
Agents Modeling under Fairness Assumption
in Event-B

Irina Mocanu, Lorina Negreanu, and Adina Magda Florea

Abstract. Multi-agent systems, which are composed of autonomous agents are
present in applications that span a wide range of domains: ambient intelligence,
telecommunications, finance, Internet, energy, health. Therefore, it is critical to have
rigorous, effective design and verification methods to ensure their development. In
this paper, we present a formal modeling and proof of a multi-agent system for re-
questing services, under the fairness assumption. The model is specified and verified
using Event-B and the Rodin platform.

1 Introduction

This paper specifies and verifies, using the Event-B [5], [6] formal specification
method, a multi-agent system for requesting services under the fairness assumption.
This should be read as an extension of the model we previously specified in [9], who
will be integrated in an ambient intelligent system.

Fairness plays an important role in software specification, verification and de-
velopment. Fairness properties state that if something is enabled sufficiently often,
then it must eventually happen [8].This becomes important in our model when the
requests are satisfied. It is possible that a request cannot be satisfied for an indefi-
nite period of time while other requests continue normally. This may occur if the
satisfying scheme of the requests is unfair.

The paper is organized as follows: Section 2 describes the proposed system, Sec-
tion 3 presents the refinement of the model specified in [9] while fairness constraints
are stated using the Event-B method, Section 4 lists conclusions and future work.

Irina Mocanu · Lorina Negreanu · Adina Magda Florea
University “Politehnica” of Bucharest,
Computer Science Department,
Splaiul Independentei 313,
060042 Bucharest, Romania
e-mail: {irina.mocanu,lorina.negreanu,adina.florea}@cs.pub.ro

F. Zavoral et al. (eds.), Intelligent Distributed Computing VII, 301
Studies in Computational Intelligence 511,
DOI: 10.1007/978-3-319-01571-2_35, c© Springer International Publishing Switzerland 2014

302 I. Mocanu, L. Negreanu, and A.M. Florea

2 System Description

We refine the former specification of the system for managing requests for ser-
vices [9] under the strong fairness assumption [8]. Consider a supervised person
that wants to do an activity at a relaxing centre (e.g. swimming, physiotherapy or
talking to somebody). Since the person’s well being is important we need to have a
system that will manage his request based on some measured parameters.

The system we propose is composed of several agents [9]: (i) an agent to interro-
gate the ambient factors - Temperature Agent; (ii) an agent to verify the health status
of the supervised person -Pulse Agent; (iii) an User Agent associated with the user;
(iv) Service Agents (there are n agents - each agent has a specialization and a maxi-
mum available time) and (v) a Community Agent (this agent knows all the services
available and unavailable). The user makes a request and the User Agent will analyze
the request by computing the priority and the duration of the service using the mon-
itoring information (health status of the person and performed activities). The User
Agent will send a verification message to the Temperature Agent and to the Pulse
Agent in order to verify if the supervised person can perform that activity. If these
parameters (the ambiental temperature/pulse) are in normal values for that person,
the User Agent will send a request message to the Community Agent (new request).
If the answer for the request is not received in a predefined time, the User Agent
will send a message to the Community Agent (modify request) in order to increase
the priority of the requested service for that user. The request will be canceled by
the User Agent (cancel request). If there is available time for requested service,
the corresponding Service Agent will inform the User Agent through the Commu-
nity Agent (satisfy request). Some services may be requested more frequently than
others. Thus the Community Agent will request to increase the maximum available
duration for a Service Agent, by taking some available time from other services
(request available). The Service Agent associated with the requested service with
fewer requests will add some extra time to that service (release available).

3 Formal Specification

In the previous work [9] we specified the request as the main modeling element.
A request is defined as a member of the set of requests. It has a status (pending
or satis f ied), a service and a duration associated, that can be accessed through the
functions

status ∈ requests → STATUS,
where status assigns a status to each request,

re f erence ∈ requests → SERVICES,
where reference assigns a service to each request,

duration ∈ requests → N*,
where duration assigns a duration to each request (with the assumption that if a
service is requested, the duration is at least 1). The status of the request is changed

Agents Modeling under Fairness Assumption in Event-B 303

into satis f ied, if the duration of the requested service is either less than or equal to
the time availability of the service, defined as:

available ∈ SERVICES → N.
In the modeling [9] we started by considering that all requested references exist in
the set of available services and that this set and the set of requests are given in
an up-to-date state. We derived by refinement [7] the situation in which we have
to take into account new requests, modification of requests, cancelation of requests
and update of services time availability.

3.1 Refinement under the Fairness Assumption

Bellow we refine the previous specification described by [9] addressing the problem
of fairness. The previous specification captures the notion of flow by a set. In fact,
it is possible that a request remains always pending and is never satisfied, because
there are always other requests which are processed.

Our solution is to add a priority to each request that is increased the longer it
waits and to satisfy the request with the highest priority. If a request is waiting too
long (more than a specific deadline) the request is canceled. The event new request
gives each new request a priority using a parameter p (p ∈ N). The variable priority,
priority ∈ requests → N, records the priority of the request and the new condition
strengthens the guard of the event satisfy request:

∀ p · (p ∈ requests ∧ status(p)=pending ∧
duration(p) ≤ available(re f erence(p))

⇒ priority(p) ≤ priority(r)).
In order to manage the waiting time of a request we add a time stamp recorded in
the variable timer, timer ∈ requests → N. The event new request gives each new
request a time stamp using the variable clock, clock ∈ N, that grows larger as each
successive operation is invoked:

timer(r) := clock.
The event cancel request is enabled if the difference between the current clock value
and the time stamp of the request is larger than the deadline of the request:

clock - timer(r) > deadline(r),
where the constant deadline,

deadline ∈ REQUESTS → N,
records the maximum time for a request to be processed. The event modify request
increases the priority of the request if it took longer than the amount of time given
by the constant oldies,

oldies ∈ REQUESTS → N
clock - timer(r) > oldies(r).

The context of the described refinement together with the added variables are given
in Fig. 1. Invariants for the variables timer, clock and priority together with the
corresponding initialization are given in Fig. 2.

The event satisfy request is given in Fig. 3.

304 I. Mocanu, L. Negreanu, and A.M. Florea

CONTEXT
Services c1

EXTENDS
Services c0

CONSTANTS
deadline
pq
oldies

AXIOMS
axm1: deadline ∈ REQUESTS → N
axm2: pq → N
axm3: oldies ∈ REQUESTS → N

END

—

MACHINE
Services 2

REFINES
Services 1

SEES
Services c1

VARIABLES
. . .

timer
clock
priority

Fig. 1 The context and variables for the refinement

inv1: timer ∈ requests → N
inv2: clock ∈ N
inv3: priority ∈ REQUESTS → N
. . .
act6: timer := /0
act7: clock := /0
act8: priority :∈ REQUESTS → N

Fig. 2 The invariants and initialization for the refinement

satisfy request:
REFINES

satisfy request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: duration(r) ≤ available(reference(r))
grd4: ∀ p · (p ∈ requests ∧ status(p)=pending ∧

duration(p) ≤ available(reference(p)) ⇒ priority(p) < priority(r))
THEN

act1: status(r):= satisfied
act2: available(reference(r)) := available(reference(r)) - duration(r)
act3: clock := clock + 1

END

Fig. 3 The satisfy request event

Agents Modeling under Fairness Assumption in Event-B 305

The events new request and cancel request are given in Fig. 4 while mod-
ify request is given in Fig. 5. The events request available and release available
are not further refined. They have the same specification as in [9].

new request:
REFINES

new request
ANY

r
d
s
p

WHERE
grd1: r ∈ REQUESTS \ requests
grd2: d ∈ N1
grd3: s∈SERVICES
grd4: p ∈ N

THEN
act1: requests := requests ∪ {r}
act2: status(r) := pending
act3: duration(r) := d
act4: reference(r) := s
act5: priority(r) := p
act6: timer(r) := clock
act7: clock := clock + 1

END

—

cancel request:
REFINES

cancel request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: clock - timer(r) > deadline(r)

THEN
act1: requests := requests \ {r}
act2: status := {r} << | status
act3: duration := {r} << | duration
act4: reference := {r} << | refer-

ence
act5: priority := {r} << | priority
act6: timer := {r} << | timer
act7: clock := clock + 1

END

Fig. 4 The new request and cancel request events

modify request:
REFINES

modify request
ANY

r
WHERE

grd1: r ∈ requests
grd2: status(r) = pending
grd3: clock - timer(r) > oldies(r)

THEN
act1: priority(r) := priority(r) + pq
act2: clock := clock + 1

END

Fig. 5 The modify request event

306 I. Mocanu, L. Negreanu, and A.M. Florea

3.2 System Evaluation

The proof statistics given in Table 1 show that 52 proof obligations were generated
by the Rodin platform [3], [2]. 47 proof obligations were discharged automatically
while the others were discharged by interactive proofs. In Table 1 Services 0 repre-
sents the abstract model; Services 1 represents the refinement described in [9] and
Services 2 represents the refinement under the fairness assumption.

Table 1 The statement of the development

Element name Total Auto Manual Reviewed Undischarged
Services 52 47 3 0 0

Services 0 25 20 3 0 0
Services 1 4 4 0 0 0
Services 2 23 23 0 0 0

4 Conclusions and Future Work

In this paper, we have presented a specification and verification technique of a multi-
agent system for requesting services under the fairness assumption. The informal
specification of the system is translated into the Event B notation to verify the re-
quired properties. The model refinement that Event-B emphasizes simplifies proofs
by providing a progressive and detailed view of the system.

As future work we intend to use UML-B, specified in [4], to model the system
and translate the specifications into Event-B for verification. Since the final target
is to have an executable code we intend to generate Java code from the Event-B
specification with the aid of EB2J plug-in, [1].

Acknowledgements. The work has been funded by Project 264207, ERRIC- Empowering
Romanian Research on Intelligent Information Technologies/FP7- REGPOT-2010-1 and the
Sectoral Operational Programme Human Resources Development 2007-2013 of the Roma-
nian Ministry of Labour, Family and Social Protection through the Financial Agreement POS-
DRU/89/1.5/S/62557.

References

1. EB2J Tool (2013), http://eb2all.loria.fr/
2. Rodin Platform (2013),

http://wiki.eventb.org/index.php/Rodin_Platform
3. Rodin User’s Handbook v.2.5 (2013),

http://handbook.eventb.org/current/html/index.html
4. UML-B (2013), http://wiki.eventb.org/index.php/UML-B
5. Abrial, J.-R.: The B book. Cambridge University Press (1996)
6. Abrial, J.-R.: Modeling in Event-B: System and Software Engineering. Cambridge Press

(2010)

http://eb2all.loria.fr/
http://wiki.eventb.org/index.php/Rodin_Platform
http://handbook.eventb.org/current/html/index.html
http://wiki.eventb.org/index.php/UML-B

Agents Modeling under Fairness Assumption in Event-B 307

7. Abrial, J.-R., Cansell, D., Méry, D.: Refinement and reachability in event B. In: Treharne,
H., King, S., Henson, M., Schneider, S. (eds.) ZB 2005. LNCS, vol. 3455, pp. 222–241.
Springer, Heidelberg (2005)

8. Sun, J., Liu, Y., Dong, J.S., Wang, H.H.: Specifying and verifying event-based fairness
enhanced systems. In: Liu, S., Araki, K. (eds.) ICFEM 2008. LNCS, vol. 5256, pp. 5–24.
Springer, Heidelberg (2008)

9. Negreanu, L., Mocanu, I.: Formal verification of service requests in a multi-agent system
using Event-B method. In: 8th Workshop on Workshop Knowledge Engineering and Soft-
ware Engineering (KESE 2012), ECAI 2012, Technical Report TR-2012/1, Montpellier,
France, August 27-31, pp. 62–65. University of Almeria, Almeria (2012)

	Agents Modeling under Fairness Assumption in Event-B
	1 Introduction
	2 System Description
	3 Formal Specification
	3.1 Refinement under the Fairness Assumption
	3.2 System Evaluation

	4 Conclusions and Future Work
	References

