1.5� 1010 haploid

genomes) means that most mutations compatible with survival are present in

hundreds of living individuals. The phenotypic consequences of losing one or

both copies of a given gene are typically being played out in the medical histories

of thousands of our fellow humans. Harnessing that information should be practical

with the combination of electronic health records, genome sequencing and com-

bined analyses—although overcoming the social and ethical barriers to large-scale

data collection and sharing is one of the great challenges of our age. Whether sooner

or later, it is likely that many millions of people will have genome sequencing data

combined with information on diabetes, with success bringing exquisite biological

insights and additional interventional targets.

27.3 From Genetics to Prediction

One can view the delivery of mechanistic insights leading to novel interventional

targets as knowledge gained through the joint analysis of many human sequences.

However, there is a second, parallel imperative, which is focused on understanding

how analysis of a single human sequence (yours, mine, your child’s) can provide
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clinically useful information, be that through stratification of future disease risk,

definition of disease subtype or prediction of response to a diversity of potential

interventions.

Neonatal diabetes provides an example of what is possible. The combination of

an extreme phenotype (diabetes diagnosed in the first 6 months of life) and

penetrant mutations in a well-understood gene (KCNJ11, encoding the beta-cell’s
KATP channel) has led directly to genetically driven individualised therapy in the

form of high-dose sulfonylureas (Gloyn et al. 2004; Pearson et al. 2006).

The common, complex form of type 2 diabetes presents a much greater chal-

lenge. As we have seen, known risk variants account for only 5–10 % of variation in

risk, and, in tests of diagnostic or predictive accuracy, genetic tests are comfortably

outperformed by classical risk factors (age, BMI, ethnicity) (Meigs et al. 2008;

Walford et al. 2014). There is some evidence that the relative performance of

genetic prediction improves when performed early in life or in lower risk individ-

uals (de Miguel-Yanes et al. 2011), but predictive accuracy still falls a long way

short of that required for clinical utility.

It should not be assumed that the limited predictive value simply reflects the

incomplete coverage of existing discovery efforts and that further expansion of the

inventory of predisposing variants will solve the problem. Rather, there are two

major reasons it can be assumed that the accuracy of risk estimation is likely to

remain constrained, even in the face of a more complete inventory of predisposing

variants.

First, genome sequence variation represents only one of several contributors to

an individual’s risk of developing a late-onset disease such as type 2 diabetes. Full

specification of that risk requires that information on genetic predisposition be

integrated with all the other factors that impinge on metabolic performance over a

lifetime. These include the impact of early life events (such as intrauterine malnu-

trition), mediated through epigenetic modifications, as well as the constellation of

environmental and lifestyle experiences (diet, physical activity, illness, drugs, social

conflict, etc.) from infancy through to senescence, not to mention the play of chance,

mediated, for example, through somatic mutation, for which there is growing

evidence of a relationship to diabetes (Jaiswal et al. 2014) (see Fig. 27.1a). The

certainty of limited prediction is evidenced best by studies of identical twins,

who despite showing high concordance in type 2 diabetes over a lifetime, can

develop the disease decades apart or in some cases remain discordant altogether.

Second, in a polygenic disease, the independent assortment of many risk variants

leads to a continuous rather than dichotomous distribution of risk. Thus, even if it

proves possible to enumerate the extended list of variants that explain most of the

genetic variance, this information will provide a graded distribution of genetic risk,

with most individuals at near-average levels of risk. Moreover, variants in the tail of

the distribution (which collectively may explain a substantial proportion of the

variance) will not be particularly useful in determining individual predisposition,

because their wide confidence intervals dilute the precision of their large effect size.

Additional complexity derives from possible epistatic relationships that may be too

numerous to be identified and too context-dependent to be informative (Visscher

et al. 2010).
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Nonetheless, the cost of genome sequencing is falling fast, and the value of these

data needs not be transformative to become a regular part of the medical record. It

seems likely that in a decade or two, when capturing and interpreting a whole

genome sequence may costs less than a course of antibiotics or an outpatient

appointment, the value of depositing this information within an individual’s med-

ical record will no longer be a matter of debate. Once universal genome-wide

medical sequencing is in place—justified primarily by the obvious benefits for the

management of rare diseases, and of cancer—the proposition for common, chronic

disease changes. The question becomes not whether to collect the data, but rather

what additional information is needed to interpret, refine and augment the clinical

value of these data for a disease like type 2 diabetes?

In a generation from now, we will have implemented, for many diseases,

strategies for measuring individual risk that integrate genetic information from a

multiplicity of risk variants with information from the diversity of environmental

and behavioural impacts on risk. These strategies will be partly based around better
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Fig. 27.1 (a) Progress of an individual from health to disease is dependent on the dynamic

interplay of genetic, epigenetic and environmental factors during life. Whole genome sequence

gathered in early life captures only a small component of risk. (b) Consider the progress of an

individual from health to a given diseased state. Based on perfect information, this theoretical

individual’s ‘true’ trajectory follows the blue line. With current knowledge (e.g. GWAS data,

limited clinical and biochemical data), the ‘visible’ trajectory for that same individual tracks this

only poorly (green). With more complete information (whole genome sequence plus dynamic

genomic profiling for a robust molecular signature every 10 years), tracking of disease progression

is much improved (red), prompting (in this example) intervention at age ~40 years (orange arrow)
that is successful at reducing that individual’s risk of subsequent disease
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metrics of the risk factors themselves, achieved through advances in human genet-

ics and by an explosion in the use of wearable sensors and hand-held devices.

An additional critical step is likely to be the use of biomarkers that directly

capture disease progression and pathophysiological profile and which can, through

periodic measurement (e.g. every 5 years), provide readouts of an individual’s
fluctuating risk of disease over the course of their lifetime. It is likely that these

biomarkers will reflect the integrated output of the pathways influenced by the

genetic risk factors, just as serum LDL-cholesterol integrates the summary action of

many genes and environmental factors in contributing to risk of CAD. Such bio-

markers would reflect genetic potential (as imperfectly revealed by genome

sequence) and risk factor exposure and capture an individual’s empirical trajectory

as they travel through molecular ‘space’ (Chen et al. 2012). For example, an

individual with a higher than average estimated genetic risk of diabetes, who

takes up marathon running, should see his or her measured risk of disease progres-

sion biomarkers ebb and flow in parallel. Because these biomarker measures would

be repeated at regular intervals, the trajectories they describe could be judged not so

much against population norms, but against one’s own personal history (i.e. using

the ‘historical self’ as control), in much the same way that the authorities monitor

athletes and cyclists for evidence of doping. To be informative of risk throughout

life, both before and after intervention, the best biomarkers will represent direct

readouts of causal pathways (see Fig. 27.1b).

If the goal is to find an ‘LDL-cholesterol’ for type 2 diabetes, where should we

look? One path is to work ‘up’ from the genetics—identifying the molecular

pathways regulated by scores of disease-associated genetic variants. The second

is to work ‘down’ from the phenotype: capturing the burgeoning range of global

endophenotypes within a pathological state allows us to search beyond classical

biomarkers and admits the possibility of complex molecular signatures of risk,

based around networks of genetic, transcriptomic, proteomic and metabolomic

features. Access to large, well-characterised cohorts, with longitudinal sampling

and linkage to electronic health records, will generate rich datasets that can be

mined to identify them.

There is no guarantee that such a biomarker exists for type 2 diabetes or for any

other particular chronic disease for that matter. The potential for pathophysiological

heterogeneity of type 2 diabetes may represent an obstacle that proves impossible to

dissect. A more optimistic view is that the many genetic risk factors reflect many

components of a more limited number of pathways. It is possible that the longitu-

dinal integration of diverse data types may actually empower efforts to shatter the

type 2 diabetes monolith and expose the distinct processes that contribute to

individual risk of disease, each of which may have its own molecular signature.

This hypothesised reclassification of type 2 diabetes is often simplistically

described in terms of defining discrete subtypes (type 2a, 2b, 2c, etc.). It seems

more likely, given the genetic architecture and pervasiveness of relevant exposures,

that each individual has his or her own pathophysiological multicoloured palette of

type 2 diabetes risk. If so, the aim should be to describe what contribution each of
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these processes is, at any given time, making to the evolution of their disease and to

tailor their management accordingly.

27.4 Diabetes Care in the Future

If all this comes to pass, the focus of diabetes care will have shifted substantially.

The disease may not have been eliminated, even in wealthy countries, but the

emphasis, and the funds, will have migrated from treatment to prevention. Reliable,

actionable, real-time information on type 2 diabetes risk and subtype profile will be

available through the integration of baseline genome sequence information and

enhanced measures of exposures, with complex molecular biomarkers gathered as

part of a universal programme of genomic disease prediction. Such information will

guide individualised preventative strategies that draw upon a far wider range of

effective interventions. This will include more precise behavioural modifications,

as well as smarter drugs, optimised for efficacy and safety, which can be targeted to

individuals on the basis of their component pathophysiological profile. If so,

genomic medicine, already a reality for monogenic forms of diabetes, will have

proven equally transformative for more complex forms of the disease.
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