
An Argumentation Framework for BDI Agents

Tudor Berariu

Abstract. This article presents a practical approach to building argumentative BDI
agents. As in the last years the domain of argumentation reached maturity and offers
now a very rich and well structured abstract theory, the challenge now is to put this
work into practice and prove its usefulness in real applications. There is a high inter-
est from the multi-agent systems community in applying argumentation for agents’
defeasible reasoning.

The main goal of the work presented in this paper was to provide the means to
enable argumentative capabilities in BDI agents. For this reason, Jason, a platform
for the development of multi-agent systems using the BDI model of agency, was
extended with a module for argumentation. The proposed argumentation module is
decoupled from the BDI reasoning cycle as it operates only on the belief base of the
agents and does not interfere in the execution of plans, creation of goals, or agent’s
commitments. Although no protocol for argumentation-based dialogues is proposed
here, agents can engage in any such dialogues as the argumentation module makes
suggestions of attacks to put forward in conversation or gives structured justifica-
tions for different beliefs. An instantiation of Dung’s abstract framework is used
with state of the art structure of arguments and ways of attack and defeat between
arguments.

1 Introduction

One fundamental aspect in artificial intelligence and multi-agent systems is agent
reasoning about the external world, itself or the actions to take at a certain point of
time.

One common problem in agent logic is ensuring the consistency of beliefs af-
ter information conflicting with previous view of the world is perceived. After such

Tudor Berariu
University Politehnica of Bucharest, Bucharest, Romania
e-mail: tudor.berariu@gmail.com

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 343
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_40, c© Springer International Publishing Switzerland 2014



344 T. Berariu

an information update, the consistency of the belief set must be preserved and this
process is called non-monotonic reasoning. Two distinct approaches to its formal-
ization are known. First, there are different extensions to the classical logic like
McDermott and Doyle’s modal operator M [12], Reiter’s logic for default reason-
ing [14] or McCarthy’s circumscription theory [11]. The second class of formalisms
for mechanizing non-monotonic reasoning are the various families of truth mainte-
nance systems (TMS), first proposed by Doyle in [6].

Close to Doyle’s vision, argumentation provides an alternative way to deal with
non-monotonic reasoning: arguments can support existing beliefs or can act as coun-
terarguments against them. In this way, solving conflicts between arguments does
the job of belief revision.

The paper presents an argumentation-based system able to maintain consistency
of the belief base of BDI agents, while hiding the functioning of the argumenta-
tion mechanisms from the BDI reasoning cycle. The system allows the agents to
query the argumentation module for suggestions of attacks or argumentation-based
justifications for accepted or rejected beliefs

The approach starts from Dung’s abstract argumentation framework [7] but it
is centered towards the integration of argumentation with the practical aspects of
BDI agent behaviour by developing an argumentation module to be integrated in
the Jason platform1.

The document is structured as follows: section 2 introduces some fundamental
concepts from argumentation theory, section 3 describes my practical solution to
the problem stated above, while section 4 brings an example of non-monotonic rea-
soning that uses argumentation in the proposed system.

2 Abstract Argument Systems

The work of Dung [7] is considered the first major step towards argumentation
systems as it provides the means to use argumentation theory for non-monotonic
reasoning. Dung offers an abstraction of the attack relation between arguments, on
top of which refutation, a central concept in argumentation, is built. A refutation of
an argument is an opposed argument that attacks the original argument and defeats
it. There are several ways to attack an argument: by asking an appropriate critical
question that raises doubt about the acceptability of the argument, by questioning
one of its premises or by putting forward counter-arguments that oppose the origi-
nal argument, meaning that the conclusion of the opposing argument is the opposite
(negation) of the conclusion of the original argument. There are also more complex
ways to attack arguments: doubting about the relevance of the premises to the con-
clusions or even about the relevance of the argument in relation to the issue of the
dialogue, arguing that a set of arguments commit a logical fallacy.

An example of Dung-style representation of arguments is that shown in Figure 1.
In that example, argument A1 attacks A2, A3 and A4; A3 attacks A5; A5 and A6
attack each other.

1 http://jason.sourceforge.net/Jason/Jason.html

http://jason.sourceforge.net/Jason/Jason.html


An Argumentation Framework for BDI Agents 345

Fig. 1 Representation of argument attacks

An abstract argument system is a tuple 〈A ,R〉 where A is a set of arguments
and R is a binary relation over A called attack relation.

It is clear that, while arguments attack each other, they cannot stand together and
their status is subject to evaluation. That means that the justification state of each
argument must be determined. An argument is regarded as justified if it survives the
attacks it receives and it is rejected otherwise.

The argument evaluation needs a formal method that describes the steps of the
process or the states of arguments based on some criteria. These formal methods are
called argumentation semantics and there are two categories: extension-based and
labeling-based.

Extension-based semantics specifies how to obtain sets of arguments E where
each extension E of an argumentation framework 〈A ,R〉 is a subset of A con-
taining a set of arguments that can stand together. In extension-based semantics the
justification state of an argument is defined in terms of membership of the respective
argument to the extensions.

In extension-based semantics two alternative types of justification, namely skep-
tical and credulous can be considered. In a formal way, for an argumentation frame-
work AF and a semantics S , an argument a is:

• skeptically justified if and only if ∀E ∈ ES (AF) : a ∈ E
• credulously justified if and only if ∃E ∈ ES (AF) : a ∈ R.

Using this classification, justification states of arguments can be defined. An argu-
ment a is:

• justified if and only if ∀E ∈ ES (AF) : a ∈ E (this corresponds to skeptical justi-
fication);

• defensible if and only if ∃E1,E2 ∈ ES (AF) : a ∈ E1,a /∈ E2 (this corresponds to
credulous justification)

• overruled if and only if ∀E ∈ ES (AF) : a /∈ E (arguments that cannot be justified
are rejected).



346 T. Berariu

Building on definitions for acceptable arguments (that are defended against all at-
tacks) and admissible sets (that contain only acceptable arguments), Dung proposes
four traditional semantics:

complete E is a complete extension if and only if E is admissible and every argu-
ment of A which is acceptable wrt. E belongs to E

grounded The grounded semantics are easier to explain by the process of building
them incrementally from the unattacked arguments. The arguments attacked by
them can be suppressed. The process is repeated until no new arguments arise af-
ter a deletion step. The set of all initial arguments identified so far is the grounded
extension.

stable A stable extension attacks all arguments not included in it.
preferred An extension E is a preferred extension of AF if E is as large as possible

and able to defend itself from attacks.

There are other extension-based semantics proposed in the literature: stage seman-
tics [15] (the stage extension is the maximum conflict-free set); semi-stable se-
mantics [4] (the semi-stable extension is the maximal complete extension); ideal
semantics [8]; CF2 semantics [1]. Another semantics proposed, the prudent seman-
tics [5] is based on a more extensive notion of attack in the context of traditional
semantics: an argument a indirectly attacks an argument b if there is an odd-length
attack path from a to b. Recent work on argumentation semantics explore methods
of local computation of extensions [10].

This represents the theoretical basis for our work.

3 Building Argumentative Agents in Jason

There are some attempts in the literature to combine the BDI model of agency with
argumentation based reasoning. Most of these works concern negotiation or other
dialogue games where agents have to respect a certain protocol. The challenge tack-
led in this document is a bit different. The goal here is to build an argumentation
module attached to the BDI engine that enables general argumentation capabilities
to the agents, not just for a specific dialogue game. By this claim I mean that an agent
capable of a non-monotonic argumentation based reasoning can participate into ar-
gumentation dialogues if the rules to follow a specific protocol are programmed in
the agent and, possibly, an argumentation strategy is defined. For persuasive agents,
such a strategy should work using a proper argumentation semantics that identifies
the set of arguments to defeat, as the one proposed in [9]. An aspect one should be
careful when designing an argumentation based reasoning engine for a BDI agent is
that information comes from multiple sources which can influence the status of each
piece of information from an argumentation point of view and, as a consequence,
the entire reasoning process.

The framework used in this project is based on the latest instantiations of Dung’s
abstract formalism, especially on Prakken’s work [13]. As in [13], I used an ab-
stract argumentation framework with structured arguments and three types of attacks



An Argumentation Framework for BDI Agents 347

between them: rebutting, undercutting and undermining. Also, the framework takes
advantage of the distinction between contradiction and contrariness (as in [2]).

To construct multi-agent systems in the BDI paradigm, we chose Jason a platform
that uses a high level language (an extension of AgentSpeak) [3] for programming
the agents.

The approach taken in this work was to separate the BDI strict reasoning cycle
(the Jason reasoning cycle) from the argumentation defeasible reasoning. The result
is that there are two reasoning modules that operate on the agent’s knowledge, but
not on the same piece of information. This might seem a disadvantage at first, but
there are rational reasons to do that.

One advantage of decoupling the BDI reasoning module from the argumentation
module is the fact that agents might receive (sense) a lot of data that is irrelevant
from an argumentative point of view. There are beliefs which generate goals and
plans that do not need an argumentation treatment. For example, an agent has a mo-
tion sensor and its only use is decide whether to turn on the light or not. Represent-
ing all this data as arguments in an argumentation framework brings an unneeded
overhead.

3.1 Coupling the Modules

When a new belief is added, deleted or a new set of percepts are received from the
environment, before the BDI logic starts to treat the new events, these are intercepted
by the argumentation module. Here a sequential update on many layers is done and
a set of visible modifications (additions and removals) to the belief base is sent to
the BDI reasoning engine in Jason.

First, from the set of all beliefs and percepts received (for either addition or re-
moval), only those that are relevant for the argumentation system are kept. The oth-
ers are passed untouched to the BDI engine. The filtering is done on the basis of
the language and on the formulas that appear in rules. If there is no rule that has as
an antecedent or as its consequent a certain formula, then the latter is not relevant
for argumentation. This verification adds a small computational overhead for the
cases when beliefs or percepts that are irrelevant to argumentation pass through the
argumentation module.

Next, these beliefs and percepts are transformed into premises in the knowledge
base of the argumentation theory. Here, the type of premise is decided as described
later. There are several rules that apply in order (user expressed preferences, custom
functions or default rules from the argumentation theory: e.g. the Carneades model).

On the basis of the modified premises (new premise, premises whose types were
changed, deleted premises) the set of matched rules is also updated. New arguments
are formed if new rules match or old arguments are deleted if they correspond to
premises that were removed.

At the next level, the list of attacks between arguments is updated. First, attacks
from and to deleted arguments are removed. Second, new attacks for new arguments
based on the contrariness function are computed.



348 T. Berariu

Fig. 2 The course of action in the argumentation framework when a new belief is added/
removed or perceived

With the new list of attacks, the successful attacks which result in defeat are
filtered. This is done using the theory described in the previous section.

The updates propagate further to the semantic extensions of arguments. The last
set of accepted arguments is saved. With the new graph of defeats between argu-
ments a new set of acceptable arguments is computed. The preferred semantics are
used as they have the highest level of consistency. The differences between the old
set and the new set of accepted arguments are actually the changes that are transmit-
ted back to the Jason agent to be processed by the agent’s belief revision function.



An Argumentation Framework for BDI Agents 349

3.2 Controlling the Argumentation Module through Beliefs

As all added or removed beliefs pass through the argumentation framework, the
same strategy was used to control the argumentation module with beliefs that have
reserved predicate names.

In order to control the way in which conclusions are accepted, I introduced the
argument acceptability(arg) belief, where arg takes on of the follow-
ing values: {CREDULOUSLY ACCEPTABLE for credulously S-acceptable conclu-
sions, SKEPTICALLY ACCEPTABLE, or RANDOM}. In a similar manner, using the
plausible argument orderings one can configure one of the two plausible
argument orderings defined by Amgoud: LAST LINK or WEAKEST LINK.

There are two special beliefs for defining strict and defeasible rules.
defeasible rule(RuleName,RuleText) adds a defeasible rule to the ar-
gumentation system, while strict rule(RuleName,RuleText) adds a strict
rule. Rules are given in the following format:

literal1& . . .&literaln ⇒ ϕ

where ϕ is the conclusion and literali with i ∈ {1, . . . ,n} are antecedents.
Next, there are two predicates used to define the contradiction and the contrari-

ness relations: contradictory(Literal1, Literal2) and
contrary(Literal1, Literal2). As undercutting attacks against the ap-
pliance of a rule are needed, beliefs in the form evidence against(Literal,
RuleName) add such information in the argumentation system.

In order to differentiate between different types of premises based on their source,
the premise from(AgentName,PremiseType) beliefs can be used.

As the argumentation module should help the agent in persuasion, inquiry, nego-
tiation or deliberation dialogues, another belief that queries the argumentation mod-
ule has been added. why(Proposition) interrogates the argumentation module
to find out why the respective argument is accepted or rejected. The response comes
in a belief because(X,Y) where X is one of {in,out} and possible answers are:

• because(out,unknown) : which means that the proposition in the query
is not in the knowledge base. Agent is not aware of the query formula or its
negation.

• because(in,premise(premise type)) : which means that the specific
proposition was added as a premise in the knowledge base and is not the result
of any form of reasoning (strict or defeasible). The current status of that premise
is premise type (axiom, assumption,. . .).

• because(out,¬Proposition)which means that the formula in the query
is not itself in the knowledge base, but its negation is currently an accepted argu-
ment.

• because(in,¬Proposition) which means that the formula in the query
is not itself in the knowledge base, but its negation is currently an overruled
argument.



350 T. Berariu

• because(in,Rule) : which tells the agent that the argument corresponding
to the proposition in the query is currently accepted and it is the result of a ap-
plying the (defeasible or strict) rule Rule.

• because(out,ListOfDefeats) : which returns a list with all the conclu-
sions of the arguments that defeated the current one.

The argumentation engine maintains a graph-like representation for the arguments
and their justifications. In order to resolve why(Proposition) queries, the ar-
guments space is explored starting from the belief matching Proposition.

4 Case Study: Business Trip

In what follows a scenario for argumentation implemented in Jason is described.
This example uses a single agent for whom the argumentation module works just as
a nonmonotonic reasoning agent.

In the next figures, a green box represents an accepted argument, a red box a
refuted one, while blue is for strict rules and yellow for defeasible rules.

Consider an agent that has only one belief that represents the information that is
the birthday of one of his friends and one defeasible rule which says that if is the
birthday of a friend, then he probably goes to a party. Consider now that we add
another belief to the agent. Suppose he has a meeting in Berlin, so he will probably
fly to Berlin. He cannot be both in Berlin and Bucharest at the same time, so the two
propositions are marked as contradictory.

friend_s_birthday.
defeasible_rule("DR1","friend_s_birthday => go_to_party").
meeting_in_berlin.
defeasible_rule("DR2","meeting_in_berlin => fly_to_berlin").
contradictory("go_to_party","fly_to_berlin").

Now, arguments for go to party and fly to berlin attack each other. As
there are no preferences between defeasible rules or premises that can be applied
here, both attacks are successful.

There are two preferred extensions, one that contains fly to berlin and one
that contains go to party. Hence, if the agent is credulous, he will accept both
and if he is a skeptical agent, he will accept none of the two (see Figure 3). Both
provide good information about the uncertainty of arguments, but neither is useful
from a practical point of view. An agent cannot use all the arguments that he credu-
lously accepted, as there can be pairs of conflicting arguments and it’s not useful to
reason just on the arguments that can be skeptically accepted as that could lead to
no action taken (not going to the party and not flying to Berlin).

Now, let’s consider, that in general, if you have to go to a business meeting you
go in most of the cases. But you are not going to all of your friends’ birthday parties.
So, we add a rule that says that the appliance of rule DR2 is more probable than the
appliance of rule DR1.



An Argumentation Framework for BDI Agents 351

(a) Credulous (b) Skeptical

(c) Random preferred

Fig. 3 Accepted arguments depending on the acceptability principle

argument_ordering("LAST_LINK").
prefer_rule("DR1","DR2").

Now, as just the attack from DEF1 to DEF2 succeeded, there is only one preferred
extension (so all arguments are both skeptically and credulously accepted). The new
state of the arguments is represented in Figure 4.

Now, suppose that the agent watched the news were the possibility of another
eruption of the volcano in Island was announced. This would mean that the air-
ports will be closed. This last argument provides a situation in which the rule
meeting in berlin⇒ fly to berlin cannot be applied. That results in an
undercutting attack as in Figure 5.

The Jason code for the information added is:

volcano_at_news.
evidence_against("airport_closed","DR2").
strict_rule("SR1","volcano -> airport_closed").
defeasible_rule("DR3","volcano_at_news => volcano").

As the argument corresponding to airport closed is not attacked by any other
argument, it will defeat the argument with the conclusion fly to berlin in all
preferred extensions.



352 T. Berariu

Fig. 4 Argument ordering using rule preferences

Fig. 5 Example of undercutting attack

5 Conclusions and Future Work

This paper presents a framework for supporting abstract argumentation reasoning
in BDI agents. State-of-the art concepts from argumentation theory were put in



An Argumentation Framework for BDI Agents 353

practice using a popular platform for developing BDI agents, Jason. In our work,
we implemented a module to be used when programmers want to add argumenta-
tion reasoning to their agents built in Jason. The use of this module does not affect
the rest of the functioning of Jason as the module intercepts any addition or removal
of beliefs in forms of percepts , messages from other agents or mental notes of the
agent itself and outputs to the Jason reasoning engine the effects of applying ar-
gumentation to that specific change. What the agent will be aware of (in the Jason
context) is a set of consistent beliefs, as the other pieces of information correspond-
ing to defeated arguments are hidden.

Future work will investigate the impact argumentation has on different types of
dialogues between agents, especially in negotiations. Another line of development
we foresee emerging from this work is the study of the utility of different semantics
in practical scenarios of multi-agent interaction.

Acknowledgment. This work has been funded by project ERRIC (Empowering Romanian
Research on Intelligent Information Technologies), number 264207/FP7-REGPOT-2010-1.

References

[1] Baroni, P., Giacomin, M., Guida, G.: SCC-recursiveness: a general schema for argu-
mentation semantics. Artificial Intelligence 168(1-2), 162–210 (2005)

[2] Bondarenko, A., Dung, P.M., Kowalski, R.A., Toni, F.: An abstract, argumentation-
theoretic approach to default reasoning. Artificial intelligence 93(1), 63–101 (1997)

[3] Bordini, R.H., Hübner, J.F., Wooldridge, M.: Programming Multi-Agent Systems in
AgentSpeak using Jason. John Wiley and Sons, Ltd. (2007)

[4] Caminada, M.: Semi-stable semantics. In: Computational Models of Argument: Pro-
ceedings of COMMA, pp. 121–130 (2006)

[5] Coste-Marquis, S., Devred, C., Marquis, P.: Prudent semantics for argumentation frame-
works. In: 17th IEEE International Conference on Tools with Artificial Intelligence,
ICTAI 2005, pp. 5–572. IEEE (2005)

[6] Doyle, J.: A truth maintenance system* 1. Artificial Intelligence 12(3), 231–272 (1979)
[7] Dung, P.: On the acceptability of arguments and its fundamental role in nonmonotonic

reasoning, logic programming and n-person games* 1. Artificial Intelligence 77(2),
321–357 (1995)

[8] Dung, P., Mancarella, P., Toni, F.: A dialectic procedure for sceptical, assumption-based
argumentation. In: Proceeding of the 2006 conference on Computational Models of
Argument: Proceedings of COMMA 2006, pp. 145–156. IOS Press (2006)

[9] Gratie, C., Florea, A.M.: Argumentation semantics for agents. In: Cossentino, M.,
Kaisers, M., Tuyls, K., Weiss, G. (eds.) EUMAS 2011. LNCS, vol. 7541, pp. 129–144.
Springer, Heidelberg (2012)

[10] Gratie, C., Florea, A.M., Meyer, J.J.C.: General directionality and the local behavior of
argumentation semantics. In: Ossowski, S., Toni, F., Vouros, G.A. (eds.) Proceedings of
the First International Conference on Agreement Technologies, AT 2012, Dubrovnik,
Croatia, October 15-16. CEUR Workshop Proceedings, vol. 918, pp. 113–127. CEUR-
WS.org (2012)

[11] McCarthy, J.: Circumscription–a form of non-monotonic reasoning. Artificial Intelli-
gence 13(1-2), 27–39 (1980)



354 T. Berariu

[12] McDermott, D., Doyle, J.: Nonmonotonic logic 1. Artificial Intelligence 13, 41–72
(1980)

[13] Prakken, H.: An abstract framework for argumentation with structured arguments. Ar-
gument & Computation 1(2), 93–124 (2010)

[14] Reiter, R.: A logic for default reasoning. Artificial Intelligence 13(1-2), 81–132 (1980)
[15] Verheij, B.: Two approaches to dialectical argumentation: admissible sets and argumen-

tation stages. In: Computational Dialectics Workshop, pp. 3–7. Citeseer (June 1996)


	An Argumentation Framework for BDI Agents
	1 Introduction
	2 Abstract Argument Systems
	3 Building Argumentative Agents in Jason
	3.1 Coupling the Modules
	3.2 Controlling the Argumentation Module through Beliefs

	4 Case Study: Business Trip
	5 Conclusions and Future Work
	References




